
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 736347, 14 pages
doi:10.1155/2012/736347

Research Article

Performance Analysis Techniques for Multi-Soft-Core and
Many-Soft-Core Systems

David Castells-Rufas, Eduard Fernandez-Alonso, and Jordi Carrabina

CAIAC, Universitat Autònoma de Barcelona, Edifici Enginyeria, Campus UAB, 08193 Bellaterra, Spain

Correspondence should be addressed to David Castells-Rufas, david.castells@uab.cat

Received 9 March 2012; Revised 17 May 2012; Accepted 19 May 2012

Academic Editor: Patrick R. Schaumont

Copyright © 2012 David Castells-Rufas et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Multi-soft-core systems are a viable and interesting solution for embedded systems that need a particular tradeoff between perfor-
mance, flexibility and development speed. As the growing capacity allows it, many-soft-cores are also expected to have relevance
to future embedded systems. As a consequence, parallel programming methods and tools will be necessarily embraced as a part of
the full system development process. Performance analysis is an important part of the development process for parallel applica-
tions. It is usually mandatory when you want to get a desired performance or to verify that the system is meeting some real-time
constraints. One of the usual techniques used by the HPC community is the postmortem analysis of application traces. However,
this is not easily transported to the embedded systems based on FPGA due to the resource limitations of the platforms. We propose
several techniques and some hardware architectural support to be able to generate traces on multiprocessor systems based on
FPGAs and use them to optimize the performance of the running applications.

1. Introduction

The emerging reconfigurable hardware devices allow the
design of complex embedded systems combining soft-core
processors with a mix of other IP cores. The reduced NRE
costs compared to ASIC is a typical reason to choose FPGAs
as the platform to implement some applications on [1].
However, the continuous increase of capacity and the flexi-
bility offered by reconfigurable hardware are also important
reasons to select FPGAs in order to get good time-to-market
and time-in-market values. The actual FPGA strong demand
let us speculate about the systems hosted by coming devices.

We predict that hundreds of soft-core processors will
be hosted in future devices, giving birth to many-soft-core
systems. This speculative claim is based on the observation of
several trends. First, the capacity of integration has been dra-
matically growing during the last decades following Moore’s
law, and, in fact, already today, top-of-the-line devices are
possible to host more than 100 simple soft-core processors
(see Figure 1).

Second, companies are evolving EDA tools to make it
easier to integrate a large number of processors. For instance,
Altera recently introduced QSys [2], which can greatly
simplify the tasks of designing tiled Noc-Based MPSoCs on
a FPGA. Third, parallel programming is going mainstream
in almost any computing platform. On multi-soft-core and
many-soft-core processors parallel programming could be a
faster way to improve performance before going to dedicated
hardware, especially if users can reuse well-known pro-
gramming frameworks like OpenMP and MPI. And finally,
adding dedicated processors to take control of real-time tasks
can be an easier option than integrating real-time operative
systems (see [3]). So, the isolation of real-time tasks would
help to maintain a demand for more processors.

In this context, software development becomes increas-
ingly important for embedded systems. Performance analysis
is a crucial phase of performance optimization but can also
be an important part of the verification of the application
of real-time constraints. This process involves several tasks
(Figure 2). In summary, the idea is to collect information

2 International Journal of Reconfigurable Computing

EP1S25 (25 KLEs 2002)

EP1S80 (80 KLEs 2002)
EP2S180 (180 KLEs 2005)

EP3SL340 (338 KLEs 2008)
EP4S530 (530 KLEs 2009)

EP4SE820 (820 KLEs 2010)
EP5SEBB (1052 KLEs 2011)

LE
O

N
3

A
R

M
 C

or
te

x-
M

1

N
IO

SI
I/

f
0

50

100

150

200

250

N
u

m
be

r
of

 p
ro

ce
ss

or
s

pe
r

de
vi

ce

Figure 1: Evolution in the capacity of integration of Altera devices with respect to the theoretical number of soft-core processors that they
might host.

Instrument
(compilation

toolchain)

Original

application

Instrumented
application

Execute
Performance
information

Visualize

Automated
analysis

Visual
performance

information

Optimization
Optimized

application

Identified
bottlenecks/

optimization hints

Figure 2: Performance of optimization process.

from different executions of the application to be later ana-
lyzed in order to provide some insight into the performance
problems that can be solved in a next respin of the iterative
coding process.

High-performance computing (HPC) systems have fewer
problems than embedded systems to collect information and
create traces for later analysis because they usually contain
large amounts of memory. However, FPGA-based systems
are much more resource-constrained, and specific strategies
are necessary to provide equivalent features. In this paper, we
propose strategies to make tracing possible for multiproces-
sors in FPGAs.

The rest of the paper is organized as follows. Section 2
describes various performance analysis techniques that have
been used and proposed in the literature. Following sections
describe various novel methods that we are proposing. In
Section 3, we describe how automatic compiler instrumenta-
tion can be used in multi-soft-core systems with a low num-
ber of processors. In Section 4, we show a strategy to be used
with distributed memory systems with a larger number of
cores. An alternative way to capture event information with
no overhead is presented in Section 5. Finally, in Section 6,
a more complex approach combining specific hardware and
an additional software transformation step are presented.
We conclude with an overview of the techniques and their
benefits and some mention to planned future work.

2. Previous Work

A large number of applications implemented on FPGAs
described in academia focus on performance of the design
related to other possible implementations. This is even the
case for works based on soft-core processors. Surprisingly
there is little work on more detailed performance analysis
for soft-core systems. There are some very notable exceptions
([4, 5]) but do not focus on the specific multi-soft-core and
many-soft-core specific issues.

