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A B S T R A C T

Hydropower is the leading source of renewable electricity generation worldwide. Tra-

ditionally, hydropower has been perceived as a cheap, reliable and a low greenhouse

gas emitting energy source. However, evidence suggests that, given hydropower’s de-

pendency on the hydrological cycle, it could be particularly vulnerable to the effects of

climate change. In addition, hydropower infrastructure has shown to be prone to sig-

nificant cost overruns and delays, due to the inherent complexities that accompany its

deployment. Previous research has quantified these issues but little investigation has

taken place to assess them in an integrated manner.

The interest of this research is to assess how assumptions about climate change, policy

and costs can induce shifts in generation portfolio optima, particularly of power systems

that are based or plan to be based on hydropower in the long-term. For this purpose,

a series of hydrological, hydropower and energy system models have been developed

in order to take these factors into account, and search generation alternatives regard-

ing technical characteristics (i.e. power system operation, energy system configuration,

demand), economic specificities (i.e. technology costs, resource prices, cost risk) and

geospatial factors (i.e. water resource distribution, precipitation, climate change). The

proposed method is illustrated with a case study for the Republic of Ecuador until 2050,

a South American country that relies heavily on hydropower and plans to continue

harnessing its potential in the future.

Findings have identified that hydropower will remain an important least-cost and low-

emitting electricity source in Ecuador’s future, however its share in the electricity genera-

tion matrix could vary greatly. Furthermore, portfolio analysis has revealed the trade-off

between generation portfolio cost and risk. Suggesting that shifting away from run-of-

river hydropower, gas and oil-fired generation towards a system with larger shares of

hydropower with reservoir, solar PV and geothermal energy can help hedge the power

system against the uncertainties of climate change, fossil fuel price volatility and elec-

tricity infrastructure cost overruns. Failing to diversify the power system could create

a lock-in to natural gas. This research adds to the literature seeking to provide insights

for new hydropower developments particularly concentrated in emerging economies of

South East Asia, South America and Africa.
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I M PA C T S TAT E M E N T

The research methodology and results presented in this thesis have beneficial impacts

both inside and outside academia. Regarding impacts for academia, the methodology

presented in this research is comprehensive in its treatment on modelling hydropower

in an energy system optimisation model. The particular characteristics of hydropower

in terms of technology type, operation, potential and investment profile are studied

systematically, which sets a good practice benchmark for modellers looking into repre-

senting hydropower. In addition to this, two of hydropower’s long-term challenges, i.e.

impacts of climate change and construction cost overruns, have been approached with

novel methods that give insights about the level of uncertainty these issues pose for

hydropower development. While most power capacity expansion studies usually con-

sider few scenarios of climate change impact from average climate projections (if any),

this study draws these scenarios from a large ensemble of long-term climate projections

that have recently been made available by the climate modelling community. Regarding

construction costs of hydropower, while most studies approach possible cost overruns

in a deterministic manner, this thesis has incorporated cost overrun risk into the optimi-

sation process of the energy system model as well as retrieving cost overruns statistics

that have likely been made available for several power generation technologies.

The benefits beyond academia fall on the realm of long-term energy policy design.

This research informs a number of Governments in the developing world that rely on

or are planning to develop large hydropower infrastructure, such as Ecuador, Brazil,

Colombia, Zambia, Ethiopia, Myanmar and the Democratic Republic of Congo, to name

a few. Although results show that hydropower can remain as an important generation

sources in the future, the status-quo of cheap and reliable large hydropower is chal-

lenged. Non-hydro renewable energy can also be used to supply rapid growing demand,

keep emission low and hedge against risks, while failing to consider them can lead to

lock-ins to carbon-emitting and volatile fossil fuel-based generation. The implications

for policy in this study are not by any means prescriptive and wish rather to present

policy makers a range of alternatives. It is expected that this research persuades energy

ministers in developing countries to move beyond one-of-a-kind large strategic projects to-

wards the idea diversified strategic generation portfolios.
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Part I

I N T R O D U C T I O N A N D L I T E R AT U R E R E V I E W





1
I N T R O D U C T I O N

1.1 motivation for this thesis

Hydropower is the world’s largest single source of renewable electricity, producing

around 17% of the world’s total electricity (IEA, 2016b) and two-thirds of all renew-

able electricity generation (IHA, 2018). Hydropower’s commercial maturity and reliable

energy production makes it an attractive alternative for fossil fuel-based technologies.

It dominates the electricity mix in several countries – developed or developing – by

providing significant amounts of clean, renewable electricity. The large-scale global de-

ployment of renewable energy is necessary to achieve deep reductions of greenhouse

gas (GHG) emissions (IPCC, 2014d), with the aim of mitigating climate change by stay-

ing well below the 2°C average atmospheric temperature by the end of the century, as

laid out in the Paris Agreement (UNFCCC, 2015a). For countries with significant hydro-

power potential, the technology is expected to play a major role in the energy transition

needed to meet Nationally Determined Contributions (NDCs) (UNFCCC, 2015a) as well

as meeting the 7th goal (100% energy access for all by 2030) of the United Nations’

Sustainable Development Goals (SDG) (UN, 2015).

Hydropower’s extreme flexibility is a strong asset for power systems, and will be vital

to accommodate and facilitate the growth of variable renewable electricity (VRE) tech-

nologies such as wind power and solar photovoltaics. Thus becoming an important sys-

tem management component capable of ensuring reliable and flexible renewable supply.

However, while hydropower can help mitigate GHG emissions, the impacts that climate

change will have on the availability of runoff in the future can impact the production

from hydropower facilities. According to Schaeffer et al. (2013), this fact originates a

paradox that has two sides. The first one has been extensively studied, i.e. the role

of hydropower to reduce emissions in a low-carbon future to mitigate climate change;

however, the second part, just recently has been started to surge in the international sci-

3
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entific community, i.e. the impacts that climate change may have on hydropower itself

and on other sources of renewable energy (DOE, 2015).

Impacts that a changing climate can cause are usually not taken into consideration in

conventional energy system models that are used to inform energy planners in the

design of reliable, secure and least-cost electricity investment portfolios (Lucena, 2010).

The presumptions taken in the planning of the operation and expansion of an electricity

system based on hydropower, usually consider that climatic variables are stationary in

the long-term (i.e. that their statistic properties remain constant over time and are similar

to the historic trend). Under this assumption, hydropower could very well offer the low-

est generation cost over its technical lifetime and effectively mitigate GHG emissions.

However, research shows that future electricity generation from hydropower not only

faces uncertainties associated with the current inter-annual variability of runoff patterns

but there are also considerable discrepancies around the impact that climate change will

have on the magnitude and direction of precipitation and other hydroclimatic variables

(Blackshear et al., 2011; Cisneros et al., 2014). This reflects on several dimensions of

energy security, mainly on the issues of security of supply, environmental sustainability

and affordability, which are main topics of today’s public discourse on energy policy

(van Vliet et al., 2016b).

While climate change and the consequent uncertainty of available runoff for hydro-

power generation is a challenge for the energy system, there is an additional source of

uncertainty that haunts the expansion of hydropower infrastructure and needs inclu-

sion in long-term energy planning, i.e. the uncertainty of its investment cost. Capital

cost of electricity generation infrastructure is an important parameter considered by en-

ergy models. All electricity generation technologies can be susceptible to project cost

overruns; however studies have identified hydropower as the technology with largest

average cost overruns and delays compared to other technologies (Callegari et al., 2018;

Köberle et al., 2018; Sovacool et al., 2014b). In addition, its further deployment still faces

regulatory, financial and social acceptance issues – particularly in large scale projects

with negative experiences regarding hydropower’s socio-environmental impact (Ander-

son et al., 2018) and the cost escalation caused by their inherent construction complexit-

ies (Ansar et al., 2014).

Given that geotechnical conditions cannot be precisely assessed until after the con-

struction of the project begins, hydropower presents difficulties during the construction

phase including unforeseen excavations, construction problems, in addition to social

and environmental concerns (Bacon and Besant-Jones, 1998; Anderson et al., 2018). This

creates significant uncertainty on whether hydropower will be available on time to meet
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demand and within the planned construction budget in the short-term, a fact that can

have important long-term development implications for countries that rely or plan to

rely on hydropower as their largest source of electricity generation.

In this context, the interest of this research is to investigate how these two detailed

sources of uncertainty i.e. climate change and construction cost overruns, impact the

production of hydropower, the power sector and the integrated energy system in the

long-term. This research is related to studies that focus on the global challenges of

renewable energy deployment (such as IEA, 2014a; GEA, 2012) and research that has

sought to quantify the impacts of climate change on hydropower at national (Seljom

and Tomasgard, 2015; Teotonio et al., 2017), regional (Golombek et al., 2012; Parkinson

and Djilali, 2015) and global levels (van Vliet et al., 2016a; Berga, 2016). Furthermore,

by studying the uncertainty of electricity infrastructure cost overruns a contribution is

made to research that seeks to assess the risk hedging potential of different configura-

tions of power generation portfolios (Awerbuch and Yang, 2007; Vithayasrichareon et al.,

2015; Pye et al., 2015). As a result, the findings could help increase the uptake of other

alternative non-hydro renewable energy systems as a strategy to develop a more diver-

sified and robust power sector.

While this research sets out to explore the development of an energy system which de-

pends heavily on hydropower with a specific case study for the Republic of Ecuador, it

is believed that the methodology and insights from this work are valuable and replicable

for strategic energy planning in other hydropower-dependent states or those planning

large-scale hydropower development, which may well in turn have important implica-

tions for both their future socio-economic development, their energy security and their

potential decarbonisation efforts: with this present work it is intended to expand this

scientific literature.

1.2 research questions

A set of research questions have been identified to guide the thesis based on the research

gaps that were identified in the literature review in Chapter 2 on page 23:

1. How broad is the uncertainty of hydro-climatic variables portrayed in a large en-

semble of climate projections and the impact on the availability of runoff for hy-

dropower generation?

2. How does hydropower output variations due to climate change impact the long-

term least-cost power system development pathway?
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3. How does incorporating recurring uncertainties such as the volatility of fossil fuel

prices and the capital cost of electricity infrastructure impact the investment port-

folio for the power sector?1

This research is divided in three consecutive themes. The first theme, which is tackled

by the first research question, focuses on the uncertainty of hydro-climatic variables at

the season and annual level and how this impacts inflow into the largest hydropower

stations in Ecuador over this century. This theme paid particular attention on the dis-

crepancies found among long-term projections derived from climate models. The second

theme, which is tackled by the second research question, focuses on how the uncertainty

of hydropower output impacts the least-cost energy portfolio of Ecuador by 2050. For

this purpose, a long-term energy system optimisation model (TIMES-EC) was developed

which represents the whole energy sector of Ecuador (supply and demand) and focuses

on the particularities of hydropower for electricity generation. Finally, the third theme,

which is tackled by the third question, integrates further uncertainties – the volatility of

fossil fuel prices and the uncertainty of electricity infrastructure capital cost – into the

energy system optimisation model.

1.3 context

1.3.1 Status and potential of hydropower

1.3.1.1 Global level

The International Hydropower Association (IHA) reports that electricity generation from

hydropower reached an estimated 4,185 TWh in 2017, the highest ever contribution from

a renewable energy source (IHA, 2018). Only in 2017, 21.9 GW of hydropower capacity

was commissioned, that allowed reaching a global capacity of 1,267 GW. Around 160

GW of hydropower capacity are currently under construction, and more than 1 GW are

planned. Figure 1.1 on the next page shows hydropower capacities and estimated gen-

eration by region in 2017. Six countries (China, United States, Brazil, Canada, India and

Russia) together produce over half the world’s hydropower generation. China has taken

centre stage for hydropower capacity (319 GW) accounting for almost the combined

capacity of the next five leading countries, as shown in Table 1.1 on page 8.

Hydropower has been extensively implemented in developed countries, while devel-

oping countries still have a long way to go. The World Energy Council (WEC) considers

1 Recurring uncertainty is characterised by conditions that are periodically recurring and in which knowing
the past or current value of the parameter does not resolve the uncertainty for the future.
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Figure 1.1: Hydropower capacity and generation by region

Source:IHA (2018)

hydropower to be in an upsurge at a global scale, with new developments particularly

located in emerging markets and less developed countries. New developments are con-

centrated in East Asia (particularly China), South America and Africa (WEC, 2015b). In

the most recent study of Gernaat et al. (2017), the global technical and economical po-

tential of hydropower is assessed and valued at 9,500 TWh yr-1(below 5 US¢ per kWh).

Developing regions of Asia and South America have only tapped between 20% and 30%

of the hydropower potential, while Africa is an extreme case, where only 7% of econom-

ically feasible hydropower potential has been developed (Berga, 2016). The drivers for

the upsurge in hydropower development in these regions include mainly the increased

demand for electricity of under-served populations and a growing industrial base, in ad-

dition to a set of ancillary services that hydropower infrastructure offers, such as water

supply, flood protection, drought management, irrigation and climate change mitigation

and adaptation solutions.
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Table 1.1: Top hydropower capacity and generation as of 2017 by country

Total capacity end of 2017 Added capacity in 2017 Production
(GW) (GW) (TWh)

China 341 9.1 1,194

USA 103 0.3 322

Brazil 100 3.3 401

Canada 81 0.1 403

India 50 1.9 135

Russia 48 0.3 179

Total top six 723 15 2,634

Total world 1,267 21.9 4,185

Source: IHA (2018)

1.3.1.2 South America

South America occupies a special place among the developing regions that benefit from

hydropower and is a key market for hydropower development. In contrast to other re-

gions, hydropower is the main source of power supply and forms the backbone of South

America’s electricity system, providing 63% of total electricity generation (IEA, 2016b).

Brazil, the region’s largest economy, leads the continent in both installed capacity (100

GW) and new capacity additions (3.3 GW in 2017), supplying 62% of the country’s elec-

tricity needs in 2015. Other South American countries with high shares of hydropower

generation include Ecuador, Colombia, Venezuela and Paraguay, with over 80% of hy-

dropower generation in their electricity mix. In many other neighbouring countries over

half of electricity generation is from hydroenergy sources (IADB, 2017).

Within South America, the Amazon river basin holds the largest untapped poten-

tial in the region (Gernaat et al., 2017; Schaeffer et al., 2013), particularly in the subre-

gion known as the Tropical Andes (or Andean Amazon) located in the North East of

the continent (see Figure 1.2 on the next page). The geographic scope of the Tropical

Andes spans five countries – Bolivia, Brazil, Colombia, Ecuador and Peru – and holds

the tributaries that flow down from the Andes mountains to the Amazon river. High

annual precipitation coupled with rugged topography creates significant potential for

hydroelectricity across the Tropical Andes (Herzog et al., 2011; Buytaert et al., 2009). Ac-

cording to official planning reports, countries that share the Tropical Andes emphasise

hydropower as the centrepiece of medium and long-term plans to meet future energy

demands. Latest studies have accounted for over 300 hydropower dam projects in the

region, corresponding to hydropower stations in operation, under construction and in

various stages of planning (Finer and Jenkins, 2012a; Anderson et al., 2018; Winemiller

et al., 2016). Table 1.2 on page 10 shows existing and proposed hydropower dams in

the Andean Amazon classified by country and size (installed generation capacity). As
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Figure 1.2: Hydropower stations existing or under construction (red) and proposed (yellow) in
the Andean Amazon river basins

Source: Anderson et al. (2018)
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Table 1.2: Existing and proposed dams on Andean-origin rivers in the Amazon, classified accord-
ing to country, number and size

Country Existing/in construction Proposed

Number Total MW Number Total MW

Colombia 0 0 1 687

Ecuador 31 3,766 64 10,710

Peru 86 2,838 84 32,482

Bolivia 25 903 11 12,861

Brazil 2 6,450 – –
Total 144 13,957 160 56,740

Source: Anderson et al. (2018)

can be seen in Figure 1.2 on the previous page, most of proposed new projects are in

Ecuador, Peru and Bolivia who benefit from the elevation gradient that hydropower

needs, which is not the case for the relatively flat Brazilian Amazon where projects

would require large, shallow reservoirs that are prone to sedimentation and flooding of

vast areas (Lucena et al., 2013).

1.3.1.3 Ecuador

Over the past decade, Ecuador’s energy policy has incentivised a doubling of its hy-

dropower capacity. Between 2007–2017, the country invested close to $US 6 billion in

eight flagship projects with a total installed capacity of 2,832 MW (The InterAmerican

Dialogue, 2016). According to the International Hydropower Association (IHA), the

country ranked third after only China and Brazil for countries that added new capacity

in 2016 (IHA, 2017). Two large-scale projects located in the Amazon region make up

most of this new capacity and both were inaugurated in 2016: Coca Coda Sinclair (1,500

MW) (Lopez, 2013) and Sopladora (487 MW) (CELEC, 2018b). The remaining six flag-

ship projects are already in advanced construction stages and will be fully operational

by 2020. Due to these large hydropower projects, installed capacity almost doubled, as

can be seen in Figure 1.3.

According to the 2016-2025 Electricity Master Plan (MEER, 2017a) and the 2016-2040

National Energy Agenda (MICSE, 2016a), the Ecuadorian’s government main energy

policy is to consolidate hydropower as the most important source of electricity over

the next few decades. The deployment of large hydropower has also recently become

the cornerstone of Ecuador’s INDC, presented at COP21 in Paris (UNFCCC, 2015b).

Techno-economic hydropower potential2 is estimated to be 22 GW of which only about

one-fourth has been tapped by 2017 (ARCONEL, 2015). Most recently, the Ministry of

2 Techno-economic hydropower potential, in the Ecuadorian context, refers to the total capacity of hydro-
power projects with technologically feasible construction complexity at reasonable or industry-standard
investment costs (MEER, 2017a).
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Figure 1.3: Ecuadorian installed capacity 1970-2016
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Environment of Ecuador (MAE), has recently launched a project to assess the vulnerabil-

ity of six large hydropower systems to climate change (MAE, 2018). However, reviewing

the methodology proposed for this project it has been evidenced that it will only con-

sider only few climate change projections and will assess hydropower stations on a

plant-by-plant basis, leaving out the interactions with the broader power and energy

system. Therefore Ecuador is considered as an interesting case study of a developing

country, in which hydropower’s future role is of utmost importance and where impact

studies related to its deployment are of relevance.

Regarding the issue of capital cost uncertainty for hydropower technology, the Ecuadorian

Government’s construction of hydropower infrastructure during the last decade has

already evidenced steep cost overruns. According to official data from the Government,

the cumulative cost of the eight ‘flagship’ hydropower projects that the Government

started construction of between 2010 and 2012, with total cumulative capacity of 2,832

MW, has had an average cost overrun of 26% (US$ 1,520 million) when compared to

the budgeted and initial contract costs (US$ 5,850 million) (Villavicencio, 2015). Some

of these hydropower projects have even incurred cost overruns that exceed 50% and

also have significant delays; only three of the eight flagship projects expected for 2016

have been commissioned and have initiated operation (El Comercio, 2016). As these cost

overruns and delays continue, consumers (or the Government) may have to pay higher

prices to keep the lights on, evidencing that the uncertainty of constructing complicated

large hydropower projects does have an impact on mid and long-term energy prices.
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1.3.2 Hydropower technology and costs

Hydropower stations generate electricity by harnessing energy from moving water. Hy-

dropower is a mature technology, which is well understood by energy planners and grid

operators globally. Commercial technologies transform hydraulic energy into mechan-

ical energy by means of a turbine which is coupled to an electricity generator. Conver-

sion efficiencies from hydraulic to electrical energy are high, between 90 – 95% (WEC,

2016). Hydropower infrastructure is long-lived (over 75 years) and there are signific-

ant opportunities for upgrading or refurbishing the electro-mechanical equipment of

existing hydropower stations and powering non-hydro dams (e.g. irrigation and flood

control or domestic sewage water), particularly in markets where potential has been

almost fully tapped (United States and Western Europe) (IHA, 2018).

1.3.2.1 Types of hydropower

Most commonly, hydropower stations partially block the water flow of a river and flood

an area upstream to create a reservoir. This structural characteristic of hydropower

plants i.e. their dam typology (Egre and Milewski, 2002), allows to classify hydropower

schemes in:

run-of-river : A facility that utilises some or all of a river’s flow to produce elec-

tricity without impounding any significant amount of water upstream. However,

a small dam is still required to ensure that enough water enters the penstocks

connecting with the turbines located downstream. The reduced storage capacity

of run-of-river hydropower makes it more vulnerable to variations in the flow re-

gime, offering little operational flexibility. These facilities provide only base power

generation, lacking the ability to store water for periods of peak demand.3

reservoir : A facility that has the ability to store water in reservoirs to regulate elec-

tricity generation and also accumulate energy to compensate for seasonal or even

annual variations (depending on storage capacity). With the capacity to store

water, and therein potential energy, reservoir dams are better able to withstand

fluctuations in river flow and can be operated to provide base-load power, as well

as peak-load through its ability to be shut down and started up at short notice

according to the demands of the system. Given their ability to control water flows,

storage reservoirs are often built as multi-purpose systems, providing additional

benefits as discussed later in this section.

3 However, an upstream reservoir dam may act as storage for downstream run-of-river dams, restricting the
flow during off-peak periods and releasing more water during periods of peak electricity demand.
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pumped storage : This typology of hydropower stores power as potential energy.

This power often comes from surplus generation of other sources with relatively

inflexible generation schedules, such as wind and solar PV. Typically, electricity

from these other sources is used to pump water up to a higher reservoir during

off-peak hours. Then, during peak hours, the water is released to the lower reser-

voir to generate electricity. Pure pumped storage, in which the reservoirs are not

connected to a river network, is the most deployed of this technology. Its value is

in the provision of energy storage, enabling peak demand to be met, assuring a

guaranteed supply when in combination with other renewables, and other ancil-

lary services to electrical grids.

Hydropower facilities installed today range in size from less than 100 kW to greater than

22 GW, with individual turbines reaching 1000 MW in capacity. Hydropower technolo-

gies are not bound by size constraints – the technology is the same regardless of the

size of the project. Large-scale hydropower facilities typically require upstream water

reservoirs and can impound the entire flow of a large river. Small and medium hydro-

power facilities can either have an upstream reservoir, or they can be installed along side

a river, stream or existing water supply network, such as wastewater drainage systems.

Small (and mini, micro and pico) hydropower plants are typically run-of-river schemes

or implemented in existing water infrastructure.

1.3.2.2 Economics and finance of hydropower

Several studies have analysed the levelised cost of electricity (LCOE)4 of hydropower,

showing that under good conditions, it can be as low as 3 to 5 US¢ per kWh (IRENA,

2012b, 2015b; ?; IPCC, 2012). Civil works cost can be the largest share in the total LCOE,

ranging between zero (for an existing project) to a high of 63% (IRENA, 2012b). The

share of electro-mechanical equipment costs can range from a low of 17% to 50%, with

typical values ranging from 21% to 31%. These costs are only referential and can vary

considerable from country to country and project to project.

Similar to other capital-intensive large infrastructure projects, hydropower requires

high initial investment, but has a long lifespan with very low operation costs and a re-

latively stable and sustained revenue stream. The public sector has traditionally been

the main financier of hydropower, as these projects are major infrastructure investments

(Mišic and Radujkovic, 2015). Investment is also increasingly coming from new interna-

tional players, both public and private. Chinese companies, for example, are investing

4 Levelised cost of energy (LCOE) is defined as the present value (computed at a specified discount rate) of
all the resource costs (planning, construction, operating, etc), divided by the present value of the energy (at
a fixed price).
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Figure 1.4: Average time and cost overruns for electricity infrastructure
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heavily in Africa and South America (Alves, 2013). Historically, the decision for invest-

ment in hydropower is often made on an economic basis; however, another factor that

has become increasingly important in the investment decision is the non-power services

that hydropower can bring to a region. For example, many hydropower projects offer an

element of flood protection for the local region and the economic value lies in the value

preservation and avoidance of damages (Jordan et al., 2012; Ward et al., 2013). Although

it is a highly valued benefit, there is no specific contribution to return on investment

for this service. Other multi-purpose benefits include drought management (Harto and

Yan, 2011; Harou et al., 2010) and irrigation (Tilmant et al., 2009; Zeng et al., 2017), which

typically do not offer clear and direct revenue streams to reservoir developers. Hydro

projects also bring significant macroeconomic and societal benefits, such as employment

opportunities, both during and after construction.

Hydropower’s financial performance has been subject to criticism regarding cost and

schedule overruns (Ansar et al., 2014). A study by Sovacool et al. (2014b), who assessed

construction cost overruns of 401 power plant projects developed between 1936 and 2014

in 57 countries, has shown that hydropower projects can have an average cost overrun of

70% and an average time overrun of 43 months, compared to, for example, an 12% aver-

age cost overruns and 4 months average time delay for a thermal plant (see Figure 1.4).

The largest risks of cost and time overruns of hydropower lie on the complexities sur-

rounding the planning and construction phases of the dam and reservoir. For illustrat-

ive purposes, Table 1.3 on the next page shows a list of identified hydropower projects

that have registered the highest mean average cost overrun according to Sovacool et al.

(2014a). Reservoirs can extend to hundreds or even thousands of square kilometres,

requiring detailed studies of the hydrology, geology, topography, environmental and

social impacts. This increases early capital requirements, and therefore risk, as some
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Table 1.3: Hydroelectric projects with the largest mean cost overrun escalation

Rank Date Name Country Cost overrun (%)

1 2006 Sardar Sarovar Dam India 513

2 2011 Bakun Hydroelectric Project Malaysia 417

3 2012 Three Gorges Dam China 402

4 1978 Sayano-Shushenskaya Russia 353

5 1979 La Grande 2 Canada 246

6 1976 Nurek Tajikistan 200

7 1950 Vinistra Norway 190

8 1977 Kariba Stage 2 Zambia/Zimbabwe 177

9 1981 Robert-Bourassa Canada 143

10 1986 Chixoy Guatemala 136

11 2009 Longtan Dam China 113

12 1986 Guir (Raul Leoni) Venezuela 101

13 1985 Third Power Swaziland 100

Source: Sovacool et al. (2014a)

of the studies are undertaken before there is any certainty around project authorisation.

During the construction phase, risk is generally due to cost containment from unfore-

seen problems. During the operational phase, hydropower’s low maintenance costs and

no fuel requirement mean that most capital costs have already been incurred and rev-

enues are typically stable. However, while risks decline significantly once the plant is

put into service, operational risks can include changes in long-term hydrological condi-

tions (Babur et al., 2016) and more stringent regulatory environments (Anderson et al.,

2018). Therefore, this thesis looks into how to assess hydropower under uncertainties of

cost overruns based on past evidence and to depict its characteristic discrete investment

profile, which is a step forward compared to other studies that consider overruns in a

deterministic manner and using a linear capacity expansion approach, respectively.

1.3.3 The role of hydropower in the electricity mix

Hydropower has traditionally been developed to provide two services to the power

system:

base and peak load power : Hydropower is considered to be a source of low-cost

base-load power (particularly run-of-river), given that its operating cost is low

compared to fossil alternatives which must incur in fuel costs. Peaking power can

also be provided due to the ability of the technology (reservoir hydro) to release

water at short notice to respond to immediate needs for more power on the grid.

More recently, this traditional role of hydropower is evolving with the increased

share of variable renewables energy sources such as solar PV and wind.



16 introduction

energy storage : Hydropower reservoirs allow to store potential energy for later use

at timescales ranging from seconds, to days, to several months and even years.

When fossil fuel generation or other non-hydro renewables are feeding electricity

into the grid, hydropower stations can reduce their output to store water in their

reservoirs. This storage can be used later to increase hydropower output and fill

deficits when, for example, wind or solar sources fall.

However, due to the uncertainty of runoff, the amount of energy that a hydroelec-

tric system can guarantee is smaller (which means that the hydroelectric availability

factor5~50% is lower than thermal-based alternatives ~90%). Therefore flexible thermo-

electric power plants (usually fired with fuel oil and natural gas) complement hydroelec-

tric generation, increasing the robustness of the system – what is know as a hydrothermal

power system. Thermoelectric power plants operate synchronously with hydroelectric

plants in order to increase the amount of energy the system can guarantee by increas-

ing the energy supply of the hydroelectric system6 and avoiding the waste of energy

through spillage.

The purpose of the hydrothermal system operation (short-term) is to determine the

hydraulic and thermal electricity dispatch in order to minimise the expected cost of

operation, including fuel (thermal) and non-supply (deficit/importing) costs. At the

same time, the expansion of the power system looks into the deployment of a generation

portfolio that minimises total system costs in the long-term. Figure 1.5 on the facing

page summarises the short and long-term dilemmas of the operation and expansion of

a hydrothermal system.

In the short-term, if the operator decides to use the water from hydropower reservoirs

to generate electricity in the present, future thermal expenditures (or even power defi-

cits) may be incurred if the hydrological conditions are not good enough to refill the

reservoirs. On the other hand, if the operator decides to store water, it is necessary to

use thermal generation to meet the present demand. If, in the future, the inflows are low,

this decision was right, because there is water to generate hydroelectric power. However,

if the inflows are high, there may be no reservoir capacity to store water and the system

will waste energy through vents and spillage.

In the long term, energy authorities can decide to incentive the deployment of hydro-

power or thermoelectric power plants (which would traditionally be fossil fuel based)

depending on the source that is expected to dominate the power system. However, these

5 Availability factor, a ratio of hydropower production over the maximum theoretical production, subject to
a defined time period.

6 Not only by increasing total installed capacity, but mainly by increasing the amount of electricity generated
by hydroelectric plants without the risk of non-supply. In this sense, thermal power stations work as an
insurance that allows the system to deplete its reservoirs with less risk of not meeting future demand.
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Figure 1.5: Operation and expansion dilemma of a hydrothermal power system

Source: adapted from Lucena (2010)

decision must be taken without enough certainty of the positive or negative changes that

runoff could experience due to climate change. If the country decides to deploy hydro-

power extensively and this coincides with a dry water availability scenario, there is a

risk of having underused or even stranded hydropower infrastructure. If on the other

hand the country decides to move towards a larger share thermal-based generation, the

occurrence of dry scenario might be without problems (as long as enough cooling water

is available), but the occurrence of a wet scenario would mean that valuable low-cost

hydroenergy resources are not being used.

This thesis will analyse the trade-offs for the power system to adapt to the occur-

rence of wet or dry scenarios caused by climate change. In addition, special attention

will be given to how hydropower technology is represented in an energy system model,

particularly on the differences among run-of-river and reservoir, and their distinctive

contribution in the operation of the power system. This goes beyond studies that have

represented hydropower without differentiating between run-of-river or with reservoir

types (e.g. van der Zwaan et al., 2018; Teotonio et al., 2017). This will be further dis-

cussed in the literature review in Chapter 2 on page 23.

1.3.4 The role of hydropower in climate change mitigation and adaptation

Hydropower and climate change show a double relationship. On the one hand, as

an important renewable energy resource, hydropower contributes significantly to the
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reduction of GHG emissions and therefor to the mitigation of global warming. On the

other hand, climate change is likely to alter river discharge, impacting water availability

and hydropower generation.

In terms of mitigation, hydropower is a very low GHG emission technology when

compared to conventional fossil fuel plants. According to IHA, if global hydropower

generation was replaced with burning coal, approximately 4 billion tonnes of additional

GHG would have been emitted in 2017 (IHA, 2018), which represents about 10% of

global annual GHG emissions. Although there can be some GHG emissions of decaying

biomass beyond the surface of a hydropower reservoir, these values range from 3 – 4

gCO2eq per kWh for hydropower run-of the river, and 10 – 33 gCO2eq per kWh for

hydropower with a reservoir; these values are Tenths of times lower than the emissions

from traditional thermal power (~500 gCO2eq for natural gas, ~800 gCO2eq for oil and

~1000 gCO2eq for coal) (WEC, 2004; Edenhofer, 2011). The World Bank conclusively

produced a report entitled: “Greenhouse gases from reservoirs caused by biochemical

processes” (World Bank World Bank Group, 2013), which gave concrete guidelines on

how GHGs from reservoirs can be studied within the environmental impact assessment

(EIA) process. The main conclusions were that the perception that reservoirs emit high

levels of GHGs largely stems from older studies that were mainly conducted at sites

with very unfavourable conditions. GHG emissions seem to be relatively small for an

overwhelming majority of reservoirs.

In the last decade, hydropower, wind energy, and solar energy have been developed

strongly, with a spectacular increment of renewable energy (IRENA, 2017). Hydropower

has a timely synergy with wind and solar renewable energy sources, as wind and solar

energies are intermittent and very variable, while hydropower is able to balance out

variability and supply the peak load. In addition, hydropower is the only system that

currently exists to store energy in a significant and effective way, in the form of pumped

storage power plants, which make up 97.5% of global energy storage in the electricity

networks (IRENA, 2017).

In terms of adapation, hydropower projects may also have an enabling role beyond the

electricity sector, as a financing instrument for multipurpose reservoirs and as an adapt-

ive measure regarding the impacts of climate change on water resources. The projected

changes described in the Fifth Assessment Report (AR5) of IPCC include an increase in

water resources at high latitudes, in tropical East Africa, and in Southeast Asia, and a

decrease of water resources in many semi-arid and arid areas (e.g. the Mediterranean

Basin, Western US, Southern Africa, and Northeastern Brazil) (Cisneros et al., 2014).

Therefore, given the current circumstances and the need for responsible development in
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the contexts of a changing world and climate change, increasing water storage capacities

is a major imperative (Berga, 2016). Regulated basins with large reservoir capacities are

more resilient to water resource changes, less vulnerable to climate change, and act as a

storage buffer against climate change. At the global level, the overall impact of climate

change on existing hydropower reservoirs may be expected to be small, or even slightly

positive as Turner and Galelli (2016) have shown. However, there is the possibility of

substantial variations across regions and even within countries. Therefore the need to

assess the impact of climate change on hydropower at the regional and national levels,

and how its role both for adaptation and mitigation is affected.

1.3.5 Socio-environmental challenges for hydropower development

The IPCC’s Special Report on Renewable Energy (SRREN) (IPCC, 2011) mentions that

climate change can affect hydropower by three means:

• Changes in river runoff (mean annual stream flow, shifts of seasonal flows, as well

as by increased evaporation from reservoirs) due to changes in precipitation and

temperature in the catchment area;

• Changes in extreme events (flood and droughts); and,

• Changes in sediment loads7

Blackshear et al. (2011) present a qualitative framework for modelling the future of

global hydroelectric resources in the context of its vulnerability to climate change. The

authors indicate that precipitation and temperature are the two most important hydro-

climatic variables that will impact hydropower, as can be seen in Figure 1.6. The change

in hydro-climatic conditions caused by climate change and its effect of hydropower

has been studied in both isolated (e.g. Babur et al., 2016; Gaudard et al., 2013) and

integrated manners with different type of mathematical tools (e.g. Kannan and Turton,

2011; Grijsen, 2014; Gernaat et al., 2017). However, most studies have only used few

climate change projections and at the seasonal inter-anual level, thus missing the impacts

of both high and low precipitation months. This is a gap found in the literature, which

would be discussed in greater detail in the literature review in Chapter 2 on page 23and

which this thesis seeks to address.

It is important to mention that water is a renewable, but fixed resource to be shared.

Hydropower plays a crucial role in the energy-water nexus. On the one hand, the ver-

7 Sediment entrapment within reservoirs, which has been shown to gradually decline storage capacity and
hence power production over the years (Wisser et al., 2013).
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Figure 1.6: Flow chart of climate change effects on hydroelectric production.

Source: Blackshear et al. (2011)

satility of hydropower plants can be exploited to alleviate local water stresses – diverted

water can be made available for other purposes such as irrigation and drinking water

supply. On the other hand, hydropower can add to the stress of water resources by

creating socio-environmental impacts most likely related to the impoundment of water,

and the hydrological changes brought about through the construction of dams and the

flooding of land downstream. However, hydropower projects are site specific and as

such, each project will differ in its socio-environmental impacts, positive or negative,

depending on issues such as size, geography, and the characteristics of the surrounding

environment and communities (WEC, 2015a).

Hydropower’s environmental impacts can be related to its land footprint caused by

flooding large areas to allocate a reservoir. This is difficult to assess because there are a

series of water management benefits that could outweigh the loss of land used for the

reservoir, such as flood control, better irrigation and water conservation during droughts

or arid seasons. A water footprint can also be caused by the loss of water through evap-

oration from large reservoirs. In recent studies (Bakken et al., 2016), water consumption

rates have been found to be very close to zero (i.e. evaporation from the host environ-

ment before and after creation of the hydropower plant are the same). Another impact

is the build-up and release of significant amounts of GHG emissions (methane) by de-

caying vegetation in flooded river beds. Life-cycle emissions from large reservoirs could

be high from plants in tropical regions (IPCC, 2011). The construction and operation
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of a dam also impacts the rate of sediment transport in a river, leading to sediments

becoming trapped in the dam. This affects both operation of the hydropower station

(reduction of storage capacity) and the distribution of sediments and nutrients down-

stream. Finally, the construction of a dam has shown to fragment wildlife processes and

migration patterns of fish (Anderson et al., 2018).

Social challenges are also present, especially in the development of large-scale hy-

dropower projects that require high capital investments and include higher potential

impacts on the local environment, the possible displacement of communities, and the

competing demands between energy, water and land use (Delang and Toro, 2011; Ty

et al., 2013; Namy, 2010). While governments generally view hydropower in a favour-

able light, as they are a means of reducing national emissions, boosting energy security

and fostering economic development, hydropower projects can still either enjoy the local

support or be met with increasing resistance. The role of governments on hydropower

development is to ensure that projects meet acceptable sustainability requirements – eco-

nomic, social and environmental – and that all negative impacts that may be incurred

from the projects are mitigated to the bare minimum (Winemiller et al., 2016; Gracey and

Verones, 2016; Lees et al., 2016). This is of prime importance to developing and emerging

economies considering hydropower development, ensuring that the benefits from hydro

projects are enjoyed across the country, and especially in areas where the scarce water

resources are being exploited. International hydropower developments (cross-border)

can also face opposition or support, depending whether the interest of the stakeholders

across borders are sufficiently taken into consideration (Simpson, 2013; Douglass, 2016;

Grumbine et al., 2012).

In the context of this research, energy system models inform policy makers about

the conditions under which hydropower is part of the least-cost long-term development

pathway of the power sector. Traditionally, if there are resources available, hydropower

stands out as a technology that should be deployed largely given its low running costs

and long-lived infrastructure. However environmental and socio-economic issues ulti-

mately translate in cost and time overruns that should be taken into consideration when

hydropower is represented in an energy model.

1.4 thesis outline

The thesis consists of six chapters and accompanying appendixes. The first chapter is

the Introduction, in which the motivation, guiding research questions and context for

this thesis have been presented.
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Chapter 2 on the next page carries out a critical review of the scientific literature of

climate change impact studies on energy systems and on hydropower in particular; with

explanations of the different approaches and methodologies that researchers have used

to assess the issue. This chapter will also include the approaches to assess uncertainty

in climate change impact studies and in energy system modelling.

Chapter 3 on page 91 focuses on the proposed method to answer the research ques-

tions. This chapter will contain a detail on how to use the range of results from climate

change projections as a proxy to characterise the probability space of hydropower out-

put (Research question 1). This chapter will also present the structure and assumptions

of the energy system model developed for Ecuador (Research question 2). In addition, a

novel approach will be presented in this chapter detailing how to integrate risk analysis

into an energy system optimisation model (Research question 3).

Chapter 4 on page 181 will present the results obtained when applying the detailed

method for Ecuador’s power expansion pathways by 2050. The different configurations

of the power sector will be assessed under different scenarios of climate change, policy

and risk. Given the use of an integrated energy system model, secondary impacts on

electric and final energy demand will also be shown. The answers to the research ques-

tions will be presented in this chapter.

Chapter 5 on page 249 will frame a discussion around the results of this study accord-

ing to the limitations of the applied method. Limits to generalisation of the results and

the replication of the method in other latitudes will also be presented in this chapter.

Areas for future research have also been detailed here.

Finally, Chapter 6 on page 271 restates the research questions and summarises the

main conclusions of this thesis. The originality and contribution of the research are

clearly stated as well as key insights for the policy making arena.
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L I T E R AT U R E R E V I E W

This chapter presents a literature review with the aim of describing the current state-

of-the-art modelling of climate change impacts on hydropower systems. First, a back-

ground on the impacts of climate change on energy systems is provided in Section 2.1.

Second, a review and discussion of different approaches for modelling the impact of

climate change on water resources and hydropower generation are discussed in Section

2.2. Third, a review on uncertainty treatment in climate change impact assessments and

energy system models is carried out in Section 2.3. Finally, the chapter ends with a

summary in Section 2.4 with respect to the research questions of this PhD thesis framed

within the gaps found in the literature.

2.1 climate change impacts on energy systems

The growing amounts of GHG emissions in the atmosphere is the major driver of global

climate change (IPCC, 2007). According to the Fifth Assessment Report (AR5) of the

Intergovernmental Panel on Climate Change (IPCC), climate projections point out that

without additional efforts to reduce GHG emissions beyond those in place today, emis-

sions growth is expected to persist driven by growth in global population and economic

activities (IPCC, 2014d). The worst scenarios result in an increase of global mean sur-

face temperature of 3.7°C to 4.8°C compared to pre-industrial levels. To maintain the

temperature in a range of 2°C well below this threshold, CO2e concentrations should

not exceed 450 ppm, however, by 2011 estimations of concentration level were already

at 430 ppm (IPCC, 2014d).

Climate change, in its different directions and forms will have direct and indirect

impacts on natural and human systems, including energy systems (renewable and non-

renewable) that are exposed to weather conditions, thus making them vulnerable. The

contributions of Group II of the IPCC for the AR5 (IPCC, 2014a), consisted in assessing

23
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the impacts, adaptation and vulnerability of natural and human systems due to climate

change. According to the authors, a focus on risk assessment, is novel in this latest

report, and is envisioned to support decision making in the context of climate change:

"Responding to climate-related risks involves decision-making in a changing world, with con-

tinuing uncertainty about the severity and timing of climate-change impacts and with limits to

the effectiveness of adaptation.” That is why it is crucial to study how to mitigate and adapt

to these new climatic conditions.

According to the Technical Guidelines for Assessing Climate Change Impacts and

Adaptations of the IPCC (Carter et al., 1994), there are four methods to assess impacts

of climate change: i) experimentation, ii) impact projections, iii) empirical analogue

studies, and iv) expert judgment. Relevant to this literature review are impact projections,

in which mathematical models are extrapolated into the future. This method is the only

one that allows a formal and objective analysis of the mentioned issue of climate change

impact on energy systems.

In a scenario with higher ambient temperatures, climate models show variations (in

magnitude, frequency, geographic regions) of hydro-meteorological and other climate

parameters. Table 2.1 on the facing page presents climate change impacts on the energy

sector, as has been presented by the US Department of Energy (DOE, 2015). Renewable

energy, namely hydropower, wind energy, solar energy and biomass energy, is specially

affected by climate change, since its renewability depends on the weather and long-term

climate trends.

Notice that in Table 2.1 on the next page not only impacts on renewable energy sys-

tems that directly depend on climate are included, but non-renewable energy systems

and transport infrastructure that may also suffer consequences. For example, alterations

in river flow can impact cooling water needs for thermoelectric and nuclear power plants

(Liu et al., 2017); the temperature and humidity of air has an effect on the performance

of natural gas turbines (Schaeffer et al., 2009); and extreme climate events such as storms

and hurricanes can affect oil production in off-shore platforms (Wilbanks et al., 2008).

Even though compared to hydropower, wind farms, solar facilities and biomass gen-

eration systems are likely to be more vulnerable to potentially negative impacts from

climate change (variations in wind, temperature, precipitation and irradiance); these

technologies have short life-spans (<20 years), which make them more adaptable in the

long-term. Analysing impacts on short life-span technologies would imply in assum-

ing that the existing facilities would be replaced over time by similar technologies at
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Table 2.1: Potential effects of climate change on the energy sector

Energy sector Climate projection Potential implication

Oil and gas
exploration and
production

Decreasing water availability,
increasing frequency of intense
hurricanes and sea level rise.

Impacts on drilling, production,
and refining.

Fuel transport Reduction in river levels,
increasing intensity and
frequency of flooding.

Disruption of rail and barge
transport of crude oil, etc.

Thermoelectric power
generation

Increasing air and water
temperatures, decreasing water
availability.

Reduction in plant efficiencies
and exceeding thermal
discharge limits.

