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ABSTRACT
Acoustic Scene Classification (ASC) is one of the core research
problems in the field of Computational Sound Scene Analysis. In
this work, we present SubSpectralNet, a novel model which cap-
tures discriminative features by incorporating frequency band-level
differences to model soundscapes. Using mel-spectrograms, we pro-
pose the idea of using band-wise crops of the input time-frequency
representations and train a convolutional neural network (CNN) on
the same. We also propose a modification in the training method
for more efficient learning of the CNN models. We first give a
motivation for using sub-spectrograms by giving intuitive and statis-
tical analyses and finally we develop a sub-spectrogram based CNN
architecture for ASC. The system is evaluated on the public ASC
development dataset provided for the “Detection and Classification
of Acoustic Scenes and Events” (DCASE) 2018 Challenge. Our best
model achieves an improvement of +14% in terms of classification
accuracy with respect to the DCASE 2018 baseline system. Code
and figures are available at https://github.com/ssrp/SubSpectralNet

Index Terms— Acoustic Scene Classification, Convolutional
Neural Networks, Computational Sound Scene Analysis.

1. INTRODUCTION

The problem of recognizing the acoustic soundscapes and identify-
ing the environment in which a sound is recorded is known as Acous-
tic Scene Classification [1, 2]. The objective is to assign a semantic
label (acoustic scene) to the input audio stream that characterizes the
type of environment in which it is recorded – for example shopping
mall, airport, street. The problem has been very well explored as a
single-label classification task [3, 4]. Due to the possible presence
of diverse sound events in a sound scene, developing a descriptive
representation for ASC is known to be a difficult task [5].

DCASE Challenges, started in 2013, provide benchmark data
for computational sound scene analysis research, including tasks for
detection and classification of acoustic scenes and events, motivat-
ing researchers to further work in this area. Looking at the current
trend of challenge submissions in the ASC task, it is clear that re-
searchers are moving towards using deep learning methods for sys-
tem development [3, 4, 6]. This is because of the fact that the cur-
rent hand-crafted methods are not sufficient to capture the discerning
properties of soundscapes [7]. With time, data-driven approaches are
taking over conventional methods which involve more expert knowl-
edge for designing and choosing features. Most published systems
typically use a combination of audio descriptors and learning tech-
niques, with a growing inclination towards deep learning [8, 9].
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The literature of ASC research is vast and a lot has been done in
system design. Earliest works in this field have tried to use numer-
ous methods from speech recognition (for example, using features
like Mel-frequency cepstral coefficients [10], normalized spectral
features, and low-level features [2, 11] like the zero-crossing rate).
General architecture follows a pipeline based on extracting frame-
by-frame hand-crafted audio features or learning them using various
methods like matrix decomposition of spectral representations (log
mel-spectrograms [12], Constant-Q transformed spectrograms [13]),
and then performing machine learning based classification. The fi-
nal decision is a combination of frame wise outputs, for example,
by using majority voting or mean probability. Many systems incor-
porate deep learning approaches, generally by using some kind of
time-frequency representation as the input and training deep neural
networks (DNNs) or CNNs [14, 15]. Some methods also exploited
ideas from the image processing literature, for example, training a
classifier using the histogram of gradient representations over spec-
trograms of audio frames [16, 17].

CNNs are extensively used in ASC. Some systems incorporate
the use of convolutional layers with large receptive fields (kernels) to
capture global correlations in the spectrograms [18, 19], while some
use smaller kernels focusing on local spatial data [20, 14]. Rather
than aiming for state of the art results, our goal is to show how sub-
spectrograms could be used in CNNs to infer sound scenes more
efficiently. Our work shows that depending on the scene class, there
is a specific frequency band showing most activity, hence providing
discriminative features for that class; to the authors’ knowledge this
has not been considered in earlier studies. We first develop a motiva-
tion for using spectrogram crops, which we term Sub-spectrograms.
Finally, we propose a CNN model, SubSpectralNet, to make use of
the Sub-spectrograms to capture more enhanced features, hence re-
sulting in superior performance over a model with similar parameters
which does not incorporate sub-spectrograms (discussed in Section
4). For all experiments, we used the DCASE 2018 ASC development
dataset [21] having 6122 two-channel 10-second samples for train-
ing and 2518 samples for testing, divided into ten acoustic scenes.

