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ABSTRACT 
 

Objective 
 
Vigorous physical activity (PA) in highly trained athletes has been associated with 

heightened left ventricular (LV) trabeculation extent. It has therefore been hypothesised that 

LV trabeculation extent may participate in exercise-induced physiological cardiac 

remodelling. Our cross-sectional observational study aimed to ascertain whether there is a 

‘dose-response’ relationship between PA and LV trabeculation extent, and whether this could 

be identified at opposite PA extremes.  

 

Methods 
 
In a cohort of 1,030 individuals from the community-based UK Biobank study (male/female 

ratio: 0.84, mean age: 61), PA was measured via total metabolic equivalent of task (MET) 

minutes/week and seven-day average acceleration, and trabeculation extent via maximal non-

compaction/compaction ratio (NC/C) in long-axis images of cardiovascular magnetic 

resonance (CMR) studies. The relationship between PA and NC/C was assessed by 

multivariate regression (adjusting for potential confounders) as well as between demographic, 

anthropometric and LV phenotypic parameters and NC/C. 

 

Results 
 
There was no significant linear relationship between PA and NC/C (full adjustment, total 

MET-minutes/week: ß=-0.0008, 95%CI -0.039-0.037, p=0.97; seven-day average 

acceleration: ß=-0.047, 95%CI -0.110-0.115, p=0.13, per interquartile range (IQR) increment 

in PA), or between extreme PA quintiles (full adjustment, total MET-minutes/week: ß=-

0.026, 95%CI -0.146-0.094, p=0.67; seven-day average acceleration: ß=-0.129, 95%CI -

0.299-0.040, p=0.49), across all adjustment levels. A negative relationship was identified 
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between left-ventricular ejection fraction (LVEF) and NC/C, significantly modified by PA (ß 

difference=-0.006, p=0.03). 

 

Conclusions 
 
In a community-based general population cohort, there was no relationship at, or between, 

extremes, between PA and NC/C, suggesting that at typical general population PA levels, 

trabeculation extent is not influenced by PA changes. 
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Key messages: 

What is already known about this subject? 

It has been shown that postnatal changes which affect cardiac loading conditions affect left-

ventricular (LV) trabeculation extent, such as in pregnancy and during extreme athletic-level 

physical activity (PA). Excessive levels of LV trabeculation form a diagnostic phenotype in 

left-ventricular non-compaction (LVNC) cardiomyopathy. 

 

What does this study add? 

This study provides insight into the relationship between PA and LV trabeculation extent, at 

levels of PA typical of a non-athletic community-based middle-aged population cohort 

analysed using cardiovascular magnetic resonance (CMR) imaging. We observed no 

relationship at or between extremes of PA within our cohort of 1,030 individuals, despite 

evidence to suggest exercise-induced cardiac remodelling in other parameters such as left-

ventricular end-diastolic volume (LVEDV) and LV mass. 

 

How might this impact on clinical practice? 

At the PA levels typical of a community-based population, there is no evidence to suggest 

that excessive trabeculation, if observed, occurs as an epiphenomenon to other exercise 

induced cardiac remodelling processes. 

 

 

INTRODUCTION 
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The degree of left ventricular (LV) trabeculation varies among individuals. The most 

documented pathological consequence of excessive trabeculation as a diagnostic phenotype is 

left ventricular non-compaction (LVNC), recognised as a genetic cardiomyopathy by the 

American Heart Association (AHA) (1), and an unclassified cardiomyopathy by both the 

World Health Organisation (WHO) and the European Society of Cardiology (ESC) (2,3). 

Prominent trabeculation is sometimes observed in the setting of dilated and hypertrophic 

cardiomyopathies, and in association with congenital heart defects and neuromuscular 

disorders (4). Therefore, it is plausible that trabeculation extent may be a morphologic 

expression of a wide spectrum of myocardial disease. 

 

More recently, there is growing interest in the role of physiological influence on cardiac 

trabeculation. It has been shown that postnatal changes in cardiac loading conditions affect 

trabeculation extent using models of pregnancy and extreme physical activity (PA) (5,6). 

Previous literature has only identified a link between PA and trabeculation extent at the 

extreme level, using a cohort of highly trained athletes. To date, there has been no focussed 

investigation into this relationship within a community-based population cohort, with PA 

distribution more reflective of a general population. For this study, such a cohort was 

provided by the UK Biobank study - a large prospective population-based cohort study of 

over 500,000 participants aged 40-69 who have been recruited from 2006-2010. It aims to 

follow the health of these participants through comprehensive data collection at 22 centres 

across the UK, the core of which includes a wealth of demographic, anthropometric and 

environmental exposure data. A subset of these participants underwent cardiac magnetic 

resonance (CMR) scanning, which provided additional extensive cardiac phenotypic data (7).  
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Our study thus aimed to determine for the first time, in a community-based population 

cohort, whether the amount of PA undertaken by an individual resembled a relationship of a 

‘dose response’ nature, as well as at high and low extremes of PA, with the degree of LV 

trabeculation extent observed, quantified by high-resolution (CMR) imaging.  

