View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by .. CORE

20

21

22

23

24

25

Higher-Order Linearisability

Andrzej S. Murawski?, Nikos Tzevelekos®!

“University of Oxford
bQueen Mary University of London

Abstract

Linearisability is a central notion for verifying concurrent libraries: a library is proven
correct if its operational history can be rearranged into a sequential one that satisfies a
given specification. Until now, linearisability has been examined for libraries in which
method arguments and method results were of ground type. In this paper we extend
linearisability to the general higher-order setting, where methods of arbitrary type can
be passed as arguments and returned as values, and establish its soundness.

Keywords: Linearisability, Concurrency, Higher-Order Computation

1. Introduction

Software libraries provide implementations of routines, often of specialised nature,
to facilitate code reuse and modularity. To support the latter, they should follow
specifications that describe the range of acceptable behaviours for correct and safe
deployment. Adherence to specifications can be formalised using the classic notion of
contextual approximation (refinement), which scrutinises the behaviour of code in any
possible context. Unfortunately, the quantification makes it difficult to prove contextual
approximation directly, which motivates research into sound techniques for establishing
it.

In the concurrent setting, a notion that has been particularly influential is that of
linearisability [1]]. Linearisability requires that, for each history generated by a library,
one should be able to find another history from the specification (a linearisation), which
matches the former up to certain rearrangements of events. In the original formulation
by Herlihy and Wing [1]], these permutations were not allowed to disturb the order
between library returns and client calls. Moreover, linearisations were required to be
sequential traces, that is, sequences of method calls immediately followed by their
returns.

In this paper we shall work with open higher-order libraries, which provide im-
plementations of public methods and may themselves depend on abstract ones, to be
supplied by parameter libraries. The classic notion of linearisability only applies to
closed libraries (without abstract methods). Additionally, both method arguments and
results had to be of ground type. The closedness limitation was recently lifted in [2} 3],
which distinguished between public (or implemented) and abstract methods (callable).
Although [2]] did not in principle exclude higher-order functions, those works focussed
on linearisability for the case where the allowable methods were restricted to first-order

IResearch supported by EPSRC (EP/P004172/1).

Preprint submitted to JLAMP November 26, 2018

provided by Queen Mary Research Online

https://core.ac.uk/display/201006143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Figure 1: A library L : ¥ — ¥/ in
environment comprising a param-
eter library L' : @ — ¥, %" and
a client K of the form ¥/, ¥""
My |-+ My

functions (int — int). Herein, we give a systematic exposition of linearisability for gen-
eral higher-order concurrent libraries, where methods can be of arbitrary higher-order
types. In doing so, we also propose a corresponding notion of sequential history for
higher-order library interactions.

We examine libraries L that can interact with their environments by means of public
and abstract methods: a library L with abstract methods of types ¥ = 64,---,6,, and
public methods ¥’ = 61, ---, 0!, is written as L : ¥ — ¥'. We shall work with arbitrary
higher-order types generated from the ground types unit and int. Types in ¥, ¥’ must
always be function types, i.e. their order is at least 1.

A library L may be used in computations by placing it in a context that will keep on
calling its public methods (via a client K) as well as providing implementations for the
abstract ones (via a parameter library L). The setting is depicted in Figure|I} Note that,
as the library L interacts with K and L', they exchange functions between each other.
Consequently, in addition to K making calls to public methods of L and L making calls
to its abstract methods, K and L’ may also issue calls to functions that were passed to
them as arguments during higher-order interactions. Analogously, L may call functions
that were communicated to it via library calls.

Our framework is operational in flavour and draws upon concurrent [4} [5] and
operational game semantics [6} [7| [8]]. We shall model library use as a game between two
participants: Player (P), corresponding to the library L, and Opponent (O), representing
the environment (L', K') in which the library was deployed. Each call will be of the
form call m(v) with the corresponding return of the shape ret m(v), where v is a
value. As we work in a higher-order framework, v may contain functions, which can
participate in subsequent calls and returns. Histories will be sequences of moves, which
are calls and returns paired with thread identifiers. A history is sequential just if every
move produced by O is immediately followed by a move by P in the same thread. In
other words, the library immediately responds to each call or return delivered by the
environment. In contrast to classic linearisability, the move by O and its response by P
need not be a call/return pair, as the higher-order setting provides more possibilities (in
particular, the P response may well be a call). Accordingly, linearisable higher-order
histories can be seen as sequences of atomic segments (linearisation points), starting at
environment moves and ending with corresponding library moves.

In the spirit of [3]], we are going to consider two scenarios: one in which K and
L' share an explicit communication channel (the general case) as well as a situation in
which they can only communicate through the library (the encapsulated case). Further,
we also handle the case in which extra closure assumptions can be made about the
parameter library (the relational case), which can be useful for dealing with a variety
of assumptions on the use of parameter libraries that may arise in practice. In each
case, we present a candidate definition of linearisability and illustrate it with tailored
examples. The suitability of each kind of linearisability is demonstrated by showing
that it implies the relevant form of contextual approximation (refinement). We also
examine compositionality of the proposed concepts. One of our examples will discuss
the implementation of the flat-combining approach [9, 3], adapted to higher-order types.

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

public count, update; 1 public count, update, reset,;

Lock lock; > abstract default;
F = \z.0; 5 Lock lock;
s F:= 2.0
count = \i. (\F)i s count = \i. (! F)i
update = \(i, g). aux(i,g,count i) s update = \(i, g). aux(i,g,count i)
7
aux = \(i, g, j)- 0 reset = M.
let y =g j]in 2 lock . acquire ();
lock . acquire (); 2 let y = |default i|in
let f=1!Fin 2 let f=1!Fin
it (j ==(f 1)) then (2 F:= dx.if (x ==1i) theny
F:= M. if (x ==1i) theny 25 else (f x);
else (f x) ; 2% lock . release ();
lock . release (); . y
y)
else (

lock . release ();
aux(i,g,f i))

Figure 2: Left: Multiset library Lmset With public methods count : int — int and update : int x (int — int) —
int. Right: Parameterised multiset library Lmset2 (lines 8-19 as in LHS) with public methods count, reset :
int—int, update: intx (int—int) — int; abstract method default: int —int.

The paper is an extended version of [[10] and contains complete proofs, fully elabo-
rated examples and appendices with further technical material, e.g. on compositionality.

Example: a higher-order multiset library

Higher-order libraries are common in languages like ML, Java, Python, etc. As an
illustrative example, we consider a library written in ML-like syntax which implements
a multiset data structure with integer elements. For simplicity, we assume that its
signature contains just two methods:

count :int - int, update : (int x (int - int)) — int.

The former method returns for each integer its multiplicity in the multiset — this is O
if the integer is not a member of the multiset. On the other hand, update takes as an
argument an integer ¢ and a function g, and updates the multiplicity ;7 of ¢ in the multiset
to [g(4)| (we use the absolute value of g(j) in order to meet the multiset requirement
that element multiplicities not be negative; alternatively, we could have used exceptions
to quarantine such client method behaviour). Methods with the same functionalities can
be found in the multiset module of the ocaml-containers library [[11]]. While our example
is simple, the same kind of analysis as below can be applied to more intricate examples
such as map methods for integer-valued arrays, maps or multisets.

Example 1 (Multiset). Consider the concurrent multiset library Lset in Figure [2/on
the LHS (the RHS will be discussed only later). It uses a private reference for storing the
multiset’s characteristic function and reads optimistically, without locking (cf. [12} [13])).
The update method in particular reads the current multiplicity of the given element 7 (via
count) and computes its new multiplicity without acquiring a lock on the characteristic
function. It only acquires a lock when it is ready to write the new value (line 10) in the

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

(a) N T .
| call fnt(z) {ret cni(j) ret clnt(/)
5 call upd(i,m) allmp ret m(j") ret upd(j’)
I I I I
1 call (I:nt(i) callcm‘(z ret clnt(j)
5 call upd(i,m) call m()) ret m(j") I’etl,llpd(]')
I I I I
| call fnt(i) ret clnt(j')
call upd(i,m) caIII m(j) ret m(j") ret upd(j’)
I I I I
(b) . (i h
call thpd(z,m’) caIII m'(j) ret m (k) ret z{pd(k)
1 1 T T
5 call thpd(i,m) calllm(]') ret m(j") calllm(k) ret m(k) ret upd(k’)
I I I I I I
| call thpd(i,m’) calllm’(]') retm (k) ret thpd(k)
1 1 T T
5 call upd(i,m) ca||I m(j) retm(j’) calll m(k) ret m(k') ret upd(k')
I I I I I I

Figure 3: Example histories of Lmset.

hope that the value at ¢ will still be the same and the update can proceed; if not, another
attempt to update the value is made.

Let us look at some example executions of the library via their resulting histories, i.e.
sequences of method calls and returns between the library and a client. In the topmost
block (a) of history diagrams of Figure[3] we see three such executions. Note that we do
not record internal calls to count or aux, and use m and variants for method identifiers
(names). We use the abbreviation cnt for count, and upd for update, and initially ignore
the circled events for cnt. Each execution involves 2 threads.

