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Abstract  
This paper outlines real-world control challenges faced by modern-day biopharmaceutical facilities 

through the extension of a previously developed industrial-scale penicillin fermentation simulation 

(IndPenSim). The extensions include the addition of a simulated Raman spectroscopy device for the 

purpose of developing, evaluating and implementation of advanced and innovative control solutions 

applicable to biotechnology facilities. IndPenSim can be operated in fixed or operator controlled mode 

and generates all the available on-line, off-line and Raman spectra for each batch. The capabilities of 

IndPenSim were initially demonstrated through the implementation of a QbD methodology utilising the 

three stages of the PAT framework. Furthermore, IndPenSim evaluated a fault detection algorithm to 

detect process faults occurring on different batches recorded throughout a yearly campaign. The 

simulator and all data presented here are available to download at 

www.industrialpenicillinsimulation.com and acts as a benchmark for researchers to analyse, improve 

and optimise the current control strategy implemented on this facility. Additionally, a highly valuable 

data resource containing 100 batches with all available process and Raman spectroscopy measurements 

is freely available to download. This data is highly suitable for the development of big data analytics, 

machine learning (ML) or artificial intelligence (AI) algorithms applicable to the biopharmaceutical 

industry.  
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1. Introduction 

Penicillin fermentation monitoring and control has been carried for the last three decades (Mou and 

Cooney, 1983, Min et al. 1995 and Lee et al. 2004, Luo and Bao, 2018). However the biopharmaceutical 

sector as a whole is still significantly lagging behind other sectors in their adoption of advanced process 

control (APC), particularly in their use of innovative process analytical technology (PAT) solutions 

(Tomba et al. 2013). This is more evident in comparison to other highly sophisticated industries such 

as oil & gas, semi-conductor and automotive where automation and lean manufacturing are better 

engrained into company practice and culture. A major push from industrial regulators to rectify this has 

been the implementation of the Quality by Design (QbD) and PAT initiatives set out by the FDA in 

2004 and 2009, respectively (FDA 2004, FDA 2009). However, a major challenge remaining is the 

expertise and confidence required to adopt and implement these novel control solutions throughout 

industrial biopharmaceutical processes. Over the last 25 years the development of first principles 

mathematical models mimicking complex industrial processes have aided in the development and 

deployment of APC solutions (Downs and Vogel, 1993; Lyman and Georgakis, 1995;  Birol et al. 2002; 

Jeppsson et al. 2007; Kontoravdi et al. 2010;  Kiparissides et al. 2011; Benyahia et al. 2012;  Gernaey 

and Gani, 2010; Goldrick et al. 2014; Papadakis et al 2018). The ability to test and validate a novel 

control strategy on a simulation subsequent to implementation on a real process has the potential to 

revolutionise control theory and applications of advanced controllers throughout the biopharmaceutical 

sector (Randek, J., & Mandenius 2018). A limitation of current biopharmaceutical mathematical models 

is their inability to address the current control challenges of a modern-day biopharmaceutical facility. 

In the future era of Industry 4.0, which envisions a highly intelligent data-driven manufacturing 

environment incorporating a multitude of advanced on-line process analytics (Sami Sivri M., Oztaysi 

2018), the need for a modern-day biopharmaceutical simulation is paramount. 

The simulation described in this paper aims to address the current and future challenges of 

biopharmaceutical process manufacturing through the extension of a highly complex industrial-scale 

penicillin fermentation, referred to as IndPenSim. The simulation was developed using the historical 

batch records of a 100,000 litre penicillin fermentation utilising a high-yielding industrial strain of 

Penicillium chrysogenum and accurately simulates all the available process inputs and outputs 

(Goldrick et al. 2015). IndPenSim can be operated in multiple modes enabling the generation of large 

volumes of realistic fermentation data. The simulation mimics a real process through its ability to 

include delays in off-line assay measurements, manual operator intervention of feeding strategies, 

inaccurate sensor readings and random deviations in growth and production levels. Furthermore, a 

realistic Raman spectroscopy device has been integrated within IndPenSim. The inclusion of this device 

aims to support the current and future development of innovative and advanced control strategies on 

biopharmaceutical facilities. Furthermore, a data set containing 100 batches (~ 2.5 GB) is available to 
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download at www.industrialpenicillinsimulation.com which aims to act as a valuable resource for big-

data analytics, machine learning (ML) and artificial intelligence (AI) approaches.   

Overview of IndPenSim  

IndPenSim acts as a standalone application (freely available to download at 

www.industrialpenicillinsimulation.com). A summary of all the process inputs and outputs recorded by 

IndPenSim are shown in Fig. 1. Table 1 outlines the measurement frequency and primary control 

strategy of these main process variables in addition to the functional relationship between each variable. 

Automatically controlled variables; i.e. temperature (T) and pH (pH), are regulated using a feed-back 

proportional integral derivative (PID) loop. Manually controlled variables; i.e. substrate flowrate (Fs) 

and phenylacetic acid flowrate (FPAA), are manipulated using a recipe driven approach which follows a 

fixed profile throughout the batch (Recipe driven) or are controlled by an operator that manipulates this 

fixed profile throughout the batch (Operator dependant). This mode of control replicates the observed 

control actions of the operators manually adjusting Fs and Fpaa throughout the batch as described in 

Goldrick et al. (2015). The batch length can be fixed to a constant value (Fixed), typically 230 hours or 

dependent on delays in downstream process operation (Variable). A summary of a five-year campaign 

outlining the annual production metrics generated by IndPenSim is summarised in Table 2. Each 

campaign was operated in a different mode and no advanced control algorithms were implemented 

during any campaign. IndPenSim calculates the annual production metrics using the assumption that 

the facility has a 24-hour operating period and operates 336 days per year. The remaining 29 days are 

used for an annual shut-down period, allowing for routine maintenance activities to be carried out. A 

three-day turn around period for bioreactor cleaning and re-inoculation is required following each batch. 

