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Abstract. This paper presents an algorithm for the temporal segmenta-
tion of user-generated videos into visually coherent parts that correspond
to individual video capturing activities. The latter include camera pan
and tilt, change in focal length and camera displacement. The proposed
approach identifies the aforementioned activities by extracting and eval-
uating the region-level spatio-temporal distribution of the optical flow
over sequences of neighbouring video frames. The performance of the
algorithm was evaluated with the help of a newly constructed ground-
truth dataset, against several state-of-the-art techniques and variations
of them. Extensive evaluation indicates the competitiveness of the pro-
posed approach in terms of detection accuracy, and highlight its suitabil-
ity for analysing large collections of data in a time-efficient manner.

1 Introduction

The recent advances in video cameras, combined with the widespread use of
social networks (e.g. Facebook) and video sharing platforms (e.g. YouTube),
led to a tremendous increase in the number of videos captured and shared by
amateur users. Such user-generated videos (UGVs) can nowadays be recorded
at any time and place with the help of smartphones and a variety of video
cameras (such as GoPro action cameras) that can be attached to sticks, body
parts or even drones. The ubiquitous use of video capturing devices supported
by the convenience of the user to share videos through social networks and video
sharing platforms, leads to a wealth of on-line available UGVs.

Analysing such video content, for generating high-level metadata that can
be used for indexing and retrieval of it (e.g. concept and event detection), as
well as for allowing fine-grained access to it (e.g. finding just the specific parts of
videos that show a red sports car) is a requirement in many multimedia appli-
cations. The first step of most of such analysis pipelines is the identification of
the video’s temporal structure. For edited (i.e. professional) videos this typically
corresponds to the detection of the video shots (i.e. sequences of frames captured
uninterruptedly by a single camera) using a shot segmentation method, e.g. [2].
However, when dealing with UGVs the shot-level fragmentation is too coarse
and often fails to reveal useful information about their structure, since UGVs

Proc. 24th International Conference on Multimedia Modeling (MMM 2018). Author's accepted version. 
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-73603-7_3



are most commonly captured uninterruptedly, thus being single-shot videos. Mo-
tivated by this observation, we developed a motion-driven algorithm to identify
visually coherent parts (called sub-shots in the sequel) of a single-shot video,
that relate to different actions taking place during the video recording. The
proposed approach extracts the optical flow between neighbouring frames and
evaluates its spatial distribution over frame sequences, to detect sub-shots. The
conducted experimental evaluations illustrate the time-efficiency and superiority
of the algorithm against other state-of-the-art sub-shot segmentation techniques.

2 Related Work

Several methods dealing with the temporal segmentation of videos into sub-
shots have been introduced, most of which can be grouped in two main classes
of methodologies. The techniques of the first class consider a sub-shot as an
uninterrupted sequence of frames within a shot that only have a small variation
in visual content. Based on this assumption, they try to define sub-shots by
assessing the visual similarity of consecutive or neighbouring video frames. A
rather straightforward approach that evaluates frames’ similarity using colour
histograms and the x2 test was described in [26], while a method that detects
sub-shots of a video by assessing the visual dissimilarity of frames lying within
a sliding temporal window using 16-bin HSV histograms (denoted as “Eurecom
segmentation”) was reported in [11]. A different approach [3] estimates the grid-
level dissimilarity between pairs of frames and segments a video by observing that
the cumulative difference in the visual content of subsequent frames indicates
gradual change within a sub-shot; a similar approach was presented in [20]. The
method of [25] estimates the brightness, contrast, camera and object motion of
each video frame using YUV histograms and optical flow vectors, and defines
sub-shot boundaries by analysing the extracted features through a coherence
discontinuity detection mechanism on groups of frames within a sliding window.