Hydropower Increasing temperatures and
evaporative losses, changes in
precipitation and decreasing
snowpack, increasing intensity
and frequency of flooding

Reduction in available
generation capacity and
changes in operations.
Increased risk of physical
damage.

Bioenergy and biofuel
production

Increasing air temperatures and
decreasing water availability

Increased irrigation demand
and risk of crop damage.

Wind energy Potential variation in wind
patterns

Uncertain impact on resource
potential.

Solar energy Increasing air temperatures and
decreasing water availability

Reduction in concentrated solar
power (CSP).

Electric grid Increasing air temperatures,
more frequent and severe
wildfires and intense
hurricanes

Reduction in transmission
efficiency and risk of physical
damage.

Energy demand Increasing air temperatures
Increasing magnitude and
frequency of extreme heat
events

Increased electricity demand
for cooling; decreased fuel oil
and natural gas demand for
heating.

Source: Adapted from DOE (2015)
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the same location, which might not be the case. Thus, for some technologies for which

there is still some room for advances or relocation, climate impacts can be overestimated.

Although, other kind of studies could be carried out that also look into the impacts of cli-

mate change on short-lived renewable energy generation technologies, e.g. running an

energy system optimisation model with different climate change influenced wind/solar

trajectories to assess what the impact on the system is. So, while the climate impacts on

short life-span technologies are less relevant in terms of causing stranded/less than op-

timal investments, they can be meaningful in terms of what the least cost system should

look like, due to varying electricity generation trends in the short-term. In any case,

although long-term energy planning can assess the operation of the energy system at

the inter-annual level (according to the time slice resolution used), its primary focus is

in assessing investments for capacity of energy conversion infrastructure, i.e. installed

electricity capacity expansion, when it comes to the power sector. Thus for the focus

of this thesis, the varying trends of energy production of short-lived renewable energy

technology due to climate change is of less importance, given its flexibility to change

locations, as explained previously.

In comparison, the decision to build a hydropower station entails not only in high

capital and environmental costs but also in a stationary structure with a longer physical

and economic life-span (>75 years). Because global climate change should happen in

the mid to long-term, climate impacts analyses must assume that a major share of the

current energy system (and even the energy facilities under construction or planned to

be built in the next few years) will be still operating when the new climate conditions

occur. This is a plausible assumption for long lived hydropower plants, which needs

to be assessed with the aid of long-term climate and energy system models. The risk

of long-lived assets becoming stranded due to the lack of water resources to operate

them leads to non-optimal investment decisions and in reality would require duplication

of installed capacity and increase possibilities of black out. This is the reason why

hydropower has been chosen as one of the electricity generation technologies that is

most vulnerable to climate change impacts and is the focus of this thesis.

The section will give an overview of the overall impacts of climate change on en-

ergy supply and energy demand in general. Non-hydropower and hydropower electri-

city generation technologies will be described in terms of their vulnerability to climate

change induced meteorological variations and the challenges to assess them with cli-

mate projections. For a broader review of trends and gaps in studies of climate change

impacts on energy systems refer to Schaeffer et al. (2012) and Cronin et al. (2018).
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2.1.1 Impacts on energy supply (except hydropower)

2.1.1.1 Wind power

The availability and reliability of wind power depend on weather and climate conditions.

Pryor and Barthelmie (2010) present a review of studies focused on the impact of climate

change on wind power generation, analysing the mechanisms through which climate

change can influence wind resources and its operation conditions, as well as the tools

that have been used for these purposes and the uncertainties related to them. The main

mechanisms by which global climate change impacts wind energy endowments are: i)

shifts in the geographical distribution, and ii) the variability of wind speed patterns.

The first implies different impacts on wind resources across regions (Zeyringer et al.,

2018). As for the second, wind speed patterns (and their variability) define the economic

feasibility of exploiting wind resources and the reliability of electricity production once

the capacity is installed (Hdidouan and Staffell, 2017).1

However, future climate projections have serious limitations in reproducing wind

speeds and their frequency distributions or directional changes (Pryor and Barthelmie,

2010).2 Wind resources may have their beginnings in global circulation but are primar-

ily shaped by their site (Musgrove, 2009). The IPCC’s Special Report on Renewable on

Renewable Energy (SRREN) (Wiser et al., 2011), concludes that research to date sug-

gests that impacts are unlikely to be of a magnitude that will greatly impact the global

potential of wind energy deployment. This conclusion has been replicated by studies

primarily focusing on changing wind speeds that reach high level regional considera-

tions on the climate change impact on energy potentials, such as the studies for the UK

(Hdidouan and Staffell, 2017), South Korea (Oh et al., 2012), Brazil (De Lucena et al.,

2010b), Northern Europe (Lavergne et al., 2014) and at the global scale (Karnauskas

et al., 2018). Though potentially significant, the findings of these studies rely on climate

models with relatively low spatial resolution, which could make it difficult to draw

meaningful conclusions.

1 Considering that wind power generation is a function of the cube of the wind speed, drops in wind speed
correspond to potential reductions in wind power generation of a larger order than the variation of the
wind resource.

2 Three characteristics of climate models render them imperfect tools for assessing wind energy potential: i)
climate models have coarse horizontal resolution, ii) wind turbines operate as heights typically 40–120 m
above the surface, whereas the vertical grid structure of climate models is such that wind information is
available only at a height of 10 m and on standard pressure levels, and iii) climate models provide monthly
mean fields, whereas winds fluctuate at much higher frequencies (Karnauskas et al., 2018).
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2.1.1.2 Solar energy

Climate change can affect solar energy resources by changing atmospheric water vapour

content, cloudiness and cloud characteristics, which in turn affects atmospheric trans-

missivity (Edenhofer, 2011). This can have impacts on the amount of irradiance that

reaches photovoltaic (PV) and concentrated solar power (CSP) facilities. Higher temper-

atures and surface wind velocity can impact PV panel efficiency (Flowers et al., 2016).

Higher temperatures and decreasing water availability can reduce thermal plant efficien-

cies and increase risk of exceeding thermal discharge limits of CSP facilities (Ebinger

and Vergara, 2011). As impacts of climate change on the detailed atmospheric variables

may have different trends around the world, so would solar energy resources, have pos-

itive impacts in terms of increase in solar irradiance in some situations (e.g., reported

increase in solar resource in the UK, Burnett et al., 2014), negative impacts in terms of

decrease in solar radiation (e.g., reported decrease trend in incoming solar radiation in

Canada, Cutforth and Judiesch, 2007) or even negligible changes (e.g., low probability

of significant changes in southern Africa, Fant et al., 2016).

According to the SRREN report (Arvizu et al., 2011), the compilation of studies re-

viewed using climate models and anthropogenic forcing found that the pattern of vari-

ation of monthly mean global solar irradiance does not exceed 1% over some regions of

the globe, though it varies according to model used. However, there are studies that pro-

ject variations at a regional scale that could be relevant, such as Jerez et al. (2015), that

assess the impact of climate on solar PV production at the scale of the European regional

electric grids considering a future scenario with a strong penetration of PV installations.

Results indicate that the alteration of solar PV supply by the end of this century com-

pared with the estimations made under current climate conditions should be in the

range (-14% – +2%), with the largest decreases in Northern countries. Uncertainties still

remain in assessments of climate change on solar resource, due for instance to indirect

effects of natural and anthropogenic aerosols and to land-use changes, both features

being currently poorly represented or totally ignored in climate models (Gaetani et al.,

2014).

2.1.1.3 Biomass and liquid biofuels

The production of biomass and biofuels for energy production may also be impacted

by climate change. Increasing air temperatures and higher CO2 levels can derive in

extended growing seasons due to improved photosynthesis, which in coincidence with

decreasing water availability can cause an increase in irrigation demand and risk of crop
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damage from extreme heat events (Schaeffer et al., 2012). Besides changes in precipit-

ation and water regime, increases in temperature levels leads to higher evapotranspir-

ation rates.3 Sea level rise and increasing intensity and frequency of flooding can also

harm not only biomass for energy production, but threat food production systems and

food security itself (Porter et al., 2014). These processes directly affect many key factors

of agriculture, like crop yield, agricultural distribution zones, incidence of pests and the

availability of lands suitable for growing some energy crops.

The literature that assesses the impacts of climate change on crops used for biofuels,

mostly focus on ethanol production (sugarcane and maize) and biodiesel (soybeans,

rapeseeds, sunflower seeds, castor beans, etc.). De Lucena et al. (2009) used long-term

climate projection scenarios to assess the possible impacts of biofuel production in Brazil.

The results of the study state that climate change will not significantly affect negatively

the production of sugarcane ethanol in Brazil, given sugarcanes capacity to withstand

high temperatures as long as enough soil moisture is provided. However, the production

of biodiesel in the country could be affected negatively by climate change, mainly in the

northeast, with a shift of suitable growing zones for oilseed crops to the southern region.

Srivastava et al. (2018) presents an estimate of the effects of climate variables on po-

tential maize productivity and an assessment of the most limiting climatic drivers in

the future climate scenarios for maize production in central Ghana. Results show a

substantial increase in the average maize yield in all projected future climate scenarios

analysed by 2080 compared to the baseline, due to the beneficial effect of CO2 on the

radiation use efficiency of the crop combined with only moderate changes in amount

of rainfall and incoming radiation during the growing cycle of maize. For Ghana, the

study demonstrates that today and under future clime conditions water would not be

the most limiting factor during the maize growth period, whereas, temperature (through

shortening of the maize growing cycle), nutrients and solar radiation may remain the

limiting factor for maize production in the region.

Piao et al. (2010) assessed the impacts of climate change on water resources and ag-

riculture in China, however they conclude that notwithstanding the clear warming that

has occurred in China in recent decades, current understanding does not allow a clear

assessment of the impact of anthropogenic climate change on China’s water resources

and agriculture. According to these authors, to reach a more definitive conclusion, fu-

ture work must improve regional climate simulations – especially of precipitation.

3 Evapotranspiration (ET) is the sum of evaporation and plant transpiration from the Earth’s land and ocean
surface to the atmosphere. Evaporation accounts for the movement of water to the air from sources such as
the soil, canopy interception, and waterbodies. Transpiration accounts for the movement of water within a
plant and the subsequent loss of water as vapour through stomata in its leaves. Evapotranspiration is an
important part of the water cycle.
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The mentioned studies however mostly assess variations in climate patterns and tem-

perature but leave out the effects of drought and flooding. Particularly drought can have

a critical impact for biomass production and can also compete or collide with hydro-

power development plans, as the study of Shadman et al. (2016), in which a discussion

on drought effects and energy security in the ASEAN-6 countries was developed.

Climate change could also present a threat for the availability of woody biomass used

for cooking and heating in low-income households in developing countries. These could

be impacted by desertification or savanisation of local biomes, which would restrict access

to traditional energy in communities that depend on them. These communities would

not only face a lower availability of energy, but also an increase in time and effort needed

for fuelwood collection. In this sense, improved access to modern energy sources should

be regarded as an adaptation strategy to increasing low-income community well-being

and their climate resilience (Lauri et al., 2014).

2.1.1.4 Thermal power plants

Climate change can impact the availability of cooling water in terms of quantity and

temperature and therefore impact the efficiency and maximum power output of thermo-

electric power plants (DOE, 2015; Ebinger and Vergara, 2011).4 The impacts derive from

heating and cooling needs of both the Rankine (steam turbine) and Brayton (gas tur-

bine) thermodynamic cycles, which vary according to average ambient conditions such

as temperature, pressure, and humidity and water availability. Overall generation effi-

ciency of thermoelectric plants can be reduced due to non-planned interruptions caused

by heat waves or droughts (see Pechan and Eisenack, 2014; Rübbelke and Vögele, 2011;

Kopytko and Perkins, 2011).

The effects of change in ambient temperature and humidity on the electricity efficiency

of thermoelectric plants can be relatively small, however the impact depends on the

share of thermoelectricity in the power system. Based on analysis of both plant-specific

data and panel data for a set of European countries, Linnerud et al. (2011) conclude

that a rise in ambient temperature of 1 °C will reduce electricity output by 0.4 – 0.7%

at low temperatures and by about 2.3% at high temperatures. A modest variation in

ambient temperature may represent a significant drop in energy supply in regions such

as the US and Europe where most of electricity is generated from nuclear and fossil

fuels thermal power plants (EIA, 2018b; Eurostat, 2013). The study by Sathaye et al.

(2012), which was performed for California, showed that natural gas-fired power plants

4 “Thermoelectric” generally refers to power plants that use an internal combustion engine, or a steam or gas
turbine to generate electricity. Examples of thermoelectric power plant fuel sources include coal, natural
gas, oil, nuclear, biomass, geothermal, and concentrated solar power.
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across the state could lose, on average, 4.5% peak capacity by the end of the century

under a high emissions scenario. Klimenko et al. (2018), who studied the vulnerability

of Russia’s power sector to climate change, state that the power drop of steam turbines

is about 0.2 – 0.3% and 0.4 – 0.6% per 1 °C for fossil thermal and nuclear power plants,

respectively. In comparison, Schaeffer et al. (2009) concluded that thermoelectricity is

robust to projected climate variations (temperature and humidity), however their study

was performed for the Brazilian context which has large shares of hydropower.

Water availability is an issue at the regional scale, which means that some areas would

experience a significant increase in water supply, while other regions would face the

opposite (Cisneros et al., 2014). The significant amounts of water that are needed to cool

thermal power facilities render them vulnerable to fluctuations in water supply. In the

United States, for example, each kWh of electricity generated via steam cycle requires

around between 90 – 100 litres of water (Wilbanks et al., 2008).5

The study of Bogmans et al. (2017), goes beyond assessing the impacts of climate

change and looks into the adaptation of thermal power plants from an operator/in-

vestor’s point of view, with two case studies – a coal power plant in the US and a

nuclear power plant in France. The main results emerging from this study are that net

losses from climate change are small, averaging at approximately 1% of net operating

profits, which reflects the remarkable flexibility of current power plant technology to ad-

just to adverse day-to-day changes in ambient conditions during spring, fall and winter.

The author argues that while climate change scenarios indicate a substantial deteriora-

tion of ambient conditions, the literature has failed to acknowledge, that thermal power

plants essentially embody a flexible type of technology, which partly shields operators

from these effects.

2.1.1.5 Oil and natural gas production, infrastructure for transmission and distribution of

energy

Although climate change does not impact the actual amount of existing oil and natural

gas resources, it can affect the knowledge about the availability of these resources and

the access to them (DOE, 2013, 2015). In other words, new climate conditions may not

impact fossil fuel resources, but could impact reserve estimates. For instance, ice-free

summers can increase the length of drilling seasons in the Arctic, which can affect the

rate at which new fields can be developed (Harsem et al., 2011). The infrastructure for

production and transport of energy, such as transmission lines, oil production rigs and

5 Weighted average that captures total thermoelectric water withdrawals and generation for both once-
through (O-T) and recirculating close-cycle (CC) cooling systems.
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pipelines can also be affected by climate change by means of possible and more frequent

extreme weather events (Wilbanks et al., 2008; DOE, 2013, 2015).

Oil and gas transmission systems (pipelines) can be affected by factors such as mud

flows, floods, landslides, permafrost thawing and other extreme meteorological events

as well as by hazards of geological nature, such as earthquakes, rockslides, etc. For ex-

ample, thawing permafrost would alter the foundations of Alaska’s infrastructure, and

it can increase vulnerability of riverbanks and coastlines to erosion, which can destroy

barge landing sites and disrupt crude oil shipments (Dell et al., 2014). Decrease in pre-

cipitation and longer dry spells may lead to more frequent droughts that will increase

demand and competition for water and include withdrawals for critical operations such

as oil refining operations and unconventional oil and gas production (DOE, 2013).

Electricity transmission lines are vulnerable to extreme winds and ice loads, lightning

strikes, landslides, and flooding. Sathaye et al. (2012) studied impacts on transmis-

sion and distribution lines, as well as on substation/transformer capacity in California,

and concluded on a positive relationship between warmer summers and system losses,

which mainly has impact in peak load operation conditions of the system. The study

of Lise and van der Laan (2015) assess investment needs for climate change adaptation

measurers of electricity power plants in the EU. The authors state that electricity grids

are the most sensitive to climate changes, with high sensitivities for air temperature (re-

duction in current carrying capacity or thermal ratings, and sagging lines) and increased

storm damage.

The most recent study of Forzieri et al. (2018), assesses escalating impacts of climate

extremes on critical infrastructures in Europe. Among over ten technologies assessed

for the energy sector, gas pipelines and electricity distribution/transmission appear to

have the highest sensitivity to climate change impacts, characterised by their risk to

wildfires and windstorms. Followed by hydropower infrastructure, that has high vul-

nerability both to extreme events and to changes in hydrological patterns, specially in

Mediterranean countries.

2.1.2 Impacts on energy demand

Final energy demand can be affected by climate change. Auffhammer and Mansur (2014)

present a review of studies related to the impact of climate change on energy demand.

The authors state that possible effects of climate change on energy demand include:
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• Decreases in the amount of energy consumed in residential, commercial, and in-

dustrial buildings for space heating and increases for space cooling;

• Decreases in energy used directly in certain processes such as residential, commer-

cial, and industrial water heating, and increases in energy used for residential and

commercial refrigeration and industrial process cooling (e.g., in thermal power

plants or steel mills);

• Increases in energy used to supply other resources for climate-sensitive processes,

such as pumping water for irrigated agriculture and municipal uses;

• Changes in the balance of energy use among delivery forms and fuel types, (e.g.

between electricity used for air conditioning and natural gas used for heating); and

• Changes in energy consumption in key climate-sensitive sectors of the economy,

such as transportation, construction, agriculture, and others.

Temperature variations can affect mostly energy demand for cooling or heating spaces

(Ebinger and Vergara, 2011). However, studies of the effects of climate conditions on

energy demand are not restricting to climate change. Long before the concerns of climate

change, air conditioning and refrigeration models have been used to assess the effect of

climate variables on final energy service demand. This literature review will not focus

on the extensive literature on climate space modelling regarding climate variations, but

it seeks to identify relevant studies that focus on climate change and energy demand

variations.

Most studies seeking to quantify the impact of climate change on demand have fo-

cused in some type of regression analysis between energy demand and climate variables.

Parkinson and Djilali (2015) and Sathaye et al. (2011), use a multivariate regression ana-

lysis to assess how demand has changed with temperature increase in British Columbia

and California, respectively. According to Isaac and van Vuuren (2009), in a business-as-

usual scenario, global energy demand for heating is projected to increase until 2030 and

then stabilise. In contrast, energy demand for air conditioning is projected to increase

rapidly over the period to 2100, mostly driven by income growth. The International

Energy Agency (IEA), states that if left unchecked, energy demand from air condition-

ers will more than triple by 2050, equal to China’s electricity demand today (IEA, 2018).

Given that the scope of this thesis is in a developing country, it must be mentioned

the difficulties of assessing how temperature variations affect user energy demand. Ap-

plying traditional econometric methods in developing countries comes with difficulties

given the considerable levels of suppressed energy demand and structural gaps that
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cannot be considered properly in econometric analysis, e.g. subsidies that distort the

relationship between energy demand and prices (Debnath and Mourshed, 2018).

In the agricultural sector a warmer climate might lead to a rising demand for water

and irrigation, and therefore increase the use of energy (either natural gas or electricity)

for pumping. Current loss and degradation of critical agricultural soil and water assets

due to increasing extremes in precipitation will continue to challenge both rain-fed and

irrigated agriculture unless innovative conservation methods are implemented (Hatfield

et al., 2014). The demand for cooling of livestock and poultry facilities would similarly

be expected to increase in a warmer climate, and heating needs in cattle barns and

chicken houses would likely fall (Wilbanks et al., 2008). The temperature differences

that are bridged in industrial processes through cooling systems are often much larger

than outdoor temperature fluctuations. Many continuous processes operate at relatively

stable surrounding temperatures and thus have a relatively stable demand. However,

little information exists on the impact of climate change on energy use in industry, as

Auffhammer and Mansur have indicated.

In addition to the residential, industrial and agricultural sector, there have not been

many studies found regarding the impact of climate change on transport sector energy

consumption. Studies rather focus on the impact of the transport sector on climate

change Chapman (2007). However, the study of Roujol and Joumard (2009) found a

positive relationship between ambient temperature and fuel consumption in vehicles.

Warmer temperatures will incentive higher use of air conditioning, which reduces en-

ergy efficiency of vehicles. Wilbanks et al. (2008) estimate that the efficiency of a vehicle

is reduced by 12% when using air conditioning at high-way speeds.

The aforementioned studies mostly assess one particular energy source or technology.

It is not generally contemplated a formal analysis of the impacts of climate change in the

energy sector in an integrated manner considering the interactions among individual

energy supplying and consuming sectors. Beyond this, it is to be remembered that

the energy sector is integrated to other economic sectors. In addition to the technical

aspects, socio-economic factors and national development policies have a great influence

on the planning and operation of energy systems. Therefore, the greatest challenge in

the assessment of the impacts of climate change on energy systems is to do it in an

integrated fashion, as to understand the complex interactions within the energy sector

itself, as well as with other sectors of the economy.

As discussed in this section, climate change impacts could affect non-hydropower

electricity generation technologies, as well as other energy infrastructure (and even other

types of infrastructure at large). Although all these impacts for different infrastructure
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could be factored in an integrated analysis, this thesis will focus only on the impacts on

hydropower, given the importance that this technology has for the case study country, i.e.

Ecuador. In this sense, focus of analysis will be directed by the research questions and

the importance of the analysis of hydropower for the case study in question. Limitations

to this approach will be discussed further in Chapter 5 on page 249.

2.2 climate change impacts on hydropower

Different tools and models have been used when assessing the impact of climate change

on hydropower, influenced by the characteristics of the hydropower system and the over-

all energy mix. However, the standard approach found in the literature (Arnell, 1992;

Gosling et al., 2011; Cisneros et al., 2014; Hay et al., 2002) tends to follow the five steps

shown in Figure 2.1 on the next page: i) determination of hydrological model parameters

for the studied basin, using historic hydro-climatic data, ii) obtaining future projections

of the hydrological parameters based on climate projections of Global and/or Regional

Circulation Models (GCM, RCM), iii) development of a calibrated hydrological model

and simulation of the hydrological characteristics of the river, iv) analysis of model

simulations for hydrological characteristics in present and future conditions under the

disturbed climatic conditions according to climate change scenarios, and v) hydropower

modelling to assess impact on electricity generation. Steps one to four devote to first

assess the impact of climate change on water resource endowment, followed by an as-

sessment on energy generation. Approaches to assess each of these steps will be detailed

in the following subsections.

It is important to emphasize that at each stage of the methodology presented here and

illustrated by Figure 2.1 on the following page, uncertainties are added to the modeling,

generating a chain of cumulative uncertainties. At each stage, also, new parameters of

each stage of the modeling are added. It is proposed, initially, to keep them constant

throughout the analysis so that a static evaluation can be made (or ceteris paribus), where

the only variant factors are the climatic conditions. Limitations of this approach will be

discussed in Chapter 5 on page 249.

2.2.1 Impacts on water resource endowment

The broadest work on climate change impacts on water resources and the implication

for various sectors is the IPCC Technical Report on Climate Change and Freshwater
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Figure 2.1: Standard approach used in studies to assess climate change impacts on hydropower
systems

Resources (Cisneros et al., 2014). According to this report, there is strong evidence from

historic observations and climatic projections that hydrological resources are vulnerable

and can be strongly impacted by climate change. This would generate a broad range of

consequences for ecological and human systems. Some of the main conclusions of this

report regarding the key risks at the global scale that have medium to high evidence

and agreement are:

• Freshwater-related risks of climate change increase significantly with increasing

GHG concentrations.

• Climate change is projected to reduce renewable surface water and groundwater

resources significantly in most dry subtropical regions.

• So far there are no widespread observations of changes in flood magnitude and

frequency due to anthropogenic climate change, but projections imply variations

in the frequency of floods.

• Climate change is likely to increase the frequency of meteorological droughts (less

rainfall) and agricultural droughts (less soil moisture) in presently dry regions by

the end of the 21
st century.

• Climate change negatively impacts freshwater ecosystems by changing streamflow

and water quality.

• In regions with snowfall, climate change has altered observed streamflow season-

ality, and increasing alterations due to climate change are projected.

• There is little or no observational evidence yet that soil erosion and sediment loads

have been altered significantly due to changing climate.

A detrimental aspect of the increment of GHG in the atmosphere is that it increases the

uncertainty of an already uncertain hydrological cycle (Loaiciga et al., 1996). Climate
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change can impact water resources in terms of its annual mean availability and seasonal

variability (Kundzewicz et al., 2007). Variations in river flow and lake volume related

to climate change depend on variations in volume, intensity and moment of precipit-

ation (Chiew, 2010). It also depends on evapotranspiration, which itself is function of

temperature, insolation, atmospheric humidity and wind speed. Hydrographic basins

respond differently to hydroclimatic variables depending on their physiographic and

hydrogeological characteristics, and on the amount of water stored on the surface and

underground (Green et al., 2011).

2.2.1.1 Climate data

Studies of the effects of increasing GHG concentrations in the atmosphere are generally

based on Global Circulation Models (GCM). GCMs are biophysical models, which con-

sist of three-dimensional mathematical representations of the atmosphere based on the

physical laws that govern atmospheric physics (Taylor et al., 2012). These models are the

most sophisticated tools available for simulation of the current global climate and future

climate scenario projections. Their formulation usually takes into account the behaviour

and interaction of flow systems in the biosphere, hydrosphere, cryosphere, atmosphere

and geosphere in the climate system (Green et al., 2011).

The impact of climate change on water resources has been the focus of several studies,

being one of the impacts that has received the largest amount of attention in interna-

tional literature. This attention has probably originated from the concern on the repres-

entability of the hydrological cycle from GCM results. The first GCMs were developed

in the 1970s and 1980s (US NSA, 1977; Nemec and Schaake, 1982), and since then there

has been considerable growth in knowledge of climate processes. Over the last decades,

the spatial resolution of GCMs has increased and the dominant terrestrial processes that

affect large-scale climate are now included in current climate models, i.e. temperature,

wind, humidity, precipitation, etc.

The ability of any particular GCM to reproduce present-day mean climate and its

historical characteristics with respectable realism and good overall performance in com-

parison with the other models are presumed to indicate that it can be used to project

credible future climates (i.e., up to the 2080s). The IPCC (2007) states, ”There is consid-

erable confidence that climate models provide credible quantitative estimates of future climate

change, particularly at continental scales and above. This confidence comes from the foundation

of the models in accepted physical principles and from their ability to reproduce observed features

of current climate and past climate changes. Confidence in model estimates is higher for some

climate variables (e.g., temperature) than for others (e.g., precipitation)."
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The representation of important variables for the hydrological cycle, such as precipit-

ation, evapotranspiration and thereof runoff, is a challenge for GCMs. In the one hand,

precipitation is not well simulated, given that it happens in a smaller scale than that of

a GCMs’ grid (Xu, 1999). In addition, hydrological variables such as percolation and in-

filtration,6 which are a function of specific local characteristics, are not incorporated into

global models. Evapotranspiration, on the other hand, is not well represented because

it happens in the so-called "GCM frontier" – the interface between the atmosphere and

land surface (Loaiciga et al., 1996). Although there are complexities for GCMs to prop-

erly represent the hydrological cycle, this has not stopped GCMs to become the starting

point of many studies that assess the impact of climate change on water resources. To

the extent that these models seek to relate chemical changes in the atmosphere (GHG

concentration) with large scale climatic variables, it is necessary to adopt concentra-

tion/emission scenarios of these gases in the atmosphere. According to Kundzewicz

et al. (2018), there are two broadly applied scenario approaches: one based on the IPCC

Special Report on Emission Scenarios – SRES (Nakicenovic and Swart, 2000) and a more

recent one, based on the concept of IPCC Representative Concentration Pathways (RCPs)

(Moss et al., 2010; Taylor et al., 2012).

The SRES scenarios are based on four qualitative storylines called "families": A1, A2,

B1, and B2; as has been detailed in Table 2.3 on the facing page. A set of scenarios con-

sisting of six scenario groups were drawn from the four families: one group each in A2,

B1, B2, and three groups within the A1 family (A1FI, A1B, and A1T). For each storyline

several different scenarios were developed using different modelling approaches to ex-

amine the range of outcomes arising from a range of models that use similar assump-

tions about driving forces (i.e. GDP and population). Altogether 40 SRES scenarios were

developed by six modelling teams, which are equally valid with no assigned probabilit-

ies of occurrence.

A number of comprehensive ’model inter-comparison projects’ (MIP) were established

in the 1990s by the World Climate Research Programme (WCRP) to undertake controlled

conditions for GCM evaluation (Taylor et al., 2012). Coordinated experiments, in which

many climate models (multi-model ensemble) run a set of scenarios, have become the

de facto standard to produce climate projections. Those multi-model ensembles sample

uncertainties in emission scenarios and provide a basis to estimate projection uncertain-

ties. The Coupled Model Inter-comparison Project Phase 5 (CMIP5) (Moss et al., 2010;

Taylor et al., 2012), coordinated by the WCRP in support of the IPCC AR5, is the most

6 Infiltration is defined as the downward entry of water into the soil or rock surface and percolation is the
flow of water through soil and porous or fractured rock. In hydrologic modelling, these two processes are
usually modelled separately.
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Table 2.3: Overview of the IPCC Special Report on Emission Scenarios (SRES)

SRES Description

A1 Rapid economic growth, moderate population increase, high technological
innovation, global convergence of living standards (A1B: Balanced, AFI:
Fossil-intensive, AT: Non-fossil)

A2 Moderate economic growth, very high population increase, focus on
self-reliance and local identity

B1 Moderate economic growth, move toward service and information economy,
focus on environmental sustainability, global convergence

B2 Slow economic growth, low population increase, focus on environmental
sustainability, regional solutions to environmental issues

Source: Nakicenovic and Swart (2000)

recent of these activities, and builds on the CMIP3, which was used to produce the

emission scenarios of the IPCC SRES report (A1, A2, B1, B2) (Meehl et al., 2007). The

efforts for CMIP5 have been enormous, with a larger number of more complex mod-

els run at a higher resolution with more complete representation of external forcings

and more types of scenarios. The CMIP5 uses the new Representative Concentration

Pathways (RCPs) (van Vuuren et al., 2011), a set of four new pathways that span the

range until year 2100 radiative forcing values,7 i.e. from 2.6 to 8.5 W/m2; as has been

detailed in Table 2.4 on the next page. The four selected RCPs were considered to be

representative of the literature and included one mitigation scenario leading to a very

low forcing level (RCP2.6), two medium stabilisation scenarios (RCP4.5/RCP6) and one

very high baseline emission scenario (RCP8.5). For the CMIP5, the four RCPs have been

formulated based on a range of projections of future population growth, technological

development, and societal response.

Knutti and Sedláček (2012), who assess the robustness and uncertainties in the new

CMIP5 climate model projections argue that although models have improved, repres-

enting more atmospheric processes in detail and at the regional level, the convergence

among climate models will remain slow. However, the uncertainties should not stop

decisions being made. These models are still the only credible tools currently available

to simulate the physical processes that determine global climate and used as a base

for assessing climate change impacts on natural and human systems. Figure 2.2 on

the following page presents the difference between SRES and RCP scenarios for global

mean temperature increase as assessed by Knutti and Sedláček. There is a large spread

7 Radiative forcing or climate forcing is the difference between insolation (sunlight) absorbed by the Earth
and energy radiated back to space (Baede, 2010). The influences that cause changes to the Earth’s climate
system altering Earth’s radiative equilibrium, forcing temperatures to rise or fall, are called climate forcings.
Positive radiative forcing means Earth receives more incoming energy from sunlight than it radiates to
space. This net gain of energy will cause warming. Conversely, negative radiative forcing means that Earth
loses more energy to space than it receives from the sun, which produces cooling.
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Table 2.4: Overview of Representative Concentration Pathways (RCPs)

RCP Description

RCP2.6 Peak in radiative forcing at ~3 W/m2 (~490 ppm CO2 e) before 2100 and
then decline (the selected pathway declines to 2.6 W/m2 by 2100).

RCP4.5 Stabilisation without overshoot pathway to 4.5 W/m2 (~650 ppm CO2 e) at
stabilisation after 2100

RCP6.0 Stabilisation without overshoot pathway to 6 W/m2 (~850 ppm CO2 e) at
stabilisation after 2100

RCP8.5 Rising radiative forcing pathway leading to 8.5 W/m2 (~1370 ppm CO2 e)
by 2100.

Source: van Vuuren et al. (2011)

Figure 2.2: Global temperature change and uncertainty

Note: Global temperature change (mean and one standard deviation as shading) relative to
1986–2005 for the SRES scenarios run by CMIP3 (left) and the RCP scenarios run by CMIP5

(right). The number of models is given in brackets. The box plots (mean, one standard deviation,
and minimum to maximum range) are given for 2080–2099 for CMIP5 (colours) and for the
MAGICC model calibrated to 19 CMIP3 models (black), both running the RCP scenarios.
Source: Knutti and Sedláček (2012)

for global surface temperature projection until the end of the century, with the RCPs

showing a wider range of uncertainty when compared to the SRES.

Regarding climate projections with GCMs, two types of uncertainties should be high-

lighted: i) intra-model uncertainty and; ii) inter-model uncertainty. Intra-model uncer-

tainty depends on the emission or concentration assumptions considered and are related

to the input data for climate models to perform experiments. In comparison, inter-model

uncertainty derives from the distinct results obtained once the climate models (GCMs)

from an ensemble are run under different SRES emission or RCP concentration assump-

tions. In general, recent studies that use climate projections to assess the impact of

climate change on water resources use one or more GCMs run under one or more SRES

or RCP scenarios. A clear advantage of the SRES and RCP scenarios is that it allows the

scientific community to have a basis for comparison among impact studies. However,
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while scenarios have been used in a wide range of policy-experiments, van Vuuren et al.

(2011) state that they should not be interpreted as forecasts or absolute bounds or be

seen as policy prescriptive (i.e. no likelihood or preference is attached to any of the in-

dividual scenarios of the set). At the same time, the use of the SRES or RCPs in climate

research may provide important information for decision-making. A broader discussion

on climate change uncertainty and its treatment will be carried out in Section 2.3.1 on

page 66.

2.2.1.2 Downscaling

The broad generalisations of projected climate change provided by GCMs may be use-

ful for comparing responses at a global scale, however they cannot provide information

at scales finer than their computational grid (typically of the order of 200 km), and

processes at these unresolved scales are important. In this context, additional technics

were developed that seek to address the disparity between the coarse spatial scales of

GCMs and observations from local meteorological stations – what is known as downscal-

ing (Teutschbein and Seibert, 2012). GCMs do not accurately predict local climate, but

the internal consistency of these physically-based climate models provides most-likely

estimates of ratios and differences (scaling factors) from historical to predicted scenarios

for climatic variables, such as precipitation and temperature (Fowler et al., 2007). Down-

scaling techniques can be classified in two categories (Chen et al., 2013): statistical and

dynamic.

statistical downscaling technics combine existing and past empirical know-

ledge to address the disparity between coarse spatial scales of GCMs and point

local meteorological observations (Green et al., 2011). This technic uses a statistically-

based model to determine deterministic or stochastic relationships (functions) between

observed regional climate variables (dependent or predicted variables) which are

conditional to large-scale GCM variables (independent or predictor variables). The

derived functions between predicted and predictor variables are applied on sim-

ilar predictor variables from GCM simulation results to estimate the corresponding

local or regional climate characteristics. Therefore, this method implicitly assumes

that such empirical relations will remain valid in future climatic conditions (Kun-

dzewicz et al., 2007).

dynamic downscaling technics explicitly solve the regional physical variables

by nesting a higher resolution (20 – 50 km) Regional Climate Model (RCM) within

a coarser resolution GCM. Thus, in addition to GCM results, surface layer char-
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acteristics are incorporated into the analysis, i.e. topography, vegetal cover, etc.

Although this method does not implicitly assume the perpetuity of historic cli-

matic relations, it is data and computational intensive, which limits its use for the

large amount of results provided by numerous GCMs (Maurer, 2007). In addition,

dynamic downscaling can generate significant errors as it may accumulate GCMs

bias to the ones of RCMs (Wood et al., 2004). Taylor et al. (2012), in a review on

the GCMs of the CMIP5 ensemble, conclude that the downscaled data cannot be

more reliable than the climate model simulation that underlies it – more detail does

not automatically imply better information. RCMs are attractive to those seeking pro-

cess understanding and causative simulation, but most downscaling is currently

statistical (Green et al., 2011).

A conventional and broadly used statistical downscaling method is the so-called delta

factor approach, which is a method that makes the output of GCMs useful for catchment

scale analysis of hydrological modelling.8 The method starts with the preparation of

coincident predicted and predictor data time series. The predictor data set is obtained

from GCM results in the grid corresponding to the local study area, while the predicted

data set is a long time series of observed daily or monthly weather information from

local meteorological stations that represent an area (e.g. temperature, rainfall, solar

irradiance, etc.). The delta factor is the ratio between a mean in the future and the

historical run. This change factor is then applied to the observed historic time series

to transform this series set into a time series that is representative of a possible future

climate (Ruiter, 2012).

Although the delta factor approach is considered to be limited, mainly because it

does not incorporate the possible (and mostly uncertain) changes between local and

large scale climatic variables, this method has been extensively applied in several hydro-

logical studies (e.g. Thompson et al., 2014; Ho et al., 2015; Parkinson and Djilali, 2015;

Teotonio et al., 2017). The advantage of the delta factor approach is its simplicity and

its ability to minimise GCM errors, assuming that the modelling bias for the future is

equivalent to that of the present. This can be particularly important for precipitation

projections, in which differences between observed and GCM computed values can be

relevant (Cisneros et al., 2014). Roy et al. (2010) present the pros and cons of using

the delta method approach technic, pointing out that it is of proper use when the num-

ber of basins in matter are several and when local climate measurement time series for

the use of enhanced downscaling procedures is absent (e.g. in the case of developing

8 Other statistical downscaling methods include: constant scaling (CS), daily scaling (DS), daily translation
(DT), local intensity scaling (LOCI), daily bias correction (DBC) and quantile mapping (QM). See Chen et al.
(2013).
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countries).9 Ultimately, the selection of a method to downscale and further model the

hydrology of a defined area depends on the purpose of the results, i.e. understanding the

behaviour of a specific hydrological system, or generating a series of representative results to be

used in subsequent modelling exercises.

2.2.1.3 Modelling the hydrological cycle

Alterations in the hydrological cycle caused by climate change are simulated with dif-

ferent types of hydrological models. These can be classified in: i) physical models, ii)

conceptual models, and iii) statistical or empirical models.

physical models have their parameters based on measurements, which provides a

greater degree of realism at the expense of a large demand for data. This makes

it extremely difficult to apply to large hydrographic basins or in regions with

problems of access and information collection. Similarly, input data from climate

models need high spatial and temporal resolutions that are compatible with those

used in hydrological physical models, which depends on the use of downscal-

ing techniques that are capable of reaching such levels of resolution (Cornelissen

et al., 2013; Tegegne et al., 2017). The high demand for data from physical models

severely limits its application on climate change impact studies.

conceptual models are based on conceptual relationships of the hydrological cycle,

with their parameters being calibrated rather than measured. It is tried, through

different techniques, to identify a combination of parameters that generates a be-

haviour of the model consistent with observed data or with historical experience

(Devkota and Gyawali, 2015; Yan et al., 2015).

statistical models are purely based on empirical relationships between climatic

variables and hydrological behaviour. Statistical models include multiple regres-

sion models, where flow is estimated as a function of climatic variables such as

rainfall and temperature. By not explicitly explaining the physical relationships

behind the mechanism by which climatic variables influence the flow of a river

basin, statistical models are often called "black box" models (Serrat-Capdevila et al.,

2007; Shamir et al., 2015). However, the simplicity and ease of application of such

models make them interesting methodological options, assuming that the model

is well adjusted.

9 Critics to the delta method consist on its non-ability to handling the modelled changed in a proper statistics
manner. Some of the outliers can be washed out when working with averages. For further discussion and
applicability of the delta method refer to the findings of Roy et al. (2010)
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According to Xu (1999), all types of hydrological models have advantages in different

applications. More complex models in terms of structure and data input may yield

suitable results for a wide range of applications, but high computational effort and

high data demand may limit its use. Although less comprehensive, simpler models can

provide results that are appropriate to a specific goal with reduced computational and

data demand. Therefore, the choice between models is strongly related to the purposes

for which hydrological modelling serves, or to the choice between the simple models that

can be used and the complex models that need to be used.

Once the source of information on climate impacts (e.g. GCMs), the concentration

scenarios (e.g. RCPs, SRES), the downscaling method (e.g. statistic, dynamic) and the

hydrological model (e.g. empirical, conceptual or physical) have been defined, some

caveats of the five-step assessment method that was shown in Figure 2.1 on page 36 are

discussed in the following paragraphs.

According to Arnell (1992), one of the main hypotheses of this methodological ap-

proach is that the hydrological model remains valid under different climatic conditions,

that is, that the parameters of the model do not only reflect the relations between cli-

mate and current flow. For example, vegetation cover plays a key role in the hydrological

cycle, especially at the local level. Possible future changes in biomass production caused

by climate change – in addition to anthropogenic activities, such as deforestation and

other changes in land use – is an element of great uncertainty in the analysis of impacts

of climate change (Hua et al., 2015). The increase in CO2 concentration can also boost

the growth of some plants, which can increase evapotranspiration in certain areas (Cis-

neros et al., 2014). Only few studies include a dynamic vegetation cover model into the

hydrologic model (Dodds, 2010), and the few that do, consider only large scales (GCM)

and not basin level.

Another drawback, pointed out by Loaiciga et al. (1996), is that given the natural

uncertainty of hydrological regimes in the current climate (evident in the first step of

the method), it is difficult to distinguish climate change-induced variations from those

inherent in the hydrological cycle – signal-to-noise interpretation problem. In this sense,

several studies use more than one hydrological model or more than one downscaling

method, explicitly in the attempt to isolate the bias of each stage – particularly for steps

one and two, mentioned in Figure 2.1 on page 36. Uncertainty in climate change and

water resources modelling will be further discussed in Section 2.3.1 on page 66.

Although the impacts of climate change on the hydrological cycle have been the focus

of several studies, few studies assess the impacts on groundwater and the relationship

between rivers and hydraulically connected aquifers (Cisneros et al., 2014). The IPCC
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(2007) stated that a lack of necessary data has made it impossible to determine the mag-

nitude and direction of groundwater change due solely to climate change. Green et al.

(2011) provide an overview and synthesis of the key aspects of subsurface hydrology

(soil water, deeper vadose zone water,10 and unconfined and confined aquifer waters),

related to climate change. The relation between climate variables and groundwater is

considered more complicated than with surface water (Bates et al., 2008), given that

groundwater-residence times can range from days to tens of thousands of years, which

is likely to delay and disperse the effects of climate change, and challenge efforts to

immediately detect responses in the groundwater (Chen et al., 2004).

An additional complication is that the great majority of studies about climate change

and hydrology use average impacts, not considering extreme events, such as droughts

and floods. Increasingly frequent and intense hydro-climatic extremes in recent decades

are accelerating impacts on natural and human systems (IPCC, 2012). El Niño Southern

Oscillation (ENSO), which is an example of a cyclical climate extreme, is a major driver

of global inter-annual climate variability (McPhaden et al., 2006). Its characteristic warm-

ing (El Niño) and cooling (La Niña) phases manifest in flood and drought conditions

across many regions of the world (Chiew and McMahon, 2002; Yu and Zou, 2013; Ward

et al., 2014; Liang et al., 2016). Jentsch et al. (2007) state that research on extreme events

("event-focused" in contrast to "trend-focused") can only be defined in relation to the sys-

tem being studied, and the extremeness only by statistics linked to the occurrences of

the process itself. Thus, there is the need to take into account information on historical

or projected extremes of simulated events (i.e. relative magnitude compared to mean

conditions).

Finally, hydrologists have developed interest in simulating flow at various scales for

various reasons, such as availability for irrigation, flood control, sediment transport,

hydroelectric generation, etc. Thus, the impacts of climate change on water availability

cannot be dissociated from the purpose for which this resource is intended. In the case

of human needs, socioeconomic development plays a fundamental role in assessing the

future availability of water. Changes in the hydrological cycle are not only subject to

the impacts of climate change on water resources, since several factors can influence the

future use of water as can be seen in Table 2.5 on the next page.

