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Abstract: 

WiFi RSSI (Received Signal Strength Indicators) seem to be the basis of the most widely 

used method for Indoor Positioning Systems (IPS) driven by the growth of deployed 

WiFi Access Points (AP), especially within urban areas. However, there are still several 

challenges to be tackled: its accuracy is often 2-3m, it’s prone to interference and 

attenuation effects, and the diversity of Radio Frequency (RF) receivers, e.g., 

smartphones, affects its accuracy. RSSI fingerprinting can be used to mitigate against 

interference and attenuation effects. In this paper, we present a novel, more accurate, 

RSSI ranking-based method that consists of three parts. First, an AP selection based on a 

Genetic Algorithm (GA) is applied to reduce the positioning computational cost and 

increase the positioning accuracy. Second, Kendall Tau Correlation Coefficient (KTCC) 

and a Convolutional Neural Network (CNN) are applied to extract the ranking features 

for estimating locations. Third, an Extended Kalman filter (EKF) is then used to smooth 

the estimated sequential locations before Multi-Dimensional Dynamic Time Warping 

(MD-DTW) is used to match similar trajectories or paths representing ADLs from 

different or the same users that vary in time and space In order to leverage and evaluate 

our IPS system, we also used it to recognise Activities of Daily Living (ADL) in an office 

like environment. It was able to achieve an average positioning accuracy of 1.42m and a 

79.5% recognition accuracy for 9 location-driven activities. 
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Introduction 

Indoor Positioning Systems (IPS) are increasingly needed as part of our daily life, as we 

increasing spend 87% of our time indoors [1] in increasingly more complex 3D spaces 
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[2]. IPS applications include: smart building services, mobile asset or people tracking [3], 

eHealth [4], location-enabled games, and customised advertisements. Although a range of 

IPS techniques exist, they face different limitations in different scenarios regarding ease 

of use, requiring the use of or not of dedicated signal transmitters and receivers, power 

consumption, cost and the heterogeneity of signal Radio Frequency (RF) receivers. This 

research targets using existing personal communication devices such as smartphones for 

indoor positioning rather than using additional specialised signal receivers. Under these 

requirements, WiFi or BLE-based positioning systems are the most widely adopted 

techniques. These RSSI techniques, from which position can be derived, can be divided 

into two types: First, the more straightforward to deploy, BLE or WiFi RSSI ranging, 

which uses path loss models can be used to calculate the user location. Even though these 

are easy to deploy, their accuracy can be severely decreased if there are obstructions, i.e., 

a non-free space, severely reducing the positioning accuracy. Second, WiFi and BLE 

RSSI location fingerprinting can be used, which requires collecting a fingerprint or map 

of sets of RSSI measurements at reference locations in an offline phase for latter 

comparison with RSSI signals in an unknown location in the operational phase. Unlike 

BLE-based systems, e.g., using iBeacon devices, WiFi location fingerprinting system 

does not need to deploy additional, specific, Access Points (AP). Moreover, scanning of 

barcodes and Quick Response (QR) Codes at known locations can be used as a 

crowdsourced way to collect and update RSSI fingerprints, i.e., at known payment spots, 

which can significantly reduce the fingerprint collection work. However, these types of 

RSSI use are also affected by the heterogeneity of the signal RF receiver in smartphones. 

Rather than use the raw RSSI measurements as the fingerprints for the radio map 

database, the ranking of RSSIs from different APs can be used instead, this mitigates 

against the heterogeneity of the RF receivers when constructing such fingerprints. 

`Another positioning method proposed in [5], applies unsupervised learning to handle the 

heterogeneity of RSSI receiver hardware to improve the location accuracy. However, 

over the growing numbers of deployed APs, an RSSI ranking of those APs can be 

applied, instead of applying additional unsupervised learning to process those 

measurements. KTCC can be used to measure the ordinal association between two 

measured quantities (concordant and discordant ranking pairs). In addition, CNN is good 

at feature extraction. RSSI ranking of different APs can be used as a feature to match 

patterns that can be applied in ranking-based fingerprinting systems. In addition, an AP 

selection algorithm to select a subset of all available APs, not only reduces the 

computational cost for online positioning but also increases the positioning accuracy, 

e.g., because some AP RSSIs are noisy or weak [6].   

An IPS can be used to track the trajectories, paths or tracks of sequential locations of 

users, enabling indoor navigation services. Since the trajectory is based on sequential 

movement, motion models can be applied to help increase the tracking accuracy, e.g., 

through using a particle filter or Kalman filter. A further enhanced application of IPS 

navigation is that predefined hotspots or waypoints can be combined with the trajectories, 

and used to recognise location-driven human ADLs. There is a challenge in that different 

users can vary the trajectories in time and space. Multi-Dimensional Dynamic Time 

Wrapping can be to used to match paths from different or the same users that vary in time 

and space [7]. 