In the first execution, the client calls update(i,m) in the second thread, and sub-
sequently calls count(4) in the first thread. The code for update stipulates that first
count () be called internally, returning some multiplicity j for ¢, and then m(j) should
be called. As soon m returns a value j', update sets the multiplicity of ¢ to j” and itself
returns j'. The last event in this history is a return of count in the first thread with the
old value j. According to our proposed definition, this history will be linearisable to
another, intuitively correct one: the last return can be moved to the circled position. At
this point the notion of linearisability is used informally, but it will be made precise
in the following sections. In the second execution, the last return of count in the first
thread returns the updated value. In this case, we will be able to move call cn#(7) to the
circled position to obtain a linearisation, which is obviously correct. Finally, in the third
execution we have a history that will turn out non-linearisable to an intuitively correct
history. Indeed, we should not be able to return the updated value in the first thread
before m has returned it in the second one.

The two histories in block (b) in the same figure demonstrate the mechanism for

110

111

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

updates. The first history will be linearisable to the second one. In the second history
we see that both threads try to update the same element 4, but the first one succeeds
in it first and returns k£ on update. Then, the second thread realises that the value of
7 has been updated to k and calls m again, this time with argument k. An important
feature of the second history is that it is sequential: each client event (call or return) is
immediately followed by a library event.

Observe that the rearrangements discussed above involve either advancing a library
action or postponing an environment action and that each action could be a call or a
return. Definition [0 will capture this formally. For now, we note that this generalises the
classic setting [1l], where library method returns could be advanced and environment
method calls deferred.

The next section will introduce histories along with the proposed notion of linearis-
ability. In Section [3] we present the syntax for libraries and clients, and in Section [3.1]
we define their semantics in terms of histories and co-histories respectively.

2. Higher-order linearisability

We examine higher-order libraries interacting with their context by means of abstract
and public methods. In particular, we shall rely on types given by the grammar below.
We let Meths stand for the set of method names and assume Meths = 4y o Methsy o/,
where each set Methsg o contains names for methods of type § — 6’. Methods are
ranged over by m (and variants). We let v range over computational values, which
include a unit value, integers, methods and pairs of values.

6 == unit|int|0x60]60—0 vi= () [i|m](v,v)

The framework of a higher-order library and its environment is depicted in Figure [I]
Given ¥, ¥’ c Meths, a library L is said to have type ¥ — ¥’ if it defines public
methods with names (and types) as in ¥, using abstract methods ¥. The environment of
L consists of a client K (which invokes public methods of ¥'), and a parameter library
L' (which provides code for the abstract methods ¥). In general, K and L’ may interact
via a disjoint set of methods ¥ ¢ Meths, to which L has no access.

In the rest of this paper, we shall implicitly assume that we work with a library L
operating in an environment presented in Figure[I] The client /& will consist of a fixed
number NN of concurrent threads. Next we introduce a notion of history tailored to the
setting and define how histories can be linearised.

2.1. Higher-order histories

The operational semantics of libraries will be given in terms of histories, which are
sequences of method calls and returns, each decorated with a thread identifier ¢ and a
polarity index X, where X € {O, P}, as shown below.

(t,callm(v)) x (t,retm(v))x

‘We shall refer such decorated calls and returns as moves. Here, m is a method name
and v is a value of a matching type. The index X specifies who produces the move:
the library L (polarity P), or its environment (L', K') (polarity O). Using notation e.g.
from [3]], P corresponds to |, and O to 7. We may be dropping the polarity of a move
when it is not important or no confusion arises by doing so.

141 The choice of indices is motivated by the fact that the moves can be seen as defining
12 a 2-player game between the library (L), which represents the Proponent player in the
us game (P), and its environment (L', K) that represents the Opponent (O). Finally, we let
s the dual polarity of X be X', where X # X'.

145 Next we proceed to define histories. Their definition will rely on a more primitive
us concept of prehistories, which are sequences of O/P-indexed method calls and returns
7 that respect a stack discipline.

Definition 2. Prehistories are sequences generated by one of the grammars:

PreHo == €| callm(v)o PreHp retm(v")p PreHp
PreHp == ¢ | callm(v)p PreHp ret m(v’')o PreHp

ws where, if m € Methsy ¢/, the types of v,v’ must match 6,6’ respectively. We let
u PreH = Pl’eHO @] Pl’er.

150 Thus, prehistories from PreHo start with an O-call, while those in PreH p start with
s a P-call. In each case, the polarities inside a prehistory alternate between O and P, and
12 the polarities of calls and matching returns are always dual (returns dual to calls).

153 Histories will be interleavings of prehistories tagged with thread identifiers (natural
= numbers), subject to a set of well-formedness constrains. In particular, a history h
s for library L : ¥ — ¥’ will have to begin with an O-move and satisfy the following
s conditions, to be formalised in Definition 3]

7 1. The name of any method called in 4 must come from ¥ or ¥’, or be introduced

158 earlier in A as a higher-order argument or result (no methods out of thin air). In
159 addition:

160 * if the method is from ¥, the call must be tagged with O (i.e. issued by K);
61 ¢ if the method is from ¥, the call must be tagged with P (i.e. issued by L
162 towards L');

163 « for a call of method m ¢ ¥ U ¥’ to be valid, m must be introduced in an earlier
164 move of dual polarity (calls dual to introductions).

e 2. Any method name appearing inside a call or return argument in i must be fresh, i.e.

166 not used earlier (introductions always fresh).

167 * This reflects the assumption that methods can be called and returned from, but
168 not compared for identity equality. It is therefore a requirement towards the
168 completeness of histories as a semantics for concurrent libraries. For example,
170 this ensures that rules like n-equality are preserved in the semantics.

I * The condition serves the additional purpose of making the setting described
172 in Figure[T]robust, as it prevents method names in ¥ from being leaked to the
173 client K. This ensures that encapsulation cannot be broken.

Given h € PreH and t € N, we write ¢ x h for i in which each element is decorated with
t:
tx (1) x, (@2) x5 (2r) x,) = (6, 21) x, (8 22) X, (F, 2) X, -
» We say that amove (¢, z) x introduces aname m € Meths when x € {call m’(v), ret m’(v)}
s for some m’, v such that v contains m.

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Definition 3. Given ¥, ¥, the set of histories over ¥ — W', written Hy -, is defined
by

Howr = Uns0 Uhh...,hNePreHo(]- xhy) || (N xhy)

where (1 x hy) |-+ | (N x hyy) is the set of all interleavings of (1 x hy), -+, (N x hy)
satisfying:

1. For any s (¢, callm(v))x s2 € Hwyw, either m € ¥ and X = O, or m € ¥ and
X = P, or there is a move (¢',) x+ in s; that introduces m and X + X'.

2. For any s1(t,x) x $2 € Hy g+ and any m, if m is introduced by x then m must not
occur in s7.

Note that the definition supports scenarios in which a method sent as a parameter by one
thread can be called by a different thread. This feature will be explored in Example [I8]
A history h € Hy g is called sequential if it is of the form

h=(t1,z1)o(t1,21)p - (te, o) o (th, T}) P

seq

, .
for some t;, x;, z;. We write Hg,#-,,

for the set of all sequential histories from Hy .

We shall range over Hy g+ using h, s (and variants). The subscripts ¥, ¥’ will often
be omitted. Given a history h, we shall write & for the sequence of moves obtained from
h by dualising all move polarities inside it. The set of co-histories over ¥ — ¥’ will be

v ={h|heHyw}.

While in this section histories will be extracted from example libraries informally,
in Sectionwe give the formal semantics [L] of libraries. For each L : ¥ — &', we
shall have [L] € Hy v
Remark 4. The notion of history introduced above extends the classic notion from [1]] to
higher-order types. It also extends the notion presented in [3]]. The intuition behind the
definition is that a history is a sequence of (well-bracketed) method calls and returns,
called moves, each tagged with a thread identifier and a polarity, where polarities track
the originators and recipients of moves. Moves may be calls or returns related to
methods given in the library interface (¥ — ¥'), or dynamically created methods that
appear earlier inside the histories —recall that, in a higher-order setting, methods can be
passed around as arguments to calls or be returned as results by other methods. On the
other hand, a sequential history is one in which the operations performed by the library
can be perceived as atomic, that is, each move produced by O is to be immediately
followed by the library’s response, which is a P move in the same thread.

Example 5 (Multiset spec). We now revisit our first example and provide a spec-
ification for it. Recall the multiset library Lyeet from Figure Our verification
goal will be to prove linearisability of Lyt to a specification Apser € 7—[:}, where
W = {count, update}, which we define below. Intuitively, the specification stipulates that
the multiset operations are functionally correct and only includes sequential histories.

For example, the following histories are in the specification:
(1, callupd(5,m))o (1,call m(5)) p (1, call ent(5)) o (1, ret cnt(0)) p
(1, retm(42))o (1, retupd(42)) p
(1, callupd(5,m))o (1, callm(5)) p (2, call upd(5,m'))o (2,callm’(5)) p
(1,ret m(42))o (1, ret upd(42)) p (3,call cnt(5))o (3, ret ent(42)) p
(2,retm/(24))o (2, ret upd(24)) p (1,call cnt(5))o (1, ret cnt(24)) p

203

204

205

206

207

208

209

210

212

213

214

215

216

217

218

219

220

221

222

223

while the next ones are not:

(1, callupd(5,m))o (1,call m(5)) p (1,call ent(5))o (1, ret cnt(42))p -

(1, callupd(5,m))o (2, call upd(6,m")) o -

(1, call upd(5,m))o(1,callm(5)) p(2, call upd(5,m’)) o (2, call m’(5)) p
(1,ret m(42))o (1, ret upd(42)) p(3,call cnt(5))o (3, ret cnt(42)) p
(2,ret m’(24))0(2, ret upd(24)) p(1,call ent(5))o (1, ret ent(42)) p

Anmser Will certify that Lyeet correctly implements some integer multiset / whose
elements change over time according to the moves in h. For a multiset I and natural
numbers i, j, we write I(¢) for the multiplicity of 4 in I, and I[i — j] for I with its
multiplicity of 7 set to j. We shall stipulate that moves inside histories h € At be
annotatable with multisets I in such a way that the multiset is empty at the start of i
(i.e. I(2) = 0 for all 4) and:

* If I is changed between two consecutive moves in % then the second move is a
P-move. In other words, the client cannot directly update the elements of [.

