
Tackling Sparse Rewards in Real-Time Games
with Statistical Forward Planning Methods

Raluca D. Gaina, Simon M. Lucas, Diego Pérez-Liébana
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Abstract
One of the issues general AI game players are required to deal
with is the different reward systems in the variety of games
they are expected to be able to play at a high level. Some
games may present plentiful rewards which the agents can
use to guide their search for the best solution, whereas others
feature sparse reward landscapes that provide little informa-
tion to the agents. The work presented in this paper focuses on
the latter case, which most agents struggle with. Thus, modi-
fications are proposed for two algorithms, Monte Carlo Tree
Search and Rolling Horizon Evolutionary Algorithms, aiming
at improving performance in this type of games while main-
taining overall win rate across those where rewards are plen-
tiful. Results show that longer rollouts and individual lengths,
either fixed or responsive to changes in fitness landscape fea-
tures, lead to a boost of performance in the games during test-
ing without being detrimental to non-sparse reward scenarios.

1 Introduction
When testing Artificial Intelligence agents on multiple dis-
tinct games in a general game playing black box setting, the
main difficulty the players face is being able to correctly
judge and differentiate situations. Most games cannot be
fully explored until the end due to their complexity in ac-
tion space, state space or both.

If the algorithm is targeted at a particular game, human
knowledge about the problem can be integrated into the
heuristic function in order to effectively guide the search in
the right direction, even if no “natural” rewards (from the
game) are observed by the agent. However, the lack of do-
main knowledge in general video game playing poses a sig-
nificant challenge on how to bias or guide the search effec-
tively in the case of a mostly flat reward landscape (Perez,
Samothrakis, and Lucas 2014).

The main goal of this paper is to analyze potential im-
provements on agents for sparse reward games, but still keep
a similar overall performance in those games where rewards
are found more often. We study this in the context of Statisti-
cal Forward Planning algorithms: Monte Carlo Tree Search
and Rolling Horizon Evolution. These offer high perfor-
mance and rapid adaptation for general video game playing.

In this paper we propose modifications that alter how far
the agents can simulate into the future in two different ways.
First, we increase the length of the simulations the algo-
rithms are allowed to make (while stretching the budget per

game tick accordingly) to test if the agents are able to solve
sparse rewards problems better when they are able to see
further ahead. And second, we dynamically vary the length
of the simulations within a predefined budget per game tick,
depending on the flatness of the reward landscape, in order
to examine the algorithm’s ability to adapt to the various
types of problems proposed.

Two base methods are evaluated on 20 real-time games in
the General Video Game AI Framework (GVGAI), Monte
Carlo Tree Search (MCTS) and Rolling Horizon Evolution-
ary Algorithms (RHEA), which have recently proven most
competitive in this domain. Additionally, all algorithms and
variations are evaluated on 5 further deceptive games, the
same analysed in (Anderson et al. 2018).

2 Literature Review
The problem tackled in this paper refers to the variety of
reward landscapes in games and how most current gen-
eral methods are not equipped to handle this. Anderson et
al. (Anderson et al. 2018) highlight deceptive reward sys-
tems in games (i.e. by introducing score gains which guide
the AI player away from winning the game), using agents
from the General Video Game AI Competition (GVGAI) to
show that AI game players can be easily tricked into not
finding the optimal solution. Companez et al. (Companez
and Aleti 2016) look at enhancements for Monte Carlo Tree
Search in Tic-Tac-Toe variations meant to overcome such
deceptive issues, highlighting a particular situation where
the agent should be able to self-sacrifice in the short run in
order to obtain a larger gain in the long run.

The variety of games that general algorithms are expected
to achieve a high performance on is noted by Horn et al.
in (Horn et al. 2016). They look at the 2D grid-physics
games in the GVGAI Framework and identify the different
strengths and weaknesses of Evolutionary Algorithms as op-
posed to Tree Search based methods. The authors propose a
game difficulty estimation scheme based on several observ-
able game characteristics, which could be used as a guide-
line to predict agent performance depending on the game
type. Some of the metrics they extracted tie in to the fitness
values identified by the algorithms, such as puzzle elements
or enemy (possibly random) Non-Player Characters (NPC)
which may negatively impact state value estimation. They
also observe the lower performance of most algorithms on
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sparse reward games, but their study is limited in terms of
overcoming the issues highlighted.

