
Higher-Order Linearisability

Andrzej S. Murawskia, Nikos Tzevelekosb,1

aUniversity of Oxford
bQueen Mary University of London

Abstract

Linearisability is a central notion for verifying concurrent libraries: a library is proven
correct if its operational history can be rearranged into a sequential one that satisfies a
given specification. Until now, linearisability has been examined for libraries in which
method arguments and method results were of ground type. In this paper we extend
linearisability to the general higher-order setting, where methods of arbitrary type can
be passed as arguments and returned as values, and establish its soundness.

Keywords: Linearisability, Concurrency, Higher-Order Computation

1. Introduction1

Software libraries provide implementations of routines, often of specialised nature,2

to facilitate code reuse and modularity. To support the latter, they should follow3

specifications that describe the range of acceptable behaviours for correct and safe4

deployment. Adherence to specifications can be formalised using the classic notion of5

contextual approximation (refinement), which scrutinises the behaviour of code in any6

possible context. Unfortunately, the quantification makes it difficult to prove contextual7

approximation directly, which motivates research into sound techniques for establishing8

it.9

In the concurrent setting, a notion that has been particularly influential is that of10

linearisability [1]. Linearisability requires that, for each history generated by a library,11

one should be able to find another history from the specification (a linearisation), which12

matches the former up to certain rearrangements of events. In the original formulation13

by Herlihy and Wing [1], these permutations were not allowed to disturb the order14

between library returns and client calls. Moreover, linearisations were required to be15

sequential traces, that is, sequences of method calls immediately followed by their16

returns.17

In this paper we shall work with open higher-order libraries, which provide im-18

plementations of public methods and may themselves depend on abstract ones, to be19

supplied by parameter libraries. The classic notion of linearisability only applies to20

closed libraries (without abstract methods). Additionally, both method arguments and21

results had to be of ground type. The closedness limitation was recently lifted in [2, 3],22

which distinguished between public (or implemented) and abstract methods (callable).23

Although [2] did not in principle exclude higher-order functions, those works focussed24

on linearisability for the case where the allowable methods were restricted to first-order25

1Research supported by EPSRC (EP/P004172/1).

Preprint submitted to JLAMP November 26, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/201006143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ψ

Ψ''

L'

Ψ'Ψ

L

Ψ'

Ψ''

K
PL

OL

PK

OK
M1

M N

Figure 1: A library L ∶ Ψ → Ψ ′ in
environment comprising a param-
eter library L′ ∶ ∅ → Ψ,Ψ ′′ and
a client K of the form Ψ ′, Ψ ′′ ⊢
M1∥⋯∥MN .

functions (int→ int). Herein, we give a systematic exposition of linearisability for gen-26

eral higher-order concurrent libraries, where methods can be of arbitrary higher-order27

types. In doing so, we also propose a corresponding notion of sequential history for28

higher-order library interactions.29

We examine libraries L that can interact with their environments by means of public30

and abstract methods: a library L with abstract methods of types Ψ = θ1,⋯, θn and31

public methods Ψ ′ = θ′1,⋯, θ′n′ is written as L ∶ Ψ → Ψ ′. We shall work with arbitrary32

higher-order types generated from the ground types unit and int. Types in Ψ,Ψ ′ must33

always be function types, i.e. their order is at least 1.34

A library L may be used in computations by placing it in a context that will keep on35

calling its public methods (via a client K) as well as providing implementations for the36

abstract ones (via a parameter library L′). The setting is depicted in Figure 1. Note that,37

as the library L interacts with K and L′, they exchange functions between each other.38

Consequently, in addition to K making calls to public methods of L and L making calls39

to its abstract methods, K and L′ may also issue calls to functions that were passed to40

them as arguments during higher-order interactions. Analogously, L may call functions41

that were communicated to it via library calls.42

Our framework is operational in flavour and draws upon concurrent [4, 5] and43

operational game semantics [6, 7, 8]. We shall model library use as a game between two44

participants: Player (P), corresponding to the library L, and Opponent (O), representing45

the environment (L′,K) in which the library was deployed. Each call will be of the46

form callm(v) with the corresponding return of the shape retm(v), where v is a47

value. As we work in a higher-order framework, v may contain functions, which can48

participate in subsequent calls and returns. Histories will be sequences of moves, which49

are calls and returns paired with thread identifiers. A history is sequential just if every50

move produced by O is immediately followed by a move by P in the same thread. In51

other words, the library immediately responds to each call or return delivered by the52

environment. In contrast to classic linearisability, the move by O and its response by P53

need not be a call/return pair, as the higher-order setting provides more possibilities (in54

particular, the P response may well be a call). Accordingly, linearisable higher-order55

histories can be seen as sequences of atomic segments (linearisation points), starting at56

environment moves and ending with corresponding library moves.57

In the spirit of [3], we are going to consider two scenarios: one in which K and58

L′ share an explicit communication channel (the general case) as well as a situation in59

which they can only communicate through the library (the encapsulated case). Further,60

we also handle the case in which extra closure assumptions can be made about the61

parameter library (the relational case), which can be useful for dealing with a variety62

of assumptions on the use of parameter libraries that may arise in practice. In each63

case, we present a candidate definition of linearisability and illustrate it with tailored64

examples. The suitability of each kind of linearisability is demonstrated by showing65

that it implies the relevant form of contextual approximation (refinement). We also66

examine compositionality of the proposed concepts. One of our examples will discuss67

the implementation of the flat-combining approach [9, 3], adapted to higher-order types.68

2

1 public count , update;
2 Lock lock ;
3 F := λx.0;
4

5 count = λi. (!F)i
6 update = λ(i, g). aux(i ,g,count i)
7

8 aux = λ(i, g, j).
9 let y = ∣g j∣ in

10 lock . acquire ();
11 let f = !F in
12 if (j == (f i)) then (
13 F := λx. if (x == i) then y
14 else (f x) ;
15 lock . release ();
16 y)
17 else (
18 lock . release ();
19 aux(i ,g , f i))

1 public count, update, reset;
2 abstract default;
3 Lock lock;
4 F := λx.0;
5 count = λi. (!F)i
6 update = λ(i, g). aux(i ,g ,count i)
7 ...

20 reset = λi.
21 lock . acquire ();
22 let y = ∣default i ∣ in
23 let f = !F in
24 F := λx. if (x == i) then y
25 else (f x);
26 lock . release ();
27 y

Figure 2: Left: Multiset library Lmset with public methods count ∶ int→ int and update ∶ int×(int→ int) →
int. Right: Parameterised multiset library Lmset2 (lines 8-19 as in LHS) with public methods count , reset :
int→ int, update∶ int×(int→ int) → int; abstract method default ∶ int→ int.

The paper is an extended version of [10] and contains complete proofs, fully elabo-69

rated examples and appendices with further technical material, e.g. on compositionality.70

Example: a higher-order multiset library71

Higher-order libraries are common in languages like ML, Java, Python, etc. As an
illustrative example, we consider a library written in ML-like syntax which implements
a multiset data structure with integer elements. For simplicity, we assume that its
signature contains just two methods:

count ∶ int→ int, update ∶ (int × (int→ int)) → int .

The former method returns for each integer its multiplicity in the multiset – this is 072

if the integer is not a member of the multiset. On the other hand, update takes as an73

argument an integer i and a function g, and updates the multiplicity j of i in the multiset74

to ∣g(j)∣ (we use the absolute value of g(j) in order to meet the multiset requirement75

that element multiplicities not be negative; alternatively, we could have used exceptions76

to quarantine such client method behaviour). Methods with the same functionalities can77

be found in the multiset module of the ocaml-containers library [11]. While our example78

is simple, the same kind of analysis as below can be applied to more intricate examples79

such as map methods for integer-valued arrays, maps or multisets.80

Example 1 (Multiset). Consider the concurrent multiset library Lmset in Figure 2 on81

the LHS (the RHS will be discussed only later). It uses a private reference for storing the82

multiset’s characteristic function and reads optimistically, without locking (cf. [12, 13]).83

The update method in particular reads the current multiplicity of the given element i (via84

count) and computes its new multiplicity without acquiring a lock on the characteristic85

function. It only acquires a lock when it is ready to write the new value (line 10) in the86

3

call.cnt(i) ret.cnt(j)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

ret.cnt(j)

call.cnt(i)

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

ret.cnt(j')call.cnt(i)

call.cnt(i) ret.cnt(j')

call.upd(i,m) call.m(j) ret.m(j') ret.upd(j')

(a)

1

2

1

2

1

2

call.upd(i,m) call.m(j) ret.m(j') ret.upd(k')

call.upd(i,m') call.m'(j) ret.m'(k) ret.upd(k)

call.m(k) ret.m(k')

call.upd(i,m) call.m(j) ret.m(j') ret.upd(k')

call.upd(i,m') call.m'(j) ret.m'(k) ret.upd(k)

call.m(k) ret.m(k')

(b)

1

2

1

2

Figure 3: Example histories of Lmset.

hope that the value at i will still be the same and the update can proceed; if not, another87

attempt to update the value is made.88

Let us look at some example executions of the library via their resulting histories, i.e.89

sequences of method calls and returns between the library and a client. In the topmost90

block (a) of history diagrams of Figure 3, we see three such executions. Note that we do91

not record internal calls to count or aux, and use m and variants for method identifiers92

(names). We use the abbreviation cnt for count, and upd for update, and initially ignore93

the circled events for cnt. Each execution involves 2 threads.94

In the first execution, the client calls update(i,m) in the second thread, and sub-95

sequently calls count(i) in the first thread. The code for update stipulates that first96

count(i) be called internally, returning some multiplicity j for i, and then m(j) should97

be called. As soon m returns a value j′, update sets the multiplicity of i to j′ and itself98

returns j′. The last event in this history is a return of count in the first thread with the99

old value j. According to our proposed definition, this history will be linearisable to100

another, intuitively correct one: the last return can be moved to the circled position. At101

this point the notion of linearisability is used informally, but it will be made precise102

in the following sections. In the second execution, the last return of count in the first103

thread returns the updated value. In this case, we will be able to move call cnt(i) to the104

circled position to obtain a linearisation, which is obviously correct. Finally, in the third105

execution we have a history that will turn out non-linearisable to an intuitively correct106

history. Indeed, we should not be able to return the updated value in the first thread107

before m has returned it in the second one.108

The two histories in block (b) in the same figure demonstrate the mechanism for109

4

updates. The first history will be linearisable to the second one. In the second history110

we see that both threads try to update the same element i, but the first one succeeds111

in it first and returns k on update. Then, the second thread realises that the value of112

i has been updated to k and calls m again, this time with argument k. An important113

feature of the second history is that it is sequential: each client event (call or return) is114

immediately followed by a library event.115

Observe that the rearrangements discussed above involve either advancing a library116

action or postponing an environment action and that each action could be a call or a117

return. Definition 9 will capture this formally. For now, we note that this generalises the118

classic setting [1], where library method returns could be advanced and environment119

method calls deferred.120

The next section will introduce histories along with the proposed notion of linearis-121

ability. In Section 3 we present the syntax for libraries and clients, and in Section 3.1122

we define their semantics in terms of histories and co-histories respectively.123

2. Higher-order linearisability124

We examine higher-order libraries interacting with their context by means of abstract
and public methods. In particular, we shall rely on types given by the grammar below.
We let Meths stand for the set of method names and assume Meths = ⊎θ,θ′Methsθ,θ′ ,
where each set Methsθ,θ′ contains names for methods of type θ → θ′. Methods are
ranged over by m (and variants). We let v range over computational values, which
include a unit value, integers, methods and pairs of values.

θ ∶∶= unit ∣ int ∣ θ × θ ∣ θ → θ v ∶∶= () ∣ i ∣m ∣ (v, v)

The framework of a higher-order library and its environment is depicted in Figure 1.125

Given Ψ,Ψ ′ ⊆ Meths, a library L is said to have type Ψ → Ψ ′ if it defines public126

methods with names (and types) as in Ψ ′, using abstract methods Ψ . The environment of127

L consists of a client K (which invokes public methods of Ψ ′), and a parameter library128

L′ (which provides code for the abstract methods Ψ). In general, K and L′ may interact129

via a disjoint set of methods Ψ ′′ ⊆Meths, to which L has no access.130

In the rest of this paper, we shall implicitly assume that we work with a library L131

operating in an environment presented in Figure 1. The client K will consist of a fixed132

number N of concurrent threads. Next we introduce a notion of history tailored to the133

setting and define how histories can be linearised.134

2.1. Higher-order histories135

The operational semantics of libraries will be given in terms of histories, which are
sequences of method calls and returns, each decorated with a thread identifier t and a
polarity index X , where X ∈ {O,P}, as shown below.

(t, callm(v))X (t, retm(v))X

We shall refer such decorated calls and returns as moves. Here, m is a method name136

and v is a value of a matching type. The index X specifies who produces the move:137

the library L (polarity P), or its environment (L′,K) (polarity O). Using notation e.g.138

from [3], P corresponds to !, and O to ?. We may be dropping the polarity of a move139

when it is not important or no confusion arises by doing so.140

5

The choice of indices is motivated by the fact that the moves can be seen as defining141

a 2-player game between the library (L), which represents the Proponent player in the142

game (P), and its environment (L′,K) that represents the Opponent (O). Finally, we let143

the dual polarity of X be X ′, where X /=X ′.144

Next we proceed to define histories. Their definition will rely on a more primitive145

concept of prehistories, which are sequences of O/P -indexed method calls and returns146

that respect a stack discipline.147

Definition 2. Prehistories are sequences generated by one of the grammars:

PreHO ∶∶= ε ∣ callm(v)O PreHP retm(v′)P PreHO
PreHP ∶∶= ε ∣ callm(v)P PreHO retm(v′)O PreHP

where, if m ∈ Methsθ,θ′ , the types of v, v′ must match θ, θ′ respectively. We let148

PreH = PreHO ∪ PreHP .149

Thus, prehistories from PreHO start with an O-call, while those in PreHP start with150

a P -call. In each case, the polarities inside a prehistory alternate between O and P , and151

the polarities of calls and matching returns are always dual (returns dual to calls).152

Histories will be interleavings of prehistories tagged with thread identifiers (natural153

numbers), subject to a set of well-formedness constrains. In particular, a history h154

for library L ∶ Ψ → Ψ ′ will have to begin with an O-move and satisfy the following155

conditions, to be formalised in Definition 3.156

1. The name of any method called in h must come from Ψ or Ψ ′, or be introduced157

earlier in h as a higher-order argument or result (no methods out of thin air). In158

addition:159

• if the method is from Ψ ′, the call must be tagged with O (i.e. issued by K);160

• if the method is from Ψ , the call must be tagged with P (i.e. issued by L161

towards L′);162

• for a call of method m ∉ Ψ ∪Ψ ′ to be valid, m must be introduced in an earlier163

move of dual polarity (calls dual to introductions).164

2. Any method name appearing inside a call or return argument in h must be fresh, i.e.165

not used earlier (introductions always fresh).166

• This reflects the assumption that methods can be called and returned from, but167

not compared for identity equality. It is therefore a requirement towards the168

completeness of histories as a semantics for concurrent libraries. For example,169

this ensures that rules like η-equality are preserved in the semantics.170

• The condition serves the additional purpose of making the setting described171

in Figure 1 robust, as it prevents method names in Ψ from being leaked to the172

client K. This ensures that encapsulation cannot be broken.173

Given h ∈ PreH and t ∈ N, we write t × h for h in which each element is decorated with
t:

t × ((x1)X1(x2)X2⋯(xk)Xk
) = (t, x1)X1(t, x2)X2⋯(t, xk)Xk

.

We say that a move (t, x)X introduces a namem ∈Meths when x ∈ {callm′(v), retm′(v)}174

for some m′, v such that v contains m.175

6

Definition 3. Given Ψ,Ψ ′, the set of histories over Ψ → Ψ ′, written HΨ,Ψ ′ , is defined
by

HΨ,Ψ ′ = ⋃N>0 ⋃h1,⋯,hN ∈PreHO
(1 × h1) ∣ ⋯ ∣ (N × hN)

where (1 × h1) ∣ ⋯ ∣ (N × hN) is the set of all interleavings of (1 × h1),⋯, (N × hN)176

satisfying:177

1. For any s1 (t, callm(v))X s2 ∈ HΨ,Ψ ′ , either m ∈ Ψ ′ and X = O, or m ∈ Ψ and178

X = P , or there is a move (t′, x)X′ in s1 that introduces m and X ≠X ′.179

2. For any s1(t, x)Xs2 ∈ HΨ,Ψ ′ and any m, if m is introduced by x then m must not180

occur in s1.181

Note that the definition supports scenarios in which a method sent as a parameter by one182

thread can be called by a different thread. This feature will be explored in Example 18.183

A history h ∈ HΨ,Ψ ′ is called sequential if it is of the form

h = (t1, x1)O(t1, x′1)P ⋯(tk, xk)O(tk, x′k)P
for some ti, xi, x′i. We writeHseq

Ψ,Ψ ′ for the set of all sequential histories fromHΨ,Ψ ′ .184

We shall range overHΨ,Ψ ′ using h, s (and variants). The subscripts Ψ,Ψ ′ will often185

be omitted. Given a history h, we shall write h for the sequence of moves obtained from186

h by dualising all move polarities inside it. The set of co-histories over Ψ → Ψ ′ will be187

HcoΨ,Ψ ′ = {h ∣ h ∈ HΨ,Ψ ′}.188

While in this section histories will be extracted from example libraries informally,189

in Section 3.1 we give the formal semantics JLK of libraries. For each L ∶ Ψ → Ψ ′, we190

shall have JLK ⊆ HΨ,Ψ ′ .191

Remark 4. The notion of history introduced above extends the classic notion from [1] to192

higher-order types. It also extends the notion presented in [3]. The intuition behind the193

definition is that a history is a sequence of (well-bracketed) method calls and returns,194

called moves, each tagged with a thread identifier and a polarity, where polarities track195

the originators and recipients of moves. Moves may be calls or returns related to196

methods given in the library interface (Ψ → Ψ ′), or dynamically created methods that197

appear earlier inside the histories – recall that, in a higher-order setting, methods can be198

passed around as arguments to calls or be returned as results by other methods. On the199

other hand, a sequential history is one in which the operations performed by the library200

can be perceived as atomic, that is, each move produced by O is to be immediately201

followed by the library’s response, which is a P move in the same thread.202

Example 5 (Multiset spec). We now revisit our first example and provide a spec-
ification for it. Recall the multiset library Lmset from Figure 2. Our verification
goal will be to prove linearisability of Lmset to a specification Amset ⊆ Hseq

∅,Ψ , where
Ψ = {count,update}, which we define below. Intuitively, the specification stipulates that
the multiset operations are functionally correct and only includes sequential histories.
For example, the following histories are in the specification:

(1, call upd(5,m))O (1, callm(5))P (1, call cnt(5))O (1, ret cnt(0))P
(1, retm(42))O (1, ret upd(42))P

(1, call upd(5,m))O (1, callm(5))P (2, call upd(5,m′))O (2, callm′(5))P
(1, retm(42))O (1, ret upd(42))P (3, call cnt(5))O (3, ret cnt(42))P
(2, retm′(24))O (2, ret upd(24))P (1, call cnt(5))O (1, ret cnt(24))P

7

while the next ones are not:

(1, call upd(5,m))O (1, callm(5))P (1, call cnt(5))O (1, ret cnt(42))P ⋯
(1, call upd(5,m))O (2, call upd(6,m′))O⋯
(1, call upd(5,m))O(1, callm(5))P (2, call upd(5,m′))O(2, callm′(5))P

(1, retm(42))O(1, ret upd(42))P (3, call cnt(5))O(3, ret cnt(42))P
(2, retm′(24))O(2, ret upd(24))P (1, call cnt(5))O(1, ret cnt(42))P

Amset will certify that Lmset correctly implements some integer multiset I whose203

elements change over time according to the moves in h. For a multiset I and natural204

numbers i, j, we write I(i) for the multiplicity of i in I , and I[i ↦ j] for I with its205

multiplicity of i set to j. We shall stipulate that moves inside histories h ∈ Amset be206

annotatable with multisets I in such a way that the multiset is empty at the start of h207