* Each call to count on argument ¢ must be immediately followed by a return with
value I(), and with I remaining unchanged.

¢ Each call to update on (i,m) must be followed by a call to m on I(i), with T
unchanged. Moreover, m must later return with some value j. Assuming at that
point the multiset will have value J, if I(i) = J(i) then the next move is a return
of the original update call, with value j; otherwise, a new call to m on J(i) is
produced, and so on.

We formally define the specification next.

Let Hg, , contain sequences of moves from @ — ¥ accompanied by a multiset (i.e.
the sequences consist of elements of the form (¢,x,I)x). For each s € Mg w» we let
71(s) be the history extracted by projection, i.e. 71 (s) € Hg,w. For each ¢, we let s | ¢
be the subsequence of s of elements with first component ¢. Writing £, for the prefix
relation, we define Ameer = {m1(8) | s € AY (o } Where:

Anser ={s€Hgy | m(s) e HGy AVEstteSAs=(_,1)os = Vil(i)=0
AVS'(C D) p(_,J)o Epre s- T =J }

and, for each ¢, the set of ¢-indexed annotated histories S is given by the following
grammar:

S —e | (t,callent(i), o (t,retent(1(i)), I)p S
| (t,callupd(i,m), I)o M7, (t,retupd(|j]), J[i = |j|]) p S
MY, = (t,callm(I(i)), I)p S (t, ret m(5),))o provided J(i) = 1(4)
MY (t,callm(I(i)), 1) p S (t,ret m(j"), J)o MY provided .J' (i) # I(i)
By definition, all histories in Aneet are sequential. The elements of Ay, .., carry along the
multiset] that is being represented. The conditions on Ay, stipulate that I is initially
empty and that O cannot change the value of I, while the rest of the conditions above

are imposed by the grammar for S. With the notion of linearisability to be introduced
next, we will be able to show that [Lyset] is indeed linearisable to A et

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

252

253

254

255

Remark 6. In our framework (higher-order computation with state) specifications are
necessarily close to implementations. For example, they need to preserve the exact
number of calls/returns, because each of them could trigger a potential side effect. As
in [[1], specifications contain sequential histories.

2.2. Three notions of linearisability

We present three notions of linearisability. First introduce a general notion that
generalises classic linearisability [1]] and parameterised linearisability [3]. We then
develop two more specialised variants: a notion of encapsulated linearisability, follow-
ing [3], that captures scenarios where the parameter library and the client cannot directly
interact; and a relational notion whereby context behaviour (client and parameter library)
is known to be relationally invariant.

2.2.1. General linearisability
We begin by introducing a class of reorderings on histories.

Definition 7. Let < po € Hy,uw x Hy g be the smallest binary relation over Hy g
satisfying, for any ¢ # ¢':

s1(t',2")z (t,x)zs2 dpo s1(tx)z (H,2") 7 s2
whenever Z = Por Z' = O.

Intuitively, two histories h1, ho are related by < po if the latter can be obtained from
the former by swapping two adjacent moves from different threads in such a way that,
after the swap, a P-move will occur earlier or an O-move will occur later. Note that the
relation always applies to adjacent moves of the same polarity. On the other hand, we
do not have s1(t,z) p(t',2")os2 < po s1(t', 2") o (¢, 2) psa.

Example 8. Let¥ = {m :int - int} and ¥’ = {m/ : int — int}. Consider h, ' € Hy g
given below.

h=(1,callm(1))o (2,callm(5))o (1,call m’(2)) p (1,ret m'(3))o
(2,callm/(6))p (2,ret m' (7))o (2,ret m(8)) p (1,ret m(4)) p

h' = (1,callm(1))o (1,callm/(2))p (1,ret m'(3))o (1,ret m(4)) p
(2,callm(5))o (2,callm’(6))p (2,ret m' (7))o (2,ret m(8)) p

Note that i < 5, A’ by permuting (2, call m(5))o rightwards and (1, ret m(4)) p left-
wards.
As another example, we can revisit the histories in Figure@ There, O-moves are
coloured purple and P-moves are blue. In part (a) we can see that:
* the first history linearises to a sequential one by swapping a P-move of thread 1 to
the left of two moves of thread 2,
* the second history linearises to a sequential one by swapping an O-move of thread 1
to the right of two moves of thread 2,
* the third history is already sequential and it cannot be linearised to a different one.
In part (b), on the other hand, the first history linearises to the second one by a series of
swaps (left as exercise).

Analogously, one can consider the symmetric variant </ o p of <l po, which will turn
out useful in our soundness argument.

256

257

258

259

260

262

263

264

265

266

267

268

269

270

272

273

274

275

276

277

278

279

280

282

283

284

285

286

287

288

289

290

292

293

Definition 9 (General Linearisability). Given hq, ho € Hy g/, we say that hy is lin-
earised by hs, written hy < ho, if by < pg ha.

Given libraries L, L' : ¥ — ¥" and a set of sequential histories A ¢ Hy,, we write
L < A, and say that L can be linearised to A, if for any h € [L] there exists h’ € A such
that 7 < h'. Moreover, we write L < L' if L < [L'] n 137, (i.e. for all h € [L] there is
sequential i’ € [L'] such that i < h').

Remark 10. The classic notion of linearisability from [[1]] states that h linearises to
h' just if the return/call order of h is preserved in A’ (and k' is sequential), i.e. if a
return move precedes a call move in h then so is the case in h’. Observing that, in [1],
return and call moves coincide with P- and O-moves respectively, we can see that our
higher-order notion of linearisability is a generalisation of the classic notion.

Our definition shows that the ownership of actions is the key determinant of what
moves can be swapped rather than the call/return distinction, which was prominent in
the classic case. It just so happens that, for ¥ = @ and ¥’ = {m/ : int — int}, the two
coincide.

For further comparison, recall that the classic definition allowed for call /call,
ret /ret and call /ret swaps, but ret /call was forbidden. According to our definition,
what is allowed depends on polarity, so a call /call swap may well be illegal if the
first call is a P-move and the second call is an O-move. Similarly, a ret /call swap is
allowed as long as both actions belong to the same player or the return is an O-action
and the call is a P-action. For instance, Example [§] involves the following kinds of
swaps: call g /call p, call p/ret o, ret p/ret p, ret o /ret p, call p/ret p, call o /ret p.

Our emphasis on move ownership is motivated by Lemma [34] which will ultimately
enable us to prove that, if i < A/, then A’ suffices to demonstrate the interactive potential
of h. This intuition is formally captured in Theorem 35}

Remark 11. [3]] defines linearisation using a “big-step” relation that applies a single
permutation to the whole sequence. This contrasts with our definition as < 5, in which
we combine multiple adjacent swaps. In[Appendix A]we show that the two definitions
are equivalent.

2.2.2. Encapsulated linearisability

We next show that a more permissive notion of linearisability applies if the parameter
library L’ of Figure[l]is encapsulated, that is, the client K can have no direct access to
it (i.e. " = @). To capture this scenario, we define a second polarity function on moves,
which determines the side of the move:

» a move with side K is played between the library L and the client K, while
 amove with side £ is played between the library L and the parameter library L'.

Formally, given a history h € Hy g+, we define a side function on its moves by:
K ifmew’
side((t,callm(v))) =1L ifmew
side((t',x)) if (¢, x) introduces m
side((t, ret m(v))) = side((t,call m(v")))

where, in the latter case, (t, call m(v")) is the corresponding call of (¢, ret m(v)). Thus,
every move in h can be assigned a unique side polarity from {K, £}. For simplicity,

10

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

312

313

314

315

316

317

318

319

320

322

323

324

we shall be tagging moves with a second index Y € {K, L} corresponding to their side
polarity.

In this more restrictive nature of interaction, in which K and L’ are separated, in
addition to sequentiality in every thread we shall insist that a move made by the library
in the £ or K side must be followed by an O move from the same side.

Definition 12. We call a history h € Hy y encapsulated if, for each thread ¢, we have
that if

h=s1(t,z)py s2(t,2") oy s3

and moves from ¢ are absent from s, then Y = Y’. Moreover, if L : ¥ — ¥’ we set
7w = {h € Hyw | hencapsulated} and [L]enc = [L] "nHF G

We define the corresponding linearisability notion as follows. First, let o € Hy g x
Hw w be the smallest binary relation on Hy ¢+ such that, for any X, X !, and any
VY e {K,L} withY # Y and ¢t #¢":

s1(t,m)xy(t',m") xryisa o si(t',m")xy/(t,m)xys2

en

Definition 13 (Encapsulated linearisability). Given hy, ho € Hy'y,, we say that hy is
enc-linearised by hs, and write hy <enc ho, if h1(< po U ©)*hy and hs is sequential.
Alibrary L : @ — W' can be enc-linearised to A, written L <ene A, if A € Hy 5, 0
7.y and for any h € [L]enc there exists A’ € A such that h <epe h'. We write L <epe L'

if L <ene [L'Jenc N H;eqw

Remark 14. Suppose ¥ = {m :int - int} and ¥’ = {m’ : int — int}. Histories from
Hy w may contain the following actions only: call m/(i)ox, ret m(i)or, callm(i) pe,
retm/(i)px. Then (< po U ©)* prevents callm(i)p, from being swapped with
ret m(i)o, and, similarly, for ret m/(i) pxc and call m’(i)ok, i.e. it coincides with
Definition 3 of [3].

