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Abstract

This paper explores essence of geometric constraints induced reconfiguration
of single-loop kinematic chains with mobility one. Reconfigurable kinematic
chains are firstly classified into four categories in light of variations of param-
eters in the Chebychev-Grübler-Kutzbach mobility criterion. Within these
four categories, single-loop kinematic chains with mobility one but distinct
motion branches are further classified in accordance with degeneration of
degree-of-freedom of certain revolute joints. With the essence of reconfig-
uration, the interrelationship of motion-branch changes through constraint
singularity induced transitory positions of reconfigurable single-loop linkages
is revealed in the context of reciprocity of screws. Four basic geometric con-
straints leading to transitory positions are explored by analysing the Bennett
plano-spherical linkage, a kinematic embodiment of Grassmann varieties.
Geometric constraints induced screw-system variation and motion branch
changes of a novel asymmetric 7R linkage and the line- and plane-symmetric
Bricard 6R linkage with capability of reconfiguring their motion branches are
subsequently analysed for interpreting the fundamentals explored.
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1. Introduction

Reconfigurable mechanism defines a kind of mechanism which possesses
capability to change its global mobility and motion characteristics. This
capability distinguishes reconfigurable mechanisms from conventional mech-
anisms with invariant kinematic structure and functionality. With reconfig-
urability and variable motion characteristics, reconfigurable mechanisms can
be developed into multifunctional robot manipulators, medical devices and
manufacturing devices to adapt to unexpected conditions and to perform
multitasks that would be challenge for conventional mechanisms.

In the last two decades, typical mechanisms with reconfigurability have
been investigated by revealing their inherent properties of structure reconfig-
uration and analyzing the apparent phenomenon of mobility change. Wohlhart
[1] presented a type of linkage that is able to permanently change their global
mobility by passing a singular position and termed the peculiar property
kinematotropy. For a kinematotropic mechanism, the mobility is chang-
ing when the mechanism reconfigures to distinct motion branches [2] sep-
arated by singular positions [3]. Around the same time, Dai [4] developed
reconfigurable assemblies and packaging systems for folding decorative gifts
and origami-type boxes, leading to exploration of the metamorphic mecha-
nism [5]. Metamorphic mechanisms are capable of changing their structure
and subsequently mobility resorting to either link annex or joint variation
at typical configurations. The apparent mobility change of a metamorphic
mechanism is accompanied by kinematic structure variation in the form of
changes of effective links and kinematic joints [6, 7]. Along with kinema-
totropic linkages and metamorphic mechanisms, mechanisms with different
motion branches, named as operation modes [8], were revealed and such kind
of mechanism with multiple motion branches can undergo a variety of trans-
formations by passing its constraint singularities. The study of this type of
mechanisms mainly focuses on the variation of operation modes of its plat-
form, a particular selected output link of the mechanism [9]. Apart from
the above three types of reconfigurable mechanisms, mechanisms with vari-
able topologies [10, 11] characterized by topological structure changes during
operation were explored for dealing with complicated tasks.

Comparing to the broad study of reconfigurable parallel mechanisms and
robots [12–19], single-loop mechanisms capable of reconfiguring their kine-
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matic structure had rarely been explored and only a few of typical cases
were presented recently. Galletti and Fanghella [20] presented four basic
kinematotropic single-loop kinematic chains and addressed changes in pair
connectivity of linkages with constant numbers of degree(s) of freedom. In
light of the concept of metamorphosis, Zhang, Dai and Fang [21] presented
a novel metamorphic 8R linkage inspired by artistic kirigami. Distinct mo-
tion branches were derived form the 8R linkage resorting to both physical
and geometric constraints. This study further led to identification of two
specific types of line-symmetric overconstrained 6R linkages. Kuo and Yan
[22] investigated configuration syntheses and analyses of mechanisms with
variable topologies and presented typical single-loop linkages with different
stationary configurations. Kong and Huang [23] synthesized and constructed
single-loop mechanisms with two operation modes employing basic single
degree-of-freedom (DOF) linkages such as planar 4R, spherical 4R, Bennett
4R linkage and paradoxical 5R and 6R linkages. This study further extended
to single-loop 7R mechanisms with multi-operation mode [24, 25]. Zhang,
Müller and Dai [26] explored a novel reconfigurable 7R linkage that is able
to evolve to both overconstrained 6R linkage and planar 4R linkages. Chen
and You [27] investigated bifurcations of two-fold symmetrical 6R deploy-
able linkage using singular value decomposition of the Jacobian matrix of
closure equations. Chen and Chai [28] put forward the study further on
the bifurcated motion of a special line and plane symmetric Bricard linkage
[29]. Further to above overconstrained 6R linkages with bifurcated motion
branches, Zhang and Dai [30] further explored trifurcation of the Bennett
plano-spherical hybrid linkage based on reciprocity of screws [31]. The 6R
linkage allows distinct 1 DOF motion branches with geometrically restricted
kinematic joints and transition between these motion branches by passing the
singular position. A new method based on intersection of surfaces generated
by kinematic dyads and the singularities of these surfaces was developed for
identifying reconfigurable mechanisms [32].