The global view of studies, such as the IPCC AR5 chapter on Freshwater Resources is

especially relevant in the motivation for formulating comprehensive mitigation policies

10 The vadose zone, also termed the unsaturated zone, is the part of Earth between the land surface and
the top of the phreatic zone, the position at which the groundwater (the water in the soil’s pores) is at
atmospheric pressure. Hence, the vadose zone extends from the top of the ground surface to the water
table.
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Table 2.5: Socio-economic impacts on availability of water resources

Factor Impact

Energy generation Hydropower energy requires to use free flowing or
impounded water resources.

Population growth The greater the population the greater the demand for water.

Population concentration The use of water in urban areas tends to be greater than in
the rural environment due to waste, leaks and due to the
need for sanitation. In addition, the concentration in urban
areas can generate pressure on the water resources of
specific localities.

Industrial development Industry is a major consumer of water, although different
industrial specialisations may have different impacts.

Increased irrigation An increasing population will require greater production of
food. More efficient irrigation techniques can reduce this
effect.

Efficiency in water use Improved management of water resources can reduce the
demand for water.

Environmental restrictions They can limit access to water resources.
Source: Arnell et al. (2011)

(Cisneros et al., 2014). Such a study includes impacts on: agriculture and food security,

land use and forests, human health, supply of water and municipal sanitation, settle-

ments and infrastructure, and economic sectors such as tourism, industry and transport.

However, by addressing the problem on a global scale, specific local impacts are not

addressed. This makes it difficult to apply the results for the design of local adapta-

tion policies for the various impacts that may arise from changes in the hydrological

cycle. In this sense, studies that work on impacts in specific sectors on a scale relevant

to policy decisions are of the utmost importance. This is what part of this thesis is about

– focusing on the national level impacts of climate change on electricity generation from

hydraulic sources.

2.2.2 Impacts on hydropower electricity generation

The complexity of hydropower modelling can vary according to the size, type of techno-

logy, geographical extension, hydraulic interconnections (cascading in the same river),

electrical interconnections (transmission), share in overall generation, etc. Without con-

sidering, for now, the characteristics of the plants themselves, basically two factors can

influence the complexity of modelling a hydroelectric system:

1. The overall contribution of hydropower in the generation matrix. Whether the

hydroelectric system is complementary to or complemented by other sources of electri-
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city generation. In systems where the participation of hydroelectricity is small and

therefore its role is to complement other sources, the ability to satisfy demand does

not depend to a great extent on the hydrological scenario. Thus, the variation in

the amount of average energy produced per year by the hydroelectric system is a

sufficient measure of the possible impacts of climate change, as for example is the

case of the studies of McPhee et al. (2012) for Chile and Hamlet et al. (2010) for the

US, both countries with large shares of thermoelectric generation. In comparison,

in a system where hydroelectricity is predominant, the variation in the average

yearly amount of energy generated is not a good enough measure to evaluate the

impacts of climate change. In systems such as this, the reliability of electricity

supply depends fundamentally on the monthly hydrological scenario and climatic

impacts must use more conservative indicators for analysis, such as firm capacity.11

This is the case, for example, in the studies of Lucena (2010) for Brazil and Sel-

jom et al. (2011) for Norway, both countries with important shares of hydropower

generation.

2. The geographic distribution and level of integration. Integration can be either

in terms of hydraulic connections – such as more than one power plant along

the same river or its tributaries – or energetic – through the transmission of elec-

tricity in the same interconnected system. The operation of cascading systems

should maximise the amount of energy produced not only in an isolated plant but

throughout the entire flow. In systems covering a wide territorial extent, in dif-

ferent river basins, integration through electric transmission can help to optimise

the operation in scenarios of regionally distinct climatic variations – eventual or

seasonal. In such systems, just as plants on the same river cannot be optimised

individually, the modelling of the expansion and operation of the system should

consider water availability in different basins.

The above detailed factors influence, therefore, the rationality of the operation of the

hydropower system, as well as the institutional/legal framework that governs its oper-

ation. In small and complementary hydropower systems, the individual rationality of

the plant may be prevailing, as well as in free market environments. In larger and more

complex systems, the logic of centralised operation makes more sense to optimise the ef-

ficiency of the system as a whole. This rationality of the operation must also be present

11 Firm capacity can be defined for a hydroelectric system as the greatest amount of energy that can be
obtained considering the worst hydrological scenario, usually based on historical experience. It can altern-
atively be defined as the largest amount of energy produced in the worst critical period, which in turn
consists of the period in which the system’s storage capacity goes from the maximum to the minimum
without intermediate re-fillings. In other words, it is the period in which the energy accumulated in the
reservoirs depletes without a complete replenishment.
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in the energy modelling of the possible impacts of climate change. Two examples of

contrasting operating rationalities are presented in the studies by Gaudard et al. (2013)

focusing on climate change impacts on the management of a single hydropower station

and the study of Kannan and Turton (2011) modelling the impact of different hydrocli-

matic scenarios for the national power system, both of these studies are developed in

Switzerland but for different scales of analysis – local and national, respectively.

2.2.2.1 Energy modelling paradigms

Computerised tools have been employed to aid investment decision-making in the en-

ergy sector. These have become more sophisticated and powerful overtime leading to dif-

ferent approaches and increasing capabilities for disaggregation, uncertainty and even

for including climate change impacts. As Connolly et al. (2010) state in their review

of computer tools for assessing the integration of renewable energy, “energy models are

employed to assist policy-makers and decision makers by facilitating the exploration of differ-

ent options of development that leads to gaining high level insights regarding electricity market

design, network investment, and in establishing desired energy policies outcomes that are aligned

with national/regional or even international objectives.” Extensive reviews of available en-

ergy models and their capabilities for informing policy can be found in the studies of

Jebaraj and Iniyan (2006), Connolly et al. (2010), Bhattacharyya and Timilsina (2010),

Pfenninger et al. (2014), Chiodi et al. (2015) and OLADE (2017b).

There are two main energy modelling paradigms: top-down and bottom-up. Top-down

approaches break down a system to gain insight into its compositional sub-systems,

while a bottom-up approach puts together elements of a system to give rise to grander

systems (Kesicki, 2012).

top-down models take an aggregated view of the energy sectors and the economy

when simulating economic development, related energy demand and energy sup-

ply (Herbst et al., 2012b,a). The top-down label comes from the way modellers

apply macroeconomic theory and econometric techniques to historical data on con-

sumption, prices, incomes, and factor costs to model the final demand for goods

and services, and the supply from main economic sectors (i.e. energy, transporta-

tion, residential, agriculture, and industry) (Nakata, 2004). Examples of top-down

energy models are macro-economic models which use hybrid input-output mat-

rixes with the inclusion of energy flows to describe transactions among economic

sectors (Guilhoto, J. J. M., Sesso Filho, 2005; Mayer, 2007; Rathmann et al., 2012;

Miller and Blair, 2009) and computable general equilibrium (CGE) models that

construct the behaviour and interrelations of economic agents based on microe-
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conomic principles (van Beeck, 2003). According to Hourcade et al. (2006), what

top-down energy models seem to lack, in general, is technological flexibility bey-

ond current practice. If the input substitution elasticities, critical to technological

response in top-down models, are estimated from historical data, there is no guar-

antee that the values for these parameters would remain valid in a future with

ambitious policies for environmental improvement, i.e. shaped by induced tech-

nical change (Solaymani and Kari, 2014; Martinsen, 2011; Cai and Arora, 2015).

Currently, macroeconomic energy models are often being used to evaluate the eco-

nomic costs and environmental effects in the whole economic system of energy

or climate policy instruments, such as CO2 taxes, emission trading systems (ETS),

feed-in tariffs of renewable energies, etc.

bottom-up models are built on “engineering thinking”. Their relatively high degree

of technological detail enables modelling of components of the system. Thus, it is

generally a well-suited approach when the purpose of the model is to analyse spe-

cific changes in technology or command-and-control policies. For instance, when

modelling the expansion plans of electricity generation capacity, a bottom-up ap-

proach is more appropriate because of its ability to capture many energy-related

aspects of the system in a disaggregated form (Bhattacharyya and Timilsina, 2010).

This approach, for instance, makes it possible to analyse how investing in renew-

able energy would impact the total energy system cost. According to Herbst et al.

(2012b), bottom-up models use a business economics or social planner approach

for the economic evaluation of the technologies simulated. They usually cannot

consider macroeconomic impacts of energy or climate policies or related invest-

ments. Regarding the mathematical form, bottom-up energy models have been

developed in the form of simulation or optimisation models, and more recently

of multi agent models (or agent-based models) (Mundaca et al., 2010; OLADE,

2017b).

To overcome the above-mentioned weaknesses and limitations of conventional top-down

and bottom-up energy models, energy modelling is currently moving in the direction of

hybrid energy system modelling. This approach combines at least one top-down mac-

roeconomic model with at least one set of bottom-up models for each final energy sector

and the conversion sector (Herbst et al., 2012a). According to Hourcade et al. (2006) a

high-quality hybrid model system should incorporate at least three properties: i) tech-

nological explicitness, ii) microeconomic realism and iii) macroeconomic completeness.

The simplest form of linking top-down and bottom-up approaches, also called ’soft link-
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ing’, is the manual transfer of data, parameters and coefficients. If this transfer is further

evolved using automatic routines, a ’hard link’ is established between the different mod-

els. Soft-linking approaches have been carried out, for example, by Fortes et al. (2014b)

in their study for Portugal where a soft-link between the bottom-up TIMES12 energy

system optimisation model and the CGE GEM-E3
13 model is done, or in the study by

Soria et al. (2016) in the study of Concentrated Solar Power (CSP) in Brazil where a soft-

link between a dispatch model (REMIX) and and energy system optimisation model

(MESSAGE) is done. Hard-linking examples include the work by Manne (1992) and the

MESSAGE-MACRO14 model (Messner and Schrattenholzer, 2000) and more recently

the stand alone TIMES-Macro hard-linked top down/bottom up linkage (Kypreos and

Lehtila, 2014).

The use of either of these approaches (top-down or bottom-up) is determined by the

modelling goal and scope (Decarolis et al., 2017). However, because this research hopes

to understand how different aspects and components of the energy system model are

impacted by climate change, a bottom-up approach will be used.

2.2.2.2 Modelling climate change impacts on hydropower systems

Bottom-up models used to study the impacts of climate change on hydropower systems

can be categorised in two groups: simulation and optimisation models:

simulation models are used in energy modelling as descriptive tools. These models

attempt to provide a descriptive, quantitative illustration of energy demand, sup-

ply and/or conversion based on exogenously determined drivers and technical

data (e.g. income, population, government policies, energy prices, etc.) (Herbst

et al., 2012b). These models help the decision maker (or modeller) to get a deeper

understanding of how the system would behave under different scenarios such as

varying policy instruments or relationship between two variables in a system. Put

in another way, these models are used to answer ‘what if’ type of questions. The

model outcome is heavily influenced by the input assumptions and data. Thus,

it is difficult to explicitly model least-cost investment decisions of other optimal

behaviour under constraints. Econometric models are a type of simulation mod-

els which in the context of the impacts of climate change impact on hydropower

make use of the historical empirical relationships between flow and electricity gen-

eration to project the effects of variations in flow regime. This method, although

12 The Integrated MARKAL EFOM System
13 General Equilibrium Model for Economy-Energy-Environment
14 Model for Energy Supply Strategy Alternatives and their General Environmental Impact with a Macroeco-

nomic extension
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severely limited because it does not include considerations regarding the factors

and parameters influencing hydroelectric power production, can be applied when

the availability of technical data regarding the hydropower stations and the electri-

city system are scarce.

optimisation models intend to define the optimal set of technology choices to achieve

a specific target at minimised costs under certain constraints (Bazmi and Zahedi,

2011). They try to generate possible futures that lower the cost of the system. Ac-

cording to Baños et al. (2011), the operating principal of an optimisation model is

to minimise the output of what is called the "objective function", which in concept

seeks to support an optimum allocation of resources, technologies and relevant

services under several constraints. The outcome represents the best solution (e.g.

least-cost) for given variables while meeting the given constraints e.g. least emis-

sions (Nakata et al., 2011). Outcomes from optimisation models can be even more

sensitive than simulation models to input assumptions, e.g. penny switching be-

haviour — the model endogenously selecting a technology or energy commodity

that is only slightly cheaper that the possible alternative. A flip-flop effect (or all

or nothing effect) can appear in the least-cost portfolios when performing sensitiv-

ity analysis with only small variations of the input parameters, particularly prices.

A complete review of optimisation modelling of energy systems can be found in

Zeng et al. (2011).

The use of simulation models to assess the impact of climate change on hydropower has

focused in representing the behaviour of energy producers applying some operating

rule. For example, Harrison and Whittington (2002) used a simulation model of the

operation of the reservoir of the Batoka Gorge Dam project of the Zambezi river that

considers water spillage15 and evaporation of the reservoir to project monthly power

generation. The model used by Hamlet et al. (2010) simulates the operation of a system

of hydropower stations in the Pacific Northwest of the US including the impacts of

irrigation in the energy model to take into account for additional stresses on the dam.

The model used by De Lucena et al. (2009) simulates the operation and dispatch of

individual power plants while considering the synchronised operation of the hydro-

thermal power system in Brazil. Dale et al. (2015) model the impacts of climate change

on the Sacramento area by linking the hydrological model WEAP16 and the simula-

15 Water spillage correspond to vents from the reservoir that do not pass through the turbines. This is the
case when there is excess water in the reservoir or level of downstream flow must be at a minimum as
defined by law. The aim of this ‘ecological flow restriction’ is to maintain ecological processes (such as fish
migration) and allow continued nutrient and sediment transport downstream.

16 Water evaluation and planning.
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tion (account-based) energy model LEAP17. Both tools feature mass balance accounting

frameworks, simple dispatch rules for regulation of resource supply and climate sensit-

ive functions. Dale et al. do not base their hydroclimatic scenarios on GCM projections,

but rather on four extreme hypothetical scenarios to represent the impact of future

temperature and precipitation extremes. They argue that GCM-based scenarios are too

uncertain and do not bring any additional gain to the analysis.

There are also studies that use simulation tools to assess the impact of climate change

on hydropower at a global scale. For example, van Vliet et al. (2016a) developed a

soft-linked hydrological-electricity simulation modelling framework to assess the vul-

nerability of the world’s current hydropower and thermoelectric power generation sys-

tem to changing climate and water resources. The final conclusion of this study is that

transitions in the electricity sector with a stronger focus on adaptation, in addition to

mitigation, are thus highly recommended to sustain water-energy security in the com-

ing decades. On a regional scale, the study from OLADE-BID-AEA (2013), assesses the

vulnerability of hydropower in Central America. The study models seven hydropower

stations in Central America that capture the different uses of hydropower in the region

– stations with and without dam, Atlantic and Pacific basins, and different precipitation

patterns, etc. They also seek to calculate the firm capacity factor of each hydropower sta-

tion. The main characteristic of simulation models used to assess the impact of climate

change on hydropower systems is that economic feedbacks of the assessed water con-

straints and related adaptation options (for example, on energy prices, supply-demands

technology options) for the overall energy system are not usually modelled, which is

what optimisation models seek to address.

Regarding studies that have used econometric models to assess climate change im-

pacts on hydropower are the study of Iimi (2007), who estimated the impacts of climate

change on hydropower for three projects in India, Sri Lanka and Vietnam. The study

applies a simple vector autoregressive model to forecast future hydrological series and

evaluate the resulting impact on hydropower projects. The author concludes that having

larger installed capacity and some storage capacity might be useful to accommodate fu-

ture hydrological variations and seasonality. Similarly, the study of CEPAL (2012), that

assesses the vulnerability to climate change of the Chilean hydropower sector, develops

an exponential regression model using the historic relations between runoff, temperat-

ure and generation.

The study of Grijsen (2014), assesses the impact of climate change on hydropower

in Cameroon, by developing a series of empirical econometric regression analyses for

17 Long-Range Energy Alternative Planning System.



2.2 climate change impacts on hydropower 53

a specific basin based on observed precipitation, temperature and streamflow data at

multiple monitoring stations. The authors goal is to derive a series of ’climate elasticit-

ies’ which show the sensitivity of runoff and hydropower generation to hydro-climatic

variables – temperature, precipitation and evapotranspiration. The authors highlight the

practicality of this econometric approach to avoid time consuming and data intensive

hydrological and energy modelling, in addition to the large number and uncertainties

of GCMs.

Other approaches can also be undertaken to assess effects on large regions for which

little information is available. In the projections of existing hydropower potential in

Europe,18 Lehner et al. (2005), for example, simply applied physical relationships to

flow and altitude data. In addition, the authors had to make simplifications for lack of

specific information: i) generation is proportional to the installed capacity to the same

extent in all the plants, implying in unique values for efficiency and capacity factor,19

and ii) the effect of flow variations affects the energy produced directly in the same

proportion, which excludes the role of reservoir management. The study of Lehner

et al. did not incorporate the possible impact on future developments and additional

potential.20

Similarly, an assessment of the global technical and economic hydropower potential at

the global scale is presented by Gernaat et al. (2017). This study used high-resolution hy-

drographic discharge (15”× 15”; 450 m at the Equator) and elevation (3”× 3”; 90 m at the

Equator) maps to calculate cost-optimal dimensions and associated production poten-

tial of two types of hydropower systems: river power plants and diversion canal power

plants (following the definitions of Wagner and Mathur, 2011). The authors considered

that globally, hydropower projects would: i) follow cost equations from Norwegian and

US hydropower tender and contracts (which might underestimate the costs in develop-

ing countries), and ii) deploy fully in all rivers across the globe, excluding only the first

200 km upstream of basin outlets of rivers deeper than 4 m (river mouth restriction)

and the area in the vicinity of large bodies of water such as lakes or wide rivers. These

assumptions overlook policy and other social factors that might impact the development

of hydroelectricity. Gernaat et al. also assessed the effect of climate change. Globally,

a slight increase is seen (2 – 10%) that consistently occurs in Africa (4 – 18%) and Asia

Pacific (3 – 6%), while Europe shows a consistent decrease (-2 – -3%). North and South

America are less consistent over across the climate models.

18 Existing potential is defined as the average annual capacity of hydroelectric generation by country.
19 Capacity factor is defined as the ratio between what a power plant (or system) generates of energy and

what it would generate if it worked at full power all the time.
20 The impact on future uses can be incorporated in the analysis provided there are reliable estimates for the

technical parameters of the plants and the behaviour of the natural flow affluent to the projected reservoirs.
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When using optimisation models to assess the impact of climate change on hydro-

power, most studies focus on the operation of a hydropower system where the objective

function minimises variable cost, subject to operational constraints – usually synthetic

time series of inflow based on historic data. The objective function can also consist on

the maximisation of revenue from the sale of electricity, based on price scenarios, such as

the studies of Vicuna et al. (2008) for California’s hydropower plants and Gaudard (2015)

for a pump-storage facility in Switzerland. If the broader power sector is considered, the

optimising of the operation of hydropower and thermoelectric units is the objective, i.e.

assess the shift that the non-hydro capacity mix must undertake to ensure system robust-

ness, thus providing least-cost adaptive capacity to the system. For example, the study

of Parkinson and Djilali (2015) elaborated an electricity-planning framework for British

Columbia incorporating least-cost adaptation to hydro-climatic change. According to

the study, this imposed flexibility requirements from thermal generation is estimated to

increase the total cost of long-term electricity system operation between 1 – 7%. This

maximisation approach is best used for market driven energy sectors.

In hydrothermal power systems, as the ones in South America, a possible objective

function is to minimise the expected long-term generation cost over the planning period.

Only a few studies have been found that go beyond impact assessment and, with the

aid of an energy system optimisation model, pursue quantification of climate change

impact and adaptation costs. Among the few, Lucena (2010) assesses the impact of cli-

mate change on the Brazilian energy system, while focusing mostly on the hydropower

system. The study uses the MESSAGE21 energy system optimisation model from the

International Institute for Applied System Analysis (IIASA) applied to the Brazilian en-

ergy system (MESSAGE-Brazil), to calculate least-cost adaptation alternatives for the

projected impacts. Seljom et al. (2011) assess the impact of climate change on the Nor-

wegian energy system using by modelling the energy sector with the energy system

optimisation model MARKAL.22 This study indicates that in Norway, climate change

will reduce the heating demand, increase the cooling demand, have a limited impact on

the wind power potential, and increase hydropower potential.

More recently Teotonio et al. (2017) assess the impacts of climate change on hydro-

power generation and the power sector in Portugal by 2050 with a TIMES23 energy

system optimisation model. Results show that hydropower generation may decrease

by 41% in 2050. However, hydropower will remain one of the most cost-effective tech-

nologies in the Portuguese power sector, although it has almost been fully exploited.

21 Model for Energy Supply Strategy Alternatives and their General Environmental Impact.
22 Market allocation
23 The Integrated MARKAL and EFOM System
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The study of van der Zwaan et al. (2018), which assess the prospects of hydropower

development in Ethiopia, also uses the TIMES methodology but with the global model

TIAM-ECN24 energy system optimisation model and disaggregates Ethiopia from the

African region to assess low-emission development strategies in the context of the am-

bitious hydropower development plans of the country. The study shows that by 2050,

Ethiopia’s electricity supply will need to grow 50-fold and rely largely on hydropower

to supply its growing demand while maintaining low emission levels. The study of

(Lucena et al., 2018) goes beyond using a single model and performs a multi-model

comparison to assess the impact of climate change on hydropower in Brazil and on the

overall energy system. In this study, ceteris-paribus is also used to perform the analysis

of climate change impacts only on hydorpower, while neglecting all other climate im-

pacts on the power sector. And although, this study uses an ensemble of 16 GCMs for

scenarios RCP4.5 and RCP8.5, only two representative GCM scenarios are used to rer-

present low and high impacts. The latest study found is that of Sridharan et al. (2019),

who do an assessment on resilience of the Eastern African electricity sector to climate

driven changes in hydropower generation. This study uses a soft-link between a concep-

tual water model (WEAP) with the energy system optimisation model OSEMOSYS, to

model the systems of 10 countries in East Africa, although only use a limited numbero

of 6 GCMs.

The mentioned studies have modelled the whole energy system with optimisation

models but focused particularly on the impact that climate change has on hydropower

and therefore on the rest of the system. However, they have some shortcomings that are

worth mentioning and that will frame the literature gaps that this thesis seeks to tackle:

1. Hydropower’s operational characteristics are not modelled in detail. Most optim-

isation models do not distinguish hydropower according to the operation charac-

teristics of run-of-river and reservoir-based facilities beyond assigning an average

capacity factor for the technology (e.g. Teotonio et al., 2017). In addition, hydro-

power’s availability is usually only detailed at the aggregated intra-annual (sea-

sonal) level (e.g. Seljom et al., 2011; Kannan and Turton, 2011), that can wash out

critical months with low runoff.

2. The typical ’discrete’ investment characteristics of large hydropower projects is

not considered (e.g. van der Zwaan et al., 2018). Most energy system optimisation

models are strictly linear models that can build continuous amounts of technology-

specific capacity in any model time period. While this is a reasonable approxim-

24 TIMES Integrated Assessment Model from the Energy Research Centre of the Netherlands (ECN)



56 literature review

ation for many technologies, in some cases (e.g. hydropower and nuclear power)

it is appropriate to account for the granularity of investments by constraining the

model to use discrete sizes of particular technologies, a method known colloquially

as “lumpy investment.”

3. Most studies use a small number of emission scenarios of GCMs to characterise

climate change uncertainty that usually show the same trend and direction of

change. Using a larger number of GCMs could lead to evidencing more varied,

and many times contradicting, projections of climate change.

4. Finally, the time horizon of the analysis and the consideration of other uncertain-

ties apart from climate change might be of relevance. Given that climate change

impact assessments on hydropower are carried out for the long-term, uncertainties

regarding prices may add to those inherent in these type of studies; particularly

when using energy system optimisation models that use energy resources prices

and technology cost information to find a least-cost system configuration. This

thesis will focus on the uncertainties of fossil fuel prices and power generation

technologies cost because these parameters are the most relevant in the decision

process to favour or restrict hydropower deployment, particularly when hydro-

power competes with traditional fossil fuel generation options. One the one hand

thermal generation has low infrastructure costs, less prone to cost overruns but

vulnerable to fossil fuel price volatility, on the other hand hydropower has high in-

frastructure cost, is prone to cost overruns, but vulnerable to climate change. This

decision trade-off is the one this thesis specifically seeks to address, although in an

integrated analysis many other uncertainties could be considered to answer other

sets of research questions (demography, energy demand, GDP, etc.)

Table 2.6 on page 59 shows reviewed studies found in the literature regarding the im-

pacts of climate change on hydropower systems. The intention of the table is to show

the combination of hydrology and energy modelling tools that studies have used, by de-

tailing emission scenarios, number of GCMs, downscaling method, hydrological model

and hydropower/energy model (according to the standard method shown in Figure 2.1

on page 36). Among the countries that have many studies is the US (mainly the Pacific

Northwest), Norway, Canada and Brazil. Studies that use energy system optimisation

models focus on the interaction of hydropower variability with other parts of the en-

ergy sector usually at the national scale (Teotonio et al., 2017; Seljom et al., 2011; Lind

et al., 2013; De Lucena et al., 2009; van der Zwaan et al., 2018); while studies that use

simulation models tend to focus on the hydropower project level or on a single river
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Figure 2.3: Generation capacity expansion planning process in Ecuador

basin in which reservoir operation is modelled (Markoff and Cullen, 2008; Harrison and

Whittington, 2002; Parkinson and Djilali, 2015). Econometric studies are used for data

scarce regions or large geographic regions in which the particularities of the operation

of the hydropower system cannot be captured and focus in finding global and regional

trends (van Vliet et al., 2016a; Spalding-Fecher et al., 2017). The number of countries for

which the impacts of climate change on water resources and hydropower is continuously

increasing.

Finally, it is important to highlight once again that the complexity of the system will

determine the approach to be used in assessing climate change impacts. In cases of

complex systems at a national scale, such as the Ecuadorian one, a single model may

not be sufficient to describe the operation of the hydropower plants and its interaction

with the rest of the energy system. The current expansion and operation planning of

the Ecuadorian power system, carried out by the Ministry of Electricity and Renewable

Energy (MEER),25 is based on a combination of models that approach the issue with

different degrees of detail and planning horizons (MEER, 2017a).

To elaborate the Electricity Master Plan 2016-2025 (MEER, 2017a), two computational

tools have been used: OPTGEN (Model for generation expansion planning and regional

interconnections), and SDDP (Stochastic hydrothermal dispatch with network restric-

tions), both commercial software provided by PSR (PSR, 2018). Figure 2.3 depicts this

capacity expansion planning process that is currently undertaken in Ecuador. The OP-

TGEN model, starts with an exogenous demand forecast and project inventory, and de-

termines the least-cost expansion plan (investment, operation and maintenance). These

results are subsequently integrated into the SDDP model, which considers the uncer-

tainty of runoff and the operational restrictions of generation plants. The SDDP model

calculates the stochastic operational policy of least-cost dispatch through a probabilistic

25 In May 2018 the Ministry of Electricity and Renewable Energy was dissolved and became part of the
Ministry of Energy and non-renewable resources.
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analysis. It generates multiple equiprobable hydrological scenarios, based on simulated

multiple future economic dispatch scenarios to cover the projected electricity demand.

From the probabilistic results, the economic dispatch with expected values are obtained,

and with different probabilities of exceedance. Subsequently, compliance with the en-

ergy reserve margins is verified, as well as the energy supply reliability criteria for

power reserve: VERE (expected value of power rationing) and VEREC (expected value

of power rationing conditional). Estimated fuel consumption and CO2 emissions are

also determined.

However, a major drawback of this planning process is that its time horizon is max-

imum of 10 years, limited by the number of years that can be assesses at the hourly level

with the mentioned models. Considering that hydropower is long-lived, with economic

lifetimes of 30 years and operational lifetimes of over 75 years, and that the impacts of

climate change are expected by mid-century, it seems rather myopic to plan the system

for only a 10-year horizon. It must be mentioned that this thesis presents the first ap-

proach of modelling Ecuador’s energy system with an energy optimisation model until

year 2050.
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Table 2.6: Reviewed studies that assess climate change impacts on hydropower generation

Author Country/region Emission

scenario

Number of

GCMs

Downscaling Hydrological model Energy model

Harrison and

Whittington, 2002

Zambia Hypothetical 3 No Physical (WATBAL) Simulation (Reservoir and

electricity market model)

Lehner et al., 2005 Europe A1b 1 Delta method Conceptual

(WaterGAP)

Simulation

Iimi, 2007 India, Sri Lanka and Vietnam A1a 1 Delta method Statistical Simulation (Econometric)

Vicuna et al., 2008 US/Sierra Nevada California A2, B1 2 Delta method Physical (VIC) Optimisation (Linear

programming model)

Markoff and Cullen,

2008

US/Pacific Northwest A1B, A1T,

A1F1, A2, B1,

B2

7 Delta method Physical (VIC) Simulation (ColSIM reservoir

model)

De Lucena et al., 2009 Brazil A2, B2 1 Delta method + RCM

(PRECIS)

Statistical Optimisation (MESSAGE)

Hamlet et al., 2010 US/Pacific Northwest A1b, B1 20 Delta method Physical (VIC) Simulation (ColSIM reservoir

model)

Madani and Lund, 2010 US/California Hypothetical - Delta method Statistical (Regression

analysis)

Optimisation (EBHOM)

Thorsteinsson and

Björnsson, 2011

Nordic countries A1B 7 11 RCM Conceptual Simulation (EMPS)

Vicuña et al., 2011 US/California A2, B2 6 Delta method Physical (VIC) Optimisation (Sequential

multistep linear programming)

Escobar et al., 2011 Latin America A2, B2 Ensemble

average

Delta method Conceptual (WEAP) Simulation (LEAP)

Seljom et al., 2011 Norway IS92a, B2, A2,

CMIP2, AIB,

1.62xCO2,

5 RCM - HIRHAM Conceptual (HBV) Optimisation (MARKAL)

Golombek et al., 2012 Western Europe A1B 20 Delta method Physical (VIC) Simulation (LIBEMOD)

McPhee et al., 2012 Chile A2, B2 1 Delta method Conceptual (WEAP) Simulation (Econometric)
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Lind et al., 2013 Norway - 10 RCM Conceptual Optimisation (TIMES)

Table 2.6 (continued): Reviewed studies that assess climate change impacts on hydropower generation

Author Country/region Emission

scenario

Number of

GCMs

Downscaling Hydrological model Energy model

OLADE-IADB, 2013 Central America A2, B1, A1B 4 Delta method Statistical Simulation

Grijsen, 2014 Cameroon A1B 15 Delta method Statistical (Regression

w/elasticities)

Econometric (Regression with

elasticities)

Dale et al., 2015 US/Sacramento Hypothetical - - Conceptual (WEAP) Simulation (LEAP)

Parkinson and Djilali,

2015

Canada/British Columbia B1, A1B, A2 8 23 RCM Physical (VIC) Optimisation (hydropower and

thermoelectricity model)

van Vliet et al., 2016a Global RCP2.6, RCP8.5 5 Delta method Physical (VIC) Simulation

Shrestha et al., 2016 Nepal RCP4.5, RCP8.5 3 Statistical Physical (SWAT) Simulation

Teotonio et al., 2017 Portugal A2, B2, RCP4.5,

RCP8.5

1 Delta method Statistical Optimisation (TIMES)

Spalding-Fecher et al.,

2017

South African Power pool A2, B1, A1B,

RCP4.5, RCP8.5

22 (SRES),

11(RCP)

Statistical Conceptual (WEAP) Simulation (LEAP)

Gernaat et al., 2017 Global RCP8.5 2 High-resolution

hydrographic maps

Conceptual (LPJmL) Simulation

van der Zwaan et al.

2018

Ethiopia RCP2.6 1 Statistical Conceptual (REBASIM) Optimisation (TIAM-ECN)

Lucena et al. (2018) Brazil RCP4.5, RCP8.5 16 Delta method Conceptual (GWAM) Multi-model (ADAGE,

COPPE-COFFEE, GCAM,

IMAGE, MESSAGE-Brazil,

Phoenix_6LA and TIAM-ECN)

Sridharan et al. (2019) East Africa A1, A1B, A2,

RCP4.5, RCP

8.5

6 Statistical Conceptual (WEAP) Optimisation (OSEMOSYS)
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2.2.2.3 Adaptation to climate change impacts in the energy sector

Impacts of climate change will cause socio-economic costs (and benefits), which are

hard to determine. These costs include not only the direct damage caused by the im-

pacts, but also the costs of adapting to the new climatic conditions (Kundzewicz et al.,

2007). Identifying adaptation needs requires an assessment of the factors that determine

the nature of, and vulnerability to, climate risks (climate change vulnerability and im-

pacts assessments) and an assessment of adaptation options to reduce risks (adaptation

assessment) (Noble et al., 2014). Identifying the vulnerabilities of the energy sector to

climate change is essential for the design of adaptation policies, since the concern about

the impacts of climate change can affect the perception and evaluation of the technolo-

gical alternatives and the design of national energy policy (DOE, 2015). In the context of

climate change, adaptation can be defined as: strategies that allow practitioners to prepare

for the unavoidable effects of climate change, either by minimising negative impacts or exploiting

potential opportunities (Gregg et al., 2018).

According to Noble et al. (2014), adaptation can be described as a function of several

factors, such as economic and natural resources, access to technology and information,

infrastructure and institutions. Adaptation measures, however, are rarely taken only in

response to climate change, and are often part of broader initiatives, such as the UN Sus-

tainable Development Goals (Nerini et al., 2018). Economic development, by itself, is a

way of reducing vulnerability to climate change and could therefore be considered as ad-

aptation (Hallegatte et al., 2011). The relationship between economic development and

adaptation is therefore rather narrow, since there are several “no-regret” decisions that

are made due to other reasons but help to reduce negative impacts of climate change

(Callaway, 2004; Castells-Quintana et al., 2018). It may therefore be difficult to distin-

guish between adaptation measures and measures that are taken independent from cli-

mate change.

At the same time, this implies that various adaptation policies can be implemented

at low cost, since adaptation has synergies with other policies in different areas. For ex-

ample, synergies between adaptation and mitigation are interesting because achieving

both objectives can increase the cost-benefit ratio of measures and make them more at-

tractive to financing (Vogt-Schilb and Hallegatte, 2011). Although adaptation measures

may be autonomous, the adoption of measures which are directly geared to adapting to

climate change – such as dams against rising sea levels, reinforcing structures against

storms and hurricanes, investing in additional electric generation capacity, etc. – usu-
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ally involves projecting impacts and comparing their costs with the costs of possible

mitigation measures.

However, comprehensive estimates of the costs and benefits of adaptation have so far

been scarce and the literature on this subject is still quite limited and fragmented in

sectoral and regional terms (Gregg et al., 2018). Adaptation has tended to lag behind

mitigation efforts both in research and in the climate negotiations. In part this is be-

cause adaptation and development specialists, governments, NGOs, and international

agencies have found it difficult to clearly define and identify precisely what constitutes

adaptation, how to track its implementation and effectiveness, and how to distinguish

it from effective development (Arnell, 2010; de França Doria et al., 2009).

Schaeffer et al. (2012) states that, although the energy sector is vulnerable to climate

change, little research has been produced on the subject and modelled adaptation mech-

anisms26 is seldom employed. In this sense, climate impacts research is fundamental

in developing tools to assist energy planners and policy makers to avoid unexpected

surprises and overcome potential energy system bottlenecks. Much of suggested adapt-

ation opportunities for the energy sector appear as appendices to studies that focus on

the impacts of climate change. For example, van Vliet et al. (2016a) in a study to as-

sess the global impact of climate change on hydropower and thermoelectric generation,

provides a list of possible adaptation options for the electricity sector that range from

increases in efficiencies of hydropower plants to increases in efficiency of thermoelec-

tric power plants and replacing hydropower generation by base-load renewables (e.g.

geothermal, biomass).

Though van Vliet et al. assess the potential these measures have to reduce water de-

mand; no costs are not presented and it is stated that a comprehensive understanding

of future water constraints requires incorporating the physical impacts from the study

into economic models of the energy system. Such an integrated approach would al-

low more realistic adaptation projections, informed by economic, technical and physical

constraints.

In an analysis of possible impacts and resilience solutions to climate change for energy

infrastructure in the US (DOE, 2015), adaptation measures that can be taken regardless

of the occurrence of impacts, such as energy efficiency standards, better location for

new energy infrastructure and energy planning and management are discussed. How-

ever, the adaptation measures suggested for the energy sector is restricted to almost

qualitative discussions. The modelling of adaptation alternatives, their costs and be-

26 Modelled adaptation uses economic models to predict human behaviour against the impacts of climate
change (Tol et al., 1998).
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nefits is little used in the adaptation literature, which constitutes a good area for the

development of studies.

The use of energy system optimisation models, however, is subject to the limitations

of this type of approach. Such models assume that actions are guided by the economic

rationality of maximising welfare under the market or social planner point of view. This

type of analysis can be interpreted according to Tol et al. (1998) in two ways : i) positively,

where the model describes what decision-makers do; ii) normatively, directing the way

in which the decision makers must act. In the first case, the model must be capable

of representing in a faithful way the circumstances of the sector that it is intended to

explain, even considering market distortions. Given the difficulty in doing this, the

normative use of this type of modelling becomes more pertinent, pointing out directions

and trends that are overshadowed by market or government failures. Regardless of its

use, however, this form of approach must be reinforced by broader qualitative analyses,

where the role of stakeholders is fundamental (Li, 2017).

Only a few studies have been found that go beyond qualitative climate change impact

assessment and, with the aid of energy system optimisation models, pursue quantific-

ation of impact and adaptation costs (see Table 2.6 on page 59). Ciscar and Dowling

(2014) reviewed the integrated assessment of climate impacts and adaptation in the en-

ergy sector. They affirm that – “There is a vast amount of work that needs to be done in order

to better understand the vulnerability of the energy sector, which is economically wide-reaching,

but possibly has relatively low-cost adaptation options compared to other sectors when taking

account the timescales of impacts and life-times of energy infrastructure.” Energy system op-

timisation models can help assist in this challenge, not only in the technical aspect of

defining reliable system configurations, but also in quantifying the monetary flows to

achieve them.

2.2.3 Climate projections for Ecuador

Regarding future trends on precipitation, temperature extremes and on dryness and

drought, Chapter 3 of the IPCC AR5 (IPCC, 2014c) identifies the two regions which

present an interest for Ecuador and therefore for this literature review: The Amazon

and the West Coast of South America. For the Amazon region, the projections estimate:

hot days likely to increase and increase in heavy precipitation events. For the West Coast

of South America: hot days likely to increase and increase precipitation in tropics. How-

ever, the Freshwater Resources chapter of the IPCC AR5 (Cisneros et al., 2014) presents

contradictory findings for South America as a whole. Projections from the CMIP3 re-
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gional and high-resolution global models run for the SRES A2 emission scenario show

that by the end of the 21st century, there is a consistent pattern of increase of precipita-

tion in south east South America, northwest Peru, Ecuador, and western Amazonia. At

the same time, decreases are projected for northern South America, eastern Amazonia,

central and north eastern Brazil, the Altiplano in Bolivia, and southern Chile. Given this

uncertainty of events for precipitation, the Freshwater Resources chapter, states that:

"Regarding runoff and stream flow projections, there is very considerable uncertainty in the

magnitude and direction of change, specifically in large parts of South America."

The IPCC AR5 has also developed a regional outlook for impacts, adaptation and

vulnerability in Central and South America (Magrin et al., 2014). Findings from climate

projections by 2100 using dynamic downscaling forced by CMIP3 and CMIP5 models

for various SRES and RCP scenarios, respectively, estimate an increase in dry spells in

tropical South America (east of the Andes), and in warm days and nights in most of

South America. For the Amazon basin there is mixed conclusions and they have varied

over time, some authors conclude that no systematic unidirectional long-term trend

toward dries or wetter condition can be identified since 1920 (Magrin et al., 2014).

The studies developed specifically for Ecuador are highlighted, which are only a few.

Buytaert et al. (2009) assessed the impacts of climate change on water resources in the

Paute River. In this study which used an ensemble of 20 GCM run under the IPCC A1B

scenario, final average monthly discharge projections by 2030 range from 23% to 518%

of the current conditions, while the 10
th and 90

th quantiles are respectively 70% and

148% of the current conditions. In a following study, Buytaert et al. (2010), investigates

the Tomebamba sub-basin of the Paute river basin, which hosts the largest hydropower

dam in the country (Daniel Palacios, 1,075 MW). The study uses the RCM PRECIS to

analyse the rainfall patterns and discusses the limitations of using GCM and RCM at

the local level. The authors state that: "resolving high-resolution precipitation gradients

in climate models is difficult and potentially risky. Misalignments between simulated and the

observed atmospheric processes may result in very poor performance of the regional climate model

in certain locations".

Buytaert et al. also mention that since assuming future changes implies irreducible

uncertainties about the direction and timing of these changes, adaptive management ap-

proaches to move away from a "predict-and-control" paradigm, towards a more adaptive

approach, with continuous learning and flexibility is a key aim. This is of particular rel-

evance for hydropower systems that have high infrastructural investments (irreversible

decisions), which prevent continuous learning and adjustment. Therefore, diversifica-

tion of strategies that can be flexibly applied when needed would suit energy planners
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the best. In a following study, Buytaert et al. (2011) also mention that in most humid

tropical high-altitude regions, such as the Andes in Colombia and Ecuador, the produc-

tion of glacier runoff is minimal and only locally significant, thus the driver of river

discharge relies mainly on precipitation.

Vuille (2013) also studies climate change and water resources in the Tropical Andes

(Ecuador, Colombia, Peru and Bolivia). According to this study, temperature increased

by about 0.7 °C between 1939 and 2006, although this depends on elevation and slope of

the region. Regarding precipitation, trends are weaker and much less coherent, due to

characteristics of Andean topography. There are also far fewer high quality stations with

long-term precipitation series, which makes the assessment of long-term precipitation

very challenging.

Vuille also details glacier retreat in the volcanoes Antisana, Chimborazo and Cotopaxi

in Ecuador. In a future scenario where glaciers continue to retreat and eventually dis-

appear entirely, at least from lower-elevation catchments, it is logical to assume that the

runoff behaviour will gradually transition from a situation with continuous water sup-

ply to one with most of the runoff concentrated in the wet season and with little to no

base flow during the dry season. However, in countries such as Ecuador or Colombia,

on the other hand – where glaciers are very small, the climate is much more humid, and

precipitation is more equally distributed throughout the year – these changes in glacier

hydrology are likely not very relevant on a larger scale. In addition, these countries

benefit from an important buffering capacity of tropical wetlands. The study of Vuille

also mentions the uncertainty that El Niño-Southern Oscillation (ENSO) brings to the

region. During this event, the warm surface waters off the coast of Ecuador (and Peru)

often cause torrential downpours over the coastal deserts.

The procedure detailed in this literature review regarding the impacts of climate

change on hydropower should be understood as a ceteris paribus analysis, since several

factors may affect the climatic change impact-hydroelectricity relationship (e.g. changes

in land use, different uses of water, different energy scenarios, etc.). Several of these

factors can be difficult to quantify and project, which can significantly increase the high

degree of uncertainty inherent in this type of study, as well as obfuscate the impact

of "pure" climatic effects. Nevertheless, the relevance of these factors should be kept

in mind and their understanding of their interaction with hydroelectric generation and

their vulnerability to global climate change should be understood.
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2.3 addressing uncertainty

Regardless of the modelling paradigm, type of model or care taken to build models,

uncertainty still remains. In this section, approaches used to deal with uncertainty are

briefly discussed focusing on technics in climate change impacts assessments and energy

system modelling.

2.3.1 Uncertainty in climate change impact assessments

In last decades, uncertainty has played a prominent role in global environmental change

research, including climate change science and climate change impact science. The

IPCC AR5 (IPCC, 2014b) defines uncertainty as “a lack of complete information, as well

as incomplete knowledge or disagreement on what is known and knowable.” Uncertainties in

climate change impact studies on water resource endowment result from the natural

complexity and variability of the hydrological system and its underlying processes, and

from limitations on how these are implemented in models.

Much work has been done on hydrological uncertainty (see the review by Nearing

et al., 2016) and uncertainty in climate change impact on water resources (see review

by Kundzewicz et al., 2018). In these studies, it is stated that when using projections

uncertainties, uncertainties mainly arise due to:

1. Scenarios of future socio-economic development,

2. GHG emission and sequestration scenarios,

3. GCMs,

4. RCMs or statistical downscaling methods,

5. Choice of the bias correction method (if applied),

6. Input data for hydrological model(s),

7. Hydrological model(s) structure(s), and

8. Parameterisation of hydrological model(s).

Basically, uncertainties appear in all the steps taking part in the climate change impact

on water resources modelling chain that was presented earlier in Figure 2.1 on page 36.

