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Abstract10

Discrete morphological data have been widely used to study species evolution, but the use of11

quantitative (or continuous) morphological characters is less common. Here, we implement a12

Bayesian method to estimate species divergence times using quantitative characters. Quantitative13

character evolution is modelled using Brownian diffusion with character correlation and14

character variation within populations. Through simulations, we demonstrate that ignoring the15

population variation (or population “noise”) and the correlation among characters leads to biased16

estimates of divergence times and rate, especially if the correlation and population noise are17

high. We apply our new method to the analysis of quantitative characters (cranium landmarks)18

and molecular data from carnivoran mammals. Our results show that time estimates are affected19

by whether the correlations and population noise are accounted for or ignored in the analysis.20

The estimates are also affected by the type of data analysed, with analyses of morphological21

characters only, molecular data only, or a combination of both; showing noticeable differences22

among the time estimates. Rate variation of morphological characters among the carnivoran23
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species appears to be very high, with Bayesian model selection indicating that the24

independent-rates model fits the morphological data better than the autocorrelated-rates model.25

We suggest that using morphological continuous characters, together with molecular data, can26

bring a new perspective to the study of species evolution. Our new model is implemented in the27

MCMCtree computer program for Bayesian inference of divergence times. [Bayesian inference,28

continuous morphological characters, geometric morphometrics, Procrustes alignment,29

molecular clock, divergence times, phylogeny]30

Molecular sequences are informative about the relative ages of nodes on a phylogeny, but not about31

the geological times of divergence or the absolute molecular evolutionary rate. The Bayesian method32

offers a way to use fossil information to construct a prior on divergence times, which can then be33

integrated with the molecular data to produce posterior estimates of absolute divergence times34

(e.g., Thorne et al., 1998; Drummond et al., 2006; Rannala and Yang, 2007). However, modelling35

clade ages with statistical distributions based on the fossil evidence is challenging. Fossils may36

provide estimates of minimum clade ages, but maximum clade ages are typically based on the37

absence of fossil evidence, and are thus hard to justify (Benton and Donoghue, 2007).38

The problem is illustrated in Figure 1. Imagine we wish to estimate the age of the last common39

ancestor of species A and B, tAB. The oldest fossil in the A-B ingroup is F, which has known age tF .40

If we measure time towards the past (so that present time is zero), we can immediately see that41

tAB > tF , so that the age of the fossil, tF , imposes a minimum constraint on tAB. However, we do not42

know how close F is to the common ancestor, so tF is a poor indicator of the true age tAB. Current43

practice is to construct a prior density on tAB, f (tAB), truncated at tF on the left, and with a long tail44

extending to the right (back in time) to allow for the uncertainty in the time gap between tF and tAB45

(Fig. 1). The form of the prior density and the length of the tail are somewhat subjective as they are46

based on absence of older fossils in the A-B clade (e.g., Tavaré et al., 2002; Drummond et al., 2006;47

Yang and Rannala, 2006; Benton and Donoghue, 2007).48

An alternative approach would be to model morphological character evolution, so that we can49

use morphological data to estimate the morphological distance among extant and fossil species in a50

phylogeny. Since fossil ages are known, fossils can then be used as “dated-tips” in the Bayesian51

analysis. Divergence time estimation can then proceed using a morphological alignment of extant52
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and fossil species, or on a combined data set of molecular data for extant species and morphological53

data for extant and fossil species. This approach, also known as total-evidence dating (TED), has54

been pioneered by Pyron (2011) and Ronquist et al. (2012) (see also Nylander et al., 2004; Lee et al.,55

2009; and Magallón, 2010) using discrete morphological characters under the Mk model of56

morphological evolution (Lewis, 2001). It has been used to date phylogenies for several groups57

(e.g., Nylander et al., 2004; Pyron, 2011; Ronquist et al., 2012; Schrago et al., 2013; Slater, 2013;58

Wood et al., 2013; Arcila et al., 2015; Grimm et al., 2015; Reeder et al., 2015; Winterton and Ware,59

2015; Larson-Johnson, 2016; Ronquist et al., 2016; Gavryushkina et al., 2017), sometimes producing60

very old time estimates compared with node-calibration methods, and it is noted to be sensitive to61

the branching process used to specify the prior on times (O’Reilly et al., 2015; dos Reis et al., 2016).62

The TED approach has been improved by extensions of the fossilised birth-death process to construct63

more realistic priors on times (Heath et al., 2014; Gavryushkina et al., 2014; Zhang et al., 2016).64

Analysis of discrete morphological data under the Mk model has a few limitations. First, the65

model assumes that rates of change among character states are equal (Lewis, 2001), an assumption66

that appears unrealistic for the analysis of real data. Although the equal-rates assumption can be67

relaxed (Pagel, 1994; Wright et al., 2016), this model appears to be rarely used, perhaps because it is68

computationally expensive (Wright et al., 2016). Second, systematists usually score discrete69

morphological characters only if the characters are variable or if they are parsimony-informative. In70

this case, a correction is necessary to account for the ascertainment bias in character scoring (Lewis,71

2001; Leaché et al., 2015). Correcting for the removal of constant characters is straightforward, but a72

much more computationally expensive correction is necessary to account for the removal of73

parsimony-uninformative characters, and it appears that this correction is not properly74

accommodated in current dating software (dos Reis et al., 2016). Finally, it seems difficult to75

accommodate correlations among characters in the Mk model. For a morphological alignment with76

p characters and with each character having k states, a kp substitution matrix is constructed to77

accommodate correlated character evolution (Pagel, 1994). Such matrices become explosively large78

for even a moderate number of characters and are computationally intractable (Felsenstein, 2005).79

Thus, correlation among characters is ignored in Bayesian inference under the Mk model. The80

threshold model, an alternative to the Mk model for the analysis of ordered categorical data that may81

easily accommodate correlations among characters, has been championed by Felsenstein (2005;82

3



2012). However, this model does not appear to be currently available for Bayesian inference of83

topology or divergence times of phylogenies.84

Quantitative (or continuous) morphological characters offer an interesting alternative to the85

analysis of discrete characters (Felsenstein, 1988; Slater et al., 2012; Parins-Fukuchi, 2018b,a).86

Evolution of quantitative characters on a phylogeny can be modelled using diffusion processes such87

as the Brownian or Ornstein-Uhlenbeck processes (Felsenstein 1973; 1988). An appealing property88

of these processes is that the resulting likelihood of the characters on the phylogeny is a multivariate89

normal distribution which can be extended to accommodate correlations among characters and can90

be easily calculated. Furthermore, because quantitative characters are always variable, an91

ascertainment bias correction is not necessary. Also, non-homogeneity among characters can be92

easily accommodated in the normal likelihood: each character may have its own diffusion rate and93

its own ancestral mean, and thus expensive integration over a distribution of stationary frequencies94

(as done for the relaxed version of the Mk model, see Wright et al., 2016) is not necessary.95

Here we explore the use of quantitative characters for Bayesian inference of species divergence96

times under the Brownian diffusion model of Felsenstein (1973). We use computer simulations to97

study the performance of the model in obtaining divergence time estimates: we focus on the effect of98

the sample size (the number of characters analysed) and the fossil age (using young or old fossils in99

the phylogeny), the strength of the correlation among the characters, and the level of “population100

noise” on the performance of the method. In the Brownian diffusion model, the means of the101

characters in populations evolve according to Brownian diffusion, but quantitative measurements on102

a sample of individuals for a given population of species is expected to show variation around the103

population mean. This population noise must be explicitly accommodated in the model (Felsenstein,104

1973). Finally, we study the performance of the method on the analysis of a real data set: a set of105

cranium landmarks on a carnivoran phylogeny.106
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THEORY107

We assume that the species phylogeny (the tree topology) is known. The posterior distribution of108

times and rates is109

f (t,r,θ | D) ∝ f (θ) f (t) f (r | t,θ) f (D | t,r,θ), (1)

where f (θ) is the prior on model parameters, f (t) is the prior on times, f (r | t,θ) is the prior on110

rates, and f (D | t,r,θ) is the likelihood of the data D. In this paper, the data D may be a molecular111

sequence alignment S, a morphological alignment M, or a combination of both. Evolutionary rates112

may then include molecular rates rS and/or morphological rates rM. For combined data, and113

assumming independent evolution of molecular and morphological characters, the posterior is114

f (t,rS,rM,θ | S,M) ∝ f (θ) f (t) f (rS,rM | t,θ) f (S | t,rS,θ) f (M | t,rM,θ), (2)

where f (S | t,rS,θ) is the likelihood of the molecular sequence alignment (e.g., calculated under the115

HKY+Γ substitution model) and f (M | t,rM,θ) is the likelihood of the morphological alignment,116

calculated under the Brownian diffusion model of quantitative character evolution (Felsenstein,117