A target production yield of 2000 kg of penicillin is required in each batch. Any batches achieving 

yields below this specification are considered below target batches and an investigation into their poor 

performance is required.  
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Figure 1. Summary of all model inputs and outputs recorded by IndPenSim. Automatic control is 
dependent on PID control loops whereas manual control is a recipe-driven approach maintaining a fixed 
profile throughout the batch which can be manually adjusted by operator intervention.  
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Variable reference Measurement frequency Primary control variables Functional relationship Control strategy 

Dissolved oxygen (DO2 - mg L-1) 12 min Fg,RPM Pressure,O2,og,Viscosity,T,V,Foil >10% of saturation 

Weight (W - kg) 12 min Fwater,Fs,Fa/b,FPAA,Fdis P,X,V Maintain between 7×104 and 11×104  kg 

pH (pH) 12 min Fa/b P;X;V PID control algorithm 

Temperature (T - K) 12 min Fc P,X,V PID control algorithm 

Off-gas measurements (CO2,og & O2, og 
- %) 12 min  Fg, RPM O2, CO2 Not controlled 

Penicillin (P - g L-1) 12 h (+ 4 delay) FS,Foil,FPAA,FN X,PAA,DO2,S Maximise production 

Biomass (X - g L-1) 12 h (+ 4 delay) FS,Foil,FPAA,FN P,PAA,N,S,pH,T,CO2 Maximise production 

Phenylacetic acid (PAA - mg L-1) 12 h (+ 4 delay) FPAA P,X,V Maintain between 600 and 1800 mg L-1 

Nitrogen (N - mg L-1) 12 h (+ 4 delay) Nshots,Foil,FPAA P,X,V Maintain above 300 mg L-1 

Viscosity (" - cP) 12 h (+ 4 delay) Fwater P,X,V Maintain below 100 cP 

Substrate (S - g L-1) No off-line measurements available Fs,Foil P,X,V Maintain between 5×10-3 and 1×10-3 g L-1 

Table 1. Summary of measurement frequency, primary control variables, functional relationships and control strategies for recorded process variables.   
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Campaign summary Campaign 1 (Year 1) Campaign 2 (Year 2) Campaign 3 (Year 3) Campaign 4 (Year 4) Campaign 5 (Year 5) 

Control strategy  Operator dependant Recipe driven Operator dependant Recipe driven Operator dependant 

Fixed or variable batch length Fixed Variable Variable Fixed Fixed 

Average batch length (hours) 230	±	0 239 	±	27 239  ±	32 230	±	0 230	±	0 

Number of batches 26 25  26  26 26 

Number of below target batches 2 8  6  2 5 

Average Penicillin yield per batch 
(kg) 2882±745 2578 ±769 2950 ±888 2912±786 2816±796 

Annual production (kg×103) 74939 64458 76690 75716 73228 

Table 2. A summary of the annual production metrics recorded by IndPenSim operated using different control strategies throughout a five-year production 
period.  
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1.2 IndPenSim control objectives:  

IndPenSim considers the growth, morphology, metabolic production and degeneration of a large-scale 

Penicillium chrysogenum fermentation in addition to modelling all the required on-line and off-line 

variables. The details regarding the mathematical structure of the model have been previous described 

in Goldrick et al. (2015). The primary focus of this paper is to demonstrate the ability of this simulation 

to act as a benchmark for the development and validation of novel control solutions applicable to 

biopharmaceutical processes. Currently this fermentation process has no advanced process control 

strategies in place and therefore presents significant process improvement opportunities. The primary 

goal of any control strategy is to ensure an economically viable process through increased product yields 

and reduced operating costs (Montague et al.  1989), therefore the following control objectives have 

been defined: 

• Develop a control strategy to maximise annual penicillin production and reduce variation in 

batch yields in comparison to the five campaigns outlined in Table 2.  

• Identify the critical process parameters (CPPs) and critical quality attributes (CQAs) 

influencing penicillin production.  

• Develop an enhanced control strategy for pH and temperature variables to minimise their 

fluctuations in comparison to the existing PID control loops. 

• Develop a control strategy that manipulates one or more of the following flowrates: substrate, 

nitrogen or phenylacetic acid, to maintain these variables within their acceptable ranges defined 

in Table 1.  

• Utilise the spectra recorded by the Raman spectroscopy device to develop a soft-sensor 

enabling an on-line prediction of phenylacetic acid, biomass or penicillin concentration in real-

time. 

• Develop a control strategy that calculates the optimum harvest time for each batch to maximise 

annual penicillin yields generated throughout a yearly campaign.   

 

2. Material and Materials 

2.1 Simulation software 

IndPenSim was written in Matlab R2018b and is freely available to download at 

www.industrialpenicillinsimulation.com where the historical batch records of campaigns 1-5 outlined 

in Table 2 are also available. IndPenSim has the following capabilities and functionality:  

• Batch to batch variation of both the biomass and penicillin concentration as well as in-batch 

fluctuations 
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• Option to add disturbances on inlet concentrations of the substrate (cs), oil (coil), acid/base molar 

concentration (ca/b) and Phenylacetic acid concentration (cPAA). 

• Ability to adjust the current sequential batch control strategy for Fs, Foil, Fg, RPM, Fdis and FPAA. 

• Option to include inhibition effects on the growth rates during DO2, N and PAA limitation as 

well as during excessive PAA and CO2 concentrations and sub-optimal T and pH operation. 

• Includes a pre-defined delay (4 h) in the off-line measurements of P, N, PAA and !app. 

• Option to include process faults including agitator trip, aeration faults, substrate faults and 

sensor errors. 

• Option to record Raman spectra throughout the batch, enabling real-time predictions of the 

critical quality attributes and critical process parameters  provided an accurate calibration model 

is developed and the spectra is pre-processed correctly. 