The uncertainty in hydrological impacts modelling starts from the unknowns about

the the development pathways of society. Future socio-economic driving factors (pop-

ulation, economic development, life conditions, technological advancements) is largely
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unknowable, and cannot be assigned objective probabilities. For example, Buytaert and

Bièvre (2012) study the impact of climate change and demographic growth in the Trop-

ical Andes, namely in four capital cities: Quito, Bogota, Lima and La Paz. The study

shows that different assumptions about population growth have clear effects on water

stress projections, even greater than those than climate change can cause in the mid-term

(2050). The use of more efficient technologies and water recycling can help decrease over-

all water demand. The cooling technologies for thermoelectric generation and irrigation

of bioenergy crops are among the most influential factors affecting future water demand

in the context of climate change mitigation (Mouratiadou et al., 2016).

Results obtained by using different scenarios and different climate models (GCMs)

can also be a large source of uncertainty. Intra-model uncertainty of projections (for the

same GCM model and different emission scenarios) can be lower than the inter-model

uncertainty (for the same emission scenario and different GCM models). In previous

studies, only one GCM or one emission scenario output was used, whereas in recent

studies, ensembles of several climate models have been used to map uncertainty. In

addition to the selection of GCMs, the downscaling technique (statistical or dynamic)

can explain a major portion of differences in reported projections (Vetter et al., 2017). A

statistical bias correction is often carried out in order to render the model output closer

to observation data in the reference period. Chen et al. (2013) applied and compared

downscaling methods by using six statistical methods and two dynamic RCMs’ data

(precipitation and temperature) for two North American river basins. The authors con-

cluded that comparing the uncertainty envelope of statistical downscaling methods to

the envelope resulting from four RCM simulations indicates that both are similar, even

though the latter was slightly larger for some statistics. Observations that are used to

compare simulated values, can also be subject to errors, depending on location, the vari-

ables in question, and measuring practices and changes over time (e.g. new instruments,

relocation of instruments, or drastic changes in the surroundings).

There are regions in the world where climate models of the current generation do not

agree on the sign of future precipitation change. This means that projections of precipit-

ation – the principal meteorological input signal to hydrological systems and to estimate

streamflow – resulting from various climate models can be largely different. The study

of van Vliet et al. (2016a) use a physical hydrological model to estimate streamflow by

the end of the century and account for uncertainties by performing calculations for five

individual GCM experiments as well as for the ensemble mean under the RCP2.6 and

RCP8.5 concentration scenarios. Their results can be seen in Figure 2.4 on the next
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page, which shows how the ensemble mean of GCM projections masks much wider

uncertainty registered by individual GCMs.

The results of the study of van Vliet et al. show consistent increases in annual mean

streamflow for high-latitude regions (northern North America, northern Asia), and large

parts of the tropics (central Africa, southern Asia;). According to this study, for South

America and Australia, the GCM-ensemble mean changes show still small reductions

in mean annual hydropower usable capacity. However, the range indicating the un-

certainties in hydropower capacity among the different GCM experiments is largest in

both regions and shows both negative and positive signals of change (Figure 2.4 on

the facing page). Uncertainty surrounding the sign of change in precipitation and con-

sequently streamflow poses a challenge for many real-world applications in water sector

management and infrastructure planning, such as for hydropower.
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Figure 2.4: Impacts of climate change on annual mean streamflow

Note: Maps of changes in streamflow relative to the control period 1971–2000. Trends in changes for 1971–2099 are presented based on the GCM-ensemble mean
results (thick lines) and for the five individual GCMs separately (thin dotted lines) for both RCP2.6 (orange) and RCP8.5 (red).
Source: van Vliet et al. (2016a)
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Hydrological models are an additional source of uncertainty. Some authors suggest

to use the best performing hydrological models only and disregard the poor performing

ones, depending on their ability to reproduce historic variables of particular interest for

the problem at hand and the area of concern. Nevertheless, some experts (Krysanova

et al., 2017, 2018), advocate the necessity of using ensembles of all available hydrological

models, rather than removing the models that do not perform sufficiently well in the

calibration and verification stages. Cornelissen et al. (2013) compare discharge results

for a group of four different physical and conceptual models for the Térou Catchment

in Benin, West Africa. They conclude that if hydrological models are applied within a

single study, model calibration often results in reliable simulations of the past; however,

the influence of model choice and model calibration on the simulation of climate change

impacts remains unclear.

So, at the end of the day, what is the main source of uncertainty in the hydrological impact

modelling chain? and how can we reduce its uncertainty?

Although there are uncertainties in all the stages of a study of climate change impacts

on water resources, studies have identified that the greatest uncertainty is associated

with GCM projections for different GHG concentration scenarios (Graham et al., 2007;

Bates et al., 2008; Kundzewicz et al., 2018). In a most recent study, Hattermann et al.

(2018) use an analysis of variance (ANOVA) approach to allocate and quantify the main

sources of uncertainty in the hydrological impact modelling chain. The authors compare

results using a set of five GCMs and up to 13 hydrological models, for nine large scale

river basins across the globe (including the Amazon), under four emissions scenarios.

Their results show that GCM uncertainty in projected precipitation trends obscure all

other sources of uncertainty in the modelling chain. An additional finding is that the

contribution of GCM related uncertainty is highest in periods of the year, and in regions,

where precipitation dominates the river flow regime, such as in basins like the Amazon,

Blue Nile and Ganges. In comparison, hydrological model uncertainty is higher in peri-

ods of the year, and regions, where snow melt, soil freezing processes and evapotranspir-

ation have a substantial influence in river regime, for example in the sub-arctic climate

of the Lena river (Russia). GCM-driven uncertainty relative to the total uncertainty has

a dominating influence, which has also been reported by e.g. Eisner et al. (2017), Vetter

et al. (2017), and Buda et al. (2017), all using hydrological models in regional climate

change impact assessments.

Kundzewicz et al. (2018) suggests a general framework for reducing uncertainty as-

sessment of climate change impact on water resources based in three areas: i) data

and information, ii) hydrological models, and iii) climate models. Data and informa-
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tion uncertainty (resulting from incomplete or un-precise information) may be reduced

by obtaining more exact information (conducting additional observations or measure-

ments, etc). Maintaining and extending meteorological and hydrological observation

networks can also help populate global datasets of basic data needed for modelling

impacts. To reduce the uncertainty of results when using a hydrological model, calibra-

tion and validation of the model should be done before applying it for climate change

impact assessment. The calibration and validation procedure should include several stat-

istical goodness-of-fit criteria (e.g. Nash and Sutcliffe efficiency, percent bias, residual

variation, and coefficient of determination) (Thompson et al., 2013).

Regarding climate model and impact models, the current approach to reducing (or

rather assessing) uncertainties is to perform studies where the output of several climate

models is used as input to several hydrological models to produce an ensemble of po-

tential changes (scenario analysis). The range of projections (spread of model outcomes)

is used as a proxy measure of uncertainty and the mean of the ensemble of model

projections (e.g. CMIP5) is often advocated as a useful representation of the future.

The underlying assumption is that the greater the number of models in agreement, the

stronger the robustness of the climate projection. This clearly has shortcomings, Kun-

dzewicz et al. (2018) states that the ultimate quality index of a hydrological model is the

difference between model outputs and reality, which is often unknown or can even be

unknowable when looking into the future impacts of climate change.

The combination of GCMs and GHG emission scenarios has been used to assess uncer-

tainty in studies about climate change impacts on hydropower. This has been detailed

for a group of selected studies in Table 2.6 on page 59. Some studies capture only uncer-

tainty for the emission scenario (intra-model uncertainty), given that they only use one

GCM and compare impacts with different emission scenarios. For instance, the studies

by McPhee et al. (2012) and De Lucena et al. (2009) used the SRES A2 and B2 scenarios

and only the HadCM3 GCM for hydropower studies in Chile and Brazil, respectively.

Escobar et al. (2011) assessed hydropower generation in Latin America and the Carib-

bean drawing on projections of average temperature and rainfall throughout the current

century, also for the SRES A2 and B2 emission scenarios and used the ensemble mean

value of the CMIP3 GCM results. In contrast, the studies of Grijsen (2014) for Cameroon

and Golombek et al. (2012) for Western Europe use only one emission scenario – the

SRES A1B –27 and several GCMs (between 15 and 20), thus rather capturing only inter-

model uncertainty surrounding GCM projections.

27 The SRES A1B emission scenarios is considered as a middle-of-the-road scenario with balanced technolo-
gical development
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To consider a broader range of uncertainty, more recent studies consider multiple

emission scenarios and GCMs. Shrestha et al. (2016) consider the more recent RCP4.5

and RCP8.5 with three GCMs (MIROC-ESM, MRI-CGCM3, and MPI-ESM-M) to assess

risk due to climate change for a hydropower project in Nepal. These studies, among

others (e.g. Hamlet et al., 2010; Seljom et al., 2011; Spalding-Fecher et al., 2017), highlight

the significant sensitivity that hydropower can have to precipitation changes and that the

main source of uncertainty for regional climate scenarios is associated with projections

of different GCMs, therefore the importance of using several GCMs to assess uncertainty

and the growing interest in using large ensembles of GCMs to improve the reliability of

future projections.

Climate models still need to be improved before they can be effectively used for ad-

aptation planning and design (Kundzewicz et al., 2018). Substantial reduction of the

uncertainty range would require using finer resolution of GCMs and RCM, but overall

improving the understanding of the processes implemented in climate models. How-

ever, according to Buytaert et al. (2010), GCM uncertainties are unlikely to be eliminated

or substantially reduced in the near future.

2.3.2 Uncertainty in energy system modelling

The long-term future transition of the energy system is shaped by a combination of

factors that are deeply uncertain, including technology innovation, resource availability,

and socio-economic dynamics (Decarolis et al., 2017). As stated by Awerbuch and Yang

(2007), the motivation for studying uncertainty in energy planning takes relevance due

to a change of era – from a regulated and stable energy market to a more competitive and

uncertain environment. Mirakyan and De Guio (2015) agree with this latter, but also

pose that uncertainties in the power sector are also created by the scarcity of fossil energy

resources, climate change, increasing environmental restrictions and the resulting high

share of intermittent energy resources, such as wind and solar PV energy.

Given such deep uncertainties about the future, singular energy system model projec-

tions obscure the full spectrum of possible energy system futures. The focus of energy

system model-based analysis should thus be based on producing insights, which re-

quires the identification of patterns across model runs under uncertainty. Two types of

uncertainties can be distinguished for energy system models: parametric and structural

(Kesicki, 2012). Table 2.7 summarises the definition of these two types of uncertainty

and ways to treat them. Joode and Boots (2005), Vithayasrichareon (2012) and Decarolis

et al. (2017) present approaches for dealing with uncertainty in energy system models



2.3 addressing uncertainty 73

Table 2.7: Types of uncertainty in energy system modelling

Type Definition Treatment of uncertainty

Parametric Uncertainty about the
appropriate input
parameters to use, e.g.
demand forecasts,
investor risk level,
weather data.

• Scenario and sensitivity analysis

• Stochastic programming

• Near optimality: Modelling to generate
alternatives

• Probabilistic approach: Monte Carlo
simulation/portfolio theory

Structural How the model itself
relates to the real-world
process it is modelling,
e.g. what effect does this
simplifying assumption
have on the results?

• Scenario and sensitivity analysis

• Multi-model comparison

• Near optimality: Modelling to generate
alternatives

• Historical data

• Expert opinion on the shortfalls of the model

• Experimentation

that address both parametric and structural uncertainty, of which the main approaches

to deal parametric uncertainties are further explained in the following paragraphs.

2.3.2.1 Scenario and sensitivity analysis

Scenario analysis has appeared as a means of characterising the future energy pathway

and its uncertainties through a structured and imaginative process (Rounsevell and Met-

zger, 2010). Such as Wilson (2000) states, “scenarios help explore the what, how and/or if in

future pathways and allow to understand how different key driving forces might lead to different

outcomes.” Scenarios are not predictions or forecasts but rather are a collection of pos-

sible futures that establish the boundaries of uncertainty and the limits within plausible

futures (Fortes et al., 2014a). In a secondary stage of use, scenarios can be considered as

a management tool used to improve the quality of executive decision making (Bradfield

et al., 2005). Because of this broad use, a wide range of scenario methodologies and clas-

sifications have emerged, as indicated by the extensive scenario planning literature (van

Notten et al., 2003; Bradfield et al., 2005; Börjeson et al., 2006; Wilkinson and Eidinow,

2008).
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Scenario analysis can be used to address parametric uncertainty by translating scen-

ario assumptions into energy system model input parameters, and it can address struc-

tural uncertainty by altering the model formulation to address an uncertain scenario

element. While scenarios analysis wishes to explore plausible outcomes of a system,

drawing different scenarios does not constrain uncertainty and there is actually no way

of knowing whether the scenario process has been successful for this. Except for waiting

and at some point in the future assess scenarios in hindcast to see which ones approxim-

ated reality. The more complex the system (and therefore the higher number of variables

to be projected), as is the case of the energy system, and the further into the future the

scenarios reach, the more likely it is that they will not cover all plausible futures and

fail to capture the actual evolution of the system. The study of Trutnevyte et al. (2016),

for example, performs a retrospective analysis of twelve UK energy scenarios developed

between 1978 and 2002. The study argues that a greater reflection is needed on struc-

tural uncertainties, rather than on parametric uncertainties, i.e. on the ability of the

model to capture the actual “behaviour” of the energy system, including aspects such

as governance.

To quantify uncertainty and risk in scenarios, sensitivity analysis proposes the change

of the uncertain variables within a range of values to address parametric uncertainty by

identifying the model input parameters that have the largest influence on the modelling

results. Uncertain parameter values are varied one at a time to identify the value of

a parameter on the final output (usually in %). Though this is a fairly easy approach

that can give insight on which the key uncertain parameters are, it is not likely to be

sufficient when there are a number of interacting uncertainties (Awerbuch and Berger,

2003). Usher and Strachan (2012) argue that applying a deterministic methodology to a

complex and multi-faceted area of strategy development that is inherently uncertain is

problematic and that there is a need to move beyond sensitivity analysis when consider-

ing parametric uncertainties. They highlight three key problems with simple sensitivity

analysis: i) the probability of an input value cannot be quantified, ii) disparate sens-

itivity scenarios make policy insights more difficult to determine, and iii) the cost of

uncertainty (i.e. risk) is unknown.

Sensitivity analysis can also be used to test a models structural uncertainty. Alternat-

ive model formulations (e.g., more or less time slices or regions, inclusion or exclusion

of the transmission system, etc.) can be used to understand the sensitivity of model res-

ults to these variations in model structure. Sensitivity analysis applied in this way can

help extract insights that are robust to different model formulations and help navigate

what model formulation require more attention and detail (Decarolis et al., 2017). In
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addition, multi-model exercises that explore the same future scenarios can be used to

identify structural uncertainties across models, as for example in the studies of Lucena

et al. (2018) for energy system models and Vetter et al. (2015) for hydrological models.

Global sensitivity analysis is an approach to address parametric uncertainty by identi-

fying the model input parameters that have the largest influence on the modelling res-

ults. This type of sensitivity analysis can be performed simultaneously for a combination

of input parameters that can be correlated by assigning a series of predefined probabil-

ity distributions or ranges to the uncertainty parameters. The results of applying global

sensitivity analysis to an energy system optimisation model can provide a ranking of

inputs by importance i.e. the input parameters which uncertainties impact the model res-

ults the most and therefore screen out unimportant parameters from a scenario analysis.

Examples of studies using global uncertainty analysis in an energy system optimisation

model (UK TIMES model) is that of Fais et al. (2016) and on a multi-model comparison

of integrated assessment models that of Marangoni et al. (2017)

2.3.2.2 Stochastic analysis

A limitation of energy system models is that an individual scenario assumes all uncer-

tainty are resolved ex ante, i.e. all parameters are assigned values prior to the model run.

However, decision makers need to take action before uncertainty is resolved (Decarolis

et al., 2017). Stochastic optimisation can address this limitation by explicitly consider-

ing uncertainty within the model formulation. In this approach uncertain variables are

modelled by Markov chains or simple event trees, referred as stochastic programming

(Labriet et al., 2015; Mirakyan and De Guio, 2015). The formulation of stochastic pro-

gramming methods, however, is rather complex due to the long planning horizon of the

sector, and still depends largely on a decision tree methodology, where each branch in

the tree is assigned an outcome and an associated probability. Optimising over a finite

set of future outcomes encoded within the event tree yields a near-term hedging strategy

that accounts for potential future outcomes and puts the decision maker in a position to

take recourse action as uncertainty is resolved.

Hu and Hobbs (2010) give an overview of stochastic analysis and use a stochastic

feature of the MARKAL energy optimisation model (stochastic MARKAL) applied to

the US electricity sector to examine uncertain CO2 mitigation, natural gas prices and

electricity demand growth under multi-pollutant policies. An additional example is the

study of Seljom and Tomasgard (2015), in which the intermittent characteristics of wind

power are modelled as a stochastic parameter in a TIMES model of the Danish heat and

electricity sector. Further examples of stochastic programming applied to energy system
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optimisation models can be found in the studies of Babonneau et al. (2012); Loulou and

Labriet (2008); Loulou and Kanudia (1999); Kanudia and Loulou (1998).

An identified limitation of stochastic analysis applied to energy planning, is noted

by Usher and Strachan (2012) as the ’curse of dimensionality’, whereby the problem

size increases faster than the number of dimensions added, quickly resulting in compu-

tationally intractable problems. For example, the limitation of stochastic MARKAL to

nine probable States-of-the-World (SOW) means that the analysis is limited to specifying

one uncertain variable with up to nine discrete future values, two uncertain variables

each with three discrete future values, three uncertain variables each with two discrete

future values (and a limited number of other permutations). In the case of addressing

more than nine possible futures, this method increases dramatically in complexity.

2.3.2.3 Generating near optimal solutions

In an energy system optimisation context, the technique called ‘modelling to generate

alternatives’ (MGA) means finding alternative solutions that are close to the minimum

cost or maximum welfare but utilise a different set of technologies to meet end-use

demands. The objective function of the model is modified in order to explore alternative

solutions that are near optimal in solution space but very different in decision space

(Decarolis et al., 2017). The application of MGA represents a simple way to explore

structural uncertainties in the model.

Examples of studies that use near-optimal approaches are that of Trutnevyte (2016)

that uses MGA to model retrospectively the real-world UK electricity system transition

(1990–2014). In an additional study at the global scale, Price and Keppo (2017) have

developed a formulation of the MGA objective function and have integrated this into

a TIMES integrated assessment model (TIAM) to maximise the difference associated

with the consumption of each primary energy commodity between successive iterations.

Finally, Li and Trutnevyte (2017) combined Monte Carlo simulation with MGA to pro-

duce 800 different scenario pathways in order to explore UK electric sector transition

pathways to 2050.

As Decarolis et al. (2017) points out – “No optimisation can fully capture real world com-

plexity; unmodelled objectives and constraints are always present.” Thus, decision makers

may find that the near optimal solutions are preferable to the base solution when their

own preferences and concerns – exogenous to the model – are brought to bear on the

model solutions. In contrast to, stochastic optimisation, which explicitly incorporates

uncertainty into a single run to help inform a decision strategy, MGA yields a set of

computer-generated alternatives. The intent of MGA is not to provide a singular an-
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Figure 2.5: Efficient frontier for electricity generation portfolios

swer, but rather to provide a set of alternative solutions that indicate the degree of

flexibility in the model solution and can be further evaluated. The idea to not offer a

single least-cost answer but give a range of options to the policy maker according to

his/her preferences is key to understand the next method to treat uncertainties, which

is one of the focus of this thesis.

2.3.2.4 Portfolio-based analysis

Financial portfolio theory is based on the research of Nobel Laureate Harry Markowitz

(Markowitz, 1952) and has been often applied in the context of financial portfolio to

estimate investment return and expected portfolio risk on a year-to-year basis (Fabozzi

et al., 2009). The main insight of portfolio theory is that the value of each asset in an

investment portfolio can only be determined relative to the impact that the risk of each

asset has on the portfolio. This applied to the energy planning process would indic-

ate that it is necessary to evaluate each generation technology according to the impact

it has on the overall generation cost and risk of the electricity generation portfolio28,

rather than only evaluating generation cost on a stand-alone basis. As pointed out by

the seminal study of Awerbuch and Berger (2003) who applied portfolio theory to the

power sector – “energy planning therefore needs to focus less on finding the single lowest cost

technology alternative and more on developing efficient (i.e. optimal) generating portfolios.” Ef-

ficiency from this point of view relates to generation portfolios that minimise risk for

an expected level of cost or minimise cost for an expected amount of risk (Jansen et al.,

2006).

28 Generation portfolio is understood as the collection of all the technologies that contribute with the genera-
tion of electricity in a power system.
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To exemplify this concept, Figure 2.5 on the preceding page shows an efficient fron-

tier curve (i.e. the trade-off between cost and risk) and a number of different generation

portfolios with different cost and risk profiles. With this approach, optimal generation

portfolios fall along the efficient frontier (represented by squares) where costs can only

be reduced by accepting higher cost risks amongst the possible generation portfolios

(Pareto efficiency29). Generation portfolios that are not on the efficient frontier (repres-

ented by circles) are considered suboptimal, either because their expected generation

costs are too high relative to the cost risks or the cost risks are too high relative to the

expected cost. From a societal perspective, the most desirable generation portfolio is

the one which results in the lowest expected cost within some level of acceptable risk

(Jansen et al., 2006). The mathematical formulation of portfolio theory will be discussed

in further detail in the following chapter in Section 3.3 on page 159.

Portfolio based analysis with the efficient frontier technique also serves as a mean

for decision-makers to select a set of efficient generation portfolios that suit particular

cost-risk preferences. These preferences can be highly complex and involve tradeoffs

between, for example, up-front and on-going fuel costs. With increasing uncertainty in

the electricity industry, portfolio-based analysis is well suited for evaluating capacity

expansion strategies since this approach can help exploring options that enhance energy

diversity, security, and environmental sustainability. The most important aspect of port-

folio theory is that proper diversification of assets in a portfolio can strongly reduce total

portfolio risk (Rubinstein, 2002).

There is a growing body of literature which has applied portfolio theory to electricity

system planning techniques to account for risk and uncertainty. Table 2.8 on page 82

presents a list of reviewed studies that use portfolio theory for electricity planning. An

examination of the literature shows that there is no single approach to defining the type

of efficient frontier curves. Studies based on both economic and electricity generation

criteria can both be found. Economic studies present many return-risk frontiers, as well

as cost-risk frontiers. The definition of return is equally diverse, having been defined

in earlier studies as: the reverse of the cost of generation (kWh/$) (Awerbuch and

Berger, 2003; Awerbuch and Yang, 2007), the Net Present Value (NPV) for the technology

of generation (Roques et al., 2008; Westner and Madlener, 2011), the Internal Rate of

Return (IRR) Muñoz et al. (2009), and as the relative measure of environmental efficiency

(Hadian and Madani, 2014). On the other hand, studies based on electricity generation

29 Pareto efficiency or Pareto optimality is a state of allocation of resources from which it is impossible to
reallocate so as to make any one individual or preference criterion better off without making at least one
individual or preference criterion worse off.
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criteria (Roques et al., 2010) have used the expected levelised cost of electricity (LCOE)

as a reference ($/kWh).

The models to solve portfolio theory include varied optimisation functions and con-

straints, and the majority of them consider different horizons and countries. Some stud-

ies look to maximise utility while constraining the maximum generation technology

shares (Awerbuch and Berger, 2003; Roques et al., 2008; Arnesano et al., 2012; Losekann

et al., 2013), while others, in contrast, seek to minimise cost while constraining risk

(Grubler and Fuss, 2012; Nijs and Poncelet, 2016) , or even minimise cost and risk sim-

ultaneously (Allan et al., 2011; Delarue et al., 2011).

Most studies have used portfolio theory to make a case for reducing risk through

diversified generation portfolios. For example, Roques et al. (2008) use portfolio theory

to identify optimal generation portfolios in the UK, taking into consideration fuel and

also CO2 price risks and their degree of correlation. Zhu and Fan (2010) apply portfolio

theory to evaluate China’s 2020 medium-term plans for capacity expansion, concluding

that nuclear and renewable-power can reduce generation portfolio risk. Allan et al.

(2011) use a portfolio selection approach applied to the regional electricity generation

mix in Scotland in 2020 and show that marine and tidal renewables can contribute to

lower risk electricity portfolio without increasing system cost. Vithayasrichareon et al.

(2015) study how the uptake of solar PV and wind can hedge risk against volatile coal

prices in the Australian energy market.

An identified limitation of the application of portfolio theory to electricity planning

is that it is used as a static ex post tool – it only assesses the performance of generation

portfolios in a horizon year, without taking into account the dynamic and multi-stage

process of generation planning and investment. Portfolio risk is calculated for bespoken

generation prices and risk profiles in the future, in other words, the portfolio assess-

ment is performed exogenously from the energy system model optimisation process.

Allan et al. reaffirm the idea of substantial scope of research for combining the port-

folio selection approach with other energy system models, in an attempt to determine

whether apparent ’no regret’ policies really are feasible. This is due to the fact that port-

folio theory models work with exogenous generation scenarios and cannot assess the

technical feasibility of a portfolio per se. Ferreira and Cunha (2012) in a study for the

Portuguese power system recognise that portfolio theory for electricity system analysis

must go beyond the traditional models, where future work should envisage the develop-

ment of new models combining portfolio theory with generation expansion models for

electricity power planning. Vithayasrichareon (2012) similarly states that future research
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should lead in the implementation of dynamic portfolio applications that integrate it in

multi-period (multi-horizon) power system investment analysis.

Some critics of the application of portfolio theory to the generation of electricity assets

can be found in the literature. Stirling (2010) criticises the application of portfolio theory

in such diverse assets as those of the power sector. The line of thought of Stirling is that

this approach does not include the totality of the risk elements that are being analysed in

a real asset (which go beyond the historic volatilities and correlations between the assets).

Among them would be the security of supply or the reliability of the systems during

times of high demand. However, a precise definition of restrictions and the objective

functions in the model can partially resolve this problem, such as the studies of Delarue

et al. (2011) and Vithayasrichareon et al. (2015) that include ramp rate limitations of

generation technologies and the volatility of electricity demand. Other authors (Krey

and Zweifel, 2008; Awerbuch et al., 2006; Li and Trutnevyte, 2017) focus their questions

on the high level of ignorance that characterises the energy context. Thus the exclusive

use of historical data (fossil fuel prices and electricity generation component costs) is

limiting and can only result in obtaining non-reliable results — what happens in the

past does not necessarily inform the future.

These gaps could be overcome by a novel combination of an energy systems optim-

isation model that could integrate concepts of portfolio theory. An energy system op-

timisation model could address the problems of dealing only with static forecasts of

technology generation prices, as well as with issues regarding the operation of the sys-

tem in time. It can also handle a much broader amount of technologies that can better

depict the context dependent characteristics of a country. In addition, the benefit of

using an integrated energy system optimisation model is that it accounts for the full

cost of the system, such as costs related to capacity credits and back up generation for

intermittent renewable resources. It also captures the interaction of energy generation

and conversion technologies on both the supply and demand side. The early study of

Messner et al. (1996), showed an initial attempt to introduce an risk factor in the optim-

isation function of the energy system model MESSAGE III, considering however only

eight power sector technologies and not including the uncertainties of fossil fuel prices.

The methodology of this study was revived (and extended) by Krey and Riahi (2009),

who similarly used a global MESSAGE model with an integration of a risk parameter in

the objective function and included the uncertainties of fossil fuel prices. However, this

study used theoretical measures of uncertainty not based in actual uncertainty data of

technologies and volatility of oil prices. Most recently, an application of portfolio theory

into an energy system optimisation model (TIMES) was recently conducted by Nijs and
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Poncelet (2016). These authors assessed the risk reduction potential of renewable energy

with a case study for the Belgian power system up to 2040 and consider only the volat-

ility of coal and natural gas prices. However, there are no studies using portfolio theory

integrated into an energy system optimisation model that also consider uncertainty of

capital costs, which could be a relevant area of study for countries depending on and

willing to expand capital intensive large hydropower infrastructure.
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Table 2.8: Reviewed studies that use portfolio theory for power sector planning

Author Objective functions Constraints Uncertainties considered Horizons Country/region

Awerbuch and
Berger (2003)

Utility maximisation Technology
limit shares

Cost components of generation
technologies and fuel prices

2000 & 2010 EU

Jansen et al. (2006) Risk and cost minimisation Technology
limit shares

Cost components of generation
technologies

2030 The Netherlands

Mcloughlin and
Bazilian (2006)

Risk and cost minimisation Technology
limit shares

Natural gas prices, carbon prices,
LCOE of generation technologies

2020 Ireland

Awerbuch and Yang
(2007)

Risk and cost minimisation Technology
limit shares

Cost components of generation
technologies , fuel and CO2 prices

2020 EU

Roques et al. (2008) Utility maximisation Inexistent LCOE of gas, coal and nuclear
plants

- UK

Zhu and Fan (2010) Risk minimisation Technology
limit shares

LCOE of generation technologies,
fuel and CO2 price risk.

2020 China

Allan et al. (2011) Risk and cost minimisation Technology
limit shares

LCOE of generation technologies 2020 Scotland

Delarue et al. (2011) Risk and cost minimisation Technology
production
ramp rates

LCOE of generation technologies
and wind power variability

- Belgium

Vithayasrichareon
and MacGill (2012)

Cost minimisation Installed
capacity
related to
demand side

Future fossil- fuel prices, carbon
pricing policies, electricity demand,
and capital costs of generation
technologies.

2030 Thailand

Ferreira and Cunha
(2012)

Renewable energy share
maximisation

Renewable
energy share
variability

Hourly data of wind, hydro and
solar plants

2022 Portugal

Bhattacharya and
Kojima (2012)

Risk minimisation Technology
limit shares

LCOE of generation technologies - Japan

Grubler and Fuss
(2012)

Cost minimisation Risk
premium

Technology availability, cost and
carbon prices

2050 Global
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Table 2.8 (continued): Reviewed studies that use portfolio theory for power sector planning

Author Objective functions Constraints Uncertainties considered Horizons Country/region

Arnesano et al.
(2012)

Utility maximisation Technology
limit shares

Cost components of generation
technologies , fuel, CO2 prices and
availability of renewables

2009 & 2020 & 2030 Italy

Lemos and Botero
(2012)

Volatility minimisation Level of the
LCOE

Cost components of hydropower
and thermoelectric (gas and coal)

2005&2019 Colombia

Losekann et al.
(2013)

Utility maximisation Technology
limit shares
and CO2

prices
scenarios

Fuel costs, capital and O&M of
generation technologies, CO2 price

2020 Brazil

Hadian and Madani
(2014)

Efficiency maximisation Resource use
efficiency

Cost, carbon foot print, water
footprint and land footprint

- -

De-Llano Paz et al.
(2014)

Risk minimisation Technology
limit shares

Generation cost components and
environmental externalities

2020 EU-27

Matosovi and Tomši
(2014)

Risk minimisation Inexistent Intermittency of renewable energy
sources and accuracy in the
day-ahead forecast

Vithayasrichareon
et al. (2015)

Cost minimisation Installed
capacity
related to
demand side

Gas prices, capital cost of
generation technologies, carbon
pricing policy and electricity
demand

2030 Australia

Nijs and Poncelet
(2016)

Cost minimisation balanced
by risk

Risk level and
energy
system model
constraints

Oil and coal prices 2014 – 2040 Belgium
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Figure 2.6: Average cost escalation and volatility of cost overruns for electricity infrastructure
projects.
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2.3.2.5 Technology cost and price uncertainty

Regarding the scope of this thesis, capital cost of electricity generation infrastructure

is an important parameter considered by energy system optimisation models to inform

energy planners in the design of reliable, secure and least-cost electricity investment

portfolios. All electricity generation projects can be susceptible to cost overruns; how-

ever research has identified hydropower as the technology with the second largest av-

erage cost overruns (after nuclear) and the longest mean construction times. Sovacool

et al. (2014a), assessed construction cost overruns of 401 power plant projects developed

between 1936 and 2014 in 57 countries. The analysis evidences hydropower as a genera-

tion technology that presents a high average cost escalation (70%) and volatility of cost

overrun (cost standard deviation of 111%), as can be seen in Figure 2.6.

According to Sovacool et al. (2014a), one of the possible explanations for hydropower

projects to portray the largest cost overruns is that they are, on average, more materials-

intensive that other electricity generation technologies. The World Commission on Dams

suggests that large hydropower projects are prone to unforeseen excavation and con-

struction problems given the geotechnical conditions cannot be precisely determined

until after the construction of the project begins (World Commission World Commis-

sion on Dams, 2000). A study by Flyvbjerg (2014) assessed the outcomes and costs of

186 hydropower dams – built between 1934 and 2007 in 65 countries. The study found

“overwhelming evidence that estimated budgets are systematically biased below actual costs of

large hydropower dams” and that “actual costs were on average 96% higher than estimated

budgets.” Awojobi and Jenkins (2016) found that “greater complexity in terms of the size of

the plant installed and the physical height of the dam are some of the origins of optimism bias and

strategic parameters used to underestimate the cost of the projects.” Ansar et al. (2014) found
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Figure 2.7: Crude oil and natural gas prices projections by 2040

Source: EIA (2017)

that nine out of ten dams suffered cost overruns in the past. Other previous studies con-

firmed the same trend in hydropower projects (Ansar et al., 2014; Sovacool et al., 2014a;

Awojobi and Jenkins, 2015, 2016; Callegari et al., 2018). In addition, Locatelli et al. (2017)

states that large hydropower projects are large unique projects where public actors play

a key role and are very likely to be affected by corruption. According to Callegari et al.

(2018) who assess cost overrun of hydropower projects in Brazil, corruption worsens

both cost and time performances. An issue that can have important long-term develop-

ment implications for Ecuador, South America and other regions where hydropower is

the largest source of electricity generation.

Similarly, oil and gas prices are uncertain and volatile while they are one of the key

parameters in the least-cost solution of energy system optimisation models. Due to the

important role of oil in the world economy, there has been a large amount of research

intended to capture the economic and financial consequences of changes in the price of

oil and gas (Cunado et al., 2015; Diaz et al., 2016). Low prices of oil and gas is one of the

barriers for the uptake of more efficient and low-emitting energy sources and conversion

technologies. Energy system modellers usually work with price scenarios of oil and gas

provided by international market reports (e.g. IEA, 2014b) and defining cost production

curves for mining or importing of these resources. However, most price projections

for the long-term are of linear trend and are set between deterministic scenario ranges.

For example, Figure 2.7 shows five scenarios for oil (Brent) and natural gas (Henry

Hub) prices by 2040 developed by the U.S. Energy Information Administration Annual

Energy Outlook (EIA, 2017). While these scenarios depict the uncertainty range for fossil

fuel commodity prices depending on future resource and technology levels, they clearly
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omit the volatility and uncertainty registered in the historic trend of prices (see price

evolution from year 2000 to 2017 in Figure 2.7). Therefore, portraying oil and gas prices

in an energy system model as a constant linear trend fails to represent reality and the

impact that positive or negative changes in fossil fuel prices can have between periods

of the modelling horizon.

2.4 chapter summary

This chapter reviewed the current state-of-knowledge on the impact assessment of cli-

mate change on hydropower and the uncertainties to be taken into consideration when

they are assessed with modelling tools. Several approaches were identified that can

be applied to investigate different perspectives on how climate change impacts water

resources and how in turn this affects long-term hydropower generation. Articles as-

sessed in this literature review have provided a number of methodological details with

respect to climate change models, hydrological models and energy models.

The literature review has revealed that GCMs are the main source of uncertainty for

precipitation and thereof runoff projections (as shown in Section 2.2.1 on page 35). While

a number of GCMs have projected positive precipitation increases for certain regions

in the world, other studies have found negative values when using a different set of

GCMs. A number of reasons can explain these range of results. For instance, the use

of different GCMs with different levels of resolution and downscaling technics can lead

to dissimilar results. In addition, the transfer of uncertainties in the modelling chain of

climate change impacts on water resources can also explain contradicting results. As a

result, the wide diversity of runoff projections makes it difficult to use past trends to

plan long-term hydropower systems deployment.

Therefore, the first research question of this thesis aims at developing a climate change

impact assessment on hydropower generation: How broad is the uncertainty of hydro-

climatic variables portrayed in a large ensemble of climate projections and the impact

on the availability of runoff for hydropower generation? Based on the literature review

on uncertainty of climate change in Section 2.3.1 on page 66, it was found that most

studies have worked with a discrete combination of only few GCM results to assess the

uncertainty space of climate change. Thus, for this research a large ensemble of GCM

models has been selected to parameterise uncertainty for future hydro-climatological

conditions – as will be detailed in Section 3.1 on page 91.

In addition, although, the energy sector is vulnerable to climate change, the modelling

of adaptation alternatives, their costs and benefits is seldom explored in the modelled
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adaptation literature, which constitutes a good area for research. Only a few studies

have been found that go beyond climate impact assessment on hydropower generation

and, with the aid of an energy system optimisation model, assess the energy system

in its wholeness and propose least-cost adaptation/policy interventions to the threat of

climate change on hydropower – see Section 2.2.2 on page 46. It should be mentioned

that, previous studies that focus on the impact of climate change on hydropower us-

ing energy system optimisation models are few and have mainly focused in developed

regions (e.g. Seljom et al. 2011; Teotonio et al. 2017; Kannan and Turton 2014; Lind

et al. 2013). There are only few assessments for developing countries, such as for Brazil

(Lucena et al., 2018) and for Ethiopia (van der Zwaan et al., 2018). When focusing on hy-

dropower assessment, the analysis should capture the particularities of hydropower in

terms of investment, potential, operation and vulnerabilities. This thesis aims to assess

the representation of hydropower in a more comprehensive manner than it has carried

out before within the energy system model. Issues such as its lumpy investments pro-

file, remaining potential inventory, inter-annual operation characteristics, and capital

cost overruns will be assessed. This is important in the sense that large hydropower

projects can crowd out other technologies options available for the least-cost long-term

expansion capacity plan, that although could cost more, could have lower risk profiles

and be more robust to climate change impacts. This is of relevance for countries which

are currently expecting to deploy large shares of hydropower capacity in their power

systems.

Therefore the second research question reads: How does hydropower output vari-

ations due to climate change impact the long-term least-cost power system develop-

ment pathway of Ecuador by 2050? As hydropower is dominant in Ecuador’s power

system and it is expected to remain as the main source of electricity during the following

decades, an energy system optimisation model was selected in order to assess the im-

pact of climate change in the power system and assess least-cost measures of adaptation

– the justification for this decision is further discussed in Section 3.2 on page 110.

Regardless of the modelling paradigm, type of model or care taken to build models,

uncertainties still remain. Uncertainty reflects the inability to estimate the exact value

of a variable or comprehensively capture a relationship – see Section 2.3.2 on page 72.

Given the long-term scope that climate change impact assessments demand, other uncer-

tainties take relevance in such long periods of time. Prices of fossil fuels and technology

costs are examples of modelling parameters that can change significantly in the future

and in some cases their uncertainty will never be resolved, thus impacting the solution

when using energy system optimisation models. Although there are many uncertainties
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in the process of energy scenario building (demography, economic development rate,

technological uptake, energy demand, etc.), this thesis will focus on the uncertainties of

fossil fuel and capital cost overruns of power technologies. The rationale behind this is

that beside the operation characteristics of each generation technology, investment and

operational costs of power technologies are the leading input parameters that inform

the least-cost development plans of hydropower-dependant developing countries, and

assessing their uncertainty can lead to different configurations of the least-cost power

sector expansion pathway. Capital intensive hydropower is competing with other cap-

ital intensive non-hydropower renewables and with cheap conventional thermal plants.

However, large hydropower has larger capital cost overrun probability than other non-

hydro renewables and thermal generators, although these later are vulnerable to the

price volatility of fossil fuels.

The third research question is stated as: How does incorporating recurring uncer-

tainties such as the volatility of fossil fuel prices and the capital cost of electricity

infrastructure impact the investment portfolio for the power sector? Financial portfo-

lio theory is an approach well suited to give treatment to this kind of uncertainties in

the power sector and to date, it has been mostly applied exogenous to the energy sys-

tem model. Therefore portfolio theory will be integrated in the selected energy system

optimisation process to assess how the least-cost power sector development pathway for

Ecuador changes when risk is integrated into the optimisation process – this approach

will be further discussed in Section 3.3 on page 159.

The modelling methods used to tackle each research question will be provided in the

following chapter.
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M E T H O D O L O G Y

This chapter describes the methods and assumptions that are used to answer the re-

search questions stated in this PhD. In Section 3.1, the method starts with the details

of climate change projections and the models used (hydrological and hydropower) to

quantify the impact of climate change on long-term hydropower generation in Ecuador.

In Section 3.2, details are provided for developing an energy system optimisation model

for Ecuador (TIMES-EC), including major assumptions in terms of model structure, sys-

tem boundaries, and level of aggregation. Finally, the methods that have been used to

assess recurring uncertainties in the energy system model (portfolio theory) are presen-

ted in Section 3.3.

3.1 modelling the impact of climate change on hydropower

The objective of this section is to show how to assess the impacts of climate change

on hydrological patterns and thereof on hydropower generation. For this purpose, a

hydrological model was developed and calibrated for hydropower producing rivers in

Ecuador. The model was used to project inflow and assess climate induced changes

by forcing it with bias-corrected outputs from a large ensemble of 40 GCMs from the

CMIP5 for the period 2071–2100 run under the RCP2.6, RCP4.5 and RCP8.6 concentra-

tion scenarios (van Vuuren et al., 2011). The simulated inflow values were later used

to simulate changes in the electricity output and availability factors1 of representative

hydropower stations with a hydropower simulation model. An overview of the method

can be seen in Figure 3.1 on the following page.

1 The availability factor of a power plant is the ratio of its actual output over a period of time, to its potential
output if it were possible for it to operate at full nameplate capacity continuously over the same period of
time (according to the MARKAL/TIMES definition i.e. at the time-slice resolution level). Not to be confused
with the traditional capacity factor definition, real energy a power plant produces over the theoretical
energy production if the technology would operate at full nominal capacity during a year. The difference
between availability and capacity factor is the time component.

91
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Figure 3.1: Overview of climate change and hydrological assessment method

There are a number of novelties in this subsection worth noting. Firstly, this study

employs a large ensemble of GCMs to cover a wide range of future climate conditions.

Secondly, the study uses a simple statistical-conceptual approach that is not data intens-

ive which can be replicated in data scarce regions. Finally, this works addresses the gap

relating to the systematic investigation of uncertainty of impacts of climate change on

the Tropical Andes, which has not been systematically investigated, despite the import-

ance for hydropower deployment for the region (Finer and Jenkins, 2012b; Anderson

et al., 2018).

3.1.1 Hydrological model (Precipitation to runoff)

The approach used to assess climate change impacts on hydrology can vary according to

the scale and scope of the analysis. The size and number of river basins investigated, as

well as the availability of data for measured (physical models) or calibration parameters

(conceptual/statistical models), greatly influence the hydrological modelling tool to be

used. The final object of the study and/or the level of detail of the results – either for

the understanding of different processes within the local hydrological cycle or just for

projections of a specific aspect for subsequent modelling exercises – also influence the

selection of the method, as discussed in Section 3.1 on the previous page.

The method presented here is intended to be applied to various Ecuadorian river

basins with the objective of generating simulated monthly inflow into existing and fu-

ture2 representative hydropower plants. Although the considered river basins are hy-

draulically independent from each other, the hydropower stations installed within them

are interconnected through the electricity transmission network. Therefore, energy sys-

tem analysis must be assessed integrally and precipitation to runoff modelling must

include all hydropower electricity producing-river basins. In addition, given seasonal

2 According to the National Electricity Master Plan 2016-2025 (MEER, 2017a)
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complementarity characteristics between basins and watersheds, a seasonal monthly

analysis is necessary.