1973).118

Likelihood Calculation of Quantitative Characters119

Calculation of the likelihood is described by Felsenstein (1973; 1981; see also Freckleton, 2012).120

Let M = {mi j} be a matrix of p continuous morphological characters measured on s species, where121

mi j is the j-th morphological measurement in species i, with i = 1, ...,s and j = 1, ..., p. Let mi be122

the vector of p measurements in species i (the i-th row of M). Let R be the p× p correlation matrix123

among the characters. Write ms+1 for the vector of p (unobserved) ancestral character states at the124

root of the phylogeny. Character j evolves from its ancestral state ms+1, j to a terminal state mi, j125

along the branches of the tree by Brownian motion with diffusion rate r = σ2 (where σ is the126

diffusion coefficient, Felsenstein, 1973). Then, mi, j is normally distributed with mean ms+1, j and127

variance v = rt, where t is the elapsed time between the root and the tip species. If we assume that128

the rates (and thus the variances) are the same across characters (an assumption that can be relaxed),129
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then mi has a multivariate normal distribution with mean ms+1 and covariance matrix vR. The130

diffusion rates may vary among lineages (branches) in a phylogeny (Felsenstein, 1981). If rk is the131

rate in branch k, and tk is the elapsed time along the branch, then vk = rktk is the expected amount of132

morphological variance accumulated in the lineage. Thus vk is the morphological branch length.133

Felsenstein (1973) showed that the likelihood of M on a phylogeny of two or more species can be134

calculated so that it only depends on the branch lengths, v = (vk), and the correlation matrix, R, but135

not on the ancestral characters at the root, ms+1. This simplifies the calculations as ms+1 does not136

need to be estimated.137

Now consider a bifurcating, rooted phylogeny of s species. The external nodes (the tips) are138

labelled 1, . . . ,s; the internal nodes are labelled s+1, . . . ,2s−1; and s+1 is the root node. The139

length of the branch subtending node k is vk. If k is an internal node, let k1 and k2 be its two daughter140

nodes. Let141

v′k =


vk if k is a tip node,

vk +
vk1vk2

vk1+vk2
else.

xk = m′k1
−m′k2

, (3)

m′k =


mk if k is a tip node,

vk2mk1+vk1mk2
vk1+vk2

else.

142

The likelihood of M on the phylogeny is the product of s−1 multivariate normal densities, each143

corresponding to one of the s−1 internal nodes. It is given by144

L(M | v,R) =
2s−1

∏
k=s+1

L(xk | vk,vk1,vk2,R) (4)

where145

146

L(xk | vk,vk1,vk2,R) = (2π)−p/2(v′k1
+ v′k2

)−p/2|R|−1/2 exp

(
− 1

2(v′k1
+ v′k2

)
xT

k R−1xk

)
. (5)

147
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Eq. (4) can be calculated efficiently in a computer program using the postorder tree traversal148

algorithm. When an internal node k is visited by the algorithm, we calculate v′k1
, v′k2

, xk and149

L(xk | vk,vk1,vk2,R) after its daughter nodes have been visited. The m′k are maximum likelihood150

estimates of the ancestral character states at node k conditioned on the values of vk,vk1,vk2 , and R.151

They are obtained for free during MCMC computation, and they may be collected and used as152

ancestral reconstructions.153

Correlation Among Characters and Matrix Shrinkage154

It is useful to find a matrix A such that R−1 = ATA. Then, the exponential in the likelihood of155

Eq. (5) can be written as156

157

exp

(
− 1

2(v′k1
+ v′k2

)
xT

k ATAxk

)
= exp

(
− 1

2(v′k1
+ v′k2

)
zTz

)
, (6)

where z = Axk is a vector. In other words, we can obtain a transformation of the original data158

Z = MAT, so that the transformed characters in Z are independent. This simplifies the calculation of159

the likelihood because R only needs to be inverted/decomposed once. Choices for A include the160

Cholesky decomposition, R = LLT, then A = L−1, or the Eigen decomposition AT = VD, where V161

is the matrix of eigenvectors of R−1, and D = diag
{√

λ

}
is a diagonal matrix of the square root of162

the eigenvalues (see p. 98 in Ripley, 1987).163

The correlation matrix R can be estimated during Bayesian inference. However, this would make164

computation prohibitively expensive as we would need to estimate (p2− p)/2 correlations, which is165

a large number for even a moderate p. Thus, here we assume that R is given. For example, if we166

assume R is constant throughout the phylogeny, then we can estimate R from a sample of individuals167

from a given species. The individuals may be assumed to be independent samples from the168

population, and R could then be estimated using the traditional unbiased estimate of the covariance.169

However, a common problem occurs when the number of characters, p, is larger than the number of170

individuals sampled, s. In this case, the unbiased estimate of R, R̂, tends to become singular (i.e., its171

determinant is zero) and cannot be inverted (e.g., Schäfer and Strimmer, 2005; Goolsby, 2016), in172

which case the likelihood of Eq. (5) cannot be calculated. Here we overcome this problem by using173
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the linear shrinkage estimate of the correlation matrix (Schäfer and Strimmer, 2005):174

175

R∗ = δ I+(1−δ )R̂, (7)

where I is the identity matrix, and δ (0≤ δ ≤ 1) is the shrinkage parameter, which controls the level176

of shrinkage. If δ = 0, the shrinkage estimate, R∗, is the same as R̂, while if δ = 1, R∗ is the identity177

matrix.178

Note that R∗ can always be inverted as long as δ 6= 0, thus allowing calculation of the likelihood179

of Eq. (5). The value of δ can be chosen by the user or estimated automatically. Schäfer and180

Strimmer (2005) give an approximate method for automatically estimating δ from the data. Their181

procedure is implemented in their corpcor R package (see their paper for details of the algorithm).182

Clavel et al. (2018) discuss further approaches to regularise the estimate of R.183

Within Population Character Variance184

Quantitative characters are expected to vary among individuals within a species (Felsenstein, 1973;185

Ives et al., 2007). Divergence times may be biased if this population level variation (or “population186

noise”) is large and not accounted for in the Bayesian inference, because the amount of187

morphological evolution in the phylogeny would be overestimated (Landis and Schraiber, 2017).188

Write c j for the within population variance of character j. Then mi, j is normally distributed with189

mean ms+1, j and variance c j + v. In this case, ms+1, j is then the population mean of the character in190

the ancestral population (Felsenstein, 1973). If all characters have the same variance c, then we can191

accommodate the population noise in the analysis by setting192

v′k = c+ vk (8)

when k is a tip node (Eqs. 3 and 5).193

In real data, different characters may have different variances. In this case, we may obtain194

estimates of the variances of the characters, ĉ = (ĉ j), from a population sample at the same time as195

we estimate R. We can then divide the columns of M by the estimated standard deviations to obtain196
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the scaled matrix M(s) = M×diag
{

1/
√

ĉ
}

. The new scaled matrix has thus been standardised so197

that all characters have the same variance and so that the population noise has unit variance.198

Inference then proceeds on M(s) by setting c = 1 in Eq. (8). Note that to correct for the correlations199

among characters, the transformed data matrix used during Bayesian inference is then200

Z(s) = M(s)AT.201

Within-lineage and Among-lineage Covariances202

We note that R here is the within-lineage correlation among the characters, and thus vkR is the203

within-lineage covariance for the k-th branch. For example, if selective pressure acts to elongate a204

limb in a species, one would expect the length of the corresponding limb bones to increase. In other205

words, the bone lengths would co-vary (or co-drift in Brownian parlance) and this would be206

represented by a positive correlation in the entry of R for the given characters. If the within-lineage207

variances are different among characters, then the exponent of Eq. (5) must be written as208

exp

(
− 1

2(v′k1
+ v′k2

)
xT

k C−1xk

)
, (9)

where C is then the within-lineage character covariance matrix (this is the same C as in Freckleton,209

2012). However, if we can normalise the characters to have equal variances by using estimates of the210

within-population variances (as we do here and as shown in Felsenstein, 1973), then it is not211

necessary to work with the more complex Eq. (9).212

The shared ancestry among the species in a phylogeny means that there is also character213

covariation among lineages. The among-lineage covariance matrix is rT when r is constant (e.g.,214

when we have a strict morphological clock), and where T is an s× s matrix whose elements are the215

shared ancestry time-paths for each pair of species (Felsenstein, 1973). For a Brownian model with216

unequal diffusion rates among branches (Felsenstein, 1981), we must multiply the shared time-paths217

in T by the branch-specific diffusion rates, rk, resulting in the s× s among-lineage covariance matrix218