WiFi Channel State Information (CSI) can be used to recognise more fine-grained ADLs, 

e.g., Wi-Vi [8], WiSee [9] and WiTrack [10]. The principle of such CSI-based sensing 

methods is to make use of channel information in the time and frequency domain, e.g., 

the amplitude and phase of each subcarrier at each timestamp and to leverage how these 

changed features are affected by human activity between transceivers. By collecting and 

extracting these features at the training stage, test features can be matched with the 

training database to infer human motions and activities. However, such CSI-based 

methods rely heavily on a relatively stable RF environment, i.e., they often rely on a 

single occupant environment and no infrastructure or environment changes. Each 

occupancy or environment change would trigger an activity profile update or it may fail 

to work. Its recognition accuracy is reduced if there are more than two people in the same 

space. Although, vision-based methods can offer positioning and ADL recognition 

services, these face problems of being privacy invasive and are computationally 

intensive. Our purpose is to find the limitations of path matching to recognise location-

driven ADLs to recognise coarse-grained activities such as  to detect if someone went to 

the kitchen and dining area and stayed there. It’s considered to be out of scope to 

consider more finely-grained activities such as taking a cold drink from a fridge or 

making tea.   

The main contributions of this paper to build a novel RSSI ranking-based IPS that can 

also be used to recognise location-driven ADLs are three-fold: 

1. Before constructing our radio map, our proposed AP selection based on a Genetic 

Algorithm (GA) is applied to reduce the positioning computational cost but also 

to increase the positioning accuracy.  

2. Our novel RSSI ranking-based KTCC/CNN is used after our AP selection to 

improve positioning accuracy and to mitigate against signal receiver diversity. 

This technique could also be suitable for scenarios with dense Internets of Things, 

as transmitters embedded in smart objects can be treated as APs. 

3. An Extended Kalman filter is then used to smooth the estimated sequential 

locations. Then, to the best  of our knowledge, no one has in addition, used Multi-

Dimensional Dynamic Time Warping (MD-DTW) to match similar trajectories or 

paths representing ADLs from different or the same users that vary in time and 

space. This can also be extended in multi-source signal scenarios, e.g. combined 

with magnetic field sensing, to upgrade the path or activity recognition accuracy. 

Methodology 

There are usually two phases (offline training phase and online positioning phase) used 

by location fingerprinting methods. In our IPS, we also have such two phases, but after 

we collected the fingerprints, we select APs to improve location accuracy as some are 

noisey. In our previous work [6], which we proposed an Interval Overlap Degree 

determination (IOD) method to do the AP selection. However, this method is based on 

the raw RSSI measurements, which is not suitable for ranking-based AP selection. 

Instead of using IOD, we propose another AP selection algorithm based upon a GA to 



select optimal APs. Then the converted ranking fingerprints of the selected APs are be 

used to train our KTCC and CNN models to estimate the location of users. 

In the online phase, the matching probability of using KTCC and CNN will be treated as 

weights of using Weighted K-Nearest Neighbour Classification Algorithm (WKNN) to 

derive the user location.  

Figure 1 depicts all procedures of our location fingerprinting IPS, which we use AP 

appearance ratio before the AP selection algorithms and then, after estimating user’s 

location, we applied filtering algorithms to help increase our positioning accuracy. Then, 

then combined path fingerprints will be used to recognise activities.  

 

Location Determination using Euclidean distance (ED) 

In most positioning methods, ED is used to match the RSSI mean vector collected at an 

unknown location, with the RSSI mean vector at Reference Points (RPs) in radio map. 

The distance is expressed using the following equation: 

EDim = √∑ (𝐴𝑉𝐺_𝑅𝑆𝑆𝐼𝑖,𝑗 − 𝐴𝑉𝐺_𝑅𝑆𝑆𝐼𝑚,𝑗)
2n

j=1                          (1) 

where EDi  is the Euclidean Distance between a RP i  and the unknown point m . 

AVG_RSSIi is the average of the RSSI of RP i in the pre-recorded radio map. AVG_RSSIm 

is the averaged RSSI vector at m, and n is the number of selected APs.  

 

Fig. 1. Phases of our location fingerprinting method 



Then WKNN is applied to drive the user location, which is described as: 

 (�̅�, �̅�) = 
𝜏1
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𝐾
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where we use 1/EDk as the weight 𝜏k. 

Location Determination using PCA 

Instead of choosing a subset of APs, [11] replaces the elements with a subset of Principal 

components (PCs), using a statistical procedure, where PCs are obtained by a 

transformation of the measured RSSI. The theory of the paper is based on Principal 

Component Analysis (PCA) to find an effective transformation such that the retained 

information in the chosen PCs can be maximised, which means it will not only reduce the 

computation cost but also increase the positioning accuracy by directly calculating the 

ED distance using the transformed RSSI.  
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The concept of using PCA, which is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set 

of values of linearly uncorrelated variables called principal components, is to reduce the 

dimensions by combining APs. In other words, information reorganisation is adopted, 

rather than AP selection. As shown in equation 3, the principal components 

[𝑦1, 𝑦2 …𝑦𝐿]
𝑇 are produced by a transformation with real numbers. With appropriate 

transformation matrix A, the information transmitted into Y from X can be maximized. 