Different authors use macro actions to explore the space
in physics based games, where one single action may not
have much effect on the environment (Perez-Liebana, Rohlf-
shagen, and Lucas 2012; Liébana et al. 2017). Simply re-
peating the same action M times (similar to the concept of
frame skipping in Reinforcement Learning) proved very ef-
fective in the Physical Traveling Salesman Problem (Perez-
Liebana, Rohlfshagen, and Lucas 2012), but it did not work
in all physics based games tested in the GVGAI Frame-
work (Liébana et al. 2017) due to the coarseness resultant,
indicating that a dynamic approach may be better.

One approach to deal with sparse reward landscapes
specifically is presented in (Gaina et al. 2017a). Vodopivec
describes the use of dynamic rollout increase, proportional
to the iteration number, and weighted rollouts in his Monte
Carlo Tree Search (MCTS) based entry in the 2016 GVGAI
Two-Player track. The purpose of this addition is specified
as combining quick reaction to immediate threats with better
exploration of areas farther away, if time budget allows. This
is an interesting general approach, but computation time is
potentially wasted if there are no close rewards to guide the
search before rollouts become long enough to retrieve inter-
esting information.

Another approach (Guo et al. 2016) is to combine Deep
and Reinforcement Learning on Atari games to learn, from
the reward landscape, a bonus function that modifies the
UCT policy on MCTS. The authors showed that it’s possible
to learn from raw perception and improve the performance
of MCTS agents in some of these games, by using policy-
gradient for reward design.

Finally, a complementary set of methods, often referred to
as intrinsic motivation, encourage exploration in ways that
ignore rewards and focus instead on properties of the state
space (or state-action space). The aim is to encourage the
agent to explore novel or less visited parts of the state space,
or areas that maximise the agent’s affordances (Guckels-
berger, Salge, and Colton 2016). For non-trivial games, most
possible states are never visited due to the vast state space,
so statistical feature-based approximations can be used to
estimate the novelty of a state (Bellemare et al. 2016). The
rollout length adaptation method described here may com-
plement intrinsic motivation methods, but this has not been
investigated yet.

3 Background
This section gives background information on the frame-
work (General Video Game AI) and base methods (Rolling
Horizon Evolutionary Algorithms and Monte Carlo Tree
Search) used in the experiments.

3.1 General Video Game AI Competition Games
The General Video Game AI Framework and Competition
(GVGAI) (Perez-Liebana et al. 2015; Gaina, Perez-Liebana,
and Lucas 2016) offers various challenges within the field of
General Video Game Playing (Levine et al. 2013). There are
currently over 160 2D grid-based games in the framework,

(a) Roguelike

(b) Butterflies

(c) Chopper

Figure 1: Games in General Video Game AI Framework.

varying from puzzles to shooters to adventure games. All are
written in the Video Game Description Language (Schaul
2014) and are differentiable by several features, such as
game object types (NPCs, resources), observability (full or
partial) or, in the case of two-player games, player rela-
tion (cooperative or competitive). Each game consists of a
problem to be solved and there are different winning condi-
tions based on the objectives of the game (e.g. reaching the
exit/goal, collecting all treasure, killing all monsters). See
Figure 1 for examples of games.

The game rules are not available to the game-playing
agents, which only have access to an object describing the
current game state (offering observations of the world and
other information such as the avatar state, game score, game



tick and game winner, if the game has ended). Additionally,
agents may simulate future possible states of the games via
a Forward Model. However, copying and advancing game
states are the most time-expensive actions performed by
agents and should be used in such a way to maximise in-
formation gain.

A subset of 20 different games is used in this paper, as
analysed in (Gaina et al. 2017b). This set of games com-
prises of a varied selection regarding game difficulty and
game features, as well as including 10 deterministic and 10
stochastic games. As in this paper we are focused on explor-
ing fitness landscapes, it is interesting to distinguish between
the different reward systems:

1. Sparse rewards: Crossfire, Camel Race, Escape, Hungry
Birds, Wait for Breakfast, Modality

2. Dense rewards: Digdug, Lemmings, Roguelike, Chop-
per, Chase, Bait, Survive Zombies, Missile Command,
Plaque Attack, Infection, Aliens, Butterflies, Intersection,
Seaquest

Sparse reward games feature little to no rewards during
the entirety of the game. For example, in “Camel Race” the
agent competes against 3 other NPC-controlled camels to
make it from one end of the level to the other, while avoid-
ing obstacles. The agent is only rewarded 1 point for finish-
ing the race first. In contrast, dense reward games contain
an abundance of rewards. For example, in “Aliens” (adap-
tation of the well known “Space Invaders”), the agent re-
ceives points for each alien they kill, as well as for destroy-
ing protective bases. Many aliens and bases are present in
each level, thus the agents may gather many points and use
the reward system to guide their search.