 

MATERIALS AND METHODS 

 

Participant selection 

 

The UK Biobank has collected a wealth of phenotypic and genotypic information about its 

population of over 500,000 enrolled individuals, including data collection from 

questionnaires, physical measures, accelerometry, imaging, genome-wide genotyping with 

subsequent longitudinal follow-up for health-related outcomes. The sample size of 500,000 

was theoretically calculated for reliable detection of the effects of different exposures on a 

wide variety of conditions in nested case-control studies with sufficient statistical power. The 

cohort’s characteristics make it well-suited to study exposure-disease relationships due to its 

large size and heterogeneity of exposure measures. The baseline summary characteristics of 

the cohort can be viewed on the UK Biobank website, in the data showcase section (8). The 

CMR imaging sub-study of 5,065 participants occurred between 2014-2015. The study 

complies with the Declaration of Helsinki and was approved by our institutional review body, 

with all participants having provided informed written consent. The UK Biobank's scientific 

protocol and operational measures were approved by the Northwest Research Ethics 

Committee in the UK.  

Classifying Physical Activity Level 
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For each individual, PA was measured subjectively by both total metabolic equivalent of task 

(MET) minutes per week using information gathered from a self-reported International 

Physical Activity Questionnaire (IPAQ) (9), and objectively by seven-day average 

acceleration in units of milli-gravity measured by a wrist-worn triaxial accelerometer. The 

MET is a physiological measure of energy expenditure assigned to a particular PA, which 

compares its relative intensity compared to rest – this was combined with the duration of PA 

undertaken in minutes to form the composite measure of MET-minutes. This provides a 

generalised measure of activity volume undertaken – for instance, 30 minutes of brisk 

walking per day would equal 1050 MET min/week, and jogging for the same period every 

day would equal 1470 MET min/week. Table 1 and both figures 1 and 2 in the supplementary 

material outline the calculation process.  

 

The seven-day average acceleration measurement was acquired by an Axivity AX3 

accelerometer worn continuously on the wrist of the participant’s dominant hand for seven 

consecutive days, detecting movement in all three axes. The raw data obtained from the 

device captured at 100Hz was calibrated to adjust for acceleration due to local gravity using 

the van Hees method (10). Wear and non-wear episodes were also identified from the data 

(11). 

 

CMR and trabeculation extent analysis 

 

For all participants, all CMR studies were acquired with a wide bore 1.5 Tesla scanner 

(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany) and 

the post-processing software cvi42 (Version 5.1.1, Circle Cardiovascular Imaging Inc., 

Calgary, Canada) was used for scan analysis. LV mass, LV end-diastolic volume (LVEDV) 
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and LV ejection fraction (LVEF) were manually measured from balanced steady-state free 

precession (bSSFP) cine short and long-axis images.  

 

These long-axis images were also used to measure trabeculation extent, using the maximal 

non-compaction/compaction (NC/C) ratio. There was an initial qualitative assessment for the 

presence of trabeculation in each of the three LV regions (basal, mid and apical) in the end-

diastolic phase, defined as the visual identification of two myocardial layers represented by a 

difference in signal intensity between the two layers. If a trabeculated layer was visualised, 

the point at which the highest NC/C ratio could be obtained was measured for each region 

(12). The NC/C ratio was obtained by measuring the widths of the non-compacted 

(trabeculated) and compacted layer using the line contour tool, perpendicular to the length of 

the compacted layer. The highest ratio from any region of the whole scan was used to 

represent the trabeculation extent for that scan in the statistical analysis. Figure 1 

demonstrates the process. 

 

Statistical Analysis 

 

All continuous variables were assessed for normality using histograms and quantile-quantile 

plots. Descriptive statistics for continuous variables were presented as mean ± standard 

deviation (SD) or median ± interquartile range (IQR), while categorical variables were 

presented as a frequency (percentage). Missing data, if encountered, was addressed using 

multiple imputation by chained equation technique to create statistically valid imputed data 

based on variables from the original observed dataset to form twenty differently imputed 

datasets. The estimates and standard errors from each imputed dataset were then pooled with 

Rubin’s rules (13). 
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We constructed multiple nested linear regression models to identify any potential ‘dose-

response’ relationship between the NC/C ratio and each PA measurement variable. We scaled 

both PA variables by their IQR before entering into the models to enable sensible comparison 

of effect estimates between the two methods of PA measurement – the effect estimates 

therefore indicate the change in relevant dependent variable per IQR increment in PA. In the 

unadjusted models, the bivariate association between PA and maximal NC/C ratio was tested. 

In limited models, adjustments were made for demographics and anthropometrics: age, sex, 

ethnicity and height. In fully-adjusted models, the remaining covariates were added – body 

mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate 

(HR), smoking status, regular alcohol use, degree level education, diabetes, cardiovascular 

disease, hypertension, income, Townsend deprivation index, antihypertensive use, statin use, 

LVEDV, LV mass and LVEF.  

 

We performed the following secondary analyses: (i) an investigation of the association 

between NC/C ratio and high and low PA quintiles (for each PA measurement method) using 

multivariate linear regression, following the same levels of adjustment, to form the extreme 

groups analysis, (ii) an analysis of effect modification by age, sex, BMI, LVEDV, LV mass 

and LVEF by introducing cross product terms to the dose-response linear regression analysis, 

(iii) an investigation of the fully adjusted models of multivariate regression analysis between 

PA and maximal NC/C ratio, to observe any significant associations between the outcome 

and the included covariates, (iv) an investigation of the relationship between PA and clinical 

cardiac parameters (LVEDV, LV mass and LVEF), to clarify whether typical physiological 

changes that occur in exercise-induced cardiac remodelling were exhibited in our cohort, and 

(v) an investigation of ‘dose-response’ relationships (using the same method of model 

construction) between PA in MET-minutes and maximal NC/C ratio at walking, moderate 

and vigorous PA intensities, and between categorical pre-defined PA intensity levels and 
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maximal NC/C ratio (of which the methodology is described in appendix 1 of the 

supplementary material) (14). We performed restricted cubic spline transformation of PA 

variables to investigate nonlinear relationships. The optimal number of knots for restricted 

cubic spline–transformed variables was determined by the Akaike information criterion. 

