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Self-similar and disordered front propagation in a radial Hele-Shaw channel with
time-varying cell depth
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1Manchester Centre for Nonlinear Dynamics and School of Physics and Astronomy,

University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
2Manchester Centre for Nonlinear Dynamics and School of Mathematics,

University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

The displacement of a viscous fluid by an air bubble in the narrow gap between two parallel
plates can readily drive complex interfacial pattern formation known as viscous fingering. We focus
on a modified system suggested recently by [1], in which the onset of the fingering instability is
delayed by introducing a time-dependent (power-law) plate separation. We perform a complete
linear stability analysis of a depth-averaged theoretical model to show that the plate separation
delays the onset of non-axisymmetric instabilities, in qualitative agreement with the predictions
obtained from a simplified analysis by [1]. We then employ direct numerical simulations to show
that in the parameter regime where the axisymmetrically expanding air bubble is unstable to non-
axisymmetric perturbations, the interface can evolve in a self-similar fashion such that the interface
shape at a given time is simply a rescaled version of the shape at an earlier time. These novel,
self-similar solutions are linearly stable but they only develop if the initially circular interface is
subjected to unimodal perturbations. Conversely, the application of non-unimodal perturbations
(e.g. via the superposition of multiple linearly unstable modes) leads to the development of complex,
constantly evolving finger patterns similar to those that are typically observed in constant-width
Hele-Shaw cells.

INTRODUCTION

An expanding air bubble that displaces a viscous fluid within the narrow gap between two parallel plates (a Hele-
Shaw cell) is unstable to non-axisymmetric perturbations beyond a critical value of the capillary number Ca, the ratio
of viscous to surface tension forces [2–5]. In this radial geometry, the unstable interface typically deforms into a set of
growing fingers which evolve continuously in time through a sequence of tip-splitting events followed by competition
between the newly-formed fingers. This non-linear evolution is an archetype for front-propagating, pattern forming
phenomena [6].

Long-standing interest in viscous fingering stems from its similarities with a range of other front propagation
phenomena, such as the growth of bacterial colonies [7] and the solidification instabilities during crystal growth [8]. In
hydraulic fracture used for oil recovery, viscous fingering is promoted to ensure heterogeneous placement of particles
(proppants) into fractures, thereby increasing their hydraulic conductivity, but it is also actively suppressed to avoid
early breakthrough of water into adjacent production wellbores [9, 10]. This has stimulated a recent resurgence
in research effort to delay the onset of viscous fingering, e.g. by manipulating the geometry of the cell, either
actively [11, 12], or passively by using compliant cells [13–15]; by controlling the injection rate [16]; or by tuning the
viscosity ratio of miscible fluid pairs [17].

In this paper, we consider fingering in a radial Hele-Shaw cell in which the width of the gap between the parallel
bounding plates increases as a function of time. This effect is stabilising since it reduces the rate at which the
axisymmetric bubble expands; in fact, if done sufficiently rapidly, the plate separation can bring the expansion of
the bubble to a halt or even cause the bubble to contract. In a recent study, Zheng et al. [1] employed a simplified
analysis, based on Paterson’s classical results for the system with constant gap width [3], to examine the case when
the gap width increases according to the power law b∗(t∗) = b∗1 t

∗1/7, where b∗ is the distance between the plates and
t∗ is time. They not only confirmed that viscous fingering can be suppressed if the plates are separated sufficiently
rapidly (i.e. for sufficiently large values of the constant b∗1), but also predicted that the wavenumber kmax of the
most rapidly-growing small-amplitude perturbation to the axisymmetric bubble is independent of the bubble’s radius.
Furthermore, they performed experiments which showed that in the parameter range for which the axisymmetric
bubble is unstable, a small number of finite-amplitude non-splitting fingers tended to develop and that the number
of these fingers was remarkably close to kmax.