Additionally, the score is not always increasing linearly.
In games such as “Lemmings” or “Plaque Attack”, the
player is more likely to lose points, but still be doing well
and able to win, or even having to lose points in order to
win. There may also be games in which winning and gaining
the most points are two conflicting goals: in “Butterflies”,
the player gets points by catching butterflies (random NPCs)
and wins when all the butterflies have been caught; however,
there are also cocoons in the levels, which can spawn more
butterflies if the random NPCs collide with them; therefore,
the player would get most points by delaying their win,
while not allowing for all cocoons to be opened (in which
case the game would end in a loss).

3.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) repeats several iterations
during one game tick as depicted in Figure 2, after which
it recommends an action to play (in our implementation,
this is the most visited action). MCTS begins by navigat-
ing the tree using the Upper Confidence Bound applied to
Trees (UCT) policy (to balance between exploration and ex-
ploitation) until it encounters a node not yet fully expanded.
It then adds a new child of this node to the tree and performs
a Monte Carlo rollout (randomly sampling actions and sim-
ulating game states using the Forward Model) until either
the end of the game or the set rollout depth is reached. The
final state is evaluated with a heuristic and its value backed

Figure 2: Monte Carlo Tree Search (Browne et al. 2014).

Figure 3: Rolling Horizon Evolutionary Algorithm (Gaina et
al. 2017b).

up the tree, updating all nodes visited during the iteration.
Our implementation does not store game states in the nodes,
but only statistics (Q-value, total number of visits and visits
per action).

3.3 Rolling Horizon Evolution
Rolling Horizon Evolutionary Algorithm (RHEA) (Gaina et
al. 2017b; Gaina, Lucas, and Liébana 2017a; 2017b), first
introduced in (Perez-Liebana et al. 2013) is a method used
in games as a planning game-playing agent. This technique
evolves sequences of actions to be played in the game by
iterating over randomly sampled solutions and applying, in
our implementation, random mutation to flip one of the ac-
tions in the sequence to a new random value; and uniform
crossover to combine individuals in interesting ways (after
a tournament of size 2 determining the parents involved in
crossover). The best individual at each generation is carried
forward unchanged through elitism.

The algorithm follows the steps described in Figure 3.
RHEA begins by initializing a population of individuals
(either uniformly at random, or biased (Gaina, Lucas, and
Liébana 2017a)), where each individual represents a se-
quence of actions. All the individuals are evaluated by simu-
lating through the actions, in turn, until the end of the game
or the end of the individual is reached. The final state is eval-
uated with a heuristic, this value being assigned as the fitness
of the respective individual. This process is repeated within
the budget during one game tick. At the end of the evolution,
the best action is recommended to be played in the game
(here, the first action of the best individual).



It is interesting to note the exploration differences of
MCTS and RHEA. In binary reward games (e.g. puzzles),
it is often the case that a more precise sequence of actions
is needed to solve the problem. MCTS explores nodes close
to the root most, due to incrementally building the tree, de-
termining better confidence bounds than for states further
away. RHEA spreads exploration across the entire space by
evolving whole sequences. Therefore, RHEA is able to bet-
ter sample the large solution space (and find a good overall
solution), while MCTS is focused on finding good solutions
close to the root and randomly sampling from there.

4 Baseline Methods
For the experiments presented in this paper, an instance of
each of the algorithms described in Section 3 is used. The
Rolling Horizon Evolutionary Algorithm employs random
initialization and a shift buffer for population management,
which refers to keeping the population between game ticks
instead of discarding it and reinitializing; the first action of
all individuals is removed, all other actions shifted one posi-
tion to the left and a new random action is added at the end.
Additionally, Monte Carlo rollouts are added at the end of
the traditional individual evaluation. This is the best RHEA
variant described in literature (Gaina, Lucas, and Liébana
2017b).