The rest of the paper is divided as follows – in Section 2, we
develop a basic statistical model for ASC which we use as the moti-
vation to design the proposed CNN architecture. Section 3 discusses
the methodology used to develop the CNN model and Section 4 de-
scribes various experiments performed to prove the efficacy of the
system. Finally, we conclude the work in Section 5.

2. STATISTICAL ANALYSIS OF SPECTROGRAMS

Magnitude spectrograms are two-dimensional representations over
time and frequency, which are very different from real life images. In
spectrograms, there is a clear variation in the frequency axis. While
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Fig. 1: Histogram of activation of mel-bins for some sound scene
classes. We can infer the importance of specific mel-bins for spe-
cific classes from these histograms. This is also intuitively true, for
example, in an airport or in a metro, audio may have dominant and
discriminative low-frequency noise, and lower bands of the spectro-
grams show more activation for these classes.

images have local relationships over both spatial dimensions, spec-
trograms have definitive local relationships in the time dimension,
but not in the frequency dimension. In the frequency dimension,
for some types of sounds there are local relationships (e.g. sounds
that have broadband spectra like noise-like sounds), sometimes they
have non-local relationships (e.g. harmonic sounds, where there are
relationships between non-adjacent frequency bins), and sometimes
there are simply no local relationships at all.

We first create a simple mathematical model to gain more in-
sights on how CNNs could leverage time-frequency features effi-
ciently. We extract log mel-spectrograms using a 2048-point short
time Fourier transform (STFT) on 40ms Hamming windowed frames
with 20ms overlap and then transform this into 200 Mel-scale band
energies. Finally, the log of these energies is taken. Next, we per-
form bin-wise normalization of the sample space and obtain 6122
samples having 200 × 500 (mel-bins × time-index) feature size.
Now, we concatenate all the samples of the same class in the time di-
mension and take the average of the temporal direction to obtain ten
distributions having 200 vector-size, one for each class. We observe
that there is a clear variation in the class-wise activation of different
mel-bins. For more clarity, we perform bin-wise classification of test
samples using the ten 200D reference mean vectors.

For each test sample, we compute the mean of temporal direc-
tion to get a 200D vector and the hypothesis is that this vector should
have a similar distribution as that for the mean vector of the corre-
sponding class. Mathematically, we compute the L2 distance with
the reference mean vectors and the class for which this distance has
the minimum value should be the correct label.

Now, instead of computing the distance measure for the whole
200D vector, we compute separate distances for each mel-bin be-
cause we are interested in analyzing how those bins are activated
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Fig. 2: Resultant Chi-Square Distance Matrix.

for specific classes. This is equivalent to saying that we have 200
small classifiers. Finally, using these 200 outputs for all the test sam-
ples, we create one normalized histogram for each class, in which
we have frequencies of correct classifications of corresponding mel-
bins, shown in Fig. 1. We also calculate the chi-square distance be-
tween these histograms to see how similar class-wise distributions
are. For this, we normalize the histograms with maximum value to
one, and then compute the distance. The lesser the distance, the more
confusion exists between those classes. We aim to obtain a matrix
which has some resemblance with a confusion matrix. For that, after
getting the 10 × 10 symmetrical matrix having distances between
the classes, we normalize the matrix by dividing with the maximum
value. Then, we apply the following mathematical transform:

xnew
ij = 1− e−kxij (1)

where xij is the prior distance value and i, j are the matrix indices.
k is a constant parameter which when increased, enhances the dif-
ferences of values on the higher range. We used k as 10 so that
the matrix resembles a confusion matrix. Next, we normalize again
the matrix by dividing with the maximum value and lastly, subtract
these values from one. The output of this is shown in Fig. 2. We
also compute the Kullback-Leibler divergence [22] and Hellinger
distance [23] over these histograms and they result in a very simi-
lar matrix, which shows that the statistical model is robust. We can
clearly see that some classes are having higher confusions (for exam-
ple, “metro station” and “metro”; “shopping mall” and “airport”),
which resembles the confusion matrices obtained from the baseline
model results [21] and proposed CNN model (shown in Figure 4).

