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SUMMARY 

Engineering proteins to assemble into user-defined structures is key in their 

development for biotechnological applications. However, designing generic rather 

than bespoke solutions is challenging. Here, we describe an expandable recombinant 

assembly system that produces scalable protein cages via split intein-mediated native 

chemical ligation. Three types of component are used: two complementary oligomeric 

“half-cage” protein fusions and an extendable monomeric “linker" fusion. All are 

composed of modular protein domains chosen to fulfil the required geometries, with 

two orthogonal pairs of split-intein halves to drive assembly when mixed. This 

combination enables both one-pot construction of two-component cages and 

stepwise assembly of larger three-component scalable cages. To illustrate the 

system’s versatility, trimeric half-cages and linker constructs comprising consensus-

designed repeat proteins were ligated in one-pot and stepwise reactions. Under mild 

conditions rapid high yielding ligations were obtained, from which discrete proteins 

cages were easily purified and shown to form the desired trigonal bipyramidal 

structures.  
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Introduction 

Nature has created ordered nanostructures to solve many of the challenges of life at 

the molecular scale. Examples include bacterial micro-compartments, actin filaments 

and virus particles. One route by which this order is achieved is the directed self-

assembly of discrete protein building blocks into diverse polymeric structures ranging 

from fibres to networks and encapsulations. Two key features of such systems are: (i) 

the use of symmetry as a mechanism to both order specific assembly through the 

exquisite positioning of interacting interfaces and reduce the number of different 

building blocks required and (ii) a specific driving force to dock the protein building 

blocks at the proposed interfaces.  By imitating and re-engineering these fundamental 

design elements synthetic biologists have been able to develop several methodologies 

to manipulate existing systems or design novel ones (examples include: (Bale et al., 

2016; Banerjee and Howarth, 2017; Brodin et al., 2012; Brune and Howarth, 2018; 

Capito et al., 2008; Cortajarena et al., 2010; Giessen and Silver, 2016; Glover et al., 

2016; Grove et al., 2010; Inostroza-Brito et al., 2015; Lee et al., 2018; Modica et al., 

2018; Patterson et al., 2014; Phillips et al., 2012; Sawyer et al., 2013; Veggiani et al., 

2016)).  In particular, there has been much interest in the design of protein 

cages/encapsulations due to potential applications in areas as diverse as drug delivery 

and the compartmentalisation of enzymes to form novel micro-reactors. To this end, 

a number of system specific and/or computationally intensive solutions have been 

engineered. For example, protein cages have been assembled from a fusion of 

homodimeric and heterodimeric protein domains (Lai et al., 2012; Padilla et al., 2001), 

the rational and computational design of coiled-coil building blocks (Fletcher et al., 

2013; Gradisar et al., 2013) and computationally designed from protein domains 

selected from the Protein Database (PDB) (Bale et al., 2016; King et al., 2012). 

To create a more generic genetically encoded system of self-assembly that does not 

rely on the complicated modelling of protein-protein interfaces, we have previously 

designed Mxe GyrA intein-based fusion systems (Harvey et al., 2018; Phillips et al., 

2012). In Nature, inteins are usually found in the middle of genes and post-

translationally self-catalyse their excision and ligation of flanking polypeptides regions 

with a traceless irreversible peptide bond (via native chemical ligation). In contrast, 



 

 4 

our system used inteins in a similar manner to a protecting group in solid state 

synthesis. The intein was placed at the C-terminus of the protein to be ligated (POI) 

and, when required, removed via induced self-excision to reveal a reaction-ready C-

terminal thioester. To obtain directional self-assembly we designed two fusion 

proteins (component one and two). Component one contained the POI with a C-

terminal intein, whereas component two contained the POI sandwiched between an 

N-terminal cysteine and a C-terminal intein. All fusion proteins are initially inert. Upon 

activation and subsequent mixing, the C-terminal thioester of component one 

spontaneously reacts with the N-terminal cysteine of component two resulting in their 

ligation (Harvey et al., 2018; Phillips et al., 2012).  

Recent studies have described faster and higher yielding natural and engineered 

“split” intein variants (Aranko et al., 2014; Carvajal-Vallejos et al., 2012; Debelouchina 

and Muir, 2017; Stevens et al., 2016; Stevens et al., 2017; Thiel et al., 2014).  These 

are intein domains that are divided into two separate polypeptide chains. The split-

intein sequences are inert until complementary halves are combined, where upon 

they spontaneously fold together to produce an active intein. The newly-reactive 

intein self-catalyses its excision and ligates the two separate peptide chains together. 

The high affinity of each half intein for its partner results in high reaction rates and 

yields. Although the reaction does leave a short insertion of approximately 10 amino 

acids. Split inteins have been used with success for protein labelling, site-specific 

protein modification, protein cyclisation and linear protein semi-synthesis linking up 

to three modules (Aranko et al., 2014; Busche et al., 2009; Debelouchina and Muir, 

2017; Demonte et al., 2015; Shah et al., 2011; Shi and Muir, 2005; Thiel et al., 2014; 

Vila-Perello et al., 2013).  However, the use of split inteins to produce higher order 

linear assemblies has been hampered by the difficulties in identifying suitable split 

intein pairs that are both highly reactive and have high solubility, but are not cross 

reactive.  For example, even the studies that linked three protein modules together 

with two ligations showed relatively slow reaction rates and relatively low final ligation 

yields (Busche et al., 2009; Demonte et al., 2015; Shah et al., 2011; Shi and Muir, 2005).  

Interestingly, a recent study has identified a number of new naturally occurring split-
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intein pairs (for example gp41-1 and IMPDH) that do not cross react and that ligate 

rapidly and in high yields (Carvajal-Vallejos et al., 2012). 

Here we present a modular recombinant protein system for the production of scalable 

encapsulations/cages.  It uses simple symmetry design of protein fusions coupled with 

a driving force of two of the recently identified and highly reactive orthogonal split-

intein pairs (IMPDH/gp41-1).  This strategy creates a more general rather than 

bespoke system, which saves time on system-specific design and computational input.  