It is important to notice that this work focuses on improv-
ing domain-agnostic algorithms on games with sparse re-
wards. Other agents submitted to the GVGAI Competition
(i.e. YOLOBOT (Joppen et al. 2017), the winner of sev-
eral editions) obtain higher performance than the methods
explored here, but also count on stronger heuristics (mostly
adapted to respond well to GVGAI games) and combine sev-
eral algorithms (tree search, A*, best first search, etc.). The
focus of this paper is to explore improvements in simpler,
game-agnostic algorithms taking their vanilla form as base-
line to analyze the effects of the proposed modifications.

Initial experiments attempted to add a tree shifting be-
haviour in MCTS as well, the equivalent of the shift buffer in
RHEA (the method already uses Monte Carlo rollouts, there-
fore the two algorithms are comparable in that sense). How-
ever, this enhancement heavily impacted the algorithm’s per-
formance in a negative way. As a result, we considered that
the comparison would be most fair if both algorithms were
at their best. Our experiments feature the sample MCTS as
provided in the GVGAI Framework.

Moreover, we applied the same configuration of param-
eters to both RHEA and MCTS: a population size of 10
for RHEA, rollout length L of 14, budget of 1000 Forward
Model (FM) calls1. In experiments where extreme rollout
lengths are employed (see Section 5.1), we still evaluate 40
individuals for RHEA and 40 iterations for MCTS by in-
creasing the FM call budget accordingly.

1Forward Model calls were used instead of the typical time bud-
get in GVGAI for two reasons. First, it would ensure consistency
in results irrespective of the machine used to run the experiments.
Second, it would make our results comparable with previous liter-
ature employing similar budget constraints.

Both baseline algorithms make use of the same state eval-
uation function to determine the value of an action (or se-
quence of actions). This function is shown in Equation 14,
where H+ is a large positive integer and H− is a large neg-
ative integer, both surpassing any rewards the agents may
receive from any game. What this translates to is that agents
will greatly favour winning (and avoiding a loss, respec-
tively), but they will attempt to maximize the current game
score if the game state reached is not final, in order to guide
their search. The heuristic function is kept intentionally sim-
ple and general in order to focus results on the variations
within the algorithms’ decision making process.

f = score +

{
H+, if win

H−, if loss
(1)

5 Experiments
This section details the two different modifications: an in-
crease in the method’s lookahead (with appropriately in-
creased budgets) and dynamic changes in its lookahead
(when constrained to a set budget).

5.1 Extreme Length Rollouts
This experiment is not feasible in real-time in current regular
machines, but as technology advances quickly, the computa-
tional power increases as well. Therefore, it is worth explor-
ing whether longer rollouts do produce better results, given
an appropriately increased budget as well to keep evaluat-
ing 40 individuals for RHEA and 40 iterations for MCTS, as
is the case in the default parameter configuration with 1000
FM rollout budget. The longest length previously explored
was 24 in (Gaina et al. 2017b), therefore we are considering
up to 4 times this length (see Table 1 for details on specific
lengths L, their associated budgets are L× 60).

One could expect agents employing extreme length roll-
outs to spot rewards farther ahead more easily and create
better plans to reach said rewards, therefore increasing per-
formance in games with sparse rewards or distant goals.
The agents may exhibit poor performance in quick reaction
games, as they may ignore immediate threats or rewards and
instead focus on longer term goals.

5.2 Dynamic Length Rollouts
This experiment will look instead at dynamically adjusting
the length of the rollouts within the 1000 FM calls budget
(therefore feasible in real time). The objective is to obtain a
more interesting behaviour comprised of quick reactions in
situations where rewards are plentiful, and more exploratory
longer lookaheads when rewards are sparse.

The pseudocode of the method used to adjust the rollout
length is depicted in Algorithm 1. The adjustment is set to
occur with a frequency ω = 15 game ticks (Line 1). The fea-
ture used to determine a change in rollout length is the flat-
ness of the fitness landscape observed in the previous game
tick (fLd); this is therefore ignored if the first game tick is
currently observed (therefore no fitness landscapes were pre-
viously recorded; Lines 2-3). The fitness landscape is a vec-
tor with all fitness values observed in one game tick by any



Algorithm 1 Adjusting rollout length dynamically
Require: t: current game tick
Require: fitnessLandscape: the fitness landscape (all fit-

ness values) observed in the previous game tick
Require: fLd: fitness landscape flatness
Require: L: rollout length
Require: ω: adjustment frequency
Require: SD−: lower fLd limit for L increase
Require: SD+: upper fLd limit for L decrease
Require: MD: rollout length modifier
Require: MIND: minimum value for L
Require: MAXD: maximum value for L