Though aforementioned work on reconfigurable single-loop kinematic chains
have been made, most of the efforts dedicated to reconfiguration analysis of
individual mechanism and to designs combining existing mechanisms. Funda-
mentals for both kinematics analysis and structure synthesis of reconfigurable
single-loop mechanisms are yet systematically explored.

Towards the theory of freedom to move in systems of articulated rigid
bodies, screw theory [31, 33–35] and closed-form solutions [36, 37] provided a
mathematical framework for both kinematics analysis and structure synthesis
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[38–40]. In terms of interrelationship [41, 42] between a screw system and
its corresponding reciprocal system, a screw-system approach for rigid-body
motion analysis of kinematic chains particularly overconstrained mechanisms
was developed [43].

In light of the theory of freedom to move in systems composed of ar-
ticulated rigid bodies, this paper is to investigate the essence of geometric
constraints induced screw-system-variation and reconfiguration of single-loop
mechanisms. The study firstly classifies reconfigurable single-loop kinematic
chains in terms of variables d, n, g and fi of the general Chebychev-Grübler-
Kutzbach mobility criterion. Looking closely at variation of parameter d, the
interrelationship of screw-system variation corresponding to motion-branch
change via constraint singularities of the single-loop reconfigurable mecha-
nism is explored. With revealed essence for reconfiguration of single-loop
mechanisms, four types of geometric constraints leading to transitory posi-
tions are explored by analysing motion branch changes of the Bennett plano-
spherical linkage in conjunction with Grassmann varieties. The presented
interrelationship and geometric constraints based approach are further inter-
preted by analysing a novel asymmetric 7R linkage and the line- and plane-
symmetric Bricard 6R linkage.

2. Screw-system and Motion Branch Variations of Reconfigurable
Mechanisms

In this section, underlying principles resulting in structure and mobility
changes of reconfigurable single-loop mechanisms are exploited in terms of
screw theory and Grassmann varieties [44] of line geometry.

2.1. Mobility Criteria Based Classification of Reconfigurable Mechanisms

Mobility of a mechanism is generally calculated in terms of the Chebychev-
Grübler-Kutzbach criterion [45, 46] expressed in the formula

m = d(n− 1)

g∑
i=1

(d− fi) = d(n− g − 1) +

g∑
i=1

fi (1)

in which m is the mobility of a mechanism, d is the degrees-of-freedom of the
space in which the mechanism works, n is the number of bodies connected
by g joints and fi is the connectivity or degree(s)-of-freedom of the ith joint.
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The mobility formula in Eq. (1) counts the numbers of bodies (links),
joints and the degrees-of-freedom of joints. It determines mobility of a kine-
matic chain in general but may break down for overconstrained mechanisms
and predict less mobility due to peculiar geometric conditions and dimensions
of these mechanisms.

Taken parameter d [47, 48] in Eq. (1) as the order of mechanism motion-
screw system, modified mobility criterion [43] was then proposed by extend-
ing d to other values less than 6 and by accounting for redundant constraints
for mobility prediction of mechanisms with peculiar geometric conditions.

In contrast to conventional mechanisms performing a sole function, a
reconfigurable mechanism is able to perform multiple functions by passing
transitory positions and switching between distinct motion branches. The
mobility m and motion characteristics of a reconfigurable mechanism are
thus changing in accordance with the motion branch changes. According to
the mobility criterion, the global mobility of each motion branch and the
instantaneous mobility at a transitory position are defined by parameters n,
g, fi and d. Changes to any of these variables lead to variation of the global
mobility and motion characteristics of the mechanism.

Table 1: Classification of reconfiguration in terms of parameters in mobility
criterion

Category Parameters
Physical
meaning

Form of
changes

Type of Reconfiguration Essence

1 n
Number of
bodies

Link annexing/
releasing

Metamorphosis
Physical constraints
at certain configurations2 g

Number of
joints

Restricted/
unrestricted joint

Metamorphosis

3 fi
Degree(s) of
freedom of a
joint

Reconfigurable joints Metamorphosis
Variable kinematic
joints

Variable topologies

4 d

Order of
mechanism
motion-screw
system

Mechanism screw-
system variation
and motion branch
change

Variant
mobility

Degenerated degree(s)
of freedom of
certain joints

Metamorphosis
Geometric constraints of
kinematic joints

Original degree(s)
of freedom of all joints

Kinematotropy
Multifurcation
Multi-mode

Invariant
mobility

Degenerated degree(s)
of freedom of
certain joints

Metamorphosis

Original degree(s)
of freedom of all joints

Multifurcation
Multi-mode

According to parameters n, g, fi and d, reconfiguration of the closed-loop
mechanism are classified into four categories in Table 1. Corresponding to
each parameter in Table 1, form of changes and types of reconfiguration are
enumerated respectively.