The observation of non-splitting fingers is unusual because it contrasts with the typical sequence of tip-splitting
and finger competition observed in experiments without plate lifting [4, 5]. The findings of Zheng et al. [1] suggest
that, following some initial transients, the finger growth may become self-similar in the sense that the finger shape
at a given time is simply a rescaled version of the shape at an earlier time. This is analogous to proportionate
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FIG. 1. Schematic diagram of a perturbed interface in the radial Hele-Shaw cell with time-varying gap width.

growth observed in biological systems, e.g. during growth of a mammal whose body parts grow at nearly the same
rate and thus in direct proportion to each other [18]. In radial Hele-Shaw cells without lifting, proportionate growth
of fingering (or self-similar fingering) has been observed in some experiments with miscible fluids [17]. Self-similar
growth of the interface between two immiscible fluids has previously been observed [19, 20] and predicted [21–23] in a
related setup where the cell consists of a disk sector. This geometry promotes the formation of a single finger which
is symmetric about the sector centreline and which does not split for sufficiently small values of Ca or sector angles.
Other, more complex but well-defined, reproducible finger shapes were also obtained by imposing selected initial
perturbations. Moreover, Li et al. [24] have observed self-similarly evolving fingering patterns in a radial geometry
with a fixed gap width by varying the air injection rate according to the power law Q(t∗) = Q1t

∗−1/3, where Q is
the injection flux. The number of finite-amplitude, self-similar fingers observed in their simulations matched the most
unstable wavenumber obtained from a linear stability analysis. Intriguingly, these self-similar fingers were obtained
in simulations which were started from an initial perturbation whose Fourier decomposition did not include the most
unstable mode from the linear stability analysis. This indicates that in that system the self-similar fingers are formed
through the nonlinear interaction of modes.

In this paper we revisit the scenario studied by Zheng et al. [1] and perform a full linear stability analysis to
confirm that kmax is indeed independent of the bubble radius. We then perform numerical simulations of the system’s
nonlinear evolution following the onset of the linear instability. We demonstrate that self-similarly evolving fingering
patterns can be realised with the lifting law introduced by Zheng et al. [1], but only when the initially circular
interface is perturbed with a single, linearly unstable mode. Unimodal perturbations with wavenumber kmax lead to
the development of kmax distinct non-splitting, self-similar finite-amplitude fingers. If the interface is subjected to
unimodal perturbations with other wavenumbers the perturbed interface typically undergoes a transient phase during
which fingers split before they approach a self-similar regime. Therefore, the number of self-similar fingers that emerge
from the instability does not necessarily coincide with the most unstable wavenumber predicted by the linear stability
analysis. We also find that if non-unimodal, random initial perturbations are introduced, such as those occurring
in a typical experiment, the interface does not evolve towards a self-similar solution, in contrast with the scenario
suggested by the experiments of Zheng et al. [1]. Instead, the fingering pattern evolves continuously as the interface
advances across the cell through a succession of tip-splitting and finger competition events reminiscent of the patterns
in a radial cell with fixed parallel plates.

MATHEMATICAL MODEL

We describe the motion of the wetting viscous fluid occupying the narrow gap between the two bounding plates
using the lubrication approximation. Using horizontal polar coordinates (r∗, θ), centred at the injection point (see
figure 1), the equations for the vertically averaged velocity u∗(r∗, θ, t∗) and the fluid pressure p∗ are then

u∗ = − b
∗2

12µ
∇p∗,

db∗

dt∗
= −∇ · (b∗u∗) =

b∗3

12µ
∇2p∗ in r∗ > R∗(θ, t∗), (1)

where µ is the liquid viscosity, R∗(θ, t∗) is the bubble radius, and b∗(t∗) is the (spatially constant) gap width. Through-
out this paper we employ asterisks to distinguish dimensional quantities from their non-dimensional equivalents. In
the region r∗ < R∗(θ, t∗), the gas bubble has a uniform pressure p∗g(t∗). We neglect the effects of the thin films of
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liquid that are left behind the advancing bubble tip, and ignore viscous normal stresses at the interface. The kinematic
and dynamic boundary conditions at r∗ = R∗(θ, t∗) then become

