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Abstract 41 

Successfully predicting the future states of systems that are complex, stochastic and 42 

potentially chaotic is a major challenge. Model forecasting error (FE) is the usual measure of 43 

success; however model predictions provide no insights into the potential for improvement. 44 

In short, the realized predictability of a specific model is uninformative about whether the 45 

system is inherently predictable or whether the chosen model is a poor match for the system 46 

and our observations thereof. Ideally, model proficiency would be judged with respect to the 47 

systems’ intrinsic predictability – the highest achievable predictability given the degree to 48 

which system dynamics are the result of deterministic v. stochastic processes. Intrinsic 49 

predictability may be quantified with permutation entropy (PE), a model-free, information-50 

theoretic measure of the complexity of a time series. By means of simulations we show that a 51 

correlation exists between estimated PE and FE and show how stochasticity, process error, 52 

and chaotic dynamics affect the relationship. This relationship is verified for a dataset of 461 53 

empirical ecological time series. We show how deviations from the expected PE-FE 54 

relationship are related to covariates of data quality and the nonlinearity of ecological 55 

dynamics. These results demonstrate a theoretically-grounded basis for a model-free 56 

evaluation of a system’s intrinsic predictability. Identifying the gap between the intrinsic and 57 

realized predictability of time series will enable researchers to understand whether 58 

forecasting proficiency is limited by the quality and quantity of their data or the ability of the 59 

chosen forecasting model to explain the data. Intrinsic predictability also provides a model-60 

free baseline of forecasting proficiency against which modeling efforts can be evaluated.   61 

Key words: time series analysis, Empirical Dynamic Modelling, permutation entropy, 62 

information theory, population dynamics, forecasting  63 
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Introduction 64 

Understanding and predicting the dynamics of complex systems are central goals for many 65 

scientific disciplines (Weigend and Gershenfeld 1993, Hofman et al. 2017). Ecology is no 66 

exception as environmental changes across the globe have led to repeated calls to make the 67 

field a more predictive science (Clark et al. 2001, Petchey et al. 2015, Dietze 2017, Dietze et 68 

al. 2018). One particular focus is anticipatory predictions, forecasting probable future states 69 

in order to actively inform and guide decisions and policy (Mouquet et al. 2015, Maris et al. 70 

2018). Robust anticipatory predictions require a quantitative framework to assess ecological 71 

forecasting and diagnose when and why ecological forecasts succeed or fail. 72 

Forecast performance is measured by realized predictability (see glossary), often 73 

quantified as the correlation coefficient between observations and predictions, or its 74 

complement, forecasting error (FE) measures, such as root mean squared error (RMSE). 75 

Hence, realized predictability is in part determined by the model used as for any given 76 

system, different models will give different levels of realized predictability. Furthermore, it 77 

can be unclear, from realized predictability alone, whether the system is stochastic or the 78 

model is a poor choice. 79 

By contrast, the intrinsic predictability of a system is an absolute measure that 80 

represents the highest achievable predictability (Lorenz 1995, Beckage et al. 2011). The 81 

intrinsic predictability of a system can be approximated with model-free measure of time 82 

series complexity, such as Lyapunov exponents or permutation entropy  (Boffetta et al. 83 

2002, Bandt and Pompe 2002, Garland et al. 2014). In principle, intrinsic predictability has 84 

the potential to indicate whether the model, data, or system are limiting realized 85 

predictability. Thus, if we know the intrinsic predictability of a system and its realized 86 

predictability under specific models, the difference between the two is indicative of how 87 

much predictability can be improved (Beckage et al. 2011). 88 
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Here we formalize a conceptual framework connecting intrinsic predictability and 89 

realized predictability. Our framework enables comparative investigations into the intrinsic 90 

predictability across systems and provides guidance on where and why forecasting is likely to 91 

succeed or fail. We use simulations of the logistic map to demonstrate the behaviour of PE in 92 

response to time series complexity and the effects of both process and measurement noise. 93 

We confirm a general relationship between PE and FE, using a large dataset of empirical time 94 

series and demonstrate how the quality, length, and nonlinearity in particular of these time 95 

series influences the gap between intrinsic and realized predictability and the consequences 96 

for forecasting.  97 

Conceptual framework 98 

The foundation for linking intrinsic and realized predictability lies in information theory and 99 

builds on research demonstrating a relationship between PE and FE for complex computer 100 

systems (Garland et al. 2014). Information theory was originally developed by Claude 101 

Shannon as a mathematical description of communication (Shannon 1948) but has since been 102 

applied across many disciplines. In ecology, several information-theoretic methods have 103 

proved useful, including the Shannon biodiversity metric in which the probability of symbol 104 

occurrences (see Box 1) is replaced by the probability of species occurrences (Jost 2006, 105 

Sherwin et al. 2017), and the Akaike Information Criterion (Akaike 1974) which is widely 106 

used for comparing the performance of alternative models (Burnham and Anderson 2002). 107 

Given its importance to our framework, we first provide an introduction to information theory 108 

with special attention to applications for ecological time series. Since our goal is to inform 109 

where, when and why forecasting succeeds or fails; we then i) describe how information 110 

may be partitioned into new and redundant information based on permutation entropy, ii) 111 

demonstrate how redundant information is exploited by different forecasting models, and iii) 112 
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examine the relationship between permutation entropy and realized predictability and how it 113 

can inform forecasting. 114 

An information-theoretic perspective 115 

A first step towards predicting the future of any system is understanding if the observations of 116 

that system contain information about the future, i.e. does the system have a memory. The 117 

total information in each observation can be thought of as a combination of information that 118 

came from past states (i.e., redundant information) and information that is only available in 119 

the present state (i.e., new information).  120 

When there is a substantial amount of information transmitted from the past to the 121 

present (figure 1Aiii), the system is said to be highly redundant. In other words, future states 122 

depend greatly on the present and past states. In these cases, very little new information is 123 

generated during each subsequent observation of the system and the resulting time series is, 124 

in theory, highly predictable (has high intrinsic predictability).  125 

Conversely, in systems dominated by stochasticity, the system state at each time point 126 

is mostly independent of past states (figure 1Ai). Thus, all of the information will be “new” 127 

information, and there will be little to no redundancy with which to train a forecasting model. 128 