Most works report total execution time (TET), which is a
metric to compare the goodness of an implementation, and
a way to choose between different implementations. Never-
theless, TET does not give the observability needed to under-
stand why some expected behavior is not happening during
execution. TET does not give any feedback on where the
bottlenecks of the applications are. TET gives no information
about the application dynamics in relation to the real-time
constraints.

In the following subsections, we review some techniques
that can be used in reconfigurable devices to shed some more
light on the performance characteristics of the application
under test.

2.1. Logic Analyzer-Based Analysis. A quite rudimentary
approach to obtain time information is to assert a signal that

International Journal of Reconfigurable Computing 3

f1 f1f2 f2 f1 f1 f1f2 f2 f2

(a) (b)

Time

(c)

Figure 3: Tradeoffs between accuracy and overhead in Profiling. (a) Original application execution. (b) Profiling with low sampling
frequency. (c) Profiling with high sampling frequency.

can be traced externally by a digital logic analyzer. This is a
very old idea ([6]), but with the proliferation of embedded
logic analyzers inside FPGA devices it became possible with-
out the need of an external logging device ([7]). However, the
limitation on the signals that can be traced, and the size of the
trace buffer, does not make it a convenient way to analyze a
typical complex application. On the other hand, if the appli-
cation is partitioned in subsets that are analyzed separately
by this technique, the number of resyntheses and run steps
increases, making it an extremely time consuming process.

2.2. Profiling. Application profiling is usually understood as
the process of gathering histogram information from the
functions of an application. The usual observed metrics are
the number of function calls and the time spent inside every
function. Profilers can be based on periodically sampling and
collecting the value of the program counter or either instru-
menting the entry and exit of every function. Sampling pro-
filing has usually lower overhead although it also has lower
accuracy.

This tradeoff between accuracy and overhead is depicted
in Figure 3. The blue boxes represent the time spent in
the function that collects the necessary information. When
sampling frequency is low (b), the original execution time
of the application (a) is only slightly incremented, but the
profiler never knows that function f2 is called. So the results
will be misleading. On the other hand, if sampling frequency
is incremented (c), the profiler will know that f2 is called but
the execution time will be substantially affected.

The GNU toolchain includes the gprof profiler which is
a sampling profiler. Since popular soft-cores use the GNU
toolchain, it is also a known technique to get performance
information from soft cores [8, 9]. It consists in a three-step
process: first the application if instrumented by adding the
-pg compilation flag in gcc. When the -pg flag is enabled, the
compiler inserts a call to a function that will keep the count
of every function invocation and registers a timer callback
function that will record the program counter at every
sampling period. Second, the application is executed and its
execution generates an output file containing all the collected
information. Third, the output file is analyzed by a visual-
ization tool to present all the information to the developer.
In the case of the Altera toolchain, this application is called
nios2-elf-gprof.

2.3. Transparent Profiling. Sampling-based profiling can be
very misleading if the sampling frequency is very low because

there is a high probability to miss the execution of short func-
tions. On the other hand, if the sampling frequency is very
high, it can produce a high overhead causing a significant
alteration on the usual application behavior.

An alternative approach to reduce the overhead is to
monitor the program counter (PC) with specific additional
hardware. Shannon and Chow in [10] described a method
to continuously monitor the value of the PC. In that work,
a hardware module includes a low address and high address
register; comparison between logic and a counter. When the
PC value is between the low and high value the counter is
incremented. Those registers are typically programmed with
the address boundaries of a function. In addition, the circuit
can be replicated as many times as functions you have to
measure. Although this approach is limited to just a small
number of functions, the lack of overhead is appealing.

Profiling can expose some bottlenecks of the program,
but it gives no details about the dynamics of the system and
is not useful to identify whether the application meets the
real-time constraints or not.

2.4. Trace-Based Analysis in Virtual Prototypes. In order to
capture information of the time dynamics of an embedded
application running on a multi-soft-core system, virtual pro-
totypes can be used. In virtual prototypes we talk about the
host processor, who runs the instruction set simulator, and
the target processor, that is, the processor being simulated.
A virtual prototype of such system would consist in several
instruction-set simulators to model the multiple target soft-
cores and some behavioral models to model the accompa-
nying IP cores. In [11], we describe a system that provides
a virtual prototype of a distributed memory multiprocessor
containing 16 cores [12]. In this case, the ISSs are integrated
as part of a HDL simulation framework that also hosts the
HDL models of the rest of the system (see Figure 4).

In [11], we use transparent instrumentation, meaning
that the ISS automatically logs the entering and exiting of
every function call executed by the processor. Hence, the ISS
source code has been modified to log the details of the exec-
ution of the call and ret machine instructions as shown in
Figure 5.

The benefits of using transparent instrumentation in
virtual prototypes are that we can overcome two of the typi-
cal issues faced in performance analysis. One, the potential
excessive overhead caused by instrumentation. Here it is
totally eliminated because we spend host time (instead of tar-
get time) to produce the traces. Two, we are not constrained

4 International Journal of Reconfigurable Computing

Network-on-chip model

NIC

Mem

NIC

Mem

NIOS
executable
for CPU0

NIOS
executable
for CPUn

NIOS instruction-
set simulator

NIOS instruction-
set simulator

. . .

Figure 4: Logic design of a multi-soft-core virtual prototype.

by the limited memory or communication resources of the
target system. So we can generate huge trace files into the host
hard disk for later analysis.