Twenty randomly-selected studies were independently analysed by two different readers to 

assess the reproducibility of NC/C ratio measurements. Inter-observer variability of repeated 

measurements was quantified by intra-class correlation coefficient (ICC) and was visually 

assessed with a Bland-Altman plot. The programming language R was used for all statistical 

analyses (15). p values below 0.05 were considered statistically significant. We estimated that 

a sample size of at least 1000 would provide 99.8% statistical power at small effect sizes (R2 

= 0.05). Table 2 in the supplementary material demonstrates the output of power calculations 

based on a range of R2 values and effect sizes. 

 

RESULTS 

 

A total of 1,030 participants were selected randomly for analysis in this study, from the initial 

pool of 5,065 UK Biobank participants who had undergone CMR imaging. Figure 3 in the 

supplementary material summarises the selection process. 

 

 
 
Baseline Characteristics 

 

Table 1 shows the baseline characteristics summary for both the whole dataset, and a subset 

of this dataset which includes participants for which there was no missing data in all 

covariate fields – termed ‘complete cases’. Both datasets showed a statistically significant 

difference – but minimal clinical difference – between the mean ages only, while means for 
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LVEDV, LV mass, LVEF, maximal NC/C ratio, total MET-minutes/week and overall 

acceleration average did not differ significantly between datasets. The original cohort was 

predominantly of Caucasian ethnicity, with a mean age of 61 years, where 45.7% were men. 

 

Table 1 – Baseline characteristics for whole dataset, and complete cases (of exclusively no missing covariate 

data). ‘Percentage complete’ refers to the proportion of complete data in our whole dataset per covariate. 

 
Whole 

Dataset 
Complete 

Cases p 
Percentage 

complete (%) 

n 1030 437   

Age, years (mean [sd]) 61 (7.6) 59 (6.4) <0.001 100 

Male sex (n [%]) 471 (45.7)  191 (43.7)  0.513 100 

Caucasian ethnicity (n [%]) 1023 (99.3)  430 (98.4)  0.171 100 

Height, cm (mean [sd]) 169.8 (9.3) 169.8 (9.1) 0.950 100 

BMI, kg/m2 (mean [sd]) 26.7 (4.2) 26.4 (4.0) 0.274 100 

Weight (mean [sd]) 75.5 (14.7) 74.8 (14.3) 0.386 100 

Systolic blood pressure, mmHg (mean [sd]) 136.4 (18.0) 135.2 (17.7) 0.250 99.9 

Diastolic blood pressure, mmHg (mean [sd]) 78.7 (9.7) 78.7 (9.3) 0.990 99.9 

Heart rate, bpm (mean [sd]) 70 (11.8) 70 (11.4) 0.902 100 

Average household income before tax (n [%])   0.726 89.3 

Less than £18,000 129 (14.0)  56 (12.8)    

£18,000 to £30,999 270 (29.3)  117 (26.8)    

£31,000 to £51,999 285 (31.0)  139 (31.8)    

£52,000 to £100,000 180 (19.6)  96 (22.0)    

Greater than £100,000 56 ( 6.1)  29 ( 6.6)    

Degree level or professional education (n [%]) 652 (63.3)  290 (66.4)  0.290 100 

Townsend deprivation index (mean [sd]) -1.87 (2.68) -1.76 (2.60) 0.472 100 

Smoking status (n [%])   0.731 98.4 

Never 611 (60.3)  255 (58.4)    

Previous 361 (35.6)  161 (36.8)    

Current 42 ( 4.1)  21 ( 4.8)    

Regular alcohol use (n [%]) 446 (43.8)  189 (43.2)  0.888 98.8 

Diabetes mellitus (n [%]) 56 ( 5.4)  23 ( 5.3)  0.993 100 

Cardiovascular disease (n [%]) 91 ( 8.8)  24 ( 5.5)  0.038 100 

Hypertension (n [%]) 322 (31.3)  135 (30.9)  0.938 100 

Antihypertensive use, (n [%]) 237 (23.0)  97 (22.2)  0.786 100 

Statin use (n [%]) 225 (21.8)  77 (17.6)  0.078 100 

LVEDV, ml/m2 (mean [sd]) 145.2 (33.4) 145.9 (33.0) 0.707 98.2 

LV mass, g/m2 (mean [sd]) 89.2 (24.1) 88.5 (23.4) 0.595 98.2 

LVEF, % (mean [sd]) 59.4 (5.9) 59.5 (5.6) 0.968 98.2 

Maximal NC/C Ratio (mean [sd]) 1.93 (0.50) 1.91 (0.51) 0.508 100 
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Total MET-minutes/week, MET-min/week 
(median [IQR]) 2115 (3599) 2226 (4061) 0.214 

73.1 

Seven-day average acceleration, milli-gravity 
(median [IQR]) 27.56 (13.50) 28.41 (14.40) 0.164 

62.6 

 
 

Splitting the range of values for both PA measurement methods produced the following 

quintiles: for total MET-minutes per week these were 0-794.4, 794.4-1626, 1626-2853, 2853-

5193, and 5193 to 24318 MET-min/week, and for average acceleration these were 0.05-20.7, 

20.7-25.7, 25.7-30.6, 30.6-37.6, and 37.6-67.1 units of milli-gravity. Figure 4 in the 

supplementary material demonstrates the similar distribution of PA in total MET-minutes per 

week across the cohort, relative to the original CMR pilot study cohort of 5065 individuals. 