The methods of the second class segment a video shot into sub-shots based
on the rationale that each sub-shot corresponds to a different action of the cam-
era during the video recording. Hence, these approaches aim to detect different
types of camera activity over sequences of frames, and define these frame se-
quences as the different sub-shots of the video. An early, MPEG-2 compatible,
algorithm that detects basic camera operations by fitting the motion vectors of
the MPEG stream into a 2D affine model, was presented in [18]. Another ap-
proach that exploits the same motion vectors and estimates the camera motion
via a multi-resolution scheme was proposed in [12]. More recently, the estimation
of the affinity between pairs of frames for motion detection and categorization
was a core idea for many other techniques. Some of them use the motion vectors
of the MPEG-2 stream (e.g. [22]), while others compute the parameters of a
3 × 3 affine model by extracting and matching local descriptors [8] or feature
points [24]. The dominant motion transformation between a pair of frames is then
estimated by comparing the computed parameters against pre-defined models.
[9] studies several approaches for optical flow field calculation, that include the
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matching of local descriptors (i.e. SIFT [21], SURF [4]) based on a variety of
block matching algorithms, and the use of the PLK algorithm [6]. Contrary to
the use of experimentally-defined thresholds for categorizing the detected camera
motion, [16] describes a generic approach for motion-based video parsing that
estimates the affine motion parameters, either based on motion vectors of the
MPEG-2 stream or by applying a frame-to-frame image registration process,
factorizes their values via Singular Value Decomposition (SVD) and imports
them into three multi-class Support Vector Machines (SVMs) to recognize the
camera motion type and direction between successive video frames. A variation
of this approach [1], identifies changes in the “camera view” by estimating a
simplified three-parameter global camera motion model using the Integral Tem-
plate Matching algorithm [19]. Then, trained SVMs classify the camera motion
of each frame, and neighbouring frames with the same type of camera motion
are grouped together forming a sub-shot. Another threshold-less approach [17]
aims to identify specific activities in egocentric videos using hierarchical Hid-
den Markov Models (HMM), while the algorithm of [14] combines the concept
of “camera views” and the use of HMM for performing camera motion-based
segmentation of UGVs. Finally, a study on different approaches for motion esti-
mation was presented in [5].

Further to the aforementioned two general classes of methodologies, other ap-
proaches have been also proposed. [7] extracts several descriptors from the video
frames (e.g. colour histograms and motion features) and subdivides each shot
into sub-shots by clustering its frames using k-means clustering. [29, 10] utilize
data from auxiliary camera sensors (e.g. GPS, gyroscope and accelerometers) to
identify the camera motion type for every video sub-shot or a group of events
in UGVs, while other approaches define sub-shots by extracting and processing
3D spatio-temporal slices [23] or through statistical analysis [15].

The proposed method is most closely related to [9], in the sense that mo-
tion information is described by computing the optical flow field using the PLK
algorithm, while it is similar to [8], [24] and [16] in that motion information
is again represented using the optical flow field (computed using other tech-
niques, though). However, these previous approaches try to distinguish the type
of camera motion via computationally-expensive techniques that involve the esti-
mation of homography and affinity between pairs of frames, or the use of trained
classifiers. In contrast, our algorithm efficiently identifies several kinds of video
recording activities based on a lightweight process that finds the dominant mo-
tion in the four quartiles of the video frame, and compares the frame-level motion
distribution against pre-defined motion models.

3 Proposed Method

The proposed algorithm segments a single-shot video into self-contained parts
(called sub-shots) which exhibit visual continuity and correspond to individual
elementary low-level actions that take place during the recording of the video.
These actions include camera panning and tilting; camera movement in the 3D
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Fig. 1: Motion estimation process for (a) right displacement, (b) upward displace-
ment, (c) diagonal displacement of the camera. Focal distance change estimation
process in case of (d) displacement only at horizontal and vertical axes (similar
to (c) - thus, no change in the z-axis), (e) forward displacement or zoom in, (f)
backward displacement or zoom out.

Euclidean space; camera zoom in/out and minor or no camera movement. The
detection of sub-shot boundaries and the identification of the performed action
is based on the extraction and spatio-temporal analysis of motion information.
The latter is computed using the optical flow between pairs of video frames. In
particular each processed pair of frames initially undergoes an image resizing
process that maintains the original aspect ratio of the video frames and makes
their width equal to w. Following, each frame is spatially segmented into four
quartiles. The most prominent corners in each quartile are then detected based
on the algorithm of [28], and used for estimating the optical flow at the region-
level by utilizing the PLK technique. Based on the extracted optical flow, a
mean displacement vector is computed for each quartile, and the four spatially
distributed vectors are treated as a region-level representation of the motion
activity between the pair of analysed frames (left part of Fig. 1a, 1b, 1c).