Those trace files can be later visualized with tools like
Vampir [13], and after human analysis the application bottle-
necks can be found and solved to get new optimized versions
of the applications. In the example depicted in Figure 6, we
show how the visualization of the event traces shed light
about the inefficiencies of the communication primitives
used by implementation of a parallel version of the Man-
delbrot application. The orange and pink color bars show
the periods of time spent in communication libraries. In this
case, the slave processors are wasting a lot of time in waiting
for new messages, while the master processor is busy com-
posing new messages through the communication stack
(light blue color). Hence, no computation overlap is hap-
pening, and very low parallel efficiency is achieved. After the
optimization of the communication primitives, computation
is overlapping in slave processors, and a much higher parallel
efficiency is achieved.

The concept of transparent instrumentation from the ISS
can also be applied to obtain other kind of information from
the processor. In [14], Hübert et al. describe memtrace, an
extension to the ARM ISS ARMulator that allows capturing
the memory accesses of an application.

2.5. Functional Simulation. A large body of research has been
devoted to performance modeling based of high level of
abstraction descriptions (e.g., [15–18]). Starting with RTL
hardware simulation, one can try to speed up the system
simulation by using higher-level models of the same circuits,
or one can start directly from high-level design to get to the
hardware implementation in an iterative process. This, of
course, comes at losing accuracy (see Figure 7). Why is simu-
lation preferred to execution in those works? The argument is
that hardware design is a costly process, and it is desirable to
start software integration as soon as possible to minimize the

time-to-market. To do it, functional models can be quickly
described to avoid postponing the development of software.

This makes sense for ASIC design and for the design of
FPGA applications, where custom hardware must be devel-
oped from scratch, or when it is too expensive to replicate the
hardware platform. However, for many FPGA-based systems
the premise of the hardware not being available is more diffi-
cult to hold given the large number of IP Cores, the availabil-
ity of soft-core processors, and the low cost of some FPGA
platforms. So, in those cases, building a complex virtual plat-
form does not make sense, since building the actual platform
is easier, and, then, it is more convenient to measure timings
directly actual platform to have full accuracy.

Virtual platforms can give a lot of information; however,
they suffer several drawbacks. If simulation is done at a low
level (RTL) or at a combination of levels (like in [11] or [15])
to include the existing descriptions of hardware IP Cores,
the simulation speed is slow. Also, as mentioned before, if
binary translation or functional simulation is used simula-
tion is greatly accelerated but then time accuracy is lost, and
some development effort is needed to provide IP cores as
functional descriptions.

Moreover, to analyze the interaction with some real
physical (nonvirtual) device and determine if the real-time
constraints are met, virtual platforms cannot be generally
used.

3. Automatic Compiler Instrumentation in
Soft-Core Toolchains

To have some insights from the real execution platform,
it is necessary to insert the tracing facilities in the FPGA
device. Since most soft-core toolchains are based on gcc,
they can benefit from the facilities provided to do automatic
instrumentation of source code.

Automatic compiler instrumentation is activated by
the -finstrument-functions gcc compilation flag. When
this flag is present, the compiler automatically inserts
a call to the functions cyg profile func enter and
cyg profile func exit in the prolog and epilog of the

called function as shown in Figure 8. Only the function
prototypes of those functions are fixed: their implementation
is free so they can be customized to fulfill any need as follows:
void cyg profile func enter (void ∗this fn,
void ∗call site);
void cyg profile func exit(void ∗this fn, void
∗call site).

Nevertheless, since it is an “invasive” method that modi-
fies the original application one should take care of avoid-
ing, if possible, the instrumentation of functions that are
called at a very high-frequency rate to avoid the problems
depicted in Figure 3(c). This can be done by adding the
no instrument function attribute to the high-frequency
function prototypes. It is also recommendable to have a
simple and fast implementation of enter and exit of the
functions to minimize the overhead and try to maintain as
much fidelity as possible with the original time constraints.

International Journal of Reconfigurable Computing 5

Function
body

Trace memory

Calling function Called function

Call log (enter)

Call log (leave)

vt0

vt1

Target system ISS on host system

Call instruction handler

Ret instruction handler

Double func (int a, int b) Time stamp vt0, enter func

Time stamp vt1, leave func ...

Find function name
from function

address

Push function name
into stack

Pop function name
from stack

Trace logging
function

Trace logging
function

...

...
...

...
...V

ir
tu

al
ti

m
e

asm ret

asm call func

{

}

Figure 5: Transparent instrumentation method.

(a) (b)

Figure 6: Performance optimization process of a parallel Mandelbrot application. (a) Trace visualization of the initial version. (b) Trace
visualization of the optimized version.

Simulation type

Functional execution

Timed native co-simulation

Timed binary translation

ISS (instructions)

ISS (cycle accurate)

Pin accurate

Speed Accuracy

100000

10000

1000

100

10

1

Figure 7: Trade-off between speed and accuracy [17].

In our case, we present an implementation which is used
in a multi-soft-core system containing 4 CPUs that control 4
motor/encoder pairs independently, and is executed in the
Altera Cyclone IV low cost device included in the Terasic
DE0-Nano board (see Figure 9). The logging approach is
very straightforward, we save the function address into an
array together with a time stamp obtained from a 64-bit
counter. In complex systems like HPC machines, it is difficult
to synchronize multiple clocks to act as a single clock for
timestamping. On the contrary, in a multi-soft-core this
becomes fairly simple due to the possibility to share a reset
signal among all the counters.