∂R∗

∂t∗
· n = u∗ · n, (2)

p∗(R∗, θ, t∗) = p∗g(t
∗)− γ(κ∗⊥ + κ∗‖) = p∗g(t

∗)− γ

(
R∗2 + 2(∂R

∗

∂θ )2 −R∗ ∂
2R∗

∂θ2

(R∗2 + (∂R
∗

∂θ )2)
3
2

+
2

b∗

)
, (3)

where n is the unit normal to the interface and γ is the surface tension. The mean curvature of the interface is
approximated as the sum of the in-plane and transverse curvatures, κ∗‖ and κ

∗
⊥, respectively. At the outer boundary of

the Hele-Shaw cell we impose p∗(R∗outer, θ, t∗) = 0 (implying that all pressures are measured relative to the atmospheric
pressure). Finally, for a constant injection flux Q, the volume of gas in the bubble is given by

Qt∗ =
b∗(t∗)

2

∫ 2π

0

R∗2(θ, t∗)dθ. (4)

We study the system’s evolution starting from t∗ = t∗0 when the cell walls are separated by b∗0 and the bubble has an
initial radius R∗ = R∗init.

In the following analysis, we non-dimensionalize in-plane lengths with R∗outer, the gap width with b∗0, time with
2πR∗2outerb

∗
0/Q and pressures with 6µQ/πb∗30 . Then the problem is governed by three non-dimensional parameters: the

capillary number Ca = µQ/(2πγR∗outerb
∗
0), the cell aspect ratio A = b∗0/R

∗
outer and the initial radius of the bubble

Rinit = R∗init/R
∗
outer. At the initial time, when t = t0 = R2

init/2, we then have b(t0) = 1. When imposing Zheng et al.’s
[1] power-law behaviour for the plate separation we have b(t) = b1 t

1/7, where b1 = b∗1 (2πR∗2outer/(b
∗6
0 Q))1/7 = t

−1/7
0 =

(R2
init/2)−1/7.

AXISYMMETRIC SOLUTIONS AND LINEAR STABILITY ANALYSIS

Equations (1)-(4) have an axisymmetric solution for which the bubble radius is given by

R̄(t) =

(
2t

b(t)

)1/2

(5)

while the pressures in the viscous fluid and the gas bubble are

p̄(r, t) =
1

b3
db
dt
r2 − 1

4
− 1

b3
log r, (6)

and

pg(t) =
1

b3
db
dt
R̄2 − 1

4
− 1

b3
log R̄+

A
12Ca

(
A
R̄

+
2

b

)
, (7)

respectively. To assess the stability of this solution to non-axisymmetric perturbations that change the shape of the
interface, we assume R(θ, t) = R̄(t)+εR̂k(t) sin(kθ), where ε� 1 is the amplitude and k > 1 is the integer wavenumber
of the perturbation. A straightforward linear stability analysis then shows that the instantaneous growth rate λk of
the small-amplitude perturbation with wavenumber k is given by

λk =
1

R̂k

dR̂k
dt

=
1 + R̄2k

1− R̄2k
k

(
A2b2(1− k2)

12CaR̄3
− 1

b

(
1

2

db
dt
− 1

R̄2

))
− 1

b

(
1

2

db
dt

+
1

R̄2

)
. (8)

For bubbles that are much smaller than the outer radius of the cell, we have (1 + R̄2k)/(1− R̄2k) ≈ 1, allowing us to
approximate the growth-rate as

λk =
k − 1

R̄2

(
1

b
− A

2b2k(k + 1)

12CaR̄
− R̄2

2b

db
dt
k + 1

k − 1

)
. (9)

In the absence of lifting, i.e. b = 1 and db/dt = 0, this reduces to Paterson’s classical expression for the growth rate
in an infinitely large Hele-Shaw cell with constant gap width [3]. A positive rate of plate separation, db/dt > 0, can
be seen to reduce the growth rate of the perturbations and therefore stabilises the axisymmetric state.
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We note that, in general, the instantaneous growth rate λk of the small-amplitude perturbations varies with the
evolving mean radius of the bubble. As a result, the range of unstable wavenumbers (i.e. wavenumbers for which
λk > 0) and the most unstable wavenumber (for which dλk/dk = 0) generally change throughout the system’s
evolution. One of the key observations made by Zheng et al. [1] is that if the gap width has a power-law behaviour
of the form b(t) ∼ t1/7 then the mode with the largest positive growth rate predicted by Paterson’s analysis – which
is used somewhat inconsistently because its derivation assumes that db/dt = 0 – remains constant.