In the histograms obtained, we observe a definite variation of ac-
tivation of mel-bins and sub-bands, which is specific to every scene.
For example, the “metro” class has more activation in lower fre-
quency bins; the “bus” has less activation in mid frequency bins. For
“park” or “street traffic”, nearly all mel-bins are active and from
the DCASE 2018 baseline result [21], we can see that these classes
have relatively superior performance. We use these observations to
develop SubSpectralNet, which is discussed in the next section.

3. DESIGNING SUBSPECTRALNET

We start off with the DCASE 2018 baseline system for the ASC task
and gradually develop the proposed network. The baseline system
is based on a CNN, where mel-band energies with 40 mel-bins are
extracted for every sample with 40 millisecond frame size and 50%
overlap using 2048-point STFT. The samples are further normalized
and the size of each sample is 40 × 500. These samples are passed



to a CNN consisting of two layers with same padding in order –
32 kernels and 64 kernels, each having kernels of 7 × 7 size, batch
normalization and ReLU activation. After each conv-layer, a max-
pooling layer of 5× 5 and 4× 100 pool-size respectively is used to
decrease the size of the feature space and a dropout rate of 30% is
applied to prevent over-fitting. Finally, a fully connected (FC) layer
with 100 neurons is used over the flattened output, which is further
connected to the output (softmax) layer.

We train DCASE 2018 baseline models on different channels of
the audio dataset – left channel, right channel, average-mono chan-
nel and lastly, both channels to the CNN model. The best results
are obtained using both channels which is expected as binaural in-
put would give more information on the prominent sound events in
soundscapes, for example, a car passing by in “street traffic”.

3.1. Incorporating Sub-spectrograms

From the analysis in Section 2, we infer that using bigger convolu-
tional kernels over spectrograms is not a good idea because it tends to
combine global context and we lose the local time-frequency infor-
mation. We perform an experiment (discussed in Section 4) in which
we gradually increase the size of the kernels in the first conv-layer
of the baseline system. The accuracy decreases with the increase in
kernel size. Spectrograms have a definite variation in the frequency
dimension. Using smaller convolutional kernels over complete spec-
trograms works fine because CNNs are very powerful in fitting these
receptive fields to understand the variances in the data. But the fact
that spectrograms have these variations could be advantageous.

Building upon this idea, we propose SubSpectralNet and its ar-
chitecture is shown in Figure 3. SubSpectralNet essentially creates
horizontal slices of the spectrogram and trains separate CNNs on
these sub-spectrograms, finally acquiring band-level relations in the
spectrograms to classify the input using diversified information.

We extract the log mel-energy spectrograms for the N samples
and perform bin-wise normalization. For creating sub-spectrograms,
we design a new layer (we term it as SubSpectral Layer) which splits
the spectrogram into various horizontal crops. It takes three inputs
– input spectrogram (C × F × T dimension, C, F and T being
number of channels, mel-bins and time-indices respectively), sub-
spectrogram size X and mel-bin hop-size (vertical hop) Y . This
results in M frequency-time sub-spectrograms of C × X × T di-
mension for every sample, where M = b1 + (F −X)/Y c.