Maximal NC/C values ranged from 0.71 to 3.67, with a median of 2.00. There was a high 

level of agreement between repeated measurements of NC/C values as indicated by ICC 

(0.75) and the Bland-Altman plot in figure 5 of the supplementary material. 

 

‘Dose-response’ and extreme groups relationship analysis 

 

Pooled multivariate regression was carried out between total MET and seven-day average 

acceleration, and maximal NC/C ratio, after multiple imputation. For both methods of PA 

measurement, there was no significant linear relationship demonstrated between PA and 

maximal NC/C ratio at all adjustment levels. Additionally, restricted cubic spline analyses 

showed no convincing evidence to support nonlinear relationships (Figure 6 in the 

supplementary material). 

 

Pooled multivariate regression was also performed between the lowest and highest PA 

quintiles of the cohort and maximal NC/C ratio for both PA measurement methods after 

multiple imputation. At all levels of model adjustment for both methods of PA measurement, 

no significant relationship was found between PA and maximal NC/C ratio between lowest 
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and highest quintiles of PA values. Table 2 shows the analysis of both the dose-response and 

the extreme groups relationship. 

 

Table 2 – Association between PA (measured in both total MET-minutes/week and overall seven day average 

acceleration) and maximal NC/C ratio, for both the dose-response and extreme groups analysis. Effect estimate 

reflects an NC/C ratio change per IQR of either total MET-minutes/week or seven-day average acceleration. 

 

 Model 
Unadjusted Limited adjustment Full adjustment 

Clinical 
Cardiac 
Parameter 

PA 
Measurement 
Method 

Effect 
Estimate 

95% 
CI 

p value Effect 
Estimate 

95% 
CI 

p value Effect 
Estimate 

95% 
CI 

p value 

Dose-
response 
analysis 

Total MET-
minutes/week 0.019 

-0.019 
to 

0.056 
0.32 0.024 

-0.013 
to 

0.060 
0.20 -0.001 

-0.039 
to 

0.037 
0.97 

Seven-day 
average 

acceleration 
-0.012 

-0.062 
to 

0.039 
0.65 -0.007 

-0.059 
to 

0.045 
0.79 -0.047 

-0.110 
to 

0.015 
0.13 

Extreme 
groups 
analysis 

Total MET-
minutes/week 0.049 

-0.060 
to 

0.158 
0.38 0.062 

-0.046 
to 

0.171 
0.26 -0.026 

-0.146 
to 

0.094 
0.67 

Seven-day 
average 

acceleration 
-0.036 

-0.157 
to 

0.086 
0.56 -0.017 

-0.144 
to 

0.111 
0.79 -0.129 

-0.299 
to 

0.040 
0.49 

 

 

Effect modification by cross-products 

 

In fully adjusted models, age, sex, BMI, LVEDV and LV mass all produced no significant 

effect modifications on the continuous relationship between PA (in both measurement 

methods) and maximal NC/C ratio. LVEF was the only covariate to produce a significant 

effect modification when PA was measured in total MET-minutes/week. There was an 

overall negative relationship between LVEF and NC/C ratio, where one SD increment in 

LVEF was associated with a decrease of 0.04 units of maximal NC/C ratio. Incorporating PA 

(when measured in total MET-minutes/week) with LVEF as a crossproduct significantly 

modified this relationship by augmenting the negative relationship between LVEF and NC/C 

ratio (p = 0.03).  
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Association between covariates and NC/C ratio in the fully adjusted models 

 

Tables 3 and 4 show the results of the fully adjusted multivariate regression models carried 

out between both methods of PA measurement and maximal NC/C ratio, in our ‘dose-

response’ analysis. Both models showed positive associations between female sex and 

LVEDV and maximal NC/C ratio, as well as negative associations between LV mass and 

LVEF and maximal NC/C ratio. The model investigating PA in total MET-minutes/week 

showed a positive association between age and NC/C ratio. The model investigating PA in 

overall seven-day average acceleration showed a negative association between BMI and 

maximal NC/C ratio. 

 

Table 3: Fully adjusted multivariate regression model from analysis of the relationship between PA in total 

MET-minutes per week and maximal NC/C ratio (p values less than 0.05 are in bold). 

