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ABSTRACT 

Preservation of acellular matrices represents a big challenge for the improvement of tissue 

engineering. In this work, a new method to preserve over time a decellularized esophageal scaffolds 

was explored. Dried and sterile acellular esophagi were obtained with a combined treatment of 

ethanol and a subsequent supercritical CO2 drying. Preservation of the extracellular matrix 

architecture, collagen content, and mechanical properties up to 6 months demonstrated the 

efficiency of the methodology with implications in natural scaffold storage. In vitro support of 

mesenchymal stem cells showed a promising indication to the further use of the technology in pre-

clinical and clinical application.  

 

KEYWORDS: dry decellularized scaffold; tissue storage; esophageal replacement; supercritical 

CO2 drying; extracellular matrix preservation; tissue engineering; mesenchymal stem cells. 
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INTRODUCTION 

 

Several congenital and acquired conditions may require surgical esophageal replacement. 

Esophageal atresia (EA) is the most common congenital anomaly of the esophagus [1], while 

malignant conditions such as leiomyosarcoma, teratoma and inflammatory pseudo tumor 

predominate in the adult population [2]. Esophageal cancer is the eighth most common cancer in the 

world, with 456000 new diagnosed cases and 40000 deaths in 2012 [3]. The two main histological 

types of esophageal cancer are adenocarcinomas and squamous cell carcinomas sub-types which 

have a significant heterogeneity in incidence, geographic distribution, ethic pattern and etiology [4]. 

Despite modern therapies overall 5-years survival rates range from 15 to 30% [5-7]. Current choices 

for esophageal replacement involve the use of more distal parts of the gastrointestinal tract such as 

stomach, jejunum and colon, with long-term problems associated to each technique [8]. Tissue 

engineering offers valid alternative to conventional transplantation by replacing artificial tissue or 

organ function with constructs that contain specific populations of living cells [9]. Specifically, 

patients with esophageal severe disorders would have a great advantage from tissue-engineered 

esophagi used in replacement therapies. 

Several esophageal scaffolds have been proposed for tissue engineering: synthetic scaffolds, 

naturally derived scaffolds and natural acellular matrix [10]. Some experiments with synthetic 

scaffolds have led to good results in animal models [11,12,13]. Natural collagen scaffolds showed 

promising outcomes in the past years [14,15]. Decellularized esophageal scaffolds proved to be a 

valuable resource for clinical translation [16,17]. Natural acellular matrices are derived from human 

and animal organs or tissues that have been treated to remove cells and immunogenic material. 

They retain the architecture of the tissue of origin and also the molecular components of the native 

extracellular matrix (ECM). Our group previously demonstrated how a pig esophagus can be 

efficiently decellularized while maintaining defined ultrastructure, which is essential for medical 

applications [18]. 
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One of the major drawbacks of tissue engineered organs is the difficulty to preserve and 

store decellularized scaffolds in a highly sterile condition, which is essential in the perspective of 

clinical use. We recently published a work were we showed the possibility to cryopreserve rabbit 

esophagi which maintain proper ECM structure and function [19]. Considering scaffold 

preservation for cell repopulation and transplant, there is the necessity to move from simple cellular 

cryobiology to other more sophisticated techniques valid for whole bigger organs. 

Not all sterilization methods can be used with tissue-engineered scaffolds. Flame, steam or 

heat at 121 or 136 oC cannot be applied to biological tissues. Other methods, such as chemical 

sterilization with molecules like paracetic acid or ethylene oxide have been found to alter 

mechanical properties of the tissues or leave possible toxic residuals within the ECM [20,21]. One 

of the most commonly used method for sterilization in tissue engineering is the ionizing radiation. 

Gamma irradiation has been shown to increase stiffness and strength at dosage lower than 15 kGy, 

while mechanical properties decrease at higher dosages [22]. Ionizing radiation has been shown to 

also induce structural changes to the ECM proteins [23,24], which can eventually alter and 

compromise cell adhesion capacity [25]. 