(i.e. I(i) = 0 for all i) and:208

• If I is changed between two consecutive moves in h then the second move is a209

P -move. In other words, the client cannot directly update the elements of I .210

• Each call to count on argument i must be immediately followed by a return with211

value I(i), and with I remaining unchanged.212

• Each call to update on (i,m) must be followed by a call to m on I(i), with I213

unchanged. Moreover, m must later return with some value j. Assuming at that214

point the multiset will have value J, if I(i) = J(i) then the next move is a return215

of the original update call, with value j; otherwise, a new call to m on J(i) is216

produced, and so on.217

We formally define the specification next.218

LetH○
∅,Ψ contain sequences of moves from ∅ → Ψ accompanied by a multiset (i.e.

the sequences consist of elements of the form (t, x, I)X). For each s ∈ H○
∅,Ψ , we let

π1(s) be the history extracted by projection, i.e. π1(s) ∈ H∅,Ψ . For each t, we let s ↾ t
be the subsequence of s of elements with first component t. Writing ⊑pre for the prefix
relation, we define Amset = {π1(s) ∣ s ∈ A○

mset } where:

A○
mset = { s ∈ H○

∅,Ψ ∣ π1(s) ∈ Hseq
∅,Ψ ∧ ∀t. s ↾ t ∈ S ∧ s = (_ , I)O s′ Ô⇒ ∀i.I(i) = 0

∧ ∀s′(_ , I)P (_ , J)O ⊑pre s. I = J }

and, for each t, the set of t-indexed annotated histories S is given by the following
grammar:

S → ε ∣ (t, call cnt(i), I)O (t, ret cnt(I(i)), I)P S
∣ (t, call upd(i,m), I)OMi,j

I,J (t, ret upd(∣j∣), J[i↦ ∣j∣])P S

Mi,j
I,J → (t, callm(I(i)), I)P S (t, retm(j), J)O provided J(i) = I(i)

Mi,j
I,J → (t, callm(I(i)), I)P S (t, retm(j′), J′)OMi,j

J′,J provided J′(i) ≠ I(i)

By definition, all histories inAmset are sequential. The elements ofA○
mset carry along the219

multiset I that is being represented. The conditions on A○
mset stipulate that I is initially220

empty and that O cannot change the value of I , while the rest of the conditions above221

are imposed by the grammar for S. With the notion of linearisability to be introduced222

next, we will be able to show that JLmsetK is indeed linearisable to Amset.223

8

Remark 6. In our framework (higher-order computation with state) specifications are224

necessarily close to implementations. For example, they need to preserve the exact225

number of calls/returns, because each of them could trigger a potential side effect. As226

in [1], specifications contain sequential histories.227

2.2. Three notions of linearisability228

We present three notions of linearisability. First introduce a general notion that229

generalises classic linearisability [1] and parameterised linearisability [3]. We then230

develop two more specialised variants: a notion of encapsulated linearisability, follow-231

ing [3], that captures scenarios where the parameter library and the client cannot directly232

interact; and a relational notion whereby context behaviour (client and parameter library)233

is known to be relationally invariant.234

2.2.1. General linearisability235

We begin by introducing a class of reorderings on histories.236

Definition 7. Let ◁PO ⊆ HΨ,Ψ ′ × HΨ,Ψ ′ be the smallest binary relation over HΨ,Ψ ′
satisfying, for any t /= t′:

s1 (t′, x′)Z′ (t, x)Z s2 ◁PO s1 (t, x)Z (t′, x′)Z′ s2

whenever Z = P or Z ′ = O.237

Intuitively, two histories h1, h2 are related by ◁PO if the latter can be obtained from238

the former by swapping two adjacent moves from different threads in such a way that,239

after the swap, a P -move will occur earlier or an O-move will occur later. Note that the240

relation always applies to adjacent moves of the same polarity. On the other hand, we241

do not have s1(t, x)P (t′, x′)Os2 ◁PO s1(t′, x′)O(t, x)P s2.242

Example 8. Let Ψ = {m ∶ int→ int} and Ψ ′ = {m′ ∶ int→ int}. Consider h,h′ ∈ HΨ,Ψ ′
given below.

h = (1, callm(1))O (2, callm(5))O (1, callm′(2))P (1, retm′(3))O
(2, callm′(6))P (2, retm′(7))O (2, retm(8))P (1, retm(4))P

h′ = (1, callm(1))O (1, callm′(2))P (1, retm′(3))O (1, retm(4))P
(2, callm(5))O (2, callm′(6))P (2, retm′(7))O (2, retm(8))P

Note that h◁∗
PO h

′ by permuting (2, callm(5))O rightwards and (1, retm(4))P left-243

wards.244

As another example, we can revisit the histories in Figure 2. There, O-moves are245

coloured purple and P -moves are blue. In part (a) we can see that:246

• the first history linearises to a sequential one by swapping a P-move of thread 1 to247

the left of two moves of thread 2,248

• the second history linearises to a sequential one by swapping an O-move of thread 1249

to the right of two moves of thread 2,250

• the third history is already sequential and it cannot be linearised to a different one.251

In part (b), on the other hand, the first history linearises to the second one by a series of252

swaps (left as exercise).253

Analogously, one can consider the symmetric variant ◁OP of ◁PO, which will turn254

out useful in our soundness argument.255

9

Definition 9 (General Linearisability). Given h1, h2 ∈ HΨ,Ψ ′ , we say that h1 is lin-256

earised by h2, written h1 ⊲ h2, if h1 ◁∗
PO h2.257

Given libraries L,L′ ∶ Ψ → Ψ ′ and a set of sequential histories A ⊆ Hseq
Ψ,Ψ ′ we write258

L ⊲ A, and say that L can be linearised to A, if for any h ∈ JLK there exists h′ ∈ A such259

that h ⊲ h′. Moreover, we write L ⊲ L′ if L ⊲ JL′K ∩Hseq
Ψ,Ψ ′ (i.e. for all h ∈ JLK there is260

sequential h′ ∈ JL′K such that h ⊲ h′).261

Remark 10. The classic notion of linearisability from [1] states that h linearises to262

h′ just if the return/call order of h is preserved in h′ (and h′ is sequential), i.e. if a263

return move precedes a call move in h then so is the case in h′. Observing that, in [1],264

return and call moves coincide with P - and O-moves respectively, we can see that our265

higher-order notion of linearisability is a generalisation of the classic notion.266

Our definition shows that the ownership of actions is the key determinant of what267

moves can be swapped rather than the call/return distinction, which was prominent in268

the classic case. It just so happens that, for Ψ = ∅ and Ψ ′ = {m′ ∶ int → int}, the two269

coincide.270

For further comparison, recall that the classic definition allowed for call /call ,271

ret /ret and call /ret swaps, but ret /call was forbidden. According to our definition,272

what is allowed depends on polarity, so a call /call swap may well be illegal if the273

first call is a P -move and the second call is an O-move. Similarly, a ret /call swap is274

allowed as long as both actions belong to the same player or the return is an O-action275

and the call is a P -action. For instance, Example 8 involves the following kinds of276

swaps: call O/call P , call O/ret O, ret P /ret P , ret O/ret P , call P /ret P , call O/ret P .277

Our emphasis on move ownership is motivated by Lemma 34, which will ultimately278

enable us to prove that, if h ⊲ h′, then h′ suffices to demonstrate the interactive potential279

of h. This intuition is formally captured in Theorem 35.280

Remark 11. [3] defines linearisation using a “big-step” relation that applies a single281

permutation to the whole sequence. This contrasts with our definition as ◁∗
PO, in which282

we combine multiple adjacent swaps. In Appendix A we show that the two definitions283

are equivalent.284

2.2.2. Encapsulated linearisability285

We next show that a more permissive notion of linearisability applies if the parameter286

library L′ of Figure 1 is encapsulated, that is, the client K can have no direct access to287

it (i.e. Ψ ′′ = ∅). To capture this scenario, we define a second polarity function on moves,288

which determines the side of the move:289

• a move with side K is played between the library L and the client K, while290

• a move with side L is played between the library L and the parameter library L′.291

Formally, given a history h ∈ HΨ,Ψ ′ , we define a side function on its moves by:

side((t, callm(v))) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K if m ∈ Ψ ′

L if m ∈ Ψ
side((t′, x)) if (t′, x) introduces m

side((t, retm(v))) = side((t, callm(v′)))

where, in the latter case, (t, callm(v′)) is the corresponding call of (t, retm(v)). Thus,292

every move in h can be assigned a unique side polarity from {K,L}. For simplicity,293

10

we shall be tagging moves with a second index Y ∈ {K,L} corresponding to their side294

polarity.295

In this more restrictive nature of interaction, in which K and L′ are separated, in296

addition to sequentiality in every thread we shall insist that a move made by the library297

in the L or K side must be followed by an O move from the same side.298

Definition 12. We call a history h ∈ HΨ,Ψ ′ encapsulated if, for each thread t, we have
that if

h = s1 (t, x)PY s2 (t, x′)OY ′ s3

and moves from t are absent from s2 then Y = Y ′. Moreover, if L ∶ Ψ → Ψ ′, we set299

Henc
Ψ,Ψ ′ = {h ∈ HΨ,Ψ ′ ∣ h encapsulated} and JLKenc = JLK ∩Henc

Ψ,Ψ ′ .300

We define the corresponding linearisability notion as follows. First, let ◇ ⊆ HΨ,Ψ ′ ×
HΨ,Ψ ′ be the smallest binary relation on HΨ,Ψ ′ such that, for any X,X ′, and any
Y,Y ′ ∈ {K,L} with Y ≠ Y ′ and t ≠ t′:

s1(t,m)XY (t′,m′)X′Y ′s2 ◇ s1(t′,m′)X′Y ′(t,m)XY s2

Definition 13 (Encapsulated linearisability). Given h1, h2 ∈ Henc
Ψ,Ψ ′ , we say that h1 is301

enc-linearised by h2, and write h1 ⊲enc h2, if h1(◁PO ∪ ◇)∗h2 and h2 is sequential.302

A library L ∶ Ψ → Ψ ′ can be enc-linearised to A, written L ⊲enc A, if A ⊆ Hseq
Ψ,Ψ ′ ∩303

Henc
Ψ,Ψ ′ and for any h ∈ JLKenc there exists h′ ∈ A such that h ⊲enc h

′. We write L ⊲enc L
′

304

if L ⊲enc JL′Kenc ∩Hseq
Ψ,Ψ ′ .305

Remark 14. Suppose Ψ = {m ∶ int → int} and Ψ ′ = {m′ ∶ int → int}. Histories from306

HΨ,Ψ ′ may contain the following actions only: callm′(i)OK, retm(i)OL, callm(i)PL,307

retm′(i)PK. Then (◁PO ∪ ◇)∗ prevents callm(i)PL from being swapped with308

retm(i)OL and, similarly, for retm′(i)PK and callm′(i)OK, i.e. it coincides with309

Definition 3 of [3].310

Remark 15. The encapsulated framework implies that the client and the parameter library311

are independent entities. Consequently, whenever their interaction with the library312

involves two adjacent moves (t,m)XY (t′,m′)X′Y ′ with t ≠ t′,X ≠ X ′, permuting313

them will also generate a valid interaction. This justifies the extra freedom in rearranging314

moves in Definition 13. The soundness of this intuition is validated in Lemma 39 and315

Theorem 40.316

Example 16 (Parameterised multiset). We revisit the multiset library of Example 1317

and extend it with a public method reset, which performs multiplicity resets to default318

values using an abstract method default as the default-value function (again, we use319

absolute values to avoid negative multiplicities). The extended library is shown in320

the RHS of Figure 2 and written Lmset2 ∶ Ψ → Ψ ′, with Ψ = {default} and Ψ ′ =321

{count, update, reset}. In contrast to the update method of Lmset, reset is not optimistic:322

it retrieves the lock upon its call, and only releases it before return. In particular, the323

method calls default while it retains the lock.324

Observe that, were default able to externally call update, we would reach a deadlock:
default would be keeping the lock while waiting for the return of a method that requires
the lock. On the other hand, if the library is encapsulated then the latter scenario is not
possible. In such a case, Lmset2 linearises to the specification Amset2, defined next. Let
Amset2 = {π1(s) ∣ s ∈ A○

mset2 } where:

A○
mset2 = { s ∈ H○

Ψ,Ψ ′ ∣ π1(s) ∈ Hseq
Ψ,Ψ ′∩H

enc
Ψ,Ψ ′ ∧ ∀t. s ↾ t ∈ S ∧ s = (_ , I)O s′ Ô⇒ ∀i.I(i) = 0

∧ ∀s′(_ , I)P (_ , J)O ⊑pre s. I = J }

11

1 public run; . . . ;
2 Lock lock ;
3 struct {fun , arg , wait , retv } requests [N];
4

5 run = λ (f,x).
6 requests [tid].fun := f;
7 requests [tid].arg := x;
8 requests [tid].wait := 1;
9 while (requests [tid].wait)

10 if (lock . tryacquire ()) (
11 for (t=0; t<N; t++)
12 if (requests [t]. wait) (
13 requests [t]. retv :=
14 requests [t]. fun (requests [t]. arg);
15 requests [t]. wait := 0;
16); lock . release ());
17 requests [tid].retv;

Figure 4: Flat combination library Lfc.

and the set S is now given by the grammar of Example 5 extended with the rule:

S → (t, call reset(i), I)OK (t, call default(i), I)PL (t, ret default(j), I)OL (t, ret reset(∣j∣), I ′)PK S

with I ′ = I[i ↦ ∣j∣]. Our framework makes it possible to confirm that Lmset2 enc-325

linearises to Amset2.326

2.2.3. Relational linearisability327

We finally extend general linearisability to cater for situations where the client and328

the parameter library adhere to closure constraints expressed by relationsR on histories.329

Let Ψ,Ψ ′ be sets of abstract and public methods respectively. The closure relations we330

consider are closed under permutations of methods outside Ψ ∪ Ψ ′: if hRh′ and π is a331

(type-preserving) permutation on Meths∖(Ψ ∪Ψ ′) then π(h)Rπ(h′). The requirement332

represents the fact that, apart from the method names from a library interface, the other333

method names are arbitrary and can be freely permuted without any observable effect.334

Thus,R should not be distinguishing between such names.335

Definition 17 (Relational linearisability). Let R ⊆ HΨ,Ψ ′ × HΨ,Ψ ′ be closed under336

permutations of names in Meths ∖ (Ψ ∪ Ψ ′). Given h1, h2 ∈ HΨ,Ψ ′ , we say that h1 is337

R-linearised by h2, and write h1 ⊲R h2, if h1(◁PO ∪R)∗h2 and h2 is sequential. A338

library L ∶ Ψ → Ψ ′ can beR-linearised to A, written L ⊲R A, if A ⊆ Hseq
Ψ,Ψ ′ and for any339

h ∈ JLK there exists h′ ∈ A such that h ⊲R h′. We write L ⊲R L′ if L ⊲R JL′K ∩Hseq
Ψ,Ψ ′ .340

Example 18. We consider a higher-order variant of an example from [3] that motivates341

relational linearisability. Flat combining [9] is a synchronisation paradigm that advocates342

the use of a single thread holding a global lock to process requests of all other threads.343

To facilitate this, threads share an array to which they write the details of their requests344

and wait either until they acquire a lock or their request has been processed by another345

thread. Once a thread acquires a lock, it executes all requests stored in the array and the346

outcomes are written to the array for access by the requesting threads.347

12

Let Ψ ′ = {run ∈ Meths(θ→θ′)×θ,θ′}. The library Lfc ∶ ∅ → Ψ ′ in Figure 4 is348

built following the flat combining approach and, on acquisition of the global lock, the349

winning thread acts as a combiner of all registered requests. Note that the requests will350

be attended to one after another (thus guaranteeing mutual exclusion) and only one lock351

acquisition will suffice to process one array of requests. Using our framework, one can352

show that Lfc can beR-linearised to the specification given by the library Lspec defined353

by354

run = λ (f,x). (lock . acquire (); let result = f (x) in lock . release (); result)355

where each function call in Lspec is protected by a lock. Observe that we cannot hope356

for Lfc ⊲ Lspec, because clients may call library methods with functional arguments357

that recognise thread identity. Consequently, we can relate the two libraries only if358

context behaviour is guaranteed to be independent of thread identifiers. This can be359

expressed through ⊲R, where R ⊆ H∅,Ψ ′ ×H∅,Ψ ′ is a relation capturing thread-blind360

client behaviour (see Subsection 3.2 for details).361

3. Library syntax and semantics362

We now look at the concrete syntax of libraries and clients. Libraries comprise363

collections of typed methods whose argument and result types adhere to the grammar:364

θ ∶∶= unit ∣ int ∣ θ → θ ∣ θ × θ.365

We shall use three disjoint enumerable sets of names, referred to as Vars, Meths366

and Refs, to name respectively variables, methods and references. x, f (and their367

decorated variants) will be used to range over Vars; m will range over Meths; and r368

over Refs. Methods and references are implicitly typed, i.e. Meths = ⊎θ,θ′Methsθ,θ′369

and Refs = Refsint ⊎⊎θ,θ′ Refsθ,θ′ , where Methsθ,θ′ contains names for methods of type370

θ → θ′, Refsint contains names of integer references and Refsθ,θ′ contains names for371

references to methods of type θ → θ′. We write ⊎ for disjoint set union.372

The syntax for libraries and clients is given in Figure 5. Each library L begins with373

a series of method declarations (public or abstract) followed by a block B containing374

method implementations (m = λx.M) and reference initialisations (r ∶= i or r ∶= λx.M).375

The typing rules ensure that each public method is implemented within the block, in376

contrast to abstract methods. Clients are parallel compositions of closed terms.377

Terms M specify the shape of allowable method bodies. () is the skip command,378

i ranges over integers, tid is the current thread identifier and ⊕ represents standard379

arithmetic operations. Thanks to higher-order references, we can simulate divergence380

by (!r)(), where r ∈ Refsunit,unit is initialised with λxunit.(!r)(). Similarly, whileM N381

can be simulated by (!r)() after r ∶= λxunit.let y =M in (if y then (N ; (!r)()) else ()).382

We also use the standard derived syntax for sequential composition, i.e. M ;N stands for383

let x =M in N , where x does not occur in N . For each term M , we write Meths(M)384

for the set of method names occurring in M . We use the same notation for method385

names in blocks and libraries.386

Remark 19. In Section 2 we used lock-related operations in our example libraries387

(acquire, tryacquire, release), on the understanding that they can be coded using shared388

memory. We assume that both acquire and release are blocking, while tryacquire is not.389

tryacquire makes an attempt to acquire the associated lock and returns 0 if the attempt390

was not successful or 1 otherwise. Similarly, the array of Example 18 in the sequel can391

be constructed using references.392

13

Libraries L ∶∶= B ∣ abstractm; L ∣ publicm; L Clients K ∶∶= M ∥⋯∥M
Blocks B ∶∶= ε ∣m = λx.M ; B ∣ r ∶= λx.M ; B ∣ r ∶= i; B Values v ∶∶= () ∣ i ∣m ∣ ⟨v, v⟩
Terms M ∶∶= () ∣ i ∣ tid ∣ x ∣m ∣M ⊕M ∣ ⟨M,M⟩ ∣ π1M ∣ π2M ∣ if M thenM elseM

∣ λxθ.M ∣ xM ∣mM ∣ let x =M inM ∣ r ∶=M ∣ !r

Γ ⊢() ∶ unit Γ ⊢ i ∶ int Γ ⊢ tid ∶ int
Γ(x) = θ
Γ ⊢ x ∶ θ

m ∈Methsθ,θ′

Γ ⊢m ∶ θ → θ′
Γ ⊢M ∶ int Γ ⊢M0,M1 ∶ θ
Γ ⊢ if M thenM1 elseM0 ∶ θ

Γ ⊢M ∶ θ1 × θ2

Γ ⊢ πiM ∶ θi (i = 1,2)
Γ ⊢Mi ∶ θi (i = 1,2)
Γ ⊢ ⟨M1,M2⟩ ∶ θ1× θ2

Γ ⊢M1,M2 ∶ int
Γ ⊢M1 ⊕M2 ∶ int

Γ, x ∶ θ ⊢M ∶ θ′

Γ⊢ λxθ.M ∶ θ → θ′

Γ(x) = θ → θ′ Γ ⊢M ∶ θ
Γ ⊢ xM ∶ θ′

m ∈Methsθ,θ′ Γ ⊢M ∶ θ
Γ ⊢mM ∶ θ′

Γ ⊢M ∶ θ Γ, x ∶ θ ⊢ N ∶ θ′

Γ ⊢ let x =M in N ∶ θ′

r ∈ Refsint Γ ⊢M ∶ int
Γ ⊢ r ∶=M ∶ unit

r ∈ Refsθ,θ′ Γ ⊢M ∶ θ → θ′

Γ ⊢ r ∶=M ∶ unit
r ∈ Refsint
Γ ⊢ !r ∶ int

r ∈ Refsθ,θ′
Γ ⊢ !r ∶ θ → θ′

⊢B ε ∶ ∅
m ∈Methsθ,θ′ x ∶ θ ⊢M ∶ θ′ ⊢B B ∶ Ψ

⊢B m = λx.M ; B ∶ Ψ ⊎ {m}
r ∈ Refsθ,θ′ x ∶ θ ⊢M ∶ θ′ ⊢B B ∶ Ψ

⊢B r ∶= λx.M ; B ∶ Ψ
r ∈ Refsint ⊢B B ∶ Ψ
⊢B r ∶= i; B ∶ Ψ

⊢B B ∶ Ψ
Meths(B) ⊢L B ∶ ∅ → Ψ

Ψ ⊎ {m} ⊢L L ∶ Ψ ′ → Ψ ′′ m ∈ Ψ ′′

Ψ ⊢L publicm;L ∶ Ψ ′ → Ψ ′′

Ψ ⊎ {m} ⊢L L ∶ Ψ ′ → Ψ ′′ m ∉ Ψ ′′

Ψ ⊢L abstractm;L ∶ Ψ ′ ⊎ {m} → Ψ ′′
⊢Mj ∶ unit (j = 1,⋯,N)
Ψ ⊢K M1∥⋯∥MN ∶ unit

∀j.Meths(Mj) ⊆ Ψ

Figure 5: Library syntax, and typing rules for terms (⊢), blocks (⊢B), libraries (⊢L), clients (⊢K).