V (see Felsenstein, 1981;Freckleton, 2012). Matrix V only appears explicitly when we write down219

the joint likelihood for the characters for all species (e.g., Eqs. 1 and 8 in Freckleton, 2012). Eq. (5)220

here is the node likelihood after the pruning algorithm has been applied, and thus matrix V is not221
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apparent. However, note the v′k terms are functions of the entries in V. See Felsenstein (1973; 1981)222

and Freckleton (2012) for full details.223

SOFTWARE224

Bayesian inference of divergence times with continuous characters under the model of Eq. (4) is225

implemented in the computer program MCMCtree v4.9i, part of the PAML package (Yang, 2007).226

We have extended the mcmc3r R package (dos Reis et al., 2018;227

https://github.com/dosreislab/mcmc3r) to help the user in preparing morphological alignments for228

analysis with MCMCtree, and in simulating continuous morphological data using different functions229

from the ape package (Paradis et al., 2004).230

SIMULATION ANALYSIS231

We conduct a simulation study to examine the impact of (i) the number of characters analysed, (ii)232

the fossil ages, (iii) the population noise, and (iv) the correlation among characters on the estimation233

of divergence times using morphological data. In particular, we expect that time estimates will234

deteriorate (i.e., will have large variances or be biased) when analysing small data numbers of235

characters, when the fossils are too young, when the population noise is high, and when the236

correlation among characters is strong. To reduce the computational cost, our simulations are carried237

out using a small number of species under a constant morphological evolutionary rate.238

Simulation overview.– The phylogeny in Figure 2, with s = 8 species (5 extant and 3 fossils), is239

used to simulate the quantitative morphological data sets. The morphological evolutionary rate is240

r = 1 and constant along all the branches of the phylogeny. The simulated data matrices, M, are241

generated under the Brownian diffusion model using our mcmc3r R package. For simulations with242

population noise and/or correlations, a population sample of individuals is simulated, which is then243

used to estimate the vector of character variances, ĉ, and the shrinkage estimate of the correlation,244

R∗.245
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Replicates under each simulation setup (see below) are analysed with MCMCtree to estimate the246

divergence times (t9 to t15) and the morphological rate (r) by MCMC sampling. We use a diffuse247

gamma prior on the rate, r ∼ Γ(2,2), with mean 1 and variance 0.5. The prior on the age of the root248

is assigned a uniform density with soft bounds between 0.8 and 1.2 (corresponding to a calibration249

of 80 to 120 Ma given our 100 myr time unit). The birth-death-sequential-sampling (BDSS) process250

(Stadler and Yang, 2013), is used to generate the prior density for the ages of the internal nodes. The251

BDSS parameters are set as: λBDSS = 1 (the birth-rate), µBDSS = 1 (the death-rate), ρBDSS = 0 (the252

sampling fraction for extant species), and ψBDSS = 0.001 (the rate of fossil sampling). We chose253

these parameter values to generate a uniform density on the ages (Fig. S1). We summarise the results254

by calculating the mean times across the replicates, the mean 95% credibility intervals (CIs), the255

mean CI-width w (and relative CI-width wr = w/ti), the coverage (the number of times the true node256

age falls within the 95% CI), the mean bias, and the mean squared error (MSE). Let t̃i, j be the mean257

posterior age of node i for replicate j. The mean bias is b = ∑
R
j=1(t̃i, j− ti)/R and the MSE is258

ε = ∑
R
j=1(t̃i, j− ti)2/R, where R = 1,000 is the number of replicates per simulation setup and ti is the259

true node age. We also calculate the relative bias br = b/ti and the relative error εr = ε/ti. Note the260

bias is a measure of accuracy of the estimate, while the MSE is a measure of both precision and261

accuracy. The simulation workflow is summarised in Figure S2.262

(i) Effect of the number of characters.– We simulate data sets with p = 100, 1,000 and 10,000263

characters, assuming independence among characters and no population noise (c = 0).264

(ii) Effect of fossil age.– We vary the age of the fossil H, with tH = 0.7, 0.5, 0.3, and 0.1. The265

ages of the other fossils remain unchanged. Characters are assumed to evolve independently and266

with c = 0. The data are then simulated using the phylogeny with the new fossil age with p = 100,267

1,000 and 10,000 characters, respectively, giving 3×3 = 9 simulation setups.268

(iii) Effect of population noise.– We simulate data sets with c = 0.25 (low population noise) and269

c = 0.5 (high population noise) for p = 100, 1,000 and 10,000. Characters are assumed to evolve270

independently. In order to simulate the population noise, we sample s× p random numbers from a271

normal distribution with mean 0 and variance c, to obtain the s× p noise matrix N. The resulting272

noise is added to the simulated morphological matrix, M, to generate the noisy matrix273

M(n) = M+N.274
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We also simulate a population sample of n = 20 individuals to obtain a n× p population matrix,275

P, by sampling from the normal distribution with mean 0 and variance c. Before performing276

Bayesian inference, we obtain estimates of the population noise for each character, ĉ = (ĉ j), using277

the simulated population sample P, and obtain the scaled matrix M(s) = M(n)diag{1/
√

ĉ}. As we are278

scaling M(n) using an estimate of the population variances, ĉ, we expect to observe little discrepancy279

between the true parameters (rate and divergence times) and their corresponding estimates.280

Therefore, we also scale the noisy matrix by c = (c j), the vector of true variances. Thus281

M(s)
true = M(n)diag{1/

√
c}, which is used as a control test. Bayesian inference then proceeds either282

on M(s) or M(s)
true, with the likelihood corrected by setting c = 1 (Eq. 8). The data are also analysed283

by setting c = 0 (Eq. 8) to assess the impact of ignoring the population noise on the time estimates.284

Note that the gamma prior on the morphological rate may be changed to account for scaling of the285

data sets. When c = 0.25, the morphological rate for the scaled data is r/0.25 = 1/0.25 = 4. Thus,286

the new gamma prior for the rate is r ∼ Γ(2,0.5). Similarly, when c = 0.5, the morphological rate287

for the scaled data is r/0.5 = 1/0.5 = 2, thus the rate prior is set to r ∼ Γ(2,1). We expect the288

posterior means of times and rates to be very biased when the population noise is ignored, to have289

some bias when using M(s), and to have little or no bias when using M(s)
true.290

(iv) Effect of correlation among characters.– We simulate data sets using the constant correlation291

model, that is, with all the within-lineage correlations in R equal to ρ . We use the correlations292

ρ = 0.5 and 0.9, and p = 100, 1,000 and 10,000. To simulate correlated data, a matrix M is first293

simulated assuming independent character evolution. Note that M is simulated on the tree, thus it294

already contains the among-lineage covariance induced by the shared ancestry. Then, we add the295

within-lineage correlation to M by computing M(R) = MLT, where L is the lower triangular296

Cholesky decomposition of R. Then, we simulate the s× p noise matrix, N, sampled from a normal297

distribution with mean 0 and variance c = 0.25, to which within-lineage correlation is added as298

N(R) = NLT. The noise is then added to M(R) to obtain the noisy matrix, M(n) = M(R)+N(R).299

We also simulate a within-population sample of n = 20 individuals to obtain a n× p population300

matrix, P, by sampling from a normal distribution with mean 0 and variance c = 0.25, to which301

correlation is added as P(R) = PLT. We use P(R) to estimate ĉ = (ĉ j), the vector of estimated302

variances used to obtain M(s). The vector of true variances, c = (c j), is used to obtain M(s)
true. The303

shrinkage correlation matrix, R∗, is also estimated using P(R). However, note that the shrinkage304
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value, δ , has a strong impact on R∗. Therefore, we test two approaches to generate R∗: (i) we use305

the automatic approach of Schäfer and Strimmer (2005) to find the optimum value of δ , and (ii) we306

fix δ = 0.01, to obtain R∗ close to the unbiased estimate R̂. The Cholesky decomposition of R∗ is307

then used to obtain the transformed data matrix Z(s) = M(s)AT. M(s) is also analysed directly to308

assess the effect of ignoring the character correlation. As a control data set, we also obtain A from309

the true correlation matrix, R, and use it to calculate Z(s)
true = M(s)

trueAT. The estimates obtained using310

Z(s)
true are expected to be very close to the true rate and divergence times. On the other hand, we311

expect estimates using Z(s) to have some bias, and estimates using the uncorrected matrix, M(s)
312

(which ignores the correlation), to be very biased.313

ANALYSIS OF THE CARNIVORA DATA SET314

Morphological Data315

We analyse the 29 cranium landmarks from 10 extant and 9 extinct carnivoran species (Fig. 3 and316

Table 1). The landmark data is complete (that is, there are no missing landmarks in any specimens).317

The landmarks are three dimensional, resulting in p = 3×29 = 87 characters. A population sample318

of 21 common foxes (Vulpes vulpes) is used to estimate the correlations and the population noise for319

the 29 landmarks. The correlation matrix estimated using the foxes is then used to transform the320

whole dataset (Eq. 6). This assumes the within-lineage correlations are the same (or at least similar)321

among the carnivorans analysed.322

Landmark data are aligned using Procrustes superimposition (Gower, 1975; Rohlf and Slice,323