To assess to what extent Zheng et al.’s conclusions are affected by this inconsistency we note that for an arbitrary
time-varying gap width b(t), equations (5) and (9) show that perturbations with wavenumber k decay if

db
dt
− (k − 1)

(k + 1)

b

t
+
A2k(k − 1)

12
√

2Ca

b9/2

t3/2
> 0. (10)

For b(t) = b1 t
1/7 this condition becomes

Sk =
1

7
− k − 1

k + 1
+
k(k − 1)

J
> 0, (11)

where

J =
12
√

2Ca

A2b
7/2
1

=
6µQ3/2

π3/2γb
∗ 7/2
1

(12)

is precisely the control parameter appearing in Zheng et al.’s analysis. The inclusion of the db/dt term in our analysis
results in the appearance of an additional term in the stability criterion (11) (the constant 1/7 on the left-hand-side
of this equation) but its presence does not re-introduce a time-dependence into this condition. Thus Zheng et al.’s
key observation remains unchanged. Furthermore, the condition for a perturbation with wavenumber k to have a
negative instantaneous growth rate (implying linear stability with respect to such perturbations) can be expressed in
terms of J as

J < Jcr(k) =
7k(k2 − 1)

6k − 8
, (13)

while, for a given, sufficiently large value of J , the wavenumber kmax of the perturbation with the largest positive
growth rate satisfies

J =
7

6

(
3k2max − 1

)
. (14)

These results again only differ slightly from those obtained by Zheng et al.’s approach which yields Jcr(k) = k(k+ 1)
and J = 3k2max − 1.

Figure 2 compares the two sets of results in a plot of the stability criterion (11) for three different values of
J . Recall that the axisymmetric state is stable when Sk > 0, therefore wavenumbers for which Sk < 0 represent
unstable perturbations. Zheng et al.’s approach can be seen to consistently over-estimate the growth-rate of the
non-axisymmetric perturbations because their analysis omits the stabilising effect of the db/dt term. However, both
analyses show that the range of unstable wavenumbers and the wavenumber with the fastest growth rate increase
with J .

DIRECT NUMERICAL SIMULATIONS

The results presented above confirm that for a lifting law of the form proposed by Zheng et al. [1], the wavenumber
of the most rapidly growing small-amplitude perturbation remains constant throughout the system’s evolution. To
assess if this behaviour is responsible for the development of the non-splitting fingers observed in Zheng et al.’s
experiments, we now conduct numerical simulations of the system’s nonlinear evolution following the onset of the
linear instability. For this purpose we used an oomph-lib-based [25] finite-element discretization of the governing
equations, details of which can be found in [26].

All simulations were performed for Ca = 0.3893 and Rinit = 0.05 as in our previous work [26, 27]. Suitable temporal
and spatial convergence tests were performed to ascertain that the results presented below are fully converged. All
simulations were stopped before the shape of the interface was significantly affected by the boundary of the finite cell
at r = 1.
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FIG. 2. Plot of the stability criterion (11) for J = 10, 50 and 100. The axisymmetric state is unstable to non-axisymmetric
perturbations with integer wavenumber k if Sk < 0. The predictions corresponding to Zheng et al.’s approach [1] are shown by
dashed lines.

Unimodal perturbations and self-similar fingering

We start by perturbing the initial circular bubble of radius Rinit = 0.05 with the single, most rapidly growing mode
so that

R(θ, t = t0) = Rinit + ε cos(kmaxθ), (15)

where we set the amplitude of the perturbation to ε = 5× 10−4, i.e. 1% of the initial radius. Figure 3(a) shows the
time-evolution of the interface for J = 600 (for which kmax = 13), using snapshots of the interface plotted at regular
time intervals. Thirteen identical finite-amplitude fingers grow from the initial perturbation and, interestingly, the
fingers show no signs of splitting. Instead, they remain symmetric about their radial centreline and appear to approach
a self-similar shape. This is confirmed in figure 3(b), where we rescaled the radial coordinate by the radius of the
finger tip, Rtip, for each snapshot. This shows that, after an initial transient evolution that occurs within the first
five contours shown in figure 3(b), the successive rescaled interfaces become virtually indistinguishable. Equivalent
behaviour was observed in simulations for 14 different values of J in the range 25 ≤ J ≤ 1000, where in each case we
imposed the most rapidly growing single-mode perturbation, with kmax given by equation (14).