Remark 15. The encapsulated framework implies that the client and the parameter library
are independent entities. Consequently, whenever their interaction with the library
involves two adjacent moves (¢t,m)xy (t',m')xy with t # ¢/, X # X', permuting
them will also generate a valid interaction. This justifies the extra freedom in rearranging
moves in Definition The soundness of this intuition is validated in Lemma[39]and
Theorem

Example 16 (Parameterised multiset). We revisit the multiset library of Example I]
and extend it with a public method reset, which performs multiplicity resets to default
values using an abstract method default as the default-value function (again, we use
absolute values to avoid negative multiplicities). The extended library is shown in
the RHS of Figure 2| and written Lygerr : ¥ — W', with ¥ = {default} and ¥’ =
{count, update, reset}. In contrast to the update method of Lyget, reset is not optimistic:
it retrieves the lock upon its call, and only releases it before return. In particular, the
method calls default while it retains the lock.

Observe that, were default able to externally call update, we would reach a deadlock:
default would be keeping the lock while waiting for the return of a method that requires
the lock. On the other hand, if the library is encapsulated then the latter scenario is not
possible. In such a case, Lnset2 linearises to the specification A pet2, defined next. Let
Amser2 = {m1(8) | s € A2 o1p } Where:

Anser ={ s € Hy g | mi(s) € Hyy " HG G A VEs T teS As=(_,])os = Vi.I(i)=0

AYS'(Z,D)p(Z,J)o Spres- I =J }

11

325

326

327

328

329

330

332

333

335

336

337

338

339

340

342

343

344

345

346

347

public run; ...;
Lock lock;
struct {fun, arg, wait, retv} requests[N];

run = X (f,x).
requests [tid].fun := f;
requests [tid].arg = x;
requests [tid].wait :=1;
while (requests [tid].wait)
if (lock. tryacquire ()) (
for (t=0; t<N; t++)
if (requests[t]. wait) (
requests [t]. retv =
requests [t]. fun (requests|[t].arg);
requests [t]. wait := O;
); lock . release ());
requests [tid].retv;

Figure 4: Flat combination library L.

and the set S is now given by the grammar of Example [5]extended with the rule:

S — (t,call reset(i), I ox (t,call default(i), I) p (t, ret default(j), I)oc (t, ret reset(|j]), I") pxc S

with I’ = I[i = |j]|]. Our framework makes it possible to confirm that Lpseto enc-
linearises t0 Amset2-

2.2.3. Relational linearisability

We finally extend general linearisability to cater for situations where the client and
the parameter library adhere to closure constraints expressed by relations R on histories.
Let ¥, ¥’ be sets of abstract and public methods respectively. The closure relations we
consider are closed under permutations of methods outside ¥ u¥’: if AR h/ and 7 is a
(type-preserving) permutation on Meths~ (Zu¥’) then w(h) R w(h'). The requirement
represents the fact that, apart from the method names from a library interface, the other
method names are arbitrary and can be freely permuted without any observable effect.
Thus, R should not be distinguishing between such names.

Definition 17 (Relational linearisability). Let R ¢ Hy gy x Hy g be closed under
permutations of names in Meths \ (¥ u¥’). Given hq, ho € Hy g/, we say that hy is
R-linearised by ho, and write hy <z ho, if hi(<lpo UR)*ha and hs is sequential. A
library L : ¥ — W' can be R-linearised to A, written L < A, if A ¢ H;ef'g,, and for any
h € [L] there exists h’ € A such that h < h'. We write L <g L' if L < [L'] nHy 5,

Example 18. We consider a higher-order variant of an example from [3]] that motivates
relational linearisability. Flat combining [9] is a synchronisation paradigm that advocates
the use of a single thread holding a global lock to process requests of all other threads.
To facilitate this, threads share an array to which they write the details of their requests
and wait either until they acquire a lock or their request has been processed by another
thread. Once a thread acquires a lock, it executes all requests stored in the array and the
outcomes are written to the array for access by the requesting threads.

12

348

349

350

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

372

373

374

375

376

377

378

379

380

382

383

384

385

386

387

388

389

390

391

392

Let ' = {run € Meths(y_g/yxp,¢'}. The library Ls. : @ — W' in Figure [4| is
built following the flat combining approach and, on acquisition of the global lock, the
winning thread acts as a combiner of all registered requests. Note that the requests will
be attended to one after another (thus guaranteeing mutual exclusion) and only one lock
acquisition will suffice to process one array of requests. Using our framework, one can
show that L¢ can be R-linearised to the specification given by the library Lgye. defined
by

run = X\ (f,x). (lock.acquire (); let result = f(x) in lock. release (); result)

where each function call in Ly is protected by a lock. Observe that we cannot hope
for L. 4 Lepec, because clients may call library methods with functional arguments
that recognise thread identity. Consequently, we can relate the two libraries only if
context behaviour is guaranteed to be independent of thread identifiers. This can be
expressed through <, where R € Hg v x Hg g is a relation capturing thread-blind
client behaviour (see Subsection [3.2]for details).

3. Library syntax and semantics

We now look at the concrete syntax of libraries and clients. Libraries comprise
collections of typed methods whose argument and result types adhere to the grammar:
O :=unit|int|0—0]6x0.

We shall use three disjoint enumerable sets of names, referred to as Vars, Meths
and Refs, to name respectively variables, methods and references. z, f (and their
decorated variants) will be used to range over Vars; m will range over Meths; and r
over Refs. Methods and references are implicitly typed, i.e. Meths = 4y - Methsg o/
and Refs = Refs;n; Wy ¢ Refsg g/, where Methsy - contains names for methods of type
0 — 0', Refs,, contains names of integer references and Refsg o contains names for
references to methods of type § — 6. We write w for disjoint set union.

The syntax for libraries and clients is given in Figure[5] Each library L begins with
a series of method declarations (public or abstract) followed by a block B containing
method implementations (m = Az.M) and reference initialisations (r := ¢ or r := Az.M).
The typing rules ensure that each public method is implemented within the block, in
contrast to abstract methods. Clients are parallel compositions of closed terms.

Terms M specify the shape of allowable method bodies. () is the skip command,
1 ranges over integers, tid is the current thread identifier and @ represents standard
arithmetic operations. Thanks to higher-order references, we can simulate divergence
by (17)(), where r € Refsynit unit is initialised with Az“"*.(1r)(). Similarly, while M N
can be simulated by (!7)() after r := Az“"t.let yy = M in (if 3 then (IV; (1) ()) else ().
We also use the standard derived syntax for sequential composition, i.e. M; N stands for
let © = M in N, where x does not occur in N. For each term M, we write Meths(M)
for the set of method names occurring in M. We use the same notation for method
names in blocks and libraries.

Remark 19. In Section [2] we used lock-related operations in our example libraries
(acquire, tryacquire, release), on the understanding that they can be coded using shared
memory. We assume that both acquire and release are blocking, while tryacquire is not.
tryacquire makes an attempt to acquire the associated lock and returns 0 if the attempt
was not successful or 1 otherwise. Similarly, the array of Example [I8]in the sequel can
be constructed using references.

13

Libraries L == B |abstract m; L | publicm; L Clients K= M || M
Blocks B := ¢|m=Xx.M; B|r:=Xx.M; B|r:=i; B Values vz== () |i|m]|(v,v)
Terms M == ()]i|td|z|m|MeM|(M,M)|m M |ms M |if M then M else M

| Mg M | oM |mM |let z=Min M |r:=M|!r

I'(z)=0 meMethsggr T+ M:int T+ My, M;:0
') :unit Trizint Trtidiint Tr2:0 TrFm:0—-0" T +if M then M else My : 6
FI—M101X92 FI—M7HZ (221,2) Fp—Ml’M2;int F,x:@l—M:@'
I'-m M :6; (221,2) Fl—(Ml,M2>291X02 '+~ M, ® M, :int =Xt M:0->0
P(x)=0—-6¢" T+-M:0 meMethsgg I'-M:0 T'WM:0 T'z:0-N:0¢

T'aM:0 'e-mM:0 IF'letz=MinN:0
reRefs;,y ' M :int reRefseﬂf '-M:0-0 r € Refsjnt ’I"ERefSQ,gz
I'+7r:=M :unit T'+7r:=DM:unit Trlriint Trlr:0-6

meMethsg g x:0-M:0" rpB:¥ reRefsgy x:0-M:0" +rgB:W

Fp€:D Fgm=Ax.M; B:Pw{m} Feri=Av.M; B:¥
r € Refs;y +g B:W Fe B: W Uy {m}+- L:0 0" med”
FRT =4 B: W Meths(B) . B: @ > ¥ VU publicm; L : ¥ - @
Vo{m}r L:W >0 med” + M unit (j=1,+,N)

Vj.Meths(M;) c ¥
U+ abstract m; L: W' w{m} - ¥ Vg My | My : unit J (M)

Figure 5: Library syntax, and typing rules for terms (+), blocks (-g), libraries (), clients ().