 

2.2 Raman Spectroscopy simulation development 

This section describes the development of an empirical mathematical model to simulate a realistic PAT 

analyser, specifically a Raman spectroscopy device. The simulated spectra were generated and validated 

through a detailed analysis of experimental Raman spectra recorded on a 5 litre fungal fermentation 

producing a commercially available antibiotic. Further details describing the materials and methods of 

this fermentation are outlined in Goldrick et al. (2018).  The Raman spectroscopy device used was a  

Kaiser 1000 RXN system implementing an indium gallium arsenide (InGaAs) detector array with a 

spectral range of 200–2400 cm -1 and a resolution of 3 cm -1. The Raman spectroscopy analyser was set-

up to record a spectrum every 30 minutes based on 9 averages using an integration time of 180 seconds. 

In total 540 spectra were recorded throughout the 260-hour fermentation, highlighted in Fig. 2A. The 

simulated PAT analyser described here aims to mimic the three main characteristics that define this 

experimentally recorded Raman spectra. These are outlined by Bocklitz et al. (2011) as fluorescence 

baseline increase, Raman spectrum peaks and noise.  The modelling of random cosmic spikes on Raman 

spectroscopy was not considered in this work.   

 

2.2.1 Non-linear spectra profile and baseline increase 

 

Raman spectra recorded on fermentation systems contain characteristic peaks related to media 

components and cell culture in addition to the characteristic non-linear shape associated with the 

background signal of the Raman spectroscopy device. This was modelled by taking the first spectrum 

of the experimental Raman data set and using this as a template for all spectra generated by this 

simulated PAT analyser, the reference spectrum is shown in Fig. 2B. The fluorescence increase shown 

in the experimental Raman spectra is visible in Fig. 2A where the baseline intensity of the spectra 
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collected during the start (0-45 hours) can be compared with that collected at the end of the fermentation 

(215-240 hours). To model this fluorescence increase (∆#$%&'()*(+*(,-.) in the experimental spectra the 

average change in intensity from one spectrum to the next was calculated as:  

 

∆#$%&'()*(+*(,-.(0) = 	∑
(56(*7'8(+9:);	56(*7'8(+))

<===
>?<<@=
>?<@=        Eq. 1 

 

  

Where	∆#$%&'()*(+*(,-.  represents the average change in baseline intensity of two consecutive spectra 

between the wavelengths (A) 250-2250 cm-1.  Taking the cumulative sum of the calculated fluorescence 

increase results in an average fluorescence profile of the fermentation. In these empirically simulated 

Raman spectra, the fluorescence increase (∆#$%&'()*(+*(BCD) was assumed to be the result of 

compositional changes to the fermentation broth. The compositional changes assumed to have the 

largest influences were the biomass (X), penicillin (P), viscosity (!) and batch time (t), which are 

defined as:  

 

∑ ∆#$%&'()*(+*(BCD
7?<E=
7?= = 	F:G + F<I + FJ! + FEK            Eq. 2 

 

 

The coefficients (F:,<,J,E) were calculated using a step-wise linear regression function that minimised 

the error between the calculated experimental fluorescence increase and the simulated florescence. The 

fluorescence increase was found to be accurately modelled by these four variables with the product 

concentration identified as having the largest influence on the experimentally recorded fluorescence. 

The finalised coefficients (F:,<,J,E) were equal to -0.002 (X), 1.05 (P), -0.07	(!) and -0.2 (t).  It was 

observed in Fig. 2A that fluorescence had a greater influence on the lower wavelengths in comparison 

to the higher wavelengths. To account for this nonlinearity an exponential function was multiplied by 

each spectrum to mimic this as shown in Eq. 5. This exponential function is defined in this work as M, 

further details can be found in Goldrick (2015). 

 

 

2.2.2 Non-linear characteristic peak increase related to fermentation composition         

        

The simulated Raman spectra needs to take into account the characteristic peaks related to changes in 

component concentrations throughout the batch. Previous work on the use of Raman spectroscopy for 

on-line monitoring of biological processes has simulated these characteristic peaks as Gaussian 

functions (Oh et al., 2012). Furthermore, Gauassian functions have also been demonstrated to represent 
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specific molecules in chemical analysis utilising Raman spectroscopy (Kneipp et al., 1999). Therefore, 

Gaussian functions were used to represent the substrate (S), penicillin (P) and phenylacetic acid (PAA) 

concentrations in this simulation. The position of the substrate and phenylacetic acid peaks were 

selected based on analysis of the Raman spectra containing media spiked with high concentrations of 

phenylacetic acid and substrate as outlined in Goldrick (2015). The penicillin peak positions were 

chosen based on Raman spectra of Penicillin G samples shown in Clarke et al. (2005). These peaks 

were represented by a Gaussian distribution function defined as:  

N(IOPQ(R/5/RTT)) 		= 	
:

√<VWX
O;

YZ[\](Z/B/Z^^)	_`Z/B/Z^^a
X
		

XbX    Eq. 3 

Where Peak(P/S/PAA) is the specific wavelength related to either changes in penicillin (P), substrate (S) or 

phenylacetic acid (PAA), c is the standard deviation of either Peak(P) or Peak(S) or Peak(PAA) and ! 

represents the peak mean.  These component peaks are shown in Fig. 2C. 

 

2.2.3 Signal-to-noise ratio 

  

Noise is an inherent disturbance to any sensor. For Raman spectroscopy noise generally results from 

thermal effects, instrument read-out errors or random cosmic rays. The magnitude of the noise was 

modelled by calculating the signal-to-noise ratio (SNR) of the spectra. The SNR assumes the Raman 

spectra collected in close succession to each other should be almost identical with the main difference 

between these two signals being the result of noise within the signals (Grimbergen et al., 2010). By 

calculating the mean and standard deviation of each consecutive spectra the SNR is calculated as 

follows: 

SNR = 	
5̅

WhCii
      Eq. 4 

Where j̅ is the mean Raman intensity and  cklmm is the standard deviation of spectrum divided by √2. 