The array containing the application logs is stored in the
external SDRAM, which is limited to 32 MB. Some strategy
has to be defined to avoid the logging of every call from the
boot of the system. We define an internal flag to control
when logging is enabled or disabled. During the development
phase, we can enable this flag and capture all the events and
later disable it to stop collecting logs. We can use it also to
reduce the collected information for high-frequency func-
tions.

Every CPU logs its activity independently, but when logs
have to be transferred out to an external computer they are
merged by the Master CPU (CPU0) and transmitted through
a JTAG cable using the JTAG UART core provided by Altera.
The format used in this communication is simple and does
not follow any standard trace format, but once in the PC
the traces are translated to the open trace format [19] to be
visualized by standard trace analysis tools.

Using this strategy, the visibility of the application
behavior is importantly increased. Figure 10 shows the visu-
alization of some traces generated with this system in the
Vampir tool. The top panel shows an overview of all the pro-
cessors timeline, while the above four panels show the
evolution of every call stack. Red color is used to identify

6 International Journal of Reconfigurable Computing

Original code Compiler instrumented code

Function
body

Calling function Called function Calling function Called function

vt0

vt1

Double func (int a, int b)

...
...

...
...

vt0

vt1asm ret

asm call func

{

Function
body

Double func (int a, int b)

...
...

...
...

asm call func

{

} asm ret}

V
ir

tu
al

ti
m

e

V
ir

tu
al

ti
m

e

vt1

void cyg profile func enter (func, call site);

void cyg profile func exit (func, call site);

Figure 8: Gcc automatic compiler instrumentation.

Avalon

NIOS
CPU0

Shared
Mem

SDRAM
controller

32 MB SDRAM

I$ D$

Avalon

Performance
counter

JTAG
UART

Motor
control

NIOS
CPU0

I$ D$

Avalon

Performance
counter

Motor
control

NIOS
CPU0

I$ D$

Avalon

Performance
counter

Motor
control

NIOS
CPU0

I$ D$

Avalon

Performance
counter

Motor
control

NIOS
executable
for CPU2

NIOS
executable
for CPU1

NIOS
executable
for CPU0

NIOS
executable
for CPU3

Figure 9: Multi-soft-core architecture on the Terasic DE0-Nano board.

the functions that work with a shared resource, which should
be exclusively owned by a single CPU at a time. In the vis-
ualization, it is perfectly clear that the application is not
behaving as expected as the red bars from several processors
are overlapped. CPU1, CPU2, and CPU3 are perfectly coor-
dinated to use the shared resource, but CPU0 is often using
it when it should not. Moreover from the analysis of the
duration of some functions, we can also deduce that CPU0
is working faster than the other CPUs. That could be caused
by different clock signals feeding the CPU or by different
dimensions of the processor caches.

This approach is very reasonable and allows a good
visibility of the system with a controlled overhead. However,

it is based on the existence of a shared memory than can store
a large number of event information.

4. Dedicated Tracing Node

When designing large heterogeneous distributed memory
many-soft-cores, writing logs to the global shared memory
is not an option because, obviously, the architecture does not
have a global common memory accessible from every core. In
Figure 11, we show an architecture containing 16 NIOS pro-
cessors that we have build in an Altera Stratix II S180 device.
In this architecture, the 16 processors are interconnected by
a network-on-chip (NoC), but only one CPU has access to

International Journal of Reconfigurable Computing 7

Figure 10: Trace-based analysis using Vampir of a compiler-based generated trace.

SDRAM

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

Avalon

NIOS
CPU12

NIOS
CPU13

NIOS
CPU14

NIOS
CPU15

NIOS
CPU11

NIOS
CPU10

JTAG
UART

Performance
counter Mem NIC Performance

counter Mem NIC Performance
counter Mem NIC

Performance
counter Mem NIC

Performance
counter Mem NICPerformance

counter Mem NICPerformance
counter Mem NIC

Performance
counter Mem NIC Performance

counter Mem NIC Performance
counter Mem NIC

Performance
counter Mem NICPerformance

counter
Mem NICPerformance

counter Mem NIC

NIOS
CPU8

NIOS
CPU9

NIOS
CPU5

NIOS
CPU6

NIOS
CPU7

NIOS
CPU3

NIOS
CPU2

NIOS
CPU1

Performance
counter Mem NIC

NIOS
CPU4

Performance
counter Mem NIC

NIOS
CPU0

Performance
counter NICSDRAM

controller

I$ D$

Figure 11: Large distributed memory architecture many-soft-core.

8 International Journal of Reconfigurable Computing

the big external SDRAM memory, while the rest of the
processors have small on-chip memories. Those small mem-
ories are big enough to host some application kernel code
plus the input and output data of their computation before
it is transferred out to another processor. However, there
is no option to use those memories to store logs of event
information.

To solve this limitation, we have devoted one of the
processors to generate the traces and store them temporally
before sending them to an external computer for visual-
ization. All the other processors have to send the event
information through the NoC to the tracing node.

The drawback of this solution is that the same NoC is
used by the original application and the tracing infrastruc-
ture. In addition, the injection of packets to the network has
a bigger overhead than writing to a shared memory. Even
a more serious problem is that if events are generated at
high-frequency rate, the network can saturate affecting the
performance of the whole system and potentially causing
a significant modification of the usual behavior an even
causing a false failure to meet the real-time constraints of the
application.

5. Transparent Instrumentation

A partial solution to the alteration of the normal behavior
of the system when high-frequency events occur is to try
to separate the execution of the application being analyzed
from the generation of the traces in different processors and
pretend that time “freezes” in the application under analysis
when an event is generated.