093 For simplicity, we do not include private methods, yet the same effect could be
s« achieved by storing them in higher-order references. As we explain in the next sec-
ws tion, references present in library definitions are de facto private to the library. Note
ws also that, according to our definition, sets of abstract and public methods are disjoint.
s7 However, given m,m’ ¢ Refsg ¢/, one can define a “public abstract” method with:
s public m; abstract m’; m = A\a?.m'z.

399 Terms are typed in environments I" = {x; : 01, -+, x,, : 6,,}. Method blocks are typed
wo through judgements g B : ¥, where ¥ ¢ Meths. The judgments collect the names of
« methods defined in a block as well as making sure that the definitions respect types and
w2 are not duplicated. Also, the initialisation statements must comply with types.

w03 Finally, we type libraries using statements of the form ¥ +| L : ¥/ — ¥, where
wi WU W c Meths and W' N = @. The judgment @ +| L : ¥’ — ¥" guarantees that
ws any method occurring in L is present either in ¥’ or ¥”, that all methods in ¥’ are
ws declared as abstract and unimplemented, while all methods in ¥” are declared as public
w7 and defined. Thus, @ +| L : ¥ — ¥’ is a library in which ¥, ¥’ are the abstract and
«s public methods respectively. In this case, we also write L : ¥ — W',

wo 3.1. Semantics

410 The semantics of our system is given in several stages. First, we define an operational
«1 semantics for sequential and concurrent terms that may draw methods from a repository.
«2 We then adapt it to capture interactions of concurrent clients with closed libraries (no
«s abstract methods). This notion is then used to define contextual approximation for

14

(L) —lib (L7®aSinit) (’I“ = Za B7R7 S) —lib (B7R7S[T = Z])
(abstract m; L, R, S) —s1p (L, R,.S) (m=Xx.M;B,R,S) —p (B,Rxx,S5)
(publicm; L,R,S) — (L, R, S) (r:=Xx.M;B,R,S) —p (B, Rux,S[r = m])

(E[tid], R, S) —1 (E[t],R. S) (E[ifi. then M, else Mol R, §) —¢ (E[M;.], R,)
(B [21 ®i2],R,S) = (E[ixs], R, S) (Elmj{v1,02)], R, S) = (E[v;], R, 5)
(E[r], R, S) =1 (E[S(M)], R, S) (Ellet 2 = vin M1, R, S) —¢ (E[M{v/x}],R, S)
(E[r=1],R,S) =¢ (E[O],R,S[r = i]) (Elr =Xx.M],R,S) = (E[()], Rex, S[r = m])
(ED\e. MR, S) =1 (E[m], Rox, S) (E[mv], Re, S) =1 (E[M{v/2}], R+, S)

E:= e|E®M |ioF |if EthenMelse M |n; E|(E,M)|(v,E) |mE |letz=EinM |r:=FE

(M7R7S) -t (M,aRlNS,)
(My |- | My—y | M| Mysr |-+ |Mn, R, S) == (M| M1 | M| M1 |-+ | M, R, S")

(Kn)

Figure 6:. Evaluation rules for libraries (—ip), terms (—¢) and clients (==). In the rules above we use
the conditions/notation: R«x = R (m — Ax. M), txx = 11 ® 42, R« (m) = Az.M, and j, = 0iff ix = 0.

s« arbitrary libraries. Finally, we introduce a trace semantics of arbitrary libraries, which
«s generates the histories on which our notions of linearisability are based.

we 3.1.1. Library-client evaluation

a7 Libraries, terms and clients are evaluated in environments comprising:

«s * A method environment R, called own-method repository, which is a finite partial
419 map on Meths assigning to each m in its domain, with m € Methsg 4/, a term of the
420 form A\y.M (we omit type-superscripts from bound variables for economy).

2 A finite partial map S : Refs —~ (Z u Meths), called store, which assigns to each r
422 in its domain an integer (if 7 € Refs;,;) or name from Methsg ¢- (if 7 € Refsg o/).

« The evaluation rules are presented in Figure[6] where we also define evaluation contexts
424 E.

s Remark 20. We shall assume that reference names used in libraries are library-private, i.e.
w2 sets of reference names used in different libraries are assumed to be disjoint. Similarly,
« when libraries are being used by client code, this is done on the understanding that the
«s references available to that code do not overlap with those used by libraries. Still, for
« simplicity, we shall rely on a single set Refs of references in our operational rules.

430 First we evaluate the library to create an initial repository and store. This is achieved
w by the first set of rules in Figure[6] where we assume that Sip;; is empty. Thus, library
< evaluation produces a tuple (e, R, Sp) including a method repository and a store, which
ws can be used as the initial repository and store for evaluating M7 |--+|| My using the (K)
w rule. We shall call the latter evaluation semantics for clients (denoted by ==) the
ws multi-threaded operational semantics. The latter relies on closed-term reduction (—),
w5 whose rules are given in the middle group, where ¢t is the current thread index. Note
« that the rules for E[Az.M] in the middle group, along with those for m = Az.M and
w7 := Ax.M in the first group, involve the creation of a fresh method name m, which is
w used to put the function in the repository R. Name creation is non-deterministic: any
wo fresh m of the appropriate type can be chosen.

a1 We define termination for clients linked with libraries that have no abstract methods.

15

442

443

444

445

446

447

448

449

450

451

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

472

473

474

475

Recall our convention (Remark [20) that L and My, ---, My must access disjoint parts of
the store. Terms M7, ---, My can share reference names, though.

Definition 21. Let L : @ - ' and ¥’ ¢ M ||---| My : unit. We say that M |--|| My
terminates with linked library L if (M, |---|Mn,Ro,S0) =" ()[I---](),R,S), for
some R, S, where (L) —, (€, Ro,So). We then write link L in (M7 |---|Mn) |J.

We shall build a notion of contextual approximation of libraries on top of termination:
one library will be said to approximate another if, whenever the former terminates when
composed with any parameter library and client, so does the latter.

We will be considering the following notions for composing libraries. Let us denote
alibrary L as L = D; B, where D contains all the (public/abstract) method declarations
of L, and B is its method block. We write Refs(L) for the set of references in L.
Let Ly : ¥; — W, be of the form Dy; By. Given Lg : W] — W), (= Ds; By) such that
Uy NWy = Refs(Ly) nRefs(Le) = @, ¥ = {mq,,mp} CWand L' : & - ¥, ¥, we
define the union of L1 and Lo, the ¥-hiding of L1, and the sequencing of L' with L,
respectively as:

Ll ULQ : (Wl UW{) AN (WQUWé) %WQUWQI = (Dl;B]_) @] (DQ;BQ) :D;;Dé;Bl;BQ
Ll\W le —>(W2\W)
L,;Ll G 9@2,@’

(L, U Ll) A %

where D} is D; with any abstract m declaration removed for m € ¥, dually for Dj;
and where DY is D; without public m declarations for m € ¥ and each r; is a fresh
reference matching the type of m;, and Bj is obtained from B; by replacing each
m; = Ax.M by r; := Ax.M. Thus, the union of libraries L.; and Ly corresponds to
merging their code and removing any abstract declarations for methods defined in the
union. On the other hand, the hiding of a public method simply renders it private via the
use of references. Sequencing allows for the following notion.

Definition 22. Given L1, Ly : W — W', we say that L, contextually approximates
Lo, written Ly § Lo, if forall L' : @ -» W, ¥" and &' " +¢ M;|---|Mp : unit, if
link L'y Ly in(Mjy ||-+-|| My)| then link L'; Lo in(My ||---| M){. In this case, we also
say that Lo contextually refines L.

Note that, according to this definition, the parameter library L’ may communicate
directly with the client terms through a common interface ¥"'. We shall refer to this case
as the general case. Later on, we shall also consider more restrictive testing scenarios
in which this possibility of explicit communication is removed. Moreover, from the
disjointness conditions in the definitions of sequencing and linking we have that L;, L’
and M, ||---| My access pairwise disjoint parts of the store.

Remark 23. Our ultimate goal will be to show that our notion of linearisability, written
<, provides a sound method for proving contextual approximation/refinement, written <.
Recall that in order to establish L; < Lo, one has to exhibit a subset Ay of sequential
histories taken from [Ls] such that L, is linearisable to A, written Ly < As.

3.1.2. Trace semantics

Building on the earlier semantics, we next introduce a trace semantics of libraries
in the spirit of game semantics [14]. As mentioned in Section [2] the behaviour of a
library will be represented as an exchange of moves between two players called P and
O, representing the library and its corresponding context respectively. The context

16

(D1; B1) W = DY; Bi{!r1/ma}--{lr /mn}

476

477

478

479

480

482

483

484

485

486

487

488

489

490

492

493

494

495

496

497

498

499

500

502

503

504

505

506

507

508

509

510

consists of the client of the library as well as the parameter library, with an index on
each move (KC/L) specifying which of them is involved in the move.