For simplicity, we do not include private methods, yet the same effect could be393

achieved by storing them in higher-order references. As we explain in the next sec-394

tion, references present in library definitions are de facto private to the library. Note395

also that, according to our definition, sets of abstract and public methods are disjoint.396

However, given m,m′ ∈ Refsθ,θ′ , one can define a “public abstract” method with:397

publicm; abstractm′; m = λxθ.m′x .398

Terms are typed in environments Γ = {x1 ∶ θ1,⋯, xn ∶ θn}. Method blocks are typed399

through judgements ⊢B B ∶ Ψ , where Ψ ⊆Meths. The judgments collect the names of400

methods defined in a block as well as making sure that the definitions respect types and401

are not duplicated. Also, the initialisation statements must comply with types.402

Finally, we type libraries using statements of the form Ψ ⊢L L ∶ Ψ ′ → Ψ ′′, where403

Ψ,Ψ ′, Ψ ′′ ⊆Meths and Ψ ′ ∩ Ψ ′′ = ∅. The judgment ∅ ⊢L L ∶ Ψ ′ → Ψ ′′ guarantees that404

any method occurring in L is present either in Ψ ′ or Ψ ′′, that all methods in Ψ ′ are405

declared as abstract and unimplemented, while all methods in Ψ ′′ are declared as public406

and defined. Thus, ∅ ⊢L L ∶ Ψ → Ψ ′ is a library in which Ψ,Ψ ′ are the abstract and407

public methods respectively. In this case, we also write L ∶ Ψ → Ψ ′.408

3.1. Semantics409

The semantics of our system is given in several stages. First, we define an operational410

semantics for sequential and concurrent terms that may draw methods from a repository.411

We then adapt it to capture interactions of concurrent clients with closed libraries (no412

abstract methods). This notion is then used to define contextual approximation for413

14

(L) Ð→lib (L,∅, Sinit) (r ∶= i;B,R, S) Ð→lib (B,R, S[r ↦ i])
(abstractm;L,R, S) Ð→lib (L,R, S) (m = λx.M ;B ,R, S) Ð→lib (B,R∗∗, S)

(publicm;L,R, S) Ð→lib (L,R, S) (r ∶= λx.M ;B,R, S) Ð→lib (B,R∗∗, S[r ↦m])
(E[tid],R, S) Ð→t (E[t],R, S) (E[if i∗ thenM1 elseM0],R, S) Ð→t (E[Mj∗],R, S)

(E[i1 ⊕ i2],R, S) Ð→t (E[i∗∗],R, S) (E[πj⟨v1,v2⟩],R, S) Ð→t (E[vj],R, S)
(E[!r],R, S) Ð→t (E[S(r)],R, S) (E[let x = v inM],R, S) Ð→t (E[M{v/x}],R, S)

(E[r ∶= i],R, S) Ð→t (E[()],R, S[r ↦ i]) (E[r ∶= λx.M],R, S) Ð→t (E[()],R∗∗, S[r ↦m])
(E[λx.M],R, S) Ð→t (E[m],R∗∗, S) (E[mv],R∗, S) Ð→t (E[M{v/x}],R∗, S)

E ∶∶= ● ∣ E⊕M ∣ i⊕E ∣ if E thenM elseM ∣ πj E ∣ ⟨E,M⟩ ∣ ⟨v,E⟩ ∣mE ∣ let x = E inM ∣ r ∶= E

(M,R, S) Ð→t (M ′,R′, S′)
(M1∥⋯∥Mt−1∥M∥Mt+1∥⋯∥MN ,R, S) ÔÔ⇒ (M1∥⋯∥Mt−1∥M ′∥Mt+1∥⋯∥MN ,R′, S′)

(KN)

Figure 6: . Evaluation rules for libraries (Ð→lib), terms (Ð→t) and clients (ÔÔ⇒). In the rules above we use
the conditions/notation: R∗∗ = R ⊎ (m↦ λx.M), i∗∗ = i1 ⊕ i2,R∗(m) = λx.M , and j∗ = 0 iff i∗ = 0.

arbitrary libraries. Finally, we introduce a trace semantics of arbitrary libraries, which414

generates the histories on which our notions of linearisability are based.415

3.1.1. Library-client evaluation416

Libraries, terms and clients are evaluated in environments comprising:417

• A method environmentR, called own-method repository, which is a finite partial418

map on Meths assigning to each m in its domain, with m ∈Methsθ,θ′ , a term of the419

form λy.M (we omit type-superscripts from bound variables for economy).420

• A finite partial map S ∶ Refs⇀ (Z ∪Meths), called store, which assigns to each r421

in its domain an integer (if r ∈ Refsint) or name from Methsθ,θ′ (if r ∈ Refsθ,θ′).422

The evaluation rules are presented in Figure 6, where we also define evaluation contexts423

E.424

Remark 20. We shall assume that reference names used in libraries are library-private, i.e.425

sets of reference names used in different libraries are assumed to be disjoint. Similarly,426

when libraries are being used by client code, this is done on the understanding that the427

references available to that code do not overlap with those used by libraries. Still, for428

simplicity, we shall rely on a single set Refs of references in our operational rules.429

First we evaluate the library to create an initial repository and store. This is achieved430

by the first set of rules in Figure 6, where we assume that Sinit is empty. Thus, library431

evaluation produces a tuple (ε,R0, S0) including a method repository and a store, which432

can be used as the initial repository and store for evaluating M1∥⋯∥MN using the (KN)433

rule. We shall call the latter evaluation semantics for clients (denoted by ÔÔ⇒) the434

multi-threaded operational semantics. The latter relies on closed-term reduction (Ð→t),435

whose rules are given in the middle group, where t is the current thread index. Note436

that the rules for E[λx.M] in the middle group, along with those for m = λx.M and437

r ∶= λx.M in the first group, involve the creation of a fresh method name m, which is438

used to put the function in the repositoryR. Name creation is non-deterministic: any439

fresh m of the appropriate type can be chosen.440

We define termination for clients linked with libraries that have no abstract methods.441

15

Recall our convention (Remark 20) that L and M1,⋯,MN must access disjoint parts of442

the store. Terms M1,⋯,MN can share reference names, though.443

Definition 21. Let L ∶ ∅ → Ψ ′ and Ψ ′ ⊢K M1∥⋯∥MN ∶ unit. We say that M1∥⋯∥MN444

terminates with linked library L if (M1∥⋯∥MN ,R0, S0) ÔÔ⇒∗ (()∥⋯∥(),R, S), for445

someR, S, where (L) Ð→∗
lib (ε,R0, S0). We then write link L in (M1∥⋯∥MN) ⇓.446

We shall build a notion of contextual approximation of libraries on top of termination:447

one library will be said to approximate another if, whenever the former terminates when448

composed with any parameter library and client, so does the latter.449

We will be considering the following notions for composing libraries. Let us denote
a library L as L =D;B, where D contains all the (public/abstract) method declarations
of L, and B is its method block. We write Refs(L) for the set of references in L.
Let L1 ∶ Ψ1 → Ψ2 be of the form D1;B1. Given L2 ∶ Ψ ′1 → Ψ ′2 (= D2;B2) such that
Ψ2 ∩ Ψ ′2 = Refs(L1) ∩ Refs(L2) = ∅, Ψ = {m1,⋯,mn} ⊆ Ψ2 and L′ ∶ ∅ → Ψ1, Ψ

′, we
define the union of L1 and L2, the Ψ -hiding of L1, and the sequencing of L′ with L1

respectively as:

L1 ∪L2 ∶ (Ψ1 ∪ Ψ ′1) ∖ (Ψ2 ∪ Ψ ′2) → Ψ2 ∪ Ψ ′2 = (D1;B1) ∪ (D2;B2) =D′
1;D′

2;B1;B2

L1∖ Ψ ∶ Ψ1 → (Ψ2 ∖ Ψ) = (D1;B1) ∖ Ψ =D′′
1 ;B′

1{!r1/m1}⋯{!rn/mn}
L′;L1 ∶ ∅ → Ψ2, Ψ

′ = (L′ ∪L1) ∖ Ψ1

where D′
1 is D1 with any abstractm declaration removed for m ∈ Ψ ′2, dually for D′

2;450

and where D′′
1 is D1 without public m declarations for m ∈ Ψ and each ri is a fresh451

reference matching the type of mi, and B′
1 is obtained from B1 by replacing each452

mi = λx.M by ri ∶= λx.M . Thus, the union of libraries L1 and L2 corresponds to453

merging their code and removing any abstract declarations for methods defined in the454

union. On the other hand, the hiding of a public method simply renders it private via the455

use of references. Sequencing allows for the following notion.456

Definition 22. Given L1, L2 ∶ Ψ → Ψ ′, we say that L1 contextually approximates457

L2, written L1 ⊏∼ L2, if for all L′ ∶ ∅ → Ψ,Ψ ′′ and Ψ ′, Ψ ′′ ⊢K M1∥⋯∥MN ∶ unit, if458

link L′;L1 in(M1∥⋯∥MN)⇓ then link L′;L2 in(M1∥⋯∥MN)⇓. In this case, we also459

say that L2 contextually refines L1.460

Note that, according to this definition, the parameter library L′ may communicate461

directly with the client terms through a common interface Ψ ′′. We shall refer to this case462

as the general case. Later on, we shall also consider more restrictive testing scenarios463

in which this possibility of explicit communication is removed. Moreover, from the464

disjointness conditions in the definitions of sequencing and linking we have that Li, L′465

and M1∥⋯∥MN access pairwise disjoint parts of the store.466

Remark 23. Our ultimate goal will be to show that our notion of linearisability, written467

⊲, provides a sound method for proving contextual approximation/refinement, written ⊏∼.468

Recall that in order to establish L1 ⊲ L2, one has to exhibit a subset A2 of sequential469

histories taken from JL2K such that L1 is linearisable to A2, written L1 ⊲ A2.470

3.1.2. Trace semantics471

Building on the earlier semantics, we next introduce a trace semantics of libraries472

in the spirit of game semantics [14]. As mentioned in Section 2, the behaviour of a473

library will be represented as an exchange of moves between two players called P and474

O, representing the library and its corresponding context respectively. The context475

16

consists of the client of the library as well as the parameter library, with an index on476

each move (K/L) specifying which of them is involved in the move.477

In contrast to the semantics of the previous section, we handle scenarios in which478

methods need not be present in the repositoryR. Calls to such undefined methods are479

represented by labelled transitions – calls to the context made on behalf of the library480

(P). The calls can later be responded to with labelled transitions corresponding to481

returns, made by the context (O). On the other hand, O is able to invoke methods482

in R, which will also be represented through suitable labels. Because we work in a483

higher-order setting, calls and returns made by both players may involve methods as484

arguments or results. Such methods also become available for future calls: function485

arguments/results supplied by P are added to the repository and can later be invoked by486

O, while function arguments/results provided by O can be queried in the same way as487

abstract methods.488

The trace semantics utilises configurations that carry more components than the
previous semantics. We define two kinds of configurations:

O-configurations (E ,−,R,P,A, S) and P-configurations (E ,M,R,P,A, S)

where the component E is an evaluation stack, that is, a stack of the form [X1,X2,⋯,Xn]489

with each Xi being either an evaluation context or a method name. On the other490

hand, P = (PL,PK) with PL,PK ⊆ dom(R) being sets of public method names, and491

A = (AL,AK) is a pair of sets of abstract method names. P will be used to record492

all the method names produced by P and passed to O: those passed to OK are stored493

in PK, while those passed to OL are kept in PL. Inside A, the story is the opposite494

one: AK (AL) stores the method names produced by OK (resp. OL) and passed to P .495

Consequently, the sets of names stored in PL,PK,AL,AK will always be disjoint.496

Given a pair P as above and a set Z ⊆ Meths, we write P ∪K Z for the pair497

(PL,PK ∪ Z). We define ∪L in a similar manner, and extend it to pairs A as well.498

Moreover, given P and A, we let φ(P,A) be the set of fresh method names for P,A:499

φ(P,A) =Meths ∖ (PL ∪ PK ∪AL ∪AK).500

We give the rules generating the trace semantics in Figure 7. Note that the rules are501

parameterised by: P /O and Y , which together determine the polarity of the next move;502

C/R, which stands for the move being a call (C) or a return (R) respectively. The rules503

depict the intuition presented above. When in an O-configuration, the context may issue504

a call to a public method m ∈ PY and pass control to the library (rule (OCY)). Note that,505

when this occurs, the name m is added to the evaluation stack E and a P -configuration506

is obtained. From there on, the library will compute internally using rule (INT), until: it507

either needs to evaluate an abstract method (i.e. some m′ ∈ AY), and hence issues a call508

via rule (PCY); or it completes its computation and returns the call (rule (PRY)). Calls509

to abstract methods, on the other hand, are met either by further calls to public methods510

(via (OCY)), or by returns (via (ORY)).511

Finally, we extend the trace semantics to a concurrent setting where a fixed number
of N -many threads run in parallel. Each thread has separate evaluation stack and term
components, which we write as C = (E ,X) (where X is a term or “−”). Thus, a
configuration now is of the following form:

N -configuration (C1∥⋯∥CN ,R,P,A, S)

where, for each i, Ci = (Ei,Xi) and (Ei,Xi,R,P,A, S) is a sequential configuration.
We shall abuse notation a little and write (Ci,R,P,A, S) for (Ei,Xi,R,P,A, S). The

17

(INT) (E ,M,R,P,A, S) Ð→t (E ,M ′,R′,P,A, S′), given that (M,R, S) Ð→t
(M ′,R′, S′) and dom(R′ ∖R) consists of names that do not occur in E ,A.

(PCY) (E ,E[mv],R,P,A, S)
callm(v′)PYÐÐÐÐÐ→t (m ∶∶ E ∶∶ E ,−,R′,P ′,A, S), givenm ∈ AY

and (P).

(OCY) (E ,−,R,P,A, S)
callm(v)OYÐÐÐÐÐÐ→t (m ∶∶ E ,M{v/x},R,P,A′, S), given m ∈

PY ,R(m) = λx.M and (O).

(PRY) (m ∶∶ E , v,R,P,A, S)
retm(v′)PYÐÐÐÐÐÐ→t (E ,−,R′,P ′,A, S), given m ∈ PY

and (P).

(ORY) (m ∶∶ E ∶∶ E ,−,R,P,A, S)
retm(v)OYÐÐÐÐÐÐ→t (E ,E[v],R,P,A′, S), given m ∈

AY and (O).

(P) If v contains the names m1,⋯,mk then v′ = v{m′
i/mi ∣ 1 ≤ i ≤ k} with each

m′
i being a fresh name. Moreover, R′ = R ⊎ {m′

i ↦ λx.mix ∣ 1 ≤ i ≤ k} and
P ′ = P ∪Y {m′

1,⋯,m′
k}.

(O) If v contains names m1,⋯,mk then mi ∈ φ(P,A), for each i, and A′ = A ∪Y
{m1,⋯,mk}.