For detecting and recognizing any displacement of the camera in the 2D space
at the frame-level, the algorithm averages the four computed mean displacement
vectors (middle part of Fig. 1a, 1b, 1c) and projects the resulting vector to
the horizontal and vertical axis of the Euclidean space (right part of Fig. 1a,
1b, 1c). A horizontal-only camera displacement leads to a single x-axis vector
(Fig. 1a), a vertical-only leads to a single y-axis vector (Fig. 1b), while a diagonal
displacement results to a pair of x- and y-axis vectors (Fig. 1c). For identifying
any camera activity at the depth level (i.e. the z-axis of the 3D space) the
developed approach inverts the direction of the mean displacement vectors of
the top- and bottom-left regions of the image (left and middle part of Fig. 1d,
1e, 1f), computes the vector sum of all four vectors and projects it on the x-axis
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(right part of Fig. 1d, 1e, 1f). As depicted in Fig. 1d, in case of camera movement
at the horizontal and/or vertical axes only, the vector inversion process leads to
a set of counterbalanced mean displacement vectors and thus, the magnitude of
the projection is zero. However, in case of camera activity at the depth axis, the
four mean displacement vectors do not maintain the same direction, but point
either to the corners of the frame (Fig. 1e), forming a projection vector with
positive magnitude, which indicates the existence of forward camera movement
or camera zoom in operation; or to the centre of the frame (Fig. 1f), forming
a projection vector with negative magnitude, that denotes the occurrence of
backward camera movement or a camera zoom out operation.

Through the above mentioned process the proposed method computes for
each pair of frames three values that represent the spatial displacement in x-, y-
and z-axis. However, successive frames of a video, even with the standard frame-
rate of 30fps, usually exhibit high visual similarity, which is even more true for
videos of greater frame-rates that can be captured using modern smartphones or
action cameras (e.g. GoPro cameras, which support video recoding up to 240fps).
Guided by this fact, the aforementioned pair-wise motion estimation is not ap-
plied on every pair of consecutive video frames, but only on neighbouring frames
selected through a sampling strategy with a fixed-step equal to 10% of the video
frame-rate. Moreover, for facilitating the upcoming sub-shot segmentation anal-
ysis, the computed spatial displacement values, denoted as Vx, Vy and Vz in the
sequel, are normalized in [−1,+1] where: Vx (Vy) = −1 represents left (down-
ward) displacement of frame pixels equal to 5% of the frame width (height), Vx

(Vy) = +1 signifies right (upward) displacement of frame pixels equal to 5% of
the frame width (height), Vx (Vy) = 0 denotes no displacement of frame pixels,
Vz = −1 (+1) indicates increment (decrement) of the focal distance that causes
inward (outward) spatial displacement of frame pixels equal to 5% of the frame’s
diagonal, and Vz = 0 indicates no change of the focal distance.

The normalized spatial displacement vectors Vx, Vy and Vz are then post-
processed, as described in Algorithm 1, to detect the different sub-shots. Specif-
ically, the values of each vector are initially subjected to low pass filtering in
the frequency domain (sample rate equals video frame-rate; cut-off frequency
empirically set as 1.0Hz), which excludes sharp peaks related to wrong estima-
tion of the PLK algorithm or quick changes in the light conditions (top row of
Fig. 2). Each of the filtered vectors V ′

x, V ′
y and V ′

z is then processed for finding its
intersection points with the corresponding axis, and the identified intersection
points are stored in vectors Ix, Iy and Iz respectively (Fig. 2c). These intersec-
tion points are candidate sub-shot boundaries, since the video frames between a
pair of consecutive intersection points exhibit a contiguous and single-directed
camera movement, thus being a potential sub-shot according to the proposed
approach. However, since most UGVs are captured by amateurs without the use
of any professional equipment that ensures the stabilization of the camera, the
developed algorithm filters-out fragments depicting minor motion by computing
the total displacement over each fragment as the sum of the absolute values
of the filtered displacement values V ′

x, V ′
y and V ′

z of each pair of frames in the
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Algorithm 1 Pseudo code of the proposed technique

Input: Vx, Vy, Vz: axes displacement vectors
Output: O′: set of sub-shot boundaries
1: function ProcessVector(V )
2: Low-pass filter V . Store in V ′.
3: Detect intersection points in V ′. Store in I.
4: Measure the total displacement between intersection points in I. Store in D.
5: Select fragments with displacement D > t as sub-shots. Store in B.
6: end function
7: Bx ← ProcessVector(Vx)
8: By ← ProcessVector(Vy)
9: Bz ← ProcessVector(Vz)

10: Add in O the Bx and By fragments.
11: Extend O by adding Bz fragments that do not coincide with Bx and By fragments.