In this case, regardless of model choice, the system will not be predictable (has low intrinsic 129 

predictability). 130 

Imperfect observations introduce uncertainty or bias into time series, and thereby 131 

affect the redundant information that is available or perceived. Observation errors in 132 

particular will reduce the redundant information available to forecasting models, thus 133 

lowering the realized predictability. We refer to this reduction as lost information, which is 134 

not an innate property of the system but is the result of the practical limitations of making 135 

measurements and any information-damaging processing of the data (figure 1B, Box 2). As 136 

such, lost information can be mitigated and is an important leverage point for ecologists to 137 
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improve their forecasts. For example, replicate measurements or other forms of data 138 

integration that increase estimation accuracy and reduce bias will reduce information loss and 139 

can improve forecasts. 140 

Permutation entropy 141 

Permutation entropy (PE) is a measure of time series complexity that approximates the rate at 142 

which new information is being generated along a time series (Box 1). PE approximates and 143 

is inversely related to intrinsic predictability by quantifying how quickly the system generates 144 

new information. Time series with low permutation entropy have high redundancy and are 145 

expected to have high intrinsic predictability (Garland et al. 2014). 146 

PE uses a symbolic analysis that translates a time series into a frequency distribution 147 

of words (see glossary for definition). The frequency distribution of words is then used to 148 

assess the predictability of the time series. For example, a time series in which a single word 149 

(i.e. a specific pattern) dominates the dynamics has high redundancy and thus future states are 150 

well predicted by past states. In contrast, a random time series, in which no single pattern 151 

dominates, would produce a nearly uniform frequency distribution of words, with future 152 

states occurring independently from past states. Hence, by quantifying the frequency 153 

distribution of words, PE approximates how much information is transmitted from the past to 154 

the present, corresponding to the intrinsic predictability of a time series. 155 

When observations are imperfect PE measures the joint influence of new information 156 

(from either internal or external processes) and lost information (due to the observation 157 

process as well as data processing). We refer to the redundant information that is not lost and 158 

remains available as active information, which is the information that can be exploited by 159 

forecasting models.  160 
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Forecasting and redundant information 161 

Realized predictability is highest when the chosen forecasting model exploits all the active 162 

information contained in a time series. For illustration, we forecast the oscillating abundance 163 

of a laboratory ciliate population  (Veilleux 1976) with three different approaches (figure 164 

1C): i) the mean of the time series (a model which uses relatively little of the active 165 

information), ii) a linear autoregressive integrated moving-average model (ARIMA) that uses 166 

the local-order structure of the time series in addition to the mean (a model which uses an 167 

intermediate amount of the active information), and iii) empirical dynamic modelling (EDM) 168 

that can incorporate nonlinearities, when present, in addition to the mean and local-order 169 

structure (a model which can feasibly use more active information). The time series was split 170 

into training data and test data. Forecasting models were fit to the training data and used to 171 

make forward predictions among the test data. The forecast performance of the models (i.e. 172 

the realized predictability) varied with the amount of information they used, which depended 173 

on structural differences among the models that exploit the active information coming from 174 

the past. EDM and ARIMA had similar performance suggesting that the time series entailed 175 

little nonlinearities for the EDM to exploit. 176 

The relationship between realized and intrinsic predictability 177 

With a perfect forecasting model, realized predictability - measured by forecasting error (FE) 178 

- and intrinsic predictability - measured by permutation entropy (PE) - will be positively 179 

related. More specifically, the relationship will pass through the origin and monotonically 180 

increase up to the maximum limit of PE = 1 (figure 1D, the boundary between the white and 181 

grey regions; Garland et al. 2014).  In the top right of this figure are systems with high PE 182 

and therefore low redundancy and high forecasting error. In the bottom-left of the figure are 183 

systems with low PE and therefore high redundancy and low forecast error. The boundary is 184 

the limit for a perfect model that maximizes the use of active information.  185 
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Lost information complicates the interpretation of the PE - FE relationship by 186 

obscuring the system’s actual intrinsic predictability. We illustrate this case in figure 1D 187 

using two hypothetical systems: one with high intrinsic predictability and a large amount of 188 

lost information, and one with lower intrinsic predictability but relatively little lost 189 

information. Despite the differences in the redundancy of two systems, the PE of their time 190 

series can be very similar (even identical) because PE does not differentiate between new and 191 

lost information.  192 

For this example, both systems in figure 1D start with high FE relative to their PE. 193 

Selecting more appropriate forecasting models causes a reduction in FE but no change in PE. 194 

Reducing lost information (e.g. by increasing the frequency of measurements) decreases both 195 

PE and FE. The system with a high redundancy and a low Shannon entropy rate has a 196 

greater overall potential for improving forecasting skill through the recovery of lost 197 

information. In contrast, the system with low redundancy has limited scope to further 198 

improve forecasting skill; forecasting is less limited by lost information, but rather by its 199 

lower redundancy. As such, the lowest possible forecast error will be substantially higher in 200 

the second system than in the first system because the intrinsic predictability of the second is 201 

inherently lower and cannot be changed.  202 

Materials & Methods  203 

Forecasting with EDM 204 

Empirical dynamic modelling is a set of nonlinear forecasting techniques brought to the 205 

attention of ecologists through the work of Sugihara (1994). The method is based on the idea 206 

that a system’s attractor generating the dynamics of a time series can be reconstructed via 207 

delay coordinate embedding (Takens 1981, Sauer et al. 1991), which can then be used to 208 

forecast system dynamics (Lorenz 1969, Farmer and Sidorowich 1987, Sauer et al. 1991, 209 
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Casdagli and Eubank 1992, Smith 1992, Weigend and Gershenfeld 1993, Garland and 210 

Bradley 2011, 2015, Garland et al. 2014). These methods are rooted in a deterministic 211 

dynamic system’s paradigm and hence require at least some determinism in the temporal 212 

course of the system and hence are unsuitable for purely stochastic systems. However, they 213 

have proven to reliably forecast ecological systems even in the presence of process and 214 

measurement noise typical for ecological systems (Sugihara & May 1990, Ye et al. 2015) and 215 

are constantly improved to deal with issues such as observation error and nonstationarity of 216 

ecological systems (Munch et al. 2017). The variant of these methods we use in this 217 

manuscript is based on the simplex projection and S-map method (Sugihara 1994) through 218 

the rEDM package (https://ha0ye.github.io/rEDM/).  219 

  The EDM approach first identifies the optimal embedding dimension E of the training 220 

data by fitting a model using simplex projection (Sugihara 1994). The embedding dimension 221 