Figure 7: Trace semantics rules. The rule (INT) is for embedding internal rules. In the rule (PCY), the library
(P) calls one of its abstract methods (either the original ones or those acquired via interaction), while in (PRY)
it returns from such a call. The rules (OCY) and (ORY) are dual and represent actions of the context. In all of
the rules, whenever we write m(v) or m(v′), we assume that the type of v matches the argument type of m.

concurrent traces are produced by the following two rules

(Ci,R,P,A, S) Ð→i (C′,R,P,A, S′)
(C1∥⋯∥CN ,R,P,A, S) ÔÔ⇒ (C1∥⋯∥Ci−1∥C′∥Ci+1∥⋯∥CN ,R,P,A, S′)

(PINT)

(Ci,R,P,A, S)
xXYÐÐ→i (C′,R,P,A, S′)

(C1∥⋯∥CN ,R,P,A, S)
(i,x)XYÔÔÔ⇒ (C1∥⋯∥Ci−1∥C′∥Ci+1∥⋯∥CN ,R,P,A, S′)

(PEXT)

with the proviso that the names freshly produced internally in (PINT) are fresh for the512

whole of C⃗.513

We can now define the trace semantics of a library L. We call a configuration514

component Ci final if it is in one of the following forms, for O- and P -configurations515

respectively: Ci = ([],−) or Ci = ([], ()) . We call (C⃗,R,P,A, S) final just if C⃗ =516

C1∥⋯∥CN and each Ci is final.517

Definition 24. For each L ∶ Ψ → Ψ ′, we define the N -trace semantics of L to be:

JLKN = { s ∣ (C⃗0,R0, (∅, Ψ ′), (Ψ,∅), S0)
sÔÔ⇒∗ρ ∧ ρ final}

where C⃗0 = ([],−)∥⋯∥([],−) and (L) Ð→∗
lib (ε,R0, S0).518

For economy, in the sequel we might be dropping the index N from JLKN . We519

conclude the presentation of the trace semantics by providing a semantics for library520

contexts.521

18

Recall that in our setting (Figure 1) a library L ∶ Ψ → Ψ ′ is deployed in a context522

consisting of a parameter library L′ ∶ ∅ → Ψ,Ψ ′′ and a concurrent composition of client523

threads Ψ ′, Ψ ′′ ⊢Mi ∶ unit (i = 1,⋯,N). We shall write link L′;− in (M1∥⋯∥MN), or524

simply C, to refer to such contexts.525

Definition 25. Let Ψ ′, Ψ ′′ ⊢K M1∥⋯∥MN ∶ unit and L′ ∶ ∅ → Ψ,Ψ ′′. We define the
semantics of the context formed by L′ and M1,⋯,MN to be:

Jlink L′;− in (M1∥⋯∥MN)K = { s ∣ (C⃗0,R0, (Ψ,∅), (∅, Ψ ′), S0)
sÔÔ⇒∗ρ ∧ ρ final}

where (L′) Ð→∗
lib (ε,R0, S0) and C⃗0 = ([],M1)∥⋯∥([],MN).526

Lemma 26. For any L ∶ Ψ → Ψ ′, L′ ∶ ∅ → Ψ,Ψ ′′ and Ψ ′, Ψ ′′ ⊢K M1∥⋯∥MN ∶ unit we527

have JLKN ⊆ HΨ,Ψ ′ and Jlink L′;− in (M1∥⋯∥MN)K ⊆ HcoΨ,Ψ ′ .528

3.2. Proofs of examples529

With the definition of JLK in place, we can finally revisit the linearisability claims530

anticipated in Examples 1, 16 and 18.531

Recall the multiset library Lmset and the specification Amset of Example 1 and532

Figure 2. We show that Lmset ⊲ Amset. More precisely, taking an arbitrary history533

h ∈ JLmsetK we show that h can be rearranged using ◁∗
PO to match an element of534

Amset. We achieve this by identifying, for each O-move (t, x)O and its following535

P -move (t, x′)P in h, a linearisation point between them, i.e. a place in h to which536

(t, x)O can moved right and to which (t, x′)P can be moved left so that they become537

consecutive and, moreover, the resulting history is still produced by Lmset. After all538

these rearrangements, we obtain a sequential history ĥ such that h ⊲ ĥ and ĥ is also539

produced by Lmset. It then suffices to show that ĥ ∈ Amset.540

Lemma 27 (Multiset). Lmset linearises to Amset.541

Proof. Given some h ∈ JLmsetK, let us assume that h has been generated by a sequence542

ρ1 ⇒ ρ2 ⇒⋯⇒ ρk of atomic transitions and that the variable F of Lmset is instantiated543

with a reference rF . We demonstrate the linearisation points for pairs of (O,P) moves in544

h, by case analysis on the moves (we drop K indices from moves as they are ubiquitous).545

Line numbers below refer to the LHS of Figure 2.546

1. h = ⋯(t, call cnt(i))O s (t, ret cnt(i′))P ⋯ . Here the linearisation point (LP) is the547

configuration ρj that dereferences rF as per line 5 in Lmset (the !F expression).548

2. h = ⋯(t, call upd(i,m))O s (t, call m(j))P ⋯ . The LP is the dereferencing of rF549

in line 5 (called from within update).550

3. h = ⋯(t, ret m(j′))O s (t, ret upd(∣j′∣))P ⋯ . The LP is the update of rF in line 13.551

4. h = ⋯(t, ret m(j′))O s (t, call m(j′′))P ⋯ . The LP is the dereferencing of rF in552

line 11.553

Each of the linearisation points above specifies a PO-rearrangement of moves. For in-554

stance, for h = s0 (t, call cnt(i))O s (t, ret cnt(i′))P s′, let s = s1s2 where s0 (t, call cnt(i))O s1555

is the prefix of h produced by ρ1 ⇒ ρ2 ⇒ ⋯ ⇒ ρj . The rearrangement of h is then556

ĥ = s0 s1 (t, call cnt(i))O (t, ret cnt(i′))P s2 s
′. We thus obtain h◁∗

PO ĥ.557

The selection of linearisation points is such that it guarantees that ĥ ∈ JLmsetK. E.g. in558

case 1, the transitions occurring in thread t between (t, call cnt(i))O and configuration559

ρj do not access rF . Hence, we can postpone them and fire them in sequence just before560

ρj . After ρj+1 and until (t, ret cnt(i′))P there is again no access of rF in t and we561

can thus bring forward the corresponding transitions just after ρj+1. Similar reasoning562

19

applies to case 2. In case 4, we reason similarly but also take into account that rendering563

the acquisition of the lock by t atomic is sound (i.e. the semantics can produce the564

rearranged history). Case 3 is similar, but we also use the fact that the access to rF in565

lines 10-15 is inside the lock, and hence postponing dereferencing (line 11) to occur in566

sequence before update (line 13) is sound.567

Now, any transition sequence α which produces ĥ (in JLmultK) can be used to derive568

an annotated history h○ ∈ A○
mult, by attaching to each move in ĥ the multiset represented569

in the configuration that produces the move (ρ produces the move x if ρ
xÔÔ⇒ ρ′ in α).570

By projection we obtain ĥ ∈ Amult.571

Lemma 28 (Parameterised multiset). Lmset2 enc-linearises to Amset2.572

Proof. Again, we identify linearisation points, this time for given h ∈ JLmult2Kenc. For
cases 1-4 as above we reason as in Lemma 27. For reset we have the following case.

h = s (t, call reset(i))OK s1(t, call default(j))PL s2(t, ret default(j′))OL s3(t, ret reset(∣j′∣))PK⋯

Here, we need a linearisation point for all four moves above. We pick this to be the point573

corresponding to the update of the multiset reference F on lines 24-25 (Figure 2, RHS).574

We now transform h to ĥ so that the four moves become consecutive, in two steps:575

• Let us write s3 as s3 = s1
3s

2
3, where the split is at the linearisation point. Since the576

lock is constantly held by thread t in s2s
1
3, there can be no calls or returns to default in577

s2s
1
3. Hence, all moves in s2s

1
3 are in componentK and can be transposed with theL-578

moves above, using ◇∗, to obtain h′ = s (t, call reset(i))OK s1 s2 s
1
3(t, call default(j))PL579

(t, ret default(j′))OL s2
3(t, ret reset(∣j′∣))PK⋯580

• Next, byPO-rearrangement we obtain ĥ = s s1 s2 s
1
3(t, call reset(i))OK(t, call default(j))PL581

(t, ret default(j′))OL(t, ret reset(∣j′∣))PK s2
3⋯ . Thus, h(◁PO ∪ ◇)∗ĥ.582

To prove that ĥ ∈ Amult2 we work as in Lemma 27, i.e. via showing that ĥ ∈ JLmult2Kenc.583

For the latter, we rely on the fact that the linearisation point was taken at the reference584

update point (so that any dereferencings from other threads are preserved), and that the585

dereferences of lines 22 and 23 are within the same lock as the update.586

For our last example, recall the flat combination library Lfc ∶ ∅ → Ψ ′ of Example 18,587

and Figure 4, along with its specification library Lspec ∶ ∅ → Ψ ′, where Ψ ′ = {run ∈588

Meths(θ→θ′)×θ,θ′}.589

Remark 29. It is worth observing that in the higher-order setting a client thread may try590

to call run, even though the previous call to run by the same thread did not complete591

yet. This scenario happens, for example, when the first call to run passes a functional592

argument to the library that itself calls run. Observe that in this case both Lfc and Lspec593

will deadlock. Consequently, non-trivial histories (all calls are matched by returns) arise594

only if each client thread uses run serially, i.e. without nesting.595

LetR = <∗, where < ⊆ H∅,Ψ ′ ×H∅,Ψ ′ is the smallest relation such that (for economy596

we omit methods from calls/returns):597

• s1(t, call)P s2(t, ret)Os3 < s1(t′, call)P s2(t′, ret)Os3598

• s1(t, call)P s2(t, call)Os3(t, ret)P s4(t, ret)Os5 < s1(t′, call)P s2(t′, call)Os3(t′, ret)P s4(t′, ret)P s5599

for any s1, s2, s3, s4, s5 such that s2, s4 do not contain any t-moves.600

Intuitively, < is about piecewise delegation of client computations to other existing601

threads subject to forming a correct history. Because the results do not change, this602

condition corresponds to thread-blind client behaviour.603

20

Lemma 30 (Flat combining). Lfc R-linearises to Lspec.604

Proof. Observe that histories from JLspecK feature threads built from segments of one605

of the three forms:606

• (t, call run(f, x))O (t, call f(x′))P ⋯(t, ret f(v))O (t, ret run(v′)))P , or607

• (t′, callw(v))O (t′, callw′(v′))P , where w is a name introduced in an earlier move608

(t′′, x)P andw′ is a corresponding name introduced by the move preceding (t′′, x)P609

in t′′, or610

• (t′, retw′(v′′))O (t′, retw(v′′′))P such that a segment (t′, callw(v))O (t′, callw′(v′))P611

already occurred earlier.612

The first shape represents interaction of the client with the library: a call to run followed613

by a call to f , possibly some intermediate computation (using calls/returns to higher-614

order values that have been introduced in the trace), and a return of f followed by a615

return of run. The value introduced in the last return may well be a function, which –616

along with method names introduced earlier – provides method names that can be used617

in calls and returns later. As these methods are related to concrete functions, our trace618

semantics interprets them in a symbolic manner: each call is forwarded to the move619

preceding the one in which it was introduced. Note that threads can exchange higher-620

order values, so we need to allow for scenarios in which the three kinds of interaction621

are located in different threads.622

We shall refer to moves in the second and third kind of segments as inspection moves623

and write φ to refer to sequences built exclusively from such sequences. Note that ⋯ in624

the first kind of block also stand for a segment of inspection moves in t.625

Let us write X for the subset of JLspecK containing (sequential) plays of the form:

(t0, call run(f0, x0)(t0, call f0(x′0)φ0(t0, ret f0(v0))(t0, ret run(v′0))φ1

(t1, call run(f1, x1)(t1, call f1(x′1)φ2(t1, ret f1(v1))(t1, ret run(v′1))φ3

⋯ (tk, call run(fk, xk)(tk, call fk(x′k)φ2k(tk, ret fk(vk))(tk, ret run(v′k))φ2k+1.

where φ2j , φ2j+1 may also contain inspection moves not in tj . We take X to be our626

linearisation target (specification).627

Consider h1 ∈ JLfcK. Threads in h1 are built from blocks of shapes:

(t, call run(f, x)O ((t, call fj(x′j)P φj(t, ret fj(vj)O))∗ (t, ret run(v′))P
or (t′, callw(v))O (t′, callw′(v′))P or (t′, retw′(v′′))O (t′, retw(v′′′))P .

In the first case, the j’s are meant to represent possibly different values used in each628

iteration. In the second kind of block, w needs to be introduced earlier by some (t′′, x)P629

move and w′ is then a name introduced by the preceding move. For the third kind, an630

earlier calling sequence of the second kind must exist in the same thread.631

Observe that each segment Sj = (t, call fj(x′j)P φj(t, ret fj(vj))O in t must be632

preceded (in h1) by a matching public call (t′, call run(fj , xj))O followed by a cor-633

responding return (t′, ret run(vj))P , where t′ need not be equal to t. We can obtain634

the requisite h (for ⊲R) by changing t to t′ in the whole of Sj for each Sj . Note that635

run-moves are not affected and we get h1R∗ h.636

Note that, due to locking and sequentiality of loops, the segments Sj must be disjoint637

in h1, although they may be interleaved with inspection moves from other threads. We638

shall show how to obtain h2 ∈ X with h◁∗
PO h2.639

21

• First the call to run associated with each Sj should be moved right to immediately640

precede the renamed Sj . Next the corresponding return of run should be move left641

to follow Sj .642

• Subsequently, inspection moves need to be rearranged to yield a sequential play.643

This can be done by permuting inspection moves by O to the left through other644

O actions from different threads until a P -move is encountered and moving the645

corresponding inspection move P left to immediately follow the O move.646

Then we have h◁∗
PO h2 and, hence, h1(◁PO ∪R)∗h2.647

4. Soundness648

To conclude, we clarify in what sense all the notions of linearisability are sound.649

Recall the general notion of contextual approximation (refinement) from Definition 22.650

In the encapsulated case libraries are being tested by clients that do not communi-651

cate with the parameter library explicitly. The corresponding definition of contextual652

approximation is defined below.653

Definition 31 (Encapsulated ⊏∼). Given libraries L1, L2 ∶ Ψ → Ψ ′, we write L1 ⊏∼enc L2654

when, for all L′ ∶ ∅ → Ψ and Ψ ′ ⊢K M1∥⋯∥MN ∶ unit, if link L′ ;L1 in (M1∥⋯∥MN) ⇓655

then link L′ ;L2 in (M1∥⋯∥MN) ⇓.656

For relational linearisability, we need yet another notion that will linkR to contextual657

testing.658

Definition 32. LetR ⊆ HΨ,Ψ ′ ×HΨ,Ψ ′ be a set closed under permutation of names in659

Meths∖(Ψ∪Ψ ′). We say that a context formed by L′ andM1,⋯,MN isR-closed if, for660

any h ∈ Jlink L′;− in (M1∥⋯∥MN)K, hRh′ implies h′ ∈ Jlink L′;− in (M1∥⋯∥MN)K.661

Given L1, L2 ∶ Ψ → Ψ ′, we write L1 ⊏∼R L2 if, for all R-closed contexts formed662

from L′,M1,⋯,MN , whenever link L′ ;L1 in (M1∥⋯∥MN) ⇓ then we also have663

link L′ ;L2 in (M1∥⋯∥MN) ⇓.664

In what follows, we shall aim to establish three correctness results:665

• L1 ⊲ L2 implies L1 ⊏∼ L2,666

• L1 ⊲enc L2 implies L1 ⊏∼enc L2, and667

• L1 ⊲R L2 implies L1 ⊏∼R L2.668

Finally, we note that linearisability is compatible with library composition. ⊲ is closed669

under union with libraries that use disjoint stores, while ⊲enc is closed under a form of670

sequencing that respects encapsulations (Appendix E).671

4.1. Correctness672

In this section we prove that the linearisability notions we introduce are correct:673

linearisability implies contextual approximation. The approach is based on showing that,674

in each case, the semantics of contexts is saturated relatively to conditions that are dual675

to linearisability. Hence, linearising histories does not alter the observable behaviour of676

a library. We start by presenting two compositionality theorems on the trace semantics,677

which will be used for relating library and context semantics.678

22

4.2. Compositionality679

The semantics we defined is compositional in the following ways:680

• To compute the semantics of a library L inside a contextC, it suffices to compose the681

semantics of C with that of L, for a suitable notion of context-library composition682

(JCK⊘ JLK).683

• To compute the semantics of a union library L1 ∪L2, we can compose the semantics684

of L1 and L2, for a suitable notion of library-library composition (JL1K⊗ JL2K).685

The above are proven using bisimulation techniques for connecting syntactic and se-686

mantic compositions, and are presented in Appendix C and Appendix D respectively.687

The latter correspondence is used in Appendix E for proving that linearisability is688

a congruence for library composition. From the former correspondence we obtain the689

following result, which we shall use for showing correctness.690

Theorem 33. Let L ∶ Ψ → Ψ ′, L′ ∶ ∅ → Ψ,Ψ ′′ and Ψ ′, Ψ ′′ ⊢K M1∥⋯∥MN ∶ unit, with
L, L′ and M1;⋯;MN accessing pairwise disjoint parts of the store. Then:

link L′ ;L in (M1∥⋯∥MN) ⇓ ⇐⇒ ∃h ∈ JLKN . h̄ ∈ Jlink L′ ;− in (M1∥⋯∥MN)K

4.3. General linearisability691

Recall the general notion of linearisability defined in Section 2.2, which is based on692

move-reorderings inside histories.693

In Def.s 24 and 25 we have defined the trace semantics of libraries and contexts.694

The semantics turns out to be closed under ◁∗
OP .695

Lemma 34 (Saturation). Let X = JLK (Def. 24) or X = Jlink L′;− in (M1∥⋯∥MN)K696

(Def. 25). Then if h ∈X and h◁∗
OP h

′ then h′ ∈X .697

Proof. Recall that the same labelled transition system underpins the definition of X in698

either case. We make several observations about the single-threaded part of that system.699

• The store is examined and modified only during ε-transitions.700

• The only transition possible after a P -move is an O-move. In particular, it is never701

the case that a P -move is separated from the following O-move by an ε-transition.702

Let us now consider the multi-threaded system and t ≠ t′.703

• Suppose ρ
(t′,m′)PÔÔÔÔ⇒ ρ1

ε∗ÔÔ⇒ ρ2

(t,m)
ÔÔ⇒ ρ3. Then the (t′,m′)P -transition can be704

delayed inside t′ until after (t,m), i.e. ρ
ε∗ÔÔ⇒ ρ′1

(t,m)
ÔÔ⇒ ρ′2

(t′,m′)PÔÔÔÔ⇒ ρ3 for some705

ρ′1, ρ
′
2. This is possible because the ((t′,m′)P -labelled) transition does not access706

or modify the store, and none of the ε-transitions distinguished above can be in t′,707

thanks to our earlier observations about the behaviour of the single-threaded system.708

• Analogously, suppose ρ
(t′,m′)
ÔÔÔ⇒ ρ1

ε∗ÔÔ⇒ ρ2

(t,m)OÔÔÔ⇒ ρ3. Then the (t,m)O-709

transition can be brought forward, i.e. ρ
(t,m)OÔÔÔ⇒ ρ′1

(t′,m′)
ÔÔÔ⇒ ρ′2

ε∗ÔÔ⇒ ρ3, because it710

does not access or modify the store and the preceding ε-transitions cannot be from711

t.712

This, along with the fact that

h1 ◁XX′ h2 ⇐⇒ h2 ◁X′X h1 ⇐⇒ h1 ◁X′X h2

lead us to the notion of linearisability defined in Def. 9.713

We now prove the main theorem of this subsection.714

23

1 public run;
2 Lock lock ;
3 r := 0;
4

5 run = λ ().
6 lock . acquire ();
7 r := !r+1;
8 if (! r = 1) then lock . release ();
9 while (! r < 2) do ();

Figure 8: A library without a sequential history

Theorem 35. L1 ⊲ L2 implies L1 ⊏∼ L2.715

Proof. Consider C such that C[L1] ⇓. We need to show C[L2] ⇓. Because C[L1] ⇓,716

Theorem 33 implies that there exists h1 ∈ JL1K such that h1 ∈ JCK. Because L1 ⊲ L2,717

there exists h2 ∈ JL2K with h1 ◁∗
PO h2. Note that h1 ◁∗

OP h2. By Lem. 34, h2 ∈ JCK.718

Because h2 ∈ JL2K and h2 ∈ JCK, using Theorem 33 we can conclude C[L2] ⇓.719

Remark 36. A natural question to ask is whether the converse of Theorem 35 is720

true. The answer is negative and can be traced back to the fact that ⊲ is defined using721

sequential histories: in order to establish L1 ⊲ L2 (for L1, L2 ∶ Ψ → Ψ ′) one needs to722

identify a subset A2 ⊆ JL2K ∩Hseq
Ψ,Ψ ′ (i.e. consisting of sequential histories only) such723

that L1 ⊲ A2.724

Unfortunately, some libraries generate only non-sequential histories. We present725

an example of such a library, call it L, in Figure 8. Because of locks, the library from726

Figure 8 will only allow two threads to complete a computation. Additionally, the first727

thread (i.e. the one that will increment r to 1) must wait until a second thread increments728

the internal counter r to 2.729

Observe that if L does not generate any sequential histories then we vacuously have730

L ⊏∼ L, but cannot have L ⊲ L. We conjecture that a completeness result would be731

possible if we allowed for non-sequential specs in the definition of ⊲.732

4.4. Encapsulated linearisability733

In this case libraries are being tested by clients that do not communicate with the734

parameter library explicitly. Recall from Definition 31 that, given libraries L1, L2 ∶ Ψ →735

Ψ ′, we write L1 ⊏∼enc L2 when, for all L′ ∶ ∅ → Ψ and Ψ ′ ⊢K M1∥⋯∥MN ∶ unit, if736

link L′ ;L1 in (M1∥⋯∥MN) ⇓ then link L′ ;L2 in (M1∥⋯∥MN) ⇓.737

We call contexts of the above kind encapsulated, because the parameter library L′738

can no longer communicate directly with the client, unlike in Def. 22, where they shared739

methods in Ψ ′′. Consequently, Jlink L′ ;− in (M1∥⋯∥MN)K can be decomposed via740

parallel composition into two components, whose labels correspond to L (parameter741

library) and K (client) respectively.742

Lemma 37 (Decomposition). Suppose L′ ∶ ∅ → Ψ and Ψ ′ ⊢K M1∥⋯∥MN ∶ unit, where
Ψ ∩ Ψ ′ = ∅. Then, setting C ′ ≡ link ∅ ;− in (M1∥⋯∥MN), we have:

Jlink L′ ;− in (M1∥⋯∥MN)K = {h ∈ HcoΨ,Ψ ′ ∣ (h ↾ L) ∈ JL′K, (h ↾ K) ∈ JC ′K} .