Mark remaining parts of the video as fragments with no or minor movement.
12: Discard fragments less than 1 sec. Store in O′.

(a) (b)

(c) (d)

Fig. 2: Application of Algorithm 1 for a single normalized displacement vector:
(a) initial values Vx, (b) low-pass filtered values V ′

x, (c) detected candidate sub-
shot boundaries in Ix, (d) selected sub-shot boundaries in Bx; red parts denote
fragments with left displacement, orange parts denote fragments with right dis-
placement and green parts denote fragments with no or minor movement.

fragment. This process results in vectors Dx, Dy and Dz, which store the total
displacement score of each defined fragment in the x-, y- and z-axis respectively.
The video fragments with total displacement score less than an experimentally-
selected threshold t, are discarded. In our evaluations (Section 4) t = 12, which
leads to the best performance (expressed by F-score in Fig. 3). The determined
fragments of each axis are stored in vectors Bx, By and Bz (Fig. 2d). A simple
fusion process is then applied, that takes the union O of Bx and By fragments,
extends it by adding Bz fragments that do not temporally coincide (either com-
pletely or partially) with Bx and By fragments, and marks the remaining parts
of the video as fragments with no or minor movement. The final output of the
algorithm (O′) is formed by discarding fragments with duration < 1sec. through
a process that equally dispenses their frames in the previous and the following
sub-shot.
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Fig. 3: The algorithm’s segmentation effectiveness (expressed as F-score) for dif-
ferent values of threshold t. As shown in the graph, the best performance is
achieved for t = 12, while any value in the range [11, 14] leads to similar results.

4 Experiments and Results

Driven by the lack of publicly available datasets for evaluating the performance
of the developed sub-shot segmentation algorithm1, we built our own ground-
truth dataset. This dataset is publicly available2 and consists of:
– 15 single-shot videos of total duration 6 minutes, recorded in our facilities;

these videos, denoted as “own videos” in the sequel, contain clearly defined
fragments that correspond to several video recording activities.

– 5 single-shot amateur videos of total duration 17 minutes, found on YouTube;
these videos are denoted as “amateur videos” in the sequel.

– 13 single-shot parts of known movies of total duration 46 minutes; these
videos, denoted as “movie excerpts”, represent professional video content.
Ground-truth segmentation of the employed dataset was created by human

annotation of the sub-shot boundaries for each video, where each boundary in-
dicates the end of a visually and temporally contiguous activity of the video
recording device and the start of the next one (e.g. the end of a left camera
panning, which is followed by a camera zooming). Overall, our dataset contains
674 sub-shot transitions. The performance of the developed algorithm was com-
pared against other relevant state-of-the-art methods of the literature. Aiming
to include in our evaluations several different categories of methods (presented
in Section 2), we implemented:
– A straightforward approach (denoted S HSV in the sequel) which assesses the

similarity between subsequent video frames with the help of HSV histograms
and x2 distance, and a variation of it (denoted S DCT) that represents the

1 Some works reported in Section 2 use certain datasets (TRECVid 2007 rushes sum-
marization, UT Ego, ADL and GTEA Gaze) which were designed for assessing the
efficiency of methods targeting specific types of analysis, such as video rushes seg-
mentation [3] and the identification of everyday activities [30] and thus, ground-truth
sub-shot segmentation is not available for them.

2 http://mklab.iti.gr/project/annotated-dataset-sub-shot-segmentation-evaluation
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visual content of the video frames using DCT features and estimates their
visual resemblance based on the cosine similarity.

– A method (denoted B HSV) similar to [26], that selects the first frame of the
video Fa as the base frame and compares it sequentially with the following
ones using HSV histograms and x2 distance until some frame Fb is different
enough, then frames between Fa and Fb form a sub-shot, and Fb is used
as the next base frame in a process that is repeated until all frames of the
video have been processed; a variation of this approach (denoted B DCT)
that represents the visual content of the video frames using DCT features
and estimates their visual resemblance based on the cosine similarity was
also implemented.