The SNR was calculated for 10 spectra and equalled 50 counts (intensity). The magnitude of this was 

used to add noise to each individual spectrum based on a random walk noise generation. A typical 

example of the noise added to each spectra is shown in Fig. 2D.  

 

The final simulated spectrum (Sim. Spectra) is summarised as:  

 

jop. jrOsKtP = uONOtO0sO	jrOsKtP +	(v:∆wxyz{|}~|�~| + v<IOPQÄ(j, I, IÅÅ) + vJÇÉoÄO	) × M	 

Eq. 5  

 

Where the v:,<,J are coefficients related to the intensity of each characteristic component of the 

simulated spectra. v:is the fluorescence increase due compositional changes in biomass, penicillin, 
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viscosity and also batch time. v< is related to the intensity increase based off current concentrations of 

penicillin (P), substrate (S) and phenylacetic acid (PAA) in the bioreactor and  vJ is the intensity 

associated with the noise added to each spectrum.  M relates to the exponential function to account for 

non-linear increase of the lower wavelengths of the spectra. 
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Figure 2: A summary outlining the development of the Raman spectroscopy simulation. A) Highlights 

the experimental spectra recorded by a 993 nm Raman spectroscopy. B) Highlights the non-linear 

reference spectrum implemented as the starting spectrum in this simulation. C) Highlights the non-

linear characteristic peak increase related to fermentation compositional changes in penicillin, substrate 

and phenylacetic acid. D) Highlights an example of the typical noise added to each simulated spectrum. 

E) Shows an example of the simulated spectra developed in this work.  

 

A demonstration of the robustness of the simulated Raman spectra to accurately predict the penicillin 

concentration during routine and abnormal operation is demonstrated in Fig. 3. In total, four batches 

were simulated that contained a low filtered pseudo random binary signal (PRBS) added to the substrate 

feed rate (Fs) to mimic realistic process deviations as shown in Fig. 3A. The first batch was used to 

build the PLS model taking the interpolated off-line penicillin concentration as the response. The 

spectra was pre-processed as described in Section 4. The PLS model selected four latent variables as 

optimum, accounting for 99% of the variance in the X-data (spectral data) and the 98% of variance in 

the Y-data matrix (interpolated penicillin concentration). A calibration batch was simulated and resulted 

in highly comparable predictions of the off-line penicillin concentration with the root mean square error 

(RMSE) equal to +/- 0.1 g L-1. Two addition batches were simulated containing a process disturbance in 

the substrate flow rate (Fs) as demonstrated in Fig 3A. The resultant drop in penicillin concentration as 

a result of these process disturbances is evident from Fig. 3B. The PLS predictions of penicillin during 

these process disturbances is highly comparable with the off-line penicillin concentration measurements 

shown in Fig 3B. The ability of the spectra to be utilised as a real-time measurement of penicillin during 

normal and abnormal operation represents a significant opportunity to develop and implement advanced 

process control algorithms on this benchmark simulation. However, it must be noted that the simulated 

Raman spectroscopy was built using spectra collected at the 5 L scale and does not account for any 

potential process heterogeneities or additional process issues that may be present at the 100,000 scale.  
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Figure 3: A) Outlines the substrate flow rate (Fs) for the calibration and validation batch used to generate 

the PLS model for predicting the penicillin in addition to two batches containing process disturbances. 

B) Represents the off-line penicillin concentration of the four batches compared to the on-line PLS 

penicillin predictions.  

 

3. Theoretical section 

The following section outlines the multivariate data analysis (MVDA) techniques applied in this 

manuscript. A batch-wise unfolding algorithm was initially implemented to decompose the data set into 

a structured format enabling the main sources of variation between each batch to be highlighted 

(Nomikos and Macgregor 1995). Both principal component analysis (PCA) and partial least squares 

(PLS) were implemented to reduce the high dimensionality of this large unfolded data allowing for 

easier data interpretation and better visualisation of hidden correlations. These two techniques have 

been demonstrated extensively in the monitoring and control of industrial fermentation systems 

(Lennox et al. 2001, Ündey et al. 2003, Kourti et al. 2005, Chiang et al. 2006, Goldrick et al. 2017).  

 

3.1 Principal component analysis (PCA): On-line and off-line monitoring 

The application of PCA for the on-line and off-line monitoring of industrial biopharmaceutical data is 

well described by Gunther et al. (2007). In summary, prior to applying PCA the data was mean centred 

and scaled to unit variance. PCA is described mathematically as:  

Ö = ∑ Ü{
á
{?: à{

â + ä    Eq. 6 

Where X represents the two-dimensional data set and tr, pr and E represent scores, loadings and 

residuals, when R principal components are retained. The scores (t vector) represents a single batch and 

can quantify the overall variability of each batch analysed by the PCA model. The loadings (p vector) 

represents the time-series variance of each variable in comparison to the average trajectory of each 

variable considering all batches in the PCA model. PCA is a well suited and established method to 

compare new batches to previously recorded normal operating conditions (NOC) batches. The 
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comparability is defined by calculating the new batch scores (tnew) by projecting the new batch data (xnew) 

onto the previously generated PCA model generated using the NOC batches:  

Ü+(ã = å+(ãç(ç′	ç)
;:           Eq. 7 

This generated score enables off-line monitoring of the newly generated batches. To help identify any 

abnormal operation two statistical metrics are typically used. The first is the Hotelling T2 statistic that 

captures the difference in the systematic part of the model and is calculated as:  

è+(ã
< = Ü+(ã Y

êëê

í;:
a Ü+(ã

â       Eq. 8 

Where I is the number of NOC batches used to generate the PCA model. Any batches that behave 

abnormally can be detected through analysis of the confidence limit of the èì< defined by Lee et al 

