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Abstract—Visual localization across seasons and under varying
weather and lighting conditions is a challenging task in robotics.
In this paper, we present a new sequence-based approach to
visual localization using the Partial Order Kernel (POKer), a
convolution kernel for string comparison, that is able to handle
appearance changes and is robust to speed variations. We use
multiple sequence alignment to construct directed acyclic graph
representations of the database image sequences, where sequences
of images of the same place acquired at different times are
represented as alternative paths in a graph. We then use the
POKer to compute the pairwise similarities between these graphs
and the query image sequences obtained in a subsequent traversal
of the environment, and match the corresponding locations. We
evaluated our approach on a dataset which features extreme
appearance variations due to seasonal changes. The results
demonstrate the effectiveness of our approach, where it achieves
higher precision and recall than two state-of-the-art baseline
methods.

Index Terms—visual localization, partial order graphs, kernel
methods

I. INTRODUCTION

Accurate and efficient localization is a critical problem for
autonomous navigation systems; however, real-life scenarios
present many challenges for visual localization. One such
challenge arises from changes in the appearance of the envi-
ronment. Appearance changes result from a number of factors,
including illumination variations, different weather conditions
and seasonal changes. A localization system must be able to
deal with the mismatches between the images that result from
appearance changes. This is particularly important in long-
term navigation tasks, where the robot revisits an environment
multiple times.

In this work, we propose a novel sequence-based visual
localization approach that addresses the problem of appearance
changes. Our approach consists of two phases: the first phase
is constructing the graph representations of database image
sequences; the second phase is comparing the graphs to newly
acquired query image sequences. In the first phase, we use
a multiple sequence alignment algorithm [1] to align the
alternative image sequences from the database, i.e, sequences
of images of the same place that were previously collected at
different times and, hence, differ in appearance. The output

of each alignment is a directed acyclic graph (DAG). Using
such a representation not only allows us to exploit the tem-
poral sequentiality of images, but also efficiently models the
alternative image sequences in the form of alternative paths
in the graph. In addition, it does not require the alternative
paths in the graph to be of equal length and therefore, is
robust to differences in the traversal speed. In the second
phase, we consider the query image sequences collected during
the localization phase and convert them to DAGs without
alternative paths. We measure the pairwise similarities between
these graphs and the graphs constructed during the exploration
phase using the Partial Order Kernel (POKer) [2]. The POKer
is a convolution kernel developed for the comparison of strings
that contain alternative substrings. It provides a measure of
similarity that is equal to a weighted sum of the scores of
local alignments between all possible pairs of paths in the
two graphs. In other words, it sums up the contributions of
all images. Based on these similarities, the corresponding
locations are matched. We extract the image descriptors using
a convolutional neural network (ConvNet) [3], trained for
place recognition tasks, and use them in order to compare the
images and compute the alignment scores. It has been shown
that descriptors obtained by ConvNets specifically trained
for place recognition have invariant properties with respect
to appearance changes and increase the robustness of place
recognition algorithms [4].

We evaluated our approach on the standard Nordland dataset
which was collected across four different seasons. The image
sequences from three seasons constitute the training data, and
the sequence from the remaining season was used for testing,
in a cross-validation fashion. The experimental results show
that our approach is an effective method for localization in the
presence of appearance changes.

II. RELATED WORK

Various approaches have been proposed to address the prob-
lem of appearance changes. In [5], a probability distribution
was learnt to model the illumination variation in images. In [6],
to reduce illumination variations, images were transformed
into an illumination-invariant colour space. A number of
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approaches exploit image descriptors such as SIFT and SURF
to handle appearance changes (e.g., [7]). More recently, the
use of ConvNets to extract descriptors that are robust to ap-
pearance changes has gained a lot of attention. In [8], a neural
network was trained to learn illumination-invariant descriptors
that map the image patches into a new lower-dimensional
space where non-matching images are easily separable. In-
corporating features learnt using ConvNets has been shown
to improve the performance of place recognition systems, as
these features are more robust to appearance changes [9],
[10], [11]. In this work, we employ the recently released
ConvNet VGG-Places365 [3] to extract the descriptors. This
ConvNet was trained on a dataset of images from diverse
types of environments. ConvNets specifically trained for place
recognition have been shown to outperform networks trained
using generic data [12], [4].

A number of approaches, relying on the fact that some
appearance changes such as seasonal changes are cyclic and
therefore predictable, learn a transformation between the im-
ages [13], [14]. In [14], a superpixel vocabulary for each
season and a dictionary to translate the words from one season
to their matches in another were generated. This, however,
requires the pairs of training images to be perfectly aligned.
Our approach does not make any assumptions on the nature
of appearance changes or pixel alignment of images.