To validate our method and investigate the limits of the system, we constructed fusion 

proteins consisting of a monomeric linker and trimeric half-cage caps.  These were 

composed of modular oligomeric/monomeric consensus-designed repeat proteins 

fused to differing split intein halves. All the fusions are initially inert until mixed with 

their complementary reaction partners, whereupon rapid high yielding ligations were 

obtained in mild conditions.  By mixing differing fusions in a one-pot or stepwise 

manner both two-component cages and larger three-component scalable cages were 

produced, respectively.  In addition to fully ligated discrete cages, cage formation 

reactions also generated partially ligated structures and “cross-ligated” extended 

protein networks.  Optimisation of the ligation reactions coupled with a two-step 

purification enabled high proportions of discrete cages to be easily purified to 

homogeneity. Significantly, small angle x-ray scattering (SAXS) of the two-component 

cages showed that they adopt the expected 113 kDa trigonal bipyramidal cage with a 

central hollow cavity. Moreover, using the three-component system with two pairs of 

orthogonal split inteins enabled larger extended cages to be successfully assembled 

and purified using a stepwise process with no cross reactivity. 
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Results 

System design 

Our system is based on recombinantly expressing a minimum of three fusion proteins 

that use two pairs of orthogonal split inteins to drive irreversible assembly (Figure 1a-

c & Supplementary Information [S.I.] Table 1). The designs consisted of pairs of 

complementary oligomeric half-cage “caps” and a monomeric linker. The half-cages 

comprised of an oligomerisation domain and one half of a split-intein pair (with an 

affinity tag for purification) sandwiching a rigid domain (Figure 1a & b).  The 

oligomerisation domain specifies the geometry of the half cage by acting as the 

primary vertex with the sides composed of a rigid functionisable domain. In contrast, 

the linker fusion contained two orthogonal split intein halves (one on each termini) 

with the protein to be assembled sandwiched between them and an affinity tag for 

purification (Figure 1c).  All fusions are initially inert, and they only react when mixed 

with a compatible construct. 

Fabrication of cages: Cages can be produced either in a one-pot two-component 

synthesis or via a sequential and iterative three-component reaction scheme (Figures 

1e and 1f, respectively).  In the two-component synthesis two compatible half-cages 

are mixed, whereupon their separate cognate split-inteins halves fold together to 

form an active intein. The active intein can then catalyse the ligation of the half-cages 

into the full cage product, whilst concurrently excising themselves (Figure 1e). The 

iterative sequential approach allows larger cages to be synthesised. Here, a half-cage 

is mixed with a compatible linker fusion (Figure 1f).  The half-cage and linker ligate to 

produce a larger half-cage-linker with the removal of one split intein pair.  Importantly, 

the half-cage-linker still contains a second split-intein half. The half-cage-linker can 

then either be iteratively extended through the addition of further linkers or formed 

into a cage through reaction with a suitable half-cage cap.    
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Trimeric half-cage caps & linker fusions 

To validate our approach and explore its limits (structures formed, reaction speeds, 

efficiencies and yields), two sets of complementary trimeric half-cage caps and a linker 

fusion were designed (Figure 1a-c, S.I. Table 1). The half cage caps were composed of: 

(i) the homotrimer Monofoil-4-P (M4P) domain as the primary vertex (Figure 1d), (ii) 

consensus-designed tetratricopeptide repeat-containing protein CTPR3DS as the sides 

(Figure 1d), and one half of either (iii) Inosine-5’-monophosphate dehydrogenase-1 

[IMPDH] or (vi) Gp 41 DNA Helicase [gp41-1] split-inteins fused to their termini. An 

alpha-helical linker, (EAAAK)2, connects the M4P and CTPR∆S proteins, projecting the 

CTPR∆S units away from each other and thereby reducing the risk of misfolding.  The 

half-cage caps were engineered such that they would react to form a trigonal 

bipyramidal caged product (Figure 1e). The linker fusion design was more simple. It 

consisted of the CTPR3DS side sandwiched between orthogonal gp41 and IMPDH split-

intein halves (Figure 1c). 

Choice of protein domains: M4P was selected as the primary vertex due to its high 

stability and orientation of its N- and C- termini (Lee and Blaber, 2011) (Figure 1d).  

These termini are solvent exposed and project out from the core structure in the same 

direction. Thus, extension from the vertex to form the sides of the cage can be 

achieved via the fusion of protein domains to either termini.  The extensions do not 

disrupt homo-trimerisation and enable the creation of chimeras with complementary 

orientations (Figure 1e).  CTPR3DS was chosen as the cage sides for its high stability, 

symmetric/rigid structure and the ability to dock onto itself in a linear N-to-C terminal 

manner (Kajander et al., 2005; Main et al., 2013).  These attributes permit predictable 

scalable cage extension and, combined with a modify-able peptide binding pocket, a 

future route to functionalisation (Figure 1d). The IMPDH or Gp 41 split inteins were 

chosen because they have been shown to have fast rates of reaction over a range of 

pH conditions (t1/2 = 8 secs and 4 secs, respectively), to be orthogonal at low 

concentrations (5 µM), and to have electrostatic distributions sufficiently different to 

suggest orthogonality should be maintained even at the higher protein concentrations 

(Carvajal-Vallejos et al., 2012; Dassa et al., 2009). A small, highly soluble and easy-to-
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refold Chitin Binding Domain (CBD) was also placed next to each IMPDH split to 

increase solubility.  

All fusion proteins expressed well and could be purified either under native conditions 

or under denaturing and then refolded with high purities and yields (S.I. Table 2). All 

were initially inert and showed no degradation or reactivity until their cognate split-

intein partner was introduced in a reducing environment. Trimerisation of purified 

half-cage caps was confirmed by SEC analysis (S.I. Figure 1). 