In contrast to the semantics of the previous section, we handle scenarios in which
methods need not be present in the repository R. Calls to such undefined methods are
represented by labelled transitions — calls to the context made on behalf of the library
(P). The calls can later be responded to with labelled transitions corresponding to
returns, made by the context (O). On the other hand, O is able to invoke methods
in R, which will also be represented through suitable labels. Because we work in a
higher-order setting, calls and returns made by both players may involve methods as
arguments or results. Such methods also become available for future calls: function
arguments/results supplied by P are added to the repository and can later be invoked by
O, while function arguments/results provided by O can be queried in the same way as
abstract methods.

The trace semantics utilises configurations that carry more components than the
previous semantics. We define two kinds of configurations:

O-configurations (£,-,R,P,A,S) and P-configurations (£, M,R, P, A,S)

where the component £ is an evaluation stack, that is, a stack of the form [X7, X, -+, X,]
with each X; being either an evaluation context or a method name. On the other
hand, P = (P, Px) with Pz, Px € dom(R) being sets of public method names, and
A = (Ag, Ax) is a pair of sets of abstract method names. P will be used to record
all the method names produced by P and passed to O: those passed to OK are stored
in P, while those passed to OL are kept in P. Inside .4, the story is the opposite
one: Ak (Ar) stores the method names produced by OK (resp. OL) and passed to P.
Consequently, the sets of names stored in Pr, Pic, Az, Axc will always be disjoint.

Given a pair P as above and a set Z ¢ Meths, we write P ux Z for the pair
(Pr,Px uZ). We define U, in a similar manner, and extend it to pairs .4 as well.
Moreover, given P and A, we let ¢(P,.A) be the set of fresh method names for P, A:
(b('P,.A) = Meths \ (PL UPrcUA,suU .A)c).

We give the rules generating the trace semantics in Figure[/| Note that the rules are
parameterised by: P/O and Y, which together determine the polarity of the next move;
C'/ R, which stands for the move being a call (C) or a return (R) respectively. The rules
depict the intuition presented above. When in an O-configuration, the context may issue
a call to a public method m € Py and pass control to the library (rule (OCY)). Note that,
when this occurs, the name m is added to the evaluation stack £ and a P-configuration
is obtained. From there on, the library will compute internally using rule (INT), until: it
either needs to evaluate an abstract method (i.e. some m’ € Ay), and hence issues a call
via rule (PCY); or it completes its computation and returns the call (rule (PRY)). Calls
to abstract methods, on the other hand, are met either by further calls to public methods
(via (OCY)), or by returns (via (ORY)).

Finally, we extend the trace semantics to a concurrent setting where a fixed number
of N-many threads run in parallel. Each thread has separate evaluation stack and term
components, which we write as C = (£,X) (where X is a term or “~”). Thus, a
configuration now is of the following form:

N-configuration (C1|-+|Cn,R,P,A,S)

where, for each i, C; = (&;, X;) and (&;, X;, R, P, A, S) is a sequential configuration.
We shall abuse notation a little and write (C;, R, P, A, S) for (£;, X;, R, P, A, S). The

17

512

513

514

515

516

517

518

519

520

(INT) (E,M,R,P,A,S) — (E,M',R',P,AS"), given that (M,R,S) —
(M',R',S") and dom(R’ \ R) consists of names that do not occur in &, A.

(PCY) (&, E[mv],R,P,A,S) Mi: (m=E=&-R,P;A,S),givenm € Ay
and (P).

(0CY) (£,-,R,P,A,5) T,

Py, R(m) = Ax.M and (O).

t (m = 57M{U/Z‘},R,P,A,,S), given m €

ret m(v’')py

(PRY) (m = &v,R,P,A,S)
and (P).

¢ (£,-,R,P',AS), given m ¢ Py

ret m(v)oy
_—

(ORY) (m = E = £&,-R,P,A,S)
Ay and (O).

¢ (E,E[v],R,P,A",S), given m ¢

(P) If v contains the names myq,---,my then v’ = v{m}/m; | 1 < i < k} with each
m; being a fresh name. Moreover, R’ = Rw {m} » Ax.m;z | 1 < i < k} and
P’ =Puoy {m}, -, m}.

(O) If v contains names my, -+, my then m; € ¢(P,.A), for each i, and A’ = A uy
{mlv"'vmk}~

Figure 7: Trace semantics rules. The rule (INT) is for embedding internal rules. In the rule (PCY), the library
(P) calls one of its abstract methods (either the original ones or those acquired via interaction), while in (PRY)
it returns from such a call. The rules (OCY) and (ORY) are dual and represent actions of the context. In all of
the rules, whenever we write m(v) or m(v’), we assume that the type of v matches the argument type of m.

concurrent traces are produced by the following two rules

(CiaR7P7A7 S) i (CI,R7P7A7 S,)
(Cill--ICn, R, P, A, S) == (Ci|-[Ci-1[IC"[Cisa]-[Cn, R, P, A, S")

(PINT)

(CiaR7P7A7 S) TX_Y)? (C,aRaPaAv S,)

(i,x) xy

(Cil-[Cn, R, P, A, S) === (Ci]-[Ci-a [C"[Cisa |- |Cn, R, P, A, S7)

(PEXT)

with the proviso that the names freshly produced internally in (PINT) are fresh for the
whole of C.

We can now define the trace semantics of a library L. We call a configuration
component C; final if it is in one of the following forms, for O- and P-configurations
respectively: C; = ([],-) or C; = ([],()). We call (C,R,P, A, S) final just if C =
C1|--|Cw and each C; is final.

Definition 24. For each L : ¥ — ¥’ we define the N-trace semantics of L to be:
[L]v = {5 | (Co,Ro,(2,%'), (¥,2),5) =="p A pfinal }
where Cy = ([],)]~ ([]. -) and (L) —, (e, Ro, So)-

For economy, in the sequel we might be dropping the index N from [L]y. We
conclude the presentation of the trace semantics by providing a semantics for library
contexts.

18

522 Recall that in our setting (Figure [T a library L : ¥ — ¥’ is deployed in a context
2 consisting of a parameter library L' : @ — ¥, ¥" and a concurrent composition of client
s threads W', ¥" + M, :unit (¢ = 1,---, N). We shall write link L'; - in (M1 ---| Mn), or
s simply C), to refer to such contexts.

Definition 25. Let ¥/, W" y M; |-+ My : unit and L' : @ - ¥, ¥". We define the
semantics of the context formed by L’ and My, -+, M to be:

[link L's = in (My|-|Mn)] = { 5| (Co, Ro, (¥, @), (2,¥"),S) =="p A pfinal}

s26 where (L’) _)Ixi-b (€,R0,So) and éO = ([]7M1)HH([:|’MN)

w Lemma26. Forany L:W — W', L' :@ - W, 0" and W', 0" v M| My : unit we
2s have [L]n € Hy g and [link L's = in (M1 |-+ [Mn)] € HF -

s0 3.2. Proofs of examples

530 With the definition of [L] in place, we can finally revisit the linearisability claims
s anticipated in Examples I} [I6]and[I8]
sa Recall the multiset library Lyeet and the specification Anser of Example E] and

ss Figure E} We show that Lyset < Amset. More precisely, taking an arbitrary history
s N € [Limset] we show that h can be rearranged using <5 to match an element of
s Amset- We achieve this by identifying, for each O-move (t,2)o and its following
s P-move (t,2") p in h, a linearisation point between them, i.e. a place in h to which
s (t,7)o can moved right and to which (¢,2’) p can be moved left so that they become
ss consecutive and, moreover, the resulting history is still produced by Lyset. After all
s these rearrangements, we obtain a sequential history h such that h < h and h is also
so produced by Lpeet- It then suffices to show that he Amset.

s Lemma 27 (Multiset). Lset linearises to Amset.

se Proof. Given some h € [Linset], let us assume that h has been generated by a sequence
ss P = po = -+~ = pi of atomic transitions and that the variable F' of L, is instantiated
s« with areference 7. We demonstrate the linearisation points for pairs of (O, P) moves in
ss h, by case analysis on the moves (we drop X indices from moves as they are ubiquitous).
= Line numbers below refer to the LHS of Figure[2]

sv 1. h=-(t,callent(i))o s (¢, ret cnt(i')) p -+~ . Here the linearisation point (LP) is the
548 configuration p; that dereferences 75 as per line 5 in Lt (the |F' expression).

s 2. h=-(t,callupd(i,m))o s (t,callm(j))p--- . The LP is the dereferencing of r g
550 in line 5 (called from within update).

s 3. h=-(t,retm(j'))o s (t,retupd(|j'])) p - . The LP is the update of rf in line 13.
se 4. h=--(t,retm(j'))o s(t,callm(3”))p -~ . The LP is the dereferencing of rg in
553 line 11.

s« Each of the linearisation points above specifies a PO-rearrangement of moves. For in-
s stance, for h = sg (¢, call cnt(i))o s (¢, ret cnt(i")) p §', let s = s182 where sq (¢, call cnt(i)) o s1
s is the prefix of h produced by p1 = pa = -+ = p;. The rearrangement of h is then
s h=sgsy (t,callent(i))o (¢, ret cnt(i')) p 52 s'. We thus obtain h < PO h.