Remark 38. Consider parameter library L′ ∶ ∅ → {m} and client {m′} ⊢K M ∶ unit743

with m,m′ ∈Methsunit→(unit→unit), and suppose we insert in their context a “copycat”744

24

library L which implements m′ as m′ = λx.mx . Then the following scenario may745

seem to contradict encapsulation:746

• M calls m′();747

• L calls m();748

• L′ returns with m(m′′) to L;749

• and finally L copycats this return to M .750

However, by definition the latter copycat is done by L returning m′(m′′′) to M , for751

some fresh namem′′′, and recording internally thatm′′′ ↦ λx.m′′x. Hence, no methods752

of L′ can leak to M and encapsulation holds.753

Because of the above decomposition, the context semantics satisfies a stronger754

closure property than that already specified in Lem. 34, which in turn leads to the notion755

of encapsulated linearisability of Def. 13. The latter is defined in term of the symmetric756

reordering relation ◇, which allows for swaps (in either direction) between moves from757

different threads if they are tagged with K and L respectively.758

Moreover, we can show the following.759

Lemma 39 (Encapsulated saturation). Consider X = Jlink L′ ;− in (M1∥⋯∥MN)K760

(Definition 25). Then:761

• If h ∈X and h (◁OP ∪ ◇)∗ h′ then h′ ∈X .762

• Let s1 (t, x)OY s2 (t, x′)PY ′ s3 ∈X be such that no move in s2 comes from thread763

t. Then Y = Y ′, i.e. inside a thread only O can switch between K and L.764

Proof. For the first claim, closure under ◁OP (resp. ◇) follows from Lemma 34. (resp.765

Lemma 37).766

Suppose h = s1 (t, x)OY s2 (t, x′)PY ′ s3 violates the second claim and (t, x),767

(t, x′) is the earliest such violation in h, i.e. no violations occur in s1. Observe768

that then h restricted to moves of the form (t, z)XY ′ would not be alternating, which769

contradicts the fact that h ↾ Y ′ is a history (Lemma 37).770

Due to Theorem 33, the above property of contexts means that, in order to study771

termination in the encapsulated case, one can safely restrict attention to library traces772

satisfying a dual property to the one above, i.e. to elements of JLKenc. Note that JLKenc773

can be obtained directly from our labelled transition system by restricting its single-774

threaded part to reflect the switching condition. Observe that Theorem 33 will still775

hold for JLKenc (instead of JLK), because we have preserved all the histories that are776

compatible with context histories. We are ready to prove correctness of encapsulated777

linearisability.778

Theorem 40. L1 ⊲enc L2 implies L1 ⊏∼enc L2.779

Proof. Similarly to Theorem 35, except we invoke Lemma 39 instead of Lemma 34.780

4.5. Relational linearisability781

Finally, we examine relational linearisability (Definition 17).782

Theorem 41. L1 ⊲R L2 implies L1 ⊏∼R L2.783

Proof. ConsiderR-closed C such that C[L1] ⇓. We need to show C[L2] ⇓. Because784

C[L1] ⇓, Theorem 33 implies that there exists h1 ∈ JL1K such that h1 ∈ JCK. Because785

L1 ⊲R L2, there exists h2 ∈ JL2K such that h1 (◁PO ∪ R)∗ h2. Because C is R-786

closed by definition and closed under ◁OP by Lemma 34, we have h2 ∈ JCK. Because787

h2 ∈ JL2K and h2 ∈ JCK, we can conclude C[L2] ⇓.788

25

5. Related and future work789

Linearisability has been consistently used as a correctness criterion for concurrent790

algorithms on a variety of data structures [15], and has inspired a variety of proof791

methods [16]. An explicit connection between linearisability and refinement was made792

in [17], where it was shown that, in base-type settings, linearisability and refinement793

coincide. Similar results have been proved in [18, 19, 20, 3]. Our contributions are794

notions of linearisability that serve as correctness criteria for libraries with methods of795

arbitrary order and have a similar relationship to refinement. The next natural target is796

to investigate proof methods for establishing linearisability of higher-order concurrent797

libraries. The examples proved herein are only an initial step in that direction.798

At the conceptual level, [17] proposed that the verification goal behind linearisability799

is observational refinement. In this vein, [21] utilised logical relations as a direct method800

for proving refinement in a higher-order concurrent setting, while [22] introduced a801

program logic that builds on logical relations. On the other hand, proving conformance802

to a history specification has been addressed in [23] by supplying history-aware interpre-803

tations to off-the-shelf Hoare logics for concurrency. Other logic-based approaches for804

concurrent higher-order libraries, which do not use linearisability, include Higher-Order805

and Impredicative Concurrent Abstract Predicates [24, 25].806

Acknowledgements. We thank the authors of [3] for bringing the higher-order807

linearisability problem to our attention. We would also like to thank Kasper Svendsen808

and Radha Jagadeesan for constructive comments. This work was partially funded by809

the Engineering and Physical Sciences Research Council (EP/P004172/1).810

References811

[1] M. Herlihy, J. M. Wing, Linearizability: A correctness condition for concurrent812

objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.813

[2] R. Jagadeesan, G. Petri, C. Pitcher, J. Riely, Quarantining weakness - composi-814

tional reasoning under relaxed memory models (extended abstract), in: ESOP815

2013, 2013, pp. 492–511.816

[3] A. Cerone, A. Gotsman, H. Yang, Parameterised linearisability, in: Proceedings of817

ICALP’14, Vol. 8573 of Lecture Notes in Computer Science, Springer, 2014, pp.818

98–109.819

[4] J. Laird, A game semantics of Idealized CSP, in: Proceedings of MFPS’01,820

Elsevier, 2001, pp. 1–26, ENTCS, Vol. 45.821

[5] D. R. Ghica, A. S. Murawski, Angelic semantics of fine-grained concurrency,822

in: Proceedings of FOSSACS, Vol. 2987 of Lecture Notes in Computer Science,823

Springer-Verlag, 2004, pp. 211–225.824

[6] A. Jeffrey, J. Rathke, A fully abstract may testing semantics for concurrent objects,825

Theor. Comput. Sci. 338 (1-3) (2005) 17–63.826

[7] J. Laird, A fully abstract trace semantics for general references, in: Proceedings827

of ICALP, Vol. 4596 of Lecture Notes in Computer Science, Springer, 2007, pp.828

667–679.829

26

[8] D. R. Ghica, N. Tzevelekos, A system-level game semantics, Electr. Notes Theor.830

Comput. Sci. 286 (2012) 191–211.831

[9] D. Hendler, I. Incze, N. Shavit, M. Tzafrir, Flat combining and the synchronization-832

parallelism tradeoff, in: Proceedings of SPAA 2010, 2010, pp. 355–364.833

[10] A. S. Murawski, N. Tzevelekos, Higher-order linearizability, in: Proceedings of834

CONCUR, Vol. 85 of Leibniz International Proceedings in Informatics (LIPIcs),835

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 34:1–34:18.836

[11] http://c-cube.github.io/ocaml-containers/0.21/CCMultiSet.S.html.837

[12] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, N. Shavit, A lazy838

concurrent list-based set algorithm, in: OPODIS, 2005, pp. 3–16.839

[13] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, G. Yorsh, Verifying lineariz-840

ability with hindsight, in: PODC, 2010, pp. 85–94.841

[14] S. Abramsky, G. McCusker, Game semantics, in: H. Schwichtenberg, U. Berger842

(Eds.), Logic and Computation, Springer-Verlag, 1998, proceedings of the 1997843

Marktoberdorf Summer School.844

[15] M. Moir, N. Shavit, Concurrent data structures, in: Handbook of Data Structures845

and Applications, Chapman and Hall/CRC, 2004.846

[16] B. Dongol, J. Derrick, Verifying linearisability: A comparative survey, ACM847

Comput. Surv. 48 (2) (2015) 19.848

[17] I. Filipovic, P. W. O’Hearn, N. Rinetzky, H. Yang, Abstraction for concurrent849

objects, Theor. Comput. Sci. 411 (51-52) (2010) 4379–4398.850

[18] J. Derrick, G. Schellhorn, H. Wehrheim, Mechanically verified proof obligations851

for linearizability, ACM Trans. Program. Lang. Syst. 33 (1) (2011) 4.852

[19] A. Gotsman, H. Yang, Liveness-preserving atomicity abstraction, in: Automata,853

Languages and Programming - 38th International Colloquium, ICALP 2011. Pro-854

ceedings, Part II, 2011, pp. 453–465.855

[20] H. Liang, X. Feng, Modular verification of linearizability with non-fixed lineariza-856

tion points, in: ACM SIGPLAN Conference on Programming Language Design857

and Implementation, PLDI ’13. Proceedings, 2013, pp. 459–470.858

[21] A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, D. Dreyer, Logical relations859

for fine-grained concurrency, in: The 40th Annual ACM SIGPLAN-SIGACT860

Symposium on Principles of Programming Languages, POPL ’13, 2013, pp. 343–861

356.862

[22] A. Turon, D. Dreyer, L. Birkedal, Unifying refinement and Hoare-style reasoning in863

a logic for higher-order concurrency, in: ACM SIGPLAN International Conference864

on Functional Programming, ICFP’13, 2013, pp. 377–390.865

[23] I. Sergey, A. Nanevski, A. Banerjee, Specifying and verifying concurrent algo-866

rithms with histories and subjectivity, in: Programming Languages and Systems -867

24th European Symposium on Programming, ESOP 2015. Proceedings, 2015, pp.868

333–358.869

27

http://c-cube.github.io/ocaml-containers/0.21/CCMultiSet.S.html

[24] K. Svendsen, L. Birkedal, Impredicative concurrent abstract predicates, in: Pro-870

gramming Languages and Systems - 23rd European Symposium on Programming,871

ESOP 2014. Proceedings, 2014, pp. 149–168.872

[25] K. Svendsen, L. Birkedal, M. J. Parkinson, Joins: A case study in modular873

specification of a concurrent reentrant higher-order library, in: ECOOP 2013874

- Object-Oriented Programming - 27th European Conference. Proceedings, 2013,875

pp. 327–351.876

28

Appendix877

Appendix A. Big-step vs small-step reorderings878

[3] defines linearisation in the general case using a “big-step” relation that applies a879

single permutation to the whole sequence. This contrasts with our definition as ◁∗
PO,880

in which we combine multiple adjacent swaps. We show that the two definitions are881

equivalent.882

Definition 42 ([3]). Let h1, h2 ∈ HΨ,Ψ ′ of equal length. We write h1 ◁big
PO h2 if there

is a permutation π ∶ {1,⋯, ∣h1∣} → {1,⋯, ∣h2∣} such that, writing hi(j) for the j-th
element of hi: for all j, we have h1(j) = h2(π(j)) and, for all i < j:

((∃t. h1(i) = (t,−) ∧ h1(j) = (t,−))
∨(∃t1, t2. h1(i) = (t1,−)P ∧ h1(j) = (t2,−)O)) Ô⇒ h2(i) < h2(j)

In other words, h2 is obtained from h1 by permuting moves in such a way that their883

order in threads is preserved and whenever a O-move occurred after an P -move in h1,884

the same must apply to their permuted copies in h2.885

Lemma 43. ◁big
PO = ◁∗

PO.886

Proof. It is obvious that ◁∗
PO ⊆ ◁big

PO, so it suffices to show the converse.887

Suppose h1 ◁big
PO h2. Consider the set Xh1,h2 = {h ∣h1 ◁∗

PO h, h◁
big
PO h2}. Note888

that Xh1,h2 is not empty, because h1 ∈Xh1,h2 .889

For two histories h′, h′′, define δ(h′, h′′) to be the length of the longest common890

prefix of h′ and h′′. Let N = max
h

{δ(h,h2) ∣h ∈Xh1,h2}. Note that N ≤ ∣h1∣ = ∣h2∣.891

• If N = ∣h2∣ then we are done, because N = ∣h2∣ implies h2 ∈ Xh1,h2 and, thus,892

h1 ◁∗
PO h2.893

• Suppose N < ∣h2∣ and consider h such that N = δ(h,h2). We are going to arrive at894

a contradiction by exhibiting h′ ∈Xh1,h2 such that δ(h′, h2) > N .895

Because N = δ(h,h2) and N < ∣h2∣, we have

h2 = a1⋯aN(t,m)u
h = a1⋯aN(t1,m1)⋯(tk,mk)(t,m)u′,

where ti ≠ t, because order in threads must be preserved. Consider

h′ = a1⋯aN(t,m)(t1,m1)⋯(tk,mk)u′.

Clearly δ(h′, h2) > N so, for a contradiction, it suffices to show that h′ ∈ Xh1,h2 .896

Note that because h◁big
PO h2, we must also have h′◁big

PO h2, because the new PO897

dependencies in h′ (wrt h) caused by moving (t,m) forward are consistent with h2.898

Hence, we only need to show that h◁∗
PO h

′. Let us distinguish two cases.899

– If (t,m) is a P -move then, clearly, h◁∗
PO h

′ (P -move moves forward).900

– If (t,m) is anO-move then, because h◁big
POh2, all of the (ti,mi) actions must901

be O-moves (otherwise their position wrt (t,m) would have to be preserved902

in h2 and it isn’t). Hence, h◁∗
PO h

′, as required.903

904

29

Appendix B. Auxiliary lemmas about histories905

Recall the notions of history and history complementation (Def. 3). We next define906

a dual notion of history that is used for assigning semantics to contexts.907

Definition 44. The set of co-histories over Ψ → Ψ ′ is: HcoΨ,Ψ ′ = {h ∣ h ∈ HΨ,Ψ ′}.908

We shall range overHcoΨ,Ψ ′ again using variables h, s. We can show the following.909

Lemma 45. • For all h ∈ HΨ,Ψ ′ we have h ↾ L ∈ Hco∅,Ψ and h ↾ K ∈ H∅,Ψ ′ .910

• For all h ∈ HcoΨ,Ψ ′ we have h ↾ L ∈ H∅,Ψ and h ↾ K ∈ Hco∅,Ψ ′ .911

Lemma 46. For any L ∶ Ψ → Ψ ′, L′ ∶ ∅ → Ψ,Ψ ′′ and Ψ ′, Ψ ′′ ⊢K M1∥⋯∥MN ∶ unit we912

have JLKN ⊆ HΨ,Ψ ′ and Jlink L′;− in (M1∥⋯∥MN)K ⊆ HcoΨ,Ψ ′ .913

Proof. The relevant sequences of moves are clearly alternating and well-bracketed,914

when projected on single threads, because the LTS is bipartite (O- and P -configurations)915

and separate evaluation stacks control the evolution in each thread. Other conditions916

for histories follow from the partitioning of names into AK,AL,PK,PL and suitable917

initialisation: Ψ,Ψ ′ are inserted into AL,PK respectively (for JLK) and into PL,AK for918

JCK.919

Appendix C. Trace compositionality920

In this section we demonstrate how the semantics of a library inside a context can921

be drawn by composing the semantics of the library and that of the context. The result922

played a crucial role in our arguments about linearisability and contextual refinement in923

Section 4.1.924

Let us divide (reachable) evaluation stacks into two classes: L-stacks, which can be
produced in the trace semantics of a library; and C-stacks, which appear in traces of a
context.

EL ∶∶= [] ∣m ∶∶ E ∶∶ E ′L EC ∶∶= [] ∣m ∶∶ E ′C
E ′L ∶∶= m ∶∶ EL E ′C ∶∶= m ∶∶ E ∶∶ EC

From the trace semantics definition we have that N -configurations in the semantics925

of a library feature evaluation stacks of the forms EL (in O-configurations) and E ′L (in926

P -configurations): these we will call L-stacks. On the other hand, those produced from927

a context utilise C-stacks which are of the forms EC (in P -configurations) and E ′C (in928

O-configurations).929

From here on, when we write E we will mean an L-stack or a C-stack. Moreover, we930

will call anN -configuration ρ an L-configuration (or a C-configuration), if ρ = (C⃗,⋯)931

and, for each i, Ci = (Ei,⋯) with Ei an L-stack (resp. a C-stack).932

Let ρ, ρ′ be N -configurations and suppose ρ = (C⃗,R,P,A, S) is a C-configuration933

and ρ′ = (C⃗′,R′,P ′,A′, S′) an L-configuration. We say that ρ and ρ′ are compatible,934

written ρ ≍ ρ′, if S and S′ have disjoint domains and, for each i:935

• Ci = (EC ,M) and C′i = (EL,−), or Ci = (E ′C ,−) and C′i = (E ′L,M).936

• If the public and abstract names of Ci are (PL,PK) and (AL,AK) respectively, and937

those of C′i are (P ′L,P ′K) and (A′L,A′K), then PL = A′L, PK = A′K, AL = P ′L and938

AK = P ′K.939

• The private names of ρ (i.e. those in dom(R) ∖ PL ∖ PK) do not appear in ρ′, and940

dually for the private names of ρ′.941

30

• If Ci = (E ,⋯) and C′i = (E ′,⋯) then E and E ′ are in turn compatible, that is:942

– either E =m ∶∶ E ∶∶ E1, E ′ =m ∶∶ E ′1 and E1,E ′1 are compatible,943

– or E =m ∶∶ E1, E ′ =m ∶∶ E ∶∶ E ′1 and E1,E ′1 are compatible,944

or E = E ′ = [].945

Note, in particular, that if ρ ≍ ρ′ then ρ must be a context configuration, and ρ′ a library946

configuration.947

We next define a trace semantics on compositions of compatible suchN -configurations.
We use the symbol ⊘ for configuration composition: we call this external composition,
to distinguish it from the composition of ρ and ρ′ we can obtain by merging their
components, which we will examine later.

ρ1 ÔÔ⇒ ρ′1
ρ1 ⊘ ρ2 Ð→ ρ′1 ⊘ ρ2

INT1

ρ2 ÔÔ⇒ ρ′2
ρ1 ⊘ ρ2 Ð→ ρ1 ⊘ ρ′2

INT2

ρ1

(t,callm(v))
ÔÔÔÔÔ⇒ ρ′1 ρ2

(t,callm(v))
ÔÔÔÔÔ⇒ ρ′2

ρ1 ⊘ ρ2 Ð→ ρ′1 ⊘ ρ′2
CALL

ρ1

(t,retm(v))
ÔÔÔÔÔ⇒ ρ′1 ρ2

(t,retm(v))
ÔÔÔÔÔ⇒ ρ′2

ρ1 ⊘ ρ2 Ð→ ρ′1 ⊘ ρ′2
RETN

The INT rules above have side-conditions imposing that the resulting pairs of configura-948

tions are still compatible. Concretely, this means that the names created fresh in internal949

transitions do not match the names already present in the configurations of the other950

component. Note that external composition is not symmetric, due to the context/library951

distinction we mentioned.952

Our next target is to show a correspondence between the above-defined semantic953

composition and the semantics obtained by (syntactically) merging compatible con-954

figurations. This will demonstrate that composing the semantics of two components955

is equivalent to first syntactically composing them and then evaluating the result. In956

order to obtain this correspondence, we need to make the semantics of syntactically957

composed configurations more verbose: in external composition methods belong either958

to the context or the library, and when e.g. the client wants to evaluate mm′, with m959

a library method, the call is made explicit and, more importantly, m′ is replaced by a960

fresh method name. On the other hand, when we compose syntactically such a call will961

be done internally, and without refreshing m′.962

To counter-balance the above mismatch, we extend the syntax of terms and evalua-
tion contexts, and the operational semantics of closed terms as follows. The semantics
will now involve quadruples of the form:

(E[M],R1,R2, S) written also (E[M], R⃗, S)

where the two repositories correspond to context and library methods respectively, so in
particular dom(R1) ∩ dom(R2) = ∅. Moreover, inside E[M] we tag method names
and lambda-abstractions with indices 1 and 2 to record which of the two components
(context or library) is enclosing them: the tag 1 is used for the context, and 2 for the
library. Thus e.g. a name m1 signals an occurrence of method m inside the context.
Tagged methods are passed around and stored as ordinary methods, but their behaviour
changes when they are applied. Moreover, we extend (tagged) evaluation contexts by
explicitly marking return points of methods:

E ∶∶= ● ∣ ⋯ ∣ let x = E inM ∣mE ∣ r ∶= E ∣ ⟨mi⟩E

31

In particular,E[M] may not necessarily be a (tagged) term, due to the return annotations.
The new reduction rules are as follows (we omit indices when they are not used in the
rules).