In figure 4 we plot the tip radius, Rtip, as a function of time on a log-log scale for a range of J values. As the tip
radius increases from its initial value it rapidly approaches a power law behaviour, Rtip ∼ t3/7, which is identical to
that of the axisymmetrically growing bubble (see equation (5) and recall that b(t) ∼ t1/7). This is again consistent
with the observed self-similar evolution of the interface shape – if the bubble radius R(t, θ) approaches a self-similar
behaviour such that R(t, θ) = f(t)Fk(θ) volume conservation requires that f(t) ∼ t3/7. We note that the curves
representing Rtip(t) for different values of J almost overlap, implying that the pre-factor (which is always larger than
that for the axisymmetrically growing bubble) is approximately independent of J , despite significant variations in
kmax which ranges from 8 to 17.

Next, we explore whether the interface shape evolves towards a self-similar solution when the initial single-mode
perturbation has a wavenumber other than kmax. For this purpose we choose a larger value of J , J = 1000, in order
to operate in a regime with a wide range of linearly unstable modes. We then perturb the initial circular bubble
as in (15) but replace kmax with a wavenumber from the unstable range defined by equation (13). The resulting
evolution of the interface is shown in figures 5(a-b) for different values of k, starting from a perturbation of amplitude
ε = 5 × 10−4. In each case, the system undergoes a transient initial evolution but ultimately reaches a regime in
which a number of identical, self-similar fingers have emerged from the initial perturbation. However, the number of
self-similar fingers that develop depends on the wavenumber of the initial perturbation. For the perturbation with
k = kmax = 17 (figure 5(a)) we retain the wavenumber of the initial perturbation. If we impose an initial perturbation
with k = 7 (figure 5(b)) the finite-amplitude fingers that develop from the initial perturbation split once (see the
zoomed-in region shown in the inset) before approaching a self-similar pattern with 14 fingers. This implies that the
number of self-similar fingers that can emerge from the initial perturbation is not directly related to the value of kmax

from the linear stability analysis.



6

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

r
si
n
θ

r cos θ

(a)

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0

r
si
n
θ
/
R

ti
p

r cos θ/Rtip

(b)

FIG. 3. (a) Series of snapshots showing the evolution of the interface for J = 600. The simulation was started at t0 = 0.00125
when the axisymmetric interface (of radius Rinit = 0.05) was subjected to an initial perturbation with wavenumber k = kmax =
13 and amplitude ε = 5 × 10−4. The innermost interface is shown for t = 0.011 and the time interval between contours is
∆t = 0.083. (b) Interface contours from (a) scaled by the radius of the finger tip, Rtip. In (a) and (b), the first and the last
interfaces in the sequence are highlighted with green and red colours, respectively.
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3R
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FIG. 4. Log-log plot of Rtip as a function of timea for J = 220, 600 and 1000. In each case, the interface is initially perturbed
by the single, most-rapidly growing mode. The dotted line shows the radius of the axisymmetrically growing bubble, R̄(t).
a In a typical experiment, with R∗

outer = 20 cm, b∗0 = 0.5 mm and Q = 25 ml/min as in [28], say, the total simulation time corresponds
to approximately 150 s of interface expansion before the outer boundary of the cell is reached.

The tip splitting events that may occur during the early transients that precede the self-similar evolution of the
interface are not restricted to tip doubling. This is illustrated in figure 5(c) where we imposed an initial perturbation
with k = 5 and also increased the amplitude of the perturbation to 25% of the initial radius. The early-time growth
of the initial perturbation is now followed by a tip-tripling event (see the zoomed-in region shown in the inset) before
the bubble approaches a configuration with 15 self-similar fingers.