558 The selection of linearisation points is such that it guarantees that he [Lmset]- E.g.in
so case 1, the transitions occurring in thread ¢ between (¢, call cnt(i)) o and configuration
s p; do not access 7. Hence, we can postpone them and fire them in sequence just before
st pj. After pj.q and until (¢, ret cnt(i')) p there is again no access of rp in ¢ and we
s2 can thus bring forward the corresponding transitions just after p;,;. Similar reasoning

19

563

564

565

566

567

568

569

570

572

573

574

575

576

577

578

579

580

582

583

584

585

586

587

588

589

590

592

593

594

595

596

597

598

599

600

601

602

603

applies to case 2. In case 4, we reason similarly but also take into account that rendering
the acquisition of the lock by ¢ atomic is sound (i.e. the semantics can produce the
rearranged history). Case 3 is similar, but we also use the fact that the access to rr in
lines 10-15 is inside the lock, and hence postponing dereferencing (line 11) to occur in
sequence before update (line 13) is sound.

Now, any transition sequence o which produces h (in [Lmure]) can be used to derive

an annotated history h° € A7 ., by attaching to each move in A the multiset represented

in the configuration that produces the move (p produces the move z if p = P in).
By projection we obtain h € Apy. O

Lemma 28 (Parameterised multiset). Lo enc-linearises to Amseto-

Proof. Again, we identify linearisation points, this time for given h € [Limyit2]enc. For
cases 1-4 as above we reason as in Lemma [27] For reset we have the following case.

h = s (t,call reset(i)) ox s1(t, call default(j)) p s2(t, ret default(5')) o s3(t, ret reset(|5'])) pic -+

Here, we need a linearisation point for all four moves above. We pick this to be the point
corresponding to the update of the multiset reference £’ on lines 24-25 (Figure[2] RHS).
We now transform % to & so that the four moves become consecutive, in two steps:

* Let us write s3 as s3 = 5353, where the split is at the linearisation point. Since the
lock is constantly held by thread # in sos3, there can be no calls or returns to default in
So sil,,. Hence, all moves in so sé are in component /C and can be transposed with the £-

moves above, using ¢*, to obtain i’ = s (¢, call reset(i)) ox 51 s2 54 (¢, call default(j)) pr

(t, ret default(j'))or s3(t ret reset(|j'])) prc -+

« Next, by PO-rearrangement we obtain / = s 51 S9 53(t call reset(i))O;c(,call default(§)) pr

(t,ret default(] Noc(t, ret reset(|5'])) pic 52 -+ . Thus, (<l po U <>) h.
To prove that h € Amuia We work as in Lemma | i.e. via showing that he [Lmuit2]lenc-
For the latter, we rely on the fact that the hneansatlon point was taken at the reference
update point (so that any dereferencings from other threads are preserved), and that the
dereferences of lines 22 and 23 are within the same lock as the update. O

For our last example, recall the flat combination library Le. : @ — ¥’ of Example

and Figure E], along with its specification library Lepec : @ — W', where ¥/ = {run €
Methsg_r)x0,0' }-
Remark 29. Tt is worth observing that in the higher-order setting a client thread may try
to call run, even though the previous call to run by the same thread did not complete
yet. This scenario happens, for example, when the first call to run passes a functional
argument to the library that itself calls run. Observe that in this case both L. and Lepec
will deadlock. Consequently, non-trivial histories (all calls are matched by returns) arise
only if each client thread uses run serially, i.e. without nesting.

Let R = <*, where < € Hg wr x Hg, - is the smallest relation such that (for economy
we omit methods from calls/returns):

i Sl(t, call)pSQ(t, ret)083 < sl(t’,call)PSQ(t,, ret)083

o s1(t,call) psa(t,call)oss(t,ret) psa(t,ret Joss < s1(t,call) psa(t',call)os3(t', ret) psa(t’, ret) pss

for any s1, 9, S3, S4, S5 such that s, s4 do not contain any ¢t-moves.

Intuitively, < is about piecewise delegation of client computations to other existing
threads subject to forming a correct history. Because the results do not change, this
condition corresponds to thread-blind client behaviour.

20

«s Lemma 30 (Flat combining). L. R-linearises to Lepec.

ws Proof. Observe that histories from [Lspec] feature threads built from segments of one
ws Of the three forms:

o * (t,callrun(f,2))o (t,call f(z'))p- (¢, ret f(v))o (¢ retrun(v’)))p, or

oo o (t'callw(v))o (t',callw’(v")) p, where w is a name introduced in an earlier move

609 (t",2) p and w’ is a corresponding name introduced by the move preceding (¢, x) p

610 in t", or

en o (', retw (v"))o (', ret w(v"")) p such that a segment (¢', call w(v))o (¢, callw’(v")) p
612 already occurred earlier.

«is The first shape represents interaction of the client with the library: a call to run followed
s« by acall to f, possibly some intermediate computation (using calls/returns to higher-
&5 order values that have been introduced in the trace), and a return of f followed by a
¢s return of run. The value introduced in the last return may well be a function, which—
¢7 along with method names introduced earlier — provides method names that can be used
ee 1n calls and returns later. As these methods are related to concrete functions, our trace
s semantics interprets them in a symbolic manner: each call is forwarded to the move
«0 preceding the one in which it was introduced. Note that threads can exchange higher-
e order values, so we need to allow for scenarios in which the three kinds of interaction
e are located in different threads.

623 We shall refer to moves in the second and third kind of segments as inspection moves
«¢ and write ¢ to refer to sequences built exclusively from such sequences. Note that --- in
e the first kind of block also stand for a segment of inspection moves in ¢.

Let us write X for the subset of [Lgpec]] containing (sequential) plays of the form:

(to,call run(fo, o) (to, call fo(z()Po(to, ret fo(vo))(to,ret run(vy)) é1
(t1,call run(f, @1) (1, call fi(xz))d2(t1,ret f1(v1))(ts, retrun(v))) ¢3
(tk,call run(fk7xk)(tk,call fk(.’L‘;c)(zﬁgk(tk, ret fk(’l}k))(tk, ret run(v,’c)) D2k+1-

s Where ¢a;, $25,1 may also contain inspection moves not in t;. We take X to be our
e linearisation target (specification).
Consider h € [Lg]. Threads in h; are built from blocks of shapes:

(t,callrun(f,z)o ((t,call f5(x)p ¢;(t,ret f;(v;)0))* (t,retrun(v’))p
or (¢ callw(v))o (',callw’(v"))p or (' retw' (v"))o (', retw(v"))p.

«s In the first case, the j’s are meant to represent possibly different values used in each
e iteration. In the second kind of block, w needs to be introduced earlier by some (¢”, z) p
s move and w’ is then a name introduced by the preceding move. For the third kind, an
s earlier calling sequence of the second kind must exist in the same thread.

sa2 Observe that each segment S; = (¢, call f;(2})p ¢;(t,ret f;(v;))o in t must be
= preceded (in k1) by a matching public call (¢, call run(f;,z;))o followed by a cor-
e responding return (¢', ret run(v;)) p, where ¢’ need not be equal to t. We can obtain
s the requisite h (for <) by changing ¢ to ¢’ in the whole of S for each S;. Note that
e run-moves are not affected and we get hy R* h.

637 Note that, due to locking and sequentiality of loops, the segments S; must be disjoint
«s 10 h1, although they may be interleaved with inspection moves from other threads. We
s shall show how to obtain ho € X with b <5 ho.

21

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

658

659

660

661

662

663

664

665

666

667

668

669

670

672

673

674

675

676

677

678

* First the call to run associated with each S; should be moved right to immediately
precede the renamed S;. Next the corresponding return of run should be move left
to follow S;.

» Subsequently, inspection moves need to be rearranged to yield a sequential play.
This can be done by permuting inspection moves by O to the left through other
O actions from different threads until a P-move is encountered and moving the
corresponding inspection move P left to immediately follow the O move.

Then we have h < },, ho and, hence, h1 (< po UR)*ho. O

4. Soundness

To conclude, we clarify in what sense all the notions of linearisability are sound.
Recall the general notion of contextual approximation (refinement) from Definition [22]
In the encapsulated case libraries are being tested by clients that do not communi-
cate with the parameter library explicitly. The corresponding definition of contextual
approximation is defined below.

Definition 31 (Encapsulated S). Given libraries L, Ly : ¥ — W', we write L1 Sepe Lo
when, forall L' : @ - W and &' +x My |---| My : unit, if link L' ; Ly in (My|---|Mn) |
then link L' 3 Ly in (M |- | Mx) |l.

For relational linearisability, we need yet another notion that will link R to contextual
testing.

Definition 32. Let R ¢ Hy ¢ x Hy,p+ be a set closed under permutation of names in
Meths\ (Zu¥’). We say that a context formed by L’ and My, ---, My is R-closed if, for
any h e [link L'; —in (M |--+| Mx)], hR b/ implies b’ € [link L'; — in (M |-+ My)].
Given L1,Ly : ¥ — ¥’ we write L1 S Lo if, for all R-closed contexts formed
from L', My,---, My, whenever link L'; Ly in (My|---|My) | then we also have
link L3 Ly in (M1 [-++|Mn) |l

In what follows, we shall aim to establish three correctness results:
e L1 < Ly implies Ly § Lo,
* Ly Qenc Lo implies Ly Sene Lo, and
e L1 <r Lo implies L1 S Lo.

Finally, we note that linearisability is compatible with library composition. < is closed
under union with libraries that use disjoint stores, while <.y is closed under a form of

sequencing that respects encapsulations (Appendix E).

4.1. Correctness

In this section we prove that the linearisability notions we introduce are correct:
linearisability implies contextual approximation. The approach is based on showing that,
in each case, the semantics of contexts is saturated relatively to conditions that are dual
to linearisability. Hence, linearising histories does not alter the observable behaviour of
a library. We start by presenting two compositionality theorems on the trace semantics,
which will be used for relating library and context semantics.