(E[i1 ⊕ i2], R⃗, S) Ð→′
t (E[i], R⃗, S′) (i = i1 ⊕ i2)

(E[tid], R⃗, S) Ð→′
t (E[t], R⃗, S′)

(E[πj⟨v1, v2⟩], R⃗, S) Ð→′
t (E[vj], R⃗, S′)

(E[if i thenM0 elseM1], R⃗, S) Ð→′
t (E[Mj], R⃗, S) (j = (i > 0))

(E[λix.M], R⃗, S) Ð→′
t (E[mi], R⃗ ⊎i (m↦ λx.M), S)

(E[miv], R⃗, S) Ð→′
t (E[M{v/x}i], R⃗, S) ifRi(m) = λx.M

(E[miv], R⃗, S) Ð→′
t (E[⟨mi⟩M{v′/x}3−i], R⃗′, S) ifR3−i(m) = λx.M with

Meths(v) = {m1,⋯,mk}, v′ = v{m′
j/mj ∣ 1 ≤ j ≤ k}, R⃗′ = R⃗ ⊎i {m′

j ↦ λy.mjy ∣ 1 ≤ j ≤ k}
(E[⟨mi⟩ v], R⃗, S) Ð→′

t (E[v′i], R⃗ ⊎3−i{m′
j ↦ λy.mjy}, S) with mj ,m

′
j and v′ as above

(E[let x = v inM], R⃗, S) Ð→′
t (E[M{v/x}], R⃗, S)

(E[!r], R⃗, S) Ð→′
t (E[S(r)], R⃗, S)

(E[r ∶= i], R⃗, S) Ð→′
t (E, R⃗, S[r ↦ i])

(E[r ∶=mi], R⃗, S) Ð→′
t (E, R⃗, S[r ↦mi])

Above we write M i for the term M with all its methods and lambdas tagged (or re-963

tagged) with i. Moreover, we use the convention e.g. R⃗⊎1 (m↦ λx.M) = (R1⊎(m↦964

λx.M),R2). Note that the repositories need not contain tags as, whenever a method is965

looked up, we subsequently tag its body explicitly.966

Thus, the computationally observable difference of the new semantics is in the rule967

for reducing E[miv] when m is not in the domain of Ri: this corresponds precisely968

to the case where e.g. a library method is called by the context with another method as969

argument. A similar behaviour is exposed when such a method is returning. However,970

this novelty merely adds fresh method names by η-expansions and does not affect the971

termination of the reduction.972

Defining parallel reductionÔÔ⇒′ in an analogous way toÔÔ⇒, we can show the973

following. We let a quadruple (M1∥⋯∥MN ,R, S) be final if Mi = () for all i, and we974

write (M1∥⋯∥MN ,R, S) ⇓ if (M1∥⋯∥MN ,R, S) can reduce to some final quadruple;975

these notions are defined for (M1∥⋯∥MN ,R1,R2, S) in the same manner.976

Lemma 47. For any legal (M1∥⋯∥MN ,R1,R2, S), we have that (M1∥⋯∥MN ,R1,R2, S) ⇓977

iff (M1∥⋯∥MN ,R1 ∪R2, S) ⇓.978

We now proceed to syntactic composition of N -configurations. Given a pair
ρ1 ≍ ρ2, we define a single quadruple corresponding to their syntactic composi-
tion, called their internal composition, as follows. Let ρ1 = (C⃗,R1,P1,A1, S1)
and ρ2 = (C⃗′,R2,P2,A2, S2) and, for each i, Ci = (Ei,Xi) and C′i = (E ′i ,X ′

i), with
{Xi,X

′
i} = {Mi,−}, and we let ki = 1 just if Xi =Mi. We let the internal composition

of ρ1 and ρ2 be the quadruple:

ρ1 ⩕ ρ2 = ((E1 ⩕E ′1)[M
k1
1]∥⋯∥(EN ⩕E ′N)[MkN

N],R1,R2, S1 ⊎ S2)

where compatible evaluation stacks E ,E ′ are composed into a single evaluation context

32

E ⩕ E ′, as follows.

(m ∶∶ E ∶∶ E) ⩕ (m ∶∶ E ′) = (E ⩕ E ′)[E[⟨m⟩ ●]1]
(m ∶∶ E ′) ⩕ (m ∶∶ E ∶∶ E) = (E ⩕ E ′)[E[⟨m⟩ ●]2]

and [] ⩕ [] = ●. Unfolding the above, we have that, for example:

[mk,Ek,mk−1,mk−2,Ek−2,⋯,m1,E1]

⩕ [mk,mk−1,Ek−1,mk−2,⋯,m1] = E1
1[⟨m1

1⟩E2
2[⋯Ek

′

k [⟨mk′

k ⟩ ●]⋯]]

where k′ = 2 − (k mod 2).979

We proceed to fleshing out the correspondence. We observe that an L-configuration980

ρ can be the final configuration of a trace just if all its components are O-configurations981

with empty evaluation stacks. On the other hand, for C-configurations, we need to982

reach P -configurations with terms (). Thus, we call an N -configuration ρ final if983

ρ = (C⃗,R,P,A, S) and either Ci = ([],−) for all i, or Ci = ([], ()) for all i.984

Let us write (S1,↪1,F1) for the transition system induced from external composi-985

tion, and (S2,↪2,F2) be the transition system derived from internal composition:986

• S1 = {ρ⊘ρ′ ∣ ρ ≍ ρ′}, F1 = {ρ⊘ρ′ ∈ S1 ∣ ρ, ρ′ final}, and↪1 the transition relation987

Ð→ defined previously.988

• S2 = {(M1∥⋯∥MN , R⃗, S) ∣ (M1∥⋯∥MN ,R1 ⊎ R2, S) valid}, F2 = {x ∈ S2 ∣989

x final}, and ↪2 the transition relationÔÔ⇒′ defined above.990

A relation R ⊆ S1× S2 is called a bisimulation if, for all (x1, x2) ∈R:991

• x1 ∈ F1 iff x2 ∈ F2,992

• if x1 ↪1 x
′
1 then x2 ↪2 x

′
2 and (x′1, x′2) ∈ R,993

• if x2 ↪2 x
′
2 then x1 ↪1 x

′
1 and (x′1, x′2) ∈ R.994

Given (x1, x2) ∈ S1 × S2, we say that x1 and x2 are bisimilar, written x1 ∼ x2, if995

(x1, x2) ∈ R for some bisimulation R.996

Lemma 48. Let ρ ≍ ρ′ be compatible N -configurations. Then, (ρ⊘ ρ′) ∼ (ρ⩕ ρ′).997

Recall we write h̄ for the O/P complement of the history h. We can now prove998

Theorem 33, which states that the behaviour of a library L inside a context C can be999

deduced by composing the semantics of L and C.1000

Theorem 33 Let L ∶ Ψ → Ψ ′, L′ ∶ 1 → Ψ,Ψ1 and Ψ ′, Ψ1 ⊢ M1,⋯,MN ∶ unit,1001

with L, L′ and M1;⋯;MN accessing pairwise disjoint parts of the store. Then,1002

linkL′ ;L in (M1∥⋯∥MN) ⇓ iff there is h ∈ JLKN such that h̄ ∈ JlinkL′ ;− in (M1∥⋯∥MN)K.1003

Proof. Let C be the context link L′ ;− in (M1∥⋯∥MN), and suppose (L) Ð→∗
lib

(ε,R0, S0) and (L′) Ð→∗
lib (ε,R′

0, S
′
0) with dom(R0) ∩ dom(R′

0) = dom(S0) ∩
dom(S′0) = ∅. We set:

ρ0 = (([],−)∥⋯∥([],−),R0, (∅, Ψ ′), (Ψ,∅), S0)
ρ′0 = (([],M1)∥⋯∥([],MN),R′

0, (Ψ,∅), (∅, Ψ ′), S′0)

We pick these as the initial N -configurations for JLKN and JCK respectively. Moreover,1004

we have that (L′ ;L) Ð→∗
lib (ε,R′′

0 , S
′′
0) where R′′

0 = {(m, (R0 ⊎ R′
0)(m){!r⃗/m⃗}) ∣1005

33

m ∈ dom(R0 ⊎R′
0)} and S′′0 = (S0 ⊎ S′0){!r⃗/m⃗} ⊎s {(ri,mi) ∣ i = 1,⋯, n}, assuming1006

Ψ = {m1,⋯,mn} and r1,⋯, rn are fresh references of corresponding types. Hence,1007

the initial triple for JC[L]K is taken to be φ0 = (([],M1)∥⋯∥([],MN),R′′
0 , S

′′
0). On1008

the other hand, ρ′0 ⩕ ρ0 = (([],M1)∥⋯∥([],MN),R′
0,R0, S0 ⊎ S′0) and, using also1009

Lemma 47, we have that φ0 ⇓ iff ρ′0 ⩕ ρ0 ⇓.1010

Then, for the forward direction of the claim, from φ0 ⇓we obtain that ρ′0⩕ρ0 ⇓. From1011

the previous lemma, we have that so does ρ′0 ⊘ ρ0. From the latter reduction we obtain1012

the required common history. Conversely, suppose h ∈ JLKN and h̄ ∈ JCK. WLOG,1013

assume that Meths(h) ∩ (dom(R0) ∪ dom(R′
0)) ⊆ Ψ ∪ Ψ1 ∪ Ψ ′ (we can appropriately1014

alpha-covert R0 and R′
0 for this). Then, ρ0 and ρ′0 both produce h, with opposite1015

polarities. By definition of the external composite reduction, we then have that ρ′0 ⊘ ρ01016

reduces to some final state. By the previous lemma, we have that ρ′0⩕ρ0 reduces to some1017

final quadruple, which in turn implies that φ0 ⇓, i.e. link L′ ;L in (M1∥⋯∥MN) ⇓.1018

We conclude this section with the proofs of the last two lemmata used.1019

Appendix C.1. Proof of Lemma 471020

We purpose to show that, for any legal (M1∥⋯∥MN ,R1,R2, S), (M1∥⋯∥MN ,R1,R2, S) ⇓1021

iff (M1∥⋯∥MN ,R1 ∪R2, S) ⇓.1022

We prove something stronger. For any repositoryR whose entries are of the form
(m,λx.m′x), we define a directed graph G(R) where vertices are all methods appearing
in R, and (m,m′) is a (directed) edge just if R(m) = λx.m′x. In such a case, we
call R an expansion class if G(R) is acyclic and all its vertices have at most one
outgoing edge.Moreover, given an expansion classR, we define the method-for-method
substitution {R} that assigns to each vertex m of G(R) the (unique) leaf m′ such that
there is a directed path from m to m′ in G(R). Let us write L(R) for the set of leaves
of G(R). For any quadruple φ = (E1[M1]∥⋯∥EN [MN],R1,R2, S) and expansion
classR ⊆ R1 ∪R2, we define the triple:

φ#R = (E1[M1]∥⋯∥EN [MN],R1 ∪R2, S){R}

= (E1[M1]{R}∥⋯∥EN [MN]{R}, (R1 ∪R2){R}, S{R})

where R′{R} = {(m,R′(m){R}) ∣ m ∈ dom(R′ ∖ R) ∪ L(R)}, S{R} = (S ↾1023

Refsint)∪{(r, S(r){R}) ∣ r ∈ dom(S)∖Refsint}, and E[M] is the term obtained from1024

E[M] by removing all tagging.1025

We next define a notion of indexed bisimulation between the transition systems1026

produced from quadruples and triples respectively. Given an expansion class R, a1027

relation RR between quadruples and triples is called an R-bisimulation if, whenever1028

φ1RRφ2:1029

• φ1 final implies φ2 final1030

• φ2 final implies φ2 ⇓1031

• φ1 ÔÔ⇒′ φ′1 implies φ2 ÔÔ⇒= φ′2 and φ′1RR′φ
′
2 for some expansion classR′ ⊇ R1032

• φ2 ÔÔ⇒ φ′2 implies φ1 ÔÔ⇒′∗ φ′1 and φ′1RR′φ
′
2 for some expansion classR′ ⊇ R.1033

Thus, Lemma 47 directly follows from the next result.1034

34

Lemma 49. For all expansion classesR, the relation RR =

{(φ,φ#R) ∣ φ = (E1[M1]∥⋯∥EN [MN], R⃗, S) legal ∧R ⊆ R1 ∪R2}

is a bisimulation.1035

Proof. Suppose φRRφ#R. We note that finality conditions are satisfied: if φ is final
then so is φ#R; while if φ#R is final then all its contexts are from the grammar:

E′ ∶∶= ● ∣ ⟨mi⟩E′

so φ ⇓ by acyclicity of G(R).1036

Suppose now φÔÔ⇒ φ′, say due to (E1[M1],R1,R2, S) Ð→′
1 (E′

1[M ′
1],R′

1,R′
2, S

′).1037

In case the reduction is not a function call or return, then it can be clearly simulated by1038

φ#R. Otherwise, suppose:1039

• (E1[miv], R⃗, S) Ð→′
1 (E1[M{v/x}i], R⃗, S). If m ∉ dom(R) then, writing R12

forR1∪R2, the above can be simulated by (E1[mv],R12, S){R} Ð→1 (E1[M{v/x}],R12, S){R}.
If, on the other hand, m ∈ dom(R), supposeRi(m) = λx.m′x, then M =m′x and
m{R} =m′{R} so we have:

E1[M{v/x}i]{R} = E1[(m′v)i]{R} = E1[(mv)i]{R}

and E1[(mv)i] = E1[miv] by the way the semantics was defined, so φ′#R = φ#R.1040

• (E1[miv], R⃗, S) Ð→′
1 (E1[⟨mi⟩M{v′/x}3−i], R⃗′, S), with R3−i(m) = λx.M ,

Meths(v) = {m1,⋯,mk}, v′ = {m⃗′/m⃗} and R⃗′ = R⃗ ⊎i {m′
j ↦ λx.mjx ∣ 1 ≤

j ≤ k}. Let R′ = R ⊎ {m′
j ↦ λx.mjx ∣ 1 ≤ j ≤ k} ⊆ R′

1 ∪ R′
2. If m ∉ dom(R)

then (E1[mv],R12, S){R} Ð→1 (E1[M{v/x}],R12, S){R}, and we have:

E1[⟨mi⟩M{v′/x}3−i]{R′} = E1[M{v′/x}]{R′}

= E1[M{v/x}]{R}

Moreover,R12{R} = (R′
1∪R′

2){R′} and S{R} = S{R′}, so φ′#R = (E1[M{v/x}],R12, S){R}.
On the other hand, ifR(m) = λx.m′′x then:

E[⟨mi⟩M{v′/x}3−i]{R′} = E[m′′v′]{R′}

= E[m′′v]{R} = E[mv]{R}

so φ#R = φ′#R
′

.1041

• Finally, the cases for method-return reductions are treated similarly as above.1042

Suppose now φ#R ÔÔ⇒ φ′, where recall that we write φ as (E1[M1]∥⋯∥EN [MN], R⃗, S).
We show by induction on sizeR(E1[M1],⋯,EN [MN]) that φÔÔ⇒′ φ′′ and φ′RR′φ′′

for some R′ ⊇ R. The size-function we use measures the length of G(R)-paths that
appear inside its arguments:

sizeR(E1[M1],⋯,EN [MN]) = sizeR(E1[M1]) + ⋯ + sizeR(EN [MN])
sizeR(E[M]) = ∑

m∈X1

2∣m∣R + ∑
m∈X2

1

35

where X1 is the multiset containing all occurrences of methods m ∈ dom(R) inside1043

E[M] in call position (e.g. mM ′), and X2 contains all occurrences of methods m ∈1044

dom(R) inside E[M] in return position (i.e. ⟨mi⟩⋯). We write ∣m∣R for the length of1045

the unique directed path from m to a leaf in G(R). The fact that X1,X2 are multisets1046

reflects that we count all occurrences of m in call/return positions. Suppose WLOG1047

that the reduction to φ′ is due to some (E1[M1],R12, S){R} Ð→1 (E′[M ′],R′, S′).1048

If the reduction happens inside M1{R} (this case also encompasses the base case of the1049

induction) then the only case we need to examine is that of the reduction being a method1050

call. In such a case, suppose we have E1[M1]{R} = E[mv], E′ = E, M ′ =M{v/x}1051

and R12{R}(m) = λx.M . Then, E1[M1] = Ẽ[m̃iṽ] for some Ẽ, m̃, ṽ such that1052

m̃{R} =m, ṽ{R} = v and Ẽ{R} = E. If m /= m̃ then, supposingR(m̃) = λx.m̃′x we1053

have the following cases:1054

• (Ẽ[m̃iṽ], R⃗, S) Ð→′
1 (Ẽ[m̃′iṽ], R⃗, S) = φ′′11055

• (Ẽ[m̃iṽ], R⃗, S) Ð→′
1 (Ẽ[⟨m̃i⟩(m̃′v′)3−i], R⃗′, S) = φ′′1 , with R⃗′ = R⃗ ⊎3−i {m′

j ↦1056

λx.mjx ∣ 1 ≤ j ≤ k}, etc.1057

Let φ′′ be the extension of φ′′1 to an N -quadruple by using the remaining Ei[Mi]’s of1058

φ, so that φÔÔ⇒′ φ′′. In the first case above we have that φ′′#R = φ, and in the latter1059

that φ′′#R
′

= φ (withR′ = R ⊎ {m′
j ↦ λx.mjx ∣ 1 ≤ j ≤ k}), and we appeal to the IH.1060

Suppose now that m̃ =m andR12(m) = λx.M̃ . Then, one of the following is the case:1061

• (Ẽ[m̃iṽ], R⃗, S), R⃗, S) Ð→′
1 (Ẽ[M̃{ṽ/x}i], R⃗, S) = φ′′11062

• (Ẽ[m̃iṽ], R⃗, S) Ð→′
1 (Ẽ[⟨m̃i⟩ M̃{v′/x}3−i], R⃗′, S) = φ′′1 , with R⃗′ = R⃗⊎3−i{m′

j ↦1063

λx.mjx ∣ 1 ≤ j ≤ k}, etc.1064

Extending φ′′1 to φ′′ as above, in the former case we then have that φ′′#R = φ′, and in
the latter that φ′′#R

′

= φ′, as required.
Finally, let us suppose that M1 is some value v. Then, we can write E1 as E1 =
E2[E′], with E′ coming from the grammar E′ ∶∶= ● ∣ ⟨mi⟩E′ and E2 not being of
the form E′′[⟨mi⟩ ●]. Observe that E1 = E2. If E′ = ● then by a case analysis on E1

we can see that φ#R can simulate the reduction. Otherwise, (E2[E′[v]], R⃗, S) Ð→′
1

(E2[E′′[v′i]], R⃗′, S) whereby E′ = E′′[⟨mi⟩ ●] and R⃗′ = R⃗ ⊎3−i {m′
j ↦ λx.mjx ∣