Types of reconfiguration include kinematotropy [1], metamorphosis [5],
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variable topology [10], multifurcation [49] and multi-mode [8, 9]. The meta-
morphosis, a particular feature in the sense of evolution, characterizes meta-
morphic mechanisms capable of changing their structure, topological config-
uration and subsequently mobility. In analogy to metamorphosis, kinema-
totropy defines the kinematotropic mechanism which permanently changes
its global mobility by passing a transitory position. The mechanism with
variable topologies are characterized by topological features of variable kine-
matic joints employed in this kind of mechanism.

Subjects of the present paper are reconfigurable single-loop mechanisms
with mobility one in category 4, of which the reconfiguration is induced by
special geometrical arrangement of kinematic joints.

2.2. Screw-System-Variation in Conjunction with Constraint Singularity of
Reconfigurable Mechanisms

In terms of the screw-system approach [43], mechanism motion-screw
system S and mechanism constraint-screw system Sc form a dual pair and
the reciprocity of these two screw systems is defined by

Sc = {Sc | Sc ◦ S = 0,∀S ∈ S} (2)

in which Sc and S represent constraint screws and motion screws, respec-
tively.

For spatial mechanisms, given an motion-screw system of order d, the
constraint screws reciprocal to the n-system form a (6− d)-system, meaning

dim(S) + dim(Sc) = d+ λ = 6 (3)

where dim(∗) represents order of a screw system, d and λ denote order
of mechanism motion-screw system and order of mechanism constraint-screw
system, respectively.

When a single-loop mechanism reaches its constraint singularities, the
order of mechanism constraint-screw system (λ) increases while the order
of mechanism motion-screw system (d) decreases reciprocally at these spe-
cific configurations. According to the mobility criterion, the decrease of d
generally leads to increase of infinitesimal mobility at singular configura-
tions. With consideration of the geometric conditions of kinematic joints
of a single-loop mechanism, variation of d and λ and resulted reconfigura-
tions by passing a singularity incurred transitory position are summarized
in Fig. 1, assuming there are two distinct motion branches apart from the
original configuration without losing generality.
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2.3. Interrelationship of Various Motion Branches: Common Constraint Screw
Bases at the Transitory Position

As illustrated in Fig. 1, screw-system variations result in reconfiguration
of a mechanism by passing the transitory position where constraint singu-
larity occurs. In the original configuration, all bodies (links) and kinematic
joints of the mechanism are effective. At a transitory position, the order of
mechanism constraint-screw system Sc increases by τ (τ > 0) and becomes
λt = (λ + τ). Reciprocally, the order of mechanism motion-screw system S
decreases and becomes dt = (6−λ−τ). Since the mechanism is able to move
to at least one more distinct motion branch by passing a transitory position,
the constraint-screw bases corresponding to the transitory position span a
common constraint-screw system Sc

t of all motion branches correlating to the
transitory position. In other words, Sc

t , Sc
ti, and Sc

tj share same screw bases,
assuming Sc

ti and Sc
tj are constraint-screw systems corresponding to evolved

motion branches MBi and MBj. These common constraint-screw bases of the
transitory configuration are reciprocal to mechanism motion-screw systems
St, Sti and Stj, where Sti(Sti ⊂ St) and Stj(Stj ⊂ St) are multi-sets of motion
screws representing kinematic joints belonging to motion branches MBi and
MBj, respectively.30 May 2015 Single loop
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(ti, wi), ti = 6 − wi

Figure 1: Screw-system-variation via constraint induced transitory position

When the mechanism changes from the transitory position to motion
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branch MBi, which is an evolved serial kinematic chain, the mechanism
motion-screw system describing this motion branch is denoted Sbi, of which
the order t i is determined by the geometry arrangement of active kine-
matic joints of the serial kinematic chain in a non-singular configuration.
Constraint-screw system Sr

ti of this motion branch is a span of wrenches
reciprocal to motion-screw system Sbi. The order of the constraint-screw
system is denoted by wi and calculated as wi = 6− ti.

By passing the transitory position and changing to motion branch MBj

with single-loop topology, the mechanism constraint-screw system of a non-
singular configuration in this evolved motion branch changes to Sc

j. The order
of constraint-screw system decreases by τj(τj ≥ 0) from that of transitory
position and becomes λj = (λt − τj). The mechanism motion-screw system
Sj is a span of screws reciprocal to constraint screws and its order becomes
dj = 6− λj = 6− λt + τj.

Global mobility of evolved serial kinematic chain, MBi , is straight for-
ward by counting effective kinematic joints while the mobility of evolved
single-loop mechanism, MBj, is calculated with the mobility criterion in
Eq. (1).