Matrix A is determined by using PCA, as it has the distinction of best presenting data in a 

least square sense, i.e., Y = AX, �̂� is the reconstruction of X from Y, �̂� = 𝐴𝑇𝑌 , PCA 

seeks to minimize the mean square reconstruction error: 

𝐽𝜖 = 𝐸 {‖𝑋 − �̂�‖
2
}                                                   (4) 

The property guarantees that using PCA can retain the maximised information when 

dimensions are reduced. PCA can be done by using eigenvalue decomposition of a data 

covariance matrix or singular value decomposition of a data matrix, usually after mean 

centring (and normalising or using Z-scores) the data matrix for each attribute.  

Location Determination using KTCC 

Instead of using ED to match the RPs, we propose to use KTCC of RSSI ranking as the 

distance to match RPs.  How to calculate KTCC can be expressed as (5) or (6): 

 

τ1 =
(number of concordant pairs)−(number of discordant pairs)

n(n−1) 2⁄
                     (5)      

τ2 = 1 −
2(number of discordant pairs)

n(n−1)
                                         (6)      



                 

where we consider the higher ordinal association τ between two quantities, the closer 

they are. Figure 2 visualised the concordant (blue) and discordant (yellow) pairs in a 

ranking fingerprint of five selected APs at two RPs. The blue parts represent the 

concordant pairs; the yellow parts are the discordant pairs.  

For our KTCC method, we also use WKNN to derive the user’s location. However, we 

use τ as the weight. τ2 is also used as it can offer positive weight. 

 

Location Determination based on Ranking-based CNN 

 

Fig.2.  Concordant and Discordant pairs in KTCC 



 

Deep neural network models have been applied successfully to solve complicated 

problems, e.g., facial recognition, driverless car, and machine translation. CNN is good at 

feature extraction. Our previous work [12] has tested that using KTCC can mitigate the 

heterogeneity issue, which means the ranking relation between APs can help to match 

mobility paths as patterns. So, we propose that CNN can also be used to extract such 

features. Furthermore, several IPS employ deep learning to estimate user location [13]. 

However, most of those methods just use raw RSSI measurements as the input data to 

train their positioning models, which does not consider the RF heterogeneity receiver 

impact and the consequent need to collect data from different smartphones. To mitigate 

against this hardware heterogeneity issue, RSSI ranking is used as our input. 

For classification problems using deep neural network models, it is common to use a so-

called softmax layer at the top of the network. For example, given 3 possible classes, the 

softmax layer has 3 nodes denoted by pi , where 𝑖 = 1, 2, 3 . 𝑝𝑖  specifies a discrete 

probability distribution, therefore, ∑ 𝑝𝑖 = 13
𝑖 . Let ℎ be the activation of the penultimate 

layer nodes (𝑘), 𝑊 is the weight connecting the penultimate layer to the softmax layer, 

the total input into a softmax layer, given by a, is 

𝑎𝑖 = ∑ ℎ𝑘𝑊𝑘𝑖𝑘                                                        (7) 

𝑝𝑖 =
exp (𝑎𝑖)

∑ exp (𝑎𝑗)
3
𝑗

                                                       (8) 

 

Then, the outputs of softmax layer 𝑝𝑖 will be treated as the weight in WKNN to estimate 

the user location. 

 

Fig. 3.  An example of a Deep Neural Network Architecture (The input layer 

with 5 inputs, 15 neurons in each hidden layer, 10 outputs in the output layer) 



 

Figure 4 shows the architecture of the CNN model. Keras1 (Tensorflow as a backend) 

was used to implement the CNN model. The model consisted of two 1D convolutional 

layers and one max-pooling layer. After the convolutional layer, the model has a fully 

connected layer that is used to connect to the Softmax layer. The outputs of the Softmax 

layer become the weights in the location determining phase.                                                

For example, after using the GA-based AP selection algorithm, 33 APs are selected. 

Then, the model inputs are a ranking of these APs. After the hyper-parameters (e.g., layer 

number, learning rate), were tuned, the following structure was found to be effective. The 

first convolutional layer has a depth of 100 and a filter size of 15. The filter size of the 

pooling layer is 3 with a stride of 2, which will mitigate against the overfitting issue of 

the model. The filter size of the convolution layer is 7, and the depth is 20. Next, the fully 

connected layer has 200 neurons, and tanh, as a popular activation choice, is used as the 

non-linearity function. Finally, the softmax layer is used to classify the test points. 

Probability Comparison 

In our IPS, we use WiFi RSSI ranks as our data input rather than using the raw RSSI 

measurements. Instead of using ED with RSSI values to compare which is stronger in the 

pairwise APs, we use a joint distribution. Let A represent the random variable for the 

RSSI measurements of AP A in the chosen time frame, and B the corresponding random 

variable for AP B. Assuming the APs are independent then we choose AP A over AP B if 

P(A>B)>0.5. More specifically, S1 is the set of RSSI values of AP A, and S2 is the set of 

RSS values of AP B in the time frame sampled. 