3.2. SubSpectralNet – Architecture Details

Two-channel sub-spectrograms are independently connected to 2
conv-layers with same padding and kernel-size of (7, 7) having 32
and 64 kernels respectively. After each conv-layer, there is a batch
normalization layer, ReLU activation layer, max-pooling layers of
(X/10, 5) and (4, 100) size respectively, and finally a dropout of
30%. After the second pooling, we flatten the layer and add an
FC layer with 32 neurons with ReLU activation and 30% dropout,
followed by the softmax layer. We call these sub-classifiers of the
SubSpectralNet. We do not remove these softmax outputs from the
final network because this enforces them to learn to classify the
sample based on only a part of spectrogram. We keep most param-
eters same as the DCASE 2018 baseline model for fair comparison.
We believe that sub-spectrograms could be incorporated into more
complex architectures [24, 25, 26] that could be used to surpass the
state of the art in ASC performance.

To capture the global correlation (or de-correlation) between
frequency bands, we concatenate the FC (ReLU) layer of the sub-
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Fig. 3: Proposed pipeline of SubSpectralNet.

networks and train a DNN with H hidden layers with Ri neurons,
where: H = max(blog2(M)c − 1, 0);Ri = 26+H−i, 1 ≤ i ≤ H .
We term this as the global classification sub-network.

All cross-entropy errors from the global and sub-classifiers are
back-propagated simultaneously to train a single network. The sub-
classifiers learn to classify using specific bands of spectrograms,
while the global classifier combines and learns discerning informa-
tion at the global level. This modification of training method results
in improved performance and faster convergence of the model with
minimal addition to the complexity [24].

We create confusion matrices (shown in Fig. 4) from the output
of these sub-classifiers and the global classification model discussed
in Section 4. We observe that the statistical motivation given in Sec-
tion 2 fits well with the results. For example, for the “airport” class,
statistical distribution says that lower frequencies are more effective
in classification. The same is shown in the confusion matrix where
the low-band sub-classifier shows better results for this class. For
the “bus” class, the mid-band sub-classifier shows relatively better
results. For most classes, the global classifier achieves better results
than any sub-classifier. It is interesting to note that for some classes
like “public square” or “tram”, a sub-classifier performs better than
the global classifier, which could mean that using the complete spec-
trogram adds outliers and it is better to use a specific band of spec-
trogram in such case.

4. EXPERIMENTS

We demonstrate the potential of SubSpectralNet on the DCASE
2018 development public dataset (Task 1A) and compare the results
with DCASE 2018 baseline. We use dcase util toolbox [27] to
the extract features from the DCASE 2018 dataset. We implement
SubSpectralNet in Keras with TensorFlow backend and experiments
are performed on an NVIDIA Titan Xp GPU having 12GB RAM.
We train all models 3 times for 200 epochs and report the average-
best accuracy. The learning rate is set to 0.001 with Adam as the
optimizer. Following are the experiments we perform in this work:

We train DCASE 2018 baseline models on different channels of
audio dataset and the test accuracy achieved are 63.24% (left chan-
nel), 61.83% (right channel), 64.91% (average-mono channel) and
65.66% (stereo channels). We also train the DCASE 2018 base-
line model for various kernel sizes of the first CNN layer – (7, 7),
(15, 15), (25, 25) and (35, 35). The corresponding test accuracies
are 65.66%, 65.23%, 65.08% and 62.80% respectively. This shows
that bigger receptive fields tend to combine information on a bigger
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Fig. 4: Confusion matrices obtained from a SubSpectralNet trained over 40 mel-bin spectrograms, 20 sub-spectrogram size, 10 mel-bin hop-
size, hence 3 sub-classifiers and one global classifier. Matrices are obtained for (a) Global Classifier, (b) High-frequency Band Sub-Classifier
(21-40 mel-bins), (c) Mid-frequency Band Sub-Classifier (11-30 mel-bins) and (d) Low-frequency Band Sub-Classifier (1-20 mel-bins).
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Fig. 5: Comparison of performance between the multi-channel
DCASE 2018 baseline model and SubSpectralNet on 40 mel-bin
spectrograms, 20 sub-spectrogram size and 10 mel-bin hop-size.

scale, hence losing local spatial information. As a result, we choose
the kernel-size of (7, 7) with stereo input for SubSpectralNet.