E determines the number of temporal lags used for the delay coordinate embedding. We 222 

tested values for E between 1 and 10 and selected the value of E with the highest forecast 223 

skill using leave-one-out cross validation (Sugihara 1994). We then fitted the tuning 224 

parameter ! on the training data using the S-map model. ! describes the nonlinearity of the 225 

system and was varied in 19 steps (0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 226 

0.75, 1.0, 1.5, 2, 3, 4, 6, 8, and 10) to find the lowest error using leave-one-out cross 227 

validation on the training data.  228 

In contrast to other forecasting methods such as ARIMA, the EDM approach searches across 229 

multiple time series models by finding the optimal in-sample combination of embedding 230 

dimension and tuning parameter using cross-validation. Due to this model selection step, 231 

EDM tests a suite of forecasting models equal to the number of combinations of ! and E. 232 

When ! is 0, the EDM model corresponds to an autoregressive model of the order of the 233 
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embedding dimension (i.e. an AR3 model if E = 3). Values of ! greater than 0 can account 234 

for increasing degrees of state-dependence.  235 

Assessment of forecast error 236 

We quantified forecasting error with the root mean squared error (Hyndman and Koehler 237 

2006), 238 

  239 

RMSE = "∑ (%&'(&)*+
&,-

.
 , 240 

 241 

where k is the number of observed ci values (i.e. abundances) and pi are their corresponding 242 

predicted values. To compare forecast errors across time series that vary widely in units and 243 

variability, we normalized their RMSE by the range of observed values using  244 

  245 

   nRMSE = /012
345(%&)'367(%&)

. 246 

 247 

Smaller nRMSE corresponds to smaller forecasting error.  248 

Calculation of permutation entropy  249 

We calculated the weighted permutation entropy (WPE) of time series using the methods 250 

outlined in Box 1.  251 

Logistic Map Time Series 252 

To demonstrate how both intrinsic and realized predictability change along a continuum from 253 

simple to complex and chaotic time series, we applied permutation entropy to time series 254 

from a well known population dynamic model, the Logistic Map: 255 

xt+1 = r xt ( 1 - xt ).  256 
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This model maps the current year’s population size to next year’s population size with simple 257 

density-dependence between non-overlapping generations. Although simple, this first-order, 258 

nonlinear function produces a wide range of dynamical behavior, from stable and oscillatory 259 

equilibria to chaotic dynamics (May and others 1976). We include this range of behavior by 260 

simulating the logistic map for 500 incremental growth rates between r = 3.4 and r = 3.9. We 261 

simulated each growth rate for 10,000 time steps keeping the last 3000 times steps for 262 

analysis. Weighted permutation entropy of time series was calculated for permutation order, 263 

m, from 3 to 5 and for time delay, 8, from 1 to 4. For simplicity, we will refer to weighted 264 

permutation entropy only in the results section and use the generic term permutation entropy 265 

everywhere else. Forecasting error for each time series was calculated using the normalized 266 

root mean squared error of an EDM forecast of the last 200 time steps. 267 

Because ecological systems are influenced by both deterministic and stochastic 268 

drivers and the logistic map is purely deterministic, we sought to evaluate how stochasticity 269 

(noise) affects weighted permutation entropy and forecast error. To do so, we independently 270 

added both observational noise and process noise to the simulated population sizes by 271 

drawing random values from Gaussian distributions with standard deviations of either 0, 272 

0.0001, 0.001, or 0.01 (Bandt and Pompe 2002). We also investigated the effect of non-273 

Gaussian noise distributions on WPE and FE, although in this case we applied it to the Ricker 274 

model which does not have an upper bound of 1 like the logistic map (see appendix S1 for 275 

details). If the new population size was not between 0 and 1, a new value was drawn. 276 

Observational noise was added to the population size time series after the simulation, whereas 277 

process noise was added to population size at each time step during the simulation.  278 

Empirical Time Series Data 279 

For empirical evidence of a relationship between permutation entropy and forecasting error, 280 

we examined a large variety of ecological time series that differ widely in complexity and 281 



 

13 
 

data quality. We further investigated whether deviations from the expected general 282 

relationship can be explained by time series covariates such as measurement error (proxied 283 

here by whether the data originated from field versus lab studies), the nonlinearity of the time 284 

series (as quantified by the theta parameter of an EDM), or time series length. This allowed 285 

us to identify possible predictors of time series complexity and the potential with which the 286 

time series of a system can be moved along the permutation-forecasting error (PE-FE) 287 

relationship to maximize realized predictability. 288 

Time series databases and processing 289 

We compiled laboratory time series from the literature and field time series from the publicly 290 

available Global Population Dynamic Database (GPDD) for our analysis. The GPDD is the 291 

largest compilation of univariate time series available, spanning a wide range of geographic 292 

locations, biotopes and taxa (NERC Centre for Population Biology, 1999, Inchausti & Halley 293 

2001). The GDPP database was accessed via the rGDPP package in R 294 

(https://github.com/ropensci/rgpdd). We added laboratory time series from studies by Becks 295 

et al. (2005), Fussmann et al. (2000), and the datasets used in a meta-analysis by Hiltunen et 296 

al. (2014). Time series with less than 30 observations, gaps greater than 1 time step and more 297 

than 15% of values being equal (and hence having the same rank in the ordinal analysis, i.e. 298 

ties) were excluded, resulting in a total of 461 time series.  Each time series was divided into 299 

training (initial ⅔ of the time series) and test data (the last ⅓ of the time series), with the 300 

EDM model performing best on the training set being used to estimate forecast error in the 301 

test set. We calculated the weighted permutation entropy (WPE) of each empirical time series 302 

using a permutation order, m, of 3 and a time delay, 9, of 1. Results were robust to the choice 303 

of m ∈ [2, 5] and 9 ∈ [1, 4]. The three different ways to deal with ties (i.e. “random”, “first”, 304 

“average”) did not qualitatively affect the results, with results being robust to variation in 305 

time series minimum length and tie percentage 306 
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Statistical analysis 307 

All analyses were performed in the statistical computing environment R (R Development 308 

Core Team 2016). We used the lme4 package to fit mixed models to investigate the 309 

relationship between forecast error and permutation entropy (Bates et al. 2015), with 310 

forecasting error being the dependent variable. We included the data source (i.e. publication) 311 

as a random grouping variable to account for possible non-independence across time series 312 

from the same study. The independent variables were permutation entropy, the data type, the 313 

number of observations (N), the proportion of zeros in the time series (zero_prop), the 314 

proportion of ties in the time series (ties_prop), and, from the EDM analysis, the nonlinearity 315 