This idea shares the concept of having two different times
with the transparent instrumentation approach we do in
virtual prototypes. However, the translation in hardware of
the idea needs to make use of clock gating. So, when an event
occurs, some entity has to stop the clock of the processor
and produce the trace. Since we need a synchronized global
clock, in fact, we have to stop all the processors when any
event happens in any of the processors until the event is
correspondingly traced. Moreover, we should consider that
events can happen simultaneously, so the entity handling the
events has to support the simultaneous activation of several
processors.

One difficulty we have faced in testing this idea is that
we must monitor some internal signals from the processor
Pipeline. To be more specific, we need to monitor the value
of the PC and the signals produced after the Instruction
Decoding pipeline stage that are asserted when a call instruc-
tion or a ret instruction are executed. Since those signals
are usually hidden from the user in commercial soft cores,
we have developed our own replica of NIOS processor from
scratch (called MIOS) to be able to export execCall, execRet,
and the PC signals. Those signals are fed to a trace unit that
immediately gate the clock of all processors and handles the
event information to send through the JTAG UART device,
as shown in Figure 12.

In our design, the implementation of the trace unit is
based on another MIOS processor. In order to minimize

execCall

execRet

Address To PC

clk

Soft-core
processor Trace

processor
gateClk

Figure 12: Hardware transparent instrumentation.

Table 1: Synthesis results for the tracing unit on the Ultera Stratix
II S180 device.

Logic usage 3443 LCs

Memory usage 4096 bits

fmax 114 MHz

resources, the processor uses only 512 Bytes of memory,
which are enough to host the data and the code (which
has been written in assembly language) to process the event
information and send it to the external computer. Table 1
shows the synthesis results for the whole tracing unit module,
that consist on the processor, the memory, the JTAG UART,
and the modules that handle the detection of events and the
generation of the clock gating signal.

With this approach, it is perfectly possible to ana-
lyze high-frequency functions with no overhead. Figure 13
depicts how it is used to optimize a Mandelbrot application.
In the left panel we see how a lot of time is spent in
putResult function, which is colored in orange. The real
computation takes place in computePoint function, and
putResult is just a helping function to calculate what array
index the computed point should be stored in. After some
analysis, we realize that with some refactoring the array index
can be obtained without complex computation. Indeed,
the optimized version reduces significantly the time spent
in computePoint (in pink color) and finally doubles the
performance.

In transparent instrumentation based on global clock
gating, we can use the concept of the virtual time, that is, the
time that can be sensed by the clock that is gated. Virtual time
is a time that we can stop. Unfortunately, real time cannot
be stopped. The real time continues to run when the virtual
time is stopped, so applications with real-time constraints
will sense a different time behavior when using transparent
instrumentation. In this approach, the more the number of
processors or the frequency of function calls increases, the
more the virtual time differs from reality. Obviously, this is
an undesired effect that can be only minimized reducing the
frequency of events that stop the virtual clock, which poses
a contradictory demand to our initial goal of being able to
sample high-frequency events.

Another drawback of this approach is the lack of support
of commercial soft-core processors to export the necessary
internal signals that are fundamental to implement such
system.

International Journal of Reconfigurable Computing 9

Table 2: Operations implemented by the NIOS custom instruction devoted to tracing.

Operand A (type of operation) Operand B (address) Operation description

00 — Enables logging
01 — Disables logging
02 Function address Sends the address of a call
03 Function address Sends the address of a ret

(a) (b)

Figure 13: Performance optimization of Mandelbrot application using transparent tracing. (a) Trace visualization of the the original version.
(b) Trace visualization of the optimized version.

Source-to-source
compiler

Original
application

Application
instrumented

with custom instructions
gcc

Figure 14: modified toolchain to include the source to source compiler that produces the custom instructions that generate function traces.

6. Custom Instructions and Dedicated Networks

As we have been insisting several times, collecting the infor-
mation to produce a trace needs time and causes overhead.
As we detailed in [11], a simple instrumentation can already
take few hundreds of clock cycles. Those cycles are devoted
to function entering and leaving, stack manipulation, and
memory operations to store the collected information. The
transparent instrumentation can mitigate this overhead but
needs a direct access to the some of the internal processor
pipeline signals which are not usually available in com-
mercial soft-core processors. An alternative way to generate
event information with minimum overhead is to use custom
instructions (in Altera NIOS) or FSL channels (in Xilinx
MicroBlaze). By using custom instructions (CIs), we elimi-
nate the clock cycles devoted to function entering, function
exiting, stack manipulation, and even memory operations.
In fact, the invocation of custom instructions can take just a
single clock cycle, which is a minimal overhead suitable for
most applications.

Since gcc does not natively support the possibility to
instrument the functions with custom instructions, we have
created a source-to-source compiler (instrument-custom)

based on the Mercurium framework ([20]) to be interposed
on the NIOS toolchain (as depicted in Figure 14).

The instrument-custom compiler translates the original
source code into a modified code that includes the necessary
macros to emit the custom instructions created for this
purpose. An illustrating example of the result is shown in
Figure 18.

The created custom instructions are implemented as a
simple, very few clocks latency operation, which takes two
parameters, the first is the type of operation, and the second
is the address of the function. Table 2 describes all the
operations implemented by the custom instruction.