Supercritical carbon dioxide (SC-CO2) has been widely applied to the sterilization of 

pharmaceuticals and foods. SC-CO2 has been used as a method to decellularize tissues [26] and 

more recently it has been investigated as a method for sterilization of biological scaffolds in 

combination with additive [27]. The process works at low temperatures (30-35°C) which do not 

compromise biological molecules, and leaves no cytotoxic residuals, essential in perspective of cell 

repopulation. SC-CO2 has been recently applied to the sterilization of soft decellularized tissues 

such as the aortic valve and portions of lung tissue [28,29]. We recently developed a method that 

combines ethanol and SC-CO2 to dry esophageal decellularized tissue, which allows to maintain 

physiological and mechanical properties and biocompatibility for cell repopulation [30]. 

Our aim is to explore the capacity of the ethanol/SC-CO2 method to sterilize a decellularized 

swine esophagus as well as the conservation over time of this tissue for clinical application. 
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Therefore, we present an innovative application of supercritical fluid, which has never been 

explored so far. The innovative key points of this work are the use of SC-CO2 as a method to both 

sterilize and maintain over time a biological decellularized scaffold. 

 

MATERIALS AND METHODS 

 

Organ harvest 

Esophagi were collected from white domestic piglets (Sus scrofa domesticus), 12 to 16 weeks-old, 

from 25 to 40 kg in weight. Piglets were euthanized by administration of an overdose of intravenous 

Sodium Pentobarbital (Sigma Aldrich). The esophagus was harvested with a midline incision, and 

thoroughly washed with phosphate buffer solution (PBS, Thermo Fisher) with 5% antibiotic 

antimycotic solution (Thermo Fisher). All surgical procedures and animal handling were carried out 

in accordance with UK Home Office guidelines under the Animals (Scientific Procedures) Act 1986 

and the local ethics committee. 

 

Tissue decellularization 

Esophageal decellularization was performed with detergent enzymatic treatment (DET) following a 

previously published procedure [18]. Briefly, the lumen was continuously perfused by three 

subsequent cycles of DET using a variable speed roller pump (Masterflex L/S, Cole-Parmer) at 0.6 

ml/min. Three subsequent solutions were used for each cycle: MilliQ water at 4°C for 18 h, 4% 

sodium deoxycholate at room temperature for 4 h, and 50 Kunitz units DNase I in 1 M NaCl 

solution (all from Sigma Aldrich) at room temperature for 3 h. Samples were washed, divided into 

cylindrical segments, and stored in sterile PBS at 4°C until use. 

 

Supercritical CO2 drying 
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The carbon dioxide supercritical drying process (SC-CO2) was performed as previously reported 

[30]. Briefly, the samples were dehydrated by submersion in a series of ethanol (Sigma Aldrich) 

solutions (50% - 75% - 95% - 99.8%) for 20 min at each dilution. Then, samples were CO2 treated 

at 35°C and 10 MPa for 90 minutes. A high pressure sapphire window cell (Separex S.A.S.) was 

used to carry out the experiments. The internal temperature and pressure were set with a 

thermostatic bath and an HPLC pump (Gilson 25SC). CO2 (purity 99.990%, Messer) was flowed 

into the reactor at a constant flow rate of 23 ml/min until 10 MPa, then the pressure was maintained 

constant by tuning on a micrometric valve. To avoid any microbial contamination during the 

opening of the cell, a Bunsen burner flame was placed near the reactor chamber and the treated 

samples were collected with sterile tweezers in sterile tubes. The glass chamber was disinfected 

with EtOH after each sampling. Samples were vacuum packaged for storage in sterile plastic bag at 

4°C. Throughout the text NT and T t0 refer to the control non-treated, and treated sample at time 0; 

T t1 refers to the treated sample at 3 months from the process, T t2 refers to the treated sample after 

6 months from the process. 

 

Weight loss analysis 

Samples were weighted after ethanol and supercritical CO2 treatments with a precision scale (Ohaus 

Explorer). It was assumed that all weight loss observed was due to the moisture removal from the 

ECM. Weight reduction was expressed as the ratio of % Wend/Wstart, with Wend and Wstart expressing 

respectively the weight of the sample before and after the treatment. 