 

One-pot assembly of half-cage caps to form a two-component square bipyramidal 

cage 

Ligation reactions were initiated by mixing purified cognate half-cages in equimolar 

concentrations from 1 µM to 200 µM under mild conditions (50 mM Tris-HCl pH 8, 150 

mM NaCl, 2 mM DTT, 0 - 1 M Urea).  Samples were taken at several timepoints over a 

24-hour period and analysed by SDS-PAGE (Figure 2a-d, S.I. Figure 2). All reactions at 

all concentrations were rapid with high yields: gp41-mediated reactions were initially 

faster than IMPDH but gave lower overall yields.  Both split intein-mediated ligations 

produced ³ 65 % yield within 10 minutes, with the IMPDH reactions reaching ³ 80 % 

and gp41 ³ 70 % within 3 hours. After 3 hours, all reactions were close to completion 

with only small additional increases in yield when the reactions were left for 24 hours. 

Once the reactions reached completion, there was little difference in final yields 

across the protein concentration range of 1-100 μM for either IMPDH or gp41 

ligations. At the higher concentration of 200 μM, the reactions produced some protein 

precipitation leading to a small reduction in yields. It is interesting to note that, 

although the yields were very high, we did not achieve the ~95 % values of the 

previous study (Carvajal-Vallejos et al., 2012). This difference may due to steric 

hindrance created by the trimeric structures. 

Analysis of ligation reaction and purification of fully formed cages: Initially ligation 

reactions were analysed using size-exclusion chromatography (SEC) & SDS PAGE gels 

(Figure 2c-f, SI Figure 3a). This analysis showed that all ligations generated, to a greater 
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or lesser extent, heterogeneous mixture of differently sized proteins.  That is, in 

addition to the expected fully ligated discrete cages and the excised split-inteins; the 

ligation reactions also produced networks of “cross-spliced” proteins and also partially 

ligated structures.  It is interesting to speculate that the differing ligated products may 

stem from the irreversibility of the reaction.  For example, when A-B-C subunits from 

one cap react with a-b-c from another, they can link in a correct manner giving a 

discrete cage (A-a, B-b and C-c). However, they can also react with other half-cages to 

form networks, produce partially ligated faulty “dead-end” structures (A-a, B-c) or a 

mixture of both. 

 

To separate the ligation mixture, we employed a two-step process (Figure 2e-j, S.I. 

Figure 3). The first step separated the fully ligated assemblies from unreacted, partially 

ligated and excised split inteins via nickel affinity chromatography (Figure 2e-f). This 

was specifically facilitated by careful positioning of the affinity tags within the fusion 

proteins. The second step separated fully ligated cages from networks by size using 

SEC (Figure 2i-j). Both separation steps were highly effective: After the first affinity 

chromatography step, all ligation reactions contained > 95 % purity of fully ligated 

assemblies as assayed by SDS PAGE gel and anti-histidine affinity tag western blot 

(Figure 2e-f & S.I. Figure 3b, respectively). Moreover, when the resultant fully ligated 

products were subjected to SEC, those obtained using lower protein concentrations 

gave a better separated monodisperse peak. This peak had an elution volume that was 

consistent with the 113 kDa molecular weight expected for the cage (Figure 2i-j, S.I. 

Figure 3c-d). There was also good separation from the larger “cross-ligated” protein 

networks. 

 

Interestingly, the two-step purification highlighted important differences between 

reactions mediated by IMPDH and gp41 split inteins. From analysis of the affinity 

purification SDS PAGE gels it is clear that the gp41-mediated ligations lead to more 

partial ligation and less cage closure than do the IMPDH-mediated ligations. For 

example, IMPDH-mediated ligations at lower protein concentrations (1 μM to 50 μM) 

all produced > 75 % fully ligated product. In contrast, gp41-mediated ligations at lower 

protein concentrations (1 μM and 10 μM) produced only ~ 50 % fully ligated product.  
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Thus, the faster ligation speed of the gp41 split inteins hinders discrete cage formation 

and leads to the production of higher proportions of partially ligated structures and 

networks.  

 

Solution structures of ligated cages: The purified fully ligated cage structures were 

characterised using far-UV CD and SEC-SAXS (Size Exclusion Chromatography - Small 

Angled X-ray Scattering) (Figure 3).  The far-UV CD spectra of the ligated cages show 

that: (i) they are highly alpha-helical, as one would expect from a protein containing 

18 CTPR motifs, and, importantly, (ii) have exactly twice the ellipticity at 222 nm as 

that of the half cage caps that do not contain split-intein domains (Figure 3a).  Thus, 

the ligation reaction has had no effect on the secondary structure of the CTPR proteins 

(had not caused any local unfolding). Guinier and Kratky plot analysis of the SAXS data 

confirmed that the purified cages were monodisperse and highly rigid. Moreover, the 

analysis shows that the cages are non-spherical and elongated with radius of gyration 

(Rg) of 3.85 nm and a maximum linear particle diameter (Dmax) of 12.6 nm (S.I. Figure 

4a-c, S.I. Table 3). This is in contrast with the SAXS data of the non-ligated half cage 

caps, whose Kratky plot analysis shows that their structures are highly dynamic (S.I. 

Figure 4d). Additionally, the molecular weight of the cages obtained from the SAXS 

data is in close agreement with that calculated from its amino acid sequence (110.5 

KDa versus 113 KDa, respectively).  

 

As the SAXS profile of the cage has a number of prominent features it allowed us to 

determine its shape to a higher resolution via two different approaches: (i) a 

comparison of the experimental SAXS profile to thirty manually generated atomic 

models of possible cage conformations using the program Crysol (Svergun et al., 1995) 

and (ii) a SAXS ab initio model re-constructed using the program GASBOR (Svergun et 

al., 2001).  Excitingly, of our thirty manually generated atomic models, only those that 

closely resembled the intended designed trigonal bipyramidal structure were found 

to re-capitulate the SAXS experimental profile. i.e. M4P oligomer at the “primary” 

vertices with the CTPRs forming three symmetrical cage sides that enclose a central 

cavity (Data S1, Figure 3b-c).  Models that were highly expanded cages or that did not 

contain a central cavity gave profiles that were very different from the experimental 
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data.  The model that produces the closest fit between experimental and generated 

SAXS profiles used a continuous CTPR6DS as the cage sides (Figure 3c). Here, the 

CTPR3DS modules from the half cages dock upon ligation to form a single CTPR6 

superhelix, rather than simply two linked CTPR3 domains like beads on a string. This 

produces an open cage with apertures of » 35 Å between each side at the widest point 

and encloses a central cavity of » 70 Å by 55-60 Å.  Interestingly, the docked CTPR6 

superhelix would also account for the increased rigidity of the cage in contrast to the 

dynamic half cage caps. The final χ2 value between the model and experimental SAXS 

profiles was 1.66 (Figure 3b), with only a small discrepancy at the highest resolution 

SAXS data (suggesting an ambiguity between the modelled and exact rotation of the 

CTPR sides and their packing relative to their M4P vertices).  