1990), a technique in which the landmark coordinates for each individual are translated, rotated, and324

scaled to unit centroid size so the square of the distance between the individual’s landmarks and the325

mean landmark coordinates among all the individuals is minimised (see cited literature for details).326

We perform the Procrustes alignment in two steps. First, we align the 19 carnivoran species327

(excluding all but one of the foxes) using the Morpho :: procSym function in R (Schlager, 2017),328

resulting in a 19×87 geometric morphometric alignment M. Then, the remaining 20 foxes are329

aligned to the mean shape of M using the Morpho :: align2procSym function. This is done so that330
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the alignment is not biased due to the large number of foxes. The resulting Procrustes alignment for331

the foxes, P (of size 21×87), is used to obtain the estimates of the population variances, ĉ, and the332

shrinkage correlation matrix, R∗, for the landmark coordinates. The correlation matrix R∗ depends333

on the orientation of the landmarks, that is, different rotations of P may lead to different estimates of334

R∗. Therefore, R∗ must be estimated on a population matrix that has been aligned to the species335

matrix. Divergence times are estimated on Z(s), the transformed alignment obtained after scaling M336

by the population variances, and multiplying by the Cholesky decomposition of R∗. A summary of337

the methodology to generate the morphological alignment is given in Figure 4.338

Molecular Data339

We use the sequences of the 12 mitochondrial genes (mt-genes) for the 10 extant carnivoran species340

that are available at the NCBI: cytochrome c oxidase (COX) subunits 1, 2, and 3; cytochrome b341

(CYTB); NADH dehydrogenase (ND) subunits 1, 2, 3, 4, 4L, and 5; and ATP synthase F0 (ATP)342

subunits 6 and 8. We do not include ND6 in our analysis because it is not encoded on the same343

strand of the mitochondrial DNA (mt-DNA) like the other 12 mt-genes, and thus has very different344

nucleotide compositions. Note that not all the 12 mt-genes are available at the NCBI for the 10345

extant species analysed. Thus, gaps are introduced in the molecular alignment when a gene is not346

available for a species. Prank v.150803 (Löytynoja and Goldman, 2005, 2008) is used to align the347

molecular sequences. The concatenated gene alignment is divided into two partitions: (i) first and348

second codon positions (12CP) and (ii) third codon positions (3CP).349

Divergence Times Estimation350

We estimate the divergence times with MCMCtree on the fixed carnivoran topology of Finarelli and351

Goswami (2009) and Martín-Serra et al. (2014). We use three data sets: (i) morphological alignment,352

(ii) molecular alignment in two partitions (12CP + 3CP), and (iii) morphological and molecular353

alignments (12CP + 3CP) analysed together as three partitions. The molecular data are analysed354

using the HKY+Γ (Hasegawa et al., 1984, 1985) substitution model, while the Brownian diffusion355

model of quantitative character evolution (Felsenstein, 1973) is used for the morphological data.356
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The prior on the ages of the nodes is constructed using the birth-death (BD) process (Yang and357

Rannala, 2006), if only extant species are analysed, or the birth-death-sequential-sampling (BDSS)358

model (Stadler and Yang, 2013), if fossil species are included in the analysis. For the BDSS prior we359

use λBDSS = µBDSS = 1, ρBDSS = 0 and ψBDSS = 0.001; and for the BD prior we use λBD = µBD = 1360

and ρBD = 0.1. We chose both set of parameters to obtain approximately uniform prior distributions361

on node ages. Both the BDSS and BD processes are conditioned on the age of the root. Thus, we set362

a uniform fossil calibration with soft bounds on the root age between 37.3 Ma and 66 Ma, following363

Benton et al. (2015). The time unit is set to 1 myr.364

We use a gamma-Dirichlet prior (dos Reis et al., 2014) on the (molecular and/or morphological)365

rate with shape α = 2 and with the scale parameter β chosen so that the mean of the prior rate (given366

by α/β ) is close to empirical estimates based on the morphological or molecular branch lengths on367

the phylogeny. In the gamma-Dirichlet prior, one specifies the prior mean on the overall (average)368

rate for all partitions, then a Dirichlet distribution is used to partition the total rate among the369

partitions (see dos Reis et al., 2014 for details). To specify the prior, we first estimated, by maximum370

likelihood, branch lengths with RAxML v8.2.10 (Stamatakis, 2014) for the molecular alignment,371

and with CONTML (PHYLIP package, Felsenstein, 1993) for the morphological alignment. The372

resulting unrooted trees where midpoint rooted, and then we calculated a rough approximation to the373

number of substitutions, or units of morphological drift, from the tips of the root, and divided these374

by 52 Ma, the (rounded) midpoint value of the root calibration. This gives a rough idea of the value375

of the mean rates for the molecular and morphological partitions. These empirical rate estimates are376

then used to calculate the mean rate for the gamma-Dirichlet prior. Note that the use of α = 2 leads377

to a very diffuse (large variance) prior on the rate. The chosen values of β for all the data sets are378

given in Table 2. The data are analysed under the strict clock (STR), the geometric Brownian379

diffusion (GBM, also known as autocorrelated-rates, Thorne et al., 1998; Yang and Rannala, 2006),380

and independent log-normal rate (ILN) models (Rannala and Yang, 2007; Lemey et al., 2010). The381

gamma-Dirichlet prior on σ2
i for the GBM and ILN models is σ2

i ∼ Γ(2,2) for both the molecular382

and the morphological data sets.383
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Bayesian Selection of Clock and Correlation Models384

We use Bayes factors (BFs) to select among the three clock models for the morphological and385

molecular data sets. Marginal likelihoods for each model are calculated using the stepping-stone386

approach (Xie et al., 2011) as implemented in the mcmc3r R package (dos Reis et al., 2018). The387

estimated marginal likelihoods are then used to calculate the BFs and posterior probabilities for each388

clock model. Note that when molecular data only were analysed, the age of the root is fixed to 1 (as389

there are no fossil tip species to calibrate the tree). In MCMCtree, this is done by using a narrow390

uniform distribution with soft bounds on the age of the root, U(0.999,1.001). In this case, the mean391

of the rate prior needs to be modified to accommodate the different age of the root. Table 2 gives the392

modified priors.393

Bayes factors can also be used to select for the correlation model in the morphological data. The394

marginal likelihood can be calculated by using R = I in Eq. (5), that is, by assuming characters395

evolve independently, or calculated on Z(s) which has been transformed to account for the correlation396

among characters. Please note that, when using Z(s), the likelihood of Eq. (5) must be scaled by the397

determinant |R∗| so that the marginal likelihood is calculated correctly. The marginal likelihoods can398

then be used to calculate the BF and posterior probability for the independent and correlated models.399

RESULTS400

Analysis of Simulated Data401

In general, the simulation results met our expectations. We found that estimates of divergence times402

and rates for large number of characters and with older fossils were close to the true values. On the403

other hand, when the data sets were simulated with population noise and/or with correlated404

characters, but these were not corrected for, the estimated parameters were far from the true values.405

This bias was particularly large when the population variance was large or when the correlation406

among characters was very strong. We describe the results in detail below.407

Effect of the number of characters and fossil age.– Figure 5 shows the effect of sample size and408

fossil age on posterior estimates of the root age, t9, and morphological rate, r. Posterior means and409
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95% quantiles of t9 and r are averaged across all 1,000 simulation replicates and plotted. As410

expected, uncertainty (as measured by the CI width) in the estimates decreases for larger data sets411

and when the age of fossil H is the oldest. For example, when tH = 0.1 and p = 100 characters are412

analysed, the average CI of t9 is 0.8-1.2, which is 0.4 time units wide, or 40% of the root age413

(Fig. 5A). However, this uncertainty is reduced to only 13% of the root age when analysing414

p = 10,000 characters (Fig. 5C). The uncertainty is reduced even further when tH = 0.7 (when the415

fossil is the oldest), giving a CI width which is about 5% of the root age estimate (Fig. 5C). Note that416

the younger the fossil is, the larger the distance from the fossil to the root of the tree is, which makes417

the fossil less informative. The same pattern is observed for the estimates of the morphological rate418

(Fig. 5A’-C’) and for the rest of the node ages (Tables S1 and S2). Note that, in all cases, the419

estimates appear unbiased and converging to the true values as the data become more informative.420

Effect of population noise.– Figure 6 shows the effect of the population noise on the estimates of421

the root age, t9, and morphological rate, r, when p = 1,000 characters are analysed. As above,422

estimates are averaged across the 1,000 replicates and plotted. When the population noise is ignored423

in the analysis (Fig. 6A and A’), the parameters are overestimated and the overestimation is largest424

for the largest population noise. For example, when c = 0.5 and when c is ignored in the analysis,425

the average of the posterior mean of t9 is 1.2 (Fig. 6A), which has a mean bias of b = 0.2 or a426

relative bias of 20%. This is a large bias that cannot be corrected by sampling more characters427

because the model is misspecified. On the other hand, when c = 0.5 and when ĉ is used to correct for428

the population noise in the analysis, the relative bias in the estimate of t9 is only about 4% (Fig. 6B).429