A statistical-conceptual hydrological model consisting of a two-step approach was se-

lected to model climate change precipitation projections to runoff (De Lucena et al., 2009;

Grijsen, 2014). The argument for this type of model over more complex physical models

is that application of these latter can be challenging since their inputs can be difficult

to acquire in developing countries especially in the spatially continuous manner, thus

hindering the calibration and validation process (Babur et al., 2016). Inter-comparison

between catchment basins is also made possible with conceptual models since histor-

ical precipitation and runoff values of main rivers are more likely to exist for a larger

number of basins.

The first step consists of a statistical approach that uses 30 years of observed monthly

time series of precipitation and inflow to assess the ’coefficient of hydrologic sensitiv-

ity’ between precipitation and runoff into existing hydropower stations. This coefficient

indicates the variation in inflow as a proportion of the variation in climatic variables.

In this coefficient are implicit aspects of the hydrological cycle, such as evapotranspir-

ation and percolation, although it is not possible to distinguish them. This limitation

of statistical models may be relevant for detailed hydrological analysis. However, in

the context of assessment of climatic impacts, this methodology can be very useful due

to its simplicity and wide applicability, assuming that the model is well adjusted. The

coefficient of hydrological sensitivity with respect to changes in precipitation can be es-

timated using a logarithmic linear regression model (Jones et al., 2006; De Lucena et al.,

2010a), according to Equation 3.1 below:

ln (Qt) = α + β1ln (Prt−m) + β2d2ln (Prt−m) + εt (3.1)

where, Qt and Prt−m are the average observed monthly inflow and precipitation

(1971–2000) for month t and a representative hydropower power station in a selected

river basin.3 Parameters α, β1, β2 are the estimated regression coefficients, d2 is a cat-

egorical dummy variable,4 and εt is the error term. The relevant regression coefficients

are β1 and β2, which represent the sensitivity or ‘elasticity’ of average monthly inflow

with respect to average precipitation.5 The use of the logarithmic regression guarantees

3 Notice that there is a lag time m between precipitation and runoff, which has been adjusted to obtain the
best model fit.

4 A categorical variable was inserted to improve regression fit and represent seasonal patterns, being d2 = 0
for the dry season (from October to February) and d2 = 1 for the wet season.

5 Precipitation has been identified as the leading driver for inflow in Ecuador (Célleri, 2007). In regions with
little or no snow, e.g. in the Amazon, changes in runoff are much more dependent on changes in rainfall
than on changes in temperature (Bates et al., 2008).
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that the estimated regression coefficients represent the hydrological sensitivity with re-

spect to the variable in question (similarly to the coefficients of elasticity of economic

theory). Thus, the final coefficient of hydrological sensitivity of precipitation to inflow

for each basin is according to Equation 3.2 :

EQ–Pr = β1 + β2 (3.2)

where, EQ–Pr is the coefficient of hydrological sensitivity, which is equal to β1 + β2,

when a month is in the d2 period, otherwise the coefficient is equal to β1.

Often in hydrological processes, one month’s rainfall has effects on the flow of the next

month due to percolation and the storage capacity of water in the soil. While physical

and conceptual models attempt to address this issue by modelling the processes that

result in this lagged effect, in statistical models such an effect can be estimated by the

inclusion of lagged precipitation values
(

Pri
t−m
)
. Therefore, it is important to conduct

a preliminary analysis of the data before estimating the regression equation to assess

whether this occurs.

Once the coefficient of hydrological sensitivity is estimated, Equation 3.1 can be used

to project inflow for any given month in a representative hydropower station, according

to the Equation below:

Q f uture,GCM
t = Qbaseline

t ×
{[

1 + EQ−Pr ×
(

∆Pr f uture−baseline,GCM
t − 1

)]
× φWB,t

}
(3.3)

where, Q f uture,GCM
t is the projected inflow for month t for a specific GCM for the future

period (e.g. 2071–2100); Qbaseline
t is the observed average inflow for the historic period

(e.g. 1971–2000); EQ–Pr is the coefficient of hydrological sensitivity; ∆Pr f uture−baseline,GCM
t

is the monthly precipitation delta factor for a projected future GCM and baseline periods,

and φWB,t is the water balance correction factor for a specific month (explained below).

The second step includes the conceptual equation of the water balance for a given

catchment area, and can be applied to monthly, annual or climatological means, de-

pending on the availability of data. In the first step, seasonal patterns are captured

statistically but evapotranspiration6 and storage effects are omitted (see Equation 3.3),

so the second step is included to correct for total annual discharge (φWB,t). The water

balance equation is a mathematical relationship based on the physical principle of mass

6 Combination of evaporation from bare soils and transpiration from plants (Yates and Strzepek, 1994).
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conservation (Yates and Strzepek, 1994), which for a given catchment area or river basin

can be described as shown in the following equation:

WB = Pr− PET + ∆S (3.4)

where, WB is the water balance, Pr is precipitation, PET is potential evapotranspira-

tion7 and ∆S is storage variation in soil and underground aquifers.

Based on Equation 3.4, it is possible to make an accounting balance of the amount

of water in a given river basin. Thus, based on measurements or estimates of all but

one, hydrological variables, the water balance equation can be used to calculate the

unknown variable by difference. Thus, the flow rate WB can be obtained based on

Pr, PET and ∆S. While Pr and PET is a direct output from GCMs, storage variation

∆S needs to be estimated for other hydrological variables such as vegetations cover,

type of soil, etc. However, throughout the seasonal cycle, ∆S can be negligible since

the dry period presents negative values and the wet period presents positive values of

similar magnitude (Arnold et al., 1998). In this sense, assuming that the total stock

of water in the soil is small compared to the flow of a whole year, it is possible to

reduce the annual water balance equation to only three variables. This allows to arrive

at an approximation of the annual flow based on the water balance WB, defined as

the difference between precipitation Pr and and potential evapotranspiration PET. The

water balance is applied therefore as a monthly correction factor (φWB,t) to account for

other hydrological variables and is estimated with Equation 3.5:

φWB,t =
WB f uture,GCM

a

Q f uture,GCM
a

=
∑12

1

(
Pr f uture,GCM

t − PET f uture,GCM
t

)
∑12

1 Q f uture,GCM
t

(3.5)

where, φWB,t is the water balance correction factor defined by the ratio of the future

annual water balance WB f uture,GCM
a and the projected annual inflow Q f uture,GCM

a . Annual

water balance WB f uture,GCM
a is equal to the summation

(
∑12

1

)
of monthly difference

between projected precipitation Pr f uture,GCM
t and projected potential evapotranspiration

PET f uture,GCM
t . Projected annual inflow Q f uture,GCM

a is equal to the summation of monthly

inflow estimated with Equation 3.3 before applying the water balance correction factor.

PET is downscaled, analogously to Pr with Equation 3.12 on page 105.

While in the first step of the proposed hydrological modelling some elements are

based on a "black box" approach that is not based directly on the concepts of physics;

in the second a simplified conceptualisation of the hydrological water balance cycle is

7 The idealised quantity of water evaporated per - unit area, per unit time from an idealised, extensive free
water surface under existing atmospheric conditions (Yates and Strzepek, 1994).
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used. It should be borne in mind that the proposed hydrological modelling serves the

purpose of providing an annual inflow time series for energy simulation. This series

should incorporate possible effects of climate change on both the annual trend and

the seasonal variability. The first one indicates the direction of the climate impacts in

terms of increasing or reducing water availability for hydroelectric generation in the

inter-annual level. The second has influence on the operation in the intra-annual level.

Hydrological model performance will be validated with a ratings approach similar

to that adopted by Ho et al. (2015), with three statistical measures: i) Pearson’s correl-

ation coefficient (r), ii) Nash-Sutcliffe Efficiency (NSE) coefficient, and iii) percentage

deviation (Dv) of simulated mean flow from observed mean flow.

The Pearson’s correlation coefficient (Equation 3.6) determines the degree of linear

relationship between the simulated and observed discharge. This coefficient ranges from

0 to 1, with higher values indicating less error variance, and, typically, values greater

than 0.5 are considered acceptable. The NSE coefficient (Equation 3.7) determines how

well the model is able to simulate the variation in discharge by comparing the magnitude

of the residual variance with the measured data variance. NSE ranges from 0 to 1, with

higher values indicating less error, and, typically, values greater than 0.5 are considered

acceptable. The percentage deviation (Equation 3.8) measures the average tendency of

the simulated data to be larger or smaller than their observed counterparts, in other

words, it characterises the percent mean deviation between observed and simulated

flows. Dv can be positive or negative, positive means underestimation and negative

means overestimation, typically, values of −15% < Dv < +15% are considered acceptable

(Srinivasan et al., 2010).

r =
∑n

i=1
(
Xi − Xavg

) (
Yi −Yavg

)√
∑n

i=1
(
Xi − Xavg

)2
√

∑n
i=1
(
Yi −Yavg

)2
(3.6)

NSE = 1− ∑n
i=1 (Xi −Yi)

2

∑n
i=1
(
Xi − Xavg

)2 (3.7)

Dv = 100×
(

1− Yi

Xi

)
(3.8)

where in Equations 3.6, 3.7 and 3.8, Xi is the measured value, Xavg is the average

measured value, Yi is the simulated value, and Yavg is the average simulated value.

Finally, although an analysis with geographic detail provides better results by incor-

porating specificities of different segments of the catchment area of a river basin, its

applicability is limited by the availability of data and computational capacity. Due to

the unavailability of a broad and continuous meteorological database and due to the
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fact that the analysis of the Ecuadorian hydroelectric sector cannot be done in a dis-

aggregated way, the aggregation of climatic effects in hydrographic basins becomes a

simplifying and necessary premise.

3.1.2 Hydropower model (Runoff to hydropower generation)

In order to assess the impacts of climate change on hydropower generation, a reference

scenario must be constructed. Simulated hydropower generation based on altered in-

flow time-series are subsequently compared to the reference scenario, as to find relative

impacts. Due to the enormous uncertainty inherent in climate projections, it is prudent

to work with rates of change, trends and directions, applying them to the values ob-

tained through simulations with historical data. The simulated hydropower generation

with historical hydrological time-series corresponds, in principle, to the historical oper-

ation of the hydropower system and, for the purposes of energy planning, this is the

reference normally used. In the context of calculating impacts, what is important is the

variation between climatic scenarios and the historical operation scenario. The impact

of climate change should therefore be analysed in the form of rates of change, where the

proposed measure of impacts is the variation in the availability factor of hydroelectric

plants.

To assess the behaviour of the hydropower dam operators to runoff availability, a

hydropower simulation model is used. Analysis of hydropower electricity generation

output is developed purely under a water availability perspective, disregarding possible

benefits of thermal complementation or uncertainties about the electric energy market

that can affect the operation of hydropower systems. The hydropower model simulates

monthly available water that can be released for hydropower generation using reservoir

specifications and according to the inflow time series generated by the previously de-

tailed hydrological model. Releases are specified for each month of the year, as well

as reservoir level and spillage. Storage dynamics are simulated using the laws of mass

balance according to Equation 3.9 as follows:

St =St−1 + Qt + V∗t −Vt (3.9)

0 ≤ St ≤ Susable

Vmin ≤ Vt ≤ Vmax

where, St in the reservoir storage in month t, Qt is the current period reservoir inflow,

V∗t is the water release or spillage from an upstream hydropower dam (if any) and Vt
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is the water release volume to the turbines. Susable is the maximum usable storage of

the reservoir, Vmax is the maximum volume of water that can be released through the

turbines for the hydropower station to work at maximum capacity in each period, and

Vmin is the minimum release that must satisfy turbine operation, downstream hydro-

power stations requirements and environmental flows. Notice that, evaporation from

the reservoir has been omitted. Recent studies by Bakken et al. (2016) have found that

water consumption rates of hydropower stations are very close to zero (i.e. evapora-

tion from the host environment before and after creation of the hydropower plant are

the same) in humid and wet environments such as in the Tropical Andes. This could

of course change with increasing temperatures and climate change, and depending on

the the free surface area of the reservoir. This must be assessed in further research.

In this thesis, evaporation has only been captured at the basin level as was mentioned

previously for the hydrological model.

Monthly hydropower electricity generation Et (in MWh) and availability factor AFt is

simulated with Equation 3.10 and Equation 3.11, respectively, as follows:

Et = η · ρ · g · H ·Vt (3.10)

AFt =
Et

(P · T) (3.11)

where, η is plant efficiency, ρ is the water density, g is gravitational acceleration, H is

hydraulic head and Vt is the inflow into the turbine. Efficiency η accounts for turbine

efficiency and friction losses, and is used as a calibration parameter. Hydraulic head

considers penstock vertical head plus average dam height. In the availability factor

Equation, P is nominal capacity (in MW) of the hydropower station and T is number of

hours in a month. The availability factor is chosen since hydroclimatic conditions are

generally integrated into energy system models by exogenously defining this parameter

of hydropower power generation technologies to characterise their seasonal operation

(Gargiulo, 2009; Kannan and Turton, 2011; Lind and Rosenberg, 2013).

A final advantage of the detailed model is that it allows the assessment of the impact

that the availability of inflow has on individual or aggregated hydropower plants in a

system. To calibrate and validate the model, simulated hydropower production will be

compared to historical production selected hydropower stations that represent different

types of hydropower facilities i.e. single/cascading and run-of-river/reservoir. Hydro-

power electricity model performance will be validated similar to Yi Ng et al. (2017), with

two statistical measures: Pearson’s correlation coefficient (r) and the standard error (ε) .
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3.1.3 Study area and data

3.1.3.1 Study area

Ecuador is located in the northwest part of South America in the region known as the

Tropical Andes (see Figure 3.2 on the next page). The Andes define the hydrographical

system of the country and its river basins: the Pacific region that discharges into the

Pacific Ocean and the Amazon region which consists of main tributaries to the Amazon

river. Overall, spatial precipitation patterns are highly variable, with annual precipita-

tion ranging from over 3,000 mm in the Amazonian slopes to less than 500 mm in the

southwest part of the country (Buytaert et al., 2011), while seasonal variability ranges

from 350 mm/month in the rainy season to lower than 100 mm/month in the dry season

(Espinoza Villar et al., 2009).8

In this study, six large river basins that are relevant for hydropower generation are

represented with a total area of around 166,000 km2 (see Table 3.1 on page 104). Three of

these basins belong to the Pacific region: Esmeraldas, Guayas and Jubones, while three

belong to the Amazon region: Santiago, Agoyan and Napo (see Figure 3.2 on the next

page). Given the scarcity of measured historical precipitation and temperature datasets,

the effects of climatic variations (rain and temperature) need to be aggregated by river

basin, as defined by the hydrographic regions of the Ecuadorian National Secretariat of

Water (SENAGUA, 2009). Thus, for all hydropower plants belonging to the same basin,

the estimated impacts are the same regardless of their position within the basin. The

precision gain of an analysis made from the catchment areas of each plant individually

would be small in view of the fact that some plants have a very small catchment area

and the climate projections are not so precise. In addition, when aggregating by basin,

it is avoided that possible outliers of the climatic projection interfere significantly in

the flow results. Finally, in view of the large computational effort required for the

individual analysis of over 35 existing hydropower plants in Ecuador corroborates the

level of aggregation used.

3.1.3.2 Observed Data

Observed historic mean monthly inflow into hydropower stations for a 30-year period

(1971-2000) were provided by the National Electricity Grid Operator (CENACE). Due

to the lack of historic datasets of inflow that cover larger areas of the catchment, the

8 Even though small glaciers are present in the Ecuadorian Andes, strong solar radiation precludes the
development of a seasonal snow cover. Snowmelt therefore does not provide an additional, seasonally-
changing water reservoir, meaning that precipitation and evapotranspiration remain the leading hydrocli-
matic drivers (Kaser et al., 2003, 2010; Vergara et al., 2007).
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Figure 3.2: Ecuador’s six major river basins, hydropower stations and gauging stations used in
this study

Figure 3.3: Average normalised runoff in the Amazon and Pacific regions (1971-2000)
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Note: The shaded areas show the range of maximum and minimum runoff registered values.
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Figure 3.4: Grid cells for historic meteorological data at a 0.5° × 0.5° resolution for Ecuador
available from the Climate Research Unit of the University of East Anglia

analysis needs to be done for a limited number of inflow gauging stations that have to

be used to characterise the catchment basin. Figure 3.2 on the facing page shows the

location of gauging stations for which runoff data is sufficient for estimation and that

can be used as reference for the hydropower plants which they belong to. However, to

assure their validity, we compared these unregulated inflow values with quality-assured

data from the Global Runoff Data Centre (GRDC, 2016) and corroborated that the values

provided by CENACE were consistent with data that has passed quality control proced-

ures and plausibility checks. The characterisictic normalised inter-annual inflow pattern

of each of the regins can be seen in Figure 3.3 on the preceding page, showing certaint

complementarity during the first half of the year, but coincident low flows towards the

end of the year. The shaded areas show the range of maximum and minimum inflow

registered values between 1971-2000). Figure 3.5 on the following page presents the

obtained inflow 30-year time series for the six rivers that are assessed.

Observed historic mean monthly temperature, precipitation and potential evapotran-

spiration (PET) for Ecuador for a 30-year period (1971–2000) were extracted from the

dataset of the University of East Anglia Climate Research Unit (CRU) TS v.3.24 (Harris

et al., 2014), release of October 2016. The gridded data set has a resolution of 0.5° × 0.5°,

and the studied river basins lie within 65 grid cells (see Figure 3.4).

In this study, the mean observed values of meteorological data for each month of the

year are compared with the respective mean observed values of inflow into hydropower

stations. Thus, the proposed method attempts to circumvent the limitation related to

the availability of daily precipitation data through the use of monthly averages in a

panel data analysis for reference plants in each basin. If, on the one hand, the temporal

http://www.cru.uea.ac.uk/data
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Figure 3.5: Time series of inflow into representative hydropower stations in Ecuador (1971 - 2000)
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dimension reduces to 12 observations (one per month), on the other hand there is an

increase in spatial dimension, given by the number of stations and hydropower plants

considered all over the country. This procedure also tends to improve the correlation

between the rainfall and flow series by levelling the outliers, i.e. out of trend events.

The hydropower simulation model will be applied to six hydropower systems in

which Ecuador’s ten largest hydropower stations operate, their technical details are de-

picted in Table 3.1 on the following page. The installed capacity of these systems total

4,368 MW which is over 95% of Ecuador’s current hydropower capacity (see Table 3.6

on page 114) Technical characteristics of these facilities including head, usable storage,

design flow rate, efficiency and observed mean monthly flow (1971–2000) and electricity

production were provided by CENACE (CENACE, 2015).
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Table 3.1: Technical characteristics of hydropower stations used in this study

Basin Area
(km2)

River Hydropower system Hydropower station Capacity
(MW)

Generation
(GWh/y)

Capacity
factor

Storage
(Hm3)***

Head
(m)

Design
flow

(m3/s)

Location (°)

Lat. Lon.

Pacific region

1. Esmeraldas 21,553 Pilaton Toachi Pilaton Pilaton* 48.9 224 0.52 - 149 28.6 -0.31 -78.96

→Toachi* 205.4 896 0.50 2 235 100 -0.31 -78.97

2. Guayas 32,218 Daule Marcel Laniado Marcel Laniado 213 717 0.38 4,069 55 397.5 -0.92 -79.37

3. Jubones 4,361 Jubones Minas S. Francisco Minas S. Francisco* 275 1,290 0.54 6 474 65 -3.31 -79.52

Amazon region

4. Santiago 24,920 Paute Paute Integral Mazar 170 900 0.60 302 159 141.1 -2.59 -78.62

→Molino 1,100 4,800 0.50 44 660 220 -2.59 -78.56

→Sopladora** 487 2,800 0.65 - 363 150 -2.57 -78.47

5. Pastaza 23,190 Pastaza Agoyan Agoyan 156 1,080 0.79 0.8 150 120 -1.39 -78.38

→San Francisco 230 1,400 0.70 - 213 116 -1.39 .78.35

6. Napo 59,505 Coca Coca Codo Sinclair Coca Codo Sinclair** 1,500 8,734 0.66 - 620 287 -0.12 -77.44

Total 165,747 Total 4,368 22,841 0.59

Notes: *Under construction in 2018, **Started operation in 2016, ***Usable storage. Cascading systems are shown with arrows (refer to Figure 3.2).
Source: CENACE (2015); MEER (2015); MICSE (2016b)
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3.1.3.3 Future climate data

The future climate data under RCPs were downloaded from the Royal Netherlands Met-

eorological Institute (KNMI) Climate Explorer database (Trouet and Van Oldenborgh,

2013). Forty GCMs under RCP2.6, RC4.5 and RCP8.5 from CMIP5 were considered for

this study. These GCMs cover diverse resolutions, varying from 0.94° × 1.25° to 2.8° ×

2.8°, come from different climate centres all around the world and are updated beyond

the year 2000 (van Vuuren et al., 2011). The data for these GCMs, for selected RCPs, were

downloaded for precipitation and potential evapotranspiration. The forcing intensities

of these three RCPs are 2.6 W/m2
4.5 W/m2 and 8.5 W/m2, respectively, and approx-

imately conform to the low, medium and high condition of climate change impact (see

Section 2.2.1 on page 35). The GCMs used for climate projection in the study area are

presented in Table 3.3 on page 107. These GCMs cover the period from 1971 to 2100,

which is divided into two 30-year periods: baseline period (1971–2000) and one future

time horizon (2080s: 2071–2100).

GCMs were not selected based on vintage, resolution, validity and representativeness

of results. The combination of GCMs can be used even though they may not necessarily

be the best models for the area, however the intention of this study is to map the full

range on uncertainty surrounding GCMs (Krysanova et al., 2018). Monthly precipitation

and PET data for each GCM were obtained for the six basins using a bilinear interpol-

ation approach, against which baseline period values were compared by linear scaling

(LS), i.e. the delta factor approach (Fowler et al., 2007). Linear scaling aims to perfectly

match the monthly average of corrected values with observed ones (Hu et al., 2013;

Fang et al., 2015). The monthly corrected values are constructed upon the differences

between observed and raw GCMs data. Data was bias-corrected using precipitation and

PET values from the historic observed baseline period CRU datasets (Babur et al., 2016).

Monthly differences of the climate data, are obtained using observed period (1971–2000)

of raw GCMs and observed data. Equation 3.12 is applied to bias-correct GCMs future

precipitation data (Babur et al., 2016):

Pr f uture
t = Pr f uture,GCM

t ×
(

Prhistoric,observed
t

Prhistoric,GCM
t

)
(3.12)

The linear scaling method’s limitations are related to the strong assumptions it makes

about the nature of the changes, including a lack of change in the variability and spatial

patters of climate, and that some extreme values are overlooked when working with

averages (Roy et al., 2010). The lack of meteorological data and high variability of

https://climexp.knmi.nl/start.cgi
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the climate system in the Tropical Andes region complicate the use of more complex

downscaling methods (Buytaert et al., 2010).
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Table 3.3: GCMs used in this study from the CMIP5

No. Model Institution

1 ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation
(CSIRO) and Bureau of Meteorology (BOM), Australia2 ACCESS1-3

3 BCC-CSM1.1 Beijing Climate Centre, China Meteorological Administration
4 BCC-CSM1.1(m)
5 BNU-ESM College of Global Change and Earth System Science, Beijing

Normal University
6 CanESM2 Canadian Centre for Climate Modelling and Analysis
7 CCSM4 National Centre for Atmospheric Research
8 CESM1-BGC Community Earth System Model Contributors
9 CESM1-CAM5

10 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici
11 CNRM-CM5 Centre National de Recherches Meteorologiques
12 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation

(CSIRO)
13 EC-EARTH EC-Earth Consortium
14 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of

Sciences
15 FIO-ESM The First Institute of Oceanography, SOA, China
16 GFDL-CM3 NASA Goddard Institute for Space Studies
17 GFDL-ESM2G
18 GFDL-ESM2M
19 GISS-E2-H p1

20 GISS-E2-H p2

21 GISS-E2-H p3

21 GISS-E2-H CC
23 GISS-E2-R p1

24 GISS-E2-R p2

25 GISS-E2-R p3

26 GISS-E2-R CC
27 HadGEM2-CC Met Office Hadley Centre
28 HadGEM2-ES
29 INM-CM4 Institute for Numerical Mathematics
30 IPSL-CM5A-LR Institute Pierre-Simon Laplace
31 IPSL-CM5A-MR
32 IPSL-CM5B-LR
33 MIROC5 Atmosphere and Ocean Research Institute (The University of

Tokyo), National Institute of Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

34 MIROC-ESM Japan Agency for Marine-Earth Science and Technology
35 MIROC-ESM-

CHEM
Ocean Research Institute and National Institute of
Environmental Studies

36 MPI-ESM-LR Max-Planck-Institute für Meteorologie
37 MPI-ESM-MR
38 MRI-CGCM3 Meteorological Research Institute
39 NorESM1-M Norwegian Climate Centre
40 NorESM1-ME
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3.1.4 Climate change scenarios

The hydropower simulation model was run for six large representative hydropower

systems in Ecuador (see Table 3.1 on page 104.) and for four scenarios of seasonal

inflow patterns: i) historical or no climate change, ii) mean of the CMIP5 ensemble

RCP4.5 scenario, iii) +1 standard deviation of the CMIP5 ensemble RCP4.5 scenario,

and iv) -1 standard deviation of the CMIP5 ensemble RCP4.5 scenario (see Figure 4.6

on page 190). Table 3.4 shows these four scenarios that have been defined to represent

the diverse range of possible runoff projections for Ecuador. The simulated operation

from the historical hydrological series (i) is a proxy of the historical (30-years average

from 1971 to 2000) operation that considers no climate change and, for the purposes

of energy planning, this is the reference used. The Mean scenario (ii) was done in

such a way as to maintain the methodological consistency of other studies which use

the ensemble mean of a concentration scenario for the analysis (Ho et al., 2015). The

standard deviation (iii and iv) is used to inform the minimum and maximum limits

explored in this study, following its widespread application as a common measure of

uncertainty in risk analysis approaches and investment portfolio analysis for the power

sector (Awerbuch and Yang, 2007). The ±1 standard deviation is used in this study to

parameterise the probability space of the CMIP5 ensemble under RCP4.5 for the period

2071–2100 and will be used as the hypothetical Wet and Dry scenarios cases. The Wet

and Dry scenarios imply the strongest impacts of climate change on water resource

availability.

It must be mentioned that, the framework applied in this thesis was also applied

for the RCP2.6 and RCP8.5 scenarios, however differences among RCPs (intra-model)

were found to be smaller compared to inter-GCM (inter-model) differences. Inter-GCM

uncertainty range was also found to have similar magnitude for all three concentration

scenarios. Another reason to use only one concentration scenario, is that the RCP4.5 is

Table 3.4: Long-term climate change scenarios for Ecuador

Climate
change
scenarios

Description

NoCC 30-year average of historic values, representing constant hydroclimatic variables

Mean mean of the CMIP5 ensemble of individual GCMs for RCP4.5

Wet +1 standard deviation of the CMIP5 ensemble of individual GCMs for RCP4.5

Dry -1 standard deviation of the CMIP5 ensemble of individual GCMs for RCP4.5
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the scenario that gathers more GCM models. RCP4.5 contains results from 41 GCMs

compared to 26 GCMs for the RCP2.6, 17 GCMs for RCP6.0 and 30 GCMs for RCP8.5

(van Oldenborgh et al., 2013). Considering that the discrepancy of GCM models is to be

assessed, the GCM scenario that has the most modelling results is chosen, i.e. RCP4.5.

A final reason to use the RCP4.5 is that it is considered to represent a central estimate of

future climate impacts (Thomson et al., 2011) and also most closely aligns with the core

objectives of the United Nations 2015 Paris Agreement (UNFCCC, 2015a), which include

limiting anthropogenic warming to no more than 2°C above pre-industrial values by

2100 (IPCC, 2013).

Because the range of uncertainty for precipitation and inflow values were found to be

so broad (see Figure 4.2 on page 186 and Figure 4.6 on page 190 ), using the extremes

would challenge the subsequent modelling activities (and the interpretation of results).

For example, working with GCM that presented the highest projection for inflow (see

maximum values in Table 4.2 on page 189), would have led to a power sector dominated

entirely by hydropower, in which this technology would have had close to 100% avail-

ability and displaced all other technology options. Conversely, using the GCM with

the lowers projection for inflow, would have meant a situation in which rivers almost

completely dry up and the model would have consequently eliminated hydropower as

an available expansion option.

While these extremes are plausible, given that all the projections from GCMs in the

CMIP5 are considered to be equiprobable (Ho et al., 2015), they would not have allowed

the assessment of the energy system’s sensitivity to changes in water availability. There-

fore the standard deviation granted a possibility to construct and explore intermediate

long-term climate occurrences that are within the uncertainty space of the GCM en-

semble of projections. Therefore, this thesis could be considered to work with a hybrid

approach towards climate scenarios, between climate change impact studies on hydro-

power that define merely hypothetical scenarios (e.g. Madani and Lund, 2010; Dale

et al., 2015) and studies that rely exclusively on GCM outputs (e.g. Teotonio et al., 2017;

Seljom et al., 2011).

Not using the extreme cases of the projections has implications on the interpretation of

the results. First, that the extreme cases which are likely probable are left out, and there-

fore the possibility of a scenario in which hydropower resources dry out is totally un-

derestimated. This type of scenario would recommend that the system avoid any more

hydropower investments and would certainly mean that current hydropower would be-

come stranded assets. In addition, it would advocate for rather focusing on other issues

beyond hydropower, such as the water availability for agriculture and industry. On the
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other side of the spectrum, and extremely wet scenario, could also happen, and while

theoretically would be beneficial for hydropower, too much rain would also put other

infrastructure at risk, due to floods and landslides in eroded areas. The methodology

here is energy-focused and leaves these broader impacts of extreme changes to other

researchers. The results following the proposed methodology should be interpreted as

how sensitive hydropower is to changes in its underlying assumptions of water avail-

ability and infrastructure costs. If changing of these input parameters suggests that the

power matrix should still deploy hydropower, then this technology can be considered as

robust, if not, it is suggested that the reliance of this technology be more conservative

and other technologies should come to play.

3.2 modelling of ecuador’s energy system – the times-ec model

The energy sector interacts with all other sectors of the economy. Within the energy

sector, the electricity sector is particularly relevant, both as an energy supplier and as a

consumer of energy resources. The various interrelationships within the energy sector

and its interactions with other sectors of the economy mean that the effect of climate

change on hydroelectric generation is overarching. Impacts of climate change should

therefore be evaluated comprehensively, considering not only the electricity sector, but

also the broader energy sector and even other economic sectors.9

In this sense, the methodology proposed here for the assessment of impacts of climate

change and the calculation of least-cost adaptation options for the power sector seeks to

evaluate the energy sector through an integrated prism, considering all energy chains10

and the relationships between them. The idea behind the proposed approach is to com-

pare the optimal evolution of the energy sector when incorporating long-term scenarios

of projected impacts of climate change and possible energy policy choices regarding

the use of hydropower (Carvajal et al., 2019). The results obtained from the modelling

are scenarios that project the optimal configuration of final energy supply including the

technological portfolio for power generation.

Therefore, the main advantage of using an integrated framework for the energy sector,

rather than specific models for the electric sector to calculate optimal adaptation options,

is that information can be obtained regarding the second order effects on the whole sys-

tem of supply and demand for energy. Thus, it is possible to evaluate to what extent the

9 The interaction with the different sectors of the economy can be assessed further with an iterative method-
ology with a computable general equilibrium (CGE) model or an Integrated Assessment Model (IAM).

10 Understanding all stages of energy production and consumption, i.e. primary energy production, trans-
formation, transportation, distribution and final consumption.
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optimal adaptation measures designed for the electricity sector can affect the consump-

tion of energy in sectors such as industry, residences, etc. To achieve this, an energy

system optimisation model has been selected as the appropriate modelling tool, since

it combines top-down assumptions, such as economic and demographic growth, with

bottom-up sectoral assumptions and constraints on the availability of energy resources

and energy conversion technologies.

In the following subsections an overview of the Ecuadorian energy system is presen-

ted, followed by a description of the structure and assumptions used in the energy sys-

tem model describing the Ecuadorian energy system (TIMES-EC). Subsequently, given

the scope of this thesis, a detailed description of how hydropower has been implemen-

ted in the model is presented, together with considerations for modelling other ele-

ments of the power sector, energy resources and energy demand. Finally, the approach

for scenarios and policy choices is discussed in the context of Ecuadorian energy and

development policy.

3.2.1 Overview of Ecuadorian final energy and electricity demand

Ecuador is an upper middle-income country (ECLAC, 2017) with an overall advanced

position in terms of energy access, both in relation to end-use energy demand for

heat and in terms of electricity service coverage (>97%) (IRENA, 2015a; REN21, 2017).

Ecuador’s final energy demand reached 572 PJ in 2016 (MICSE, 2016b). Figure 3.6 on

the following page presents total final energy demand by sector and fuel and energy ser-

vice demand. The transport sector is the largest final energy consumer (46%), followed

by industry (19%) and the residential sector (13%), with the remaining used by com-

merce (6%) and agriculture, construction & others (16%). Diesel, gasoline, electricity

and LPG are the main fuels used in Ecuador. Diesel and gasoline are the predomin-

ant fuel sources in the transport sector. Industry and the commercial sector mostly use

diesel and electricity. The residential sector is characterised for using electricity (lighting

and refrigeration) and LPG (cooking and water heating) (MICSE, 2016b).

Heavy freight is the largest consumer of energy in the transport sector in 2016 (110 PJ)

which is mostly powered by diesel, as can be seen in Figure 3.6 on the next page. The

Ecuadorian transport fleet is powered mainly by gasoline and diesel (over 95%), with the

remainder using heavy fuel oil (HFO) (maritime) and kerosene (Aviation). Regarding

the industrial sector, the food & beverage and the mining & non-metals sectors account

for over 80% of energy consumed in in 2016. This reflects the structure of the Ecuadorian

economy, with a large agricultural sector and a producer of raw mining commodities,
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Figure 3.6: Total energy demand by fuel and main consumption sectors in Ecuador in 2016
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especially crude oil. In the residential sector, more than half of final energy demand

is for cooking, where LPG has a predominant role. Electric lighting and refrigeration

are the energy services that most consumed electricity and do so in similar shares. The

commercial sector is the smallest energy consumer. Over half of its consumption is

electricity, mainly for lighting.

Total electricity consumption in Ecuador was close to 23 TWh in 2017; the residential

sector was the largest consumer with a share of 32%, followed by the industrial sector

at 25%, the commercial sector at 17% and the remaining usage accounted for by others

such as public lighting and losses. Total annual electricity demand has grown at an

average rate of 5.8% per year over the last decade (2007-2016) MEER (2017a). Table 3.5

on the facing page shows a summary of electricity demand by sectors.
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Table 3.5: Electricity demand in Ecuador by sectors in 2017

Sector Demand (GWh) (%)

Electricity consumption in the SNI Residential 7,288.25 32%

Commercial 3,846.81 17%

Industrial 5,747.52 25%

Public lighting 1,220.55 5%

Others 2,176.05 10%

Total consumed 20,279.18 89%

Transmission and Distribution losses Technical 1,670.61 7%

Non-technical 976.59 4%

Total losses 2,647.20 12%

Total dispatched 22,926.38 100%
Source: ARCONEL (2018b)

3.2.2 Ecuadorian power generation system

The Ecuadorian power system is, in fact, a hydrothermal one – thermal power plants are

used to complement the generation from hydropower plants (MEER, 2017a). The power

sector is vertically integrated and the State owns and operates most of the installed

capacity in the country (CELEC, 2013). Total installed capacity in the Ecuadorian power

system was 7,434 MW in 2017 (ARCONEL, 2018b). Hydropower installed capacity in

Ecuador reached 4,486 MW, which represents 60% of the total installed capacity, with

the remaining capacity being gas and fossil fuel thermoelectric plants (37%) and by other

renewables (3%) (solar, wind, biomass and biogas). The share of hydropower electricity

generation in the national grid reached almost 83% in 2017, while the share of fossil fuel

generation was 15% and other non-hydro renewable energy sources remained roughly

above 2% (ARCONEL, 2017). Hydropower capacity associated with flexible reservoir

(DAM) systems is 2,162 MW while run-of-river (ROR) systems comprise 2,324 MW. A

summary of the installed power generation capacity in Ecuador is shown in Table 3.6

on the next page.

Initiatives to deploy non-hydro renewable energy projects have historically been weak,

as evidenced by the small capacities of PV, wind and biomass in the Ecuadorian grid.

The first and only grid-tied wind park in Ecuador (16.5 MW) was commissioned in 2012

(Vizhñay, 2013). There are no further wind parks under construction at the the time of

writing nor policies towards future deployment of wind power. A number of small solar

PV plants (~1 MW each) which total a capacity of 25 MW have been deployed in Ecuador

since 2014, due to a one-time feed-in tariff regulatory framework that was launched in

2011 (CONELEC, 2013). No further PV projects are being constructed or considered
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Table 3.6: Installed capacity and electricity generation in Ecuador in 2017

Source
Capacity Generation

MW % GWh %

Hydropower 4,486 60.3% 20,380 82.9%

Wind 21 0.3% 67 0.3%

PV 25 0.3% 34 0.2%

Biomass 136 1.8% 423 1.7%

Biogas 6 0.1% 30 0.1%

Geothermal - 0.0% - 0.00%

Thermal ICE 1,551 20.8% 1,091 4.4%

Thermal OCGT 775 10.4% 1,237 5.1%

Thermal ST 431 5.8% 1,279 5.2%

Subtotal 7,434 100.0% 24,545 99.9%

Interconnection 635 18 0.01%

Total 7,434 - 24,564 100.0%
Notes: Hydropower includes reservoir systems (2,162 MW) and run-of-river (2,324 MW), PV is
utility scale solar photovoltaic, wind is on-shore, biomass is with bagasse-fired steam turbines,
OCGT is open cycle gas turbine, ST is steam turbine and ICE is internal combustion engine.
Source: ARCONEL (2018b)

by the government. Notice in Table 3.6 that there is an interconnection capacity of

635 MW, which has served as a way to hedge against blackouts and to export surplus

electricity generation, mainly to Colombia. Good connection to neighbouring countries

can also function as a flexibility measure and therefore interconnections can play a key

role between countries. However, no further plans of increasing this capacity is currently

in place.

A small fraction of thermal generation is produced with direct-combustion of biomass

(sugarcane bagasse) in steam plants (136 MW) and the first grid-tied landfill biogas plant

(6 MW) was commissioned in 2016 (ARCONEL, 2018a). Given the recent additions of

hydropower, thermal generation is currently playing a reserve and back-up role in the

occurrence of low inflows into hydropower stations.

In Ecuador, there is one power transmission network, the Interconnected National Sys-

tem (SNI),11 which integrates different sources of generation and transmits electricity to

key consumption centres in the Ecuadorian Highlands and along the Pacific coastline.12

Since the Ecuadorian power system is based mainly on hydroelectric power plants, some

11 In the country, only 12 % of the electricity is generated outside the SNI, in small isolated systems located
mainly in the Amazon region in oil production fields (ARCONEL, 2017).

12 Consumptions centres located int the Pacific region of Ecuador consume 57% of total electricity, followed
by centres in the Highlands with 40%. This totals 97% of all electricity generated in Ecuador. The remaining
is consumed in isolated regions in the Amazon to the east and in the Galapagos Islands (ARCONEL, 2016).
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characteristics of the operation of this type of generation are worth noticing in the con-

text of the SNI.13

Firstly, unlike thermal plants in which, by guaranteeing the supply of fuel, there is a

greater degree of control over generation, the production of electricity in hydroelectric

plants depends on water availability, which is an element of a stochastic nature and,

therefore, of great uncertainty. Second, all hydroelectric plants have some capacity to

store water in reservoirs. This storage capacity, however, can be equivalent to a few

hours – compensating for intra-daily flow variations –, some months – compensating

for seasonal variations – or even for a few years – compensating for annual hydrological

variations. In Ecuador, roughly half of the installed capacity of SNI is based on plants

with a reservoir with monthly storage capacities and the remaining is run-of-river with

only hourly flexibility at most. This requires the operator to plan expansion and manage

the system to obtain the maximum generation through the interaction of these two types

of hydropower technologies (De Lucena et al., 2010a).14

Finally, another aspect concerns the fact that the length and flow of Ecuadorian rivers

causes several hydroelectric plants to exist along the same river, as is the case of the

Paute Integral hydropower system, in Southern Ecuador (see Figure A.1 on page 291 in

Appendix A). Only in the Paute river, there are four consecutive plants (Mazar 170 MW,

Molino 1,100 MW, Sopladora 520 MW and an additional planned project Cardenillo 596

MW)(CELEC, 2018a), which combined (2,386 MW) form the largest and most important

power generation system in the SNI. Therefore, the strategy of operating a plant cannot

fail to consider all the others downstream, as it depends on the operation of the plants

that are upstream.

3.2.3 The TIMES energy system model generator

3.2.3.1 TIMES methodology

This research used the TIMES (The Integrated MARKAL-EFOM System) energy system

optimisation model generator, which is a widely used bottom-up optimisation model-

ling platform developed as part of the International Energy Agency – Energy Techno-

logy Systems Analysis Program (IEA-ETSAP) (Loulou and Labriet, 2008; Gargiulo and

Gallachóir, 2013). TIMES provides a detailed techno-economic description of resources,

13 A single line diagram of the SNI can be found in Appendix A on page 289.
14 See section 1.3.2 on page 12 for further details on these technologies.
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energy carriers, conversion technologies and energy demands.15 The model minimises

the total discounted costs of deploying technologies required to cover energy service

demands over a multi-decadal time horizon. It can be used to examine investment de-

cisions and help evaluate how energy and environmental policies impact the energy

sector (Endo, 2007; McCollum et al., 2012; Deane et al., 2012; Amorim et al., 2014; Chen

et al., 2016; Pye et al., 2017).

The fact that TIMES is a bottom-up “technology explicit” model means that energy

technologies (defined as any device that produces, transforms, transmits, distributes

or uses energy) are deeply described by technical (i.e. useful life, efficiency, emission

factors and availability) and economical (i.e. investment costs, operation and mainten-

ance costs and variable costs) parameters.

TIMES is said to be a partial equilibrium model because it computes the market equi-

librium only in the energy sector – in every period the quantities and prices calculated

for the commodities are in equilibrium, which means that for every commodity the

quantities produced by suppliers coincide with the quantities demanded by the con-

sumers (Teotonio et al., 2017). Therefore the equilibrium takes place where the supply

and demand curves intersect, from which it follows that the market prices are equal to

the marginal values in the system. In TIMES detailed projections for final energy de-

mand can be modelled and optimised jointly together with energy supply to meet this

demand.

TIMES assumes competitive markets with perfect foresight – each agent has perfect

knowledge of the market’s current and future situation, but alone cannot affect the

market equilibrium with its actions. This means that the equilibrium is calculated (and

that decisions about investments and operation are taken) in just one step by maximising

the economic surplus over the entire modelling time horizon. The previous assumptions

ensure that when supply and demand are in equilibrium, the total economical surplus

is maximised (or equivalently the net total cost is minimised). Therefore, given that

the total economic surplus is the sum of the consumer’s and producer’s surplus, it

results that TIMES looks for the configuration of the energy system that maximises

social welfare (social planner point of view) (Fais and Blesl, 2015).

3.2.3.2 Model generation, linear programming, optimisation and data handling

TIMES is not a model itself but rather a model generator – all TIMES models share the

same building blocks (i.e. the source code pre-defining specific constraint types, etc. ),

15 For a review on different energy models refer to Jebaraj and Iniyan (2006), Connolly et al. (2010), Bhat-
tacharyya and Timilsina (2010), Pfenninger et al. (2014) and Chiodi et al. (2015). See also section 2.2.2 on
page 46.
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but the in which these are structured, together with the data input by the modeller, allow

for different models to be generated. The structure of TIMES is built with variables and

equations that are derived from the input data. Because of the fact that in TIMES the

outputs of a process are linear functions of its inputs and that also non-linear functions

(such as supply and demand curves) can be represented by a stepped sequence of linear

functions, it follows that in TIMES in principle all the equations are linear. This linearity

property allows calculating the partial equilibrium as a linear programming problem

(Tattini, 2015).

Linear programming problems aim at maximising or minimising an objective function,

while respecting constraints expressed in the form of linear equations and inequalities.

The canonical form for linear programming is formulated as follows:

min cTx (3.13)

Ax = b (3.14)

x ≥ 0 (3.15)

where, c and b are the known coefficients vectors, A is the known coefficients matrix,

T is the transpose operator and x is the vector of decision variables (the unknowns

to be determined by the optimisation). Equation 3.13 is the objective function, which

expresses the criterion to be minimised. The other two expressions (Equation 3.14 and

Equation 3.15) are the constraints, which are a set of equations or inequalities containing

the decision variables to comply with.