When the custom instruction is executed, the generated
event information has to be immediately sent to a remote
node that is responsible to collect the traces. But to avoid
the problems of congestion and saturation we previously
described in Section 4, we need to create an additional net-
work specialized in transferring the event info. The require-
ments of this network are very simple, if we face the worst
case, we need n unidirectional channels from each processor
to the tracing unit, which has to be able to eject the informa-
tion coming from all the channels simultaneously. As shown
in Figure 15, the network can be built just based on registers

10 International Journal of Reconfigurable Computing

Avalon Avalon

NIOS
CPU14

NIOS
CPU15

Performance
counter Mem NIC Performance

counter Mem NIC

Avalon Avalon Avalon

AvalonAvalonAvalonAvalon

Avalon

NIOS
CPU11

NIOS
CPU10

Performance
counter Mem NICPerformance

counter Mem NICPerformance
counter Mem NIC

Performance
counter Mem NIC Performance

counter Mem NIC
Performance

counter Mem NIC

NIOS
CPU8

NIOS
CPU9

NIOS
CPU5

NIOS
CPU6

NIOS
CPU7

Performance
counter Mem NIC

NIOS
CPU4

Performance
counter Mem NIC

Tracing unit

Router

Avalon

NIOS
CPU12

Performance
counter Mem NIC

Avalon

NIOS
CPU13

Performance
counter Mem NIC

CICICICI

CI CI CI CI

CI

CICICI

CI

CI CI CI

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFF

FFFFFF FFFFFF FFFFFF FFFFFF

FFFFFFFFFFFFFF

FF FF FF

FF

FF

SDRAM

SDRAM

Avalon Avalon Avalon Avalon

Performance
counter Mem NICPerformance

counter Mem NICPerformance
counter Mem NIC

NIOS
CPU3

NIOS
CPU2

NIOS
CPU1

NIOS
CPU0

Performance
counter NICSDRAM

controller

I$ D$

JTAG
UART

Router Router Router Router

Router Router Router Router

Router Router Router

Router Router Router Router

FF

Figure 15: Complex trace logging architecture.

that are forwarding the event info to the tracing unit. A good
point of this design is that it is not necessary to send the
timestamps together with the address because they can be
deterministically deduced in the tracing unit by the number
of hops of every channel. For instance, CPU0 is at 7 hops
from the tracing unit, so all the events coming from that
channel will be timestamped by T-7. The total number of
registers in the network is 2048.

The tracing unit has to eject 512 bits at every clock cycle
to filter out the uninteresting information and manage the

interesting one. In some FPGA boards, the information
could be stored to a secondary memory port exclusively used
for tracing. This is possible, for instance, in Altera Stratix IV
development kit, that include two DDR3-independent mem-
ory banks.

Even though we designed the system to support one event
per cycle from each processor, this scenario is not a realistic
one. A more reasonable worst-case scenario (WCS) would be
the result of having very high-frequency functions. In such
a case the probability of events in each individual processor

International Journal of Reconfigurable Computing 11

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

SDRAM
controller

Channel
selector

and
multiplexor

SDRAM

Processor

B
u

s

JTAG
UART

Mem

Last stage of the
dedicated network

Fast clock domain

Time
counter

FSM
controller

M
u

lt
ic

lo
ck

ed
 b

ri
dg

e

Trace dump controller clock domain

Global clock domain

T−1

T−2

T−2

T−3

T−3

T−3

T−4

T−4

T−4

T−4

T−5

T−5

T−5

T−6

T−6

T−7

T−1 T−2 T−3 T−4 T−5 T−6 T−7

Figure 16: Architecture of the tracing unit.

is still below 1/10. Meaning that between the execution of
the call and the ret instruction of a high-frequency function,
there are almost always more than 10 cycles.

The injection capacity of the dedicated network is 512
bits per clock (32 bits per event per 16 nodes), but the pro-
cessors very seldom use that capacity, and when they do not
do it they inject a null value to the network meaning no event
occured. After filtering out the no-events from the network,
the actual WCS rate of output at the other endpoint of the
dedicated network is less than 64 bits per clock.

We propose a tracing unit architecture as depicted in
Figure 16. The event information coming from the network
is combined with the timestamp associated for each channel,
which is derived from a global timestamp plus a determinis-
tic value depending on the number of hops to the other end-
point of the channel. Those pairs are feed to FIFOs that are
needed to handle the potential collisions. A collision could
be produced, for instance, when several (or even all) proces-
sors execute a call instruction at the very same clock cycle.
Then a channel selector is needed to be able to select events

from the FIFOs, that are not empty and transferred to the
next module that will be responsible to communicate with
the SDRAM controller for its writing in the external memory.

The external memory must be also accessible from
another processor so that the collected traces can be exported
out to a PC for their analysis.

The benefits of this approach is that it is more scalable
than all the previous ones, although the number of proces-
sors increase the risk of saturating the SDRAM controller
increases, and then rising similar problems exhibited by
the previous approaches. Since the network is composed by
totally independent unidirectional channels, the system can
be easily fragmented so that it can flush the events of a
subset of processors in different memory banks. That would
need several tracing units collecting the events from different
subsets of processors and storing them in different memory
banks. Eventually, the limit to scalability would be driven by
the number of memory banks that the FPGA can address,
which is mainly a function of the number of pins of the FPGA
device.

12 International Journal of Reconfigurable Computing

Table 3: Performance analysis methods that can be used in multi-soft-core and many-soft-core applications.