1: if t mod ω = 0 then
2: if fitnessLandscape = null then
3: fLd ← SD−
4: else
5: fLd ← δ(fitnessLandscape) . get standard

deviation
6: if fLd < SD− then
7: L← L+MD

8: else if fLd > SD+ then
9: L← L−MD

10: BOUND(L, MIND, MAXD)

11: function BOUND(L, MIND, MAXD)
12: if L < MIND then
13: L←MIND

14: else if L > MAXD then
15: L←MAXD

return L

individual in the population (RHEA) or any rollout (MCTS),
and its flatness is calculated as the standard deviation (δ) of
all the elements of this vector (Line 5).

The length L is then increased by the depth modifier MD

= 5 if fLd falls below the lower limit (SD− = 0.05), or is
decreased by MD if fLd is above the upper limit (SD+ =
0.4) (see Lines 6-9). The length is capped to always stay
between a minimum (1) and a maximum (half of the maxi-
mum number of FM calls; Line 10). This translates to shorter
rollouts when the fitness values observed are highly varied
(therefore more sampling and processing of the current situ-
ation is needed to determine the right course of action) and
longer rollouts when the fitness landscape is flat, to encour-
age exploration of solutions farther ahead which would give
the agent more information to judge which would be the
best move. The values for the different variables (ω, SD−,
SD+) were manually tuned for best performance of both al-
gorithms on a random subset of 5 games.

One can reasonably expect dynamic rollouts to improve
the overall performance, as agents could possibly adapt bet-
ter to different situations requiring distinct skills.

6 Results and Discussions

The results reported in this section mainly focus on the win
rate achieved by the algorithms. Each method played 100

Alg L Sparse Dense Overall

RHEA

14 25.59 (2.82) 58.04 (1.73) 48.31 (2.05)
50 29.80 (3.30) 61.33 (1.66) 51.80 (2.14)

100 36.36 (3.59) 61.04 (1.87) 53.55 (2.37)
150 36.03 (3.59) 62.63 (2.10) 54.60 (2.53)
200 37.04 (3.85) 60.89 (1.93) 53.70 (2.49)

MCTS

14 6.90 (1.79) 54.76 (1.65) 40.40 (1.69)
50 14.31 (3.29) 53.54 (2.08) 41.70 (2.42)

100 22.39 (3.79) 54.18 (1.58) 44.50 (2.23)
150 26.77 (3.94) 53.75 (1.49) 45.60 (2.21)
200 30.98 (4.14) 53.61 (1.52) 46.70 (2.29)

Table 1: Average win rate for long rollouts variations. Dis-
tinction is made between sparse and dense rewards games,
with the final column averaging over all games. Budget for
each algorithm is L× 60.

runs per game, 20 in each of the 5 levels 2. Fisher’s exact
test is used to test the significance of win rate differences.

6.1 Extreme Length Rollouts
Overall, results suggest that the general trend is the longer
the rollouts, the better. However, there is a point where the
improvement halts in RHEA (see last column in Table 1).
When looking at the different reward systems, the improve-
ment is only noticeable in sparse reward games, whereas the
performance in incremental games remains fairly constant;
one exception is “Bait” which increases significantly from
16.5% to 37.4% for RHEA with L = 150, p � 0.001 (this
game is a special incremental scoring system game case fea-
turing puzzle elements; see Section 3.1 for games split by
score system). A similar trend is observed for MCTS: signif-
icant improvement in win rate in sparse reward games (from
14.31% to 30.98%, p� 0.001), while performance in dense
reward games remains constant; thus the performance gain
in sparse reward games is not detrimental to the rest of the
problems. However, we do notice a striking drop in perfor-
mance for MCTS in the incremental game “Chopper”, where
the algorithm falls from 100% win rate to 4% with L = 200;
the same is not observed in RHEA, suggesting MCTS to be
worse at dealing with immediate threats when considering
farther ahead rewards.

Figure 4 shows the win rate of both RHEA and MCTS
variants with long rollouts in the sparse reward games. It is
interesting to observe that in the game “Escape” both meth-
ods increase their performance until they peak (at L=100 for
RHEA and L=150 for MCTS), following which the winrate
drops again. In most other games we see a steady increase
as rollout length goes up. This could suggest that the rollout
length should not be pushed to too high values and instead
more carefully considered based on the problem at hand.