P(A > B) = ∑ ∑  P(𝑟1 > 𝑟2 |𝑟1  & 𝑟2)𝑟2∈𝑆2𝑟1∈𝑆1                     (9) 

The reason why we chose this approach is that based on paper [14]. The RSSI 

measurements fluctuate over time, so it is better to use a probabilistic approach.  

                                                 
1 For more details see: https://keras.io/. 

 

Fig. 4.  The architecture of our CNN Model (one example) 

https://keras.io/


AP Selection Based on Appearance Ratio 

In our experimental space, a total of 106 APs is detected in our pre-constructed radio 

map; however, if we use all APs, this will not only increase the computational cost to 

estimate locations but also reduce the location estimation accuracy.  the accuracy of AP 

selection algorithms, would also suffer from imbalanced RSSI measurements, as not all 

RSSI measurements of 106 APs can be recorded for each scan. For example, we collect 

fingerprints at each RP for 20 times, not all APs can be detected at each time. If 𝐴𝑃𝑎 is 

detected once, we will keep the measurement, if not, a value, e.g., -100 will be kept. In 

this case, if we directly use AP selection algorithms, those AP selection algorithms would 

select the missing APs with more -100, as it has a better performance  and is more stable, 

which would otherwise decrease the positioning accuracy.  

To solve this, we propose to select the APs using an appearance ratio first (when we set 

this ratio to 90%, 67 APs are selected), then using our AP selection algorithms on those 

selected APs. The idea of appearance ratio is simple, as at each RP, we recorded several 

scans, then we based on its appearance ratio (appearance times in every second divided 

by total scanned seconds) to select APs at each RP, then combine all selected APs then 

together, which is in order to mitigate the filling values. 

AP Selection Based on Genetic Algorithm 

Instead of selecting a specific number of AP, we use Genetic Algorithm (GA), an 

optimisation algorithm, to select the desired number of APs from all detected APs. The 

principle of GA is simple, which is based on natural selection, the process that drives 

biological evolution.  



 

The GA repeatedly modifies a population of individual solutions. At each step, the GA 

selects individuals at random from the current population to be parents and uses them to 

produce the children for the next generation. After consecutive generations, it would 

evolve toward an optimal solution. The primary procedures of our GA are as follows: 

Selection 

This procedure is to select the individuals (parents), which contribute the population to 

the next generation. In our case, we randomly generate a specific number of selected AP 

list, then convert them to a binary vector, 1 means selected, 0 means this AP is not 

selected. 

Individual solutions are selected using a fitness function, where fitter solutions will have 

more chance to be selected. Here, we use the performance of our validation dataset to 

measure the fitness; it can also be combined with Information Gain (IG), mutual 

information (MI), which is mentioned in our previous paper [6].  

𝑛𝑢𝑚 𝐴𝑃1 𝐴𝑃2 𝐴𝑃3 ⋯ ⋯ 𝐴𝑃𝑛−2 𝐴𝑃𝑛−1 𝐴𝑃𝑛 

1 0 1 1 ⋯ ⋯ 0 0 1 

2 1 1 1 ⋯ ⋯ 1 1 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 

Fig. 5.  The procedures of using the GA algorithm 

Initialisation

Create initial population

Reproduce

Clone (purple) & Mutate Survivors

Evaluate Fitness

Selection

Kill unfit ones



m 0 0 0 ⋯ ⋯ 0 1 1 

Crossover  

This procedure combines two parents to form children for the next generation. Based on 

our assumption that the excellent performance of positioning accuracy using KTCC is 

correlated with the specific sub-groups of all APs. If in this case, it also makes GA 

perfectly fit for the ranking-based AP selection, as in the crossover procedure, they will 

change the sub-groups (DNA segment) to achieve a better positioning performance (new 

generation). 

Mutation 

In this procedure, random changes will be applied to those individual parents to form 

children. Namely, we randomly change the single segment from 1 to 0 or 0 to 1 based on 

the mutation rate. 

Extended Kalman Filter 

Extended Kalman Filter (EKF) is an extension of Kalman filter (KF). Although KFs [15] 

has been applied in a wide range of areas, in this case for navigation by acting as a filter 

that can smooth the point sequence to increase the indoor positioning. Some locations as 

points, because of noise, may be far away from a set of sequential locations or a  path or 

trajectory. So, we can use the status (e.g. speed, direction) estimated from the first few 

points in this path to predict the status of remaining points. Then all points would be 

closer to the path. KF is used to smooth the possible low-accuracy points which are far 

away the path. KF has a constraint that the dynamic system must be linear. However, this 

condition is hard to satisfy since the dynamic systems in the real world are always 

complicated and cannot be summarised with a linear function. EKF is developed for such 

a nonlinear system. 