In comparison, the ab initio GASBOR modelling gave five solutions from thirty-two 

calculations that were supported by our biophysical data.  Solutions were discarded 

when, for example, the CTPR/M4P domains would be required to fit protein density 

envelopes by either adopting non-native conformations or by ligating in a nonsensical 

formation (discarded examples are shown in S.I. Figure 4e-h).  The five biophysically 

relevant solutions were averaged with DAMAVER (Volkov and Svergun, 2003) to 

produce a final model with excellent fit to the data (χ2 = 1.06) (Figure 3d-e).  

Importantly, this final ab initio model also shows that the ligated cages form our 

intended structure with a protein density envelope that closely resembles the 

designed trigonal bipyramidal structure with a central hollow cavity.  Moreover, the 

model envelope also fits extremely well with our manually generated atomic model 

(Figure 3f).  Combined, the experimental data and the modelling confirm that the 

ligated cages form an open shell, with a central hollow cavity, that closely resembles 

the intended designed trigonal bipyramidal structure. 

 

Scalable protein cages: Stepwise synthesis of larger caged structures 

Given the high yielding success of the two-component split-intein mediated cage 

assembly, the next step was to investigate the stepwise enlargement of the cage 

structures.  Using the scheme shown in Figure 1f & 4a, half-cage caps with orthogonal 
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gp41 and IMPDH split inteins were ligated in series with the linker fusion (a CTPR3DS 

module sandwiched between gp41 and IMPDH splits). Briefly, the first step reacted a 

half-cage with an excess of linker, followed by purification of fully ligated product via 

affinity chromatography.  The larger cage was then formed by reacting the purified 

larger half cage in a 1:1 mixture with the second half-cage cap.   

 

Both half-cages were trialled in the first-step ligation to the linker fusion. A 6:1 excess 

of linker produced the highest yields (Figure 4b & c), with the IMPDH-mediated 

ligation generating more product than did the gp41-mediated ligation. The 6:1 excess 

enables the IMPDH reaction to be driven to 90 % completion in 3 hours. High yields 

from each step are extremely important in any multi-step reaction and particularly so 

here, given that each trimeric half cage requires each of its three sides to react.  

Therefore, the IMPDH-mediated ligation was used as the first step.  The resultant 

extended half-cage product was purified by affinity chromatography.  Full ligation and 

purity was confirmed by anti-CBD affinity tag western blot and SDS PAGE gel (S.I. 

Figure 4i & Figure 4b, lane 9).   

 

The extended half-cage was then further reacted with a gp41-tagged half-cage cap to 

close the cage (Figure 4d).  The ligation yield of the second step is in line with the 

smaller gp41-mediated cage reactions (60 % after 3 hours). To favour the formation 

of discrete cages rather than networks, the cage closure was carried out with 

equimolar concentrations of reactants at 1 µM (as per the two-component gp41-

mediated cage synthesis).  The fully ligated product was purified, as previously, by 

affinity chromatography [confirmed by anti-histidine tag western blot & SDS PAGE gel 

(S.I. Figure 4i & Figure 4d, lane 8 &)] and characterised with SEC (Figure 4e). The results 

show that the cage closure was successful, with a substantial proportion of the fully 

ligated product forming discrete assemblies rather than extended networks. When 

the elution volume of the extended cage was compared to that obtained for the two-

component cages a difference of 0.5 mL was observed (extended cages eluted at 11.4 

mL, and the two-component cages eluted at 11.9 mL). Thus, as expected, the extended 

cages form a slightly larger structure than the two-component cages, but not so large 

as to indicate a dramatic change in conformation. 



 

 13 

 

Discussion 

Here we have demonstrated that genetically programmed NCL mediated via split-

intein domains can be successfully utilised to assemble modular proteins designed 

with simple geometric symmetry into user-defined protein cages. To investigate the 

limits of the system, IMPDH and gp41 split inteins were used separately to drive two-

component assembly of the half-cages modules (trefoil vertex and CTPR sides) and 

with an additional linker module for three-component assembly.  Under mild 

conditions mixing compatible oligomeric protein fusions resulted in rapid and 

irreversible ligations with high yield of peptide bond-linked products. The fusion 

proteins were engineered to enable discrete fully ligated cages or extended half-cages 

to be easily and efficiently separated to homogeneity from each reaction in a two-step 

process. Significantly, this process generated the expected square bipyramidal 

structures ranging from 113 kDa (for the two-component, one reaction) to 150 kDa 

(three-component, two stepwise reactions). Furthermore, the cage resulting from the 

two-component ligation was shown to contain a central hollow cavity which could 

accommodate cargo up to 70 Å by 55-60 Å. Interestingly, although both split inteins 

gave high ligation yields, a greater yield of fully ligated discrete cages was obtained 

when lower reactant concentrations and the slower reacting IMPDH split intein were 

used.  Likewise, for the stepwise assembly, IMPDH again gave higher yields.   

The combined properties of the split inteins fusions and reaction/purifications yields 

show that: (i) the IMPDH mediated two-component system could be easily expanded 

to co-expression and assembly in vivo, and (ii) the three-component system permits a 

realistic scalable extension limit of three sequential ligations. The use of extendable 

CTPR sides additionally provides a method for loading cargo into the central hollow 

cavity of the nanostructures by using a binding module as the linker. For example, 

certain CTPR3 modules have had their pentapeptide binding pocket re-designed allow 

them to selectively recognise different pentapeptide tag sequences (Speltz et al., 

2015). Thus, molecules of interest could be tagged with a pentapeptide sequence and 

then ‘loaded’ onto the nanostructure via the binding module, creating a generic 

loadable system. The use of proteins such as TPRs, which are natural binding proteins, 
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is an advantage of our assembly systems compared with others, for example those 

based on coiled-coils that do not possess such intrinsic binding capabilities. 