We train a SubSpectralNet model on 40 log mel-energy spectro-
grams with 20 sub-spectrogram size and 10 mel-bin hop-size (331K
model parameters). The resultant accuracy we achieve from this is
72.18%. The confusion matrices computed for this model are shown
in the Figure 4. Also, we plot a curve of training epoch versus test
accuracy, comparing the performance of the DCASE 2018 baseline
(2-channel model) and this SubSpectralNet model, which is shown
in Figure 5. It can be seen that SubSpectralNet (global classifier) has
a relatively faster convergence with superior test accuracy.

To demonstrate the importance of sub-classifiers, we train a
SubSpectralNet model excluding the Sub-Classifier (softmax lay-
ers) back-propagations and only use the global classification sub-
network (330K model parameters). This achieves an accuracy of
68.79%, comparing to 72.18% with the sub-classifiers, which ver-
ifies the significance of the same. More experiments with 40 log
mel-energy spectrograms are shown in Figure 6 (a).

Parameters of a CNN are one of the major criteria to compare
two models. The DCASE 2018 baseline model on 40 mel-bins has
117K parameters (using 2-channel input) and the SubSpectralNet
model with 20 sub-spectrogram size and 10 mel-bin hop-size has
331K parameters. To prove the efficacy of SubSpectralNet, we mod-
ified the DCASE 2018 baseline model by doubling the number of
kernels in both conv-layers (now 64 and 128). This model, having
434K parameters achieved 66.79% accuracy which is 5.39% lower
than the accuracy of proposed model. Hence, this justifies the fact
that the idea of fitting separate kernels (training separate CNNs) over
separate bands of spectrograms learns more salient features than di-
rectly training a CNN on spectrograms.
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Fig. 6: Results obtained by SubSpectralNet on – (a) 40 mel-bin
spectrogram and 10 mel-bin hop-size; (b) 200 mel-bin spectrogram
with 10 mel-bin hop-size; (c) 200 mel-bin spectrogram, varying sub-
spectrogram and mel-bin hop-size.

Considering that 200 mel-bin spectrograms achieve better per-
formance than using lesser mel-bins [19], we train a DCASE
2018 baseline model on 200 mel-bins and the accuracy achieved
is 71.94%. It is interesting to note that SubSpectralNet with 40 mel-
bins can achieve comparably superior accuracy. We trained various
SubSpectralNets on 200 mel-bins and the results are shown in Fig. 6
(b) and (c). The best accuracy achieved was 74.08%, by using 30
sub-spectrogram size and 10 mel-bin hop-size, which is an overall
increase of +14% over the DCASE 2018 baseline [21].

5. CONCLUSIONS

In this paper, we introduce a novel approach of using spectrograms
in Convolutional Neural Networks in the context of acoustic scene
classification. First, we show from the statistical analysis of Sec. 2
that some specific bands of mel-spectrograms carry more discrimina-
tive information than other bands, which is specific to every sound-
scape. From the inferences taken by this, we propose SubSpectral-
Nets in which we first design a new convolutional layer that splits
the time-frequency features into sub-spectrograms, then merges the
band-level features on a later stage for the global classification. The
effectiveness of SubSpectralNet is demonstrated by a relative im-
provement of +14% accuracy over the DCASE 2018 baseline model.

SubSpectralNets also have some limitations, including the fact
that for some classes, sub-classifiers perform better than the global
classifier. Also in the current model, we have to specify parame-
ters like sub-spectrogram size and mel-bin hop-size. One way to
address this could be by using the statistical analysis to choose the
most appropriate parameters. In future, we plan to work on further
improving the performance of this network, for example, by incor-
porating well-founded CNN architectures [25, 26] or modelling the
temporal information of SubSpectralNets in a more effective way.
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