TIMES’ objective function is represented by the discounted sum of the annual costs of

the energy system that must be minimised. First, for every year of the time horizon the

sum of the costs occurred in that year is calculated. Then TIMES calculates, for every

region, the total net present value, discounting all the costs of the various years to a

selected reference year. They are finally summed into a single cost that is the objective

function to be minimised. The mathematical expression of the objective function in

TIMES is (Loulou, 2016):

NPV =
R

∑
r=1

∑
y∈YEARS

(
1 + dr,y

)REFYR−y × ANNCOSTr,y (3.16)

where, NPV is the net present value for the total cost of all the regions over all years,

ANNCOSTr,y is the total annual cost in region r and year y, dr,y is the discount rate,

REFYR is the reference year for discounting, YEARS are all the years over the time

horizon for which there are costs, plus past years for which have been defined costs,
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Figure 3.7: Overview of the VEDA system and TIMES modelling

Source: adapted from Loulou (2016)

plus years after the end of time horizon if there are dismantling costs, R is the set of

regions considered in the model. The main decision variables for optimisation are the

activities of the technologies, the investments in new capacity and the flows between the

commodities and the processes involved in the energy system object of study.

While minimising the objective function, TIMES must also satisfy a large number of

constraints expressing the physical, technological and economical relationships between

the decisions variables and representing the characteristics of the energy system to op-

timise. In order to implement such a large scale optimisation model, TIMES uses GAMS,

a high level programming language that allows solving problems with thousands of con-

straints and variables like those describing complex energy systems.

In order to manage a TIMES model without inputting and handling data directly in

GAMS, a front-end model interface exists (VEDA-FE) for generating, modifying and

running a model, and a back-end (VEDA-BE) for exploring and analysing the model-

ling results. The model creation process using the VEDA model interface is shown in

Figure 3.7 (Loulou, 2016). The structure and data of the model are input by the mod-

eller to VEDA-FE by means of several MS Excel workbooks. VEDA-FE recognises the

information contained in the workbooks by means of special key-words and it organises

them in a database.

This database is given as input to the model generator which creates files that are then

translated by GAMS into a linear programming matrix containing all the coefficients in a

form ready to be associated to the proper variables in the respective Equations. The last

step is the optimisation – a solver (usually CPLEX) handles the matrix of coefficients and

thus finds the optimal solution of the TIMES problem that represents the model. Finally

GAMS generates a file that is input to VEDA-BE, the interface that allows handling the

results and creating tables and graphs to analyse results.
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3.2.4 TIMES-EC – the Ecuadorean TIMES model

3.2.4.1 The Reference Energy System

The Reference Energy System (RES) is a network description of energy flows detailing

all technologies that are involved (or potentially involved) in the production, transform-

ation and use of various energy forms. To satisfy energy demand services required by

economic activities, demand devices/technologies that transform energy commodities

into useful demands are used. Storable energy commodities, like gasoline and diesel

fuels are produced by processes technologies while non-storable energy forms like elec-

tricity and heat are generated by conversion technologies. Processes and conversion

technologies use primary energy forms obtained from primary energy resource techno-

logies or secondary energy forms, which themselves have been produced by previous

processes.

Figure 3.8 on the following page shows a highly simplified RES of the Ecuadorian

energy system used in TIMES-EC. Conversion technologies and processes are repres-

ented by boxes, while energy commodity flows are the lines interconnecting the boxes.

TIMES-EC has ten sectors, divided into five supply side and five demand sectors:

1. Supply sectors:

a) Renewable resources: domestic renewable resources

b) Non-renewable resources: extraction infrastructure

c) Imports and trade: fuel and electricity trading

d) Processing and infrastructure: Refineries, biofuel production and energy in-

frastructure

e) Electricity: Electricity generation and transmissions and distribution grids.

2. Demand sectors:

a) Residential

b) Industry

c) Commercial

d) Transport

e) Agriculture, construction & others

Each element in the network is characterised by input parameters that define the

main components in the system: energy service demands, regional resource potential
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Figure 3.8: Simplified RES of the Ecuadorian energy system in TIMES-EC

and costs, technology data and scenarios to explore different policies. An overview of

the inputs and outputs of TIMES-EC is depicted in Figure 3.9 on the next page.

TIMES-EC has the following inputs:

1. End-use energy demand drivers, which are quantified endogenously based on

the evolution of exogenously defined socio-economic drivers (e.g. population and

GDP) and demand sensitivities in five end-use sectors;

2. Technological specifications, provided by a comprehensive database of technical

and cost data for existing and future energy conversion technologies (efficiency,

capacity, availability, lifetime, lead-time, investment costs, and fixed and variable

O&M costs);

3. Energy resources, including domestic renewable (solar, wind, biomass, geothermal

and runoff) and non-renewable (oil and gas) potential and the prices of imported

electricity and fossil fuels;

4. Climate change scenarios, which are defined by the hydrological assessment;16

and,

16 Climate change impacts are limited in this analysis to their effect on hydropower supply; possible impacts
on other parts of the energy system, such as changes to wind and solar resources, changes to thermal
efficiency and the associated de-rating of power plants, and possible changes to energy demand (e.g. heat-
ing/cooling), are not accounted for and should be included in further research.
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Figure 3.9: Inputs and outputs of TIMES-EC

5. Policy cases, which reflect possible evolutions of the deployment of hydropower

according to national energy and environmental policy choices.

The key outputs of TIMES-EC include:

1. Energy system profile, including installed capacity and energy flows per techno-

logy;

2. Total energy and electricity system costs; and,

3. Energy related GHG emissions.

Depending on the energy system studied, the RES may cover the whole energy system,

showing how primary sources are extracted, then transformed by conversion processes

into other commodities, afterward transported and finally consumed by end-use devices.

This would render a fully described energy system, but it is not compulsory. In fact, the

RES and the associated energy system model could just focus on the description of

some sub-sectors of the total energy system. The TIMES-EC model represents the whole

energy system but for purposes of this thesis, it depicts the power sector in greater detail

than others.

Existing installed electricity generation capacity between 2014–2017 are model inputs

and have been modelled at the plant level (over 125 plants, MEER, 2017a), whereas the

long-term capacity expansion (over 20 new technology options) until 2050 is a model

output. The characterisation of new electricity generation technologies, as cost data,
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availability and efficiencies, is input to the model based on a range of sources (?IRENA,

2015b; NREL, 2016; IEA, 2016b) and the specific observed costs of plants installed in

Ecuador during the last decade (MEER, 2017a), as can be seen in Table 3.11 on page 137.

The general annual discount rate is set to 8%, as used in strategic planning by the

Ecuadorian Central Bank (BCE, 2017). In practice, different electric generation alternat-

ives face different financing conditions. Technology-specific discount or hurdle rates is

a way to capture higher risk primes for riskier technologies (Decarolis et al., 2017). The

attempt to reproduce these differences will be approached by including their risk with

a portfolio theory approach (explained in Section 3.3).

3.2.4.2 Time slices, periods and model horizon

In every TIMES model a time horizon must be indicated. Such time horizon is then

divided into various time periods composed by a certain number of years that can also

vary from period to period. Usually the first period consists of one single year, of which

all the information and values of parameters are known, in order to provide a proper

description of the reference scenario and to facilitate the calibration of the model. Then

the following time periods have increasing time length. Time periods can be further

subdivided into smaller time periods called time slices. They are used for representing

commodities whose characteristics (for instance, availability and load) vary sensibly

within the year (e.g. electricity and solar energy).

The base year of TIMES-EC is 2014 and the modelling horizon is until 2050.17 The peri-

ods from 2014 to 2017 serve as calibration years, for which statistical values regarding

energy imports, exports and sector demand were taken from the Ecuadorian National

Energy Balance 2015 (MICSE, 2015). Disaggregated installed capacity and power gen-

eration was obtained from the Multi-annual Statistics Report of the Ecuadorian Power

Sector 2016 (ARCONEL, 2016).

Each model time period is divided into 36 time-slices, with 12 months in a year, each

with a single representative day composed of three periods: morning (8 hours), day

(12 hours) and night (4 hours-peak). Table 3.7 shows the time slice representation in

TIMES-EC. This time-slice structure is appropriate to study the long-term energy sys-

tem expansion from an energy balance perspective (further details on daily load profile

can be found in Section 3.2.7 on page 138). Specifically, it was chosen to capture the

monthly and diurnal characteristics of hydropower generation and end-use power de-

17 The model has actually been expanded up to the year 2085 to capture effects of the long operational life
of hydropower (75 year) and also the effects of uncertainty in precipitation towards the end of the century
derived from long-term climate data (up to 2100). The long-term horizon taken in the model also ensures
that the lock-in effect of capital stock inertia associated to near-term policies is avoided (Vogt-Schilb et al.,
2014; Bertram et al., 2015; Riahi et al., 2015).
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Table 3.7: Time slice representation in TIMES-EC

Season Intra-day period Time represented Notes

January (JAN) Morning (M) 23:00 - 7:00 Lowest demand

February (FEB) Day (D) 7:00 - 19:00 Intermediate

March (MAR) Night (N) 19:00 - 23:00 Peak demand

April (APR)

May (MAY)

June (JUN)

July (JUL)

August (AUG)

September (SEP)

October (OCT)

November (NOV)

December (DEC)

mand respectively; and is thus aligned well with the data used in this study. Investment

decisions are made for each model period and operational decisions are made for each

time-slice level, both under perfect foresight over the whole model horizon.

3.2.4.3 Geographic region

A TIMES model may include different regions. In such case, each region is described by

its own RES and the interconnections between the regions can be described separately.

The TIMES-EC model has one region. The main reason to work with a single-region

model in TIMES-EC is that the model was created mainly to represent a single trans-

mission system (SNI), which remains the core and the focus of the analyses. The single-

region modelling of Ecuador’s power sector is adequate to analyse the global electricity

supply and future capacity capacity expansion which will most likely be interconnected

to the SNI. Another important reason was the difficulty to find data related to the single

regions within Ecuador – some of this information is held by the National Electricity

Regulation and Control Agency (ARCONEL), but significant information is completely

missing so that too many assumptions would have been necessary.

Although the model has only one region in terms of geographical regions, six hy-

drographic regions have been defined to capture the differences of hydrology among

Ecuadorian watersheds and river basins (detailed further in section 3.2.5). A further im-

provement of the model would be to disaggregate electricity supply and consumption

in at least three regions, detailing the Coast, Highlands and the eastern Amazon region,

and to integrate them in a final three-region model.
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Figure 3.10: Hydropower modelling in TIMES-EC

3.2.5 Hydropower modelling

Given the focus of this research, the description of hydropower in the TIMES-EC has

been done with particular detail. The following characteristics of hydropower have

been defined to capture its expansion and operation as best as possible:

1. Resource potential,

2. Operational characteristic,

3. Investment profile, and

4. Scenarios of climate, policy and risk.

Figure 3.10 shows the level of detail of hydropower’s characterisation in TIMES-EC,

which w ill be explained in the following paragraphs.

3.2.5.1 Hydropower potential

Hydropower potential in Ecuador is located in six large river basins, as can be seen in

Figure 3.11 on the next page. The largest hydropower stations as of December 2017,

which together account for about 85% of the total hydropower installed capacity, are

shown in Table 3.8 on the facing page (MEER, 2017a). The Ecuadorian Electricity Master

Plan (PME) estimated the total techno-economically feasible hydropower potential to be
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Figure 3.11: Ecuador’s six major river basins and geographical distribution of the Government’s
assessment of hydropower potential (GW)

Table 3.8: Largest hydropower stations in Ecuador as of December 2017

Power station Basin Type Installed capacity (MW)

Coca Codo Sinclair Napo ROR 1,500

Pautea Santiago DAM 1,100

Sopladoraa Santiago DAM 487

San Franciscob Pastaza ROR 212

Marcel Laniado Guayas DAM 170

Mazara Santiago DAM 170

Agoyanb Pastaza ROR 156

Total largest hydro 3,795

Total Ecuador hydro 4,486

Note: Hydropower stations with matching superscripts belong to cascading systems.
Source: ARCONEL (2018b)
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Figure 3.12: Remaining hydropower potential and number of projects
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22.1 GW (ARCONEL, 2015), which is composed of 4.4 GW that are already installed,

0.7 GW that are under construction, 13 GW that are untapped and are viewed as tech-

nologically feasible and cost effective to deliver, and an estimated 4 GW that are likely

to encounter development restrictions due to environmental conservation concerns, so-

cial problems and accessibility issues, all of which led the Government to conclude that

these resources are unlikely be utilised in the future (ARCONEL, 2015). The Santiago

and Napo river basins are especially relevant in terms of hydropower generation, hold-

ing most of installed capacity and the largest hydropower systems in the country. The

largest hydropower stations in each of these basins will be used as representative for

each river basin, as has been explained in Section 3.1.3 on page 99.

To assess remaining potential, this study has used the hydropower project inventory

that is presented in the Electricity Master Plan (PME) (MEER, 2017a) to represent the re-

maining potential for new hydropower capacity expansion in Ecuador (totalling 13 GW).

This has been categorised according to the river basin in which each envisioned project

is located and further divided into three capacity sizes: small (1 to 50 MW), medium (50

to 450 MW) and large (>450 MW). In total, 73 projects have been categorised, of which

six are large (totalling 9,756 MW), 18 are medium (totalling 2,327 MW) and the remain-

ing 49 are small (totalling 917 MW). The distribution of the total remaining capacity

of different sizes and the total number of projects is shown in Figure 3.12. Notice the

inverse correlation between capacity and number of projects – most of the remaining po-

tential is concentrated in large scale projects. The Santiago, Napo and Esmeraldas basins

hold the majority of remaining potential in large and medium sized projects, while the

Guayas, Jubones and Pastaza basins have only the potential for medium and small sized

projects. For the detailed list of hydropower projects included in the model, please see

Table A.1 on page 289 and Table A.2 on page 291 in Appendix A.
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Figure 3.13: Ten-year (2006-2015) average monthly inflow for hydropower stations in different
watersheds
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In order to have an adequate representation of hydroelectric power generation, it is

of primary importance to understand the water availability into hydropower stations

and, more in general, the Ecuadorian hydrologic system, as has been detailed in Sec-

tion 3.1.3 on page 99. Hydrological regimes vary between Ecuadorian basins but par-

ticularly between the Pacific and Amazon regions. For basins that are in the Pacific

region (Esmeraldas, Guayas and Jubones) to the West of the Andes mountains, runoff

shows a characteristic seasonal behaviour with higher flows between January and May

(wet season) and low flows occur between June and December (dry season). For basins

that are in the Amazon region (Santiago, Pastaza and Napo) to the East of the Andes,

runoff is slightly offset with higher flows registered between April and August and low

flows between September and March. Figure 3.13 shows the ten-year (2006-2015) aver-

age monthly inflow to the reservoirs of hydropower stations Marcel Laniado (213 MW)

in the Pacific region and Mazar (170 MW) in the Amazon region.

As hydroelectric power plants are, in general, distant from large consumption centres,

there is a need to transmit electricity through the integrated SNI. Although this incurs

in transmission losses, it facilitates, on the other hand, integration between hydropower

systems and increases the quantity of energy that can be obtained from the hydroelec-

tric system. This integration of the SNI allows the electricity system to be operated

according to the regional differences of water availability, taking advantage of seasonal

complementarity among basins between the months of January to August. However the

months of November to February are coincident low flow seasons for basins in both

regions and represent a critical period for power generation. This can be seen in Fig-

ure 3.14 on the next page, where total monthly generation together with the average

power demand in Ecuador throughout 2016 is shown. Fossil fuel-based generation com-

plements hydropower generation, specially during the months of November, December,
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Figure 3.14: Monthly generation and electricity load in Ecuador in 2016
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January and February. On the contrary, from March to September, there is more water

availability and the share of thermal electricity is reduced. Power demand does not vary

strongly between seasons (see Section 3.2.7 on page 138).

In this sense, the analysis of climate change impacts and adaptation strategies must

be carried out in an integrated fashion. As mentioned in Section 2.2.2 on page 46, the

characteristics of hydroelectric systems have influence on the definition of the method-

ology used in the hydrological and energy modelling. For the Ecuadorian case, the

modelling tools used need to incorporate various aspects of this integrated complexity.

Therefore, in this study, an integrated analysis of the SNI has been performed, in which

the projected generation for each hydropower plant (each basin) is the result from its

participation within the integrated power system. Similarly, least-cost strategies for ad-

aptation consider the integration of hydroelectricity with other generation sources and

the various repercussions in other segments of the energy sector.

3.2.5.2 Hydropower technology

Modelling hydropower in TIMES-EC required a major effort with respect to other power

generation forms. In fact, in order to give a proper description of such technology, it

was necessary to represent the operation logic of run-of-river (ROR) and reservoir-based

(DAM) technologies according to water inflow availability.18 In TIMES the maximum

yearly activity of a process is computed by the following equation:

ACT = CAP× AF× CAP2ACT (3.17)

18 Our assessment did not consider pumped storage hydropower because of their greater impact on the
landscape and flow regime and because they are generally more expensive as they require larger dams and
reservoirs. Reasons to build these systems are dependent on local social and economic conditions, which
were outside the scope of our assessment (Gernaat et al., 2017).
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where ACT is the process activity (which unit in TIMES-EC is PJ), CAP is the installed

capacity of that process (expressed in MW), AF is the availability factor19 and CAP2ACT

is a parameter used to bring the two terms of the equation to the same unit (in this case

it is 31.536 to transform from GW to PJ).

From Equation 3.17 it follows, that in TIMES, a possible way to describe the activ-

ity of a process is by defining its availability factor in the various time slices. Even

though this technique allows modelling a complicated feature in an simplified manner,

the definition of the availability factors in every time slice increases the model size. The

implementation of this technique to model hydropower is particularly beneficial. Since

hydropower is a renewable form of power generation and the conversion efficiency from

primary energy to electricity of such type of plants in TIMES can be set equal to 1, put-

ting a constraint on the output commodity (electricity) from a process is equivalent to

putting it on the input commodity (water) (Tattini, 2015).

Therefore in TIMES-EC the production from hydropower (both ROR and DAM) has

been modelled by describing, for every monthly time slice, the availability factor of the

commodity electricity (ELC) coming out from such plants. This artifice allows modelling

hydropower generation by describing the power production rather than the water inflow

to the hydropower stations. In addition, ROR and DAM have been modelled with

different types of availability factor attributes that TIMES offers to further specify how

the availability factor is to be implemented, as has been detailed in Table 3.16 on the

following page and has been exemplified in Figure 3.15 on the next page.

To represent run-of-river (ROR) plants that feature inflexible electricity production, an

availability factor according to monthly inflow patterns (termed AF in the model code)

has been used. This availability factor attribute allows ROR to have certain flexibility

within the daily time slice but no flexibility at the seasonal (monthly level). Thus, in-

dicating that there is no possibility for inter-seasonal storage of water. For ROR the

seasonal availability factor represents an electricity generation profile that is the same

as the water inflow profile. The seasonal availability factors for ROR plants have been

determined in the hydropower modelling of representative ROR hydropower stations as

explained in Section 3.1.2 on page 97.

In the case of flexible reservoir (DAM) plants, an annual availability factor (AFA in the

model) that constrains the total level of annual electricity generation is used to represent

the inter-seasonal storage capacities of this type of hydropower. This attribute allows

19 Capacity factor is the simplest way to measure the energy delivered by the power station during a year,
when compared to the case of it working at full capacity. The availability factor in TIMES, however, is a
way of further detailing how energy can be supplied within time slices and allows to model the flexibility
of electricity supply technologies further.
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Figure 3.15: Example of availability factor attributes used in TIMES-EC to model hydropower
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Figure 3.16: Availability factor attributes used in TIMES-EC to model hydropower

Hydropower
type

TIMES
Attribute
code

Description

ROR AF Seasonal availability factor according to monthly
simulated electricity production.

DAM AFA Annual availability factor according to annual simulated
electricity production.

AFS_LO Seasonal availability factor with upper limit according to
the lowest monthly production according to historical
data.

AFS_UP Seasonal availability factor with upper limit according to
the highest monthly production according to historical
data.
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the model to endogenously allocate electricity in different seasons as long as the annual

availability is complied with.20 Moreover, a variable seasonal availability factor (AFS_UP

and AFS_LO in the model) with maximum and minimum production levels according to

historical data, is used to constrain seasonal electricity generation to respect maximum

and minimum environmental flows according to historic data. The annual availability

factors for DAM plants have been determined in the hydropower simulation model of

representative DAM hydropower stations as explained in Section 3.1.2 on page 97. For

these stations, the hydropower modelling in Section 3.1.2 on page 97 allowed to estimate

the annual availability factor considering that water could be stored and used during

the next period. Spillage only occurs if the reservoir is full, therefore excess water from

one month can be used during the following.

The availability factor approach to model hydropower has been used in several studies

using TIMES. Kannan and Turton (2014) model the Swiss electricity sector and charac-

terise hydropower by defining four seasonal availability factors (for Spring, Summer,

Autumn and Winter), using maximum and minimum availability factors for DAM hy-

dropower plants and only maximum availability factor limits for ROR. In a similar ap-

proach Seljom and Tomasgard (2017) define four seasonal availability factors by using

maximum and minimum values from historic records for the Norwegian hydropower

system. However, aggregating the year into four seasons does not allow to assess partic-

ularly dry months during the year where other means of generation might be needed. In

any case, this might not be so important for Switzerland or Norway, which are strongly

interconnected with the rest of Europe and can withstand low flow seasons with im-

ports. Thus this might not be the case for Ecuador, or other countries that have limited

interconnection capacity, and low flow season will require to be solved domestically

with alternative sources. In this study a monthly resolution will be used which better

captures critical low flow months. This is also consistent with the monthly GCM output

that has recently been made available (see Section 3.1.3 on page 99).

3.2.5.3 Hydropower investment and retirement

The TIMES model’s discrete investment feature for new capacity additions is used to

model the lumpy investment characteristics of medium and large hydropower projects,

while investments in small hydropower are treated in a linear fashion. This approach

reflects the criteria that in a given large river scheme only a corresponding large facility

would make technical and economic sense, and the fact that large hydropower projects

20 In practice, the availability of reservoir hydropower may change due to evaporation and other loses if the
water is stored for a longer period. However evaporation from reservoirs has not been considered in this
study.
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Table 3.9: Discrete investment steps according to hydropower plant size and river basin

Region Basin
Discrete investment step (MW)

Medium (50-450MW) Large (>450MW)

Pacific Esmeraldas 100 460

Guayas - -

Jubones - -

Amazon Santiago 100 1,200

Pastaza 180 -

Napo 270 1,000

are almost always built in consecutive stages that accompany demand growth and fin-

ancing capacity of the operator (OECD/ECLAC/CAF, 2015).

The model can endogenously choose to invest in large and medium hydropower ca-

pacity in discrete steps according to the potential and the number of projects in each of

the six river basins (as seen in Figure 3.11 on page 125 and Figure 3.12 on page 126). For

example, the Santiago river basin shows a significant potential of almost 8 GW, however

most of it is concentrated in two large capacity facilities, namely the Santiago-G8 (3,600

MW) and the Zamora (3,180 MW) projects (CELEC, 2017). To reflect this, the model is

constrained to invest in steps of 1,200 MW for large hydropower in this basin, as it is

assumed that these projects would be built in three stages each. Table 3.9 shows the

discrete investment sizes (in MW) for different basins. The model will endogenously

pick to invest on the deployment of hydropower according to basin, size type and cost

of the projects made available. The details of hydropower costs for different types and

sizes can be found in Table 3.11 on page 137. Hydropower costs depend on size, and

electricity cost on the corresponding availability factor, there has not been made any

differentiation to consider different prices in different basins. It is too difficult to know

what the costs of roads and other additional infrastructure for the projects.

The retirement profile of existing hydropower stations has been computed from the

annual installed capacity and hydropower plant lifetime. First, the annual installed

capacity profile was determined for the period 1970 to 2016 (OLADE, 2017a), which

can be seen in Figure 3.17 on the facing page. Next, it is assumed that hydropower

plant lifetime is 75 years (IRENA, 2012b) and that after this time hydropower stations

are removed from total installed capacity. However, given that most of the installed

capacity in Ecuador was installed in the mid 1980s, only 50 MW, which was installed

before 1975, is anticipated to be retired before 2050. The retirement profile of existing
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Figure 3.17: Hydropower installed (left) and retirement profile in Ecuador for existing installed
capacity
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hydropower plants for the period 2016 to 2100 is shown in Figure 3.17 and has been an

input to the model.

3.2.5.4 Scenarios

This analysis specifically focuses on the impacts and uncertainties surrounding hydro-

power resource potential, as these effects are expected to dominate the future Ecuadorian

energy system. To characterise climate change uncertainty, the results from the hydro-

logical modelling detailed in Section 3.1 on page 91 will be used, in which long-term

scenarios of representative hydropower availability factors are projected for six river

basins in Ecuador as detailed in Section 3.1.4 on page 108. These availability factors

are an input into TIMES-EC as has been explained in previous paragraphs and climate

scenarios have been detailed in Table 3.4 on page 108. Regarding policy cases that im-

pact the development of hydropower technology, this will be explained in greater detail

in Section 3.2.10 on page 151. In addition, the uncertainty of capital cost overruns of

hydropower infrastructure will also be considerd in the constuction of risk scenarios,

which will be further explained in Section 3.3 on page 159.

3.2.6 Other generation technologies modelling

3.2.6.1 Solar and wind

Intermittent solar PV and wind power has been modelled similar to run-of-river hydro-

power. The Renewables ninja online tool from Pfenninger and Staffell (2016); Staffell

and Pfenninger (2016) was used to run simulations of the hourly power output for solar

photovoltaic power plants and wind farms located in high potential regions according to
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the Ecuadorian Wind Atlas (MEER, 2013) and Solar Atlas (CONELEC, 2008). These res-

ults were then translated into aggregated availability factors for each of the 36 time slices

of TIMES-EC. The variability of solar plants and wind farms was considered through

their peak load contribution (capacity credit);21 assumed to be 0% and 20%, respectively

(Mills and Wiser, 2012; Holttinen et al., 2016; IRENA, 2017). The details of considered

PV, CSP and wind technologies can be seen in Table 3.11 on page 137. Only on-shore

wind capacity for different wind potentials (7 to 8.5 m/s) has been considered with long-

term cost descending according to the projections of IEA (2015). Both centralised and

distributed PV solar farms have been considered, as well as concentrated solar power

(CSP) with 12 hours of thermal energy storage, which investment cost have been defined

according to projections from IEA (2014c); Soria et al. (2016); Fichter et al. (2017).

Figure 3.18 on the facing page shows simulated hourly and monthly availability

factors for a typical photovoltaic plant in Ecuador. Average annual availability factor

for a typical photovoltaic plant is 0.18. Figure 3.19 on the next page shows simulated

hourly wind farm availability factors for a 5-year time series (2011-2106), which shows

a seasonal pattern with high production between May and October and low winds

between November and April. Figure 3.20 on the facing page shows average monthly

availability factors for a range of wind speeds that have been calculated based on the

wind potential registered in the Ecuadorian Wind Atlas (MEER, 2013) and respecting

the seasonal patterns obtained with the simulated hourly values. Table 3.10 on page 136

shows the potential and annual generation ranges according to the Wind Atlas. Annual

availability factor for a typical wind farms ranges from 0.20 to 0.34, depending on the

annual average windspeed. It is assumed that wind power potential is not increased

or decreased due to climate change. The changes in climate model wind speeds, from

the control to the scenario period, have shown to be small, with values within the nat-

ural climate variability range (see Section 2.2.1 on page 35). However, lack of horizontal

resolution and a detailed description terrain in GCMs, would possibly underestimate

impacts, this has also been the assumption of previous studies assessing wind energy in

long-term energy models (De Lucena et al., 2010b; Seljom et al., 2011).

21 The capacity credit is the peak demand less the peak residual demand, expressed as a percentage of the
variable renewables installed (IEA, 2011).
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Figure 3.18: Simulated availability factors for photovoltaic plants at the inter-day and inter-
annual time scale in Ecuador
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Figure 3.19: Simulated hourly availability factors for a wind farm in Ecuador
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Figure 3.20: Monthly availability factors for different wind speeds in Ecuador
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3.2.6.2 Fossil fuel, geothermal and biomass thermal generation

Thermal power plants (using natural gas, oil products, biomass, biogas and geothermal)

for different technology types (steam turbine, combined cycle gas turbine, open cycle

gas turbine and internal combustion engine) are included in the model, making them

available for the whole year. The differences among thermal power plant technologies

have been modelled through their efficiencies and availability factors which can be seen

in Table 3.11 on the next page. All thermal technologies have capacity credits of 100%

allowing them flexibility to cover peak loads since these technologies have low min-

imum loads and a quick start up time (Welsch et al., 2014; Poncelet et al., 2016; IRENA,

2017), except CSP, which has 50% capacity credit. The efficiency values and the availab-

ility factors for existing fossil power plants were mainly taken from ARCONEL (2018a).

Technical details for new thermal plants can be seen in Table 3.11 on the facing page.

The investment costs for thermal technologies depend on fuel and technology. Direct-

combustion of biomass is paired with steam turbines (Rankine cycle) while biogas

produces electricity with internal combustion engines using landfill gas. Natural gas

powers open (Brayton cycle) and combined cycle (Brayton + Rankine) gas turbines. The

upgrade of these technologies has also been considered with carbon capture and stor-

age (CCS) technologies.22 Investment costs of these technologies follow slight decreases

according to projections of ?GCI (2016); IEA (2016b).

The deterministic approach of perfect foresight of long-term electricity infrastructure

costs and fossil fuel prices has also been assessed in this thesis and section 3.3 will

present a methodology to treat this uncertainties in the context of TIMES-EC.

22 Retrofitting of CCS technology in current gas power plants and the corresponding reduction of efficiency
for the power plant is not considered due to the size and age considerations according to IEA (2016c).

Table 3.10: Ecuadorian wind potential according to average wind speed

Average wind speed (m/s) Power (MW) Generation (GWh/year) Availability factor

>7 1671 2869 0.20

>7.5 930 1996 0.24

>8 500 1287 0.30

>8.5 275 826 0.34

Source: MEER (2013)
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Table 3.11: Summary of techno-economic characterisation of selected power generation technologies included in TIMES-EC
Source Technology name Vintage year Investment cost Fixed costs Variable costs Efficiency Life time Lead time Availability factor Capacity credit

(US$/kW) (US$/kW) (MUS/kWh) (%) (Years) (Years) (%) (%)
Hydroa ROR Small 2015 3,297 66 75 4 75

2050 3,297 66

ROR Medium 2015 2,513 50 75 6 75

2050 2,513 50 According
ROR Large 2015 2,100 42 75 8 to 75

2050 2,100 42 hydrological
DAM Medium 2015 3,166 63 75 6 scenario 90

2050 3,166 63

DAM Large 2015 2,646 53 75 8 90

2050 2,646 53

Windb Wind onshore 2015 2,530 38 25 2 13-34 10-30

2050 1,158 17

Solarc PV-US 2015 1,942 20 30 2 18 0

2050 852 10

PV-DG 2015 2,680 27 30 2 18 0

2050 1,240 12

CSP with 12-hr TES 2015 7,254 145 30 4 42 50

2050 4,422 88

Biomassd Bagasse with CEST 2015 2,712 95 35 30 3 78 100

2050 2,392 84

MSW gas 2015 2,350 94 32 20 2 58 100

2050 2,250 90

Geothermale Geothermal 2015 5,855 117 85 30 4 85 100

2050 4,424 88

Natural gasf OCGT 2015 869 22 0.2 35 25 3 85 100

2050 744 19 0.2 38

CCGT 2015 1,190 24 0.2 58 25 3 85 100

2050 913 18 0.2 61

CCGT w/CCS 2020 2,450 86 0.3 51 25 4 70 100

2050 2,450 74 0.3 53

Dieself ICE 2015 1,000 15 0.1 39 20 2 85 100

2050 1,000 15 0.1 39

HFO/RFOf ST 2015 1,770 44 0.1 39 30 3 85 100

2050 1,770 44 0.1 39

HFO/RFOf ST w/CCS 2020 4,500 180 0.3 32 30 3 75 100

2050 4,100 164 0.3 36

*Notes: Efficiency of renewable energy technologies (except biomass) is considered to be 100% since primary energy resource conversion (solar, wind, hydraulic head, etc.) is not accounted for in the model.
ROR: Run-of-river hydropower, DAM: Reservoir hydropower, PV-US: PV utility scale, PV-DG: PV distributed generation, CSP: Concentrated Solar Power, TES: Thermal energy storage, MSW: Municipal
solid waste, CEST: Condensing extraction steam turbine, OCGT: Open cycle gas turbine, CCGT: Combined cycle gas turbine, HFO: Heavy fuel oil, RFO: Residual fuel oil, ST: Steam turbine, ICE: Internal

combustion engine. Sources:aMEER (2017a); Teotonio et al. (2017),bDaly and Fais (2014); IEA (2016b),cNREL (2016); Fichter et al. (2017); IEA (2014c),dNREL (2016); IRENA (2012a); Fichter et al. (2017),eNREL

(2016); IRENA (2015b),f?GCI (2016)
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3.2.7 Demand and drivers

3.2.7.1 Drivers

The future socio-economic evolution of Ecuador and the associated final energy demand

projections are the driving forces of the whole energy system modelled in TIMES-EC.

Population and gross domestic product (GDP) figures for Ecuador up to 2050 are based

on the Shared Socioeconomic Pathways SSP2 narrative developed by the Institute for

Applied System Analysis (IIASA) (Riahi et al., 2017). The SSP2 depicts a world in which

social, economic, and technological trends do not shift markedly from historical pat-

terns.23 The selection of the middle-of-the-road scenario also fits well with the RCP4.5,

which is also considered to be an intermediate mitigation scenario. Figure 3.21 on the

next page shows IIASA’s five SSP scenarios for GDP and population for the 2020–2050

period.24 Details for population and GDP for selected milestone years between 2017 and

2050 are shown in Table 3.12 on the facing page.

It is assumed that Ecuador’s population will increase from 16.7 million people in 2017

to 21.5 million people in 2050. Population annual growth rate increases up to 2020, after

which it declines gradually, showing a slow down in population growth during 2030 to

2050 (Table 3.12 on the next page). Estimations of future economic growth are much

more uncertain than future population growth, as can be seen in Figure 3.21 on the

facing page. The average Ecuadorian household consisted of 3.5 persons per household

in 2015, while in 2050 it is assumed to be 2.8 persons per household, according to INEC

(2017).

Economic evolution follows the Central Bank of Ecuador’s projections until 2020 (BCE,

2017), which accounts for the recent economic crisis effects due to low oil prices (2014

– 2015). After 2020, GDP figures from the SSP2, which assumes that per-capita income

levels grow at a medium pace on the global average, with slowly converging income

levels between developing and industrialised countries. GDP is assumed to roughly

triple from US$ 127 billion in 2017 to US$ 340 billion in 2050, which means a fairly

consistent average annual growth of 2.7% during the modelling horizon.

According to the projections of population, households and GPD, five demand drivers

have been defined: population (POP), gross domestic product (GDP), number of house-

holds (HSH), GDP per capita (GDPPC) and GDP per household (GDPHSH). The evolu-

23 SSP 2 - Middle of the Road (or Dynamics as Usual, or Current Trends Continue, or Continuation, or
Muddling Through): In this world, trends typical of recent decades continue, with some progress towards
achieving development goals, reductions in resource and energy intensity at historic rates, and slowly
decreasing fossil fuel dependency. Per-capita income levels grow at a medium pace on the global average,
with slowly converging income levels between developing and industrialised countries (Riahi et al., 2017).

24 Figures of population and GDP were downloaded from the IIASA SSP Database(Riahi et al., 2017).

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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Figure 3.21: Shared socio-economic pathways (SSP) 2020-2050 for GDP and population in
Ecuador
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Table 3.12: Socio-economic demand drivers for TIMES-Ecuador based on the Shared Socioeco-
nomic Pathway SSP2

Year
GDPPPP Population

Billion US$2005 Annual growth
rate (%)

Inhabitants (10
6) Annual growth

rate (%)

2017 127.7 0.7 16.7 0.7

2018 129.8 1.6 17.0 1.3

2020 136.3 2.4 17.5 1.3

2030 197.3 4.5 19.2 1.0

2040 264.6 3.4 20.6 0.7

2050 339.5 2.8 21.5 0.4

Average 2.7 0.67

Source: Riahi et al. (2017)

Figure 3.22: Socio-economic drivers growth projection
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tion of these drivers according to the selected SSP2 scenario can be seen in Figure 3.22

on the previous page.

Drivers are linked to the end-use energy demands by a constant and sensitivity para-

meter. These sensitivities of demands are intended to reflect changing patterns in en-

ergy service demands in relation to socio-economic growth, such as saturation in some

energy end-use demands, increased urbanisation, or changes in consumption patterns

once the basic needs are satisfied. The constant and sensitivity parameters have been

exogenously introduced in the modelling based on the European TIMES model (ETM-

UCL) (Solano and Pye, 2015) and the developing country regions depicted in the Global

TIMES Integrated Assessment Model (TIAM-UCL) (Anandarajah et al., 2011), and can

be found in Table B.1 on page 294 in Appendix B. Given that there exist no reliable

data for the forecast of industrial production, commercial or agricultural GDP growth

until 2050, these sensitivities have been used to show how different industries evolve in

relation to GDP growth and how a shift in GDP composition towards the industrial and

commercial (service) sector, so that agricultural will become less important until 2050.

In a next step, the sectoral drivers have been calibrated in such a way that they yield a

more service orientated economy.

3.2.7.2 Demand modelling

Energy demand in TIMES can be modelled with a bottom-up approach, based on long-

term assumptions (drivers) regarding demographic evolution, economic development,

technological advances, and lifestyle changes. It starts from a lower level of aggregation

to project final energy or end-use energy demand by type and by sector, based on the

assumptions adopted. The main advantage of TIMES is that it allows to optimise supply

and demand simultaneously, iteratively adjusting the optimal mix of energy and tech-

nologies on both supply and demand side to reach a least-cost solution for the whole

energy system. However, this can also be seen as a drawback, given that energy de-

mand does not necessarily behave in a least-costly manner, i.e. energy consumers make

their choices considering a broader set of drivers, beyond energy and technology prices

(Gnann et al., 2018). In any case, TIMES can be used as a simulation model on the

demand side emulating models that follow exogenously determined pathways for tech-

nology uptake according to national policies or international trends. Details on demand

modelling can be found in Appendix B on page 293.

Demand technologies have been modelled in TIMES-EC to represent more than 20 en-

ergy service demands (cooking, lighting, water heating, industrial process steam, heavy

freight transport, etc.) in five economic sectors (residential, commercial, industry, trans-
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Table 3.13: Energy services demands and drivers in TIMES-EC

Demand
sector

Sub-sectors Energy service
demands

Unit Driver

Residential Refrigeration PJ GDPHSH

Lighting PJ GDPPC

Water heating PJ GDPHSH

Cooking PJ GDPHSH

Other uses PJ GDPHSH

Industry Food & beverage Steam PJ GDP

Minerals &
non-metals

Machine drives PJ GDP

Textile Process heat PJ GDP

Wood & paper Other uses PJ GDP

Chemicals, plastic
& rubber

PJ GDP

Manufacturing &
others

PJ GDP

Commercial Electrical
appliances

PJ GDPPC

Other uses PJ GDPPC

Transport Freight Heavy freighta Million vehicle-km GDP

Light freightb Million vehicle-km GDP

Maritime domestic PJ GDP

Passengers Private commutec Million vehicle-km GDPPC

Public commuted Million vehicle-km GDPHSH

Aviation domestic PJ GDP

Agriculture,
construction
& others

Electrical
appliances

PJ GDP

Other uses PJ GDP

Note: aTrucks and trailers >15ton, bTrucks < 15 ton, cCars, jeeps and motorcycles, dBuses. GDP:
Gross Domestic Product, GDPHSH: Household GDP, GDPPC: GDP per capita, POP: population.
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port and others). A driver is allocated to each energy service demand to project demand

for future years throughout the model horizon (2010 to 2050). Table 3.13 on the preced-

ing page includes details of the demand sectors, services and socio-economic drivers.

For each energy service demand, a number of existing and new technologies are in

competition to satisfy it. They are characterised by an efficiency, an annual utilisation

factor, a lifetime, O&M costs, and 36 time slice share coefficients. Different technology

parameters such as cost and efficiency can improve over the years with vintages. No fu-

ture investment is allowed in the existing demand technologies. In the next paragraphs,

details on the demand sectors are presented:

transport The transportation sector is characterised by six energy-service demands.

The sector considers road transport of passengers and freight, domestic mari-

time and domestic aviation. Passengers’ road transport is further divided in cars

(private vehicles, taxis and two-wheelers) and buses, while freight road transport

can be heavy (>15 ton) or light weight (<15 ton). Domestic aviation and navig-

ation are considered, without further analysis of alternative technologies. There

is a wide range of fuels represented in the model to power road transport: nat-

ural gas, LPG, gasoline, diesel, electricity and bio-ethanol, while maritime runs

on heavy fuel oil and aviation on kerosene. Considering that the transport sector

is Ecuador’s largest final energy consumer, fuel switching and the introduction of

new transportation technologies are modelled, e.g. the introduction of ethanol fuel

blends as well as hybrid and electric vehicles (IEA, 2016a; BNEF, 2017). The main

transport sector technologies’ assumptions are sourced from TIAM-UCL (Ananda-

rajah et al., 2011) and can be found in Appendix B in Table B.2 on page 295.

industry The industrial sector is characterised by four energy-services, each repres-

enting the total energy requirement for different industrial sub-sectors. These sub-

sectors are: i) food and beverage, ii) minerals and non-metals, iii) textile, iv) wood

and paper, v) chemicals, plastic and rubber, and vi) manufacturing and other in-

dustries. For each one of these industrial branches there are different technologies

and fuels modelled for supplying the following energy service demands: i) steam,

ii) process heat, iii) machine drive, and iv) other uses. The share of these energy

services according to the production processes of each sub-sector has been de-

tailed according to the statistics of INER (2015) and can be seen in Figure B.1 on

page 293 in Appendix B. Industrial energy demands capture both the growth trend

of existing industrial demands and the progressive introduction of a set of energy

intensive ’strategic’ industries by 2025, which are a key part of Ecuador’s current
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future economic development strategy (MEER, 2017a,b) and will be further details

in Section 3.2.10 on page 151.

residential The residential sector includes five energy-service demands : i) refriger-

ation, ii) lighting, iii) water heating, iv) cooking, and v) other uses (electric appli-

ances and air conditioning). Residential energy service demand in the residential

sector are mainly driven by GDP per household projected to 2050. Cooking is the

largest consumer of energy in the residential sector (see Figure 3.6 on page 112),

which currently mostly uses LPG. Electric cooking (induction cookstoves) and elec-

tric water heating technologies have been represented in the model as an altern-

ative to switch away from LPG to electricity, coinciding with one of Ecuador’s

energy demand policies for the short term (explained further in Section 3.2.10 on

page 151)

commercial The commercial sector includes only two energy service demands, these

are: appliances (electric) and other uses (fuel powered). There is no final energy

use information in Ecuador’s energy balance to desegregate demands in the com-

mercial sector any further.

agriculture , construction & others Other sector such as agriculture and con-

struction have similar to the commercial sector only two service demand: appli-

ances (electric) and other uses (fuel powered). There is no final energy use in-

formation in Ecuador’s energy balance to desegregate demands in the agriculture,

construction & others sector any further.

In line with the expected socio-economic development for Ecuador in the period 2017

to 2050 and the respective driver allocation for energy service demands in the studied

economic sectors, projected energy service demand is presented in Figure 3.23. Trans-

port and the industry sectors are the fastest growing sectors in terms of energy ser-

vice demands. Industrial demands show that manufacturing will be the sector that

grows the fastest, influenced by the deployment of “strategic” energy intensive indus-

tries (explained further in Section 3.2.10 on page 151 and detailed in Table Table 3.22 on

page 157). These strategic industries are a discrete one-of-a-kind investment according

to industry design; however an interpolation has been considered between 2020 and

2025 to consider an incremental entrance of these industrial demands into the system

until reaching full production capacity in 2025. Food & beverage and mining & non-

metal industries remain the second largest growing in the industrial sector. Transport

demand is characterised by a growing demand for heavy freight, aviation, light freight
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and cars, which more than doubles by 2050. The residential sector is characterised by

lighting and other (air conditioning) growth, while refrigeration and cooking grows

slower due to lower population growth rates. The commercial sector shifts to electric

powered energy services similar to the agriculture, construction & others sector.