 

Microbiological analysis 

Microbial load was analyzed before and after the treatment in terms of mesophilic bacteria, 

mesophilic spores, yeasts and molds by means of the standard plate count techniques as previously 

reported [31]. Serial dilutions in PBS were done with a weight ratio of 1:10. For the enumeration of 

mesophilic spores, the first dilution tubes were inserted in a thermostatic bath at 80°C for 10 
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minutes before plating. Colonies of mesophilic bacteria and spores were counted after 72 hours 

incubation at 30°C on Plate Count Agar (Microbiol Diagnostici), while yeasts and molds were 

counted after 72-120 hours at 25°C on dichloran rose-bengal chloramphenicol agar (DRBC, Biotec 

srl) plates. The enumeration was referred to the weight of initial product and expressed in colony 

forming units CFU/g. The degree of inactivation was calculated considering the log(N/N0), where 

N0 (CFU/g) and N (CFU/g) is the number of CFU per gram in the untreated and treated sample, 

respectively. The quantification limit was 300 CFU/g for the agar pour plates, and 2000 CFU/g for 

the DRBC spread plates, while the limit of detection was < 10 CFU/g for the pour plate and < 100 

CFU/g for the spread plates. 

 

Mechanical characterization 

Tensile tests were performed with a Midi 10 electromechanical testing machine (Messphysik 

Materials Testing). Before testing, the dried samples were rehydrated for 24 h in PBS. Then, 

samples including both epithelium and muscle tissues were cut with scissors in a regular rectangular 

shape (with width of 4-5 mm and length of 10-20 mm, depending on the size of the esophagus 

sample) and fixed to the loading frame through double adhesive tape at both ends. Esophageal 

samples were cut both in longitudinal and transversal direction. All analyses were performed at 

room temperature at least in triplicates and at a speed of 0.1 mm/s. 

 

Collagen quantification  

All collagen isoforms were quantified using a total collagen assay kit (QuickZyme Biosciences) 

according to manufacturer’s instructions. Before starting the analysis, dried samples were 

rehydrated in PBS for 48 h, to be comparable with non-dried decellularized scaffolds. Collagen 

standard (1200 μg/mL in 0.02 M acetic acid) was provided by the manufacturer. Briefly, 

representative decellularized esophageal samples of each group (untreated and supercritical CO2-

dried) were weighed and directly hydrolyzed in 6 M HCl at 95 °C for 20 h. Samples were cooled to 
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room temperature and centrifuged to remove debris. Supernatants were mixed with a chromogen 

reagent at 60°C for 1 h to detect hydroxyproline residues. Absorbance for each sample was 

determined at 555 nm using a microplate reader (Infinite 200 Pro Tecan). 

 

Cell culture and scaffold seeding 

Human bone marrow mesenchymal stem cells (hBMMSCs) were provided by the Cell factory of 

Policlinico Hospital (Milan, IT). Cells were expanded in tissue culture T75 flask in MEM-alpha, 

10% Fetal Bovine Serum, 1% Penicillin-Streptomycin (all from Thermo Fisher). At 80-90% 

confluence, cells were detached with Trypsin-EDTA 0.25% (Thermo Fisher) and seeded in 48multi-

well and on the decellularized scaffold. Only early passages of cells were used for the experiments 

(p4-p8). The dry decellularized scaffolds were rehydrated for 24h in PBS and mild agitation, then 

punched with 8 mm biopsy punches (B life) and washed twice in mem-alpha with the second wash 

incubated overnight at 37°C to equilibrate the tissue and avoid osmotic shock during cell seeding. 

Tissue disks were transferred to 48 multiwells with the luminal side up, and incubated with 300 

μL/well of complete medium for 24h at 37°C and 5% CO2. For conditioned medium cytotoxicity 

experiments, 2x104 cells/well were seeded in 300 μL of each conditioned medium and cultured for 

48 h. For cell adhesion experiments, 1.5x105 cells/disk were seeded and analyzed after 48 h of 

culture, and fixed after 10 days of expansion, with 1 mL fresh medium change every other day. 