3. Exploration of Grassmann Varieties and Screw System Varia-
tions in Motion Branch Reconfigurations

In this section, the geometric characteristics of three Grassmann varieties
[44] which induce motion branch changes are explored by analysing the screw-
system variations of the Bennett plano-spherical hybrid linkage[50] following
the principles presented in the above section.

The Bennett plano-spherical hybrid linkage is a typical overconstrained
6R linkage. As illustrated in Fig.2(a), axes of revolute joints R1, R2 and R6

have common point A and axes of revolute joints R3, R4 and R5 are parallel.
The plane of symmetry determined by axes of joints R1 and R4 is denoted
by Π1. Axes of joints R2 and R3 intersect at common point C and axes of
joints R5 and R6 intersect at common point D. These two common points are
symmetric with respect to plane Π1. In a general configuration, two coplanar
axes of joints R1 and R4 have an instantaneous common point E.

A Cartesian coordinate frame O-XYZ with the origin attached at com-
mon point A is set as global frame of the 6R linkage. The X - and Z-axis
are located in symmetric plane Π1 with axis of R4 parallel to X-axis and
perpendicular to Z -axis, Y -axis is set following the right-hand rule in Fig.2.
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Figure 2: Reconfiguration of the Bennett plano-spherical linkage: (a) a gen-
eral configuration, (b) coplanar constraint induced singular configuration, (c)
MB1, concurrent constraint induced spherical 4R linkage, (d) MB2, parallel
constraint induced planar 4R linkage, (e) MB3, collinear constraint induced
serial kinematic chain

With respect to global coordinate frame O-XYZ in Fig. 2, motion screws
of the 6R linkage in a general configuration span a screw system S, given by

S =



S1 = [l1 0 n1 0 0 0]T

S2 = [l2 m2 n2 0 lsα − lcα]T

S3 = [1 0 0 0 n2 −m2]
T

S4 = [1 0 0 0 n2 + rcθ40 0]T

S5 = [1 0 0 0 n2 m2]
T

S6 = [l2 −m2 n2 0 0 0]T

(4)
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where r is the link length of links between parallel joint axes, θ40 is a variable
defined by θ40 = (θ4 − π)/2 and θ4 is the angular displacement of joint R4.

The constraint-screw system, a span of constraint screws reciprocal to
motion screws in Eq. (4), is derived as

Sc = Sr
1 = [1 0 0 0 0 0]T (5)

Hence, the order of mechanism constraint-screw system of the 6R linkage
in its general configuration in Fig. 2 is one. It further implies that the
mechanism motion-screw system in Eq. (4) is a five-system, meaning λ =
dim(Sc) = 1 and d = dim(S) = 6− λ = 5. In terms of the mobility criterion
for overconstrained mechanisms, the mobility of this 6R linkage is m = 5(6−
6− 1) + 6 = 1.

3.1. The coplanar constraint with axes lying in a plane

Constraint singularity of the plano-spherical linkage occurs when it moves
to the configuration in Fig. 2(b) with axes of all revolute joints coplanar and
axes of R4 and R1 collinear. In the singular configuration, there are four joint
axes intersecting at common point A and four joint axes in parallel. Specifi-
cally, axes of joints R1, R2, R4 and R6 have common point A and axes of joints
R1, R3, R4 and R5 are parallel. In this singular configuration, the mechanism
motion-screw system degenerates since all motion screws distributed on a sin-
gle plane. The degeneration means the order of the mechanism screw-system
changes to dt = dim(St) = 3. Consequently, the instantaneous mobility of
the linkage in this singular position becomes m = 3(6 − 6 − 1) + 6 = 3. It
implies the linkage obtains two more infinitesimal motions.

3.2. The concurrent constraint with finite intersection of axes

Considering the Grassmann varieties of lines having a finite intersection
in 3D space and the disposition of joint axes on the single plane in the
singular position in Fig. 2(b), the plano-spherical linkage is able to move out
of the transitory position and keep R1, R2, R4 and R6 intersecting at point
A in Fig. 2(c). Under such a condition, joints R3 and R5 whose axes do not
pass point A are geometrically restricted and the degree-of-freedom of these
two joints changes to zero. This means there are only four active revolute
joints and four effective bodies (links). It further implies the parameter n in
mobility criterion changes to 4. As a result, the mobility of the linkage in
this evolved motion branch MB1 is calculated as m = 3(4− 4− 1) + 4 = 1.
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3.3. The parallel constraint with intersections of axes at infinity

The plano-spherical linkage is able to move out of the transitory posi-
tion and keep R1, R3, R4 and R5 parallel to each other in Fig. 2(d), which
corresponds to the Grassmann varieties of parallel lines in 3D space. Un-
der such a condition, joints R2 and R6 are then geometrically restricted and
their degree-of-freedom changes to zero simultaneously. This leads to mo-
tion branch MB2 with four effective bodies and four active revolute joints in
parallel. The mobility of the linkage in this evolved motion branch MB2 is
calculated as m = 3(4− 4− 1) + 4 = 1.