3.2.7.3 Electricity load profiles

Power demand is not constant over the day or over the year in Ecuador. Hourly-records

of power dispatched to the SNI by the Ecuadorian grid operator for year 2016 were

assessed to determine changes in the load curve during the day and the individual

demand load profiles of the residential, commercial and industrial sectors (CENACE,

2015). Figure 3.24 on page 146 shows the contribution of different energy consumption

sectors to the average daily load curve registered for 2016. Notice that the residential

and industrial sectors are the largest energy consumers. The prevalence of three clear

distinct load patterns are visible throughout the day. The lowest demand is registered in

the early morning from 00:00 to 8:00, followed by a mid-load during the day from 8:00

to 19:00, after which peak load kicks in between 19:00 and 00:00. Peak load in Ecuador

was around 3,500 MW in 2016 and it occurred mostly between 19:30 and 20:00. This

analysis has aided the daily time slice definition mentioned previously in the structure

of TIMES-EC in Section 3.2.4 on page 119.

Figure 3.25 on page 146 shows average daily load profiles for months of the year in

2016. Seasonal variations of the daily load curve are small. This load profile evidences

the lack of extreme weather in Ecuador, which reflects in low use of electric cooling and

heating appliances. Despite the small changes that the daily load profile experiences

according to the months of year, these change will be registered in TIMES-EC given that

the model has a seasonal time slice resolution of 12 months, as mentioned in Section 3.2.4

on page 119.

3.2.8 Transmission and distribution

The Ecuadorian power system is characterised by a single transmission system – the

SNI – as has already been mentioned previously in Section 3.2.2. Transmission lines

that interconnect the country with Colombia and Peru are also represented in TIMES-

EC, although current interconnection capacity is limited (525 MW with Colombia and

110 MW with Peru). Ecuador is permanently interconnected with Colombia and in cases

of emergencies it can interconnect with Peru (SINEA, 2015). At the moment of writing,

no new inter-connectors are being considered, therefore the possible future expansion
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Figure 3.23: Projected energy-service demands in Ecuador
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Figure 3.24: Daily load profile disaggregated by consumption sectors for Ecuador in 2016
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Figure 3.25: Daily load profiles averaged for months in Ecuador for 2016
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of these links is not considered in this particular analysis. Traditionally, power has been

transmitted between Ecuador and Colombia, thus offering balancing services between

seasons with low and high prices. However, since Ecuador commissioned its large

hydropower infrastructure in 2016, imports from Colombia have dropped drastically

and exports our now on the rise.

In TIMES-EC the national low-voltage distribution grid has not been described with

particular detail. In the model the power transmission and distribution grids have been

taken into account by describing the losses, which imply that the power plants in stock

must produce more power than just the electricity demand, because a part of the pro-

duction is lost during transmission. Transmission and distribution losses between power

plants and final consumers have been aggregated and represent a fraction of electricity

generated that decreases from 12% in 2017 to 10% in 2050, in line with Ecuadorian

projections for grid improvements (MEER, 2017a).

3.2.9 Energy resources, prices and conversion technologies costs

The supply commodities described in TIMES-EC are: crude oil, natural gas, biomass,

municipal solid waste, firewood, wind, solar, geothermal, water and electricity.

Ecuador is a net energy exporter. Crude oil is the main energy export (~400 thou-

sand barrels per day in 2017) (OPEC, 2017). However, only limited refining capacity

is available in the country and a diversity of petroleum products must be imported

(Chavez-rodriguez et al., 2018). TIMES-EC considers crude oil and natural gas as do-

mestic primary energy sources. Table 3.14 on page 150 summarises petroleum and gas

statistics for Ecuador in 2017 according to OPEC (2017). Petroleum products considered

in TIMES-EC are diesel, kerosene, liquified petroleum gas, gasoline, residual fuel oil

and heavy fuel oil. The processes that make fossil fuel commodities available are only

of two kinds: import technologies (“IMP”) and extraction technologies (“MIN”). The

proper supply processes have been associated to each commodity in accordance to the

Ecuadorian Energy Balance 2015 (MICSE, 2015). Crude oil and natural gas is extracted

(until reserve depletion, after which imports begin), petroleum products can be refined

or imported. Moreover, for every commodity there is the possibility to add constraints

regarding the maximum extraction and maximum import per year. Ecuador’s refinery

park has also been represented with a capacity of 190.8 thousand barrels per day.

The energy prices of principal energy sources are presented in Table 3.16 on page 150.

Fossil fuel prices are represented individually for a range of petroleum products, cap-

turing the distinction between crude oil and other grades. The projected oil and natural
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Figure 3.26: Oil production profile in Ecuador for high (left), middle and low (right) investment
scenarios, and current and expected oil fields

Source: MRNNR (2013)

gas prices employed in the model are based on the U.S. Department of Energy Annual

Energy Outlook 2017 with projections to 2040 (EIA, 2017), which considers long-term

prices for oil to be 110 US$ per barrel and for natural gas 5 US$ per million Btu. This

long-term price trend obeys to the Reference scenario of EIA projections, which is a

middle-of-the-road price assumption for crude oil and natural gas (see Figure 2.7 on

page 85 for other EIA crude oil and natural gas scenarios). The range of prices in 2040

for crude oil is betwen 50 - 225 US$ per barrel and 3.5 - 10 US$ per million Btu. It is men-

tioned that projecting future oil an gas prices is difficult and no agency in general has

been able to project prices successfully (see retrospective analysis report EIA (2018a)).

Using deterministic projections of fossil fuel prices (be them high, low or middle-of-

the-road) will be challenged in following Section 3.3 on page 159 and will be treated

with a the probabilistic approach integrated into TIMES-EC. Gas prices are still regional,

as they require significant infrastructure for import/export, therefore we have added

the capital cost for floating and on-shore regasification units to 150 and 200 US$/ton,

respectively, according to IGU (2017). In the years beyond those for which the cost is

given, the costs are calculated with linear extrapolation. It is assumed that the price

difference between crude oil and oil products will be constant from 2017 to 2050.

Domestic supply of oil has been modelled with the projected supply curve for the

mid-investment production scenario until 2025 from the Plan of Hydrocarbons of the

Ministry of Non-renewable energy resources (MRNNR, 2013). The production level until

2050 has been extrapolated to reach a level of 200 thousand barrels per day. Figure 3.26

shows oil production scenarios in Ecuador up to 2025 for three levels of investment,

notice that all scenarios have decaying production curves, which shows the maturity of
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Ecuadorian oil fields and not a very bright future in terms of increaesd production or

reserves. Domestic oil production cost is shown in Table 3.15 on the next page. Export

oil price is slightly under the price of oil imports, to ensure that the model first produces

domestic oil before importing. Regarding gas production, given the small reserves and

that most comes from one field in the Guayaquil Gulf coast, it has been assumed a

constant gas production value of what has been shown in Table 3.14 on the following

page and a production cost of 5.3 USD per million BTU (5.02 million USD per PJ) in

2013 (MRNNR, 2013) and thereafter a cost slightly lower that the projected import price

of gas. The electricity import price, representing power sent by interconnections from

Colombia and Peru is exogenously given to the TIMES-EC model and is expected to

have an annual increase of 0.8% from 2017, according to historic data (ARCONEL, 2016).

There are no upper limits on import of energy. Conventional energy carriers, namely oil

and natural gas are included in the model with their corresponding CO2 emissions.

The representation of Ecuadorian renewable energy potentials (hydropower, wind,

solar, geothermal and biomass) is based on national studies for current and future tech-

nologies. Table 3.17 on page 151 presents a summary of renewable energy potential in

Ecuador. Solar energy is abundant in Ecuador, given the country’s location on the geo-

graphical Equator. The Ecuadorian Solar Atlas (CONELEC, 2008) estimated an annual

average solar potential of 4.6 kWh/m2/day. In contrast to solar energy, wind energy

potential is limited. Due to Ecuador’s location in the tropics at the most Western part of

South America, trade winds are the prevailing pattern of easterly surface winds that are

available after crossing the entire continent. This causes great scale horizontal winds to

be rather weak in most parts of the country and therefore wind energy potential from

onshore wind facilities to be small (MEER, 2013). The Ecuadorian Wind Atlas (MEER,

2013) shows sites with annual average wind speeds between 6 to 8.5 m/s and a cumu-

lative capacity of 1,600 MW for the long term. Regarding geothermal techno-economic

energy potential, the country has identified a handful of prospective projects summing

up a total of 900 MW. There is no geothermal capacity currently installed at the time of

writing but the first exploration wells were drilled in 2017 (MEER, 2017a).

Technical bioenergy potential, which includes agriculture residues, livestock and forestry

resources could be equivalent to 177 PJ/y according to the Ecuadorian Bioenergy Atlas

(MEER, 2014). However, as the distribution chains and technology to use this resource in

Ecuador is still incipient, the Electricity Master Plan (PME) considers that the maximum

power generation from biomass could be 12.7 TWh/y by the year 2025 (equivalent to a

firm capacity of 500 MW) (MEER, 2017a). The supply cost of biomass and municipal

solid waste has been set to 2 million US$ per PJ in 2015, reaching 4 million US$ per PJ
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Table 3.14: Petroleum and gas statistics for Ecuador in 2017

Fossil fuel statistic Unit Value

Crude oil

Proven crude oil reserves million barrels 8,273

Crude oil production 1,000 barrels per day 549.0

Refinery capacity 1,000 barrels per day 190.8

Oil demand 1,000 barrels per day 247.0

Crude oil exports 1,000 barrels per day 414.7

Exports of petroleum products 1,000 barrels per day 31.4

Natural gas

Proven natural gas reserves billion m3
10.9

Marketed production of natural gas million m3 per day 530.0

Natural gas exports million m3 -
Source: OPEC (2017)

Table 3.15: Domestic oil supply and cost curve

Proven crude oil reserves Cost

(million barrels) (PJ) (million USD per PJ)

Step 1 5,836 35,700 3.8

Step 2 1,455 8,900 5.2

Step 3 982 1,000 7.0

Total 8,273 50,600

Source: MRNNR (2013)

Table 3.16: Energy price assumptions for 2017, 2020 and 2050

Energy source Unit 2017 2020 2050

Primary energy

Crude oil US$/barrel 44 47 110

Natural gas US$/MBtu 3 3.2 5

Petroleum products

Heavy Fuel Oil US$/barrel 75 80 168

Diesel US$/barrel 66 71 148

Gasoline US$/barrel 64 69 144

LPG US$/barrel 25 26 55

Electricity

Import from Colombia/Peru US$/MWh 153 155 208

Source: EIA (2017)
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Table 3.17: Ecuadorian renewable energy potential for electricity expansion

Source Unit Potential

Hydropowera MW 13,002

Windb MW 1,600

Solarc kWh/m2/day 4.6

Biomassd PJ/y 177

Geothermale MW 900

Source: aARCONEL (2015), bMEER (2013), cCONELEC (2008), dMEER (2014) , eARCONEL
(2015)

in 2050 according to the Ecuadorian Bioenergy Atlas (MEER, 2014). The cost associated

to the mining process of water, solar, geothermal and wind has been set equal to zero.

3.2.10 Scenarios: policy and climate change

3.2.10.1 Energy policy overview

During the last decade, Ecuador’s main energy policy has been to attain a power gener-

ation matrix with a 90% share of renewable energy by 2021 (SENPLADES, 2009; MEER,

2017a; SENPLADES, 2017). The policy has been centred around the development of

large capacity hydropower infrastructure led by the central government (Zambrano-

Barragen, 2012). Recent additions of hydropower have enabled the share of hydropower

electricity generation in the national grid to reach over 82% in 2017, while the share of

other renewable energy sources remains low at 2.7% ( see Table 3.6 on page 114). At

present, Ecuador is close to achieving its renewable energy targets for the overall power

matrix. Despite these achievements, the Electricity Master Plan (PME) (MEER, 2017a)

details plans for an envisioned capacity expansion portfolio for the period 2016-2025

that could add a further 2 – 3.5 GW of hydropower capacity in the mid-term.

Regarding long-term energy policy, the National Energy Agenda 2016-2040 sets an

explicit policy to – “continue harnessing hydropower and sustain a predominantly hydro-based

power system” (MICSE, 2016a). The reliability and cost of electricity supply is viewed as

a critical factor for Ecuadorian economic development. The ’Transformation of the Pro-

ductive Matrix’ initiative is a set of national industrial policies which seek to transition

Ecuador away from primary resource dependence (namely crude oil exports) towards

an industrial and knowledge-based economic model that produces exports with higher

added value (SENPLADES, 2012; Purcell et al., 2017). Within this strategy, one of the

main activity areas is the development of strategic energy-intensive industries such as
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oil refineries, petrochemicals, aluminium, copper and steel industries that are planned

to be deployed between 2016-2025 (MCPEC, 2016), and which explicitly rely on the con-

stant deployment of large hydropower infrastructure (details of these strategic industries

are found in Table 3.22 on page 157).

Regarding the decarbonisation of the energy sector, Ecuador is a signatory to the

United Nations Framework Convention on Climate Change (UNFCCC) and forms part

of the Non-Annex I group of countries, and hence has voluntary commitments for GHG

mitigation actions. The Ecuadorian government has demonstrated an awareness of the

adverse effects of climate change on human and ecological systems and a willingness

to strictly adhere to international agreements. Accordingly, Ecuador has formulated a

variety of climate mitigation and adaptation policies, including the submission of an

intended NDC as part of the COP21 process (UNFCCC, 2015b). At the heart of the

Ecuadorian NDC is the inclusion of plans to expand hydroelectric capacity by between

2.8 – 4.3 GW by 2025, which includes the latest capacity additions and more. Further

decarbonisation efforts are stated in the the National Plan for Energy Efficiency 2016-

2035 (PLANEE) (MEER, 2017b), which focuses on three main policies: i) the replacement

of inefficient appliances (refrigerators mainly) and switching cooking from subsidised

LPG to electricity in the residential sector; ii) implementing energy efficiency standards

in the industrial sector (ISO 50.001); and, iii) switching to efficient public lighting, by

using LED technology (Chavez-rodriguez et al., 2018).

Hydropower is therefore currently considered as the main means of attaining en-

ergy security in Ecuador, reducing electricity prices, mitigating GHG emissions and

forming the backbone for the above-mentioned industrial and economic development

strategy. However, as noted in the Introduction on page 3 and in the Literature review

on page 23, anthropogenic warming may substantially affect critical hydroclimatic vari-

ables that might alter hydropower generation and impact those objectives. In addition,

the upscale of large hydropower might have other issues for its deployment in terms of

environmental and social challenges (Anderson et al., 2018) and the inherit complication

of large-scale infrastructure projects (Callegari et al., 2018).

3.2.10.2 Hydropower development scenarios

A range of three policy cases focusing on hydropower supply have been developed sep-

arately from the future climate change scenarios detailed in Section 3.2.5.4 on page 133.

It is emphasised that the policy cases and climate developments are two different types

of model input. While the climate assumptions explore the long-term uncertainty of hy-

dropower production under uncertain future hydroclimatic conditions, the policy cases
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Table 3.18: Overview of policy cases relevant for hydropower development

Policy case Description

Boost Hydropower Boost the expansion of hydropower according to Government
plans up to 2025.

Constrain Hydropower Constrain the investment in large hydropower, only medium
and small hydropower.

Environment Priority Prioritise emission cap according to the Government NDC and
no large hydropower.

explore different long-term evolutionary pathways for the energy system as the result

of various energy and environmental policy decisions. It is noted that all scenarios con-

sider government policies to some extent and therefore none of them gives a fully cost

optimised suggestion on how to invest in hydropower. Table 3.18 summarises the policy

cases that will be addressed in combination with the climate change scenario analysis.

boost hydropower The first policy case, represents a continuation of Ecuador’s cur-

rent national hydropower-led energy policy as set out by the PME (MEER, 2017a)

and in Ecuador’s NDC to the Paris Agreement up to the year 2025 (UNFCCC,

2015b). This policy case considers that two new large hydropower projects loc-

ated in the Santiago basin start operation within the period of analysis: i) Paute-

Cardenillo (595.6 MW) by 2023 (CELEC, 2018a) and ii) Santiago-G8 phases 1–4

(2,400 MW) by 2025 (CELEC, 2017). At the time of writing, both projects have

now completed their final design studies and are considered key to supplying the

demand for electricity in future strategic industries. In addition to hydropower,

the PME mentions plans for future developments in natural gas (187 MW), geo-

thermal power (150 MW), small hydropower (140 MW) and a batch of wind and

small utility scale PV (200 MW). Details for technologies and capacities deployed

in this scenario can be found in Table 3.19 on the following page. Therefore, this

scenario forces investment of 3.15 GW of new hydropower between year 2018 and

2025, simulating that the expected NDC-oriented expansion plan is accomplished.

Beyond 2025, no hydropower or any other technology is forced into the system

and therefore the system gives a cost optimised suggestion on how to develop the

power system from 2025 until 2050. This scenario was chosen because Ecuador,

although defining an intended NDC focused on hydropower, has not expressed

the expected reductions that this deployment of hydropower would achieve. This

scenario will seek to quantify the power sectors-related emissions with this large

deployment of hydropower, as to have a reference scenario of current policies.
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Table 3.19: Capacity additions for the ’Boost Hydropower’ policy case between 2016-2025

Type Capacity
(MW)

Basin Current state Expected entry year

OCGT* 77 - Under construction 2018

ROR* 4 Santiago Under construction 2018

ROR* 10 Esmeraldas Under construction 2018

CCGT* 110 - Under construction 2018

Wind,
PV*

200 - Legalising permits 2022

DAM* 595.5 Santiago Final design 2023

ROR** 140 - Study phase 2023

Geothermal** 150 - Study phase 2023

DAM** 2,400 Santiago Final design 2023-2025

Total 3,686

Note: *Projects to supply natural demand growth, **Additional projects to supply strategic
industries
Source: MEER (2017a)

constrain hydropower The second policy case, assumes the cancellation of planned

large hydropower projects (>450MW). Total future hydropower potential is as-

sumed to be reduced from 13 GW down to 3.2 GW (see Section 3.2.5). Current

large hydropower plants continue operating, and investments in small and me-

dium sized hydropower projects remain as expansion options. This policy case re-

flects concerns that large hydroelectric deployment in basins such as the Amazon,

the Congo, and the Mekong, have the potential to cause serious environmental

and social impacts (Schaeffer et al., 2013; Tundisi et al., 2014; Fearnside, 2015;

Winemiller et al., 2016; Gracey and Verones, 2016; Latrubesse et al., 2017). Ac-

cordingly, there is the possibility that these projects may experience severe delays,

cost overruns and possible reductions of the originally envisaged production capa-

city (Ansar et al., 2014; Sovacool et al., 2014c). The most recent hydropower station

in Ecuador, Coca Codo Sinclair (1.5 GW), though currently the largest in terms of

its installed capacity, has itself been constructed with only a small storage reservoir

due to environmental concerns in a sensitive area for biodiversity in the Amazon

(Escribano, 2013). The large hydropower projects that would be left out of in this

scenario are detailed in Table 3.20 on the next page and are six: Santiago G8 (3.6

GW), Santiago G9 and G10 (3.18 GW), Verdeyacu Chico (1.17 GW), Catacahi (0.74

GW), Paute Cardenillo (0.59 GW) and Chespi-Palma real (0.46 GW). The complete

list of projects can be found in Table A.1 on page 289 in the Appendix.
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Table 3.20: Remaining hydropower potential in Ecuador by potential and number of projects.

Basin Large (>450 MW) Medium (50 - 450 MW) Small (1-50 MW) Total

MW No. MW No. MW No. MW No.

Esmeraldas 460 1 1164 10 581 24 2205 35

Guayas 14 5 14 5

Jubones 70 9 70 9

Santiago 7376 3 525 5 76 3 7978 11

Pastaza 368 2 34 3 402 5

Napo 1920 2 270 1 143 5 2333 8

Total 9756 6 2327 18 918 49 13002 73

Source: ARCONEL (2015)

environment priority The third policy case, is used to explore how Ecuador might

achieve the GHG reduction targets implied by the Ecuadorian NDC (UNFCCC,

2015b) but without the use of any additional large hydropower projects. The policy

case assumes that the emission levels that are expected to be attained through large

hydropower deployment in the Boost Hydropower policy case (which is aligned

with Ecuador’s NDC) must be achieved, but additionally constrains the deploy-

ment of large hydropower infrastructure in a similar fashion to the Constrain Hy-

dropower policy case. The motivation behind this policy case assumption is to

explore the possibility of maintaining low emissions without the environmental

and social risks to project delivery associated with large hydropower projects (An-

derson et al., 2018).

3.2.10.3 Demand side scenarios

A single energy demand scenario has been considered in TIMES-EC based on the de-

mand drivers and energy services detailed in Section 3.2.7 on page 138. It is assumed

that energy efficiency measures stated in the PLANEE energy efficiency plan (MEER,

2017b) will be successfully implemented by 2035, after which no improvements are

promoted. Table 3.21 on the following page presents the demand side policies and

efficiency improvements that have been considered for the period 2007-2035 as stated

in the PLANEE. Technologies for transport have been forced to at least reach the min-

imum levels suggested in the PLANEE. Similarly, the residential sector is forced so elec-

tric cooking and water heating replaces LPG-fired units, by at least what the PLANEE

states. For industry, appliances with better efficiency according to the values stated in

the PLANEE will be available for the model to choose from.
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Table 3.21: Demand side policies and estimated energy demand reductions for Ecuador accord-
ing to the PLANEE up to 2035

Demand
sectors

Policy description

Residential
and
Commercial

Improvement in 10% of energy efficiency by replacing
appliances: substitution of LPG cookers by electrical
induction cookers in 80% of households by 2050, reduction
of cooking with firewood to 1% on households by 2050,
substitution LPG boilers by electrical showers in 80% of
households by 2050.

Transport Substituting 10% of cars with public transport (buses)

Reducing 5% of energy intensity through vehicle labelling.

Scraping 2,000 vehicles per year and renewing car fleet.

Introducing biofuel blends: 5% ethanol blend (E5) for cars
and biodiesel (B5).

Introducing 15% of electric cars and 15% of electric light
freight vehicles by 2050.

Industrial Implementing cogeneration technologies. Improvement
energy efficiency in 10%.

Replacing old motors, pumps, boilers and heaters.
Improvement energy intensity in 10%.

Total cumulative reduction between 2007-2035

Source: Chavez-rodriguez et al. (2018); MEER (2017b)
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Table 3.22: Strategic industries’ energy demand in 2025

Industry Description Power Electricity Gas Oil

(MW) (GWh/y) (mill. m3/y) (bpd)

Aluminium Foundry of primary
aluminium – 560 kton/y

858 7,953 28 -

Copper Foundry and refining of
copper concentrate – 280

kton/y

62 429 61 895

Steel Production of Hot Rolled
Coil and Cold Rolled
Coil (CRC) Steel

24 57 350 -

Petrochemicals Production of Linear
Alkylbenzene and
Polyethylene
terephthalate

20 120 - 3000

Refinery Heavy crude oil refinery
for motor gasoline and
diesel – 200 kbpd

300 2,234 - 200 k

Mining &
Others

Gold and copper mining
projects

469 2,756 - -

Total 1,733 13,549 439 204 k
Source: MCPEC (2016); MEER (2017a)

To represent industrial policy, the introduction of a set of energy intensive industries

has been modelled according to Ecuador’s Industrial Policy 2016-2025 (MCPEC, 2016) in

addition to current existing industrial demand (see Section 3.2.7 on page 138). Table 3.22

summarises the energy demand characteristics of these ’strategic industries’ (aluminium,

copper, steel and petrochemicals), a new heavy crude oil refinery and various mining

projects (MEER, 2017a). By 2025 these industries are expected to require 1,733 MW

of firm capacity and 13,549 GWh of electricity, which represent a significant increase

compared to current installed capacity and electricity demand. Only he aggregated

values of final energy demand by source for these industries are considered, given the

lack of information available regarding the processes and machinery that they would

require.

The integration of demand side policies with drivers, sensitivities and socio-economic

projections lead to a scenario for each of the detailed energy demand or energy service

demands for the period 2017-2050. The projected energy service demands can be found

in the following chapter in Section 4.2.3 on page 212.
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Table 3.23: Conceptual framework for integrated scenario analysis.

No climate change (Historic) Climate futures

NoCC Dry Mean Wet

Po
lic

y
ca

se Boost Hydropower

Constrain Hydropower Baseline Core future scenarios

Environment priority

3.2.10.4 Integrated scenarios: policy and climate change

The most important inputs for TIMES-EC are a set of integrated scenarios which are

characterised by the elements or dimensions of uncertainty that they incorporate. In the

integrated scenarios there are two key dimensions of uncertainty to consider. The first

is uncertainty of climate change and how patterns of precipitation could change in the

future within the country, as discussed in Section 4.1.2 on page 189. Different GCMs

present different views on how climate in the country may evolve, and this will in turn

affect hydropower availability. The second dimension of uncertainty is the trajectory

of energy policy development in regards to hydropower capacity expansion, which not

only includes restrictions on large-scale hydropower development in the Amazon, but

also the level at which Ecuador complies with its NDC.

Table 3.23 presents the conceptual framework for this scenario analysis and shows

how each scenario combines hydropower development policy and climate futures. To

focus on the impact of different climates, the results from the scenarios using future

climates (Wet, Dry and Mean) should be compared to a modelled “baseline” or no

climate change scenario (NoCC) – in other words, the hydropower generation, system

costs and GHG emissions that we would expect if the climate from 2014 to 2050 was

similar to the historical climate.

The rationale for exploring the integration of these scenarios is related to the policy

questions for decisions-makers in the region. For example, from the point of view of

the Government, the question is: “How will our current expansion plans be affected by chan-

ging climate and potential restriction conditions?” This is tackled by the Boost Hydropower

and Constrain Hydropower scenarios. However, from a global perspective there is the

pressing question of: “What is the necessary power generation portfolio to meet NDCs while

complying with other standards of sustainability?”. This is tackled by the Environment

priority scenario, which caps emissions but also large-hydro power expansion in envir-

onmentally sensible regions.
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3.3 integrating portfolio theory into times-ec

Energy system optimisation models are used to inform energy planners in the design of

reliable, secure and least-cost power system investment portfolios. These tools usually

rely on deterministic assumptions about future factors such as technology costs and

fuel prices, which are uncertain but at the same time crucial parameters for the least-

cost optimisation process. Expanded methodologies to assess uncertainties in energy

models usually include the application of sensitivity and/or scenario analyses of a small

number of generation portfolios (Decarolis et al., 2017), as was discussed in Section 2.3.2

on page 72. Despite the value of these methods in exploring future uncertainty, there

remain inherent limitations in their ability to appropriately account for recurring25 and

interacting uncertainties over important parameters, such as capital cost of electricity

infrastructure and fossil fuel prices (Awerbuch and Berger, 2003). As such, they do not

provide a detailed analysis of the future risks associated with particular portfolio choices

(Vithayasrichareon et al., 2014) or the options to hedge from risk (Parkinson and Djilali,

2015).

The purpose of this section is to present a novel method to integrate a financial Port-

folio Theory analysis module into the TIMES-EC model. In developing this type of

analysis, it is hoped that it sheds light on the impact that the uncertainty and volatility

of fossil fuel prices and cost overruns can have on the long-term least-cost power system

development pathway. By improving the inclusion of uncertainty in an energy system

model, the energy planning process benefits, as more realistic estimates avoid financial

losses and a better evaluation of investment portfolio alternatives.

A graphical description of the method used is shown in Figure 3.27 on the next page.

To characterise the uncertainty of key input prices and costs, Monte Carlo simulations

that consider probability distributions are used to create long-term evolution trajectories

of the price of crude oil, natural gas and the cost of electricity generation infrastructure.

Climate change uncertainty is assessed separately through scenarios which provides

inputs of hydropower availability, as was presented in Section 3.2.10 on page 151.

Outputs from TIMES-EC with an integrated portfolio analysis module will consist

of a series of energy portfolio investment scenarios by 2050 with different technology

configurations. In addition, the cost-risk trade-off among different generation techno-

logy portfolios and identification of robust electricity generation technologies can also

be assessed.

25 Recurring uncertainty is characterised by conditions that are periodically recurring and in which knowing
the past or current value of the parameter does not resolve the uncertainty for the future.
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Figure 3.27: Method applied in this study to assess uncertainty of future least-cost generation
portfolios for Ecuador.

3.3.1 Mean-variance portfolio theory in TIMES-EC

The key feature of portfolio-based electricity generation investment analysis is that the

value of each generation technology option should be determined in the context of

particular overall generation portfolios (Roques et al., 2006). The assessment focuses

on the impact that adding or removing particular generation technologies can have on

the cost and risk of the overall generation portfolio. Typically, with this approach, each

generation technology is evaluated on the basis of its contribution to overall portfolio

generation costs and cost risk, rather than on the basis of stand-alone cost. The cost risk

under the standard Mean-Variance Portfolio Theory (MVPT) analysis is represented by a

standard deviation26 of generation cost, implying the spread of possible portfolio costs

(Awerbuch and Berger, 2003).

In MVPT, the expected cost of the electricity portfolio cost is calculated from the

weighted average of the individual technology costs in the portfolio while the expected

risk is determined from a weighted average of risks of the individual technology based

on their correlations and covariances (Vithayasrichareon, 2012). Expected cost and risk

26 In statistics, the standard deviation (SD) is a measure that is used to quantify the amount of variation or
dispersion of a set of data values. A low standard deviation indicates that the data points tend to be close to
the mean (also called the expected value) of the set, while a high standard deviation indicates that the data
points are spread out over a wider range of values. The standard deviation of a random variable, statistical
population, data set, or probability distribution is the square root of its variance. A useful property of the
standard deviation is that, unlike the variance, it is expressed in the same units as the data.
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of electricity generation portfolios under the MVPT are calculated from Equation 3.18

and Equation 3.19, respectively:

E
(
Cp
)
=

N

∑
i=1

XiE (Ci) (3.18)

σp =

√√√√ N

∑
i=1

X2
i σ2

i +
N

∑
i=1

N

∑
j=1

XiXjρijσiσj (3.19)

where, E
(
Cp
)

is the expected generation portfolio cost, E (Ci) and Xi are the expected

levelised generation cost ($/kWh) and the share of technology i in the portfolio, σp is

the expected portfolio risk, σi is the standard deviation of the cost of electricity from

technology i, and ρij is the correlation coefficient between cost of technology i and j.

Notice that this approach, as presented here, relies on the LCOE of a particular techno-

logy, which does not consider system integration costs. In reality, the average value of

unit of electricity that can be produced with intermittent solar photovoltaic, for example,

would not have the same value than a unit produced with dispatchable power plants,

given that intermittent technology require investments in the rest of the system to oper-

ate (e.g. storage, flexible backup capacity, reinforced transmission, etc.). However, given

the low share of intermittent renewable energy that will be observed in the results, it is

assumed that the system can absorb these shares without incurring in additional system

integration costs.

In a deterministic energy system optimisation model, the minimisation of system cost

with a constrained level of risk could be expressed as follows in Equation 3.20 (similar

to Equation 3.13 on page 117 in Section 3.2.3.2):

min E
(
Cp
)
= min

N

∑
i=1

XiE (Ci) (3.20)

s.t. σp ≤ R

where, R represents a predefined maximal level of accepted risk. Note that the nota-

tion E (Ci) is used here as the cost resulting from the investment and operational de-

cisions when the expected value of each uncertain parameter is used to compute the

cost. By varying this maximal level of risk, a trade-off between the expected cost E
(
Cp
)

and the associated risk of a portfolio σp can be made. A so-called ’efficient frontier’ can

be created by varying the risk between the risk of the ’minimal risk portfolio’ and the

’minimal cost portfolio’.
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A commonly used alternative formulation for MVPT includes the risk component

directly into the objective function, as can be seen in Equation 3.21:

min
(
E
(
Cp
)
+ α× σp

)
(3.21)

where, α is a parameter representing the attitude of the stakeholder towards risk.

There is an important consequence of this mathematical formulation. For risk neutral

stakeholders (α = 0), the solution of the portfolio-theory model that includes uncer-

tainties is identical to the solution of a deterministic risk-neutral model (see Equation

3.20).

Nijs and Poncelet (2016) indicate that the use of the standard deviation as a measure

for the cost of uncertainty (risk) requires a nonlinear, non-convex model to compute

a final solution, which imposes a computational restriction on the linear optimisation

framework of TIMES. Therefore, Loulou and Lehtila (2016) propose to replace the stand-

ard deviation by the so-called ‘Upper Absolute Deviation’ (UpAbsDev). It follows that

the objective function of the energy system optimisation model then becomes:

min
(
E
(
Cp
)
+ γ×UpAbsDev

(
Cp
))

(3.22)

UpAbsDev
(
Cp
)
=

N

∑
i=1,j=1

(
pj × {Ci − E (Ci)}+

)
(3.23)

where the objective function takes into account risk by including the level of risk aversion

parameter γ and the risk measure UpAbsDev. The risk aversion parameter γ can be

represented as a variable cost on the flow of UpAbsDev and its variation allows to find

the efficient portfolios (similar to the R constraint in Equation 3.20). The UpAbsDev

computes the average value of the positive total cost deviations {Ci − E (Ci)}+ for all

states-of-the-world j (with probability pj).27

This detailed mathematical formulation can be implemented in TIMES in two steps:

1. Replacing the standard deviation with the ’Upper Absolute Deviation’ (UpAbsDev)

and calculating its value for energy commodities price and electricity generation

technologies cost deviations for the modelling horizon.

2. Creating a series of dummy flows to represent the financial risk associated to the

consumption of each unit of energy commodity or technology.

27 Here, y = {x}+ is notation in which the + indicates the value is clamped to non-negative numbers and
therefore defined by the following two linear constraints y ≥ x and y ≥ 0. Alternatively, this can also be
noted as {x}+ ≡ Max (x, 0).
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As the value of γ increases, the optimisation process seeks to reduce the consumption of

UpAbsDev (risk), and therefore causes the system to move away from the risk-neutral

least-cost solution towards a more expensive least-cost option but with less cost-risk,

thus the portfolio theory trade-off effect is modelled. Notice that when the risk aversion

parameter γ = 0, the solution of Equation 3.22 is identical to the solution of a determ-

inistic model (Equation 3.20), therefore this condition would represent the attitude of a

decision maker which is indifferent to risk i.e. risk-neutral.

To illustrate the implementation of this approach in TIMES-EC, consider a simplified

model that takes the uncertainty on future crude oil prices POIL and on investment price

of hydropower infrastructure PHYD into account. Two equiprobable scenarios (1 and 2)

are considered for a certain period T. The deviations of prices (∆POIL and ∆PHYD) for

these two scenarios are as follow:

scenario 1 :

∆POIL1 (T) = POIL1 (T)− E (POIL1 (T))

∆PHYD1 (T) = PHYD1 (T)− E (PHYD1 (T))

scenario 2 :

∆POIL2 (T) = POIL2 (T)− E (POIL2 (T))

∆PHYD2 (T) = PHYD2 (T)− E (PHYD2 (T))

Further it is assumed that x and y are the quantity of crude oil and hydropower elec-

tricity that are consumed in this period. The UpAbsDev of system costs (according to

Equation 3.23) for two equiprobable scenarios in period T is then:

UpAbsDev =
1
2
{∆POIL1 × x + ∆PHYD1 × y}+ +

1
2
{∆POIL2 × x + ∆PHYD2 × y}+ (3.24)

The implementation of Equation 3.24 in TIMES-EC for this simplified example is

shown in Figure 3.28 on the following page. Auxiliary dummy input flows (arrows)

of commodity (DumOIL and DumHYD) are created for each energy commodity that is

consumed of crude oil (OIL) and electricity from hydropower (ELC).28 The dashed line

represents financial risk flows and solid line energy flows. To create a unit of energy

commodity (DumOIL or DumHYD) a series of sub-commodities need to be aggregated

(DumOIL_1, DumOIL_2 and DumHYD_1, DumHYD_2, respectively). If we consider

28 It is assumed that conversion efficiency from hydropower resource to electricity is 100%
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Figure 3.28: Simplified representation of Upper Absolute Deviation auxiliary dummy flows in
TIMES-EC

Scenario 1 for crude oil, the additional cost for consuming oil (and therefore x units

of DumOIL_1) would require a financial flow of ∆POIL1 × x. Analogously, ∆PHYD1 × y

would be the additional cost of consuming electricity generated from hydropower in

Scenario 1. The total additional cost in Scenario 1 (UpAbsDev_1) is equal to summation

of oil and hydropower electricity financial flows, i.e. 1
2 {∆POIL1 × x + ∆PHYD1 × y}+,

considering its respective probability (p1, which in this case is 50% or 1
2 ). Total financial

flow for both scenarios UpAbsDev is the sum of the additional cost of Scenario 1 and 2

(Equation ion 3.24).

Notice in Figure 3.28 that while auxiliary commodity flow of DumOIL is directly

associated to the mining process of crude oil and impacts all downstream processes that

consume oil, the auxiliary commodity flow of DumHYD is associated only to the new

capacity additions of hydropower which would be the ones affected by investment cost

risk.

This approach can be expanded to include further primary energy flows and electri-

city generation technologies, as can be seen in Figure 3.29 on page 166, in which the

complete UpAbsDev diagram used in TIMES-EC is shown. Processes created are rep-

resented in boxes, while commodities and their flows are represented with arrows. The

uncertainties assessed are fossil fuel prices (crude oil and natural gas) and four types of

electricity generation infrastructure costs (hydropower, wind, solar and thermal). One-

thousand scenarios of long-term prices have been created with Monte Carlo simulation,

and used to populate the necessary information for deviations from expected prices, as

will be explained in the following subsection.
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Finally, due to the fact that there is only a single set of operational decisions, recurring

uncertainty on parameters which only appear in constraints, e.g., uncertainty regarding

the annual average wind speed or precipitation, cannot be integrated. The inclusion of

uncertainties is restricted to parameters which directly appear in the objective function,

e.g., cost elements such as fuel prices and technology costs. Therefore the impact of

climate change uncertainty must be carried out separate from this approach through

scenario analysis.
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Figure 3.29: Full representation of Upper Absolute Deviation method integrated into TIMES-EC
for n = 1,000 scenarios of fossil fuel prices and electricity infrastructure cost
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3.3.2 Uncertain parameters

3.3.2.1 Monte Carlo simulation with a geometric Brownian motion model

The tradition in finance for simulating correlated stock prices using Monte Carlo simula-

tion governed by a multivariate geometric Brownian motion (hereafter GBM) evolution

model is followed to simulate alternative price paths of fossil fuels and electricity gener-

ation infrastructure (Revell, 2013). The purpose of Monte Carlo simulation in this thesis

is to generate (a large number of) potential future asset or commodities prices. Simu-

lating a commodity price means generating price paths that a commodity may follow

in the future. It is mentioned ’simulating commodity prices’ because future commodity

prices are uncertain (called stochastic), but it is believed that they follow, at least approx-

imately, a set of rules that can be derived from historical data and the current knowledge

of commodity prices (Sengupta, 2004).

Probabilistic analysis based on Monte Carlo simulation, as stated by Damodaran

(2008), can be considered as – the most complete approach of assessing risk across the uncer-

tainty spectrum. It is most comprehensive yet a flexible method for analysing problems

which contain many, and potentially interacting uncertainties. As mentioned by Roques

et al. (2006), Monte Carlo simulation is capable of addressing many of the limitations of

sensitivity analysis by assigning probability distribution functions to inputs, and to sim-

ulate the output distribution by repeating sampling. Probabilistic distributions can be

determined based on historical trends or expert judgements (Usher and Strachan, 2013).

However, while one can use history and experts to define these, there is no guarantee

that such distributions in any way reflect “real” distributions, especially with such long-

term developments and with significant energy system transitions expected. Unlike

in natural sciences, controlled experiments are unfortunately not available to define the

shape of probability distribution functions of future technology costs or fossil fuel prices.

There is though some limited empirical evidence from time-series analysis of historical

technology data (e.g. nuclear power generation Koomey and Hultman, 2007), which

suggest the use of probabilistic distributions, characterized by a tail on the upper side

and a cut-off on the lower part of the costs. Similar to earlier stochastic analysis by

for example Gritsevskyi and Nakićenovi (2000) we thus apply lognormal probabilistic

distributions to all uncertain cost parameters where the expected values correspond to

the deterministic costs.

Monte Carlo simulation techniques have been employed by a number of studies for

uncertainty analysis in electricity industry investment and planning to model key uncer-
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Figure 3.30: Monte Carlo simulation process

tainties such as fuel prices, carbon price, electricity and capital cost (Tekiner et al., 2010;

Roques et al., 2006; Feretic and Tomsic, 2005; Vithayasrichareon et al., 2015; Pye et al.,

2015). These studies are often based on stand-alone technology analysis which considers

the economic viability of individual generation technologies when making investment

decisions. Generation planning that is based on stand-alone technology costs is likely to

lead to economically inefficient outcomes since it does not recognised the diversity value

of different technologies within the generation portfolio (Awerbuch and Yang, 2007), as

has been mentioned previously. The study of Pye et al. (2015) is an example of a re-

cent study that used a probabilistic approach, combined with an integrated systematic

sensitivity analysis to explore the effects of parametric uncertainty on the outputs of an

energy system model for the UK. Monte Carlo simulations were used to propagate the

probability distributions on input assumptions through the model. The results show

that by including uncertainty in the analysis, robust decisions can be identified, as well

as the technology deployments that are highly sensitive to uncertainties. In this sense

Monte Carlo simulations are a tool to take into consideration a broader maps of the

uncertainty surrounding certain technology and commodity costs.

A process flow of Monte Carlo simulation is shown in Figure 3.30. A single simula-

tion involves drawing a random value from each input distribution and then calculating

the system outputs. Hundreds to thousands of simulations are then undertaken to de-

termine a probability distribution of outputs. The output is represented by a probability

distribution, providing a full spectrum of possible output values subject to the actual in-

puts that end up being simulated. The accuracy of the outcome depends on the sample

size – the larger the sample size the more accurate the result but also the longer the

computation time. The statistical features of mean and standard deviation (SD) can

be used to measure the cost-risk profile of the output under conditions of particular

assumed probability distributions. The main drawback of Monte Carlo simulation tech-

nics is that it can be difficult to estimate both the probabilities and the interrelationships

among variables in the Monte Carlo simulation model, or put in a another way, making

assumptions about the assumptions (Spinney and Watkins, 1996; Roques et al., 2006).
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A key step in the Monte Carlo simulation process is selecting an appropriate (stochastic)

model for the time evolution of the underlying asset(s) and then simulating the model

through time to generate random samples. In this study, the standard model for evol-

ution of equity prices given by a geometric Brownian motion is used (Revell, 2013).

Brownian motion is often used to explain the movement of time series variables, and in

corporate finance the movement of asset prices (Brealey et al., 2011; Hull, 2003). GBMs

underlying theory is that stock market prices exhibit random walk (i.e stochastic or

random process). The random walk theory is the idea that stocks take a random and un-

predictable path, making it near impossible to outperform the market without assuming

additional risk.

Some of the arguments for using GBM to model commodity prices according to Reddy

and Clinton (2016) are:

• In a GBM model expected returns are independent of the value of the stock price,

which agrees with what we would expect in reality.

• A GBM model only assumes positive values, just like real stock prices.

• A GBM model shows the same kind of ’roughness’ in its paths, as we see in real

stock prices.

• Calculations with GBM models are relatively easy.

However, GBM is not a completely realistic model, in particular it falls short of reality

in the following points:

• In real life, there are periods where prices stay on the same level, particularly true

for assets with low liquidity, but GBM does not account for periods of constant

values.

• In real stock prices, volatility changes over time (possibly stochastically), but in

GBM, volatility is assumed constant.

• In real life, stock prices often show jumps caused by unpredictable events or news,

but in GBM, the path is continuous (no discontinuity).