EKF is able to estimate and update the states of a nonlinear system by linearising it with 

the help of first-order Taylor-expansion. In other words, when predicting the state in the 

next time step using state transition function, instead of finding the transfer matrix, we 

find the partial derivatives of the state transition function and observation function, 

represented by a Jacobian matrix. Different from the KF implementation, the state o(t) for 

EKF is defined as 

o(t) = [

𝑝(𝑡)
𝑣𝑒𝑙(𝑡)
𝜃(𝑡)

]                                                       (10) 

where 𝑝(𝑡) = [𝑥, 𝑦]𝑇, 𝑣𝑒𝑙(𝑡) is a scalar indicating the velocity of the moving target; 𝜃(𝑡) 

represent the orientation, defined as the angle between the orientation and one of the axes 

in the moving target’s inertial frame. So, the state transition equation for each parameter 

in the state o(t) in the 2D scenario: 

x(t) = x(t − 1) + vel(t − 1) ∗ sin (𝜃(t − 1))* δt                        (11) 

y(t) = y(t − 1) + vel(t − 1) ∗ cos(𝜃(t − 1))* δt                        (12) 



𝑣𝑒𝑙(𝑡) = 𝑣𝑒𝑙(𝑡 − 1)                                          (13) 

𝜃(𝑡) = 𝜃(𝑡 − 1)                                             (14) 

By finding a matrix of partial derivatives of the fours above, we can get the linearised 

model of the system and estimate or update the states of the moving target. After path 

smoothing using EKF, MD-DTW will next be used to detect and match similar paths. 

 

Path Matching-based ADL Recognition  

 

The rationale for using path matching to recognise ADLs is threefold: 1) A trajectory is 

more distinctive than a position; 2) Most office corridors are long and narrow pathway; 3) 

Most users follow a straight walking direction [16]. Hence, Dynamic Time Warping 

(DTW) can be used to compare two-time series with different lengths to improve the 

recognition and classification our specific defined trajectories that represent activities 

[17]. Suppose two-time series P and 𝑄, (P = 𝑝1, 𝑝2, … 𝑝𝑖, … 𝑝𝑛, Q = 𝑞1, 𝑞2, … , 𝑞𝑗 , 𝑞𝑚). To 

align, matrix can be stablished. Each element of the matrix stands for the distance 

(typically the Euclidean distance, but in our case, KTCC is used) between 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑗. The 

main target of DTW is to find the warping path W (𝑊 = 𝑤1, 𝑤2, …𝑤𝑘, …𝑤𝐾). As shown 

in Figure 4, W starts from 𝑤1 and end at 𝑤𝐾 (max(n,m) < K < m + n − 1). Then the 

path direction only has three cases at each 𝑤𝑘. The step length is only restricted in the 

warping path to adjacent cells. The distance between P and 𝑄 is 
1

𝐾
∑ W𝑘

𝐾
1 .  

This ordinary DTW can effectively classify two time- series from a single source. 

However, in many cases, signals have multi-dimensions will be employed at the same 

time which can be used to better align two time-series compared to 1-dimension. 

Therefore, [7] proposed an improved MD-DTW method which was used in gesture 

 

Fig. 6. An example of warping path 

 

 

 



recognition conducted by the camera. Assume P𝑆  and Q𝑆  are two time- series S-

dimension features, i.e. P𝑆 = 𝑝1
𝑆, 𝑝2

𝑆, … 𝑝𝑖
𝑆, … 𝑝𝑛

𝑆, Q𝑆 = 𝑞1
𝑆, 𝑞2

𝑆, … 𝑞𝑗
𝑆, 𝑞𝑚

𝑆 . Then the 

elements of distance matrix turn Dis𝑛,𝑚 = ∑ (𝑝𝑖
𝑆 − 𝑞𝑗

𝑆)2𝑆
𝑠=1 . Considering the range 

difference of S-dimension feature values, normalizing each dimension of feature values 

can effectively remove the difference. Usually, we normalize each dimension of feature 

values separately to a zero mean and unit variance.    

[18] uses DTW with the magnetic field to predict the personalised route, [19] uses DTW 

to improve the positioning accuracy. However, most researchers focused on using DTW 

to improve the IPS accuracy; no one has used such combined measurements to recognise 

ADLs. One reason is that with current positioning accuracy, it may not achieve a good 

recognition accuracy. In our research, we aim to recognise coarse-grained ADLs using 

combined estimated locations and RSSI ranking based fingerprints. Since trajectories of 

human mobility contain the cue to infer ADLs, path matching can help us to find the 

closest trained path as well as its corresponding activity. Two kinds of WiFi fingerprint 

matching methods to localise are already introduced above. Compared to the location 

path (path of ground truth or estimated locations) matching scheme, ranking-based 

matching adds a matching process of RSSI ranking-based MAC address vectors from 

multiple points. Hence, fused matching can be implemented by using two different 

variables, estimated locations and sorted RSSI ranking MAC address vectors. Their 

feature matrix 𝐹𝐶 and 𝐹𝑅 are denoted as below.   

The 𝑥𝑙 and 𝑦𝑙 are estimated locations, instead of the ground truth locations. As based on 

our experiments, by using estimated locations, we have achieved a higher (more than 

20%) recognition accuracy using estimated locations than using ground truth locations. 

The reason we assume is that the bias of estimated location could also help to increase the 

recognition accuracy, namely, the designed path matching accuracy. 