In conclusion, our protein assembly system provides a more general route to 

producing protein cages that avoids many time-consuming and system-specific 

processes (for example, those requiring computational design). Moreover, by using a 

combination of the two highly reactive, orthogonal split inteins we expand the scope 

of assembly to stepwise scalable cage production. No bioconjugation, chemical 

modification or post-ligation refolding steps were required, and only a short sequence 

was inserted at the point of the NCL. Consequently, by using Nature’s vast range of 

protein domains to engineer different geometric shapes, coupled with these high-

yielding split inteins to drive the reaction, there are many opportunities for exploiting 

our self-assembling protein system. 
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Figures  

 
Figure 1: Schematic of designed recombinant fusion proteins and their formation 

into symmetric protein cages.  

(a - b) Half-cage caps & Linker fusions: Two pairs of complementary half-cages and 

one linker fusion were constructed for this study. In (a & b) the compatible half-cage 

proteins are shown with (a) the IMPDH (IMP) and (b) the gp41 (Gp) split inteins. Each 

half cage consists of an oligomeric domain that acts as the primary vertex of the cage 

(yellow), a rigid domain that acts as the sides of the cage (blue), half of a split-intein 

pair for the chemistry required to join the cage halves (orange or pink) and affinity 

tags placed for initial fusion protein/final ligation product purification. The linker 

fusion (c) contains the protein to be assembled sandwiched between half an 

orthogonal pair of gp41 and IMPDH split inteins with affinity tags placed for initial 

fusion protein/final ligation product purification. In addition, a small, highly soluble 

and easy-to-refold Chitin Binding Domain (CBD) was placed next to each IMPDH split 

to aid solubility and retard aggregation. 

(d) Structures of the primary vertex and side proteins used in this study: The initial 

vertex used was the designed homotrimer Monofoil-4-P (M4P) (3ol0.pdb (Lee and 
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Blaber, 2011)). The sides of each half cage were composed of the repeat protein 

CTPR3DS. The crystal structure of CTPR3 (1Na0.pdb (Main et al., 2003)) is shown 

without its final C-capping solvating helix to represent CTPR3DS.  

(e) One-pot synthesis: From left to right - two complementary half-cage fusions with 

tripod-like structures. The M4P forms the vertex (yellow circle or three yellow 

triangles denoting each monomer), CTPR3DS units attached to each monomer of the 

M4P form the legs (blue rectangles) and the split intein pairs form the feet (orange). 

On mixing (1st arrow) the split inteins fold together and (2nd arrow) catalyse the 

ligation of the two cage halves whilst self-excising themselves from the complex. The 

product is a trigonal bipyramidal cage of two fused half-cages along one face via three 

common CTPR motif vertices formed on ligation. 

(f) Stepwise extended cage synthesis: From left to right – compatible half cage & 

linker fusions are mixed (1st arrow). The compatible split intein pair fold together and 

catalyse the ligation of the linker to each of the cage “sides” whilst self-excising 

themselves from the complex. The product is an extended half cage which still 

contains reactive split intein halves on each extended “side”. When mixed with a 

complementary half cage (2nd arrow) the second set of compatible split inteins fold 

and catalyse the 2nd ligation, forming the final extended cage product.  
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Figure 2: One-pot cage formation reactions, purification & isolation.  

(a+b) Schematic of half cage reactions to produce cage product with (a) IMPDH-

mediated ligation or (b) gp-mediated ligation. 

(c & d) Denaturing SDS PAGE gels following the time course of the ligation reaction 

between compatible half cage reactants driven by (c) IMPDH split intein pair or (d) gp-

41-1 split intein pair. As the gels are denaturing, the bands of the half cages reactants 

and ligated products correspond to the size of “monomeric” half cages (one M4P 

monomer, CTPR3DS, split intein half and affinity tag) and a “dimeric” ligated product 

(two M4P monomers and two CTPR3DS units), respectively. These are shown 

schematically besides the bands using the same colour scheme as in Figure 1 & 2a-b. 
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[In (c) the black partition between molecular weight markers and lane 1 denotes the 

digital elimination of two superfluous lanes from the original gel.] 

(e & f) Denaturing SDS PAGE gels showing the His-tag affinity purification of the fully 

ligated half cages from partially ligated products, unreacted half cages and excised 

split inteins. (e) refers to reactions driven by the IMPDH split intein pair at differing 

concentrations of half cage reactant (shown at the bottom of the gel) with (f) showing 

the same but using gp-41-1 split intein pair. As the gels are denaturing the bands 

correspond to “monomeric” half cages or “dimeric” ligated product (as per panels c & 

d). Gel lanes 1, 3, 5, 7 and 9 show the purified fully ligated product containing no 

affinity tag, whereas lanes 2, 4, 6, 8 and 10 show the removed partially ligated 

products, unreacted half cages and excised split inteins which all still possess affinity 

tags. [Ligation products that did not bind and ligation products/reactants that were 

eluted from the Ni2+ resin were concentrated to 1 mL prior to gel electrophoresis 

(expt. detail described in the Star Methods). Black partitions denote differing gels that 

are displayed next to each other of ease of viewing.].  

(g + h) Quantification from SDS PAGE gels in (e & f) of the half cage ligation products 

that were either fully ligated or partially ligated (g = IMPDH mediated ligation and h = 

gp41-1 mediated ligation). Error bars equate to standard deviation of multiple repeat 

experiments (at least three in all cases).  

(i & j) Analytical size exclusion chromatograms of the purified fully ligated half cage 

products (i = IMPDH-mediated ligation and j = gp41-mediated ligation). The unbound 

ligation fraction from the affinity purification step (g & h) were concentrated to 1 mL 

and 100 μL injected onto a Superdex G200 10/30 analytical column using standard 

ligation buffer (see SI). 
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Figure 3: Structural characterisation of two-component ligated cages by SAXS and 

far UV CD.  