(2004b) as:   

èì
< = î

ï(í ;:

í;ï
ñóï,í;ï,ì   Eq. 9 

Where FR,I-R,α is the F-distribution assuming a confidence limit equal to α taking R principal  components 

and using I batches to build the model. A second method to detect abnormal behaviour is to analyse the 

residual error of the PCA model, this is quantified by the sum of squared residuals (SPE) or Q statistic: 

ò+(ã = ô+(ãô+(ã
â     Eq. 10 

 O+(ã = ö+(ã − K+(ãI′   Eq. 11 

Typically these residuals follow a chi squared distribution (ú<) with a confidence limit approximated 

by Jackson and Mudholkar (1979) as: 

òì = 	ù: î
ûü†<°X¢£

X§
£.•

°¶
+ 	1 +

°X¢£(¢£;:)

°¶
X ñ

¶

®£
		 Eq. 12  

© =
ääë

í;:
   Eq. 11 

ùl = KtPsO†©l§ for i = 1, 2, 3 Eq. 13  

ℎ= = 1 −
<°¶°X
J°X

X   Eq. 14 

With V representing the covariance matrix of E, ´ì is standardised normal variable with confidence 

limit equal to F. A major benefit of applying PCA to analyse biopharmaceutical data is its ability to be 

used for on-line monitoring. The PCA model generated from the NOC batches can be used to evaluate 

batch progression in real-time and utilise this information to alleviate faults and enhance control 

operations. This PCA projection method utilises a portion of the loading matrix corresponding to the 
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current lapsed time of the current batch until current sampling time k to calculate the new score vector 

tnew(k) for the selected number of principal components of the model.  

Ü+(ã(Q) = å+(ã::≠Æç::≠Æ†ç::≠Æ
â ç::≠Æ§

;:
	 Eq. 15 

Where å+(ã¶:Ø]  is the available batch data up until current time point Q and ç::≠∞ is the loadings matrix 

of the NOC batches calculated using data up to time point Q. Both the è+(ã< (Q) and ô+(ã(Q) are 

calculated from Eq. 8 and 11, respectively, using the time varying covariance matrix ±(Q) and the 

loadings matrix ç::≠Æ.  The on-line SPE enables the distance between the PCA model generated by the 

NOC batches and the progression of the new batch and is calculated as:    

jI≤+(ã(Q) = 	∑ ô+(ã,≥Æ
< (Q)≠

≥?:  Eq. 16  

The SPE and T2 can act as an on-line indicator of overall system performance. High SPE or T2 indicates 

that the process is behaving abnormally enabling real-time fault detection. To localise the root cause of 

any abnormal behaviour the variable contributions towards the SPE and T2 can be evaluated at any time 

point k as follows:   

¥µ∂]	X = ∑ 		±88
;:	(Q)Ü+(ã,8(Q)å+(ã,≥Æç≥Æ,8

T
8?: 	Eq. 17 

¥5R∑∂] = ô+(ã,≥Æ
< (Q) Eq. 18 

 

Where ±∏∏(Q) is the ath digonal element of the time-varying covarance matrix at time point k. 

 
3.2 Partial least Squares (PLS) model development 
 

Partial least squares modelling is similar to PCA in its ability to reduce large data sets into low-

dimensional vector spaces. However, this technique enables the prediction of a response variable, Y, 

using the predictor variables contained within X. The PLS model is generated from a set of regression 

vectors maximising the covariance between the X and Y data. Similar to PCA the initial step in building 

a PLS model was to construct the X data by unfolding all the available variables within each batch using 

a batch-wise unfolding algorithm ensuring the X and Y data have an equal number of rows. The PLS 

model was generated through a non-linear iterative partial least squares (NIPALS) algorithm (Wold et 

al., 1987). This algorithm generates an outer-relationship that identifies the main sources of variance 

within each of the data and links them together through an inner-relationship. The outer relationships 

are generated by decomposing the newly unfolded X and Y data into R latent score variables [t, u], 

loading vectors [p, q], weights W and the model residual matrices E and F. t, u, p, and q can be 

combined into T, U, P, Q and W as defined below  (Wold et al. 1987):  

 Ö = ∑ Ü{
á
{?: à{

â + ä...X = Tçâ + E            Eq. 19  
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 π = ∑ ∫{
á
{?: ª{

â + º…π = æøâ + º  Eq. 20  

A vector of inner-relationships (B) is generated that relates the scores of the X data to the Y data, 

which is defined as:  

 ¿ = æâê(êâê);: Eq. 21 

The PLS model implements an iterative procedure for each latent variable to reach convergence and 

once the procedure is complete, a matrix of regression coefficients (¡) can be generated as follows:  

  

  ¡ = ¬(ç′¬);:√oPƒ(¿)  Eq. 22 

Where, ¬ = (æ;:Ö)â. The cumulative sum of the regression coefficients predicts the response variable 

(Ŷ) from the X data taking R latent variables, which was equal to:  

π≈ = Ö∑ ¡ï
'?:                  Eq. 22 

4:  Soft-sensor development 
 

The generation of the PAA soft-sensor involves generating a PLS model as described in section 3.2 

taking the Raman spectra and off-line phenylacetic acid (PAA) concentration as the X and Y data, 

respectively.  The Raman spectra recorded by IndPenSim was generated every 12 minutes and recorded 

data along the wavenumber 250-2250 cm-1 resulting in a large two dimensional matrix. The 

wavenumbers of interest that contain information related to the PAA concentration in the bioreactor 

were equal to 1540:1580 and 1950:2050 cm1, identified through analysis of Raman spectra recorded 

from fermentation media spiked with various concentrations of PAA (Goldrick 2015). The selected 

wavenumbers of the Raman spectra were pre-processed using a standard Savitzky-Golay smoothing 

technique using a 15-point average and taking the first derivative, this pre-processed data was taken as 

the X data. The PAA off-line concentrations were taken as the Y data in the PLS model and were 

interpolated using a cubic-spline function to ensure an equal number of rows as the X data. The selection 

of the optimum number of latent variables was based on a cross-validation operation employing a leave-

one-out protocol (Martens and Naes 1989).          