𝐹𝐶 = [

𝑥𝑙1 𝑦𝑙1
𝑥𝑙2 𝑥𝑙2

⋮
𝑥𝑙𝑞

⋮
𝑥𝑙𝑞

] 𝐹𝑅 =

[
 
 
 
 
𝑀𝐴𝐶𝑙1

1 𝑀𝐴𝐶𝑙1
2 ⋯ 𝑀𝐴𝐶𝑙1

𝑁

𝑀𝐴𝐶𝑙2
1 𝑀𝐴𝐶𝑙2

2 ⋯ 𝑀𝐴𝐶𝑙2
𝑁

⋮
𝑀𝐴𝐶𝑙𝑞

1
⋮

𝑀𝐴𝐶𝑙𝑞
2

⋮
⋯

⋮
𝑀𝐴𝐶𝑙𝑞

𝑁
]
 
 
 
 

                                              (15) 

However, past work only focused on path matching using one of these two feature 

vectors, 𝐹𝑐  or 𝐹𝑅 . Fusing different signals can offer improve the location accuracy. 

What’s more, it also can be extended into scenarios with multi-source information. For 

example, smartphones can not only collect RSSI measurements but also other 

measurements, e.g., magnetic field measurements 𝐹𝑀𝐹. Therefore, the multi-source fusion 

feature matrix can be denoted by 𝐹𝐹. In this case, we only fuse 𝐹𝑐 and 𝐹𝑅 which can be 

viewed as a good test for multi-source feature path matching.  

𝐹𝐹 =

[
 
 
 
𝐹𝑃𝑜𝑠

1 𝐹𝑅
1 𝐹𝑀𝐹

1 …

𝐹𝑃𝑜𝑠
2 𝐹𝑅

2 𝐹𝑀𝐹
2 ⋯

⋮
𝐹𝑃𝑜𝑠

𝑞
⋮ ⋮

𝐹𝑅
𝑞 𝐹𝑀𝐹

𝑞 ⋯
]
 
 
 

                 (16) 

The fusion process is as follows. Firstly, as the range of KTCC results is from 0 to 1, 

instead of standardising each type measurement, we normalised the distance between the 



estimated coordinates. Min-max normalisation can map the distance values to the range 

of 0 to 1 to and make each type of result be within the same scale. Equation (12) shows 

the normalised the distance (z̃). Then, in the phase of path matching, MD-DTW (uses the 

sum of the distances of each type measurements as a new distance) is utilised to find the 

best match. In our case, to recognise the trajectory of human mobility, it needs to find the 

path which minimises the distance between the current path and the pre-trained path (i.e., 

MD − DTW = argmin {
1

𝐾
∑ W𝑘

𝑆}𝐾
1 ).  

z̃ =
𝑧−min (𝑧)

max(𝑧)−min (𝑧)
                                                     (17) 

where z equals to 𝑠𝑞𝑟𝑡 ((𝑥𝑖 − 𝑥𝑗  )
2
+ (𝑦𝑖 − 𝑦𝑗)

2
). 𝑖 and 𝑗 represent different index of 

estimated coordinates.  

Experiment Setup 

Location fingerprinting 

A field experiment was conducted in a 13.0 m × 30.0 m PhD office of the Queen Mary 

University of London. The training dataset was collected using smartphone (Nexus 5). 

Validation and test datasets were collected manually by holding the Nexus 5 at mid-body 

height in front. 

Over 106 APs (106 different MAC addresses) were detected during the whole training 

data collection procedure (we believe some of them are dummy ones), hence this is also 

one reason why we need AP selection algorithm).  

 

Fig.7.  The ground floor of office 



At each RP, the varying RSSI measurements (and hence varying ranking) was collected 

for 40 seconds. We use the ranking of collected RSSIs in two second as each training 

data for our model. Hence each training RP has 20 RSSI ranking vectors. 

The 113 Reference Points (RPs) shown in Figure 7 are our training data, which is used to 

train our models; Our validation dataset is the rest 70 Test Points (TPs), which is used to 

validate our system (the layout fits for the ADL recognition). We collected data from 

those TPs 20 times, half of them will be treated as test dataset, the rest will be treated as 

validation dataset. Figure 7 also shows the layout of the office. The blue dots are RPs, 

which are 1m apart. The red dots are TPs, the distance between each TP is based on the 

length of each step. 

 

 

 

Fig. 8. Our fingerprints collection application 

 

 

Fig. 9. Our fingerprints collection drone (prototype) 



Figure 8 and 9 show our fingerprints collection application and drone, as another key 

issue of location fingerprinting is that the time-consuming and laborious collection work. 

To solve this, we developed the fingerprints collection drone. However, it is not fully 

autonomous, e.g., to keep it fly correctly within the designed path, which we are still 

improving it. The fingerprints collection application will collect raw RSSI measurements 

and simultaneously convert them to a ranking ordinal vector using probability 

comparison. As we also mentioned that it is onerous to collect and update the radio map. 

Currently, we set our drone as a carrier to carry the smartphones to collect fingerprints 

follow the lines at a fixed 1m height. 