Note that we expect some bias to remain in the estimates because ĉ itself has sampling errors: we430

need to estimate one variance for each character, and these variance estimates are obtained from a431

small population sample of 20 individuals. Asymptotically, as the population sample increases to432

infinity, the sampling errors go to zero and ĉ would converge to the true population variances, c. In433

this case, we expect to see no bias in the posterior means of t and r. This is exemplified in Figure 6C,434

where the data has been scaled by the true variances, c, and thus there is almost no bias in the435

posterior mean of the root age. The pattern of bias in the estimates of t9 when the population noise is436

ignored in the analysis is also seen for estimates of the morphological rate, r, (Fig. 6A’-C’) and for437

the rest of the node ages in the phylogeny (Tables S3 and S4).438

Effect of correlation among characters.– Figure 7 shows the effect of character correlation on439
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estimates of the root age, t9, and the morphological rate, r, when p = 1,000 characters are analysed440

and when the population noise is c = 0.25. As above, estimates are averaged across the 1,000441

replicates and plotted. When both the population noise and the character correlation are ignored in442

the analysis, the time estimates tend to be more overestimated as the character correlation increases443

(Fig. 7A). For example, when ρ = 0.9 and when both correlation and noise are ignored, the average444

estimate of t9 = 1.42, with a bias b = 0.42 or relative bias of 42% (Fig. 7A). This is a very high bias445

in the estimate. Note that when ρ = 0.9 and the data are corrected for the population noise but not446

for the correlation, the large bias in the estimate of t9 remains (Fig. 7B). On the other hand, when447

ρ = 0.9 and both the noise and correlation are taken into account in the analysis, the bias in the448

estimate of t9 is very small (about 4%, Fig. 7C). This trend, in which t9 is overestimated when the449

character correlation is ignored, is also observed for the estimates of the other node ages (Tables S5450

and S6).451

Strangely, a different pattern is observed for the estimate of the rate. When the population noise452

and the character correlation are ignored in the analysis, or when the noise alone is corrected for, the453

bias in the estimate of r are moderate or small (Fig. 7A’-B’). Surprisingly, when ρ = 0.5 and when454

both the noise and character correlation are corrected for in the analysis, we find that the bias in the455

estimate of r is very high, an overestimation (relative bias) of about 175% (Fig. 7C’). The bias then456

decays to about 27% when ρ = 0.9 (Fig. 7C’). We note that these estimates are obtained when using457

the shrinkage estimate, R∗, to correct for the correlation. When using the unbiased estimate, R̂, to458

correct for the correlation, the errors in the estimates of the rate are so large that they cannot be459

included in Figure 7 (but see Tables S5 and S6). We note that both the estimates R∗ and R̂ are460

expected to contain large errors as we are estimating too many correlations from a small population461

sample. For example, when p = 1,000 characters we have to estimate 499,500 correlations. It462

appears that estimates of the morphological rate may be sensitive to errors in these estimates.463

Analysis of the Carnivora Data464

Morphological tree and Smilodon landmarks.– The morphological tree estimated with CONTML465

(PHYLIP package, Felsenstein, 1993) is shown in Figure S5. Because the branch length from the466

root of the tree to the extinct saber-tooth tiger, Smilodon fatalis, is very long, we examined the467
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landmarks of this specimen for possible problems before Bayesian inference of divergence times.468

We used the function geomorph :: plotOutliers (Adams and Otárola-Castillo, 2013) in R to469

calculate the Procrustes distance from each specimen to the mean shape. The resulting plot470

(Fig. S3A) shows Smilodon as an outlier. In order to elucidate which landmarks place Smilodon as471

an outlier, we carried out a principal components analyses (PCA) of shape variation, with the first472

two components shown in Figure S4. Convex hull polygons were added to cluster the specimens: (i)473

Caniformia or Feliformia suborder, (ii) extant or extinct specimens, and (iii) outgroup or474

non-outgroup specimens. Moving along PC1 correlates with shrinking of the length of the cranium475

from the occipital to the maxillar, while PC2 correlates with an increase in the width of the cranium476

(Fig. S4). Smilodon is located at the extremes of both PCs, that is, it has an unusually short snout and477

a wide cranium. In other words, while all our specimens except Smilodon have dog- or bear-like478

skulls, Smilodon has a markedly different, emphatically cat-like shape. This explains the long branch479

for Smilodon in the morphological tree. Furthermore, Smilodon species have been found to be480

outliers in larger data sets too (Goswami et al., 2011). We keep Smilodon in the Bayesian analysis to481

illustrate the large variations in morphological rate in this phylogeny.482

Bayesian selection of clock and correlation models.– Table 3 shows the results of the Bayesian483

model selection. For the molecular data, the ILN rates model is best (P = 0.75) when the two484

molecular partitions are analysed jointly. However, when they are analysed separately, the GBM485

rates model is best for the third codon positions (P = 0.74), while the ILN is marginaly better for the486

first and second codon positions (P = 0.53). For the morphological data, the ILN rates model with487

character correlation is best (P = 1.00). It is worth noting that including character correlation in the488

model improves the marginal likelihood by over 100 likelihood units compared to the no-correlation489

model (that is, all clock models are over 100 likelihood units higher when including the correlation).490

In contrast, when accounting for correlation, the ILN model is only 12.38 and 73.55 likelihood units491

better than the GBM and STR rate models, respectively. This large likelihood increase for the492

correlation model emphasizes that correlation is an important feature of morphological data that493

should be taken into account in the analysis.494

Divergence time estimation.– All divergence time estimates are obtained under the ILN rates495

model. Figure 8 shows the time calibrated Carnivora phylogeny. Posterior estimates using496

molecule-only (Fig. 8E), morphology-only (Fig. 8A,C,D), and joint (molecule and morphology,497
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Fig. 8B) data sets are consistent with each other as the 95% HPDs of all analyses overlap. However,498

for some nodes in the phylogeny (e.g., the Canis-Vulpes extant clade), estimated dates are younger499

for the molecular data. Interestingly, the most precise estimates (i.e., with the narrowest HPDs) are500

obtained from the joint analysis of morphological and molecular data. Table 4 gives a summary of501

posterior estimates for the age of the root and extant clade Canis-Vulpes as well as the morphological502

and molecular rates. Our estimates for the Canis-Vulpes divergence time, which roughly vary503

between 13–37 Ma (depending on analysis), overlap with the estimates (23–38 Ma) of dos Reis504

et al., 2012. However, our results are in general older than those of Matzke and Wright, 2016, who505

report several analyses of discrete morphological characters for various canids. They gave their best506

estimates for Caninae divergence to be around 10 Ma (but as old as 40 Ma for unrealistic analyses507

settings).508

An interesting finding is that there is much more rate variation in the morphological rates than in509

molecular rates. In other words, molecular rates are more clock-like than morphological ones. For510

example, the coefficient of variation, CV =
√

exp(σ2)−1, where σ2 is the shape parameter (or511

log-variance) for the log-normal distribution, ranges between 1.3-1.8 for morphological characters512

and between 0.3-0.4 for the molecular data (Table 4). This indicates that morphological rates are513

three to four times more variable than molecular data.514

Note that for the scaled landmark data, the within-population variances are set to c = 1. Under515

the ILN model, the estimated mean amount of morphological evolution from the root of the516

phylogeny to the tip is r̄morpho× troot = 0.49×52 = 25.5. Thus, the population variance represents517

1/25.5 = 3.9% of the total expected morphological branch length from the root to the tip. That is the518

amount by which the external branches are extended due to the population noise. The estimated ĉ519

and R∗ for the Carnivora data are given as Supplementary Material, and also given as example data520

in our mcmc3r package (which the user can use to reproduce the full Carnivora analysis presented521

here).522
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DISCUSSION523

Character Correlation524

Our simulations highlight the importance of accounting for character correlation and population525

noise when continuous morphological data are used for divergence time estimation. However, when526

both factors are accounted for, we observed an unexpected result in our simulation study: the larger527

the correlation, the smaller the error to estimate both divergence times and evolutionary rate.528