 

Results and Discussion 

Quality by Design and PAT application 

Monitoring and control of penicillin fermentation processes has been around for decades and essential 

to ensure the production of high yields and product quality remains within specification (Mou and 

Cooney, 1983, Min et al. 1995 and Lee et al. 2004, Luo and Bao, 2018). The recent Quality by Design 

(QbD) initiative represents a paradigm shift in biopharmaceutical manufacturing involving a systematic 
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approach to process optimisation enabled through enhanced process understanding and innovative 

control strategies. The primary focus of this approach is to ensure a predefined product quality target is 

confidently and consistently achieved for all batches regardless of inherent process disturbances and 

batch-to-batch fluctuations. To accelerate the adoption of this systematic approach the regulatory bodies 

have launched the process analytical technology (PAT) framework (FDA 2004) to promote the 

application of advanced sensors integrated through innovative control solutions. Tab. 2 highlights the 

need for an improved control strategy for IndPenSim as both the recipe driven and operator dependent 

control strategies resulted in significant deviations in annual penicillin production for each of the five 

campaigns. To demonstrate how a QbD methodology can be correctly implemented for process 

improvements the three different stages of the PAT framework were implemented using IndPenSim: 

- Design stage: To identify the critical process parameters (CPPs) and subsequent critical quality 

attributes (CQAs), all the process data recorded in campaign 5 were analysed using multivariate data 

analysis (MVDA). This campaign is summarised in Table 2 and resulted in 26 batches with 5 of those 

batches failing to meet the required target penicillin production yield of 2000 kg. All batches 

implemented an operator dependant control strategy and had a fixed batch length equal to 230 hours. 

The operator controlled flowrates of substrate (FS) and phenylacetic acid (FPAA) for this campaign are 

shown in Fig. 4A and 4B. The significant deviations in these primary control variables results in highly 

varied penicillin and biomass profiles, as shown in Fig. 4C and 4D, respectively. The need to improve 

the control strategy implemented on this process is highlighted by the five batches that failed to meet 

the penicillin demand at harvest shown in Fig. 4C and 4D. To fully exploit the available information 

recorded throughout this campaign and identify the CPPs influencing the observed deviation in 

penicillin yields a partial least square (PLS) regression model was implemented to analyse the data. 

This PLS model was identified using the selected variables shown in Fig. 5B taking the final penicillin 

yield at harvest as the response variable. The development of the PLS model required the data to be 

restructured using a batch-wise unfolding algorithm enabling the main sources of variation between the 

variables to be identified.  The PLS model was generated using three latent variables that captured 

47.7% of the total variance in the X-data and 98.7% of the total variance in the Y-data. All 26 batches 

were used to build the PLS model with cross validation implemented to determine the appropriate 

number of latent variables to retain. Fig. 5A shows the first and second latent variables of this PLS 

model and highlights a clustering between the “below” and “above” target batches. This clustering 

indicates that the below target batches have similar characteristics in the data. To investigate the primary 

variables influencing these differences in penicillin yields the summed contribution (∑ ¡≥Æ
<∞

Æ?: ) of each 

process variable is shown in Fig. 5B for the first latent variable. The large contribution of the off-line 

concentrations of phenylacetic acid (PAAoffline) indicates this variable is highly influential in the final 

penicillin yields. Therefore, this variable was selected as the primary CPP to be considered for the 

Analyse Stage.   
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Analyse stage:  The current control strategy for PAA concentration is to maintain this variable between 

600 and 1800 mg L-1 through manipulation of the phenylacetic flow rate (FPAA). However, due to the 

infrequent nature of the off-line measurements of PAA combined with a timely 4-hour delay period for 

this assay, the control of this CPP remains suboptimal. The challenge of controlling this variable within 

these limits is highlighted through analysis of the annual production records recorded for each 

campaign. The Analyse stage therefore confirmed a real-time measurement could significantly improve 

the control of this key process variable. To address this, the inclusion of a Raman spectroscopy analyser 

within IndPenSim was implemented to investigate whether a soft-sensor could be developed to enable 

real-time predictions of PAA. To facilitate the Analyse stage a calibration batch was performed on 

IndPenSim that included the simulated PAT analyser recording a Raman spectrum every 12 minutes as 

described in section 2.2. The routinely measured off-line PAA concentrations were also recorded every 

12 hours and used to develop the soft-sensor. The soft-sensor was built using a PLS model as described 

in section 3.2. The subsequent predictions of PAA generated by the soft-sensor are highly comparable 

to the off-line concentrations of PAA for the calibration batch shown in Fig. 6A. To demonstrate these 

predictions in real-time a validation batch was ran using the soft-sensor built from data recorded in the 

calibration batch. The validation batch enabled on-line predictions of the PAA concentration and was 

shown to be comparable to the off-line PAA samples as shown in Fig. 6A. The ability to measure the 

PAA in real-time on IndPenSim therefore enables the Control stage to be implemented which is the final 

and most important step in the PAT framework.  