ADL recognition 

 

For the ADL recognition part, we designed 9 specific activities which are listed in Table 

1. Those 9 activities are divided into two classes relying on the length of the paths.  

The activities among the Class 1 with long paths are shown in Figure 10, and the Class 2 

activities with short paths are shown in Figure 11 (in the kitchen). Since the activity 

recognition accuracy is related to the path length and dimension of feature matrix, these 

two classes activities can constitute a comparative test for the effect of path length on 

recognition accuracy. As shown in Figure 8, there are different directions (colours) from 

user desk to other places (exit, meeting room, printing room and kitchen). Therefore, 

there are 3 paths for each activity among class 1, 12 paths in total. For activities among 

 

Fig. 10. Overview of class 1 activity 



class 2, each of them has 1 path, 5 paths in all. During the experiment, we repeatedly 

collected activities for 20 times so that there were 17*20=340 paths.  

 

Table 1. List of activities 

Classes ID Steps Activities Path 

Class A 

1-3 15/13/25 Leave the office From user desk to exit 

4-6 16/18/32 Have a meeting From user desk to meeting room 

7-9 20/22/36 Print documents From user desk to printing room 

10-12 27/29/43 Go to kitchen From user desk to kitchen 

Class B 

13 4 Eat food From microwave to dinner table  

14 3 Make tea  From fridge to kettle 

15 5 Drink tea From kettle to dinner table 

16 4 Heat food From firdge to microwave 

17 7 Have a drink From fridge to dinner table 

Evaluation 

Location fingerprinting 

In our pre-experiment, we have used two different types of radio map; one is using 

averaged RSSI measurements at each RP, which makes a relatively stable feature of each 

RP, another type is just to use the multiple scans measurements, which maintains data 

diversity. Then, we undertook repeated estimating locations by changing the parameter K 

 

Fig. 11. Overview of class 2 activities 



in WKNN, which is shown in Figure 12. It shows that the positioning accuracy is related 

to the k, and we will choose the best performance k for each method using the validation 

dataset. The best performances of these four methods are 2.57m, 3.74m, 2.44m, and 

2.18m, respectively. It also shows ED using averaged RSSI measurements performs 

better than using multiple measurements, and KTCC using ranking based on a total 

probability comparison performs worse than KTCC using multiple measurements. This 

maybe because KTCC may be sensitive to varying RSSI, which causes a varying RSSI 

ranking. Our focus is on ranking-based methods. So, in the following experiments, we 

use the multiple measurements radio map for ranking-based methods.  

Furthermore, the best positioning accuracy for the above methods (same order) using a 

total of 106 APs are 2.91 m, 3.84 m, 2.77 m, and 2.51 m, which by using an appearance 

ratio method only (67 APs are selected from all 106 APs using the appearance ratio), the 

positioning accuracy increases by 11.6%, 3.3%, and 11.9%, respectively. However, ED 

(using averaged RSSI measurements) using whole APs performs 15.1% better than using 

appearance ratio selected APs, which means ED using averaged RSSI measurements can 

be more robust to use. 

 

Using an AP selection algorithm not only reduces the online positioning computational 

cost but also increases the positioning accuracy. We have proposed our IOD AP selection 

algorithm which performs better than using IG and MI [6]. However, we found that PCA 

performs better than our IOD algorithm based on the results shown in Figure 13 (dash-

lines show the best corresponding positioning accuracies). However, it is not a ‘real’ AP 

selection algorithm; it needs to calculate PCs each online scan, which has a higher 

computational cost than using AP selection algorithms when doing online positioning. In 

 

Fig.12.  Performance with using different K in WKNN 



this paper, we choose to deploy PCA as our positioning baseline method to compare with 

our proposed ranking-based methods, as it offers a higher positioning accuracy, which the 

best accuracy is 2.01m when using only 2-dimensional coordinates.   

 

 

 

Fig.13.  Performances of using IOD and PCA 

 

Fig.14.  Improved positioning accuracy by using GA 



However, those AP selection algorithms are not designed for ranking-based methods. To 

solve this, we have proposed our GA algorithm to select APs, which can directly find the 

optimal AP list, instead of considering all APs. 

Figure 14 shows the improved positioning accuracy (test dataset) by using our proposed 

GA, which its positioning accuracy converges after having 28 training epochs 

(validation:1.92m, test: 1.94m with using 33 selected APs). Then, the selected AP list 

will be used for our KTCC and CNN methods. 

 

Figure 15 shows the performance of using our CNN model with GA selected APs, it also 

shows that over the training, the positioning accuracy increased, then decreased, which 

means that it relates to how well we trained the model. The best positioning accuracy 

achieved is 1.88m, where the corresponding classification validation accuracy is 57%. 

N.B. it is not necessarily the higher the classification accuracy, the higher the positioning 

accuracy. An overtrained model will also cause a decreased positioning accuracy, which 

means if we use models like CNN, we need to keep the balance between classification 

accuracy and positioning accuracy. A similar positioning accuracy also means that less 

hyperparameters tuning is needed and has the ability to compete with the state-of-art 

neural networks used for IPS. However, it is possible to achieve a higher positioning 

accuracy by tuning the hyperparameters of neural networks. So, we can depend on the 

requirements to choose the methods. In our experiment, we used KTCC to do the ADL 

recognition, because of its simplicity. Both KTCC and CNN-based methods perform 

3.5% and 5.9% better than our PCA baseline method, which the accuracy is 2.01m. 