1 ≤ j ≤ k}, etc. We have that

φ′′1 = (E2[E′′[v′i]], R⃗′, S){R′} = (E2[E′[v]], R⃗, S){R}

and hence, extending φ′′1 to φ′′, we have φ′′#R
′

= φ#R. We can now appeal to the1065

IH.1066

Appendix C.2. . Proof of Lemma 481067

Let ρ ≍ ρ′ be compatible N -configurations. Then, (ρ⊘ ρ′) ∼ (ρ⩕ ρ′).1068

We prove that the relation R = {(ρ1 ⊘ ρ2, ρ1 ⩕ ρ2) ∣ ρ1 ≍ ρ2} is a bisimulation. Let us1069

suppose that (ρ1 ⊘ ρ2, ρ1 ⩕ ρ2) ∈ R.1070

• Suppose ρ1⊘ρ2 ↪1 ρ
′
1⊘ρ′2. If the transition is due to (INT1) then ρ2 = ρ′2 and we can

see that ρ1 ⩕ ρ2 ÔÔ⇒′ ρ′1 ⩕ ρ2. Similarly if the transition is due to (INT2). Suppose

now we used instead (CALL), e.g. ρ1

(1,callm(v))
ÔÔÔÔÔ⇒ ρ′1 and ρ2

(1,callm(v))
ÔÔÔÔÔ⇒ ρ′2, and

let us consider the case where v ∈Meths (the other case is simpler). Then, assuming

36

ρ1 = (C1
1∥⋯,R1,P1,A1, S1) and ρ2 = (C2

1∥⋯,R2,P2,A2, S2), we have that either
of the following scenarios holds, for some x ∈ {K,L}: C1

1 = (E1,E[mm′]), C2
1 =

(E2,−) and

(E1,E[mm′],R1,P1,A1, S1)
callm(v)
ÐÐÐÐÐ→1

(m ∶∶ E ∶∶ E1,R1 ⊎ (v ↦ λx.m′x),P1 ∪x {v},A1, S1)

(E2,−,R2,P2,A2, S2)
callm(v)
ÐÐÐÐÐ→1

(m ∶∶ E2,M{v/x},R2,P1,A1 ∪x {v}, S2)

or its dual, where ρ2 contains the code initiating the call. Focusing WLOG in the
former case and setting S = S1 ⊎ S2:

ρ1 ⩕ ρ2 = ((E1 ⩕E2)[E[m1m′]]∥⋯,R1,R2, S)
↪2 ((E1 ⩕E2)[E[⟨m1⟩M{v/x}2]]∥⋯,R′

1,R2, S)
= ρ′1 ⩕ ρ′2 (R′

1 = R1 ⊎ (v ↦ λx.m′x))

The case for (RETN) is treated similarly.1071

• Suppose ρ1⩕ρ2 = (E[M1]∥M2∥⋯∥MN , R⃗, S) ↪2 (E[M ′
1]∥M2∥⋯∥MN , R⃗′, S′)1072

and let ρ1 = ((E1,M ′′
1)∥⋯,R1,P1,A1, S1) and ρ2 = ((E2,−)∥⋯,R2,P2,A2, S2),1073

where (E1 ⩕ E2)[M ′′
1] = E[M1]. If the redex M1 is not of the forms M1 = m1v1074

or M1 = ⟨m1⟩ v, with m ∈ dom(R2), then the reduction can clearly be simulated1075

by ρ1 ⊘ ρ2 (internally, by ρ1). Otherwise, similarly as above, the reduction can be1076

simulated by a mutual call/return of m.1077

Finally, it is clear that ρ1 ⊘ ρ2 is final iff ρ1 ⩕ ρ2 is final.1078

Appendix D. Library Compositionality1079

This compositionality result will allow us to compose histories of component li-1080

braries in order to obtain those of their composite library. Let L1 ∶ Ψ1 → Ψ2 and1081

L2 ∶ Ψ ′1 → Ψ ′2. The semantic composition will be guided by two sets of names Π,P.1082

Π contains method names that are shared between by the respective libraries and their1083

context. Thus Π ⊇ Ψ1 ∪ Ψ ′1 ∪ Ψ2 ∪ Ψ ′2. The names in P, on the other hand, will be used1084

for private communication between L1 and L2. Consequently, Π ∩P consists of names1085

that can be used both for internal communication between L1 and L2, and for contextual1086

interactions, i.e. Π ∩P = (Ψ1 ∪ Ψ ′1) ∩ (Ψ2 ∪ Ψ ′2).1087

Given hi ∈ JLiK(i = 1,2), we define the composition of h1 and h2, written h1 ⩕σΠ,P
h2, as a partial operation depending on Π,P and an additional parameter σ ∈ {0,1,2}∗
which we call a scheduler. It is given inductively as follows. We let ε⩕εΠ,P ε = ε and:

(t, callm(v))s1 ⩕0σ
Π,P (t, callm(v))s2 = s1 ⩕σΠ,P′ s2

(t, retm(v))s1 ⩕0σ
Π,P (t, retm(v))s2 = s1 ⩕σΠ,P′ s2

(t, callm(v))PY s1 ⩕1σ
Π,P s2 = (t, callm(v))PY (s1 ⩕σΠ′,P s2)

(t, retm(v))PY s1 ⩕1σ
Π,P s2 = (t, retm(v))PY (s1 ⩕σΠ′,P s2)

(t, callm(v))OY s1 ⩕1σ
Π,P s2 = (t, callm(v))OY (s1 ⩕σΠ′,P s2)

(t, retm(v))OY s1 ⩕1σ
Π,P s2 = (t, retm(v))OY (s1 ⩕σΠ′,P s2)

37

along with the dual rules for the last four cases (i.e. where we schedule 2 in each case).1088

Note that the definition uses sequences of moves that are suffixes of histories (such as1089

si). The above equations are subject to the following side conditions:1090

• Meths(v) ∩ (Π ∪P) = ∅, Π′ = Π ⊎Meths(v) and P′ = P ⊎Meths(v);1091

• m ∈ P in the 0-scheduling cases;1092

• m ∈ Π in the 1-scheduling cases and, also, m ∈ Π ∖P in the third case (the P -call);1093

• in the 1-scheduling cases, we also require that the leftmost move with thread index t1094

in s2 is not a P -move.1095

History composition is a partial function: if the conditions above are not met, or h1, h2, σ1096

are not of the appropriate form, then the composition is undefined. The above conditions1097

ensure that the composed histories are indeed compatible and can be produced by1098

composing actual libraries. For instance, the last condition corresponds to determinacy1099

of threads: there can only be at most one component starting with a P -move in each1100

thread t. We then have the following correspondence.1101

Theorem 50. If L1 ∶ Ψ1 → Ψ2 and L2 ∶ Ψ ′1 → Ψ ′2 access disjoint parts of the store then

JL1 ∪L2KN = {h ∈ H ∣ ∃σ,h1 ∈JL1KN, h2 ∈JL2KN. h = h1 ⩕σΠ0,P0
h2}

with Π0 = Ψ1 ∪ Ψ2 ∪ Ψ ′1 ∪ Ψ ′2 and P0 = (Ψ1 ∪ Ψ ′1) ∩ (Ψ2 ∪ Ψ ′2).1102

The rest of this section is devoted in proving the Theorem.1103

Recall that we examine library composition in the sense of union of libraries. This1104

scenario is more general than the one of Appendix C as, during composition via union,1105

the calls and returns of each of the component libraries may be caught by the other1106

library or passed as a call/return to the outer context. Thus, the setting of this section1107

comprises given libraries L1 ∶ Ψ1 → Ψ2 and L2 ∶ Ψ ′1 → Ψ ′2, such that Ψ2 ∩ Ψ ′2 = ∅, and1108

relating their semantics to that of their union L1 ∪L2 ∶ (Ψ1 ∪Ψ ′1)∖(Ψ2 ∪Ψ ′2) → Ψ2 ∪Ψ ′2.1109

Given configurations for L1 and L2, in order to be able to reduce them together we1110

need to determine which of their methods can be used for communication between them,1111

and which for interacting with the external context, which represents player O in the1112

game. We will therefore employ a set of method names, denoted by Π and variants, to1113

register those methods used for interaction with the external context. Another piece of1114

information we need to know is in which component in the composition was the last1115

call played, or whether it was an internal call instead. This is important so that, when O1116

(or P) has the choice to return to both components, in the same thread, we know which1117

one was last to call and therefore has precedence. We use for this purpose sequences1118

w = (w1,⋯,wN) where, for each i, wi ∈ {0,1,2}∗. Thus, if e.g. w1 = 2w′
1, this would1119

mean that, in thread 1, the last call to O, was done from the second component; if, on1120

the other hand, w1 = 0w′
1 then the last call in thread 1 was an internal one between the1121

two components. Given such a w and some j ∈ {0,1,2}, for each index t, we write1122

j +t w for w[t↦ (jwt)].1123

Let us fix libraries L1 ∶ Ψ1 → Ψ2 and L2 ∶ Ψ ′1 → Ψ ′2. Let ρ1, ρ2 be N -configurations,1124

and in particular L-configurations, and suppose that ρ1 = (C⃗,R,P,A, S) and ρ2 =1125

(C⃗′,R′,P ′,A′, S′). Moreover, let Ψ1 ∪ Ψ2 ∪ Ψ ′1 ∪ Ψ ′2 ⊆ Π. We say that ρ1 and ρ2 are1126

(w,Π)-compatible, written ρ1 ≍wΠ ρ2, if S,S′ have disjoint domains and, for each i;1127

• Ci = (E ′L,M) and C′i = (EL,−), or Ci = (EL,−) and C′i = (E ′L,M), or Ci = (EL1,−)1128

and C′i = (EL2,−).1129

38

• We have Ψ1 ⊆ Al, Ψ2 ⊆ PK, Ψ ′1 ⊆ A′L, Ψ ′2 ⊆ P ′K and, setting

P = (PK ∩A′L) ⊎ (PL ∩A′K) ⊎ (P ′K ∩AL) ⊎ (P ′l ∩AK)

we also have:1130

– (PL ⊎ PK ⊎Al ⊎AK) ∩ (P ′L ⊎ P ′K ⊎A′l ⊎A′K) = P ⊎ (Ψ1 ∩ Ψ ′1),1131

– Π ∩P = (Ψ2 ∪ Ψ ′2) ∩ (Ψ1 ∪ Ψ ′1),1132

– Π ∪P = PL ∪ PK ∪ P ′l ∪ P ′K ∪AL ∪AK ∪A′L ∪A′K.1133

• The private names ofR do not appear in ρ2, and dually for the private names ofR′.1134

• If Ci = (E ,⋯) and C′i = (E ′,⋯) then E and E ′ are wi-compatible, that is, either1135

E = E ′ = [] or:1136

– E =m ∶∶ E1 and E ′ ∈ EL, with m ∈ Π, wi = 1u and E1,E ′ are u-compatible,1137

– or E = m ∶∶ E1 and E ′ = m ∶∶ E ∶∶ E2, with m ∈ P, wi = 0u and E1,E2 are1138

u-compatible,1139

– or E = m ∶∶ E ∶∶ E1 and E ′ ∈ EL, with m ∈ Π ∖ P, wi = 1u and E1,E ′ are1140

u-compatible,1141

or the dual of one of the three conditions above holds.1142

Given ρ1 ≍wΠ ρ2, we let their external composition be denoted as ρ1 ⊗wΠ ρ2 (and note
that now the notation is symmetric for ρ1 and ρ2) and define the semantics for external
composition by these rules:

ρ1 ÔÔ⇒ ρ′1
ρ1 ⊗wΠ ρ2 Ð→ ρ′1 ⊗wΠ ρ2

INT1

ρ1

(t,callm(v))
ÔÔÔÔÔ⇒ ρ′1 ρ2

(t,callm(v))
ÔÔÔÔÔ⇒ ρ′2

ρ1 ⊗wΠ ρ2 Ð→ ρ′1 ⊗
0+tw
Π ρ′2

CALL (m ∈ P)

ρ1

(t,retm(v))
ÔÔÔÔÔ⇒ ρ′1 ρ2

(t,retm(v))
ÔÔÔÔÔ⇒ ρ′2

ρ1 ⊗0+tw
Π ρ2 Ð→ ρ′1 ⊗wΠ ρ′2

RETN (m ∈ P)

ρ1

(t,callm(v))PYÔÔÔÔÔÔÔ⇒ ρ′1

ρ1 ⊗wΠ ρ2
(t,callm(v))PYÐÐÐÐÐÐÐÐ→ ρ′1 ⊗

1+tw
Π′ ρ2

PCALL1 (m ∈ Π ∖P)

ρ1

(t,retm(v))PYÔÔÔÔÔÔ⇒ ρ′1

ρ1 ⊗1+tw
Π ρ2

(t,retm(v))PYÐÐÐÐÐÐÐÐ→ ρ′1 ⊗wΠ′ ρ2

PRETN1 (m ∈ Π)

ρ1

(t,callm(v))OYÔÔÔÔÔÔÔ⇒ ρ′1

ρ1 ⊗wΠ ρ2
(t,callm(v))OYÐÐÐÐÐÐÐÐ→ ρ′1 ⊗

1+tw
Π′ ρ2

OCALL1 (m ∈ Π)

ρ1

(t,retm(v))OYÔÔÔÔÔÔÔ⇒ ρ′1

ρ1 ⊗1+tw
Π ρ2

(t,retm(v))OYÐÐÐÐÐÐÐÐ→ ρ′1 ⊗wΠ′ ρ2

ORETN1 (m ∈ Π ∖P)

along with their dual counterparts (INT2 , XCALL2 , XRETN2). The internal rules above1143

have the same side-conditions on name privacy as before. Moreover, in (XRETNi) and1144

39

(XCALLi), for X=O,P, we let Π′ = Π ⊎tMeths(v) and impose that the t-th component1145

of ρ3−i be an O-configuration and Meths(v) ∩Meths(ρ3−i) = ∅.1146

We can now show the following.1147

Lemma 51. Let ρ1 ≍wΠ ρ2 and suppose ρ1 ⊗wΠ ρ2
sÐÐ→∗ ρ′1 ⊗w

′

Π′ ρ
′
2 for some sequence s1148

of moves. Then, ρ′1 ≍w
′

Π′ ρ
′
2.1149

We next juxtapose the semantics of external composition to that obtained by inter-
nally composing the libraries and then deriving the multi-threaded semantics of the
result. As before, we call the latter form internal composition. The traces we obtain
are produced from a transition relation, writtenÔÔ⇒′, between configurations of the
form (C1∥⋯∥CN ,R1,R2,P,A, S), also written (C⃗, R⃗,P,A, S). In particular, in each
Ci = (Ei,Xi) with Xi = Ei[Mi] or Xi = −, Ei is selected from the extended evaluation
contexts and Ei is an extended L-stack, that is, of either of the following two forms:

Eext ∶∶= [] ∣mi ∶∶ E ∶∶ E ′ext E ′ext ∶∶= m ∶∶ Eext

where E is again from the extended evaluation contexts.1150

First, given u-compatible evaluation stacks E ,E ′, we construct a pair E ⩕u E ′
consisting of an extended evaluation context and an extended L-stack, as follows. Given
E ⩕u E ′ = (E′,E ′′):

(m ∶∶ E ∶∶ E) ⩕0u (m ∶∶ E ′) = (E′[E[⟨m⟩ ●]1],E ′′)
(m ∶∶ E) ⩕0u (m ∶∶ E ∶∶ E ′) = (E′[E[⟨m⟩ ●]2],E ′′)
(m ∶∶ E) ⩕1u E ′ = E ⩕2u (m ∶∶ E ′) = (●,m ∶∶ E′ ∶∶ E ′′)
(m ∶∶ E ∶∶ E) ⩕1u E ′ = E ⩕2u (m ∶∶ E ∶∶ E ′)

= (●,m ∶∶ E′[E] ∶∶ E ′′) if E ′ ∈ EL

and [] ⩕ε [] = (●, []).1151

For each pair ρ1 ≍wΠ ρ2, we define a configuration corresponding to their syntactic
composition as follows. Let ρ1 = (C1∥⋯∥CN ,R1,P1,A1, S1) and ρ2 = (C′1∥⋯∥C′N ,R2,P2,A2, S2)
and, for each i, Ci = (Ei,Xi) and C′i = (E ′i ,X ′

i). If Ei ⩕u E ′i = (Ei,E ′′i), we set:

Ci ⩕u C′i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(E ′′i ,Ei[M1]) if Xi =M and X ′
i = −

(E ′′i ,Ei[M2]) if Xi = − and X ′
i =M

(E ′′i ,−) if Xi =X ′
i = −

We then let the internal composition of ρ1 and ρ2 be:

ρ1 ⩕wΠ ρ2 = (C1 ⩕w1C′1∥⋯∥CN ⩕wN C′N ,R1,R2,P ′,A′, S1 ⊎ S2)

where we set P ′ = ((P1L ⊎ P2L) ∩Π, (P1K ⊎ P2K) ∩Π) and A′ = ((A1L ∪ A2L) ∩1152

(Π ∖P), (A1K ⊎A2K) ∩Π).1153

Now, as expected, the definition of ÔÔ⇒′ builds upon Ð→′
t. The definition of the

40

latter is given by the following rules.

(E[M], R⃗, S) Ð→′
t (E′[M ′], R⃗′, S′)

(E ,E[M], R⃗,P,A, S) Ð→′
t (E ,E′[M ′], R⃗′,P,A, S′)

(INT′)

(E ,E[miv], R⃗,P,A, S)
callm(v′)PYÐÐÐÐÐÐÐ→t′ (mi ∶∶E ∶∶ E ,−, R⃗′,P ′,A, S) (PCY′)

(m ∶∶ E , v, R⃗,P,A, S)
retm(v′)PYÐÐÐÐÐÐ→t′ (E ,−, R⃗′,P ′,A, S) (PRY′)

(E ,−, R⃗,P,A, S)
callm(v)OYÐÐÐÐÐÐ→t′ (m ∶∶ E ,M{v/x}i, R⃗,P,A′, S) (OCY′)

(mi ∶∶E ∶∶ E ,−, R⃗,P,A, S)
retm(v)OYÐÐÐÐÐÐ→t′ (E ,E[vi], R⃗,P,A′, S) (ORY′)

The side-conditions are similar to those for the relation Ð→t between ordinary config-
urations, with the following exceptions: in (PCY′), if Meths(v) = {m1,⋯,mk} then
v′ = v{m′

j/mj ∣ 1 ≤ j ≤ k}, for fresh m′
j’s, and R⃗′ = R⃗ ⊎i {m′

j ↦ λx.mjx}; and in
(PRY′), if m ∈ dom(Ri) then R⃗′ = R⃗ ⊎i {m′

j ↦ λx.mjx}, etc. Moreover, in (OCY′)
we have that m ∈ dom(Ri). Finally, we let

(C⃗, R⃗,P,A, S)
(t,x)XYÔÔÔ⇒′ (C⃗[t↦ C′], R⃗′,P ′,A′, S′)

just if (Ct, R⃗,P,A, S)
xXYÐÐÐ→t′ (C′, R⃗′,P ′,A′, S′).1154

We next relate the transition systems induced by external (via ⊗) and internal1155

composition (via ⩕). Let us write (S1,↪1,F1) for the transition system induced by1156

external composition of compatible N -configurations (so ↪1 is Ð→), and (S2,↪21157

,F2) be the one for internal composition (so ↪2 is ÔÔ⇒′). Finality of extended N -1158

configurations (C1∥⋯∥CN , R⃗,⋯) is defined as expected: all Ci’s must be ([],−). A1159

relation R ⊆ S1 × S2 is called a bisimulation if, for all (x1, x2) ∈ R:1160

• x1 ∈ F1 iff x2 ∈ F2,1161

• if x1 ↪1 x
′
1 then x2 ↪2 x

′
2 and (x′1, x′2) ∈ R,1162

• if x1

(t,x)XY

↪ÐÐÐÐ→1 x
′
1 then x2

(t,x)XY

↪ÐÐÐÐ→2 x
′
2 and (x′1, x′2) ∈ R,1163

• if x2 ↪2 x
′
2 then x1 ↪1 x

′
1 and (x′1, x′2) ∈ R,1164

• if x2

(t,x)XY

↪ÐÐÐÐ→2 x
′
2 then x1

(t,x)XY

↪ÐÐÐÐ→1 x
′
1 and (x′1, x′2) ∈ R.1165

Again, we say that x1 and x2 are bisimilar, and write x1 ∼ x2, if there exists a bisimula-1166

tion R such that (x1, x2) ∈ R.1167

Lemma 52. Let ρ ≍wΠ ρ′ be compatible N -configurations. Then, (ρ⊗wΠ ρ′) ∼ (ρ⩕wΠ ρ′).1168

Proof. We prove that the relation R = {(ρ1 ⊗wΠ ρ2, ρ1 ⩕wΠ ρ2) ∣ ρ1 ≍wΠ ρ2} is a bisimula-1169

tion. Let us suppose that (ρ1 ⊗wΠ ρ2, ρ1 ⩕wΠ ρ2) ∈ R.1170

• Let ρ1 ⊗wΠ ρ2
(t,x)
ÐÐÐ→ ρ′1 ⊗w

′

Π′ ρ
′
2 with the transition being due to (XCALL1), e.g.