For all cases shown in figure 5 the imposed unimodal initial perturbation is symmetric about the radial centreline
of a sector spanned by an angle 2π/k, shown by the dashed lines. Even when the evolution of the interface involved
tip-splitting into two or three fingers, the newly-formed fingers did not compete with each other to break this initial
symmetry. The fact that the computations were performed with unstructured meshes which (despite being sufficiently
fine to ensure mesh-independent solutions) inevitably introduce small non-axisymmetric perturbations, suggests that
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FIG. 5. Series of snapshots showing the evolution of the interface for J = 1000. The simulations were started at t0 = 0.00125
when the axisymmetric interface (of radius Rinit = 0.05) was subjected to an initial perturbation with wavenumber (a) k =
kmax = 17, (b) k = 7, (c) k = 5. The amplitude of the initial perturbation is ε = 5 × 10−4 for (a-b) and 1.25 × 10−2 for (c).
The time interval between contours is (a) ∆t = 0.069, (b) ∆t = 0.078, (c) ∆t = 0.08. In each case the first contour is shown
at t = 0.011. Dashed lines indicate a sector within which a single finger develops at early times. The insets show the early
evolution of the interface with successive contours chosen so that the average radius 〈R〉 = 1

2π

∫ 2π

0
Rdθ increases by 0.022.

the self-similar fingers are linearly stable.
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FIG. 6. Instantaneous interface shapes with average radius 〈R〉 = 0.05 (black), 0.1 (red), 0.17 (cyan), 0.31 (dark green) and
0.6 (blue), respectively, computed for J = 600. The arrow points to a region of the interface that undergoes tip-splitting and
finger competition.

Non-unimodal perturbations and disordered fingering

Unimodal initial perturbations, such as those imposed in the simulations presented in the previous section, are,
of course, difficult to realise in actual experiments. The initial perturbation to a real bubble is likely to comprise a
wide range of modes. To analyse this scenario we now perturb the interface with the full range of linearly-unstable
wavenumbers. We introduce these perturbations by adding all of the unstable modes to the initial shape of the
interface, each with a randomly generated (and uniformly distributed) relative amplitude R̂k ∈ [0, 1] and phase
φk ∈ [0, 2π),

R(θ, t = t0) = Rinit + ε
∑

unstable k

R̂k cos(kθ + φk), (16)

where the overall amplitude ε was chosen to be 0.5% of the initial radius. We performed 50 simulations for 14 values
of J within the range 25 ≤ J ≤ 1000.

A typical evolving interface is shown in figure 6 for J = 600 for which kmax = 13. The snapshots of the interface are
shown for different values of the average radius 〈R〉 and are plotted in different colours. When the mean radius has
grown to 〈R〉 = 0.1 (red) the random initial perturbation has led to the development of 13 distinct fingers of varying
widths and lengths. Differences in the length of adjacent fingers are amplified as the fingers grow (finger competition)
and when 〈R〉 = 0.17 (cyan), the total number of fingers has decreased from 13 to 10. At 〈R〉 = 0.17 (cyan) the four
largest fingers have broadened considerably so that their tips are approximately flat. When 〈R〉 = 0.31 (dark green)
these fingers have undergone a tip-doubling followed by competition between the newly-formed fingers, while another
finger has broadened sufficiently for another tip-doubling to occur. Because the fingers are not symmetric about their
radial centreline, the tip-doubling events lead to pairs of fingers of different shapes and radial tip positions, so that
one of the fingers screens the other and adopts a strongly asymmetric shape; see, for example, the finger identified by
the arrow in figure 6. The final pattern shown in figure 6 (blue) at 〈R〉 = 0.6 comprises 11 distinct fingers of different
shapes, which continue to evolve and interact as they grow.

We characterise the patterns in figure 6 by following [1] and compute the Fourier coefficients c(k) of R− 〈R〉,

c(k) =
1

2π

∫ π

−π
(R− 〈R〉) exp(−ikθ)dθ. (17)
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FIG. 7. Normalised spectra of the instantaneous interface shapes shown in figure 6 for J = 600. The mean radii are (a)
〈R〉 = 0.05, (b) 0.1, (c) 0.17, (d) 0.31 and (e) 0.6. The vertical dashed line indicates the value of kmax = 13 predicted by the
linear stability analysis.