As the TPs are collected from several designed paths, we can deploy the EKF model to 

increase the positioning accuracy with using a uniform motion model. The positioning 

accuracy increased from 1.94m (KTCC), 1.88m (CNN) to 1.42m, 1.54m, respectively, 

when we use the EKF. Figure 16 shows the improved positioning accuracy (KTCC).   

 

Fig.15.  Improved positioning accuracy by using CNN 



 

 

To test our proposed RSSI ranking location fingerprinting method using KTCC again 

[12], a repeat experiment was carried out in the Lab testbed. Figure 17 shows that for the 

using a different phone (BlackView #1), the proposed method (averaged positioning error 

2.42 m, 90% in 4.52 m) performs better than using the ED method (3.18 m, 90% in 4.51 

m), which also proves that our ranking method is more robust and mitigates the RF 

receiver heterogeneity issue.  

 

Fig.16.  Improved accuracy using EKF 

 

Fig.17.  Accuracy comparison using a different phone 



ADL recognition 

Figure 18 and Table 2 shows the activity recognition accuracy of using estimated 

locations, ranking vectors and fusion-based methods. C1 is the set of class 1 activities, C2 

is the set of class 2 activities and mix represents C1 plus C2 activities. From the result, 

we can see the recognition accuracy of C1 is better than that of C2 which indicates that 

the activities with short paths are harder to be recognised than activities with long paths 

which also can explain the degradation of recognition accuracy for the mix set compared 

to that of C1, which means the longer path (but with less common points), the higher 

accuracy. Moreover, the proposed fusion MD-DTW performs the best recognition 

accuracy, it also means ranking-based fingerprints can do more than just localisation, it 

can also be explored to recognise ADLs.  

 

 

Table 2. WiFi location-based activity recognition result 

Percent 
Single Dimension 

 DTW 

Fusion MD  

DTW 

 

Fig.18.  Confusion matirx of our recognition results 



C1 C2 mix C1 C2 mix 

Estimated KTCC 44.6 30.0 40.3 -- -- -- 

Ranking Vectors 77.9 62.0 73.2 -- -- -- 

Fused Vectors -- -- -- 79.8 76.0 79.5 

In Figure 18, the Confusion matrix of the recognition results give the confusion matrix 

for using the proposed method to recognise the designed activities. The worst 

performance (15%) is to recognise the print document activity (80% data are wrongly 

recognised for activity 8 – the same type activity as 7, but uses a different path). 

However, it is acceptable as the final output still will be the print document activity. The 

reason for this is the path 7 and 8 share a lot of common points (step or distance), which 

makes it harder to discriminate between them. This also happens for path 3 and path 7, 

path 14 and path 16, and path 15 and path 17. However, it is found that if the paths have 

more than 4 different steps (2 m), the most recognition accuracies become 100%, which 

means it has a high probability to discriminate paths with a 2 m (distance) difference. 

However, it is not simply related to the distance, a more detailed relation between steps 

(distance) and the number of common steps and recognition accuracy will be considered 

in the future. 

Conclusions 

RSSI measurements for different smartphones and at different times were collected. The 

heterogeneity of hardware impact decreases the positioning accuracy of conventional 

localisation methods. We have proposed to use KTCC and CNN with WiFi ranking to 

address this issue. We also introduced a ranking-based AP selection algorithm using GA, 

which not only reduces computational cost but also increases the positioning accuracy.   

Our location fingerprinting validation results show that our IPS can get an average real-

time positioning error of 1.42m, which would not be severely affected by the 

heterogeneity impact. It improves the positioning accuracy compared to existing state of 

the art IPS systems (our PCA baseline system). However, we do not know the exactly 

APs number and their positions, so topology of APs is not taken into account.  

This paper also focused on the ADLs recognition using WiFi ranking fingerprint-based 

location awareness. We designed 9 activities, 17 routes and validated our strategy in an 

office at the Queen Mary University of London. The best performance of our proposed 

fusion method is 79.5%, By extending our multi-source information fusion model, other 

signals like magnetic field [20] can also be fused to provide more eigenvalues for path 

matching to lift the recognition accuracy. 

There are Four directions for our future work. The first is that Recurrent Neural Network 

(RNN) can be investigated to derive user’s locations and to recognise their activities, as it 

is a time-series data, which RNN has a good capability to deal with [21]. Second, we can 

fuse more information, e.g., GPS measurements, accelerometer measurements, to expand 



the data dimension, then to increase recognition performance when the size of the AP set 

is not large.  Third, we aim to improve on ADL recognition [22] [23] using stay points 

(where a moving object stays for a period of time) and to combine other sensors sch as 

inertial sensors to improve the separation of different spatial overlapping  activities, 

which is one of the weak points in this study. Forth, we need to improve user’s trust in 

the system by safeguarding the privacy of sensitive users’ location tracking information 

[24], [25].  
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