6.2 Dynamic Length Rollouts
The two algorithms tested in this study show very differ-
ent reactions to dynamic variations of their rollout length.

2Full result files can be found in a GitHub repository at:
github.com/rdgain/ExperimentData/tree/SparseRewards
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Figure 4: Win rate in sparse rewards games for RHEA (top)
and MCTS (bottom) with extreme length rollouts. Shadowed
areas indicate the standard error.

This adjustment halves win rate in RHEA (from 48.60% to
21.01%, p� 0.001), but it improves performance in MCTS,
from 40.40% to 44.00% overall, p = 0.022.

The explanation for the large drop in win rate suffered by
RHEA is the use of the shift buffer. In fact, it is reasonable
that altering previously evolved sequences of actions by cut-
ting or increasing them (with new random actions added at
the end) changes the sequence (and importantly, the pheno-
type) too much for the algorithm to be able to handle. This
theory was tested and it showed that, by removing the shift
buffer, dynamically adjusted rollout lengths in RHEA lead to
a 39.55 win rate. This is still lower than the baseline method,
but it is at the level of the default MCTS method without dy-
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Figure 5: Variations in dynamic rollout length (blue) and
fitness landscape flatness (orange) for RHEA agent in the
game “Butterflies”, level 0. Note that the scale for rollout
length is on the secondary (right) Y axis.

namic rollouts, suggesting that this adjustment does have the
potential of improving performance, with possibly tweaked
(or dynamically adjusted as well) parameters.

Table 2 summarises the win rates of the two methods and
their variations on the set of 20 games. Looking more in
depth at the two types of reward systems paints an interest-
ing picture. The performance of RHEA remains similar in
sparse reward games when dynamic rollouts are employed,
whereas the noticeable drop in performance comes from the
side of dense reward games, notably “Chopper”, from 100%
to 56.57%, and “Intersection”, from 100% to 43.43%. This
indicates dynamic rollouts to be harmful for RHEA in envi-
ronments with immediate rewards. RHEA tends to shorten
the rollout length in such games (see Algorithm 1) and that
has been shown to reduce its performance (as seen in (Gaina
et al. 2017b)); we hypothesize the drop in win rate to be most
likely due to sequences becoming too short for RHEA to be
able to cope with.

However, MCTS sees a similar story as in the case of
extreme length rollouts: the performance in sparse reward
games is significantly improved (from 6.90% to 19.70%),
with no detriment to the rest in the set. Some notable exam-
ples here are “Escape”, which sees an increase in win rate
from 0% to 29.29%, and “Wait for Breakfast”, from 4% to
42.42%. This suggests dynamic rollouts to be greatly bene-
ficial to MCTS in sparse rewards landscapes.

Figure 5 shows an example of how RHEA varies its roll-
out length L in the game “Butterflies” and the corresponding
fitness landscape flatness fLd. The upper and lower limits
(SD+ and SD−, respectively) are the points where the al-
gorithm is expected to adjust its rollout length depending on
its assessment of the fitness landscape. It is interesting to
note that the rollout length does match the shape of the fit-
ness landscape flatness. The fact that the algorithm reduces
its rollout length after a peak at game tick 255 suggests that
RHEA is able to successfully use the longer rollouts to ad-



Alg Sparse Dense Overall
RHEA 25.59 (2.82) 58.04 (1.73) 48.31 (2.05)

RHEA-dyn 10.61 (2.61) 25.47 (2.06) 21.01 (2.22)
MCTS 6.90 (1.79) 54.76 (1.65) 40.40 (1.69)

MCTS-dyn 19.70 (3.37) 54.47 (1.89) 44.04 (2.33)

Table 2: Win rates for RHEA and MCTS, vanilla and dy-
namic variants (non-shift RHEA). Distinction is made be-
tween sparse and dense reward systems, with the last column
averaging win rates over all games.

just its search and find the more interesting parts of the level
to win the game.

6.3 Deceptive Games
The last experiment was to test these methods on the de-
ceptive games presented by Anderson et al. (Anderson et al.
2018). It is expected that the adjusted variants would per-
form better than the baseline, as they are less biased, have
more information or better adapt to various situations, re-
spectively, when making decisions. The most interesting re-
sults on the 5 games tested are as follows.