Another category of approaches leverage the sequentiality
of images to handle appearance changes. The state-of-the-art
method SeqSLAM [15] considers sequences of images instead
of single images. Given an image, the method finds the local
best match within every short image sequence. Localization
is then done by searching the image similarity matrix for
sequences of local best matches. SeqSLAM assumes constant
speed during the traversals. A modified version of SeqSLAM
that is invariant to speed variations was introduced in [16].
In our approach, we represent the multiple sequences of
images of the same place collected at different times and
possibly at different speeds as a partial order graph. The image
sequences can diverge from one another to form alternative
paths in the graph. These paths may be of different lengths.
This allows us to deal with mismatches between the images
that are due to speed variations. In [17], a Hidden Markov
Model was used to compute the most likely path through the
image similarity matrix. While the method, similar to ours,
uses dynamic programming (the Viterbi algorithm) to align
the sequences, transitions between states are probabilistic. By
contrast, our proposed graph representation specifies exactly
which transitions are possible at each point. In [18], a modified
version of the Smith-Waterman algorithm [19] was used to find
matching subsequences within the image sequences in order
to detect intersections between maps. The multiple sequence
alignment algorithm used in our approach is also an extended
version of the Smith-Waterman algorithm, however, it works
with partial order graphs instead of standard sequences.

The methods described in [20] and [21] built a directed
acyclic data association graph to model the matching between
an image sequence and a database. The localization task then
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Fig. 1: (a) String representation of two image sequences. Each letter denotes
a single image. (b) DAG representation of two image sequences. (c) DAG
representation of the MSA obtained by aligning the image sequences shown
in (b) using the POA algorithm.

becomes a minimum-cost flow problem, i.e., computing a
shortest path in this graph. Our approach differs in that the
graphs are constructed from the database image sequences
only and are later compared to query image sequences using
the POKer.

III. LOCALIZATION USING THE PARTIAL ORDER KERNEL

A. Building the Graph Representations of Image Sequences

We represent an image sequence (Fig. 1a) as a directed
acyclic graph (DAG). In this graph, nodes represent images
and there exist directed edges between nodes whose cor-
responding images are consecutive in the image sequence
(Fig. 1b).

We use the Partial Order Alignment (POA) algorithm [1] to
build the graph representations of database image sequences.
The POA algorithm is an approach to multiple sequence
alignment (MSA). It extends the classic sequence alignment al-
gorithms of NeedlemanWunsch [22] and Smith-Waterman [19]
to work with partial order graphs. Given a set of alternative
image sequences from the database, i.e., image sequences
which are of the same location but different due to appearance
changes, we align each sequence to a growing MSA in an
iterative manner. To find the optimal alignment, a similarity
score is assigned to each aligned pair of images while gaps are
penalized. We use the cosine similarity between the descriptors
as scores. As for gaps, we use a linear gap penalty. Nodes that
are aligned and identical (based on the high cosine similarity of
their descriptors) are merged into a single node and redundant
edges are removed so that there exists at most one edge
between any given pair of nodes. The output is an MSA in
the form of a DAG (Fig. 1c).

In the DAG representation of database image sequences,
a node may have several predecessors and successors. Each
path from a source to a sink node represents a complete
traversal; merged nodes allow switching between alternative



subsequences of images from different database sequences
(e.g., J and LM in Fig. 1c). The paths may be of different
lengths. Such a representation is advantageous as it does not
assume that all regions within the sequences are homologous
over their entire length, an assumption that indeed does not
hold here due to appearance changes and speed variations.
The POA algorithm runs in polynomial time, while obtaining
the pairwise alignments between all possible pairs of image
sequences would require exponential time.

The query image sequences are represented simply as DAGs
without any branches (Fig. 1b).

B. Comparing the DAGs Using the Partial Order Kernel

We use the Partial Order Kernel (POKer) [2] to compute
the similarities between the graph representations of database
and query image sequences. The POKer is a convolution
kernel [23] developed for the comparison of strings containing
alternative substrings that, as we have shown, can be efficiently
represented by DAGs. The POKer takes as input a pair of
DAGs Gx and Gy . Let Πn(Gx) and Πn(Gy) be the sets of
paths of length n in Gx and Gy , respectively. The POKer is
then defined as

K(Gx, Gy) =
∑
n≥0

Kn(Gx, Gy) (1)

=
∑
n≥0

∑
πx∈Πn(Gx)
πy∈Πn(Gy)

exp(βS(πx, πy)) (2)

where S(πx, πy) is the score of the local alignment of the
n nodes along a path πx in Gx with the same number of
nodes along a path πy in Gy , and β ≥ 0 is a parameter. For
the alignments, we use the same scores and gap penalty as
in Section III-A. Valid values for β are those for which the
kernel remains positive semi-definite.

The POKer produces a measure of similarity that is equal to
an exponentially weighted sum of the scores of all the possible
local alignments between any path in Gx and any path in Gy ,
that is, any choice of image subsequences. This accounts for
the contributions of all the alignments of subsequences from
the query image sequence against subsequences from the paths
in the database graph. The importance of the contribution of
non-optimal alignments to the kernel value is controlled by
parameter β. For β →∞, only the best alignments are taken
into account.

The POKer is implemented using dynamic programming.
Despite considering the contributions of a number of paths
that is exponential in the number of branching points in the
database graph, the POKer has a time complexity that is linear
in the number of nodes in the strong product of the two DAGs.