Control stage: The final stage of the PAT framework involved the implementation of a proportional 

integral (PI) control loop that manipulated the FPAA to maintain PAA at its set-point. The raw soft-sensor 

signal, shown in Fig. 6A, contains some high frequency fluctuations that may be problematic for the 

controller. To account for this, the signal was initially filtered using a three point moving average thus 

minimising any unnecessary control actions.  Figs. 6B and 6C highlights this APC solution in operation, 

where the PI controller was switched on after 25 hours and manipulates the FPAA to maintain the PAA 

concentration at its set-point of 1250 mg L-1. This APC solution was implemented on the IndPenSim for 

a year and the annual penicillin yield was compared against the previous campaigns, which 

implemented recipe driven and operator dependant control strategies. Implementing this APC  strategy 

resulted in significant improvements in the annual production yields of penicillin. In total 26 bathes 

were operated through the year and there were no batches that failed to meet the production targets of 

2000 kg. The average penicillin yield per batch was 3517	±	315 kg which represents a  20% overall 

increase in annual penicillin yields compared to the average of the previous five campaigns. The 

significant increase in penicillin production demonstrates the benefits of following the QbD 

methodology and implementing an APC solution utilising the Raman spectroscopy analyser.  
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Figure 4: Summary of variable profiles for campaign 5 with A highlighting the substrate flow rate (Fs), 
B: Phenylacetic acid flow (FPAA), C: Biomass (X) and D: Penicillin (P). The failed batches shown in C 
and D are highlighted by red dashed lines.  

 

 

 

Figure 5: A The scores generated from a PLS model of the above target batches (Penicillin yield > 
2000 kg) are represented by green circles and the below target batches (Penicillin yield < 2000 kg) are 
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represented by the red crosses. The 1st latent variable represents 31.0% and 76.4% of the variance of the 
X and Y data, respectively, similarly the 2nd latent represents 8.7% and 19.9% of these data. B represents 
the variable contribution plot showing the normalised weight of each variable calculated using the 1st 
latent variable from the PLS model. 

 

 

Figure 6: A Calibration and validation batches of the off-line PAA samples and the corresponding 
predictions using a PLS model combined with the Raman spectroscopy analyser. B Summary of FPAA for 
the calibration and validation batches and the APC batch with FPAA controlled using the soft-sensor 
developed here. C Outline of PAA controlled using the APC strategy implemented here where the set-
point for PAA was equal to 1250 mg L-1. D Profile of Penicillin concentrations during the calibration, 
validation and APC controlled batches.  

 

Fault detection  

Faults are an inherent hindrance to every manufacturing facility with early detection and subsequent 

isolation essential to minimise any significant process deviations (Venkatasubramanian et al. 2003). 

Early detection of faults during biopharmaceutical processes are necessary to ensure all process 

variables remain within a tight operating window ensuring strict target product requirements are 

maintained. Monitoring all available measurements is significantly challenging due to the increasing 

number of on-line and off-line variables recorded on industrial manufacturing facilities. Many 

biopharmaceutical companies rely on MVDA to help efficiently monitor the multitude of available 
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process measurements enabling faster detection of process faults (Nomikos and Macgregor 1995). This 

approach was applied here to provide a benchmark for detecting abnormal processing conditions within 

IndPenSim.  

This section demonstrates the application of IndPenSim to generate known faults during batches. Two 

standardised MVDA based fault detection algorithms were implemented to identify these faults. The 

data set generated from Campaign 4 excluding the 2 below target batches and an additional 5 batches 

that were considered to be sub-optimal. Campaign 4 represents a typical campaign controlled through 

a recipe driven control strategy with a fixed batch length and yielded a highly diverse data set. In total 

there were 17 batches taken as normal operating conditions (NOC) batches with batches 18-21 

containing known faults. A comparison between the nominal trajectories and the batches with faults are 

shown in Fig. 7 with A highlighting the aeration fault, B the pH sensor drift fault, C the substrate fault  

and D the coolant fault. The nominal biomass (X) and penicillin (P) profiles calculated by averaging all 

17 batches are shown in Figs. 7E and 7F, respectively in addition to highlighting the effect of the 

process faults on these two CPPs. PCA was selected here based on its ability to compress the large 

volume of data to a much smaller set of linearly uncorrelated principal components (PCs) enabling 

direct visualisation of all variables  suitable for process monitoring fault detection (Lee et al. 2005b). 

The 17 NOC batches from Campaign 4 were unfolded to form the X data structure and generate the 

PCA model retaining three principal components as defined in section 3.1. All 22 of the on-line 

variables recorded by IndPenSim were used in the PCA model, the utilisation of only on-line variables 

enables faults to be detected in real-time.   

To evaluate the comparability of the NOC batches with those containing faults the T2 (Eq. 9) and Q (Eq. 

10) statistic were calculated. The Q statistic is shown in Fig. 8A and highlights a clear distinction 

between the NOC batches and batches with faults. Each of the batches containing faults are above the 

Q statistic 95% confidence limit calculated from Eq. 12-14 indicating abnormal behaviour. The highest 

Q statistic is batch 17 which contains the aeration fault shown in Fig.  7E and F to have largest deviation 

in penicillin and biomass concentrations in comparison to the nominal trajectories. In contrast the T2 

statistic, shown in Fig. 9A, indicates all batches to be within the 95% confidence limit calculated using 

Eq. 8. Gunther et al. (2007) described similar results with the off-line Q statistic outperforming the T2 

statistic in its ability to successfully identify the batches with faults in comparison to NOC batches. 