3.4. The coincident constraint with collinear axes

Since axes of joints R4 and R1 are collinear in the transitory position, the
plano-spherical linkage is also able to change to motion branch MB3 which
is a serial chain with all bodies rotating around those two aligned axes.
In this motion branch, the evolved serial chain implements rotary motion
as a compound revolute joint in Fig. 2(e). Joints R2, R3, R5 and R6 are
geometrically restricted and the degrees-of-freedom of each joint changes to
zero, leading to an evolved serial chain with mobility one.

Above analyses reveal that geometric constraints of joint axes correspond-
ing to Grassmann varieties of lines allow the linkage to pass its singular po-
sition and to reconfigure to a spherical 4R linkage, a planar 4R linkage and
a serial kinematic chain. Mobility of distinct motion branches varies within
the scope of the infinitesimal mobility of the transitory position.

4. Geometric Constraints Induced Reconfiguration of a Novel 7R
Linkage

This section presents a novel 7R linkage which is extracted from an asym-
metric kirigami base in Fig. 3(a) and explores its reconfigurable motion
branches. As illustrated in Fig. 3(b), links and revolute joints of the 7R
linkage are denoted by Li and Ri (i = 1, 2, · · · , 7), respectively. In this 7R
linkage, joint axes at distal ends of each link are coplanar, i.e. either having
a common point or in parallel. Points O, A, B, C and D are the common
points of successive axes in pairs. As the 7R linkage is a kinematic equiv-
alent of the kirigami base in Fig. 3(a), common point C coincides with O
when the linkage is in the flattened configuration with axes of all revolute
joints located in a single plane. The twisting angle, αi, between each pair of
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adjacent axes are specified by α2 = α4 = α6 = α7 = 45◦, α1 = α5 = 90◦ and
α3 = 0◦ since axes of joints R3 and R4 are parallel.
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Figure 3: A kirigami base and its equivalent mechanism: (a) a kirigami base
with seven creases, (b) the equivalent 7R linkage in the flattened configura-
tion

When the closed-loop 7R linkage is in a general configuration away from
the flattened configuration in Fig. 3(b), the order of mechanism motion-screw
system is 6 and the mobility of the linkage is calculated as m = 6(7 − 7 −
1) + 7 = 1.

4.1. Coplanar Constraints Induced Singular Configuration and the Evolved
Serial Chain with Mobility One

In the flattened configuration in Fig. 3, three pairs of the coplanar axes
are collinear in particular, meaning R1 and R5, R2 and R6, as well as R4 and
R7 are coaxial simultaneously. The mechanism motion-screw system of this
configuration is a three-system due to the geometric condition with coplanar
axes. Considering this peculiar disposition of all seven joint axes, the 7R
linkage is able to move out of the singular configuration in three different
ways.

When the linkage moves out of the singular configuration in Fig. 3 by
rotating around collinear axes of joint R1 and R5, it reconfigures to motion
branch MB1 with all other joints restricted, meaning the serial kinematic
chain in Fig. 4(a).

Alternatively, once the linkage moves out of the singular configuration by
rotating around collinear axes of joint R2 and R6, it reconfigures to motion
branch MB2, the serial kinematic chain in Fig. 4(b).
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Figure 4: The evolved serial kinematics in three different motion branches:
(a) MB1, (b) MB2, (c) MB3

As axes of joints R4 and R7 are coaxial in the singular configuration in
Fig. 3, the linkage can also move out of this peculiar configuration by rotating
around these two collinear axes, resulting to motion branch MB3 which is the
serial kinematic chain in Fig. 4(c).

4.2. Coplanar Constraints Induced Singular Configuration and the Evolved
Overconstrained 6R Linkage

When the serial kinematic chain in Fig. 4(c) moves to the flattened config-
uration in Fig. 5, axes of all revolute joints are coplanar again. In particular,
axes of joints R1 and R6 are in parallel as well as that of R2 and R5. In this
configuration, axes of joint R1 and R7 pass common point B while axes of
joints R2 and R4 intersect at common point D simultaneously. Apart from
the axis of joint R3, the disposition of other joint axes is with bilateral sym-
metry with respect to the plane passing point O and perpendicular to line
BD.
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When the closed-loop 7R linkage is in its general configuration in Fig. 4(b) with common 

point O and C apart from each other, the order of mechanism motion-screw system, d, equals to 6 
and the mobility is m = 6(7−7−1) + 7 = 1.  
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Since all the joint axes are coplanar, the motion screws describing joint axes of the 7R linkage 
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Since all joint axes are coplanar, motion screws of the 7R linkage at the
configuration in Fig. 5 span a three-system, meaning dt1 = 3.