– The algorithm of [8] (denoted A SIFT), which estimates the dominant mo-
tion between a pair of frames based on the computed parameters of a 3 × 3
affine model through the extraction and matching of SIFT descriptors; fur-
thermore, variations of this approach that rely on the use of SURF (de-
noted A SURF) and ORB [27] (denoted A ORB) descriptors were also im-
plemented for assessing the efficiency of faster alternatives to SIFT.

– An implementation of the best performing technique of [9] (denoted A OF),
which computes the optical flow using the PLK algorithm and identifies
camera movement by fitting it to a 2×2 affine model containing parameters
that represent the camera pan, tilt, zoom and rotation actions.

– Variations of the local-feature-based approaches documented in [9], that rely
on the extraction and matching of SIFT, SURF and ORB descriptors (de-
noted H SIFT, H SURF and H ORB, respectively) or the computation of
the optical flow using PLK (denoted H OF), for estimating the dominant
motion based on specific parameters of the homography matrix computed
by the RANSAC method [13].

For each one of the tested approaches we counted the number of correct de-
tections (where the detected boundary can lie within a temporal window around
the respective ground-truth boundary, equal to twice the video frame-rate), mis-
detections and false alarms and expressed them in terms of Precision (P), Recall
(R) and F-Score (F), similarly to [1, 2]. Time efficiency was evaluated by com-
puting the ratio of processing time over the video’s duration (a value below 1
indicates faster-than-real-time processing). All experiments were conducted on
a PC with an i7-4770K CPU and 16GB of RAM.

Table 1 reports the evaluation results of each compared approach, both sep-
arately on each of the three parts of the dataset, as described above, and on the
overall dataset. According to these results, and regarding the different imple-
mented methodologies, approaches that estimate the dominant motion based on
a homography matrix seem to be more effective compared to the methods that
rely on affine models or the assessment of visual similarity, with the latter one
being slightly better compared to the affine-based methods in terms of recall.
Among the examined similarity-based techniques, the use of HSV histograms
results in better performance in terms of precision; however, the utilization of
DCT features leads to remarkably higher recall scores, and thus a better overall
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Table 1: Evaluation results for different sub-shot segmentation approaches (P:
Precision, R: Recall, F: F-score).

“Own videos” “Amateur videos” “Movie excerpts” Overall dataset
Method P R F P R F P R F P R F