Acronym Technique
Area

overhead
Virtual time

overhead
Real time overhead Real time accuracy Scalability

ELA Embedded logic analyzer [7] Medium None None Full Very low

SP Sampling profiling [8, 9] None Low-high Low-high High-low High

TP Transparent profiling [10] Medium None None Full Low

VP Trace based on virtual prototypes [11] — None High Very low Low

FS Functional simulation [15–18] — — Low Very low High

New proposed methods

ACI Automatic compiler instrumentation None Low-high Low-high High-low Medium

TN Dedicated tracing node Low Low-high Low-high High-low Medium

TI Transparent instrumentation with clock gating Medium None Medium Medium Medium

CI Custom instruction and dedicated networks Medium Very low Very low Very high High

1 10 100 1000 10000 100000 1000000

Function invocations per second

ACI
TN

TI
CI

In
st

ru
m

en
ta

ti
on

 o
ve

rh
ea

d
(%

)

10000
1000

100
10

1
0.1

0.01
0
0
0
0

Figure 17: Instrumentation overhead as a function of function
invocations per second for the different proposed methods.

7. Discussion

In the previous sections, we have analyzed some performance
analysis methods that can be applied to multi-soft-cores and
many-soft-cores. We started by describing the ones found in
the literature to propose additional ones. Table 3 summarizes
all presented techniques and the qualitative values they have
in properties like area overhead, time overhead, real-time
accuracy, and scalability. By area overhead we mean the
amount of additional resources of the FPGA devoted to the
measurement system. This concept is not applicable to
virtual prototypes and functional simulation because no real
platform is used. With time overhead, we make a distinction
between virtual time and real time. Virtual time overhead is
the amount of extra processor time devoted to measurement.
In the approaches that use transparent instrumentation, this
value will be zero because, from the processor perspective, no
time is consumed by the measurement system. On the other
hand, we use real-time overhead to denote the overhead
measured from the wall clock. Another reported property
is the real-time accuracy. A high-accuracy value means that
the time characteristics of the original application are very

similar to the time characteristics exhibited by the appli-
cation when the measurement system is in place. A low
accuracy will mean that the timing characteristics are totally
different from the original application. Finally, by scalability
we denote the capacity to extend the measurement system
to work for a larger number of processors. A low scalability
value can be caused by a prohibiting number of additional
hardware resources, or by an increasing time overhead.

In some cases, we report a undetermined value going
from low to high. We do that to show that the property can
take different values depending on the value of other prop-
erties. For instance, in sampling profiling technique the real-
time accuracy can be high if the sampling period is low and
the application has low frequency functions, but if sampling
period is high, then the accuracy is lowered.

In most methods, the real-time accuracy is dependent on
properties like function frequency or sampling period. ELA,
TP, and CI have very high accuracy, but the first two (ELA
and TP) provide poor information and are not very scalable.

For many-soft-core systems, we need an scalable solution
that can go up to hundreds of cores. Most methods have a
limited scalability except FS and CI.

To have a better understanding of the source of the
penalties incurred by each method, we provide (see Table 4)
quantitative results of extra the area overhead expressed as
number of hardware resources (LUTs and FFs), and the over-
head affecting the real execution time expressed as number
of cycles per called function.

Depending on the number of function invocations per
second on the executing application, the real time overhead
becomes more or less significant. We might consider that
a good metric to compare the methods could be the time
overhead added by trace generation expressed as a percentage
of the original execution time. In Figure 17, we show the
percentage of overhead as a function of the number of func-
tion invocations per second. The use of custom instructions
outperforms all the other methods by several orders of mag-
nitude while allowing to capture the traces from applications
with more than 100,000 function invocations at a minimum
overhead of 1%.

International Journal of Reconfigurable Computing 13

Table 4: Absolute area and time overhead of different methods.

Acronym Technique Area overhead Real-time overhead

ACI Automatic compiler instrumentation 0 793 cycles per function call

TN Dedicated tracing node 324 LUTs + 1200 FFs 1532 cycles per function call

TI Transparent instrumentation with clock gating 2459 LUTs + 1815 FFs 3216 cycles per function call

CI Custom instruction and dedicated networks 13944 LUTs + 33614 FFs 4 cycles per function call

void putResult(float x0, float y0, int v)
{ float incx = (xmax-xmin) / divx;

float incy = (ymax-ymin) / divy;
int x = ((x0 - xmin) / incx);

void putResult(float x0, float y0, int v)
{ __builtin_custom_inii(0, 2 , putResult);

float incx = (xmax-xmin) / divx;
int y = ((y0 - ymin) / incy);
int index = y*((int)divx)+x;

 results[index] = v;
}

float incy = (ymax-ymin) / divy;
int x = ((x0 - xmin) / incx);
int y = ((y0 - ymin) / incy);
int index = y*((int)divx)+x;

 results[index] = v;

 __builtin_custom_inii(0, 3 , putResult);
}

Original code Transformed code

Figure 18: Example of the transformation performed by the source to source compilation phase. The left code is the code before the trans-
formation, and the right code is the result of the transformation phase. Notice how the custom instructions have been inserted appropriately.

8. Conclusions and Future Work

Performance analysis is an important part of the optimiza-
tion of parallel applications. The advent of multi-soft-core
and many-soft-core architectures will make evident that
there is a need to extract performance information in a sys-
tematic way.

We have reviewed various techniques used in previous
works and proposed various novel techniques that can be
applied to future many-soft-core systems. Automatic com-
piler instrumentation can be an excellent solution for multi-
soft-core systems that can afford an external shared memory.
Because of this reason, it is perceived as a non-scalable solu-
tion, and its overhead is too high for high-frequency func-
tions. To overcome the first problem of scalability, the NoC
can be used to transfer the event information, but then
the system can suffer from network saturation or can be
penalized by the application existing traffic. To overcome the
second problem, transparent profiling based on clock gating
can be used, but then real-time constraints can be missed.
Eventually, we propose architecture based on custom instruc-
tions, a dedicated unidirectional event network and a specific
tracing unit. The custom instruction provides a very low
overhead (very few clock cycles) to generate the event log.
The dedicated network is designed so that no congestion or
saturation can occur. Finally, the tracing unit is designed to
be able to store the data and export it to an external com-
puter.