Considering the disposition of joint axes in Fig. 5, the 7R linkage is able
to move to motion branch MB4 in Fig. 6, where axes of joints R1, R7 and R6

remain coplanar and points O and C are disjointed. Resultantly, joint R7 is
geometrically restricted with its degree-of-freedom change to zero, leading to
six effective revolute joints. In this motion branch, axes of joints R1, R2 and
R3 are parallel to axes of R6, R5 and R4, respectively.

Figure 6: Motion branch MB4: a overconstrained 6R linkage evolved from
the 7R linkage

A coordinate frame O-XYZ is set up by aligning X -axis to axis of joint
R1 and Y -axis to line OD in Fig. 6. The Z -axis is perpendicular to the plane
formed by axes of joints R1 and R6. Accordingly, the mechanism motion-
screw system expressed in frame O-XYZ is

S1 =



S1 = [1 0 0 0 0 0]T

S2 = [0 rcθ1 rsθ1 0 0 0]T

S3 = [l3 l3 n3 rp rl3sθ1 − rl3cθ1]T

S4 = [l3 l3 n3 r(n3 + p) r(n3 + l3sθ1) − rl3(2 + cθ1)]
T

S5 = [0 rcθ1 rsθ1 r2sθ1 r2sθ1 − r2cθ1]T

S6 = [1 0 0 0 0 − r]T
(6)
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where p = (n3cθ1− l3sθ1), r is the distance between points A and O, θ1 is the
joint variable of R1 and [l3, l3, n3]

T is the unit vector pointing in the direction
of screw S3. Given points O and C are coincident in Fig. 3, position vector
of point C is [−r, r, 0]T.

The mechanism constraint-screw system of the evolved 6R linkage is re-
ciprocal to motion-screw system S1 and derived as

Sc
1 = Sr

1 = [−1 1 0 0
rsθ1(p− l3sθ1)
l3sθ1 − n3cθ1

rcθ1

(
1 +

l3
l3 − n3cθ1

)
]T (7)

The above constraint implies that motion-screw system of the linkage in
Fig. 6 changes to d1 = dim(S1) = 6 − dim(Sc

1) = 6 − 1 = 5. There are only
six joints of the original 7R linkage active in this motion branch and the finite
mobility of the evolved 6R linkage is m = 5(6− 6− 1) + 6 = 1.
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Figure 7: Two evolved spherical 4R linkages: (a) motion branch MB5 with
spherical centre B, (b) motion branch MB6 with spherical centre D

4.3. Concurrent Constraints Induced Spherical 4R Linkages

In the flattened singular configuration in Fig. 5, axes of joints R1, R4,
R5 and R7 have common point B. The 7R linkage is able to move to motion
branch MB5 in Fig. 7(a) by passing this flattened transitory position. In this
evolved motion branch, axes of joints R1, R2, R3 and R4 are coplanar while
axes of joints R5, R6 and R7 become coplanar simultaneously. In such a case,
only joints R1, R4, R5 and R7 are active and the motion of remaining joints
are geometrically restricted, allowing the linkage to work as a spherical 4R
linkage with spherical centre B.
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The 7R linkage is also able to move to motion branch MB6 in Fig. 7(b)
by passing this flattened transitory while keeping all links rotating about the
common point D. In this evolved motion branch, axes of all seven joints are
distributed in four planes intersecting at common point D. In this configura-
tion, only joints R2, R4, R6 and R7 are active and the motion of other joints
are geometrically restricted, allowing the linkage to perform as a spherical
4R linkage with spherical centre D.

When the 7R linkage moves to the configuration in Fig. 8, all seven joint
axes are coplanar with axes of joints R3 and R7 aligned to each other. Axes
of joints R1 and R6 as well as that of joints R2 and R5 are in parallel, respec-
tively. Further, the former two parallel axes are perpendicular to the later
two. These two sets of axes are symmetric with respect to two collinear axes
of joints R3 and R7 which are parallel to axis of joint R4.

As all seven axes are coplanar, the motion screws in this flattened con-
figuration span a three-system. It implies that the motion-screw system of
the 7R linkage degenerates from a five-system to a three-system, meaning
dt2 = dt − τ2 = 6− 3 = 3.

Figure 8: The transitory position of the 7R linkage with axes of joints R3

and R7 collinear

As illustrated in Fig. 8, axes of joints R1, R3, R5 and R7 intersect at point
E in the flattened transitory position. By passing the transitory position, the
7R linkage is able to move to motion branch MB7 in Fig. 9(a). In this motion
branch, axes of joints R1, R2 and R3 remain coplanar. In the meantime, axes
of R3, R4 and R5 and axes of joints R5, R6 and R7 located in another two
planes. Hence, only joints R1, R3, R5 and R7 are active and remaining joints
are geometrically restricted, allowing the linkage to perform as a spherical
4R linkage with spherical centre E.