To compare coefficients computed for different values of 〈R〉, we normalise the amplitudes c(k) by the area under
the corresponding spectral curves and denote the normalised amplitudes by ||c(k)||. This allows us to focus on the
relative amplitudes of the modes rather than their absolute value which grows with increasing radius.

Figure 7 shows that the evolution of the spectral curves is closely correlated with the evolution of the interfacial
pattern. The interface shape can be seen to comprise a mixture of modes, with the number of distinct fingers observed
at the interface approximately corresponding to the mode with the maximum normalised amplitude, which we label
Kmax.

In all the simulations performed with random initial perturbations the value ofKmax continued to fluctuate through-
out the system’s evolution. Typically, Kmax decreased significantly from its initial value at early times when many
modes had comparable amplitudes (see figure 7(a)). At later times, Kmax was more likely to increase due to tip-
splitting events. The overall rate of change of Kmax decreased with increasing time, but Kmax continued to fluctuate
until fingers reached the edge of the computational domain. This scenario was observed for all the values of J inves-
tigated (J ∈ [25, 1000]), despite the fact that the growth rate of the imposed small-amplitude initial perturbation is
smaller for smaller values of J .

Figure 8 shows how variations in J affect Kmax which we evaluated when 〈R〉 = 0.6 – the largest value reached
in all simulations (which necessarily terminate when one of the fingers reaches the outer edge of the computational
domain). The error bars on the symbols quantify the standard deviation of Kmax across 50 runs for each value of
J , and highlight the disordered nature of the interface evolution. The two lines show the most unstable wavenumber
kmax predicted by our linear stability analysis (solid) and by Zheng et al.’s approach (dashed). For modest values of
J the wavenumber Kmax observed in the numerical simulations is remarkably close to kmax from the linear stability
analysis. However, for larger values of J , Kmax remains significantly below kmax. Furthermore, none of the simulations
that were started with random initial perturbations showed any signs of settling on a self-similar state – the fingers
continued to split and then compete with each other over the entire range of the simulations.

Our results show that the system’s behaviour is fundamentally different when the initial, axisymmetrically expanding
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FIG. 8. The variation of Kmax with J from direct numerical simulations (DNS). The error bars denote the standard deviation
across 50 simulations. The lines show kmax from the results of the linear stability analysis, using our own predictions (solid)
and those from [1] (dashed). kmax can only take integer values, which we connect by vertical line segments, resulting in steps
in the curves.

bubble is subjected to unimodal or non-unimodal perturbations to its shape. This raises the question in what way
the small-amplitude non-unimodal perturbations that we deliberately introduced in the computations shown in figure
6 differ from those introduced unintentionally by the use of unstructured meshes in the simulations in figure 5,
say. Clearly, the deliberately introduced unimodal perturbation imposed by equation (15) must have a larger initial
amplitude than those caused by the unstructured mesh. This was ensured by performing the computations on
sufficiently fine meshes. However, we also have to make sure that the growth rate of the deliberately introduced
unimodal perturbation is sufficiently large so that it deforms the interface into a non-linear regime before the other
modes have grown to comparable amplitude. This is, of course, easiest to achieve if the deliberately introduced
perturbation is the one with the maximum growth rate, as in figure 5(a) where we applied a perturbation with
k = kmax = 17. The initial amplitude of ε = 5 × 10−4 used for the perturbation with k = 7 < kmax in figure
5(b) sufficed to create seven finite-amplitude fingers that subsequently underwent a single tip-splitting event before
approaching the self-similar regime. However, when using that amplitude to impose a perturbation with k = 5 (which
has a much smaller but still positive growth rate) the system evolved in a disordered manner, with unequal fingers
that kept splitting and competing with each other. The five-fold overall symmetry of the initial perturbation could
only be retained by increasing its amplitude, as in figure 5(c) where the initial fingers undergo a tip-tripling before
approaching a self-similar regime with 15 non-splitting fingers.