 

Covariate Effect 
estimate 

Standard 
error 

95% confidence 
interval p 

      Low High   
Age (per SD: 7.68 years) 0.041 0.015 0.000 0.077 0.031 

Sex (Male) -0.169 0.050 -0.267 -0.071 0.001 

Ethnicity (Caucasian) 0.210 0.182 -0.148 0.568 0.249 

Height (per SD: 9.26cm) -0.009 0.028 -0.065 0.037 0.610 

BMI (per SD: 4.19kg/m2) -0.034 0.017 -0.071 0.000 0.054 

SBP (per SD: 18.0mmHg) -0.018 0.018 -0.072 0.018 0.344 
DBP (per SD: 9.64mmHg) -0.010 0.019 -0.058 0.029 0.640 

HR (per SD: 11.7bpm) 0.012 0.012 -0.023 0.047 0.476 

Average household income before tax:            

Less than £18,000 0.014 0.053 -0.089 0.117 0.788 

£31,000 to £51,999 -0.053 0.041 -0.134 0.027 0.192 

£52,000 to £100,000 -0.067 0.049 -0.163 0.029 0.170 

Greater than £100,000 -0.005 0.073 -0.147 0.138 0.946 

Degree level or professional education -0.041 0.032 -0.105 0.022 0.204 
Townsend deprivation index (per SD: 
2.68) -0.021 0.016 -0.054 0.011 0.178 
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Smoking status:           

Never smoked -0.028 0.078 -0.181 0.125 0.718 

Previous smoker -0.052 0.079 -0.208 0.103 0.509 

Regular alcohol use -0.021 0.032 -0.083 0.042 0.519 

Diabetes mellitus -0.082 0.070 -0.220 0.055 0.240 
Cardiovascular disease -0.014 0.058 -0.127 0.100 0.811 

Hypertension -0.084 0.057 -0.196 0.027 0.138 

Antihypertensive use 0.017 0.064 -0.108 0.142 0.790 

Statin use 0.002 0.044 -0.084 0.089 0.956 

LVEDV (per SD: 33.3ml/m2) 0.166 0.025 0.112 0.210 < 0.001 

LV mass (per SD: 24.1g/m2) -0.120 0.028 -0.174 -0.065 < 0.001 

LVEF (per SD: 5.91%) -0.033 0.016 -0.064 -0.016 0.039 

Total MET-minutes per week (per 
IQR: 3505 MET-min/week) -0.001 0.019 -0.039 0.037 0.966 

 
 

Table 4: Fully adjusted multivariate regression model from analysis of the relationship between PA in average 

acceleration and maximal NC/C ratio (p values less than 0.05 are in bold). 

 

Covariate Effect 
estimate 

Standard 
error 

95% confidence 
interval p 

      Low High   
Age (per SD: 7.68 years) 0.030 0.023 0.000 0.068 0.077 

Sex (Male) -0.175 0.050 -0.273 -0.077 < 0.001 

Ethnicity (Caucasian) 0.167 0.184 -0.194 0.528 0.365 

Height (per SD: 9.26cm) -0.019 0.028 -0.065 0.028 0.416 
BMI (per SD: 4.19kg/m2) -0.046 0.021 -0.088 -0.008 0.014 

SBP (per SD: 18.0mmHg) -0.018 0.018 -0.072 0.018 0.366 

DBP (per SD: 9.64mmHg) -0.010 0.019 -0.058 0.029 0.622 

HR (per SD: 11.7bpm) 0.012 0.012 -0.023 0.047 0.638 

Average household income before tax:            

Less than £18,000 0.017 0.053 -0.088 0.122 0.751 

£31,000 to £51,999 -0.052 0.041 -0.132 0.029 0.210 

£52,000 to £100,000 -0.069 0.049 -0.164 0.027 0.158 

Greater than £100,000 -0.014 0.073 -0.157 0.129 0.845 

Degree level or professional education -0.036 0.032 -0.100 0.027 0.263 
Townsend deprivation index (per SD: 
2.68) -0.021 0.016 -0.054 0.011 0.174 

Smoking status:           

Never smoked -0.019 0.078 -0.172 0.134 0.807 

Previous smoker -0.042 0.080 -0.198 0.114 0.600 
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Regular alcohol use -0.020 0.032 -0.082 0.043 0.536 

Diabetes mellitus -0.083 0.070 -0.220 0.054 0.235 

Cardiovascular disease -0.022 0.058 -0.136 0.091 0.698 

Hypertension -0.091 0.057 -0.202 0.021 0.110 

Antihypertensive use 0.019 0.063 -0.105 0.144 0.761 
Statin use 0.002 0.044 -0.084 0.088 0.962 

LVEDV (per SD: 33.3ml/m2) 0.165 0.025 0.116 0.214 < 0.001 

LV mass (per SD: 24.1g/m2) -0.110 0.028 -0.165 -0.055 < 0.001 

LVEF (per SD: 5.91%) -0.034 0.016 -0.065 -0.003 0.034 

Seven-day average acceleration (per 
IQR: 13.4 milli-gravity) -0.047 0.031 -0.110 0.015 0.133 

 

 

Relationship between PA and clinical cardiac parameters 

 

Across all levels of adjustment, there was no significant relationship between PA and LVEF 

with both methods of PA measurement. However, with full adjustment, there was a 

significant positive relationship between PA (in both measurement methods) and LV mass, 

with a similar significant relationship also observed at limited adjustment when PA was 

measured in seven-day average acceleration. The analysis of these relationships is shown in 

Table 5. In addition, there was a significant positive relationship between PA (in both 

measurement methods) and LVEDV across all adjustments (Full adjustment in total MET-

minutes/week: ß = 1.509 per 1 IQR increment, 95% CI 0.028 to 2.990, p = 0.046; Full 

adjustment in seven-day average acceleration: ß = 2.474 per 1 IQR increment, 95% CI 0.053 

to 4.895, p = 0.045).  

 

Table 5 – Associations between PA (in both methods of measurement) and LVEF, and PA and LV mass. Effect 

estimate reflects an LVEF (in %) or LV mass (in g/m2) change per IQR of either total MET-minutes/week or 

seven-day average acceleration.  