In future work, we will try to test this approach for many-
soft-core systems containing 100 processors.

Acknowledgments

This work was partly supported by the European cooperative
CATRENE project CA104 COBRA, the ITEA2 project 10021
MANY, the Spanish Ministerio de Industria, Turismo y Com-
ercio projects TSI-020400-2010-82, and TSI-020100-2010-
1036, and MEC TEC2008-03835; the Catalan Government
Grant Agency Ref. 2009SGR700.

References

[1] P. H. W. Leong, “Recent trends in FPGA architectures and
applications,” in Proceedings of the 4th IEEE International Sym-
posium on Electronic Design, Test and Applications (DELTA ’08),
pp. 137–141, January 2008.

[2] Altera, Qsys System Integration Tool, http://www.altera.com/
products/software/quartus-ii/subscrip.

[3] P. E. McKenney and D. Sarma, “Hard real-time response,”
Patent US, 7748003, 2010, http://www.google.com/patents/
US7748003.

[4] J. Curreri, S. Koehler, A. George, B. Holland, and R. Garcia,
“Performance analysis framework for high-level language
applications in reconfigurable computing,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 3,
article 5, 2010.

[5] S. Koehler, G. Stitt, and A. D. George, “Platform-aware bot-
tleneck detection for reconfigurable computing applications,”
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 4, no. 3, article 30, 2011.

[6] T. S. J. Sun and R. D. Leu, “Software performance analysis
using hardware analyzer,” Patent US, 5903759, 1999, http://
ip.com/patfam/xx/25351944.

14 International Journal of Reconfigurable Computing

[7] Altera Corporation, “Design Debugging Using the SignalTap
II Embedded Logic Analyzer,” 2007, http://www.altera.com/
literature/hb/qts/qts qii53009.pdf.

[8] Altera Corporation, “Profiling Nios II Systems,” 2005, http://
www.altera.com/literature/an/an391.pdf.

[9] J. G. Tong and M. A. S. Khalid, “A comparison of profiling
tools for FPGA-based embedded systems,” in Proceedings of the
Canadian Conference on Electrical and Computer Engineering
(CCECD ’07), pp. 1687–1690, April 2007.

[10] L. Shannon and P. Chow, “Using reconfigurability to achieve
real-time profiling for hardware/software codesign,” in Pro-
ceedings of the 12th ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’04), pp. 190–199,
February 2004.

[11] D. Castells-Rufas, J. Joven, S. Risueño et al., “MPSoC per-
formance analysis with virtual prototyping platforms,” in
Proceedings of the 39th International Conference on Parallel
Processing Workshops (ICPPW ’10), pp. 154–160, September
2010.

[12] E. Fernandez-Alonso, D. Castells-Rufas, S. Risueño, J. Carra-
bina, and J. Joven, “A NoC-based multi-softcore with 16
cores,” in Proceedings of the IEEE International Conference on
Electronics, Circuits, and Systems (ICECS ’10), pp. 259–262,
December 2010.

[13] A. Knüpfer, H. Brunst, J. Doleschal et al., The Vampir Per-
formance Analysis Tool-Set Tools for High Performance Com-
puting, Springer, 2008.

[14] H. Hübert, B. Stabernack, and K.I. Wels, “Performance and
memory profiling for embedded system design,” in Proceedings
of the IEEE 2nd International Symposium on Industrial Embed-
ded Systems (SIES ’07), pp. 94–101, July 2007.

[15] M. Montón, A. Portero, M. Moreno, B. Martı́nez, and J.
Carrabina, “Mixed SW/systemC SoC emulation framework,”
in Proceedings of the IEEE International Symposium on Indus-
trial Electronics (ISIE ’07), pp. 2338–2341, June 2007.

[16] H. Posadas, F. Herrera, P. Sánchez, E. Villar, and F. Blasco,
“System-level performance analysis in systemc,” in Proceedings
of the Design, Automation and Test in Europe Conference and
Exhibition (DATE ’04), vol. 1, pp. 378–383, February 2004.

[17] H. Posadas, S. Real, and E. Villar, M3-SCoPE: Performance
Modeling of Multi-Processor Embedded Systems for Fast Design
Space Exploration Multi-Objective Design Space Exploration
of Multiprocessor SOC Architectures: The Multicube Approach,
vol. 19, Springer, 2011.

[18] I. Böhm, B. Franke, and N. Topham, “Cycle-accurate perfor-
mance modelling in an ultra-fast just-in-time dynamic binary
translation instruction set simulator,” in Proceedings of the
10th International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (IC-SAMOS ’10), pp.
1–10, July 2010.

[19] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel,
“Introducing the open trace format (OTF),” in Proceedings of
the 6th International Conference, Part II, Computational Science
(ICCS ’06), N. Vassil Alexandrov, G. D. van Albada, M. A. Peter
Sloot, and J. Dongarra, Eds., vol. 3992, pp. 526–533, Springer,
Reading, UK, May 2006.

[20] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé,
and J. Labarta, “Nanos mercurium: a research compiler
for openmp,” in Proceedings of the European Workshop on
OpenMP, vol. 8, 2004.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