(!) and the embedding dimension (E) of the time series. The data type, i.e. whether time 316 

series were measured in the lab or in the field, was included with our hypothesis being that 317 

lab measurements have lower observation error. Zero and tie proportions were included as 318 

they pose problems to the estimation of PE, as do short time series (see Box 2). Three of our 319 

predictor variables, namely PE, !  and E are potentially measured with error violating an 320 

assumption of linear models (Quinn and Keough 2002). However, alternative approaches 321 

such as reduced major axis regression are only advised if the relationship between response 322 

and predictors is symmetric (Smith 2009). We therefore did not adjust for error, but note that 323 

the strength of the relationship of our predictors may be potentially underestimated due to 324 

measurement error in the predictors (Quinn and Keough 2002). Model diagnostics showed 325 

normally and homogeneously distributed residuals. Code to reproduce the analysis can be 326 

found on Github: XXX. 327 
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Results 328 

Logistic Map Time Series 329 

The expected relationship between weighted permutation entropy and forecasting error 330 

occurred in the simulations of the logistic map. Both WPE and FE generally increase as the 331 

growth rate, r, increases and the dynamics of the logistic map enter the realm of deterministic 332 

chaos (figure 4D). Correspondingly, both WPE and FE decline when chaotic dynamics 333 

converge to limit cycles (figure 4, gold example with r ≈ 3.84).  334 

The effect of stochastic noise on the WPE-FE relationship depended on the type of 335 

noise considered. While process noise strongly affects both WPE and FE (figure 5A) 336 

observational noise affects forecasting error more strongly than WPE (figure 5B). Indeed, the 337 

relationship between WPE and FE is largely obscured at high process noise but remains 338 

positive at high observational noise (figure 5A, B, top panels), particularly when dynamics 339 

are chaotic.  When the dynamics are chaotic, the weighting in WPE is very effective at 340 

reducing the influence of observational noise on estimates of permutation entropy. However, 341 

when the dynamics exhibit stable limit cycles, WPE is sensitive to noise and this depends 342 

strongly on the chosen time delay, 9, and word length, m. This effect is a statistical artefact 343 

caused by tied ranks in the words that are then influenced by noise. For instance, applying 344 

9=2 for a 2-point limit cycle with a small amount of noise produces a WPE close to one, 345 

appearing as white noise as all permutations occur with equal probability. Limit cycles are 346 

best analyzed with 9=1 to capture the oscillations, although with m=3 small amounts of noise 347 

still result in two permutations occurring with equal frequency (1-3-2 or 2-3-1) and so WPE 348 

is elevated with respect to the no-noise case despite the high redundancy of the limit cycles 349 

(figure 5B, dark blue and gold points; see appendix S2: Fig. S1 for details). The effect of 350 

stochasticity on the WPE-FE relationship is generally robust to the chosen model and noise 351 
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distribution (see appendix S1: Fig. S1, S2 for the analysis of the Ricker model with 352 

multiplicative lognormal noise).  353 

Empirical Time Series Results 354 

The 461 empirical time series vary in length (median = 50, min = 30, max = 197) and, as 355 

measured by WPE, complexity (median = 0.84, min = 0.076, max = 1). Forecasting error 356 

(nRMSE) ranges from 0.0000093 to 1.37, with a median of 0.19. Our analysis shows the 357 

expected positive relationship between permutation entropy and forecast error, with more 358 

complex time series (high WPE) yielding higher forecasting error (Table 1, center panel of 359 

figure 6). No difference in mean forecast error nor a difference in slope is detected between 360 

time series originating from lab or field studies (Table 1). Exploring the effects of time series 361 

covariates indicates that longer time series had lower FE, whereas time series with larger 362 

dimensionality (E) and greater nonlinearity (θ) as measured by EDM show higher FE (Table 363 

1). These covariates increase the amount of variation in FE explained across time series to 364 

35% (CI: 29 - 42%). An analysis of the partial R2 of all fixed effects in the model revealed 365 

that PE individually explained the largest amount of variation among predictors (21%, CI: 15 366 

- 27%), followed by time series length (18%, CI: 12 - 24%), time series nonlinearity θ (6%, 367 

CI: 2 - 10%) and the chosen embedding dimension E (4%, 1 - 9%). Zero and tie proportions, 368 

as well as whether time series were from the field or the lab (type) explained less than 1% of 369 

the observed variation. 370 

The PE v. FE relationship allows us to identify time series which were predicted 371 

better, equal to or worse than expected regarding their complexity (figure 6 a-f). Time series 372 

‘b’ and ‘c’ fall along the expected relationship and hence are well predicted despite large 373 

differences in complexity. Time series ‘a’ shows a clear trend which is well predicted. In 374 

contrast, time series ‘d’-’f’ have higher than expected forecast error.  Time series ‘d’ shows 375 

higher than expected error due to a strong outlier in the predicted values early in the test 376 
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dataset. Time series ‘e’ is consistently poorly predicted, potentially due to wrong model 377 

choice or due to the short time series length. Time series ‘f’ is complex (high PE) with 378 

predictions missing the ongoing downward trend in the test data. 379 

Discussion 380 

The urgent need for ecologists to provide operational forecasts to managers and decision 381 

makers requires that we understand when and why forecasts succeed or fail (Clark et al. 382 

2001, Petchey et al. 2015, Dietze 2017). We propose that the measurement of the intrinsic 383 

predictability of an ecological system can help reveal the origin of predictive uncertainty and 384 

indicate whether and how it can be reduced.  385 

Our results show that realized and intrinsic predictability positively covary. The 386 

simulation study revealed that the relationship can be obscured by stochastic process noise, 387 

while measurement noise led to more scatter but preserved the positive slope (figure 5). 388 

Although process noise often dominates over measurement noise in ecological time series 389 

(Ahrestani et al. 2013), the positive relationship between intrinsic and realized predictability 390 

we revealed across a wide range of empirical time series supports the applicability of our 391 

framework. In our analysis, permutation entropy explained the largest amount of variation 392 

(21%) in forecast error, followed by time series length, dimensionality and nonlinearity, 393 

jointly accounting for 35% of the variation. Time series that fell onto the expected 394 

relationship (figure 6b,c) were well predicted given their complexity, whereas clear outliers 395 

(e.g. figure 6e) would not require the use of PE to be identified as such. The relationship 396 

however allowed us to identify potential problems with forecasts of time series that have 397 

reasonable forecasts error, but which may be affected by overfitting (figure 6a), outliers 398 