(a) Far UV CD spectra of ligated cage in comparison to a half-cage cap (without split 

inteins). (b) Experimental SAXS profile (black circles) of ligated cages overlaid with our 

“best” ligated cage atomic model SAXS profile (red line) (c) Two orientations of our 

“best” ligated cage atomic model. (d) Experimental SAXS profile (black circles) of 

ligated cages overlaid the ab initio GASBOR generated model SAXS profile (red line). 

(e) Two orientations of the ab initio GASBOR generated model. (f) Two orientations of 

our “best” ligated cage atomic model docked into the ab initio GASBOR generated 

model.  
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Figure 4: Stepwise extended cage formation reactions, purification and isolation.  

(a) Schematic of stepwise extended cage synthesis: From left to right – compatible 

half cage & linker fusion are mixed (1st arrow). The compatible pair of split inteins fold 

together and catalyse the ligation of the linker to each of the cage “sides” whilst self-

excising themselves from the complex. The product is an extended half cage which 

still contains reactive split intein halves on each extended “side”. This is isolated and 

mixed with a complementary half cage (2nd arrow). As previously, the split inteins fold 

and catalyse the 2nd ligation, forming the final extended cage product. 

(b & c) Denaturing SDS PAGE gels following the time course of the ligation reaction 

between half cage and linker reactants driven by (b) IMPDH split intein pair (lane 9 

shows a separate gel of the purified fully ligated product) or (c) gp-41-1 split intein 

pair. As per Figure 2, the denaturing gel means the bands of the half cages reactants 

and ligated products correspond to the size of “monomeric” half cages (a M4P 

monomer, one CTPR3DS, one split intein half and one affinity tag) and a “dimeric” 

ligated product (M4P monomers, two CTPR3DS units, one split intein half and one 

affinity tag), respectively. These are shown schematically besides the bands using the 

same colour scheme as in Figure 1. 
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(d) Denaturing SDS PAGE gel following the time course of the ligation reaction 

between purified extended half cage and linker reactants driven by gp-41-1 split intein 

pair. Lane 8 shows a separate gel of the purified fully ligated product. As in b & c, the 

bands correspond to the size of “monomeric” extended half cage and a “trimeric” 

ligated final cage product. These are shown schematically besides the bands using the 

same colour scheme as in Figure 1. 

(e) Analytical size exclusion chromatogram of the purified fully ligated extended cage 

product shown in panel d, lane 8. The sample was concentrated to 1 mL and 100 μL 

injected onto a Superdex G200 10/30 analytical column using standard ligation buffer 

(see SI). 
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STAR Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING  

Further information and requests for resources and reagents should be directed to 

and will be fulfilled by the Lead Contact, Dr. Ewan Main (e.main@qmul.ac.uk)  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bacteria Strains  

XL2-Blue and Bl21(DE3) C41 cells were cultured in 2YT medium in the presence of 

appropriate antibiotics.  

 

METHOD DETAILS 

Construction & Production of half-cage and linker fusions 

Construction of fusion protein genes & vectors: Genes were synthesised by Life 

Technologies (UK) [now Thermofisher] and the final expression plasmids generated by 

either: (i) sequential insertion of the aforementioned genes via 5’ NheI and 3’ SpeI 

BglII restriction sites into a prepared pOPIN vector (Berrow et al., 2009) or (ii) sub-

cloned into a pOPIN vector that had been customised to include a multiple cloning site 

sandwiched between split intein genes and His/CBD affinity tags [CBD tag sequence 

used was (Watanabe et al., 1994)].  All vectors were verified by DNA sequencing 

(Genewiz). S.I. Table 1 shows an overview of the constructs (Please note that the split 

inteins were cloned with an additional 5 amino acid extein sequence required for high 

yields of spliced product).  

Protein production: Plasmids were transformed into the E. coli C41 cells (Lucigen) and 

grown in YT media at 37 °C until the A600nm reached ~1.  Expression was induced by the 

addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 1 

mM. After induction, for native purification the temperature was lowered to either 16 
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°C overnight or 30 °C for 5 hours (S.I. Table 2). For denatured purification the 

temperature was maintained at 37 °C for between 4 hrs and overnight (S.I. Table 2). 

Cells were harvested by centrifugation (10 mins at 10,000 g) and the cell pellet was 

resuspended in 50 mM Tris (pH 8), 300 mM NaCl (native) or 6M GuHCl, 50mM Tris (pH 

8), 300mM NaCl (denaturing), snap frozen and stored at -80 °C. 

Protein purification: The resuspended cell pellets were thawed and lysed via 

sonication on ice.  Insoluble matter was removed by centrifugation (30 min at 39,000 

x g). The expressed protein fusions were then then purified from the supernatant 

using Nickel-IDA resin (using either standard native or denaturing protocol as per 

Qiagen/ThermoFisher Scientific manual). For denaturing purification, proteins were 

refolded either via stepping down the denaturant concentration whilst bound to the 

Nickel-IDA resin or via dialysis. DTT was added to the native, refolded or denatured 

elutions (final concentration 5 mM). If further purification was required, size exclusion 

chromatography (SEC) was performed using a HiLoad 16/60 Superdex 200 prep grade 

on an AKTA Pure or Purifier systems (GE). Protein purity was assayed through SDS 

denaturing PAGE electrophoresis. Protein concentrations and thus yields were 

determined from the absorbance at 280 nm using the extinction co-efficient 

calculated from the amino acid sequence. The concentration of proteins refers to that 

of a monomer (even in situations where the fusion protein forms oligomeric species, 

unless otherwise stated). All proteins were stored at 4 °C for use up to 24 hours. Where 

it was necessary to store for more than 24 hours, 1 mL protein aliquots were flash-

frozen and stored at -80 °C, in an appropriate buffer for downstream applications.  

 

 

 

Ligation reactions 

All ligations, unless otherwise stated, were carried out in mild conditions using a 

ligation buffer of 50 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM DTT, 1 M urea and 
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incubated at room temperature (25 °C) – the small concentration of urea increased 

yields via reducing aggregation.  The reactions were left to proceed under mild 

agitation. Where yields are quoted they are calculated as averages of multiple repeat 

experiments (at least three in all cases). 