 

 Model 
Unadjusted Limited adjustment Full adjustment 
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Clinical 
Cardiac 
Parameter 

PA 
Measurement 
Method 

Effect 
Estimate 

95% 
CI 

p value Effect 
Estimate 

95% 
CI 

p value Effect 
Estimate 

95% 
CI 

p value 

LVEF 

Total MET-
minutes/week -0.440 

-0.886 
to 

0.006 
0.053 -0.415 

-0.863 
to 

0.032 
0.069 -0.233 

-0.687 
to 

0.221 
0.312 

Seven-day 
average 

acceleration 
-0.501 

-1.044 
to 

0.041 
0.070 -0.514 

-1.079 
to 

0.050 
0.073 -0.231 

-0.895 
to 

0.433 
0.493 

LV mass 

Total MET-
minutes/week 1.388 

-0.222 
to 

2.998 
0.091 0.969 

-0.178 
to 

2.115 
0.097 1.344 

0.380 
to 

2.307 
0.006 

Seven-day 
average 

acceleration 
2.329 

-0.153 
to 

4.811 
0.066 2.587 

-0.767 
to 

4.407 
0.005 3.480 

1.839 
to 

5.121 
<0.001 

 

Dose response and categorical intensity analysis between PA and maximal NC/C ratio 

 

Table 6 shows the pooled multivariate regression analysis, after multiple imputation, between 

PA in MET-minutes per week at walking, moderate and vigorous PA intensities and maximal 

NC/C ratio, as well as between PA at categorical low vs. moderate, and categorical low vs. 

high PA intensity, and maximal NC/C ratio. At all levels of adjustment, no significant 

relationship was found. 

 
 
Table 6 – Association between PA (measured in i) walking, moderate, and vigorous MET-minutes/week, and ii) 

low vs. moderate and high PA intensity) and maximal NC/C ratio. Effect estimate reflects an NC/C ratio change 

per IQR MET-minutes/week. 

 
 Model 

Unadjusted Limited adjustment Full adjustment 
PA 
Measurement 
Method 

Effect 
Estimate 

95% CI p value Effect 
Estimate 

95% CI p value Effect 
Estimate 

95% CI p value 

Total walking 
MET-

minutes/week 
0.006 -0.024 to 

0.037 0.68 0.005 -0.025 
to 0.035 0.76 -0.007 

-0.037 
to 

0.023 
0.65 

Total moderate 
MET-

minutes/week 
0.001 -0.033 to 

0.035 0.95 0.002 -0.031 
to 0.036 0.88 -0.018 

-0.052 
to 

0.016 
0.31 
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Total vigorous 
MET-

minutes/week 
0.016 -0.007 to 

0.039 0.19 0.021 -0.001 
to 0.044 0.06 0.006 

-0.017 
to 

0.029 
0.60 

Low vs. 
moderate 

categorical 
activity 

0.045 -0.039 to 
0.130 0.29 0.048 -0.035 

to 0.131 0.26 0.022 
-0.060 

to 
0.104 

0.60 

Low vs. high 
categorical 

activity 
0.009 -0.073 to 

0.092 0.83 0.022 -0.058 
to 0.104 0.58 -0.037 

-0.119 
to 

0.046 
0.39 

 
 

DISCUSSION 

 

In our study, the first to examine the relationship between PA and LV trabeculation extent in 

a community-based cohort using CMR imaging, the following observations were made. 

Firstly, there was no linear relationship between PA and maximal NC/C ratio, for both PA 

measurement methods. Secondly, there was no significant difference in maximal NC/C ratio 

between the lowest and highest PA extreme groups for both PA measurement methods. 

Thirdly, PA (measured in total MET-minutes/week) augmented the negative relationship 

between LVEF and maximal NC/C ratio. Finally, age and LVEDV exhibited a significantly 

positive linear relationship with maximal NC/C ratio, whilst male sex, BMI, LV mass and 

LVEF exhibited a significantly negative linear relationship with maximal NC/C ratio. 

 

Studies that previously hypothesised that LV trabeculation extent may participate in the 

exercise-induced cardiac remodelling process using models of pregnancy and extreme 

athletically trained PA levels found increased trabeculation extent in tandem with other 

phenotypical LV changes expected under these preload increasing conditions, such as 

increased LV mass, LVEDV and LV cavity size (5,6). No linear relationship was identified 

between PA and LV trabeculation extent, despite evidence to suggest exercise induced 

cardiac remodelling, namely a significant positive linear relationship between PA and 

LVEDV, and PA and LV mass. This suggests that within a community-based population, 
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trabeculation extent is not a cardiac phenotype that is significantly sensitive enough to be 

influenced by PA, reinforced by the lack of a significant ‘dose-response’ relationship found 

between PA in MET-minutes/week and maximal NC/C ratio at vigorous PA intensity levels. 

In addition, there was no significant effect of extreme PA on trabeculation extent in our 

extreme groups analysis. This finding contrasts with the results of Gati’s study in 2013 of a 

similar sample size, where athletes displayed a higher prevalence of increased LV 

trabeculation (18.3%) compared with controls (7.0%) (6). 

 

It could therefore be suggested that there exists a PA threshold which must be exceeded for 

increased trabeculation extent to manifest as a phenotypical change in response to increased 

PA. As Gati’s study selected athletes ‘competing at regional or national levels’ that were aged 

between 14 and 35, it was more likely to select for elite athletes compared to that of our 

cohort, with an older age range and more reflective of a general community-based 

population. It is therefore possible that the PA levels reached by the cohort in our study were 

not high enough to produce trabeculation changes of sufficient magnitude to be detected 

despite our large sample size.  