By passing the flattened transitory position in Fig. 8 and keeping all
links rotating about common point A, the 7R linkage is able to move to
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 Figure 9: Two evolved spherical 4R linkages: (a) motion branch MB7 with
spherical centre E, (b) motion branch MB8 with spherical centre A

motion branch MB8 in Fig. 9(b), where axes of joints R3, R4, R5 and R6

and those of joints R5, R6 and R7 are confined in two planes. Consequently,
only joints R2, R3, R6 and R7 are active and the motion of remaining joints
are geometrically restricted, allowing the linkage to work as a spherical 4R
linkage with spherical centre A.

For all the evolved motion branches working as spherical 4R linkages
with distinct spherical centres, there are four effective bodies and four active
revolute joints in each motion branch. Hence, mobility of these evolved
motion branches are calculated as m = 3(4− 4− 1) + 4 = 1.

5. A Series of Reconfiguration of the Line- and Plane- Symmetric
Bricard 6R Linkage

5.1. Geometry of the Line- and Plane- Symmetric Bricard 6R Linkage

According to the kinematic structure of the special Bricard 6R linkage in
Fig. 10, axes of joints R2 and R3 have common point A and those of joints
R5 and R6 have common point B. In a general configuration, axes of all six
joints have three more common points, which are point C of joints R2 and
R6, point D of joints R3 and R5 and point E of joints R1 and R4. Point
O is the mid-point of line segmentAB. Further, points C and D are located
in plane Π2, determined by intersecting axes of joint R1 and R4. Points A,
B, E and O are coplanar and located in plane Π1, which is perpendicular
to plane Π2. In this configuration, disposition of all six axes are with both
rotational symmetry about axis EO and bilateral symmetry with respect to
two orthogonal planes Π1 and Π2. A Cartesian coordinate frame O-XYZ with
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the origin attached at mid-point O is set as global frame of the 6R linkage.
The X -axis is aligned with line AB, Y -axis is parallel to line CD and Z -axis
is collinear with common line OE of two planes Π1 and Π2 following the
right-hand rule.
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Figure 10: A line- and plane-symmetric Bricard 6R linkage

Considering the symmetric structure of the 6R linkage, position vectors
of points A, B, C, D, E, F and G expressed in global frame O-XYZ are

ra = [−xa 0 0]T

rb = −ra = [xa 0 0]T

rc = [0 yc zc]
T

rd = −rc = [0 − yc zc]
T

re = [0 0 ze]
T

rf = [0 yf zc]
T

rg = −rf = [0 − yf zc]
T

(8)

With position vectors in Eq. (8), motion screws of all six revolute joints
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expressed in global frame O-XYZ can be yielded as

S =



S1 = [0 − yf ze − zc zeyf 0 0]T

S2 = [xa − yc − zc 0 xazc − xayc]T

S3 = [xa yc − zc 0 xazc xayc]
T

S4 = [0 yf ze − zc − yfze 0 0]T

S5 = [−xa yc − zc 0 − xazc − xayc]T

S6 = [−xa − yc − zc 0 − xazc xayc]
T

(9)

The motion screws in Eq. (9) span a five-system. The constraint screw is
reciprocal to motion screws and are derived as

Sc = Sr
1 = [0 1 0 − zc 0 0]T (10)

The constraint screw in Eq. (10) represents a constraint force collinear
with CD. This constraint force can also be obtained geometrically since a
zero-pitch screw has to be coplanar with its reciprocal screws. The con-
straint screw that satisfies this geometric condition in the context of recip-
rocal screws has to be intersecting with all six motion screws, i.e., the screw
whose axis passes points F, C, D and G.

The motion-screw system and constraint-screw system in Eqs. (9) and
(10) indicate that d = dim(S) = 5 and λ = dim(Sc) = 1 and the 6R linkage
is a overconstrained closed-loop mechanism. Following the mobility criterion
for overconstraind mechanism, the mobility of the 6R linkage in Fig. 10 is
calculated as m = 5(6− 6− 1) + 6 = 1.

5.2. Motion Branch Changes in Concurrent Constraints Induced Spherical
4R Linkages

The line- and plane-symmetric 6R linkage in Fig. 10 moves to transitory
configuration in Fig. 11 when common point A coincides with point B. In
this transitory configuration, axes of joints R2, R3, R5 and R6 intersect at
point O. Accordingly, motion screws in Eq. (9) changes to

St2 =



St1 = [0 sβ cβ − zesβ 0 0]T

St2 = [−cγ sγ z 0 0 0]T

St3 = [−cγ − sγ z 0 0 0]T

St4 = [0 − sβ cβ zesβ 0 0]T

St5 = [cγ − sγ z 0 0 0]T

St6 = [cγ sγ z 0 0 0]T

(11)
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where γ is the angle measured between X -axis and the plane determined by
axes of joints R6 and R3, while β is the angle measured between screw axis
R1 and Z -axis.
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Figure 11: Reconfiguration from the 6R linkage to motion branch MB1: (a)
transitory position with axes of joints R1 and R4 having a common point on
positive Z axis, (b) the evolved spherical 4R linkage