 

Histological and fluorescence analyses 

Esophageal samples were fixed overnight in paraformaldehyde 4% at 4°C, then dehydrated with 

sucrose (Sigma Aldrich) serial passages (10% - 20% - 30%, 12 h each at 4°C). Samples were then 

frozen by submersion in isopentane (C5H12, Sigma Aldrich) cooled in a liquid nitrogen bath, and 

included in Optimal Cutting Temperature compound (OCT, Kaltech). Cryosections of 10 µm were 

prepared onto Superfrost Plus slides (Thermo Fisher) using a cryomicrotome (Cryostat Leica 

CM1860). Tissue slides were stained with Haematoxylin and Eosin (H&E), Masson’s trichrome 
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(MT) and Alcian blue (AB) stains (all from Bio-Optica), according to manufacturer’s instructions. 

Cytochemistry analyses on tissue slices were performed using Alexa Fluor 488 Phalloidin (Thermo 

Fisher) 1:200 and Hoechst (Sigma Aldrich) 10 µM diluted in PBS with 0.1% Triton X-100 (Sigma 

Aldrich). Color and fluorescence images were obtained using a color camera mounted on 

fluorescence inverted microscope (Leica DMI4000). 

 

Cell vitality assay 

Cultured samples were analyzed with Live/Dead viability/cytotoxicity kit for mammalian cells 

(Thermo Fisher) according to manufacturer’s instructions. Briefly, samples were washed with PBS 

twice. 2 µM calcein AM and 2 µM ethidium homodimer-1 were dissolved in basal medium 

(without serum), together with sterile 1 µM Hoechst (Sigma Aldrich). Samples were incubated in 

Live/Dead solution for 45 min at 37°C, then washed in basal medium and analyzed at fluorescence 

microscope, with 360 nm filter for Hoechst, 488 nm for calcein and 594 nm for EthD-1. 

 

RESULTS 

The first step was the decellularization of esophageal tissues obtained from euthanized 

piglets. Organs were harvested, washed, and the decellularization process was started within 12 

hours from collection. Decellularized tissues were divided into portions to be processed with 

supercritical CO2 and stored at different time points, in triplicate for each condition. Tissues were 

stored without need for -irradiation after the dehydration procedure. At specific time points, tissues 

were rehydrated and analyzed (Fig. 1).  
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Figure 1: schematic overview of the long term tissue storage work strategy. NT and T t0 refer to the control non-

treated, and treated sample at time 0; T t1 refers to the treated sample at 3 months from the process, T t2 refers to the 

treated sample after 6 months from the process. 

 

The quality of the decellularization protocol to obtain esophageal tissue with absence of 

genetic material and cellular components was deeply investigated in our previous works [18,19,30]. 

The morphology of the tissue after rehydration process was comparable with freshly decellularized 

tissue (Fig. 2A) at all the time points (data not shown). The process of supercritical drying shows 

high loss in weight compared to ethanol dehydration, due to complete loss of water residual and 

ethanol in the ECM (Fig. 2B). We performed complete microbial inactivation test to assess whether 

the CO2 drying was able to reduce bacterial load compared to non-treated sample. Results were 

negative in all the contaminating agent categories analyzed (Fig. 2C), meaning that supercritical 

CO2 drying procedure has a high sterilization capacity. 

A key feature of decellularized scaffolds for organ transplantation is the preservation of their 

mechanical properties, which must be comparable to those of the original tissue. We performed 

tensile tests in order to derive the strength and strain at break of dehydrated decellularized 

esophageal samples in longitudinal and transversal direction (Suppl. Fig. 1A). All the different 

storage time points were analyzed. Mechanical tests showed that treated samples have higher 

strength compared to control samples at t0, especially along the longitudinal direction (Fig. 2D). 