ρ1

(1,callm(v))
ÔÔÔÔÔ⇒ ρ′1 and ρ′2 = ρ2, w′ = 1+1 w and Π′ = Π⊎1 Meths(v), Meths(v) =

{m′
1,⋯,m′

j}, and recall that Meths(v) ∩Meths(ρ2) = ∅. Then, assuming ρ1 =

41

(C1
1∥⋯,R1,P1,A1, S1), we have that one of the following holds, for some x ∈

{K,L}:

C1
1 = (E1,E[mv′]) and (C1

1 ,R1,P1,A1, S1)
callm(v)
ÐÐÐÐÐ→1

(m ∶∶ E ∶∶ E1,−,R1 ⊎ {m′
j ↦ λx.mjx ∣ 1 ≤ j ≤ k},P1 ∪x Meths(v),A1, S1)

C1
1 = (E1,−) and (C1

1 ,R1,P1,A1, S1)
callm(v)
ÐÐÐÐÐ→1

(m1 ∶∶ E1,mv,R1,P1,A1 ∪x Meths(v), S1)

In the former case, if ρ2 = ((E2,−)∥⋯,R2,P2,A2, S2) with E1 ⩕w1 E2 = (E′,E),
we get:

ρ1 ⩕wΠ ρ2 = ((E ,E′[E[mv′]1])∥⋯,R1,R2,P,A, S)
(1,callm(v))
ÔÔÔÔÔ⇒′

(m1 ∶∶ E′[E1] ∶∶ E ,−)∥⋯,R1 ⊎ {m′
j ↦ λx.mjx ∣ 1 ≤ j ≤ k},R2,P ′,A, S)

with P,A as in the definition of composition and P ′ = P ∪xMeths(v), and the latter1171

N -configuration equals ρ′1 ⩕w
′

Π′ ρ2. The other case is treated in the same manner,1172

and we work similarly for (RETN1).1173

• On the other hand, if the transition is due to (CALL) or (RETN) then we work as in1174

the proof of Lemma 48.1175

• Suppose ρ1⩕wΠ ρ2 = (C1∥⋯, R⃗,P,A, S)
(1,callm(v))
ÔÔÔÔÔ⇒′ (C′1∥⋯, R⃗′,P ′,A′, S). Then,

assuming WLOG that v ∈Meths, one of the following must be the case, for some
x ∈ {K,L} and i ∈ {1,2}:

C1 = (E ,E[miv′]) and (C1, R⃗,P,A, S)
callm(v)
ÐÐÐÐÐ→1

′

(mi ∶∶ E ∶∶ E , R⃗ ⊎i {m′
j ↦ λx.mjx ∣ 1 ≤ j ≤ k},P ∪x Meths(v),A, S)

C1(E ,−) and (C1, R⃗,P,A, S)
callm(v)
ÐÐÐÐÐ→1

′

(m ∶∶ E ,M{v/x}i, R⃗,P,A∪x Meths(v), S)

We only examine the former case, as the latter one is similar, and suppose that
i = 1. Taking ρj = (Cj1∥⋯,Rj ,Pj ,Aj , Si), for j = 1,2, we have that (C1

1 ,C2
1) =

((E1,E′[mv′], (E2,−)), for some E,E1,E2 such that E1 ⩕w1 E2 = (E′′,E) and
E = E′′[E′1]. Moreover, taking R′

1 = R1 ⊎ {m′
j ↦ λx.mjx ∣ 1 ≤ j ≤ k}, P ′1 =

P1 ⊎x {v}, w′ = 1 +1 w and Π′ = Π ⊎Meths(v) (note Meths(v) = {m′
1,⋯,m′

k}),

ρ1 ⊗wΠ ρ2
(1,callm(v))
ÐÐÐÐÐÐÐ→ ((m ∶∶ E′ ∶∶ E1,−)∥⋯,R′

1,P ′1,A1, S1) ⊗w
′

Π′ ρ2 = ρ′1 ⊗w
′

Π′ ρ2

and ρ′1 ⩕w
′

Π′ ρ2 = (C′1∥⋯, R⃗′,P ′,A′, S) as required. The case for return transitions1176

is similar.1177

• On the other hand, if the transition out of ρ1 ⩕wΠ ρ2 does not have a label then we1178

work as in the proof of Lemma 48.1179

Moreover, by definition of syntactic composition, ρ1 ⊗wΠ ρ2 is final iff ρ1 ⩕wΠ ρ2 is.1180

42

Given an N -configuration ρ and a history h, let us write ρ ⇓ h if ρ
hÔÔ⇒ ρ′ for1181

some final configuration ρ′. Similarly if ρ is of the form (C⃗, R⃗,P,A, S). We have the1182

following connections in history productions. The next lemma is proven in a similar1183

fashion as Lemma 47.1184

Lemma 53. For any legal (M1∥⋯∥MN ,R1,R2,P,A, S) and history h, we have that1185

(M1∥⋯∥MN ,R1,R2,P,A, S) ⇓ h iff (M1∥⋯∥MN ,R1 ∪R2,P,A, S) ⇓ h.1186

Lemma 54. For any compatibleN -configurations ρ1 ≍wΠ ρ2 and history h, (ρ1⊗wΠρ2) ⇓
h iff:

∃h1, h2, σ. ρ1 ⇓ h1 ∧ ρ2 ⇓ h2 ∧ h = h1 ⩕σΠ,P h2

where P is computed from ρ1, ρ2 and Π as before.1187

Proof. We show that, for any compatible N -configurations ρ1 ≍wΠ ρ2 and history suffix
s, (ρ1 ⊗wΠ ρ2) ⇓ s iff:

∃s1, s2, σ. ρ1 ⇓ s1 ∧ ρ2 ⇓ s2 ∧ s = s1 ⩕σΠ,P s2

where P is computed from ρ1, ρ2 and Π as in the beginning of this section.1188

The left-to-right direction follows from straightforward induction on the length of
the reduction that produces s. For the right-to-left direction, we do induction on the
length of σ. If σ = ε then s1 = s2 = s = ε. Otherwise, we do a case analysis on the first
element of σ. We only look at the most interesting subcase, namely of σ = 0σ′. Then,
for some m ∈ P:

s1 = (t, callm(v))s′1 s2 = (t, callm(v))s′2

By ρi ⇓ si and ρ1 ≍wΠ ρ2 we have that ρ1 ⊗wΠ ρ2 Ð→ ρ′1 ⊗w
′

Π ρ2, where w′ = 0 +t w and1189

ρ′1 ≍w
′

Π ρ′2. Also, ρ′i ⇓ s′i and s = s′1 ⩕σ
′

Π,P′ s
′
2 so, by IH, (ρ′1 ⊗w

′

Π ρ′2) ⇓ s.1190

We can now prove the correspondence between the traces of component libraries1191

and those of their union.1192

Theorem 50 Let L1 ∶ Ψ1 → Ψ2 and L2 ∶ Ψ ′1 → Ψ ′2 be libraries accessing disjoint parts
of the store. Then,

JL1 ∪L2KN = {h ∈ HL ∣ ∃σ,h1 ∈JL1KN, h2 ∈JL2KN. h = h1 ⩕σΠ0,P0
h2}

with Π0 = Ψ1 ∪ Ψ2 ∪ Ψ ′1 ∪ Ψ ′2 and P0 = (Ψ1 ∪ Ψ ′1) ∩ (Ψ2 ∪ Ψ ′2).1193

Proof. Let us suppose (Li) Ð→∗
lib (ε,Ri, Si), for i = 1,2, with dom(R1)∩dom(R2) =

dom(S1) ∩ dom(S2) = ∅. We set:

ρ1 = (([],−)∥⋯∥([],−),R1, (∅, Ψ2), (Ψ1,∅), S1)
ρ2 = (([],−)∥⋯∥([],−),R2, (∅, Ψ ′2), (Ψ ′1,∅), S2)

We pick these as the initial configurations for JL1KN and JL2KN respectively. Then,
(L1 ∪L2) Ð→∗

lib (ε,R0, S0) whereR0 = R1 ⊎R2 and S0 = S1 ⊎ S2, and we take

ρ0 = (([],−)∥⋯∥([],−),R0, (∅, Ψ2 ∪ Ψ ′2), ((Ψ1 ∪ Ψ ′1) ∖P0,∅), S0)

as the initial N -configuration for JL1 ∪L2KN . On the other hand, we have ρ1 ⩕εΠ0
ρ2 =1194

(([],−)∥⋯∥([],−),R1,R2, (∅, Ψ2 ∪ Ψ ′2), ((Ψ1 ∪ Ψ ′1) ∖P0, S0). From Lemma 53, we1195

have that ρ0 ⇓ h iff ρ1 ⩕εΠ0
ρ2 ⇓ h, for all h.1196

43

Pick a history h. For the forward direction of the claim, ρ0 ⇓ h implies ρ1⩕εΠ0
ρ2 ⇓ h1197

which, from Lemma 52, implies ρ1 ⊗εΠ0
ρ2 ⇓ h. We now use Lemma 54 to obtain1198

h1, h2, σ such that ρi ⇓ hi and h = h1 ⩕σΠ0,P0
h2. Conversely, suppose that hi ∈ JLiKN1199

and h = h1 ⩕σΠ0,P0
h2. WLOG assume that (Meths(h1) ∪Meths(h2)) ∩ (dom(R1) ∪1200

dom(R2)) ⊆ Π0 (or we appropriately alpha-covert R1 and R2). Then, ρi ⇓ hi, for1201

i = 1,2, and therefore ρ1 ⊗εΠ0
ρ2 ⇓ h by Lemma 54. By Lemma 52 we have that1202

ρ1 ⩕εΠ0
ρ2 ⇓ h, which in turn implies that ρ0 ⇓ h, i.e. h ∈ JL1 ∪L2KN .1203

Appendix E. Composition congruence1204

Theorem 55. If L1 ⊲ L2 then, for suitably typed L accessing disjoint part of the store1205

than L1 and L2, we have L ∪L1 ⊲ L ∪L2.1206

Proof. Assume L1 ⊲ L2 and suppose h1 ∈ JL ∪L1K. By Theorem 50, h1 = h′ ⩕σΠ,P h′1,1207

where h′ ∈ JLK and h′1 ∈ JL1K. Because L1 ⊲ L2, there exists h′2 ∈ JL2K such that1208

h′1 ⊲ h′2, i.e. h′1 ◁∗
PO h

′
2. Note that some of the rearrangements necessary to transform1209

h′1 into h′2 may concern actions shared by h′1 and h′; their polarity will then be different1210

in h′. Let h′′ be obtained by applying such rearrangements to h′. We claim that1211

h′◁∗
OP h

′′. Indeed, suppose that (t′, x′)(t, x)P are consecutive in h′1, but swapped in1212

order to obtain h′2, and (t, x)P appears in h′ as (t, x)O. Now, the move (t′, x′) either1213

appears in h1, or it appears in h′ and gets hidden in h1. In every case, let s contain1214

the moves of h′ that are after (t′, x′) in the composition to h1, and before (t, x)O. We1215

have that s(t, x)O is a subsequence of h′ and h′ ◁∗
OP h

′′ holds just if s contains no1216

moves from t. But, if s contained moves from t then the rightmost one such would be1217

some (t, y)P . Moreover, in the composition towards h1, the move would be scheduled1218

with 1. The latter would break the conditions for trace composition as, at that point, the1219

corresponding subsequence of h′1 has as leftmost move in t the P-move (t, x)P . We1220

can show similarly that h′ ◁∗
OP h

′′ holds in the case that the permutation in h′1 is on1221

consecutive moves (t, x)O(t′, x′). Finally, the rearrangements in h′1 that do not affect1222

moves shared with h′ can be treated in a simpler way: e.g. in the case of (t′, x′)(t, x)P1223

consecutive in h′1 and swapped in h′2, if (t, x)P does not appear in h′ then we can check1224

that h′ cannot contain any t-moves between (t′, x′) and (t, x) as the conditions for trace1225

composition impose that only O is expected to play in that part of h′ (and any t-move1226

would swap this polarity).1227

Now, since h′ ∈ JLK, Lemma 34 implies h′′ ∈ JLK. Take h2 to be h′′ ⩕σ
′

Π,P h
′
2, where σ′1228

is obtained from σ following these move rearrangements. We then have h2 ∈ JL ∪L2K.1229

Moreover, h1 ⊲ h2 thanks to h′1 ⊲ h′2. Hence, h2 ∈ JL ∪ L2K and h1 ⊲ h2. Thus,1230

L ∪L1 ⊲ L ∪L2.1231

We next examine the behaviour of ⊲enc with respect to library composition. In1232

contrast to general linearisability, we need to restrict composition for it to be compatible1233

with encapsulation.1234

Remark 56. The general case of union does not conform with encapsulation in the sense1235

that encapsulated testing of L ∪ Li (i = 1,2) according to Def. 31 may subject Li to1236

unencapsulated testing. For example, because method names of L and Li are allowed1237

to overlap, methods in L may call public methods from Li as well as implementing1238

abstract methods from Li. This amounts to L playing the role of both K and L, which1239

in addition can communicate with each other, as both are inside L.1240

Even if we make L and Li non-interacting (i.e. without common abstract/public
methods), if higher-order parameters are still involved, the encapsulated tests of L ∪Li

44

can violate the encapsulation hypothesis for Li. For instance, consider the methods
m2,m

′
1,m

′
2 ∈ Methsunit,unit and m1 ∈ Meths(unit→unit),unit , and libraries L1, L2 ∶

{m1} → {m2} and L ∶ {m′
1} → {m′

2}, as well as the unions L ∪ Li ∶ {m1,m2} →
{m′

1,m
′
2}. A possible trace in JL ∪LiKenc is this one:

hi = (1, callm2())OK (1, callm1(v))PL (1, retm1())OL
(1, retm2())PK (1, callm′

2())OK (1, callm′
1())PL (1, call v())OL

which decomposes as hi = h′ ⩕σΠ,∅ h′i, with Π = {m1,m2,m
′
1,m

′
2}, σ = 2222112,

h′ = (1, callm′
2())OK (1, callm′

1())PL and:

h′i = (1, callm2())OK (1, callm1(v))PL (1, retm1())OL (1, retm2())PK (1, call v())OL

We now see that h′i ∉ JLiKenc as in the last move O is changing component from K to L.1241

We therefore look at compositionality for two specific cases: encapsulated se-1242

quencing (e.g. of L ∶ Ψ → Ψ ′ with L′ ∶ Ψ ′ → Ψ ′′) and disjoint union for first-1243

order methods. Given L ∶ Ψ1 → Ψ2 and L′ ∶ Ψ ′1 → Ψ ′2, we define their disjoint1244

union L ⊎ L′ = L ∪ L′ ∶ (Ψ1 ∪ Ψ ′1) → (Ψ2 ∪ Ψ ′2) under the assumption that1245

(Ψ1 ∪ Ψ2) ∩ (Ψ ′1 ∪ Ψ ′2) = ∅.1246

Theorem 57. Let L1, L2 ∶ Ψ1 → Ψ2 and L ∶ Ψ ′1 → Ψ ′2. If L1 ⊲enc L2 then:1247

• assuming Ψ ′2 = Ψ1, we have L ;L1 ⊲enc L ;L2 and L1 ;L ⊲enc L2 ;L;1248

• if Ψ1, Ψ2, Ψ
′
1, Ψ

′
2 are first-order then L ⊎L1 ⊲enc L ⊎L2.1249

Proof. Let us consider the first sequencing case (the second one is dual), and assume1250

that L1, L2 ∶ Ψ → Ψ ′ and L ∶ Ψ ′′ → Ψ . Assume L1 ⊲enc L2 and suppose h1 ∈ JL ;L1Kenc.1251

By Theorem 50, h1 = h′ ⩕σΠ,P h′1, where h′ ∈ JLK, h′1 ∈ JL1K and method calls1252

from Ψ are always scheduled with 0. The fact that O cannot switch between L/K1253

components in (threads of) h1 implies that the same holds for h′, h′1, hence h′ ∈ JLKenc1254

and h′1 ∈ JL1Kenc. Because L1 ⊲enc L2, there exists h′2 ∈ JL2Kenc such that h′1 ⊲ h′2,1255

i.e. h′1(◁PO ∪ ◇)∗h′2. As before, some of the rearrangements necessary to transform1256

h′1 into h′2 may concern actions shared by h′1 and h′; we need to check that these can1257

lead to compatible h′′ ∈ JLKenc. Let h′′ be obtained by applying such rearrangements1258

to h′. We claim that h′◁∗
OP h

′′. The transpositions covered by ◁PO are treated as in1259

Lemma 55. Suppose now that (t′, x′)PK(t, x)OL are consecutive in h′1 but swapped1260

in order to obtain h′2, and (t, x)OL appears in h′ as (t, x)PK. Now, the move (t′, x′)1261

cannot appear in h′ as it is in L1’s K-component (L is the L-component of L1). Let1262

s contain the moves of h′ that are after (t′, x′) in the composition to h1, and before1263

(t, x)PK. We claim that s contains no moves from t, so h′ can be directly composed1264

with h′2 as far as this transposition is concerned. Indeed, if s contained moves from t1265

then, taking into account the encapsulation conditions, the leftmost one such would be1266

some (t, y)OK. But the K-component of L is L1, which contradicts the fact that the1267

moves we consider are consecutive in h′1. Hence, taking h2 to be h′′ ⩕σ
′

Π,P h
′
2, where σ′1268

is obtained from σ following the ◁PO move rearrangements, we have h2 ∈ JL ;L2Kenc1269

and h1 ⊲enc h2. Thus, L ;L1 ⊲enc L ;L2.1270

The case of L ⊎ L1 ⊲enc L ⊎ L2 is treated in a similar fashion. In this case, because1271

of disjointness, the moves transposed in h′1 do not have any counterparts in h′. Again,1272

we consider consecutive moves (t′, x′)PK(t, x)OL in h′1 that are swapped in order to1273

obtain h′2. Let s contain the moves of h′ that are after (t′, x′) in the composition to1274

h1, and before (t, x). As Ψ1, Ψ
′
1 is first-order, (t, x)OL must be a return move and the1275

t-move preceding it in h1 must be the corresponding call. The latter is a move in h′1,1276

45

which therefore implies that there can be no moves from t in s. Similarly for the other1277

transposition case.1278

46

	Introduction
	Higher-order linearisability
	Higher-order histories
	Three notions of linearisability
	General linearisability
	Encapsulated linearisability
	Relational linearisability

	Library syntax and semantics
	Semantics
	Library-client evaluation
	Trace semantics

	Proofs of examples

	Soundness
	Correctness
	Compositionality
	General linearisability
	Encapsulated linearisability
	Relational linearisability

	Related and future work
	Big-step vs small-step reorderings
	Auxiliary lemmas about histories
	Trace compositionality
	Proof of Lemma 47
	. Proof of Lemma 48

	Library Compositionality
	Composition congruence