22

679

680

681

682

683

684

685

686

687

688

689

690

692

693

694

695

696

698

699

700

702

703

704

705

706

707

708

709

710

7"

712

713

714

4.2. Compositionality

The semantics we defined is compositional in the following ways:
* To compute the semantics of a library L inside a context C, it suffices to compose the
semantics of C' with that of L, for a suitable notion of context-library composition
([C e [L]).
* To compute the semantics of a union library L U Ly, we can compose the semantics
of Ly and Lo, for a suitable notion of library-library composition ([L1] ® [L2]).
The above are proven using bisimulation techniques for connecting syntactic and se-
mantic compositions, and are presented in[Appendix Cland [Appendix D|respectively.

The latter correspondence is used in for proving that linearisability is
a congruence for library composition. From the former correspondence we obtain the
following result, which we shall use for showing correctness.

Theorem 33. Let L: ¥ > W', L' : @ > W 0" and W' 0" +¢ My |--| M : unit, with
L, L' and My;---; M accessing pairwise disjoint parts of the store. Then:

link L"; Lin (My |-+|My) | <= 3he[L]n.he[link L' 5—in (M| My)]

4.3. General linearisability

Recall the general notion of linearisability defined in Section which is based on
move-reorderings inside histories.

In Def.s 24] and 23] we have defined the trace semantics of libraries and contexts.
The semantics turns out to be closed under <) p.

Lemma 34 (Saturation). Let X = [L] (Def.24) or X = [link L';— in (M| Mn)]
(Def.23). Then if h € X and h <1}, p W' then W/ € X.

Proof. Recall that the same labelled transition system underpins the definition of X in
either case. We make several observations about the single-threaded part of that system.
* The store is examined and modified only during e-transitions.
 The only transition possible after a P-move is an O-move. In particular, it is never
the case that a P-move is separated from the following O-move by an e-transition.
Let us now consider the multi-threaded system and ¢ # ¢'.

(' m)p e (t,m) .y)
* Suppose p =———= p; —= ps —— ps. Then the (t',m’) p-transition can be

% t, t’, ’
delayed inside ¢’ until after (£,m), i.e. p =—> p|) 0 e ps for some

01, p5. This is possible because the ((¢', m') p-labelled) transition does not access
or modify the store, and none of the e-transitions distinguished above can be in ¢,

thanks to our earlier observations about the behaviour of the single-threaded system.
tl7 ’ * t,
* Analogously, suppose p L), P = po Lbmo, p3. Then the (¢t,m)o-

... . (tm)o , (F'.m) | e .
transition can be brought forward, i.e. p 1 ps == p3, because it
does not access or modify the store and the preceding e-transitions cannot be from
t. O

This, along with the fact that
hi<xx hy <= ha<dxx hi < hy<x/xhs

lead us to the notion of linearisability defined in Def. [9]
We now prove the main theorem of this subsection.

23

715

716

77

718

719

720

721

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

743

744

public run;
Lock lock;
r = 0;

run = X ().
lock . acquire ();
ro= lr+l;
if (1r =1) then lock. release ();
while (!r < 2) do ();

Figure 8: A library without a sequential history

Theorem 35. L1 < Loy implies L1 S Lo.

Proof. Consider C such that C[L;] |J. We need to show C[L2] |J. Because C[L1] |,
Theoremimplies that there exists h; € [L;] such that h; € [C]. Because L; < Lo,
there exists hy € [La] with hy <% ho. Note that by <%, p ho. By Lem. |34} hs € [C].
Because hs € [Lz] and hy € [C], using Theoremwe can conclude C[Ls] |J. O

Remark 36. A natural question to ask is whether the converse of Theorem [35] is
true. The answer is negative and can be traced back to the fact that < is defined using
sequential histories: in order to establish L1 < Ly (for L1, Ly : ¥ — ¥’) one needs to
identify a subset Ay € [Lo] N Hs;f‘w, (i.e. consisting of sequential histories only) such
that L1 < As.

Unfortunately, some libraries generate only non-sequential histories. We present
an example of such a library, call it L, in Figure[§] Because of locks, the library from
Figure [§| will only allow two threads to complete a computation. Additionally, the first
thread (i.e. the one that will increment 7 to 1) must wait until a second thread increments
the internal counter 7 to 2.

Observe that if L does not generate any sequential histories then we vacuously have
L £ L, but cannot have L < L. We conjecture that a completeness result would be
possible if we allowed for non-sequential specs in the definition of <.

4.4. Encapsulated linearisability

In this case libraries are being tested by clients that do not communicate with the
parameter library explicitly. Recall from Definition [31]that, given libraries L1, Ly : ¥ —
W', we write L Sene Lo when, forall L' : @ — W and ¥’ +g My |-+ | My : unit, if
link L' Ly in (My|---|My) |} then link L' 5 Ly in (M |-+-|Mn) .

We call contexts of the above kind encapsulated, because the parameter library L’
can no longer communicate directly with the client, unlike in Def. [22| where they shared
methods in ¥”'. Consequently, [link L' ;- in (M |---| My)] can be decomposed via
parallel composition into two components, whose labels correspond to £ (parameter
library) and /C (client) respectively.

Lemma 37 (Decomposition). Suppose L' : @ — W and W' +¢ My |---| My : unit, where
U N =@. Then, setting C' = link @5 —in (My|---| Mn), we have:

llink L' in (My |-+|Mu)] = {h e Higyo | (1 £) € [L], (h 1K) e [C).

Remark 38. Consider parameter library L' : @ — {m} and client {m'} +x M : unit
with m, m’ € Meths it (unit—unit)» and suppose we insert in their context a “copycat”

24

745

746

747

748

749

750

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

library L which implements m’ as m' = Az.mx . Then the following scenario may
seem to contradict encapsulation:

o M calls m'();

» Lcalls m();

L’ returns with m(m’") to L;

* and finally L copycats this return to M.
However, by definition the latter copycat is done by L returning m'(m'") to M, for
some fresh name m'”, and recording internally that m”"’ — A\z.m''x. Hence, no methods
of L’ can leak to M and encapsulation holds.

Because of the above decomposition, the context semantics satisfies a stronger
closure property than that already specified in Lem. [34] which in turn leads to the notion
of encapsulated linearisability of Def.[T3] The latter is defined in term of the symmetric
reordering relation ¢, which allows for swaps (in either direction) between moves from
different threads if they are tagged with C and L respectively.

Moreover, we can show the following.

Lemma 39 (Encapsulated saturation). Consider X = [link L’ ;- in (M]| Mn)]
(Definition[23)). Then:
e IfheXandh(Qopuo)*h'thenh' € X.
o Let 51 (t, 7)oy s2 (t,2") pyr s3 € X be such that no move in sy comes from thread
t. ThenY =Y’ i.e. inside a thread only O can switch between K and L.

Proof. For the first claim, closure under < o p (resp. ¢) follows from Lemma (resp.
Lemma [37).

Suppose h = s1 (t,z)oy s2 (t,2’) pys s3 violates the second claim and (t,z),
(t,z") is the earliest such violation in h, i.e. no violations occur in s;. Observe
that then h restricted to moves of the form (¢, z) xy+ would not be alternating, which
contradicts the fact that /1 | Y is a history (Lemma . O

Due to Theorem [33] the above property of contexts means that, in order to study
termination in the encapsulated case, one can safely restrict attention to library traces
satisfying a dual property to the one above, i.e. to elements Of [L]enc. Note that [L]enc
can be obtained directly from our labelled transition system by restricting its single-
threaded part to reflect the switching condition. Observe that Theorem [33| will still
hold for [L]en (instead of [L]), because we have preserved all the histories that are
compatible with context histories. We are ready to prove correctness of encapsulated
linearisability.

Theorem 40. L, <ene Lo implies L1 Sene Lo.
Proof. Similarly to Theorem[35] except we invoke Lemma[39]instead of Lemma[34] [J
4.5. Relational linearisability
Finally, we examine relational linearisability (Definition E])
Theorem 41. L, < Lo implies L1 Sr Lo.

Proof. Consider R-closed C such that C[L1] ||. We need to show C[L] |J. Because
C[L1] |, Theoremimplies that there exists i1 € [L1] such that h; € [C]. Because
Ly < Lo, there exists hy € [Ls] such that hy (< po U R)* hy. Because C is R-
closed by definition and closed under < o p by Lemma we have hy € [C]. Because

hs € [Lo] and hy € [C], we can conclude C[L2] |. O

25

789

790

792

793

794

795

796

797

798

799

800

802

803

804

805

806

808

809

810

812

813

814

815

816

817

818

819

820

822

823

824

825

826

827

828

829

5. Related and future work

Linearisability has been consistently used as a correctness criterion for concurrent
algorithms on a variety of data structures [15]], and has inspired a variety of proof
methods [[16]. An explicit connection between linearisability and refinement was made
in [17]], where it was shown that, in base-type settings, linearisability and refinement
coincide. Similar results have been proved in [[18} |19} 20, 13]. Our contributions are
notions of linearisability that serve as correctness criteria for libraries with methods of
arbitrary order and have a similar relationship to refinement. The next natural target is
to investigate proof methods for establishing linearisability of higher-order concurrent
libraries. The examples pr