Considering the strain at break, both longitudinal and transversal sections showed less variation 
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between the non-treated samples and the dehydrated ones at different time points (Fig. 2E and 

Suppl. Fig. 1B). Some differences were expected because of the biological nature of the tested 

samples, which can cause significant variation in the mechanical behavior of samples even taken 

from the same esophagus. Furthermore, we can observe that both the strength and strain at break of 

treated samples do not vary significantly at different time points. Overall, non-treated controls and 

treated samples showed comparable mechanical properties, stating that storage over time of 

dehydrated scaffolds does not seem to affect physical characteristics of the matrix (at these specific 

time points). 

 

 

Figure 2: Supercritical CO2 drying effects. (A) Cylindrical sections of the decellularized esophagus at different steps of 

the process: Acellular (Decell); after 80 min dehydration in ethanol solution (EtOH); after supercritical CO2 drying 

(CO2 dry); after 24h rehydration in PBS (Rehydration). (B) Weight loss percentage after 80 min dehydration in ethanol, 

and after a following 90 min of supercritical CO2 drying at 100 bar, 35°C. (C) Microbial inactivation. Microbial 

reduction in terms of yeasts and molds, mesophilic bacteria and mesophilic spores after EtOH dehydration, and after the 

further CO2 drying. (D-E) Mechanical characterization. Strength [MPa] and strain at break [%] for longitudinal and 
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transversal samples at different storage time points. All data are shown as mean values of n ≥ 3 with St. Dev, t-tests *P 

≤ 0.05. 

 

 

 To further assess the stability of the dehydrated decellularized scaffolds after long-term 

storage, staining and quantification for specific ECM components were performed. The quality of 

the decellularization process and the preservation of the esophageal architecture, previously 

demonstrated with our dehydration method [30] (Suppl. Fig. 2A-B) by the presence of the three 

esophageal layers, namely mucosa, submucosa and muscular layers, was also confirmed in all the 

analyzed samples by H&E staining (Fig. 3A). H&E staining performed on non-treated and treated 

tissue sections at different time points showed the quality of the decellularization process and 

preservation of muscle ECM fiber structure (Fig. 3A). MT staining showed how keratin, muscle 

fiber structure and collagen were maintained in all the time points and conditions. Finally, AB 

staining revealed good preservation of glycosaminoglycans in the mucosa. These qualitative 

analyses prove that supercritical CO2 drying does not affect the quality of the ECM in 

decellularized scaffolds after long-term storage. To corroborate what evidenced with the staining, 

we quantified collagen in randomized portions of treated and untreated esophagi. Dried samples 

showed high preservation of all isoforms of collagens in all the time points, compared to non-

treated samples (Fig. 3B). Collagen slight increase during time could be ascribed to a small loss in 

weight due to loss of other proteins, with consequent concentration of collagen in the scaffold (data 

frequently observed in literature [32,33]). 
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Figure 3: (A) Histological analysis. Hematoxylin and eosin staining (H&E), Masson’s trichrome (MT) and alcian blue 

(AB) at different storage times. H&E shows the absence of residual pig cell nuclei (absence of dark blue dots), muscle 

fiber residual ECM shown in dark pink, while preserved collagen is in pale pink. MT shows red keratin and muscle 

fibers, and blue collagen, while light pink indicates cytoplasm and dark brown cell nuclei (both absent). AB stain shows 

acidic polysaccharides such as glycosaminoglycans in blue. (B) Residual collagen quantification on the samples at 

different conditions and different time points. All data are shown as mean values of n ≥ 3 with st. dev. 
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 Following the mechanical and biological characterization of decellularized dehydrated 

scaffolds, we performed biocompatibility assays to prove that no cytotoxic degradation products 

were released during the storage. These assays were also necessary to investigate the capability of 

the dehydrated matrices to support cell adhesion and culture in cell repopulation experiments. At 

first, disks of esophagi stored at different time points were rehydrated and incubated with cell 

culture media for 24 h (Suppl. Fig. 3). This medium was then used to culture hBMMSCs. Non-