Furthermore, the largest error occurred when ρ = 0.50, and the error was more dramatic on the rate529

estimates (see Fig. 7C and C’). The reasons for this are not clear to us, but we speculate that this may530

be due to the use of the shrinkage correlation matrix, R∗. Estimating the character correlations is a531

notoriously difficult task (e.g., Goolsby, 2016) as usually the number of characters is much larger532

than the number of samples, and thus the traditional estimate of the covariance matrix cannot be533

inverted. Therefore, it may be a worthwhile effort to assess the effects of different approaches to534

estimate the correlation matrix (e.g., Clavel et al., 2018). Other such approaches include matrix535

bending (e.g., Meyer and Kirkpatrick, 2010) or Bayesian estimation of the correlation matrix. The536

latter approach offers good prospects as the Bayesian estimate of the matrix would be regularised by537

the use of a prior, leading to well behaved estimates. The Wishart distribution (a multivariate538

generalisation of the gamma distribution) is the conjugate prior of the precision matrix (the inverse539

of the covariance matrix) and can thus be used to obtain the posterior of the precision matrix540

analytically from a population sample. From this posterior we could then obtain samples of the541

precision matrix during MCMC, and use them to obtain the data transformation (Eq. 6). This542

approach, although computationally expensive, has the advantage of incorporating the uncertainty543

about the correlation estimates into the analysis.544

In this paper we assumed the correlations among characters are the same throughout the545

phylogeny. The model follows Felsenstein (1973), who suggested estimating the covariances among546

characters from population samples (from one or more species), and then using these to calculate the547

Mahalanobis distance among the populations. This distance can then be used in the likelihood548

calculation. Let x = mi−m j be the vector of differences among the characters in populations i and549

j. Then D2 = xTx is the square of the Euclidean distance between mi and m j. If population samples550
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are available, we may obtain the covariance estimate, Ĉ. The square of the Mahalanobis distance is551

then defined as M2 = xTĈx. Note that the exponent of the node likelihood (Eq. 9) is proportional to552

the Mahalanobis distance, thus by plugging the Mahalanobis distances into the likelihood calculation553

we can accommodate the covariance among characters (Felsenstein, 1973). Our approach here,554

using the transform Z(s) = M×diag
{

1/
√

ĉ
}
×AT, is equivalent to the Malahanobis method555

proposed by Felsenstein (1973), because M2 = z(s)Tz(s).556

The assumption of constant correlations among lineages appears reasonable for closely related557

species, but may need to be relaxed when analysing more distantly related clades. For example,558

different covariance matrices can be estimated for different populations. Then the559

population-specific covariances could be used to calculate the likelihood for the terminal branches560

corresponding to the given populations. We could then use a stochastic process to model the changes561

in correlations across branches in the phylogeny and use this to sample the ancestral correlations562

using MCMC. However, this approach would be computationally very expensive. Revell and563

Harmon (2008) and Caetano and Harmon (2017) discuss further approaches to deal with variation of564

the correlation matrix along the phylogeny. In any case, assuming a constant correlation among565

lineages appears to be much better than assuming within-lineage independence among the566

characters. Here, for our Carnivora analysis, the best model with correlations is over 120567

log-likelihood units better than the best independent model, and the posterior probability for the568

independent model is essentially zero (Table 3).569

Rate Variation Among Characters and Measurement Error570

Felsenstein (1973) has shown that for a quantitative polygenic character with no dominance and571

under no selection, the rate of change for the character within a lineage is rk ∝ c/Ne,k, where c is the572

within-population variance of the character and Ne,k is the effective population size within the573

lineage. The population variance is c = 2∑
n
i=1 pi(1− pi)a2

i , where n is the number of loci controlling574

the character, pi and 1− pi are the allele frequencies at the (two-allele) i-th locus, and ai is the575

contribution of each allele to the character value. Such a character will, asymptotically, be normally576

distributed as the number of loci increases (Fisher, 1919). Thus, different characters will have577

different within-population variances depending on the number of loci involved and the contribution578
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of each loci to the value of the given character.579

This among-characer variation can be modelled. However, this does not appear to be a580

worthwhile effort if character variances can be estimated from population samples. Let the relative581

rate of evolution for the j-th character be g j. Then, the length of the k-th branch in the phylogeny for582

the j-th character is g jvk if the branch is an internal branch, and g j(vk + c) if it is an external branch,583

where g jc is then the population variance for the character (which, as shown above, is proportional584

to the evolutionary rate). If we assume that the rates, g j, follow a discretised gamma distribution (or585

any other suitable distribution, e.g., Schraiber et al., 2013), then it is possible to integrate the among586

character rates out during calculation of the character likelihood as described in Yang (1994).587

However, because g jc (the character variance) can be estimated directly from a population sample588

and used to re-scale the characters, it turns out that the expectation of the re-scaled branch lengths is589

g j(vk + c)/(g jc) = vk/c+1 if the branch is an external branch, and vk/c if it is an internal branch.590

That is, the character rate, g j, drops out and the re-scaled branches are the same for all characters.591

Therefore, there is no need for a model of rate variation among characters. In practice, the estimates592

of the character variances contain sampling errors that will affect the asymptotic behaviour of the593

estimates (Fig. 6). Note that there is an important relationship between the among character rate594

variation and the within-lineage covariances of Eq. (9), thus we can always write595

C = vkdiag(
√

g1, . . . ,
√gp)×R×diag(

√
g1, . . . ,

√gp).596

The population variance of a trait will be similar across lineages if the number of loci is large or597

if the allele frequencies are similar across the populations (Felsenstein, 1973). However, if the598

number of alleles controlling the trait is small and if the allele frequencies are very different across599

populations, then c may vary among populations (Felsenstein, 1973). Let c(i) be the population600

variance in species i. We can set c(i) to be proportional to the morphological rate of the external601

branch for the given species (because ri ∝ c(i)/Ne,i). In this way, variation in c among species would602

become incorporated within the relaxed-clock model of rate variation among lineages. If a603

population sample for the i-th species is used to scale the characters to have unit variance, then we604

fix c(i) = 1 and set c( j) to be proportional to the ratio 1/ri.605

Quantitative characters may be subject to measurement errors (Ives et al., 2007). For example,606

landmark measurements may be subject to errors by the way a user identifies a landmark point, and607
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landmark measurements may vary even when measured by the same user. In our carnivoran data, all608

specimens were measured by one of the co-authors. Thus, in our case, the measurement error is609

confounded with the population variance. This is unimportant as the confounded parameter is then610

used to correctly rescale the alignment for all characters. The effect of measurement error when611

measurements are obtained by different operators is a matter that will require further study and612

perhaps explicit modelling within our Bayesian framework (see Ives et al., 2007 for discussions).613

Limitations of the Brownian Diffusion Model614

The Brownian diffusion model has a few undesirable features: the displacement (change) of a615

character is independent of its current state, there is no stationary distribution, and the variance in616

character change tends to infinity with time. These may be unrealistic for analysis of real data. For617

example, cranium landmarks are not expected to drift to arbitrarily large values for distantly related618

species. Alternative models include the Ornstein-Uhlenbeck model (OU, Lande, 1976; Hansen,619

1997; Butler and King, 2004) or the Lévy processes (Landis et al., 2013). The former is an extension620

of the Brownian diffusion that stabilizes the displacement towards an optimum value (and thus has a621

stationary distribution and finite variance) while the latter is the sum of a directional drift, a622

Brownian diffusion, and a saltational jump in the character space. Parins-Fukuchi (2018b,a) has623

studied inference of phylogeny under the Brownian diffusion model for simulated and real data624

(including morphometric data for extant and extinct fossils) and found that the Brownian model625

performed well. Implementation of the OU model for Bayesian inference of topology and626

divergence times in a phylogeny appears worthwhile and a matter for future work.627

Partitioning the Morphological Alignment628

The geometric morphometrics analyses carried out with the Carnivora data suggest that different629

partitioning schemes with morphological data sets should be explored. For instance, the results from630

the PCA (Fig. S4) indicate two regions within the carnivoran skulls that might follow different631

patterns of evolution: (i) from the maxillar to the lateral and (ii) from the lateral to the occipital.632

Previous research has shown different modules of correlated continuous characters are expected to633
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evolve at different rates (Goswami et al., 2014; Felice and Goswami, 2018), suggesting the use of an634

appropriate partitioning scheme could improve the estimation of divergence times (Lee, 2016).635

Therefore, it would be interesting to explore the evolution of the cranium shape in this phylogeny636

when partitioning the data set into these two modules. Although this was not the aim of this study,637

we believe that partitioning morphological alignments according to modules identified using638

geometric morphometrics could improve estimates of rates and divergence times. This is particularly639

important for the morphological data because the evolutionary clock appears to be seriously640

violated, with some species showing very large rate variation (for example, Smilodon).641