IV. EXPERIMENTS

A. Dataset and Parameters

We chose the Nordland dataset1 for the experimental eval-
uation of our approach. The dataset consists of video footage

1https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-
by-season/

Fig. 2: Overview of our method applied to the Nordland dataset. On the left:
three database image sequences of a place in spring, summer and autumn,
respectively. A DAG representation of these alternative sequences is built
using the POA algorithm. On the right: a query image sequence of the
same place in winter, represented as a DAG. Query and database graphs are
compared using the POKer which produces a measure of similarity between
the graphs.

of a 728km-long train journey between two cities in Norway,
recorded from the perspective of the train driver. The journey
was recorded once in every season. We subsampled each video
at 0.5fps, yielding a total of four image sequences. We refer
to these image sequences as the Spring, Summer, Autumn and
Winter sequences. Note that all sequences are of equal length
and that images with the same numerical index are from the
same place (which serves as the ground truth). The dataset
features severe appearance changes due to different weather
conditions and seasonal changes. The train occasionally goes
through tunnels and stops at stations. As customary for this
dataset [4], [9], we removed all the images captured inside
the tunnels and at the stops. The descriptors were extracted
from the fifth layer of the VGG-Places365 ConvNet [3]. We
applied Locality-Sensitive Hashing (LSH) [24] to reduce the
dimensionality of the descriptors from 100352 to 4096.

We performed four sets of experiments, each time using
the image sequence belonging to a different season for gen-
erating the query image sequences. The data for each set of
experiments was generated as follows: during the exploration
phase, we consider three of the image sequences in the dataset,
i.e., three seasons. We cut each sequence into subsequences
of length 15. As a result, for each location, there exist
three alternative image sequences in the database (one per
season). We generate triplet image sequences by selecting
the three image sequences of the same place in different
seasons, according to the ground truth. For each triplet, we
align the image sequences in that triplet and build its graph
representation, as explained in Section III-A (e.g., left column
in Fig. 2).

During the localization phase, we consider the remaining
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Fig. 3: Precision-recall curves obtained for the four sets of experiments using the (a) Spring, (b) Summer, (c) Autumn and (d) Winter sequences as the query
image sequence, respectively.

image sequence in the dataset, i.e., the fourth season. We
generate the query image sequences by cutting this sequence
into subsequences of length 15. We convert each of these to a
DAG without alternative paths, as explained in Section III-A
(e.g., right column in Fig. 2). We then compare them to the
database triplets using the POKer.

For the alignment parameters, we used the Hamming dis-
tance between the descriptors as scores, since after apply-
ing LSH, the cosine similarity between the original high-
dimensional data is approximated by the Hamming distance
between the low-dimensional data. The gap penalty was set to
−1. For the POKer, we used β = 1.

B. Baseline Methods

We used two state-of-the-art baselines to evaluate the per-
formance of our method: the algorithm presented in [20]
using network flows, and SeqSLAM combined with Con-
vNet features. We refer to these methods as NetFlow and
CNN+SeqSLAM, respectively. For both baselines, we used

the same features as those used in our method, i.e., descriptors
extracted by the pre-trained VGG-Places365 ConvNet.

Note that these methods match an image to another, not an
image sequence to multiple image sequences (here, a triplet).
Therefore, to obtain a measure of similarity between a query
image sequence and a triplet of database image sequences we
proceeded as follows: we compare the query image sequence
to each database image sequence in the triplet separately.
The results are three matrices, where each matrix stores the
similarity scores between all pairs of images from the query
sequence and one of the database sequences. We then fuse
the three matrices by choosing the maximum score for each
pair of images as their final similarity score (we considered
both average and maximum of scores and chose the maximum
as it yielded the better performance). The similarity between
the query sequence and the database triplet is the average of
entries in this matrix. Parameters for both baselines were set
to those that performed best for the most challenging image
sequences in the dataset (Summer vs. Winter).



TABLE I: Comparison of the average recall values obtained by our method
and the baselines.

Precision (%) Recall (%)
Our approach NetFlow CNN+SeqSLAM

100 90.7 37.0 75.5
95 99.9 99.2 92.6
90 99.9 99.6 95.1

C. Results

The precision-recall curves for the four sets of experiments
are shown in Fig. 3. As can be seen, in each case, our method
either matches or outperforms the baselines in all parts of
the curve. Table I reports the recall values obtained by our
method and the baselines for three precision values of practical
interest, averaged over the four experiments. Our approach
achieves a high level of recall (> 90%) with 100% precision,
and by sacrificing 5% of precision, almost 100% recall is
achieved; in comparison, both NetFlow and CNN+SeqSLAM
show (at times significantly) lower performance.

V. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of appearance
changes in visual localization by using a directed acyclic
graph representation together with the Partial Order Kernel
(POKer). The graph representation we introduced efficiently
models appearance variations and correlations among consec-
utive images in the form of alternative paths in a graph.

We showed how the POKer effectively computes the simi-
larities between these graphs to match the corresponding im-
age sequences. Experiments on the standard Nordland dataset
suggest that our approach is robust to severe appearance
changes and significantly outperforms two state-of-the-art
methods in such a setting. The results encourage us to inves-
tigate the application of our approach to further challenging
scenarios, including localization in indoor environments and
in the presence of extreme speed variations.
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