treated control scaffold conditioned medium did not allow any cell survival as demonstrated by 

absence of cells at 48 h of culture (Fig. 4A), while dried stored samples did not affect the medium 

quality. Non-treated control samples could cause the release of some toxic compounds from the 

decellularization procedure that were not completely removed with conventional washing treatment, 

possibly due to the tissue thickness. Another hypothesis might be ascribed to a deterioration of the 

scaffold during the storage in PBS (at least 10 days from harvest/cell culture experiments). On the 

other hand, any potential toxic molecule was extracted and washed by the ethanol/supercritical CO2 

process, and the deterioration is inhibited in the dried state. Quantification of the live/dead assay 

was also performed and compared to control cells, cultured in non-conditioned media, calculating 

the ratio of dead cells over total cells per well, resulting in high cell survival in conditioned medium 

during all time points (Suppl. Fig 4A-B). Secondly, the disks of esophageal tissue were used as 

scaffolds for 3D culture to verify direct cytotoxicity, capacity of cellular adhesion in the stored 

ECM, and promotion of cell proliferation. No or few cells adhered and proliferated during the 10 

days of expansion on non-treated control scaffolds, confirming what previously observed with 

conditioned media. On the other hand, cells adhered and proliferated on the scaffolds stored at the 

different time points (Fig. 4B). To better visualize the adhesion of the mesenchymal stem cells on 

the scaffolds, sections of tissue were stained for f-actin, which showed the superficial adhesion and 

cell spreading on the luminal side of the scaffolds (Suppl. Fig 4C).  
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Figure 4: (A) Cytotoxicity live/dead analysis of hBMMSCs at 48h of culture using conditioned media from scaffolds 

stored at different time points. Fluorescence analysis shows cell nuclei marked with hoechst (in blue), live cells marked 

with calcein-AM (in green) and dead cells marked with ethidium homodimer-1 (in red). (B) Live and dead analysis on 

the sample surface. Live and dead images at 48h of culture on the surface of scaffolds from different storage time 

points. T t0 refers to the treated sample at time 0, T t1 refers to the treated sample at 3 months from the process, T t2 

refers to the treated sample at 6 months from the process, NT t0 is the control as not treated sample at time 0. In blue is 

stained the nuclei with hochst, in red is stained dead cells with ethidium, in green is stained the cytoplasm of live cells.  

 

DISCUSSION 

 When a patient has an ultimate organ failure, the only option available is organ transplant. 

Yet, transplantable organs shortage and long waiting lists are the major problems in the field [34], 

together with the limited survival time of vital organs after donor explants [35]. For this reason, 

recellularized organs are a desirable perspective in the field of allogeneic transplants. 

 To this end, we developed a method for dehydrating, sterilizing and storing tissues for 

preservation over time. In this work we applied ethanol and supercritical carbon dioxide to 

dehydrate sections of porcine esophagus to be stored for 3 and 6 months after processing. 

Dehydration method was optimized with the combination of both EtOH/SC-CO2 (10 MPa and 

35°C) since SC-CO2 alone was not sufficient to obtain cytocompatible scaffolds, as previously 
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described by our group [30]. This procedure was sufficient for complete removal of cytotoxic 

residues from the decellularization process, together with complete ethanol and water elimination 

from the decellularized esophagi [36]. Moreover, the process was able to eliminate any form of 

contaminating bacteria, yeasts or molds, thus to guaranty a highly sterile scaffold for clinical 

application. Given the absence in humidity, scaffolds can be stored at low temperatures with no 

risks of re-contamination, and no risk of water crystals formation, which could eventually disrupt 

the ECM structure. 

 Supercritical drying generated a scaffold with preserved mechanical properties, similar to 

control, over time. Being the esophagus one active organ in the food motility, robustness of the 

structure a critical key feature for clinical application of tissue engineered organs, as tissue fragility 

can lead to graft rupture or anastomotic adverse events after implantation. We observed preserved 

mechanical properties at 3 and 6 months’ storage, namely transversal strength, a slightly increased 

longitudinal strength compared to non-treated samples, and similar longitudinal and transversal 

strain at break. Standard deviations observed in both controls and treated samples were within the 

extent of biological variability, given by the sex of the animals, age and weight range, which 

inevitably influence dimension and mechanical characteristics of the esophagi. 