 

Effect size modification by covariates was also investigated. In the fully adjusted model, 

including LVEF as a cross product produced a significant effect size modification in the 

relationship between PA (in total MET-minutes/week) and maximal NC/C ratio. Given the 

significant negative relationship found in our study between LVEF and maximal NC/C ratio, 

the effect modification analysis suggests that PA may have some degree of further negative 

influence on this relationship. 

 

Our study also echoed previous research within another community based cohort – the Multi-

Ethnic Study of Atherosclerosis (MESA), where higher PA levels resulted in both an 
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increased LVEDV and a decreased resting HR (16). Further research performed using the 

MESA cohort also identified influencing factors on trabeculation extent similar to our study, 

where both female sex and higher LVEDV were associated with a higher maximal NC/C 

ratio. However, this study identified no association between LVEF and maximal NC/C ratio, 

which contrasts with our study’s findings (17). 

 

Evidence from another recent study has further validated our finding of an association 

between LVEDV and trabeculation extent. This was undertaken in a healthy Singaporean 

Chinese cohort, which found LVEDV to also be positively concordant with LV trabeculation 

extent, measured by fractal dimension (FD) analysis (18). This study also reported a positive 

association between LV mass and LV trabeculation extent, whereas in contrast our study 

found a negative association between LV mass and maximal NC/C ratio. This can however 

be explained by hearts with higher LV mass exhibiting a thicker compacted myocardium, 

thereby reducing maximal NC/C ratio values in our study by augmenting the denominator.  

Limitations 

 

There were some limitations of the data relevant to our study. The total MET-minutes/week 

measurement of PA was self-reported, reducing the consistency of recordings due to differing 

interpretations of the questionnaire by each participant. The calculation process in the 

questionnaire also did not take into account more precise measures of the amount of each 

exact type of PA undertaken, instead grouping activities into three relative MET intensities 

for calculation. Seven-day average acceleration was a more objective alternate measurement 

gained from the wrist-worn accelerometer, but the one-week sample period may not have 

produced average estimates as accurate as those from a longer sample period. Also, the 

values produced by average measurements may not have been large enough to reflect a 

potential ‘threshold dose’ of PA, above which an effect on maximal NC/C ratio may have 
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been observed.  

 

Our study was also limited in the trabeculation measurement method used. As the maximal 

NC/C ratio was taken for the LV globally, regional distribution of LV trabeculation was 

therefore not considered, meaning that more detailed region-specific analysis could not be 

performed, such as the impact of PA purely on apical trabeculation extent. Also, much 

previous analysis of LV trabeculation has been performed using echocardiographic data (5,6), 

which is the most common method of assessing LV trabeculation extent in the context of 

clinically diagnosing LVNC (19). Such data is unavailable from the UK Biobank, which 

limits potential parallel analyses comparing echocardiographic and CMR data for each 

participant. The accuracy of estimates generated using multiple imputation to account for 

missing data is most optimal if the missing values are ‘missing at random’, hence depend on 

observed existing data rather than unobserved external factors. Additionally, as our study was 

cross-sectional, relevant time periods for physiological cardiac remodelling were not defined, 

therefore concrete inferences about whether a causal link exists between PA levels and 

trabeculation extent should be interpreted with caution in the absence of longitudinal data. 

 

Future direction 

 

While our study used well known measures of both trabeculation and PA, it would be 

valuable to additionally explore this relationship using different approaches to these 

measurements.  

 

Increasing the time over which the average acceleration is measured would increase its 

validity by accounting further for the variation that exists between individuals’ activity 

patterns. In addition, using the accelerometer to gain a measurement of direct activity 
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intensity may better differentiate those that indeed undergo the most athletic activity in the 

cohort, which would introduce a more robust analysis of the relationship at low and high PA 

extremes. 

 

Trabeculation extent could alternatively be measured by FD. This is a more automated 

measurement than the NC/C ratio, which is based on the fractal biology in which 

trabeculation is structured to measure the complexity of the trabeculation in short-axis CMR 

slices. Whilst removing the possibility of analysis of compacted myocardial thickness (due to 

no involvement of compacted wall measurement), FD takes trabeculation measurement into 

account across the whole LV, allowing for region-specific analysis as well as demonstrating 

marginally higher intra-observer reproducibility than NC/C ratio measurements (20). 

 

Conclusions 

 

In the first study to investigate the relationship between PA and LV trabeculation extent 

within a community-based sample population using CMR imaging, our results showed no 

significant relationship between PA and maximal NC/C ratio, in a cohort that demonstrated 

characteristics of exercise-induced cardiac remodelling. At the levels of activity recorded, 

there was no evidence to suggest that trabeculation changes occur as an epiphenomenon to 

other processes in this remodelling. The possibility of whether exercise-related changes in 

trabeculation extent occur above a certain threshold of PA, and where this threshold lies, 

remains to be investigated. 
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Figure 1 Legend: 
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A demonstration of the measurement of the widths of the non-compacted and compacted layers using the cvi42 

software. Measurements are indicated by the yellow lines. Measurements were labelled in the format 

’(region)_(compaction level)’ – for example ‘apex_NC’ indicates a non-compacted layer in the apex. (a), (b) and 

(c) indicate the 4, 3 and 2 chamber long-axis views respectively, and (d) indicates the short axis view for 

reference. The widths of each measurement are displayed at the bottom-centre of each long axis view. These 

were used to calculate the NC/C ratio. 
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Supplementary Material 

Table 1 – Example MET values assigned to various forms of PA, grouped into light, moderate, and vigorous PA 

levels (11). The MET is a physiological measure of energy expenditure assigned to a particular PA. Since one 

MET is defined as the energy spent while an individual is at rest, MET is a measure of the intensity of the 

activity compared to rest. For instance, a MET value of 7 applied to the activity would mean that the activity 

expends 7 times the amount of energy (typically the amount of calories) compared to rest. 