For example, Ho (2014) discusses how patterns of molecular rate variation may change for642

different regions of the genome. If these patterns of molecular rate variation are reflected on the643

morphological rates, then it may be worthwhile exploring whether partitioning morphological data644

would allow us to estimate these patterns. Methods for partitioning molecular data according to rate645

variation have been developed (Duchêne et al., 2014; Foster and Ho, 2017; Angelis et al., 2018), and646

these could in principle be combined with methods to detect morphological modules (partitions)647

based on morphological and/or developmental rates (e.g., Felice and Goswami, 2018). Note that if648

characters are scaled to have the same variance, then the overall rate for different character partitions649

will be the same. However, the pattern of rate variation among lineages (branches) and between650

partitions will be different. By incorporating morphological partitions with different patterns of rate651

variation among lineages, it should be possible to improve the precision of time estimates.652

Conclusions653

The development of the total-evidence dating approach using discrete characters (Pyron, 2011;654

Ronquist et al., 2012) has allowed us to incorporate fossil data within an explicit modelling655

framework. Incorporation of continuous characters in the analysis is the natural extension of this656

framework. Recently, Parins-Fukuchi (2018b,a) used Felsenstein (1973) implementation of the657

Brownian model of character evolution to study in detail the performance of phylogenetic inference658

under the model on simulated and real data, assuming character independence and with emphasis on659

the ability of the model to place fossil taxa on the phylogeny. Our work here extends the Bayesian660

analysis of continuous characters by explicitly accounting for character correlation and population661
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variance among the characters, and by the use of Bayesian selection of morphological rate model.662

Our results and those by Parins-Fukuchi (2018b,a) indicate the analysis of continuous characters is663

promising for the estimation of topology and divergence times in phylogenies. Perhaps the main664

advantage of using continuous characters is the easiness with which correlations can be incorporated665

in the analysis. In the Mk model, character correlation can be incorporated by expanding the model’s666

transition matrix to accommodate all the possible combinations of character transitions given the667

correlations (Pagel, 1994), with the resulting transition matrices becoming very large (Felsenstein,668

2005). For example, to analyse p = 100 correlated binary characters, we would require a 2100×2100
669

transition matrix. The number of parameters to be estimated in this case, 8×1059, is larger than the670

number of atoms in the sun. In contrast, in the continuous case we would only need to estimate671

(p2− p)/2 = 4,950 correlations. Given that correlated character evolution is the rule rather than the672

exception, it appears that models that explicitly incorporate correlations are urgently required. The673

way forward appears to be the use of continuous characters, or the use of the threshold model for674

discrete characters, which explicitly incorporates a continuous process in the background675

(Felsenstein, 2005, 2012). If the discrete characters are ordered and can be assumed to have a676

continuous basis, then correlation can be introduced in the continuous variable (called liability),677

before it is discretized, as in the implementation of the auto-discrete-gamma model (Yang, 1995).678
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Table 1: Summary of the 19 carnivoran species studied in this analysis. This table includes the
voucher specimen, the specimen age and age ranges, and the reference for the specimen age and the
age ranges. Note that, for the extant species, the specimen age is set to 0 as it refers to the present
time.

Taxona Voucher specimen Specimen age (mid-point
ageb), Ma

Referencec

Hesperocyon sp. † NMNH 459576 35.5500 (37.2000-33.9000) National Museum of Natural
History collection

Enhydrocyon
pahinsintewakpa †

AMNH 27579 28.5500 (30.800-26.3000) Wang 1994, pp. 89-90

Paraenhydrocyon
josephi †

YPM 12702 25.6150 (30.8000-20.4300) Wang 1994, p. 135 & p. 141

Tomarctus hippophaga † AMNH 61156 14.7850 (15.9700-13.6000) Wang et al. 1999, pp. 157-158
Aelurodon ferox † AMNH 61757 13.1350 (15.9700-10.3000) Wang et al. 1999, pp. 182-183
Epicyon haydeni † LACM 131855 11.9500 (13.6000-10.3000) Wang et al. 1999, pp. 252-254
Smilodon fatalis † LACMHC 1360 0.0285 (0.0440-0.0130) La Brea Tar Pits collection
Hyaenictitherium
wongii †

China G L-49 6.6500 (8.0000-5.3000) Werdelin 1988, p. 259; Werdelin
& Solounias 1991, p. 33; Tseng
& Wang 2007, p. 708 (Table 2)

Canis dirus † LACMHC 2300-4 0.0285 (0.0440-0.0130) La Brea Tar Pits collection
Ursus americanus
americanus (O)

FMNH 106356 0 -

Ailurus fulgens (O) FMNH 60762 0 -
Nandinia binotata (O) FMNH 149362 0 -
Paradoxurus
hermaphroditus
phillipinensis (O)

FMNH 33548 0 -

Cuon alpinus primaevus FMNH 38515 0 -
Speothos venaticus FMNH 87861 0 -
Canis lupus lycaon FMNH 153800 0 -
Cerdocyon thous aquilis FMNH 68889 0 -
Otocyon megalotis AMNH 179143 0 -
Vulpes vulpes pusilla FMNH 112415 0 -

a
The first nine species are extinct species (indicated by †) and the next ten are extant species. Those with the label “(O)” are outgroups.

b
Mid-point age calculated from the maximum and minimum ages of the voucher specimen according to the formation from which it was retrieved. See column with header “Reference” for the literature

where the corresponding specimen and the formation from where it was collected are described.
c

Age reference corresponding only to the fossil specimens (extinct species). This can refer to either a paper, book chapter, or the database for the museum collection.
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Table 2: Priors on evolutionary rates and root age for the Carnivora analysis.

Analysis Dataa Prior on rates Prior on root ageb

Divergence times mit-3CP r ∼ Γ(2,100) t ∼ U(37.30,66.00)
mit-12CP r ∼ Γ(2,1040) t ∼ U(37.30,66.00)
mit-(12+3)CP r ∼ Γ(2,100) t ∼ U(37.30,66.00)
morpho r ∼ Γ(2,5) t ∼ U(37.30,66.00)
morpho+mit-(12+3)CP r ∼ Γ(2,10) t ∼ U(37.30,66.00)

Bayes factors mit-3CP r ∼ Γ(2,2) t ∼ U(0.999,1.001)
mit-12CP r ∼ Γ(2,20) t ∼ U(0.999,1.001)
mit-(12+3)CP r ∼ Γ(2,2) t ∼ U(0.999,1.001)
morpho r ∼ Γ(2,5) t ∼ U(37.30,66.00)

amit-3CP: mitochondrial third codon positions; mit-12CP: mitochondrial first and second codon positions; mit-(12+3)CP: mitochondrial data with
first and second codon positions in one partiton and third codon positions in another partition; morpho: morphological data; morpho+mit-(12+3)CP:
morphological and molecular data in three partitions.
bNote that in MCMCtree, uniform fossil calibraitons have soft bounds, that is, there is a small probability (p = 2.5% by default) that the time may lay
outside each of the calibration bounds.

Table 3: Bayesian selection of clock and correlation model for the Carnivora data.

Dataa Modelb logL ±S.E Pr

mit-3CP GBM −22,011.37±0.05 0.74
ILN −22,012.41±0.05 0.26
STR −22,019.57±0.04 0.00

mit-12CP GBM −25,651.40±0.04 0.47
ILN −25,651.28±0.04 0.53
STR −25,657.82±0.03 0.00

mit-(12+3)CP GBM −47,658.83±0.05 0.24
ILN −47,657.71±0.05 0.75
STR −47,694.37±0.03 0.00

Morpho GBM - (R = R∗) −4,097.41±0.04 0.00
GBM - (R = I) −4,221.13±0.04 0.00
ILN - (R = R∗) −4,085.03±0.02 1.00
ILN - (R = I) −4,207.59±0.02 0.00
STR - (R = R∗) −4,158.38±0.01 0.00
STR - (R = I) −4,280.18±0.01 0.00

amit-12CP: 1 partition with the first and second codon positions (12CP) of the 12 concatenated mitochondrial genes (12-mit genes); mit-3CP: 1 partition
with the third codon positions (3CP) of the 12-mit genes; mit-(12+3)CP: the two mitochondrial partitions analysed jointly; Morpho: 1 partition with the
morphological alignment of 87 characters for the carnivoran data set.
bSTR: strict clock model, GBM: autocorrelated-rates model, ILN: independent-rates model, R = I: no correlation model (i.e., R = I in Eq. 5), R = R∗:
correlation model (i.e., R = R∗ in Eq. 5). Note that, in all cases, c = 1, that is, population noise is explicitly accounted for in the models.
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Table 4: Posterior estimates of times (root and canid nodes) and rates for the Carnivora data under the
ILN rates model.