• decepticoins: RHEA-dynamic performs signifi-
cantly better than all other RHEA variations, in both win
rate and score (55.56% win rate, a significant 40% im-
provement over baseline). All MCTS variations achieve a
79.8% win rate, although the extreme rollout length varia-
tions complete the games the fastest (200 ticks faster than
the baseline on average).

• flower: All algorithms achieve 100% win rate, but
MCTS with long rollouts is overall significantly better
than the baseline in score, with over 200 points improve-
ment for all rollout lengths.

• invest: No algorithm manages to solve this game, but
all fitness exploratory variations of the algorithms are sig-
nificantly better than the baseline in score (100-300 point
improvement for MCTS, 10-100 points for RHEA).

• sistersavior: The win rate in this game is on av-
erage very low (3.03% ± 1.08), with 4 algorithms un-
able to solve it: baseline MCTS, MCTS-dynamic, RHEA-
150 and RHEA-200. The highest win rate is achieved by
MCTS-100 (10.26% ±4.86), followed closely by RHEA-
50 with 7.69% ± 4.27 win rate.

• waferthinmintsexit: All algorithms achieve 100%
win rate. RHEA-dynamic is significantly better in score
than the baseline, 2.68 (±0.36) to 1.16 (±0.11) points.

RHEA-dynamic performed much better than the baseline
method in most of the GVGAI games tested. There was not
much difference observed in some games in terms of win
rate, all variations achieving either 100% or 0% victories,
although there were overall improvements in either win rate
or game score in all cases over the baseline methods. This
indicates our modified methods to be more robust to decep-
tive reward systems.

7 Conclusion
This paper looks at analysing various ways to explore the
fitness landscapes in 20 games from the General Video
Game AI Framework (GVGAI), for two different algo-
rithms, Monte Carlo Tree Search (MCTS) and Rolling Hori-
zon Evolutionary Algorithm (RHEA). Two experiments are
carried out to this extent: increasing the rollout length (to
50, 100, 150 and 200 from the baseline 14) and dynamically
adjusting the rollout length based on the flatness of the fit-
ness landscapes, in order to allow for quick reactions in busy
environments or more exploration in sparse rewards scenar-
ios. All methods are also tested on a set of human-crafted
deceptive reward games to analyze whether their fitness ex-
ploration methods lead to better results in such games.

Overall, modified methods are shown to perform better
than the baseline methods in sparse reward games, without
affecting success rates in dense reward games. One excep-
tion is RHEA with dynamic rollouts, which halves win rate
from 48.60% to 21.05%. Further analysis into this aspect
suggested that this was due to the shift buffer enhancement
added to the RHEA variant, which is unable to cope with
the change in phenotype between game ticks where the se-
quence length is varied. By removing the shift buffer, the
performance of RHEA with dynamic rollouts becomes com-
parable to baseline MCTS, at 39.55% win rate.

The algorithms reacted well to the increase in rollout
length, their performance increasing with the length in
sparse reward games, while performance in dense reward
games was kept fairly constant; there were two exceptions
to this rule in the games “Butterflies” for both methods and
“Chopper” for MCTS only, where increased rollout length
is actually detrimental. This is thought to be due to the im-
mediate rewards needed to be collected in this game which
may be ignored when the rollout length becomes too large.
When the rollout length was dynamically adjusted, RHEA
and MCTS reacted differently, RHEA seeing a general de-
crease in performance in games based on dense reward sys-
tems, whereas MCTS saw an increase in performance in
sparse reward games. This shows that RHEA is more sen-
sitive to games requiring quick decision making, whereas
MCTS benefits from the adjustments which aid in its tradi-
tionally poor exploration in binary games.

It is worthwhile mentioning that, although these experi-
ments employ the GVGAI framework, the applicability of
the findings extend beyond these games. In particular, this
work focuses on modifications to overcome the presence of
sparse rewards, an issue present not only in other games such
as some in the Atari Learning Environment (Bellemare et al.
2013) and more complex games, but also in other real life
scenarios, such as engineering or robotics.

Regarding future work, although this is a very interest-
ing step towards better understanding of agent behaviour,
more analysis can be carried out for the various scenarios
proposed in this study, including different metrics (game
score, GVGAI generality score) or optimizing dynamic roll-
out adjustment parameters. Additionally, the reactions of the
methods to macro-actions in this environment and dynamic
length macro-actions could be studied as well. Last but not
least, more interesting problems with various features to



their fitness landscapes will be introduced to the methods in
order to correctly assess exactly why some algorithms react
better to some situations than others.
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