Typically, the T2 is better at identifying systematic errors between batches whereas the Q statistic is 

better at identifying a new event which that the previous PCA model has not seen which is the case for 

the faults described in this work. However, both the T2 and Q statistics have successfully identified 

abnormal process behaviour on various different industrial processes (Westerhuis et al. 2000; Gülnur 

et al. 2002;  Chio et al. 2008).  
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A second major advantage of generating these PCA models is their ability to monitor and detect the 

root cause of any abnormal process behaviour in real-time by analysing the SPE and T2 using equations 

8 and 16. These are shown for the NOC batches in Fig. 8B and 9B respectively with the 95% upper 

control limit (UCL) shown. Monitoring both the SPE and T2 chart in real-time enables any process 

deviations from nominal trajectories to be subsequently identified. The current monitoring system 

signals an alarm after the SPE or T2 exceeds an upper control limit (UCL). The SPE UCL assumes a ú< 

distribution calculated using equations 12-14 taking the confidence limit F equal to 95%. The ú< 

distribution is the most widely implemented for monitoring the mean vector of a process (Rakitzis and 

Antzoulakos, 2011). The SPE of the four batches with faults are shown in Figs. 8C to 8F. These figures 

highlight the ability of SPE to quickly identify abnormal process behaviour for the aeration faults which 

occur at hours 20-24 and 100-110. Calculating the variable contribution to the SPE at time 20.2 using 

Eq. 18 highlights a significant contribution from the aeration rate (Fg), as shown in Fig. 10A. Additional 

variable contributions are shown for the carbon dioxide off-gas (CO2offgas), the dissolved oxygen (O2) and 

the carbon evolution rate (CER). The drop in the aeration during this time period shown in Fig. 7A, 

results in a significant drop in the dissolved oxygen and effects the mass balance recoded by the CO2offgas 

and CER measurements explaining their contribution to the SPE during this fault. The pH sensor fault 

occurs on batch 19 at approximate hour 50, however the on-line SPE only violates the UCL at hour 104. 

The variables contributions at this time are shown in Fig. 10B indicating the error is primarily due to 

deviations in pH.  The relative delay in detecting this error is most likely due to the high frequency 

noise associated to the pH process variables highlighted in Fig. 7B. Furthermore, the penicillin and 

biomass concentrations were not directly influenced by the pH sensor drift as shown in Fig. 7E and 7F. 

The substrate fault behaves in a similar fashion to the aeration fault and is easily detected by the SPE 

in Fig. 8C. The subsequent analysis of the contributions shown in Fig. 10C indicates a problem with 

substrate flow rate (Fs).  The coolant fault results in a temperature shift highlighted in Fig. 7D and 

behaves similarly to the pH fault with a delay in the UCL violation as shown in Fig. 8D. The variable 

contributions for this time point are shown in Fig. 10D and clearly highlight an error with the 

temperature. This UCL violation occurs approximately when the temperature is 298.25 K which is 0.25 

K above its set-point. This enables significant time for corrective action as it is only when the 

temperature increases to 298.5 K that a drop in penicillin production is observed as shown in Fig. 7F. 

The on-line T2 are shown in Fig. 9 B-F and do not the highlight any process deviations with all the T2 

remaining below 95% confidence limit. The process faults in this work are better captured through the 

analysis of the SPE which summarised the variation not captured by PCA in contrast to the T2 statistic 

which is better suited to describing deviations described by the PCA model.  
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Figure 7: Outline of the nominal trajectories of representative batches (Batches 1-17) from Campaign 
4 in additional to time-series profiles of batches 18-21 containing known faults.  A: Aeration fault 
(Batch 18), B: pH sensor drift fault (Batch 19), C: Substrate fault (Batch 20) and D: Coolant fault (Batch 
21). The nominal Biomass (X) and Penicillin (P) profiles are shown in E and D, respectively with the 
profiles shown for each of the four batches containing faults.   
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Figure 8: A Plot of Q statistic for each of the 21 batches with the NOC batches represented by diamonds 
and the batches with faults represented by squares B A summary of the SPE recorded for each of the 17 
nominal batches with the UCL highlighted. C-F A summary of the SPEk for each of the four batches 
with faults with the UCL highlighted. 
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Figure 9: A Plot of T2 statistic for each of the 21 batches with the NOC batches represented by 
diamonds and the batches with faults represented by squares B A summary of the T2 recorded for each 
of the 17 nominal batches with the UCL highlighted. C-F A summary of the time-series T2 for each of 
the four batches with faults with the UCL highlighted. 
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Figure 10:  Variable contribution plot of SPE statistic for A recorded at time point 20 hours for batch 
18 (aeration fault), B recorded at time point 104 hours for batch 19 (pH fault), C recorded at time 
point 20 hours for batch 20 (substrate fault), D recorded at time point 100.2 hours for batch 21 
(coolant fault) 

 

Conclusion  

The industrial-scale penicillin simulation (IndPenSim) developed in this paper aims to act as a 

benchmark simulator to develop, evaluate and validate novel and advanced control strategies, applicable 

to real-world biopharmaceutical manufacturing facilities. The paper outlines a number of highly 

challenging control objectives to enhance overall yield and productivity requiring the development of 

adaptive and innovative control solutions.  Furthermore, using the simulator all process improvements 

or modifications can be effectively compared and evaluated against the annual production yields 

generated by the previous five campaigns implementing operator dependant and recipe driven control 

strategies. The modifications to IndPenSim that are introduced in this paper represent the first 

bioprocess simulation to include a PAT device that accurately mimics the spectra recorded by a Raman 

spectroscopy device. The inclusion of this device represents a significant opportunity to help drive 

FDA’s goal of enhancing process understanding and supporting innovative control solutions utilising 
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real-time sensors. The capabilities and functionality of IndPenSim were demonstrated through two case 

studies. The first involves implementing all three stages of the PAT initiative using the Raman 

spectroscopy probe to enhance control of phenylacetic acid, previously identified as a CPP.  The 

application of this control strategy resulted in a significant increase in yield improvements, increasing 

the annual penicillin yields to 3517 kg representing a 20% increase when compared to the previous five 

campaigns. Furthermore, this control strategy reduced the number of below target batches to zero 

emphasising the importance of implementing advanced controllers on biopharmaceutical processes. 

The second case study involved the evaluation of a benchmark fault detection algorithm to identify the 

occurrence of known faults. The SPE statistic significantly outperformed the T2 statistic in it’s ability to 

identify and locate the root cause of process faults during abnormal process operation. IndPenSim and 

all data presented here are available to download at www.industrialpenicillinsimulation.com and acts 

as an open resource for researchers to analyse, improve and optimise the current control strategy 

implemented on this facility. 
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