Modela Time estimates (95%
HPD interval)b

Rate estimates (95% HPD
interval)c

Log-normal shape
parameter (95% HPD
interval)

Coefficient
of rate
variationd

Morphological data

(R = R∗,c = 1)

troot = 54.6 (42.7, 65.8) r̄morpho = 0.488 (0.284, 0.838) σ2
morpho = 1.15 (0.540, 2.10) CVmorpho = 1.47

tcanid = 23.8 (13.2, 36.2)

Morphological data

(R = I,c = 1)

troot = 52.4 (41.2, 65.3) r̄morpho = 0.492 (0.287, 0.844) σ2
morpho = 1.10 (0.485, 2.10) CVmorpho = 1.42

tcanid = 25.4 (14.6,37.4)

Morphological data

(R = I,c = 0)

troot = 52.1 (41.5, 64.9) r̄morpho = 0.491 (0.288, 0.849) σ2
morpho = 1.10 (0.482, 2.08) CVmorpho = 1.42

tcanid = 26.3 (15.5, 38.1)

Molecular data troot = 45.5 (36.4, 63.5) r̄mit12 = 0.0044 (0.0028, 0.0065) σ2
mit12 = 0.1673 (0.0353, 0.483) CVmit12 = 0.43

tcanid = 21.7 (15.3, 31.7) r̄mit3 = 0.0319 (0.0207, 0.0451) σ2
mit3 = 0.1131 (0.0262, 0.321) CVmit3 = 0.35

Joint (Molecular and

Morphological,

R = R∗,c = 1)

troot = 52.0 (41.7, 64.6) r̄morpho = 0.452 (0.268, 0.766) σ2
morpho = 1.017 (0.468, 1.94) CVmorpho = 1.33

tcanid = 25.1 (18.7, 32.7) r̄mit12 = 0.0037 (0.0026, 0.0052) σ2
mit12 = 0.159 (0.0326, 0.456) CVmit12 = 0.42

r̄mit3 = 0.0273 (0.0193, 0.0382) σ2
mit3 = 0.147 (0.0320, 0.425) CVmit3 = 0.40

aR = R∗: means the shrinkage estimate of the correlation matrix is used. R = I: means the correlations are ignored, that
is, the data are assumed to be independent and the correlation matrix is the identity matrix. c = 1 and c = 0: means the
population noise is corrected for or ignored, respectively, in the analysis.
btcanid refers to the age of the divergence of the extant Canis-Vulpes group.
cHere, r̄ refers to the posterior estimate of the mean of the rate among branches.
dThe coefficient of variation of the log-normal distribution of rates is CV =

√
exp(σ2)−1.

37



Figure 1: A phylogeny of two extant species (A and B) and one extinct species (F†). The age of the
extinct fossil, tF , provides a minimum age bound on the divergence of A and B, tAB. The fossil age can
be used as a lower limit on a prior probability distribution, f (tAB), in a Bayesian analysis. Deciding on
the shape of the distribution and on how far its tail should stretch back in time is somewhat subjective
(Donoghue and Benton, 2007). Here we show an example of a misspecified prior for tAB, with the
probability mass close to the age of the fossil, but too far from the true age of the node.

Figure 2: A phylogeny of 8 species used to simulate morphological data. The time unit is 100 myr
and the divergence times are: t9 = 1.0 (root), t10 = 0.8, t11 = 0.3, t12 = 0.1, t13 = 0.2, t14 = 0.7, and
t15 = 0.5; meaning 100 Ma, 80 Ma, 30 Ma, and so on. The ages of the fossils are tF = 0.1, tG = 0.3
and tH = 0.7. Fossil species are indicated with a dagger (†).
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Figure 3: Procrustes alignment of 29 cranium landmarks for 19 carnivoran species. The alignment
was obtained with the Morpho package in R. Landmark coordinates for 21 foxes (Vulpes vulpes) and
18 other carnivoran species are shown as dark grey crosses and black dots, respectively. The mean of
the landmark coordinates are shown as diamonds and are numbered: 1, 2, Basioccipital-Basisphenoid-
Bulla suture - (left, right); 3, Palatine - Maxilla - ventral suture; 4, 5, Jugal - Squamosal ventral suture
- (left, right); 6, 7, Bulla - anterior extreme - (left, right); 8, 9, Bulla - posterior lateral extreme -
(left, right); 10, 11, Premaxilla - anterior extreme - (left, right); 12, 13, Jugal-Maxilla (Orbit crest)
suture - (left, right); 14, 15, Jugal-Maxilla (base of zygomatic arch) suture - (left, right); 16, Nasals
- Frontal suture; 17, 19, Anterior lateral M1 - (left, right); 18, 20, Posterior lateral M2 - (left, right);
21, 22, Canine - mesial extreme - (left, right); 23, 24, Postorbital process tip - (left, right); 25, 26,
Paraoccipital process tip - (left, right); 27, Parietals - Occipital suture; and 28, 29, Occipital condyle
- extreme - (left, right).
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Figure 4: Summary of Bayesian inference with continuous landmark data. Step 1: Collect landmarks
from the bones of the extinct and extant species and obtain matrix X. Step 2: Collect landmarks from
the bones of a population sample of one of the species sampled in step 1 and obtain matrix Y. Step 3:
Align the landmarks in X using the Procrustes method (for example using Morpho :: procSym in R) to
obtain aligned matrix M. Step 4: Align landmarks from population sample in matrix Y to mean shape
of alignment M (for example, with Morpho :: align2procSym) and obtain aligned population matrix
P. Step 5: Use P to estimate population variance, ĉ, and shrinkage correlation matrix R∗. Step 6: Use
ĉ to correct M for population noise and R∗ to correct for within-lineage correlation among characters.
This gives the corrected alignment Z. Step 8: Use Z in CONTML to estimate the morphological
branches using a fixed tree topology (species tree). They are used to estimate the morphological
rate and decide on the prior on rates. Step 8: Use the program MCMCtree to estimate divergence
times and morphological rates of evolution. The mcmc3r package in R can be used to prepare the
morphological alignment (i.e., to correct for within-lineage correlation and noise) and to generate the
appropriate control files for MCMCtree.
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Figure 5: Effect of the number of characters and fossil age on posterior estimates of the root age and
morphological rate for simulated morphological characters. The posterior mean and 95% quantile
estimates of t9 and r are averaged over R = 1,000 replicates. Quantitative characters were simulated
under the phylogeny of Figure 2, and the age of fossil H, tH , was varied to study the effect of the
fossil age on the estimates. The true root age, t9 = 1.0, and the true morphological rate, r = 1.0, are
represented as horizontal dotted lines. The dashed lines give the corresponding upper and lower 95%
CI limits.

41



Figure 6: Effect of population noise on estimates of the age of the root and the morphological rate
for simulated morphological characters. The posterior mean and 95% quantile estimates of t9 and r
are averaged over the R = 1,000 replicates. The p = 1,000 quantitative characters were simulated
under the phylogeny of Figure 2. (A, A’): the population noise is ignored during Bayesian inference,
(B, B’): the population noise is corrected using the vector of estimated population variances, ĉ; (C,
C’): the population noise is corrected using the vector of true population variances, c. The true root
age, t9 = 1.0, and the true morphological rate, r = 1.0, are represented as horizontal dotted lines. The
dashed lines give the corresponding upper and lower 95% CI limits.
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Figure 7: Effect of within-lineage correlation among characters on estimates of the root age and the
morphological rate for simulated morphological characters. The posterior mean and 95% quantile es-
timates of t9 and r are averaged over the R = 1,000 replicates. The p = 1,000 quantitative characters
were simulated under the phylogeny of Figure 2 with population noise c = 0.25. (A, A’): both popula-
tion noise and within-lineage character correlation were ignored during Bayesian inference, (B, B’):
within-lineage character correlation was not corrected for in the data sets but population noise was
accounted for, (C, C’): both population noise and within-lineage character correlation were corrected
for in the data sets, (D,D’): both population noise and within-lineage character correlation were cor-
rected for the true values in the data sets. The true root age, t9 = 1.0, and the true morphological rate,
r = 1.0, are represented as horizontal dotted lines. The dashed lines give the corresponding upper and
lower 95% CI limits. Note that due to the strange pattern in C’, we extended the simulation analysis
to include additional correlation values: ρ = 0.25,0.35,0.7, and 0.8.
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Figure 8: Divergence times for the 19 carnivoran species estimated with MCMCtree using morphological-only, molecular-only, and joint (mor-

phological and molecular) data sets: (A) morphological-only data set accounting for population noise and within-lineage character correlation, (B) joint

data set with the morphological data set in (A), (C) morphology-only data set without correcting for within-lineage character correlation and ignoring

population noise despite having scaled the morphological matrix, (D) morphology-only data set without correcting for within-lineage character correl-

ation nor population noise, and (E) molecule-only data set. Horizontal bars are the HPD of node ages. Calibration for the root: U(37.3,66.0). Cr.:

Cretaceous, Up.: Upper/Late, Pli.: Pliocene, Plei.: Pleistocene, Hol.: Holocene, Qu.: Quaternary. The posterior estimates for the root age (troot ) and

the corresponding 95% CIs are highlighted for each data set, the former connected through a bold dashed line and the latter through two corresponding

dotted lines.
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