One-pot cage synthesis & 1st step purification: Ligation reactions of two 

complementary half-cage caps was initiated by mixing equimolar amounts of each.  

The effect of using different split inteins to mediate ligations, changing protein 

concentration and urea concentrations were then investigated whilst using the same 

ligation buffer (except where urea concentration was varied). Protein concentrations 

and reaction volumes were varied as follows:  

(i) 200 μM reacted in 1.5 mL, (ii) 100 μM reacted in 1.5 mL, (iii) 50 μM reacted in 4.5 

mL, (iv) 10 μM reacted in 20 mL and (v) 1 μM reacted in 100 mL.  

Once the ligation was complete the resultant reaction mixture was purified using a 

nickel HisTrap column (GE) attached to an AKTA Pure or Purifier systems (GE). Both 

the fully ligated product, which did not bind to the HisTrap column, and partially 

ligated products/ reactants that were bound and then eluted from the HisTrap column 

were collected and concentrated to 1 mL prior to further characterisation.  

Stepwise cage synthesis & 1st step purification: The first step in the larger cage 

formation reacts one half cage cap with the linker protein. This reaction was trialled 

with both gp41- and IMPDH-tagged half cage caps at 33 μM, where the linker protein 

was in an excess of 9:1, 6:1 and 3:1.  In addition, the effect of changing urea 

concentrations was also investigated (0 to 2 M). The highest yield of ligated product 

was achieved with IMPDH-mediated ligations in a 1:6 half-cage to linker ratio and 1 M 

urea (Figure 4b).  Once the first step ligation was complete the resultant reaction 

mixture was purified using a chitin column (NEB) under gravity.  After the IMDPH 

mediated first step and purification the cage structure was closed by reacting 1 μM of 

fully ligated larger cage cap with 1 μM of the compatible gp41-tagged half cage cap. 

Once the ligation was complete the resultant reaction mixture was purified using a 

nickel HisTrap column (GE) attached to an AKTA Pure systems (GE). 
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Characterisation of reactants, products & reaction yields from ligation reactions 

Ligation reactions were monitored and the products characterised by denaturing SDS-

PAGE electrophoresis, western blot, size exclusion chromatography (SEC), small 

angled x-ray scattering (SAXS), far UV circular dichroism (C.D.) and where possible 

MALDI Mass spectrometry.  

Denaturing SDS-PAGE gels: Aliquots at differing time points were removed from 

ligation reactions and halted via a combination of the addition of 2x SDS-PAGE non-

reducing loading buffer (20% glycerol, 125 mM Tris HCl pH 6.8, 4% SDS, 0.2% 

bromophenol blue) and boiling. For time = 0 reading, samples were boiled prior to 

mixing to prevent artefactual ligation.  SDS-PAGE was performed on 14 % - 18 % Tris-

glycine gels and stained using Coomassie Brilliant blue G-250. Band intensity was 

measured using the LI-COR Odyssey Infrared Imaging System and Image Studio Light 

(ver 5.2.5) software. Integrated intensity values (I) corresponding to each protein band 

were thereby obtained. 

Reaction yields from SDS-PAGE gels: Equation 1 was used to obtain the percentage of 

ligated product formed:  

   % Yield = !
" #P
%&'P

(

)" #P
%&'P

(+* #R
%&'R

,-
. 	x 100    (1) 

where IP is the integrated intensity of the ligated product, MWtP is the molecular 

weight of the ligated product, IR is the integrated intensity of the most consumed 

reactant and MWtR is the molecular weight of most consumed reactant. Equation 1 

assumes that the binding of Coomassie stain (and, therefore, the intensity) is linearly 

related to the molecular weight of each NCL protein.  

Western Blots: SDS Page gels were run as above and transferred to the membrane 

using the Bio-Rad Trans-Blot® Turbo™ Transfer System using its preset mixed 

molecular weight program (1.5 A, 25 V for 7 minutes). After blocking with 5 % milk in 

1 X PBS, 0.1 % Tween (PBST) for an hour, the membrane was washed twice with PBST 
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and incubated with 1:1000 PBST of either Monoclonal Anti-CBD Tag antibody or 

Monoclonal Anti-His antibody produced in mouse (NEB & Sigma, respectively) at room 

temperature for 1 hour. Membranes were then washed twice with PBST for 5 minutes 

and incubated with 1:20000 PBST of IRDye® 680LT Goat anti-Mouse IgG for 1 hour. 

Blots were then washed with PBST and PBS before being imaged with a LI-COR 

Odyssey Infrared Imaging System.  

Analytical Size Exclusion Chromatography (SEC): Analytical SEC was carried out using 

the SuperdexTM 200 10/30 column attached to an AKTA Pure or Purifier system (GE). 

100 μl of protein sample (50 - 100 μM) was loaded onto the column and run in 50 mM 

Tris pH8, 300 mM NaCl, 5 mM DTT, 0 - 2 M Urea.  UV absorption peaks were processed 

using Unicorn software (v5.0) and analysed, before being exported and plotted using 

Microsoft Excel. When compared on the same plot, UV 280 nm signals were 

normalised to a maximum of 50 mAU for clarity. Size was estimated using the 

Amersham low molecular weight gel filtration calibration kit containing the following 

standards: Albumin 67 kDa, Ovalbumin 43 kDa, Chymotrypsinogen A 25 kDa. To 

quantify the relative position of each peak the Ve/Vo was calculated and plotted 

against the log10 of the molecular weight (kDa). A linear trend line was drawn and the 

equation used to calculate the molecular weights of unknown samples. (Ve = elution 

volume (ml) where the maxima of the UV absorption peak appears and Vo = void 

volume (ml) of the mobile phase.)  