Light activity (<3.0 METs) Moderate Activity (3.0 – 6.0 METs) Vigorous Activity (>6.0 METs) 

Walking – slowly = 2.0 Walking – very brisk = 5.0 Walking/hiking (4-5mph) = 7.0 

Jogging at 6mph = 10.0 

Sitting – using computer = 

1.5 

Cleaning – heavy = 3.0-3.5 

(washing windows, vacuuming, 

mopping) 

Shovelling = 7.0-8.5 

Standing – light work = 2.0-

2.5 

(cooking, washing dishes) 

Mowing lawn = 5.5 

(walk power mower) 

Carrying heavy loads = 7.5 

Fishing – sitting = 2.0 
Playing most instruments = 

2.0-2.5 

 

Bicycling – light effort (10-12mph) = 

6.0 

Badminton – recreational = 4.5 

Tennis – doubles = 5.0 

 

Bicycling fast (14-16mph) = 10.0 

Basketball game = 8.0 

Soccer casual = 7.0 

Tennis – singles = 8.0 
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Table 2 – Power calculations based on potential sample sizes against a range of R2 values, with a p value less 

than 0.05 indicating statistical significance. 

 

 Sample size 

250 500 1000 

R2 0.05 45.6% 85.9% 99.8% 

0.10 86.5% 99.9% 100% 

0.15 98.6% 99.9% 100% 

0.20 99.9% 100% 100% 
 

 

 

(1) In a typical week, on how many days did you walk for at least 10 minutes at a time? (Includes walking 

that you do at work, travelling to and from work, and for sport or leisure) 

(2) How many minutes did you usually spend walking on a typical day? 

(3) In a typical week, on how many days did you do 10 minutes or more of moderate physical activities 

like carrying light loads, cycling at normal pace? 

(4) How many minutes did you usually spend doing moderate activities on a typical day? 

(5) In a typical week, how many days did you do 10 minutes or more of vigorous physical activity? 

(These are activities that make you sweat or breathe hard such as fast cycling, aerobics, heavy lifting) 

(6) How many minutes did you usually spend doing vigorous activities on a typical day? 

 

Figure 1 - Example questions for participants in the self-reported IPAQ questionnaire. 

Walking MET-minutes/week = 3.3 x walking days (1) x walking minutes (2) 
 
Moderate MET-minutes/week = 4.0 x moderate-intensity days (3) x moderate-intensity activity minutes (4) 
 
Vigorous MET-minutes/week = 8.0 x vigorous-intensity days (5) x vigorous-intensity activity minutes (6) 
 
Total MET minutes per week = Walking + Moderate + Vigorous MET-min/week scores 
 

Figure 2 - Calculations culminating in the total MET minutes per week, using information gained from the 

IPAQ questions in figure 1 (Craig et al., 2003). 
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Figure 3 – A flowchart summarising the selection process for the individuals investigated in this study. 

 

 

Figure 4 – A density plot demonstrating the distribution of PA in total MET-minutes per week across the study 

cohort of 1030 individuals (blue) relative to that of the original CMR pilot study of 5065 individuals (green) 

 

 

 

UK Biobank 
(500,000 

participants)

•Enrolled 
between 2006-
2010

CMR pilot sub-
study (5,065 
participants)

•Carried out 
between 2014-
2015

1,030 individuals 
selected with 
CMR data for 

analysis
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Figure 5 – A Bland-Altman plot demonstrating the inter-observer variability of NC/C ratio values in 20 studies 
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Figure 6 – Association between restricted-cubic-spline-transformed PA measurements and maximal NC/C 

ratio. The line and the shaded area represent the predicted mean and 95% confidence interval of maximal 

NC/C ratio. The plots did not demonstrate a clear evidence of non-linear relationship. 

 

Appendix 1: 

Methodology of PA intensity category definition 

In addition to our other methods of PA measurement, the cohort was split categorically into 

low, moderate, and high PA intensity levels using criteria as per official IPAQ 

recommendations and guidance. Moderate PA comprised either a) Over or equal to 3 days of 

vigorous intensity PA of at least 20 minutes/day OR b) Over or equal to 5 days of moderate-

intensity PA and/or walking of at least 30 minutes/day OR c) Over or equal to 5 days of any 

combination of walking, moderate or vigorous-intensity PA achieving a minimum of at least 

600 MET-minutes/week. High PA comprised either a) vigorous intensity PA on at least 3 
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days achieving a minimum total PA of 1500 MET-minutes/week OR b) Over or equal to 7 

days of any combination of walking, moderate or vigorous-intensity PA achieving a 

minimum total PA of 3000 MET-minutes/week. Low PA was defined in those individuals not 

meeting criteria for moderate or high PA. 
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