Mechanical properties strictly depend on the quality of the ECM, which needs to be 

preserved during decellularization [18,19] and supercritical drying [30] processes. The EtOH/SC-

CO2 treatment generated a dried scaffold with no visible histological damages at ECM structural 

level. During the long-term storage at t1 and t2, we did not appreciate any visible change in the ECM 

structure. All the histological analyses confirmed what already observed at mechanical level. Good 

conservation of collagen, keratin and glycosaminoglycans was highlighted throughout the six 

months of dry storage. Moreover, the muscle matrix structure and fiber disposition in the tissue 

showed a remarkable degree of preservation at the different time points. These characteristics are 

essential in the view of cellular re-population experiments, where cell adhesion, survival (absence 

of tissue cytotoxicity), differentiation, proliferation and functionality are strictly required. 
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To this end, we verified the degree of cytotoxicity of the dried scaffolds at different time 

points. It is known how even small amount of residual detergents in decellularized scaffolds 

compromises the re-population process [37,38]. Infinitesimal amounts of detergent could remain in 

the scaffolds even after washing, due to the difficulty in cannulating and perfusing the organ, or to 

the intrinsic ECM complexity. The combined treatment with EtOH and continuous flow of 

supercritical CO2 was able to remove any toxic residual derived from the decellularization process, 

or from the initial degradation of the ECM that begins soon after decellularization, during the first 

days of tissue storage before drying treatment. Delicate primary cells, such as mesenchymal stem 

cells, growing in scaffold-derived conditioned media indicated biocompatibility of the tissue. On 

the other hand, the capacity of cell adhesion and expansion, tested with a 10 days’ 3D culture 

experiment, provided information of the quality of the ECM. Preservation of adhesion foci, integrin 

sites and tissue specific epitopes after long-term storage is essential to support adhesion and 

differentiation into tissue specific subtypes of epithelial, muscle, endothelial, mesenchymal and 

neuronal precursors, when re-population experiments are required prior to transplantation. 

It has to be emphasized that the tissue desiccation process that we described successfully 

acted as both long-term storage technique and high grade sterilization method. This outcome, 

previously shown for other applications [39-41], has now been proved also in tissue engineering. 

Previous works have shown how different sterilization methods, commonly used for clinical 

application, such as gamma irradiation, when applied to biological tissues at low dosage can 

increase tissue stiffness, while at high dosage can alter and damage the composition of the ECM 

[38,42,43]. Being decellularized scaffolds composed of defined macromolecules, their structure can 

be altered by radiation causing free radicals and chemical bonds breakage. These techniques 

compromise the sterility and long-term maintenance of scaffolds to be used in clinical application. 

On the other hand, our approach of using the supercritical gas for esophageal tissues was able to 

sterilize and allow long-term conservation for translational and clinical studies.  
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CONCLUSIONS 

A bank of dried decellularized organs and tissues readily accessible to laboratories and 

medical équipes would be greatly beneficial to the development of new successful therapies. In a 

context of emergency operations, medical staffs would have access to a set of sterile organs ready to 

be rehydrated and repopulated with autologous or heterologous cells, just days before planned organ 

or tissue transplants. 

Taking advantage of SC-CO2 drying process, we obtained a dry decellularized scaffold that 

could be used for the development of organ/tissue substitution procedures. The method that we 

proposed has a double desirable effect on the decellularized porcine esophagi: high sterilization 

capacity, and high dehydration capacity, which lead to the possibility to store over time the organ, 

still maintaining its structural and functional characteristics. 

Further studies on the sterilizing effect and long-term storage possibility given by 

supercritical gases applied on decellularized scaffolds and biological matrices could be a great 

advantage in the development of a clinical grade method to be applied in translational research. 
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