SUMMARY AND DISCUSSION

We studied the dynamics of an expanding gas bubble that displaces a viscous liquid in a radial Hele-Shaw cell with
a time-varying gap width, focusing on the case of a t1/7 power-law for the plate separation. Our full linear stability
analysis confirmed Zheng et al.’s [1] prediction that the wavenumber kmax of the most unstable small-amplitude
perturbation to the axisymmetrically expanding bubble is independent of the bubble’s radius. We then employed
numerical simulations to follow the growth of the instability into the finite-amplitude regime. This showed that for
unimodal perturbations with a wavenumber that matches the most unstable wavenumber from the linear stability
analysis, self-similar fingers formed on the interface. This is in stark contrast to the typical behaviour observed
in Hele-Shaw cells with constant gap widths where fingers tend to split and compete with each other, resulting in
complex, disordered and continuously evolving interface shapes.

Interestingly, self-similar fingers also emerged from unimodal perturbations with wavenumbers other than kmax. In
this case, the finite-amplitude fingers tended to pass through an initial transient period during which they split (via
tip doubling or tripling) before ultimately approaching a final regime in which their shapes evolved in a self-similar
fashion without any further splitting. The number of identical finite-amplitude, self-similar fingers emerging from this
process depended on the initial condition. The self-similar fingers appear to be linearly stable in the sense that they
persist despite inevitable small perturbations due to the use of unstructured meshes in the simulations. The fact that
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the self-similar solutions can only be realised from unimodal perturbations with wavenumber k, so that the interface
was symmetric about the radial centreline of a sector spanned by an angle 2π/k, suggests that they are unlikely to be
observable in actual experiments (unless an experiment happens to be performed in the narrow regime where there is
only a single unstable mode).

When starting the simulations from non-unimodal, random perturbations to the initial bubble shape – a scenario
more representative of the situation in actual physical experiments – multiple, competing and continuously splitting
fingers developed, similar to the behaviour typically found in the constant-gap system. For modest values of the
control parameter J , the wavenumber Kmax of the dominant mode contained in the Fourier spectrum of the finite-
amplitude fingers tended to be close to kmax (as observed in Zheng et al.’s experiments) but for larger values of J we
found Kmax to be significantly smaller than kmax, suggesting that there is no straightforward relationship between
the two quantities. This is in contrast to the observations of Li et al. [24], who controlled the injection flux in a
constant-gap Hele-Shaw cell according to the power law Q1t

∗−1/3. Their linear stability analysis showed that, as in
our system, the number of unstable modes and the most unstable wave number remained constant as the interface
expanded. However, Li et al. found stable self-similar patterns emerging from random initial perturbations, with
the number of finite-amplitude self-similar fingers exactly equal to the most unstable wavenumber from the linear
stability analysis. While the observed correlation between the most unstable wavenumber from the linear stability
analysis and the number of finite-amplitude self-similar fingers is intriguing, it is important to stress that it is unclear
how the fact that the wavenumber of the most-unstable small-amplitude perturbation to the axisymmetric bubble
remains independent of its radius could affect the behaviour of the finite-amplitude fingers that emerge from the
linear instability: tip-splitting of finite-amplitude fingers occurs in the course of their non-linear evolution (and does
not necessarily involve the occurrence of a secondary instability), rather than because the most unstable wavenumber
of perturbations to some (far away) axisymmetric state changes. We therefore suggest to interpret the non-splitting
fingers observed in our system as stable self-similar solutions of the governing equations. Equally, the non-splitting
fingers found by Li et al. [24] are stable self-similar solutions of their governing equations. They presumably have a
different basin of attraction compared to the self-similar solutions found in our study given the different outcomes
of the long-time simulations with random initial perturbations. Nevertheless, the self-similar fingers found in both
problems appear to be analogues to the steadily propagating fingers that develop in rectangular Hele-Shaw channels
[2, 22, 23, 29]. We also observed the systematic transient evolution of the interface towards these self-similar states via
tip-doubling and tripling. By analogy with rectangular Hele-Shaw channels, this suggests that in radial Hele-Shaw
cells other unstable self-similar solutions may exist which are reminiscent of the unstable Romero–Vanden-Broeck
multiple-tip solutions [29].
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of A.J. was funded through EPSRC grant EP/P026044/1. The research data supporting this publication can be found
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