(figure 6d) or regime shifts (figure 6e) that may have gone unnoticed when looking at FE 399 
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alone, particularly if applying automated or semi-automated forecasting methods across 400 

hundreds or thousands of time series (White et al. 2018). 401 

The value of intrinsic predictability to guide forecasting 402 

A major advantage of permutation entropy is the independence from any assumed underlying 403 

model of the system, which makes this “model-free” method highly complementary to 404 

existing model-based approaches. For instance, Dietze (2017) recently proposed a model-405 

based framework that partitions the contribution of various factors to predictive uncertainty, 406 

including the influence of initial conditions, internal dynamics, external forcing, parameter 407 

uncertainty and process error at different scales. If, for example, the dominant factor affecting 408 

near-term forecasts is deemed to be internal dynamics, then insight into intrinsic 409 

predictability would demonstrate how stable those internal dynamics are. Similarly, if a lot of 410 

variation remains unexplained by the model (i.e. the process error not explained by the 411 

known internal dynamics, initial conditions, external drivers, and estimated parameters), then 412 

“model-free” methods can provide insight into whether that variation is largely stochastic or 413 

contains unexploited structure that could be captured with further research into the driving 414 

deterministic processes. Finally, permutation entropy could be applied to the predicted 415 

dynamics of models to ascertain whether they accurately reflect properties of the observed 416 

dynamics, such as their complexity, similar to comparing the nonlinearity of a time series 417 

with the dynamics of the best model  using the EDM framework (Storch et al. 2017). Thus, 418 

intrinsic predictability provides diagnostic insights into predictive uncertainty and guidance 419 

for improving predictions.  420 

Comparative assessments of intrinsic predictability 421 

The model-free nature of permutation entropy is advantageous in cross-system and cross-422 

scale comparative studies of predictability. Whereas comparing all available forecasting 423 
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methods on a given time series and predicting with the best-performing method would give 424 

us the best realized predictability (e.g., Ward et al. 2014), we would miss out on the 425 

comparative insight gained from aligning very different time series along the complexity 426 

gradient quantified by permutation entropy. Such a comparison could afford insight into 427 

whether intrinsic predictability differs across levels of ecological organization, taxonomic 428 

groups, habitats, geographic regions or anthropogenic impacts (Petchey et al. 2015). 429 

Determining the most appropriate covariates of monitored species (e.g. body size, life history 430 

traits, and trophic position) that minimize lost information would also inform monitoring 431 

methods. Furthermore, monitoring how realized and intrinsic predictability converge over 432 

time provides a means to judge improvements in predictive proficiency (Petchey et al. 2015, 433 

Houlahan 2016, Dietze 2017). To do so, we need to apply available forecasting models to the 434 

same time series and measure their forecast error in combination with their intrinsic 435 

predictability. The monitoring of predictive proficiency has greatly advanced weather 436 

forecasting as a predictive science (Bauer et al. 2015). The analysis of univariate time series 437 

presented here only begins to put the intrinsic predictability of different systems into 438 

perspective. A primary goal is hence to expand the availability of long-term, highly resolved 439 

time series to determine potential covariates and improve our general understanding of 440 

ecological predictability (Ward et al. 2014, Petchey et al. 2015). 441 

Reliable assessment of intrinsic predictability 442 

Permutation entropy requires time series data of suitable length and sampling frequency to 443 

infer the correct permutation order and time delay (Riedl et al. 2013). Given the complexity 444 

of many ecological time series, the method rarely works with less than 30 data points (see 445 

recommendations in box 1). We acknowledge these as fairly stringent requirements for 446 

ecological time series. Time series measured at the appropriate time scales over long periods 447 

of time are rare, despite the knowledge that they are among the most effective approaches at 448 
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resolving long-standing questions regarding environmental drivers (Lindenmayer et al. 2012, 449 

Hughes et al. 2017, Giron-Nava et al. 2017). This problem is beginning to be resolved with 450 

automated measurements of system states, such as chlorophyll-a concentrations in aquatic 451 

systems (Blauw et al. 2018, Thomas et al. 2018), assessment of community dynamics in 452 

microbiology (Trosvik et al. 2008, Faust et al. 2015, Martin-Platero et al. 2018), and 453 

phenological (Pau Stephanie et al. 2011) and flux measurements (Dietze 2017). Such high-454 

frequency, long-term data are likely to provide a more accurate picture of the range of 455 

possible system states, even when systems are non-ergodic and change through time (e.g. 456 

figure 6f). In fact, given the ease with which it is computed, PE can be assessed with a 457 

moving window across time or space to determine if a system is stationary or changing. As 458 

such, PE may be used as an early warning signal for system tipping points and critical 459 

transitions (Scheffer et al. 2009, Dakos and Soler-Toscano 2017) or to evaluate the effect of a 460 

management intervention on the system state. 461 

 Currently, there is no generally accepted approach to calculate uncertainty in PE 462 

values and compare whether two PE values are statistically different. Approaches such as 463 

comparing empirical estimates of PE to white-noise time series or parametric bootstrapping 464 

have been suggested (Little and Kane 2016, Traversaro and O. Redelico 2018), however, 465 

these approaches are not free from challenges and may provide an overconfident picture of 466 

uncertainty. One suggestion is for the practitioner to rely on persistence over parameter 467 

space. That is, slightly modify the parameters of the calculation (change m and 9) and see if 468 

the results change. If the results do not change, this should suggest a higher degree of 469 

reliability. Nevertheless, this limitation does not diminish the usefulness of PE for regression-470 

based applications such as those presented and we are confident that increased usage of PE 471 

will result in methodological advances such as uncertainty estimation. 472 
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Although the full potential of permutation entropy to guide forecasting is not yet 473 

realized, many other fields are starting to take advantage of its diagnostic potential. In 474 

paleoclimate science, permutation entropy has proven useful for detecting hidden data 475 

problems caused by outdated laboratory equipment (Garland et al. 2016, 2018), and in the 476 

environmental sciences it has provided insight into model-data deviations of gross primary 477 

productivity to further understand the global carbon cycle (Sippel et al. 2016). In 478 

epidemiology a recent study on the information-theoretic limits to forecasting of infectious 479 

diseases concluded that for most diseases the forecast horizon is often well beyond the time 480 

scale of outbreaks, implying prediction is likely to succeed  (Scarpino and Petri 2017).  481 

Our result showing that permutation entropy covaries with forecast error highlights the 482 

potential of using permutation entropy to better understand time series predictability in 483 

ecology and other disciplines. 484 
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Glossary 666 