S HSV 0.31 0.28 0.30 0.23 0.09 0.13 0.28 0.44 0.34 0.28 0.36 0.32

S DCT 0.54 0.88 0.67 0.14 0.86 0.25 0.25 0.84 0.38 0.22 0.84 0.36

B HSV 0.30 0.09 0.14 0.55 0.09 0.16 0.43 0.12 0.18 0.44 0.11 0.18

B DCT 0.50 0.23 0.32 0.36 0.40 0.38 0.43 0.24 0.31 0.41 0.27 0.32

A OF 0.41 0.68 0.50 0.20 0.82 0.31 0.30 0.78 0.43 0.27 0.78 0.40

A SIFT 0.55 0.62 0.59 0.20 0.09 0.12 0.30 0.14 0.19 0.33 0.17 0.23

A SURF 0.54 0.64 0.58 0.29 0.30 0.29 0.36 0.25 0.30 0.36 0.29 0.33

A ORB 0.40 0.25 0.30 0.09 0.02 0.03 0.46 0.02 0.05 0.38 0.05 0.08

H OF 0.98 0.62 0.76 0.26 0.67 0.38 0.41 0.58 0.47 0.37 0.60 0.45

H SIFT 0.90 0.74 0.82 0.27 0.78 0.39 0.35 0.63 0.45 0.34 0.66 0.45

H SURF 0.88 0.73 0.80 0.26 0.70 0.38 0.36 0.64 0.47 0.36 0.66 0.46

H ORB 0.85 0.67 0.75 0.18 0.76 0.30 0.30 0.73 0.43 0.28 0.72 0.40

Proposed 0.96 0.90 0.93 0.42 0.71 0.53 0.48 0.64 0.55 0.52 0.70 0.59

performance (F-score). Concerning the implemented affine-based techniques, the
most efficient is the one that relies on the optical flow, showing the highest recall
scores in all different video categories and comparable precision scores with the
other related methods. Regarding the suitability of local descriptors for comput-
ing an affine model that helps with the identification of the performed movement,
SURF are the most effective ones, SIFT perform slightly worse, and ORB ex-
hibit the weakest performance. With respect to the evaluated homography-based
approaches, the use of different local descriptors or optical flow resulted in sim-
ilar efficiency, with ORB being the least competitive descriptor due to lower
precision. The last row of Table 1 shows that the proposed algorithm is the
best-performing one, achieving the highest F-score on all dataset parts and on
the overall dataset. On the first collection of videos, the developed technique
also exhibits the highest recall score, with the S DCT being the second best,
while its precision is slightly lower than the one achieved by the H OF method.
However, these two methods have lower precision and recall scores, respectively,
resulting to a significantly lower overall performance. On “Amateur videos” the
developed technique is again the best performing one, while the B HSV and the
S DCT methods, that presented competitive precision and recall respectively,
achieved significantly lower overall performance. Similar efficiency is observed
when analysing single-shot parts of professional movies; the proposed approach
is the best in terms of F-score and precision. All the above are reflected in the last
three columns of Table 1, which show the superiority of the developed method
over the other evaluated techniques in the overall dataset. An indicate example
of how the algorithm segments a part of a UGV recorded by a camera that is
moving right and then upwards, is presented in Fig. 4.

With respect to the time-efficiency, as shown in Table 2, the more straight-
forward approaches that segment a video based on the visual resemblance of
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Fig. 4: A sequence of video frames (sampled for space and presentation efficiency)
segmented by the proposed algorithm into two sub-shots; one related to a hori-
zontal and one related to an upward camera movement.

video frames are faster that methods computing the parameters of affine models
or homography matrices, as expected. Moreover, the use of DCT features out-
performs the HSV histograms, while the extraction and matching of complex
local descriptors (SIFT and SURF) is more computationally expensive com-
pared to the matching of binary descriptors (ORB) or the extraction of optical
flow for computing the affine or homography matrices. As shown, the proposed
approach exhibits competitive time performance, being a bit slower than the
straightforward similarity-based methods and faster than almost the entire set
of the evaluated affine- and homography-based techniques. Its time efficiency
permits sub-shot segmentation to be performed nine times faster than real-time
analysis, while this performance can be further improved by introducing simple
parallelization in the algorithm’s execution. In fact, a multi-threaded software
implementation of the proposed technique splits the group of analysed frames
into four different and non-overlapping parts which are being processed (i.e. for
extracting the optical flow among each pair of frames) in parallel on the CPU.
The lightweight post processing of the computed displacement vectors for motion
detection and recognition is still carried out using a single thread. Experiments
on the same dataset showed 267% speed-up compared to the single-thread ver-
sion, which means that the analysis of a single-shot video with the multi-thread
implementation of the algorithm takes only 4.1% of the video’s duration.

Table 2: Time-efficiency of the evaluated sub-shot segmentation approaches.

Method
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Proc. time %
of video length

7.1 2.9 3.8 6.7 7.8 127.2 56.3 12.7 14.5 132.6 70.2 16.1 11.1

The above findings document that the proposed algorithm combines the time-
efficiency of similarity-based approaches that rely on the extraction of lightweight
visual descriptors (such as colour histograms and DCT features) with the de-
tection effectiveness of more complex state-of-the-art techniques that estimate
the dominant motion with the help of affine transformations and image ho-
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mography. Moreover, the developed approach ensures the highest accuracy over
different types of single-shots videos, while its time-efficiency makes it suitable
for application in large collections of videos or real-time analysis of multiple
video streams.

5 Conclusions

In this paper we proposed a framework for motion-driven sub-shot segmenta-
tion of UGVs and released a new dataset for evaluating sub-shot segmentation
algorithms. The developed algorithm detects and recognizes several different
types of video recording activities, such as camera pan, tilt, zoom and displace-
ment, by computing the optical flow between neighbouring frames. Experimen-
tal evaluations showed that the developed segmentation algorithm outperforms
other, more complex methods that rely on the extraction and matching of lo-
cal descriptors, while it maintains the time-efficiency of more straightforward
similarity-based approaches, being several times faster than real-time analysis.
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