Constraint screws of the linkage in its singular configuration in Fig. 11
(a) are reciprocal to motion screws in Eq. (11) and is derived as

Sc
t2 =

{
Sr
t1 = [0 1 0 0 0 0]T

Sr
t2 = [0 0 1 0 0 0]T

(12)

These two constraint screws in Eq. (12) represent two constraint forces collinear
with Y - and Z -axis. This implies that only four of motion screws in Eq. (11)
are independent and the screw system in Eq. (9) degenerates. Thus, dt1 =
dim(St2) = 4 and λ = dim(Sc

t2) = 2.
Since axes of joints R2, R3, R5 and R6 have common point O, the linkage

is able to change to motion branch MB1 in Fig. 11(b) by passing the con-
figuration in Fig. 11(a) and keeping four axes intersecting at common point
O.

In this motion branch, joints R1 and R4 are geometrically restricted and
their degrees-of-freedom change to zero. The geometric condition of bilateral
symmetry with respect to planes Π1 and Π2 breaks but the spherical 4R
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Figure 12: Reconfiguration from the 6R linkage to motion branch MB2: (a)
transitory position with axes of joints R1 and R4 having a common point on
the negative Z axis, (b) the evolved spherical 4R linkage

linkage is with rotational symmetry about the common line of the planes
determined by R2 and R5 and that by R3 and R6. It derives that d1 =
dim(S2) = 3 and λ2 = dim(Sc

2) = 3. There are only four active links (n = 4)
and four active joints (g = 4) in this motion branch. The mobility of the
evolved 4R linkage in this motion branch is calculated asm = 3(4−4−1)+4 =
1.

In analogous to the transitory configuration above, the 6R linkage is able
to move from a general line and plane symmetric configuration to transitory
configuration in Fig. 12(a). In this specific configuration, axes of joints R2,
R3, R5 and R6 meet at point O while axes of joint R1 and R4 meet on
the negative Z -axis. The constraint screws of the transitory configuration
in Fig. 12(a) are same as that given in Eq. (12), meaning two constraint
forces collinear with Y - and Z -axis. It further implies that the motion-screw
system of this configuration also degenerates, leading to d2 = dim(St3) = 4
and λ3 = dim(Sc

t3) = 2.
When the linkage moves out of this transitory configuration without

breaking the concurrent geometric constraint of having common point O,
it changes to motion branch MB2 in Fig. 12(b) where the linkage works as
a spherical 4R linkage with joints R1 and R4 in Fig. 12(a) geometrically
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restricted.
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 Figure 13: Reconfiguration from the 6R linkage to motion branch MB3: (a)
transitory position with four coplanar axes of joints R2, R3, R5 and R6 copla-
nar, (b) the evolved spherical 4R linkage with bilateral symmetry

In particular, the spherical 4R linkages in motion branches MB1 and
MB2 are able to move to transitory configuration in Fig. 13(a) where axes of
active joints R2, R3, R5 and R6 are coplanar. In this transitory configuration,
the motion screw-system further degenerates and changes to a two-system,
i.e. dt3 = dim(St4) = 2 and λ = dim(Sc

t4) = 4. By passing this flattened
configuration, the linkage is able to change to motion branch MB3 in a plane-
symmetric configuration in Fig. 13(b). In other words, axes of joints R5 and
R6 are mirror of R2 and R3 with respect to a plane passing OP. In this plane-
symmetric configuration, d4 = dim(S4) = 3 and the mobility of the linkage
is one.

6. Conclusions

This paper explored the essence of reconfigurable single-loop kinematic
chains with mobility one. In terms of changes of four variables d, n, g and fi
in the Chebychev-Grübler-Kutzbach mobility criterion, motion branch vari-
ations of reconfigurable mechanisms were classified into four general cate-
gories. In particular, reconfigurations corresponding to variation of parame-
ter d were revealed with consideration of degeneration of degree-of-freedom
of certain revolute joints in single-loop kinematic chains with mobility one.
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With the essence of reconfiguration, the interrelationship of motion-branch
changes through constraint singularity induced transitory positions was in-
vestigated in the context of reciprocity of screws. Based on screw theory,
four types of geometric constraints leading to transitory positions were ex-
plored by analysing motion branch changes of the Bennett plano-spherical
linkage in conjunction with Grassmann varieties. Geometric constraints in-
duced screw-system variation and consequent motion branch changes were
interpreted with a novel asymmetric 7R linkage and the line- and plane-
symmetric Bricard 6R linkage. These analyses of the 7R linkage and the
Bricard linkage further validated the classification and the interrelationship of
screw-system variation in motion branch changes of reconfigurable single-loop
linkages. The present work paves a way of analysing reconfigurable single-
loop kinematic chains based on constraint singularity induced screw-system
variation. The essence of reconfiguration and the geometric constraints based
approach can be further extended to synthesis of reconfigurable single-loop
mechanisms.
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