Mass Spectrometry: Matrix assisted laser desorption/ionisation - time of flight mass 

spectrometry (MALDI-TOF/MS) was carried out to confirm the masses of recombinant 

proteins and post-splice reaction products where possible using a Bruker 2000 MALDI-

TOF mass spectrometer. To remove/reduce buffer components, samples were 

prepared either by (i) dilution using 50% aceto-nitrile, 1% or 0.1% trifluoroacetic acid 

in water (Sigma) or (ii) using EMD Millipore Zip-Tip® pipette tips according to the 

manufacturer’s instructions. 1 µl of sample from either dilution or Zip-Tip® was mixed 

1:1 with saturated sinapinic acid matrix and spotted onto a Bruker MALDI-TOF/MS 

steel plate and allowed to air dry. The target plate was loaded into the Bruker 2000 

MALDI-TOF mass spectrometer. Using positive ion mode the gain and laser power was 

adjusted until optimal signal/noise ratio was achieved. The TOF was operated in the 
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reflectron or linear mode and each spectrum was an average of 300 laser shots. The 

spectra were calibrated using the Protein standard 1 & 2 (Bruker). The data was 

extracted and visualised using R, Bruker Flex Analysis or Microsoft Excel software.  

(iii) Circular Dichroism (CD): Protein concentrations of 1 – 10 µM in 10 mM Tris-HCl 

pH 8, 50 mM NaCl and 5 mM DTT were analysed in a 0.5 mm path length cuvette using 

a Chirascan™ CD Spectrometer (Applied Photophysics Ltd, UK). For each sample a 

spectrum from 195 – 280 nm was recorded with points taken at 1.0 nm intervals and 

0.5 sec per point scanning time. The averaged spectrum of 3 repeats was taken for 

each sample. Data was converted to molar ellipticity using Equation 2: 

θmolar = 100 x θobs  / M x l    (2) 

where θmolar is the molar ellipticity in deg cm2 dmol-1, θobs is the observed CD signal in 

millidegrees, l is the path length in cm and M is the molar concentration of protein. 

 

Size exclusion chromatography small angle X-ray scattering (SEC-SAXS) 

SAXS cage samples were prepared by ligating 100 mL of 10 μM IMPDH tagged half 

cage caps and purified using the same affinity and size exclusion chromatography 

steps outlined above. Purified cages were concentrated to 10 mg/ml and dialysed 10 

mM Tris pH 8.0, 50 mM NaCl, 5mM DTT. SAXS experiments were recorded on 

beamline B21 at the Diamond Light Source (DLS), UK, coupled to a Shodex KW403-4F 

size exclusion column.  Data were measured at 20 °C with a wavelength of 0.99 Å 

and a 3 s exposure time per frame on a Pilatus 2 M two-dimensional detector at 

4.014 m distance from the sample, corresponding to a momentum transfer range of 

0.004 < q < 0.4 Å−1 (q = 4π sin q λ−1, 2q is the scattering angle). Elution peak and 

buffer selection, and subsequent buffer subtraction, intensity normalization, and 

data merging were performed in ScÅtter (Rambo and Tainer, 2013). Further analysis 

was carried out with a q range of 0.018 < q < 0.35 Å−1. The radius of gyration (Rg) and 

scattering at zero angle (I(0)) were calculated from the analysis of the Guinier region 

by AUTORG (Konarev et al., 2003; Svergun, 1992). The distance distribution function 

(P(r)) was subsequently obtained using GNOM (Konarev et al., 2003; Svergun, 1992), 
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yielding the maximum particle dimension (Dmax). To demonstrate the absence of 

concentration-dependent aggregation and interparticle interference we inspected 

Rg over the elution peaks and performed our analysis on frames where Rg was most 

stable. The Porod exponent and molecular weight were calculated within the 

SCATTER (DLS, UK) and ATSAS package (Franke et al., 2017), respectively. All data 

collection and processing statistics are listed in S.I. Table 3. 

 

Comparison of experimental SAXS profile to generated atomic cage models: We 

compared the experimental cage SAXS profile to 30 manually generated differing 

atomic models of possible designed cage conformations using the program Crysol 

(Svergun et al., 1995) (Data S1). The 30 designed cages models were constructed by 

first manually positioning the crystal structure of M4P (PDB 3OL0) with either CTPR3 

minus the C-terminal solvating helix for non “docked” cage interfaces (PDB 1NA0) or 

a CTPR6 unit from CTPR8 for “docked” cage interfaces (PDB: 2FOT) using PyMol 

(Schrödinger, 2015). COOT was then used to add connecting sequences between the 

domains using its Rigid Body Fit Zone functionality (Emsley et al., 2010) and three-fold 

symmetry enforced using PyMol. The chains were renumbered (PDBSet, CCP4 suit 

(Winn et al., 2011)) and rigid body refined with REFMAC5 (Vagin et al., 2004; Winn et 

al., 2011) to obtain final the lowest energy confirmation. These final lowest energy 

structures were then converted to a SAXS profile by Crysol and compared to the 

experimentally determined profile (Figure 3 and Data S1). Modelling statistics of the 

“best” model are listed in S.I. Table 3. 

 

Ab initio shape determination from SAXS: The structure of cages formed from half 

cage ligations were expected to display 32-symmetry at low resolution, which 

increases the likelihood of ambiguity in low-resolution particle shapes reconstructions 

and is reflected by having an ambiguity score of 1.6 (Petoukhov and Svergun, 2015). 

Therefore, ab initio modelling using Gasbor (Svergun et al., 2001) was repeated 32 

times applying 32-symmetry restraints and models were selected that were supported 

by our biophysical data. Solutions were discarded when, for example, the CTPR/M4P 

domains would be required to either adopt non-native conformations or be ligated in 

a nonsensical formation to fit the calculated protein density envelopes (discarded 
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examples are shown in S.I. Figure 4e-h). This resulted in five solutions that were then 

aligned and averaged using DAMAVER (Volkov and Svergun, 2003). Ab initio modelling 

statistics are listed in S.I. Table 3. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Accuracy and reproducibility of the ligation reactions: Quantification of accuracy and 

reproducibility of the yields and rates of the various ligation reactions were obtained 

by conducting each reaction in at least triplicate and calculating the standard 

deviation.  These are displayed as error bars in Figure 2g-h / S.I Figure 2. 

SAXS: Modelling statistics and final χ2 value between the model and experimental 

SAXS profiles (shown in S.I. Table 3 and Data S1) were calculated as described in 

Method Details. 

 