Active information:  The amount of information that is available to forecasting models 667 

(redundant information minus lost information; figure 1). 668 

Forecasting error (FE): A measure of the discrepancy between a model’s forecasts and the 669 

observed dynamics of a system. Common measures of forecast error are root mean squared 670 

error and mean absolute error. 671 

Entropy: Measures the average amount of information in the outcome of a stochastic 672 

process. 673 

Information: Any entity that provides answers and resolves uncertainty about a process. 674 

When information is calculated using logarithms to the base two (i.e. information in bits), it is 675 

the minimum number of yes/no questions required, on average, to determine the identity of 676 

the symbol (Jost 2006). The information in an observation consists of information inherited 677 

from the past (redundant information), and of new information. 678 

Intrinsic predictability: the maximum achievable predictability of a system (Beckage et al. 679 

2011).  680 

Lost information: The part of the redundant information lost due to measurement or 681 

sampling error, or transformations of the data (figure 1).  682 

New information, Shannon entropy rate: The Shannon entropy rate quantifies the average 683 

amount of information per observation in a time series that is unrelated to the past, i.e., the 684 

new information (figure 1).   685 

Nonlinearity: When the deterministic processes governing system dynamics depend on the 686 

state of the system.  687 

Permutation entropy (PE): permutation entropy is a measure of the complexity of a time 688 

series  (Bandt and Pompe 2002) that is negatively correlated with a system’s predictability 689 
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(Garland et al. 2014). Permutation entropy quantifies the combined new and lost information. 690 

PE is scaled to range between a minimum of 0 and a maximum of 1. 691 

Realized predictability: the achieved predictability of a system from a given forecasting 692 

model.  693 

Redundant information: The information inherited from the past, and thus the maximum 694 

amount of information available for use in forecasting (figure 1). 695 

Symbols, words, permutations: symbols are simply the smallest unit in a formal language 696 

such as the letters in the English alphabet i.e., {“A”, “B”,..., “Z”}. In information theory the 697 

alphabet is more abstract, such as elements in the set {“up”, “down”} or {“1”, “2”, “3”}. 698 

Words, of length m refer to concatenations of the symbols (e.g., up-down-down) in a set. 699 

Permutations are the possible orderings of symbols in a set. In this manuscript, the words are 700 

the permutations that arise from the numerical ordering of m data points in a time series.  701 

Weighted permutation entropy (WPE): a modification of permutation entropy (Fadlallah et 702 

al. 2013) that distinguishes between small-scale, noise-driven variation and large-scale, 703 

system-driven variation by considering the magnitudes of changes in addition to the rank-704 

order patterns of PE. 705 

  706 
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Boxes 707 

Box 1 Theory and estimation of  PE and WPE 708 

Information theory provides several measures for approximating how much new information 709 

is expected per observation of a system (e.g. the Shannon-entropy rate and the Kolmogorov-710 

Sinai entropy). However, these measures are only well defined for infinite sequences of 711 

discrete random variables and can be quite challenging to approximate for continuous random 712 

variables, especially if one only has a finite set of imperfect observations. Permutation 713 

entropy is a measure aimed at robustly approximating the Shannon-entropy rate of a times 714 

series (or the Kolmogorov-Sinai entropy if the time series is stationary). 715 

Rather than estimating probability mass functions from symbol frequencies or 716 

frequencies of sequences of symbols, as is done with traditional estimates of the Shannon-717 

entropy rate, permutation entropy uses the frequencies of orderings of sequences of values; it 718 

is an ordinal analysis (see figure 2 for a visual explanation). The ordinal analysis of a time 719 

series maps the successive time-ordered elements of a time series to their value-ordered 720 

permutation of the same size. As an example, if [<=, <?, <@] = [11,6,8]then its ordinal pattern, 721 

or word, F([<=, <?, <@]), is 2-3-1 since <? ≤ <@ ≤ <=(see red time series fragment in figure 2A). 722 

PE is calculated by counting the frequencies of these words (or permutations) that arise after 723 

the time series undergoes this ordinal analysis. That is, given a time series  (figure 2A), let 724 

H3be defined as the set of all permutations (possible words) I of order (word length) J and 725 

time delay 8, describing the delay between successive points in the time series (figure 2B for 726 

m = 3 and 8 = 1). For each permutation I ∈ H3we estimate its relative frequency of 727 

occurrence for the observed time series after performing ordinal analysis on each delay 728 

vector, K(I) = {M ∨ M ≤ O −J,F, where |⋅| denotes set cardinality (figure 2C). Then 729 

permutation entropy of order J ≥ 2 is calculated as ℎ(J) = −∑ K(I)VWX?YK(I)Z[∈1\ .  730 
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Since, 0 ≤ ℎ(J) ≤ VWX?(J!), it is common to normalize permutation entropy by dividing by 731 

VWX?(J!). With this convention, maximal ℎ(J) = 1 and minimal ℎ(J) is equal to 0. Since in 732 

the infinite word length limit, permutation entropy is equivalent to the Kolmogorov-Sinai 733 

entropy as long as the observational uncertainty is sufficiently small (Amigó et al. 2005), we 734 

can approximate the intrinsic predictability of an ecological time series by computing 1 −735 

ℎ(J). 736 

For the ordinal analysis of a time series, ranks are only well defined if all values are 737 

different. If some values are equal (so called ‘ties’), the ordinal analysis is not possible. 738 

Several approaches are available to break the ties: the "first" method results in a permutation 739 

with increasing values at each index set of ties, and analogously "last" with decreasing 740 

values. The "random" method puts these in random order whereas the "average" method 741 

replaces them by their mean, and "max" and "min" replaces them by their maximum and 742 

minimum respectively, the latter being the typical sports ranking. 743 

In contrast, an ordinal analyses is also affected by small scale fluctuations due to 744 

measurement noise which can obscure the influence of large scale system dynamics. 745 

Weighted permutation entropy (WPE) reduces the influence of small-scale fluctuations by 746 

taking into account the relative magnitudes of the time series values within each word 747 

(Fadlallah et al. 2013). That is, each word’s (_` = a<b bc, <`'d, . . . , <`'d(3'=)f contribution to 748 

the probability mass function is weighted by its variance, viz., g(_`) ≡ ijk(_`). Using this 749 

weighting function, the weighted probability of each permutation is estimated by:Kl(I) =750 

∑ g(_`) ⋅ m`no'3  where m(<, p) = 1if and only if < = p and m(<, p) = 0otherwise. The 751 

weighted permutation entropy of order J ≥ 2 is then defined as ℎl(J) =752 

−∑ Kl(I)VWX?YKl(I)Z[∈1\ . Similar to PE, the weighted permutation entropy is normalized 753 

by VWX?(J!). We use weighted permutation entropy for all analyses presented in this 754 

manuscript.  755 
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The estimation of PE to time series requires specifying a order m and time delay 8. 756 

The shorter the chosen word length, the fewer possible words there are and the better we can 757 

estimate permutation frequencies. However,  the ability to distinguish patterns is limited by 758 

the possible number of unique permutations. Hence, when word lengths are too short or too 759 

long, the frequency distribution is more uniform. In practice the total length of the time series 760 

limits the choice of possible word lengths and hence the number of unique words that can be 761 

resolved (Riedl et al. 2013). Regarding the time delay 8, most applications to study the 762 

complexity of a time series use a 8 = 1 (Riedl et al. 2013). If 8 > 1, Bandt (2005) notes the 763 

interesting property of the permutation entropy to be small, if the series has main period p for 764 

8 = p / 2 and 3 p / 2, and to be large for 8 = p and 8 = 2 p. We refer to Riedl et al. (2013) who 765 

provide practical considerations regarding setting permutation order m and time delay 8.  766 

 767 

Box 2 with information on the limitations of PE / WPE  768 

When analyzing time series, ecologists typically employ a number of data pre-processing 769 

methods. These methods are used to reduce low-frequency trends or periodic signals 770 

(detrending), reduce high-frequency variation (smoothing), standardize across the time series 771 

or reduce the influence of extreme values (transformation), deal with uncertain or missing 772 

data points (gap or sequence removal, and interpolation), to examine specific time step sizes 773 

(downsampling), or to combine different time series (aggregation). Table 2 summarizes the 774 

anticipated effects on permutation entropy of a suite of commonly used pre-processing 775 

methods. In many cases, whether a method increases or decreases permutation entropy will 776 

depend on the specific attributes of the time series (e.g., its embedding dimension, 777 

autocorrelation, covariance structure, etc.) and the permutation order (m) at which its 778 

permutation entropy is approximated. This is illustrated by specific examples in figure 3 779 

which contrasts the permutation entropies (using m = 3) of three hypothetical time series 780 
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before (top row) and after (bottom row) the application of (a-b) linear detrending, (c-d) log-781 

transformation, (e-f) interpolation of a missing or removed data point with a cubic smoothing 782 

spline. As these examples illustrate, with the exception of affine transformations, every pre-783 

processing method discussed has the ability to alter our estimation of how much predictive 784 

information is contained in a time series. As such, performing pre-processing of a time series 785 

before permutation entropy is determined is not recommended. If the question to be 786 

addressed depends on such pre-processing, then care must be taken to understand how 787 

preprocessing is affecting the information estimate. 788 

  789 
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Tables 790 

Table 1:  Model table presenting fixed effects of the mixed model analysis relating 791 

forecasting error to permutation entropy (PE), and additional time series covariates. 792 

Parameter estimates (B), 95% confidence intervals (CI) and p-values are provided. 793 

Forecasting error increases with weighted permutation entropy across 461 ecological time 794 

series. 795 

  Forecasting error (nRMSE) 

  B CI p 

Fixed Parts 

(Intercept) 0.0893 0.0106 – 0.1681 .027 

PE 0.4796 0.3944 – 0.5648 <.001 

Type (lab) -0.0751 -0.2988 – 0.1486 .511 

Sample size (N) -0.0017 -0.0021 – -0.0013 <.001 

Zero prop. 0.4062 0.0719 – 0.7405 .018 

Ties prop. -0.3344 -0.7698 – 0.1009 .133 

Embedding dimension (E) 0.0088 0.0051 – 0.0124 <.001 

Nonlinearity (theta) 0.0113 0.0072 – 0.0154 <.001 

PE:type (lab) 0.1006 -0.1714 – 0.3726 .469 

 796 
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Table 2. Summary of the anticipated effects on permutation entropy of a suite of commonly used pre-processing methods. 797 
 798 

Data 

processing 

method 

Examples Effect on Remark 

Permutation 

entropy (PE) 

Weighted 

permutation 

entropy (WPE) 

Detrending Linear, 

nonlinear (e.g., 

GAM), 

differencing 

Increase or 

decrease 

Increase or 

decrease 

Effect will depend on attributes of the time series for any chosen 

permutation order > 2. 

Transformation (" − ") %⁄ , 

log(x), 4√(x), 

Fisher, etc. 

None Increase, 

decrease, or 

none 

Normalization or rescaling will have no effect as long as the 

transformation is linear. Nonlinear transformations that compress 

large values (e.g., log(x)) will increase WPE. Nonlinear 

transformations that amplify large values (e.g., Fisher) will decrease 

WPE. 

Gap or Missing data Increase or Increase or Zeros should be retained if they represent true species absences 
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sequence 

removal 

(NAs), below 

detection level 

(zeros), species 

absences 

(zeros), 

constant values 

(poor 

precision) 

decrease decrease (decreasing PE and WPE). Otherwise zeros and constant values can 

be removed (increasing or decreasing PE and WPE, see main text) or 

replaced by uncorrelated noise (increasing PE and WPE). The effect 

of concatenation will depend on attributes of the time series and gap 

size. Better to not count words that bridge gaps. 

Interpolation To infer gaps 

or to make 

time series 

equidistant 

Increase or 

decrease 

Increase or 

decrease 

More likely to decrease than increase. Increases may occur for some 

nonlinear methods depending on attributes of the time series and the 

chosen permutation length. Better to ignore time-step uncertainty, 

assume equidistance, and not count words that bridge gaps. 

Smoothing Time-

averaging, 

time-

summation 

Decrease Decrease Like linear interpolation decreases PE and WPE by increasing the 

count of only-ascending or only-descending permutations. 
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Downsampling Regular 

subsetting to 

increase time-

step size 

Increase or 

decrease 

Increase or 

decrease 

Effect will depend on attributes of the time series (particularly its 

intrinsic embedding dimension) and the chosen permutation length. 

Time series 

aggregation 

Combining 

species to 

functional 

group 

Increase or 

decrease 

Increase or 

decrease 

Effect will depend on attributes of the time series being aggregated 

(e.g., their relative magnitudes, covariance, etc.). 
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Figure legends 799 

Figure 1.  800 

A) The total information content of an observation of a system at a given state in time, St, is 801 

depicted by filled circles with past states (St-1 and St-2) represented by shades of grey. i) lack 802 

of overlap between past and present states illustrating a case where no information is 803 

transmitted from past states (i.e. a purely stochastic system), with low redundancy and high 804 

Shannon entropy rate, ii) intermediate overlap indicating a case when some information is 805 

transferred from past to present (i.e. a deterministic system strongly driven by stochastic 806 

forcing), with intermediate redundancy and Shannon entropy rate, iii) large overlap indicating 807 

a case when the current state is mostly determined by the previous state (i.e. a highly 808 

deterministic system), with high redundancy and low Shannon entropy rate. Note that both 809 

the redundancy and Shannon entropy rate of a system are intrinsic properties of the system 810 

and will only change if the system itself changes. 811 

B) The total information of an observation (black circle) is composed of new information and 812 

redundant information; redundant information is composed of active and lost information. A 813 

system’s redundancy determines its intrinsic predictability. Information may be lost due to 814 

observation error and data processing (lost information). This reduces the redundant 815 

information that can be used for forecasting (active information). Lost information is not an 816 

intrinsic property of the system but rather represents practical limitations on our ability to 817 

make accurate measurements. The rate at which new information is being generated 818 

(Shannon entropy rate) may be approximated with permutation entropy. Because permutation 819 

entropy quantifies the joint contribution of the Shannon entropy rate and the lost information, 820 

efforts that minimize the amount of lost information not only maximize the redundant 821 

information that can actively be used for forecasting but also improve the estimation of the 822 

intrinsic Shannon entropy rate.  823 
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C) The realized predictability is the degree to which forecast models can exploit the active 824 

information of a time series. Consider, for example, a time-series on the abundance of a 825 

species (black line) of which the first 21 days are used to train (parameterize) three 826 

forecasting models: a forecast that uses the simple mean of the training data set (red), an 827 

Autoregressive integrated moving average (ARIMA) model (green), and an Empirical 828 

Dynamical Model (EDM, blue). The forecasting performance of these models is assessed 829 

using the remaining time series (after day 22). The inset shows the normalized root mean 830 

squared error (nRMSE) as a measure of deviation between predicted and observed values (i.e. 831 

forecast error) for each of the three forecasting models. ARIMA and EDM exploit the 832 

available structure in the data better than the mean forecast, as illustrated by the coloured 833 

wedges filling different amounts of the area of active information. 834 

D) In the relationship between PE and FE a system can be moved toward the ideal grey 835 

boundary with forecast models that make better use of active information or by reducing 836 

information loss, not necessarily in that order. The two panels depict how to reach the 837 

greatest achievable forecasting skill in two different systems that have the same initial 838 

permutation entropy but differ in their relative amounts of new and redundant information 839 

(i.e. they differ in their intrinsic predictability). As these intrinsic properties of the system 840 

cannot be changed, improvements to forecast skill rely on fully exploiting the active 841 

information available (e.g., improved forecasting model) and minimizing information loss 842 

(e.g., improved sampling) to better approximate the true Shannon entropy rate, which 843 

establishes the lower boundary (grey area).  844 

 845 

Figure 2. We illustrate how to estimate permutation entropy from an empirical time series 846 

(A) assuming m = 3 and ! = 1. A permutation order m = 3 allows for a set of 6 (i.e. 3!) 847 

permutations, shown in panel B. The occurrence of each permutation " is then counted and 848 
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divided by the total number of permutations as an estimate of their proportional frequency 849 

(panel C). For example, permutations 2-3-1 (shown in red) and 3-2-1 are each only found 850 

once in the time series, whereas 1-2-3 and 3-1-2 are found twice, leading to frequencies of 851 

0.17, 0.17, 0.33 and 0.33, respectively. The permutation entropy is then calculated as the 852 

Shannon entropy of proportional frequencies. For the given time series this is 1.92, which is 853 

normalized by log2(3!) yielding a permutation entropy of 0.74. 854 

 855 

Figure 3. Anticipated effects of a suite of commonly used pre-processing methods 856 

 on (non-weighted) permutation entropy (PE) using three hypothetical time series before (top 857 

row) and after (bottom row) the application of (a-b) linear detrending, (c-d) log-858 

transformation, and (e-f) interpolation of a missing or removed data point with a cubic 859 

smoothing spline. 860 

 861 

Figure 4. Simulations of the deterministic logistic map with no added process or observation 862 

noise. A) The last 30 time steps of three times series are plotted to demonstrate different 863 

behaviors, including 2-point limit cycles (r ≈ 3.41; dark blue), chaotic behavior (r ≈ 3.73; 864 

green), and 3-point limit cycles within the chaotic realm (r ≈ 3.84; gold). B) A bifurcation 865 

diagram of the logistic map attractor for growth rates between r = 3.4 and 3.9. C) Weighted 866 

permutation entropy (WPE) of the logistic map time series as the growth rate, r, changes for 867 

permutation order, m, of 3 (light grey), 4 (dark grey) and 5 (black), and time delay, # of 1. D) 868 

forecast error quantified by the normalized root mean squared error (nRMSE) of an EDM 869 

forecast (E = 2, # = 1) of the last 200 time steps of each simulation plotted against WPE 870 

(m=5, #=1). The color coding corresponds to the growth rates in ‘B’.  871 

 872 
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Figure 5. The relationship between weighted permutation error (WPE; m=5,  #=1) and 873 

forecasting error (measured as nRMSE) at three levels of A) process noise and B) 874 

observational noise. As the y-axis range and scale changes between subplots, the ‘no noise’ 875 

case is plotted in grey as a visual reference. The color coding corresponds to the growth rates 876 

in figure 4B. Systems with higher process noise exhibit both higher WPE and higher 877 

forecasting error. WPE is robust to observational noise when dynamics are chaotic, however 878 

limit cycles cause elevated estimates of WPE dependent on the choice of m and #. 879 

 880 

Figure 6. Relationship between weighted permutation entropy and forecast error (nRMSE, 881 

note square root scale of y axis) across 461 time series (middle panel) and specific exemplary 882 

time series (observations in black, forecasts in red, a-f). Forecast error increases with 883 

complexity of the time series as indicated by the higher permutation entropy value. The slope 884 

of the relationship was the same for time series from field and laboratory systems. The upper 885 

panels (a-c) show time series with forecast error lower than (a) or as expected (b-c) given 886 

their level of complexity, whereas the lower panels (d-f) illustrate time series which have 887 

higher than expected forecast error. 888 

  889 
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