This study will use GBM to simulate paths for fossil fuel prices (oil and gas) and in-

frastructure capital costs. In this sense, the previously mentioned limitations of GBM

would be relevant, for example, if it considered that there is a possible future in which

fossil fuels are dramatically phased out, their demand and price reduce, which con-

sequently lowers price volatility and creates a period in which fossil fuel prices are
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constant. Similarly, strong deployment of solar and wind technologies could keep a

downward cost tendency and also coincide with low volatility. Although this is difficult

to foresee, particularly the global future of fossil fuel prices, this study considers the

scenario that the prices of fossil fuels will remain uncertain and volatile in the future,

and the results are valid in this context. Notice however that if the low price-fossil fuel

global scenario would be considered, then given the least-cost nature of the TIMES-EC

model, fossil fuel technologies would be the likely choice unless constraints (political or

emission) are set to avoid this.

GBM has two components; a certain component and an uncertain component. The

certain component represents the return that the stock will earn over a period of time

(or the expected growth rate of the price), also referred to as the drift of the stock.

The uncertain component is a stochastic process including the stocks volatility and an

element of random volatility (Sengupta, 2004). The GBM model incorporates this idea

of random walks in stock prices through its uncertain component, along with the idea

that stocks maintain price trends over time as the certain component. This latter is

also a limitation of this approach that would have an impact on results. Assuming that

stocks maintain price trends (i.e. assuming a constant drift), is a strong deterministic

assumption on the long-term prices of fossil fuels or capital cost of technologies. In this

study it has been assumed that in the long-term fossil fuel prices will continue with

an upward trend, capital costs of hydropower and thermal plants will remain fairly

constant and that solar and wind technologies will have a downward trend. These

deterministic assumptions will be based on exogenous projections from the literature

and will be further explained in the following two sections. However, is it mentioned

that the main purpose of this exercise with the integration of portfolio theory is creating

an uncertainty space around the price of a commodity or capital cost of a technology to

which the model reacts and deems risky to invest in given the amount of financial risk

associated to its use.

In mathematical terms, Brownian motion is a stochastic model in which changes from

one time to the next are random draws from a normal distribution with mean 0.0 and

variance σv2×Δt. In other words, the expected variance under Brownian motion increases

linearly through time with instantaneous rate σv2. A geometric Brownian motion (GBM)

is a continuous-time stochastic process in which the logarithm of the randomly varying

quantity follows a Brownian motion (also called a Wiener process) with drift (Ross, 2014),

which can be described by the stochastic stock price evolution equation:

S (∆t) = S (0) exp
[(

µ− σ2

2

)
∆t +

(
σ
√

∆t
)

ε

]
(3.25)
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Figure 3.31: Simulated commodity price paths with Monte Carlo simulations and Geometric
Brownian Motion model
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where, S (0) is the stock price today, S(∆t) the stock price at a (small) time in the

future, ∆t a small increment (differential) of time, µ the expected return (or growth rate),

σthe expected volatility, and ε a (random) number sampled from a standard normal

distribution.

Repeated use of Equation 3.25 allows multiple potential future asset return or cost

paths (between now and the future) to be generated. An example of such paths (n=10)

is given in Figure 3.31 (where, S0 = US$ 10, µ = 2%, σ = 2% and ∆t = 1 day). The

underlying price at each time step along each path is generated by repeatedly sampling

from a standard normal distribution and applying Equation 3.25.

When a commodity price is dependent on a basket of underlying commodities, then

multiple correlated commodity price paths must be simulated so that the simulation

paths reflect the historical correlation between the commodities. The Cholesky Factorisa-

tion matrix decomposition method can be used to generate a large number of correlated

random numbers, as explained by Goddard (2015). For the case of two commodities the

correlated number equation collapses to:

ε1 = x1 (3.26)

ε2 = ρx1 + x2

√
1− ρ2 (3.27)

where, x1 and x2 are uncorrelated random numbers, which can be sampled from a

random distribution in the usual way, ε1 and ε2 are correlated numbers, which are the

numbers used to generate the commodity price paths with Equation 3.25, and ρ is the

(historic) correlation coefficient between the correlated commodity prices. An example

of the application of this method to simulate two correlated commodity price paths is

shown in Figure 3.32 on the next page (where ρ = 0.7).
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Figure 3.32: Simulated price paths for two correlated commodities (ρ = 0.7)
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This thesis has implemented Monte Carlo simulations with GBM using the R statist-

ical software Version 0.99.893 and code based on Revell (2013) and Systematic-investor

(2012), which can be found in Appendix C on page 297

3.3.2.2 Crude oil and natural gas price uncertainty

Inputs for the GBM model are the starting prices in 2017, the expected annual growth

rate, the individual annual volatility (standard deviation) and the underlying correlation

between the price evolutions of crude oil and natural gas. This data was obtained

from the U.S. Energy Information Administration Annual Energy Outlook (EIA, 2017).

Annual volatility and correlation were derived from a 30-year historic annual time series

of crude oil and natural gas prices, while the starting price and the expected prices of

crude oil and natural gas until 2040 consider the Reference scenario, as was shown in

Table 3.16 on page 150. Table 3.24 on the facing page presents a statistical summary of

all mentioned variable inputs for the GBM model. Normal distributions have been used

to simulate oil and gas prices.

For the Monte Carlo simulation, 1,000 price evolution scenarios for crude oil and

natural gas have been simulated. This highlights the strength of Portfolio Theory for

modelling recurring and correlated uncertainties, compared to a traditional stochastic

approach, in which the number of scenarios that can be incorporated is much lower

because of computational restrictions (Usher and Strachan, 2012), making it difficult

to capture the correlations between uncertain parameters. A limitation of the approach

with Monte Carlo simulation and its application to inform the portfolio theory approach

is the lack of recursive action through the resolution of uncertainties in the future. In

other words, the hedging here does not take into account that e.g. in 2040 we have better

information about on which fuel path we are on (or what the climate change looks like,

if that was included here as well) and therefore see risks differently. Here one looks at a

https://www.r-project.org
https://www.r-project.org
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Table 3.24: Statistical summary of growth rate, covariance and volatility of crude oil and natural
gas prices

Fuel Price Annual
growth rate

Annual
volatility

Correlated
growth rate

2017 2050 Oil Gas

Oil (US$/barrel) 48.90 110.30 2.50% 24% 1 0.74

Gas (US$/mill. Btu) 3.00 5.52 2.03% 35% 0.74 1

*Note: prices are West Texas Intermediate (WTI) for crude oil and Henry Hub for natural gas,
annual individual volatility is the standard deviation of the price change determined from a
30-year historic annual time series (EIA, 2017).

very long-time frame and is never able to adapt the decisions based on new information.

In this sense, stochastic programming has a benefit over the portfolio theory approach

in the sense that it is built to react to this new information (and take into account that

new information will come). However, it is highlighted that the uncertainties considered

in this study are assumed as “recurring”, thus meaning that they are unlikely to ever

be resolved by reflecting on past occurrences or on what point in the future we might

be in. For example, in 2030, the price of oil will be as uncertain as it is today and

knowing how much a large hydropower plant cost, does not give any new information

about the certainty on the budget compliance of the next one. It is also mentioned that

the GBM model does suffer from a limitation of path dependency (i.e. an initial fixed

price subject to a deterministic long-term growth rate) that will have an effect on the

uncertainty distribution for the next period until the end of the simulation horizon.

3.3.2.3 Electricity generation infrastructure cost uncertainty

Electricity generation infrastructure cost evolution paths were carried out using 1,000

Monte Carlo simulations similar to that of oil and natural gas. Inputs for the GBM

model are the investment costs in 2015 (as previously shown in Table 3.11 on page 137),

the expected annual growth rate, the average cost overrun and the volatility (standard

deviation) of the cost overrun. Cost overrun statistics was obtained from Sovacool et al.

(2014a), who assessed construction cost overruns of 401 power plant projects developed

between 1936 and 2014 in 57 countries. The statistical data obtained from Sovacool et al.

(2014a) is annual growth rate (drift), volatility of cost overrun (standard deviation), and

min, max and mean cost overruns registered in the sample. Based on this statistical data

(mean and volatility) it was possible to generate normal distributions of cost overruns

for different technologies, that was limited by the max and min cost overruns registered

in the sample. Therefore, trunked normal distributions were used to simulate power

technology cost prices.
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Table 3.25: Statistical summary of investment cost overruns for electricity generation technolo-
gies

Type
Investment

cost
Annual

growth rate
Cost overrun (%) Volatility of

cost overrun

(US$2015/kW) (%) Min Mean Max (%)

Hydropower
plants

2,100 – 3,297 - -50.6 70.6 512.7 111.7

Wind farms 2,200 – 2,530 -2.2 -9.1 7.7 44.4 13.1

Solar facilities 1,942 – 2,680 -2.3 -40.8 1.3 50 17.8

Thermal plants 1,190 – 2,712 -0.3 – -0.8 -50 12.6 120 33.5
Note: Thermal plants includes those fired with fossil fuel (oil products and gas), as well as those
fired with biomass, biogas and geothermal energy.
Source: Sovacool et al. (2014a)

Table 3.25 presents a statistical summary for the electricity infrastructure costs con-

sidered in this study: hydropower plants, wind farms, solar facilities and thermoelectric

plants.29 Given that the MVPT method in TIMES-EC operates with energy flows (Sec-

tion 3.3.1), the technology investment costs deviations in $US/kW were converted to

energy costs in $US/GWh according to the contribution that the investment cost has

in the levelised cost of electricity according to Allan et al. (2011). Notice that the con-

version of investment cost (in $US/kW) into a “capital variable cost” (in in $US/GWh

) assumes fixed production of any given generation technology – and this is supposed

to be a result of the TIMES-EC model, not an input. This could have a strong impact

on gas technology, given that, for example, if the technology operates at greater capa-

cities, its capital cost deviation impact will be smaller in its overall levelised generation

cost. However, while this is true, we have also considered the deviation cost of natural

gas to balance this effect, this is, while gas technology operates more and the impact

of capital cost deviation falls, the deviation for operation cost rises due to the increased

consumption of natural gas with uncertain prices.

No correlation was assumed among investment costs of electricity generation techno-

logies.

29 Thermelectric plants includes: oil and gas-fired power plants, as well as those fired with biomass, biogas
and geothermal energy. Nuclear hydropower and transmission cost overruns have been excluded from the
analysis. Ecuador does not consider nuclear power in its long term energy policy. Transmission system
average cost and their respective overruns are estimated to be relatively minor compared with those of
electricity generation infrastructure (Heuberger and Dowell, 2018).
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Table 3.26: Risk aversion level parameter γ and its corresponding one-sided probability values.

Scenario

1 2 3 4 5 6

Risk aversion
level

Risk
neutral

−→ Risk
averse

Probability (CI) 50% 65% 75% 90% 95% 99%P  =  50 %

−4 −2 0 1 2 3 4

P  =  65 %

−4 −2 0 1 2 3 4

P  =  75 %

−4 −2 0 1 2 3 4

P  =  90 %

−4 −2 0 1 2 3 4

P  =  95 %

−4 −2 0 1 2 3 4

P  =  99 %

−4 −2 0 1 2 3 4

z-score 0.00 0.39 0.67 1.28 1.64 2.33

γ 0.00 0.97 1.69 3.21 4.12 5.83

3.3.3 Scenarios: risk aversion and climate change

Scenarios with increasing levels of risk aversion are implemented by varying the cost

(γ) attributed to the Upper Absolute Deviation, as was explained in Section 3.3.1 on

page 160 (see Equation 3.22) and based on Nijs and Poncelet (2016).

Table 3.26 shows the one-sided confidence interval (CI) and the corresponding z-

score30 in case of a normal distribution of the uncertain parameter for each one of the

six scenarios considered. In addition, the values for γ are shown.31 Scenario 1 corres-

ponds to the risk neutral decision maker, for which no cost overruns are considered in

the optimisation run (50% one-sided confidence interval). While Scenario 6 corresponds

to a risk averse decision maker, for which all possible probabilities of cost overrun are

considered (99% one-sided confidence interval).

The Portfolio Theory approach differs from the previous section in that no policy

constraints were defined. The only “policy” is the risk-taking characteristics of the de-

cision maker, i.e. from totally risk neutral to totally risk averse. The risk perception of

the policy maker will serve as a proxy for the creation of different scenarios, which in

turn will impact on the least-cost technology portfolio that TIMES-EC selects. Scenarios

for climate change used in the previous section will be maintained (see Table 3.4 on

page 108), with the difference that the Mean scenario will be omitted, given its found

similarity to the NoCC ensemble scenario.

30 In statistics, the z-score (or standard score) is the signed number of standard deviations by which the value
of an observation or data point differs from the mean value of what is being observed or measured. If
the population mean and population standard deviation are known, the standard score of a raw score x
is calculated as: z =

x−µ
σ , where µ is the mean of the population and σ is the standard deviation of the

population.
31 Consider the relationship: γ =

√
2π · z for one-sided probability value. Refer to Nijs and Poncelet (2016)

for further details.
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Table 3.27: Conceptual framework for integrated scenario analysis.

Historic (No climate change) Climate futures

NoCC Dry Wet
R

is
k

av
er

si
on

le
ve

l

50% – Risk neutral

65%

75% Baseline Core future scenarios

90%

95%

99% – Risk averse

Notice that climate change scenarios cannot be included in the portfolio theory ap-

proach because they are modelled as constraints on the availability factor of hydropower

production and are not related to a cost component of the objective function. This is a

limitation of the portfolio theory approach that requires to assess the uncertainty of cli-

mate change impact with a traditional scenario approach. Climate change uncertainty

could very well classify as “recurring”, in the sense that climate impact would cause

erratic and stochastic seasons of high and low runoff and the policy maker would need

to consider. However due to the limitation of the portfolio method this study considers

that climate change uncertainty to be “non-recurring”, meaning that, for example, once

a dry climate scenario trend is in place, it is assumed that the following years will remain

dry, thus assuming perfect scenario foresight for the climate component.

Table 3.27 presents the conceptual framework for the scenario analysis in this section

and shows how each scenario combines risk aversion and climate futures. To focus

on the impact of different risk scenarios, the results should be compared always to the

risk-neutral (50% confidence interval) and NoCC climate change scenario, as a modelled

“baseline” – in other words, the power system configuration and system costs that we

would expect if the climate from until 2050 was similar to the historical climate and the

decision maker assumes a risk neutral approach.

3.4 chapter summary

This chapter discussed the methods used to assess the impact of long-term climate

change and uncertainty of prices on the least-cost energy system pathway for Ecuador

until 2050. It started by describing the statistical/conceptual hydrological model used

to project changes in runoff, followed by a hydropower simulation model to assess the

changes in electricity generation (Section 3.1 on page 91). To assess the impact on the
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overall energy system, the structure and assumptions for an energy system optimisa-

tion model for the Republic of Ecuador (TIMES-EC) were presented (Section 3.2 on

page 110). This model focused on the power sector, because the Ecuadorian govern-

ment has ambitious plans of increasing hydropower’s share in the electricity mix. The

power sector was modelled at the plant level with details on existing and future tech-

nologies, resources and technology prices. Demand was represented at the end-use

service level, this enabled to capture different government policy targets for different

economic sectors (such as introduction of electric cookstoves to reduce LPG consump-

tion in households and the deployment of energy-intensive industries as a driver for

economic development). Other sectors (transport, commercial, etc.) were modelled in a

stylised way because of limited data and statistics. The chapter also presented a novel

approach to assess recurring uncertainties in an energy system optimisation model (Sec-

tion 3.3 on page 159). A method was presented to integrate a Portfolio Theory approach

into TIMES-EC, which uses thousands of Monte Carlo simulations of fossil fuel prices

and cost overruns of electricity generation infrastructure. This allows to find least-cost

expansion pathways for the power sector that take into consideration the risk aversion

level of the decision maker. The following chapter will present the results obtained with

the presented methodology.





Part III

R E S U LT S A N D D I S C U S S I O N





4
R E S U LT S

This chapter provides results for the thesis according to the three research questions

presented in the Introduction on page 3. In the first section of this chapter, the results

of the climate change impact assessment on hydrological resources and the long-term

hydropower electricity generation in Ecuador are detailed. The second section on page

198 will present least-cost configurations for the Ecuadorian power sector obtained with

an energy system optimisation model (TIMES-EC) used to assess the impact of different

policy choices and climate change scenarios. The last section of this chapter on page

4.3 will present the results of integrating a portfolio theory approach into TIMES-EC

to assess the impact that the recurring uncertainty of fossil fuel prices and electricity

infrastructure investment costs has on the least-cost power sector expansion pathway.

4.1 climate change impact on hydropower generation

The first research question of this thesis is: How broad is the uncertainty of hydro-climatic

variables portrayed in a large ensemble of climate projections and the impact on the availability

of runoff for hydropower generation?1

To answer this question, a combined conceptual and statistical hydrological model

was used to incorporate possible effects of climate change drawing from a large en-

semble of climate projections, namely the CMIP5 modelling ensemble (see Section 3.1.1).

Subsequently these results are used to assess how hydropower electricity generation

could be affected by means of a hydropower simulation model (see Section 3.1.2 on

page 97). The following subsections will present the validation of the used models as

well as the results related to the projected changes in precipitation, run-off and hydro-

power generation.

1 The results of this section have been published in: Carvajal PE, Anandarajah G, Mulugetta Y, Dessens O
(2017), Assessing uncertainty of climate change impacts on long-term hydropower generation using the
CMIP5 ensemble – the case of Ecuador, Climatic Change

181
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Figure 4.1: Observed and simulated river regimes for inflow gauging stations in Ecuador’s major
hydropower stations for the validation period (1971–2000).
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Note: Numbers in brackets refer to the gauging stations detailed in Table 3.1 on page 104 and
seen in Figure 3.2 on page 100.

4.1.1 Impacts on water resources

4.1.1.1 Hydrological model validation

Figure 4.1 shows observed and simulated river regimes for inflow gauging stations in

Ecuador’s major hydropower stations for the validation period (1971–2000). To validate

the hydrological model, three performance statistics (Pearson’s correlation coefficient –

r, Nash-Sutcliffe Efficiency – NSE, and percentage deviation – Dv) for six hydropower

stations were used. The results of these performance statistics are presented in Table 4.1

on the next page.2

Simulated results are classed between "excellent" and “very good” (13 out of 18 per-

formance statistics). NSE for 5 gauging stations is classified as "excellent" or "very good",

meaning that the model represents variations in inflow well. Relatively high values of r

are obtained for the Pacific region, which are above or close to 0.90, however much lower

r values are obtained for the Amazon region, with the model’s performance classified

between "fair" and "poor". Dv for all of the stations is mostly classified as "excellent" in

both watersheds. The model captures the different seasonal patterns that characterise

the Pacific and Amazon regions. Pacific region inflows for hydropower stations Toachi-

2 Details on gauging stations and hydropower stations used for the analysis were previously detailed in
Table 3.1 on page 104 and for details on the performance statistics refer to Section 3.1.1 on page 92.
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Table 4.1: Hydrological model performance statistics based on mean monthly discharges at
Ecuador’s largest hydropower stations for the calibration period (1971–2000).

Hydropower station Dv (%) NSE r

Pacific region

1 Toachi-Pilaton -3.27 88888 0.79 8888 0.9 8888

2 Marcel Laniado -6.7 8888 0.87 88888 0.95 88888

3 Minas San Francisco -1.99 88888 0.78 8888 0.89 888

Amazon region

4 Paute -1.95 88888 0.72 8888 0.85 888

5 Agoyan -1.63 88888 0.58 888 0.77 8

6 Coca Codo Sinclair -1.48 88888 0.67 8888 0.82 88

Performance indicator Excellent Very good Fair Poor Very poor

88888 8888 888 88 8

Dv < 5% 5–9 % 10–14% 15–19% ≥ 20%

NSE ≥ 0.85 0.65–0.84 0.50–0.64 0.20–0.49 < 0.20

r ≥ 0.95 0.90–0.94 0.85–0.89 0.80–0.84 < 0.80

Pilaton, Marcel Laniado and Minas San Francisco have its wet season from January to

June and dry season from July to December. Amazon region inflows for hydropower

stations Paute, Agoyan and Coca Codo Sinclair have its wet season from April to August

and dry season from September to March. This offset between regional seasonal peaks

is critical for hydropower generation complementarity, however both regions share crit-

ically low flows from October to February, meaning that run-off generation capacity is

restricted regardless of installed capacity. The replicability of seasonality with the hy-

drology model is important for further stages of climate change impacts assessment and

energy modelling.

The model shows better performance for Paute, Minas San Francisco, Toachi-Pilaton

and Coca Codo Sinclair, while for Marcel Laniado and Agoyan, there is underestimation

of ascending limb discharges leading to Dv falling below the "fair" category. Agoyan

shows the worst performance with regards to indicators (NSE: "fair" and r: "very poor")

although Dv values are classed as "excellent" and NSE is still in the "fair" category. This

is due to a period of high inflow registered during the 70s and early 2000s. Simulated

peak seasonal discharges are underestimated in all cases, whilst rising and descending

limbs are largely well reproduced. Overall, the model has good performance statistics

that compare favourably with previous mesoscale and conceptual models for Ecuador’s

rivers (Buytaert et al., 2009; Crespo et al., 2012; González-Zeas et al., 2014) and other
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hydrological studies from abroad that have used similar performance statistics (Ho et al.,

2015; Thompson et al., 2015).

4.1.1.2 Projected precipitation and PET

Monthly precipitation and potential evapotranspiration (PET) data for 40 GCM of the

CMIP5 under RCP2.6, RCP4.5 and RCP8.5 were obtained for two 30-year periods: baseline

(1971–2000) – the same duration as the calibration period for the hydrological model –

and future (2071–2100) – against which baseline period values were compared by simple

scaling (see Table 3.3 on page 107 for the complete list of GCMs used). This allows pat-

terns of climate change to be expressed as the percentage change between the two time

periods, also known as the delta factor approach (refer to Section 2.2.1 on page 35 and

Section 3.1.1 on page 92). GCM data were downloaded from the Royal Netherlands

Meteorological Institute (KNMI) Climate Explorer database using a bilinear interpola-

tion approach and averaging precipitation and PET gridded values for each of the six

basins represented in the hydrological model (Trouet and Van Oldenborgh, 2013). Data

was bias-corrected using precipitation and PET values from the observed baseline period

CRU datasets and using a multiplier on a monthly basis.

Figure 4.2 on page 186 and Figure 4.3 on page 186 show projected mean monthly pre-

cipitation and PET, respectively, averaged across six river basins of Ecuador for each of

the 40 CMIP5 GCMs as well as for the ensemble mean for the RCP4.5. It is clear that the

large amount of GCMs give rise to a large range of projections for both precipitation and

PET. However, there is greater uncertainty associated with precipitation rather than PET

(notice the y-axis scale in both figures). Projected changes in mean annual precipitation

is different according to each basin and varies on a monthly basis in average between

a decline from 100 mm to close to 0 mm for the month of July to an increase from 300

to close to a maximum 800 mm in the month of October. Notice the particular bi-modal

precipitation profile in Ecuador with two rainy seasons, one in April and a second in

October. In contrast, PET shows a much more constant value throughout the year and

smaller uncertainty for all the GCMs with the magnitude of these increases varying

between 40.0 mm and 130 mm, while average is around 100 mm.

The CMIP5 ensemble mean (red dashed line) projects an increase in precipitation from

the baseline in most months, except during the months of September and October. At

this time decreases are, however, small and average only -4.0 mm or -1.4%. The aver-

age monthly precipitation increase for the remaining months is 7.7% with the greatest

increase occurring in February (+28 mm/+9.7%). Overall mean annual precipitation for

the ensemble mean increases by 185 mm (+6.7%). The CMIP5 ensemble mean projects

https://climexp.knmi.nl/start.cgi
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a consistent increase in PET from the baseline across the year. On average monthly PET

increases by 4.1 mm (4.0%) contributing to an annual total increase of 49.5 mm (4.0%).

The largest monthly PET increase of 5.27 mm (5.2%) occurs in September.

Results for 40 GCMs under the RCP4.5 scenario from the CMIP5 have been so far

presented. It must be mentioned that, the framework applied in this thesis was also

applied for the RCP2.6 and RCP8.5 scenarios, however differences among RCPs (intra-

model) were found to be smaller compared to inter-GCM (inter-model) differences.

Inter-GCM uncertainty range was also found to have similar magnitude for all three

concentration scenarios. This can be seen in Figure 4.4 on page 187, which presents

downloaded precipitation and PET values for individual GCMs, the ensemble mean

and the historic average for the Paute river basin and RCP2.6, RCP4.5 and RCP8.5.

It is observed in Figure 4.4 on page 187, that the range of disagreement among indi-

vidual GCMs is similar in all three RCPs and performing the analysis for the three RCPs

would have added little to the findings. It was found in the literature that when the

focus is on assessing inter-GCM uncertainty only one RCP is considered, for example

in the study of Ho et al. (2015) and Thompson et al. (2015), who assess GCM-related

uncertainty and use only the RCP4.5. However, when wanting to assess intra-model un-

certainty and the limits of the RCP scenarios, usually RCP2.6 and RCP8.5 are considered

while using the ensemble mean, for example in the studies of Samaniego et al. (2016)

and van Vliet et al. (2016b). The literature mentions that inter-GCM related uncertainty

rather that intra-model uncertainty is the main source of uncertainty for regional climate

change scenarios (Escobar et al., 2011), therefore the focus of this thesis is mapping inter-

GCM uncertainty using only one concentration scenario (i.e. RCP 4.5).

Another reason to use only one concentration scenario, is that the RCP4.5 is the scen-

ario that gathers more GCM models. RCP4.5 contains results from 41 GCMs compared

to 26 GCMs for the RCP2.6, 17 GCMs for RCP6.0 and 30 GCMs for RCP8.5 (van Olden-

borgh et al., 2013). Considering that the discrepancy of GCM models is to be assessed,

the GCM scenario that has the most modelling results is chosen, i.e. RCP4.5. A final

reason to use the RCP4.5 is that it is considered to represent a central estimate of future

climate impacts (Thomson et al., 2011) and also most closely aligns with the core ob-

jectives of the United Nations 2015 Paris Agreement (UNFCCC, 2015a), which include

limiting anthropogenic warming to no more than 2°C above pre-industrial values by

2100 (IPCC, 2013).
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Figure 4.2: Mean monthly precipitation in six basins in Ecuador for the baseline, individual
GCMs and the ensemble mean of the CMIP5 RCP4.5 (2071–2100)
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Figure 4.3: Mean monthly potential evapotranspiration (PET) over six basins in Ecuador for the
baseline, individual GCMs and the ensemble mean of the CMIP5 RCP4.5 (2071–2100)
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Figure 4.4: Comparison of precipitation and potential evapotranspiration in the Paute basin of
Ecuador for individual GCM projections of the CMIP5 ensemble under three different
RCPs and period 2071–2100.

0

200

400

600

J F M A M J J A S O N D

P
re

ci
pi

ta
tio

n 
(m

m
/m

on
th

) RCP2.6

0

200

400

600

J F M A M J J A S O N D

RCP4.5

0

200

400

600

J F M A M J J A S O N D

RCP8.5

40

80

120

J F M A M J J A S O N D

P
E

T
 (

m
m

/m
on

th
)

RCP2.6

40

80

120

J F M A M J J A S O N D

RCP4.5

40

80

120

J F M A M J J A S O N D

RCP8.5

Ensemble mean projection Historic Individual GCMs projections

4.1.1.3 Projected river discharge

Hydrological simulations were conducted for the ensemble mean and each individual

GCM. The impact of climate change on the average annual and seasonal inflow into

hydropower stations was analysed relative to the baseline period. Figure 4.5 on the

next page shows the projected mean annual inflow percentage changes compared to the

historic baseline for 40 GCMs of the CMIP5 under RCP4.5 and the ensemble mean (black

bar at the end of x-axis). The significant range in GCM projections presents a large

uncertainty in the projected unregulated annual inflow to hydropower stations. This

justifies the use of a multi-model ensemble in order to capture this uncertainty (Knutti

and Sedláček, 2012; Kundzewicz et al., 2018). The inter-GCM range of projections is

extremely large, maximum deviations from the mean span from -82% for the GFDL-

CM3 (GCM no. 17) in Agoyan to +277% for the IPSL-CM5A-LR (GCM no. 32) in Minas

San Francisco. A summary of results and statistics for projected annual inflow is shown

in Table 4.2 on page 189.

It would be expected that a particular GCM projects a consistent increasing or de-

creasing trend for a relatively small geographical area such as Ecuador. However, there

is considerable variability in the climate change signal amongst the gauging stations.

The GISS-E2-R p2 model (GCM no.25), for example, suggests mean annual increases

in hydropower stations Marcel Laniado, Minas San Francisco, Paute and Agoyan but
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Figure 4.5: Percentage change in the mean annual inflow at Ecuador’s major hydropower sta-
tions for the period 2071–2100, compared to the baseline 1971–2000, for each CMIP5

GCM under scenario RCP4.5.
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decreases for Toachi-Pilaton and Coca Codo Sinclair. In general, for the six gauging

stations, out of 40 GCMs, 22 GCMs simulate an increase in mean annual discharge, the

remaining 18 projecting decreases. This is why the enemble mean in general shows

an increase in inflow. This coincides with the ensemble mean projecting an increase in

mean annual discharge since there are more models that agree on increase compared

to decrease. However, given that all GCMs are considered equiprobable, this does not

entail that there is a higher probability of increased inflow (Smith and Petersen, 2014).

Of the 22 models that project an increase in mean annual discharge, 16 suggest that

discharge will increase by more than 25%. In contrast, 12 our of 18 of the GCMs suggest

decreases in mean annual inflow larger than 25%. This indicates that most models sug-

gest considerable differences (< or > 25%) from the ensemble mean, which leads to the

ensemble mean in all cases projecting annual increases.

Mean annual flow is a convenient indicator to assess overall impacts of climate change

on a river basin, however it is insufficient and simplistic when used in isolation (Gosling

et al., 2011). Changes in maximum and minimum flows and changes in seasonal patterns

require at least a monthly time-step analysis, particularly to identify flood risk during

high flows and to assess impacts of low flows on run-off hydropower yield. To assess the
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Table 4.2: Summary of results for annual projected inflow into Ecuador’s largest hydropower
stations for the CMIP5 ensemble under the RCP4.5 for 2071-2100

Region Pacific Amazon

Basin Esmeraldas Guayas Jubones Paute Pastaza Napo

Hydropower
station

Toachi
Pilaton (1)

Marcel
Laniado (2)

Minas S.
Francisco (3)

Paute
(4)

Agoyan
(5)

C.C. Sinclair
(6)

Historic annual flow (1971-2000)

(m3/s) 46 194 51 121 123 287

Statistics for projected flow (2071-2100) compared to historic

Mean (%) 7.3 10.1 9.9 12.9 8.8 5.1

Min (%) -69.6 -63.5 -68.6 -79.3 -82.0 -75.3

Max (%) 135.1 159.5 277.0 230.3 130.7 125.4

Std. dev. (%) 51.6 50.4 67.6 63.0 57.0 51.1

differences between projected (2071–2100) and historic seasonal inflow values, Figure 4.6

on the following page is presented.

Inflow regimes for the CMIP5 ensemble mean (red dashed line) show that mean

monthly discharges throughout the whole year are slightly higher than those of the

baseline for the wet season for both watersheds, but mean monthly projections are rather

close to the baseline during the dry season from October to January. Coca Codo Sinclair

is the only station for which the ensemble mean decreases from December to February.

Seasonal characteristic patterns seem to be maintained by most of the GCMs projections.

Uncertainty is greatest in the wet season, with some GCMs doubling or tripling the

baseline inflow but others remaining closer to the baseline values. However, analysing

results according to wet and dry seasons, it is found that during the wet season 62%

of the GCMs agrees on increases, while during the dry season 55% of GCMs agree on

decreases of inflow. This corroborates the projections for the region having wetter wet

seasons and drier dry seasons under climate change (Kundzewicz et al., 2007).

4.1.2 Impacts on hydropower generation

4.1.2.1 Hydropower simulation model validation

To validate the model, simulated hydropower production was compared to observed

generation of four different types of hydropower facilities within these systems, i.e.

single/cascading and run-of-river/reservoir. Figure 4.7 on page 191 compares simu-

lated to observed monthly electricity production. The close fit between simulated and

observed hydropower production shows that the aggregated global results give a good
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Figure 4.6: River inflow regimes for gauging stations at Ecuador’s major hydropower stations.
The historic baseline, each GCM of the CMIP5 and the ensemble mean under the
RCP4.5 scenario for the 2071–2100 period is shown.
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indication of reality. The hydropower simulation model performance has been valid-

ated similar to Yi Ng et al. (2017), with two statistical measures i) Pearson’s correlation

coefficient (r) and ii) standard error (e). Table 4.3 on the facing page presents validation

results and shows that Pearson’s correlation scores for observed versus simulated hydro-

power production demonstrate reasonable to strong performance for most hydropower

stations in average a value of 0.9. Standard error is also low in average 1.2% of the value

of total monthly generated electricity.

4.1.2.2 Projected variation on hydropower generation

Figure 4.8 on page 192 presents aggregated results for electricity generation of the se-

lected hydropower systems which have a total installed capacity of 4,368 MW (>80% of

Ecuador’s current total installed capacity, see Section 3.2.2). The Wet scenario presents

an overall higher electricity output throughout the year; the wet season (March to Au-

gust) presents a 15% average increase, while the dry season presents an average increase

of 46%. In contrast, the Dry scenario presents an average reduction of -50% during the

wet season and of -76% for the dry season. Hydropower stations Coca Codo Sinclair,

Toachi-Pilaton, and Minas San Francisco do not have any output at all in the dry season

of the Dry scenario. Paute and Agoyan maintain output in the Dry scenario due to
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Figure 4.7: Simulated versus observed monthly hydropower production for four hydropower
stations representing different types of hydropower stations in Ecuador
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Table 4.3: Fit diagnostics for hydropower electricity output model for calibration period
(2012–2015)

Hydropower
station

Type* Average
gen.

(GWh)

r St. error (GWh / %)

Paute Mazar Cascading/Dam 800 0.88 888 10.1 / 1.2 88888

Paute Molino Cascading/ROR 4,900 0.89 888 58.2 / 1.1 88888

Marcel Laniado Single/Dam 717 0.87 888 13.9 / 1.9 88888

Agoyan Single/RoR 1,080 0.96 88888 5.1 / 0.5 88888

Performance indicator Excellent Very good Fair Poor Very
poor

88888 8888 888 88 8

r ≥ 0.95 0.90–0.94 0.85–0.89 0.80–0.84 < 0.80

St.error <5%

Note: ROR is run-of-river, DAM is hydropower with reservoir
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Figure 4.8: Seasonal projection of power generation for selected hydropower stations considering
mean and standard deviations according to the RCP4.5 of the CMIP5 ensemble for
the 2071–2100 period.
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their regulation capacities. Marcel Laniado seems less affected by inflow variations due

to its large reservoir. Table 4.4 on the facing page presents results at the annual level

and percentage deviations from annual observed generation values for the aggregated

hydropower system (22,801 GWh/yr.), showing a 6% increase (1,408 GWh) for the en-

semble mean, +39% increase (800 GWh) for a Wet scenario, while a significant reduction

of -55% (-12,400 GWh) for the Dry scenario.

In addition to quantifying seasonal and annual long-term impacts of climate change

on the current installed hydropower capacity of Ecuador, the hydropower model was

used to calculate the changes in availability factors of these representative hydropower

stations. Figure 4.9 on page 194 presents the availability factors derived from the hydro-

power model. Availability factors follow seasonal inflow patterns (compare to Figure 4.6

on page 190) and its variation range depends on storage and operational characteristics

of the representative hydropower stations. Cascading hydropower stations in the same

river have been aggregated given that they usually are considered as one integrated sys-

tem. An optimistic or Wet scenario increases the monthly availability factors (85–89%);

however, the pessimistic or Dry scenario presents a more critical situation: monthly

availability factor dropping to a value of 0% during the dry season, namely for the sta-

tions that have small regulation capacity e.g. Coca Codo Sinclair, Minas San Francisco

and Toachi-Pilaton. Marcel Laniado which has a large reservoir (1,733.6 Hm3) presents

less sensitivity to changes, although in the Dry scenario drops likewise to zero at the

peak of the dry period in November.

Table 4.5 on page 194 presents the historic (30-year average, 1971–2000) annual avail-

ability factor as well at the projected availability factors for the Mean (ensemble), Wet

and Dry scenarios until 2050. The relative changes of the climate scenarios compared
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Table 4.4: Annual generation output changes for the RCP4.5 ensemble mean, +1SD and -1SD for
2071-2100

Basin Hydropower
station

Capacity
(MW)

Generation
(GWh/yr.)

Climate change
2071-2100 ∆

Historic Dry
(-1SD)

Mean Wet
(+1SD)

Pacific region

1 Esmeraldas Toachi-Pilaton 255 1,120 -59% 9% 41%

2 Guayas Marcel Laniado 213 717 -36% 5% 25%

3 Jubones M.S. Francisco 275 1,290 -73% 7% 43%

Amazon region

4 Santiago Paute 1,757 8,500 -52% 8% 46%

5 Pastaza Agoyan 368 2,480 -48% 6% 29%

6 Napo C.C. Sinclair 1,500 8,734 -57% 4% 34%

Total system 4,368 22,841 -55% 6% 39%
Note: Cascading hydropower systems have been aggregated: Toachi-Pilaton (Toachi 205 MW
and Pilaton 50 MW), Paute (Mazar 170 MW, Molino, 1,100 MW and Sopladora 487 MW) and
Agoyan (Agoyan 156 MW and San Francisco 213 MW)

to the historic are also shown. The total average availability factor has been included

at the bottom row of Table 4.5 on the following page to give a sense of the deviations

for the entire system. The Mean scenario represents a slight increase in the availability

factor (4%), while the Wet scenario registers an increase of +19% and the Dry scenario a

reduction of -25%. These results will be used in TIMES-EC to characterise the variation

of hydropower output in six river basins that have been depicted in the energy system

model. Figure 4.10 on page 195 and Figure 4.11 on page 196 show the projected availab-

ility factors in 2050 and 2085 (2071-2100), respectively; according to the model’s attribute

format which was discussed in Section 3.2.5 on page 124 and can be seen in Figure 3.15 on

page 130.



194 results

Figure 4.9: Mean monthly availability factors for Ecuador’s major hydropower stations for the
historic period (1971-2000), the ensemble mean and the standard deviation of the
CMIP5 RCP4.5 scenario for the period 2071-2100
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Table 4.5: Projected annual availability factors for hydropower stations in Ecuador’s main river
basins

1970–2000 Climate 2050

Basin Historic Wet Mean Dry

AF AF ∆ AF ∆ AF ∆

Pacific region

Esmeraldas 0.52 0.61 19% 0.53 4% 0.39 -24%

Guayas 0.38 0.52 34% 0.41 7% 0.31 -20%

Jubones 0.54 0.66 21% 0.56 4% 0.38 -31%

Amazon region

Santiago 0.55 0.66 20% 0.57 4% 0.40 -27%

Pastaza 0.74 0.80 7% 0.75 2% 0.58 -21%

Napo 0.66 0.76 15% 0.67 2% 0.50 -25%

Total average 0.57 0.67 19% 0.58 4% 0.43 -25%
Note: AF is the annual average availability factor. ∆ is the availability factor change of the Mean,
Wet and Dry scenarios respect the Historic.
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Figure 4.10: Projected availabilty factors of hydropower stations according to basin in Ecuador
in 2050 (TIMES attribute format)
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Note: ROR hydro is represented in TIMES-EC with fixed availability factor (AF), DAM hydro-
power is represented with annual availability factor (AFA), and seasonal flexible availability
factors (AFS_LO and AFS_UP). Refer to Section 3.2.5 on page 124 for details.
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Figure 4.11: Projected availabilty factors of hydropower stations according to basin in Ecuador
in 2085 (TIMES attribute format)
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Note: ROR hydro is represented in TIMES-EC with fixed availability factor (AF), DAM hydro-
power is represented with annual availability factor (AFA), and seasonal flexible availability
factors (AFS_LO and AFS_UP). Refer to Section 3.2.5 on page 124 for details.
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4.1.3 Summary

This subsection has provided a climate change impact assessment of hydropower gener-

ation in Ecuador. It conclusively demonstrates that there is large disagreement among

GCM projections regarding the impact that climate change will have on the change of

magnitude and sign of change of precipitation in the long-term. This has implications

for the expected availability of runoff for hydropower generation. Specifically, it was

found that annual generation of the largest hydropower stations in Ecuador (4,368 MW)

can change significantly under different scenarios of climate change by the end of the

century (2071-2100). Results for the RCP4.5 concentration scenarios show a 6% increase

in power generation when using the CMIP5 ensemble mean, +39% increase for a Wet

scenario (+1 SD of the ensemble), while a significant reduction of -55% for a Dry scenario

(-1 SD of the ensemble), as shown in Figure 4.8 on page 192.

Selected key outcomes of this subsection are summarised below (while all key findings

are restated in the conclusion of this thesis in Chapter 6 on page 271):

• Long-term projections of precipitation and potential evapotranspiration encom-

pass a wide range, dominated by the large differences among individual GCMs

(inter-model) projections. Inter-model GCM uncertainty range was also found to

have similar magnitude for all three concentration scenarios (RCP2.6, RCP4.5 and

RCP8.5). Differences among the RCPs (intra-model) were found to be smaller com-

pared to the difference among individual GCMs (inter-model). This can be seen

in Figure 4.4 on page 187. Performing the analysis for the three RCPs would have

added little to the findings. Assessing individual GCMs under a single RCP al-

lows to characterise a broader uncertainty space of the possible effects of climate

change on water resources.

• The large amount of GCMs of the CMIP5 ensemble projections give rise to a wide

range of projections for both precipitation and potential evapotranspiration (PET).

Figure 4.2 on page 186 and Figure 4.3 on page 186 show projected mean monthly

precipitation and PET, respectively, averaged across six river basins of Ecuador for

each of the 40 GCMs of the CMIP5 ensemble. The range of precipitation change

uncertainty spans from 0 to 800 mm/month, while PET uncertainty spans from 40

to 140 mm/month.

• The inter-GCM uncertainty range of precipitation and PET has an impact on the

projected unregulated annual inflow into hydropower stations in Ecuador. Max-

imum deviations from the annual mean historical inflow into Ecuadorian hydro-
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power stations towards the end of the century span from -82% to +277%. This can

be seen in Figure 4.5 on page 188.

• The change in hydropower output due to different climate change scenarios for

Ecuador’s main hydropower stations has been translated to availability factors that

represent six river basins in the country, as can be seen in Table 4.5 on page 194.

The historic (1971-2000) average annual availability factor of the hydropower sys-

tem is 57%, a scenario that considers the RCP4.5 ensemble mean of the CMIP5 by

2050 would increase the availability factor to 58%, while a Wet scenario (+1 SD

of the CMIP5 ensemble) would increase it to 67% and a Dry scenario (-1 SD of

the CMIP5 ensemble) would reduce it to 43%. This change in hydropower output

can also be seen in Figure 4.8 on page 192 where monthly hydropower generation

in the largest hydropower stations in Ecuador is compared for different end-of-

the-century climate change scenarios and historic generation. Dry scenarios could

reduce runoff to a point in which hydropower stations reach zero production for

continuous months during the dry season of the year (October to January).

The next section will present power sector development pathways until 2050 obtained

with an energy system optimisation model of Ecuador (TIMES-EC), which has used the

changes of hydropower availability factors to capture the impact that different climate

change scenarios could have on the least-cost configuration of the power sector and

overall energy system.

4.2 least-cost adaptation for the ecuadorian power system

The second research question of this thesis is: “How does hydropower output variations due

to climate change impact the long-term least-cost power system development pathway?”3

To answer this question, the availability factors obtained in the previous section were

used to characterise hydropower in a TIMES energy system model for the Republic of

Ecuador (TIMES-EC) with particular detail of the power sector, as was explained in

Section 3.2.4 on page 119.

The energy supply optimisation calculations with TMES-EC were run for three policy

cases (Boost Hydropower, Constrain Hydropower and Environment Priority) and four

climate change long-term scenarios (Dry, NoCC, Mean and Wet), as detailed in Sec-

tion 3.2.10 on page 151. This section will compare the results for power generation,

3 The results of this section have been published in Carvajal PE, Li FGN, Soria R, et al (2019), Large Hydro-
power, Decarbonisation and Climate Change Uncertainty: Modelling Power Sector Pathways for Ecuador.
Energy Strategy Reviews
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system costs and GHG emissions. Therefore showing the effect of policy cases and

changes in water variability for hydropower generation in the context of the least-cost

evolution pathway of the electricity system.

4.2.1 Power system configuration

TIMES-EC finds that installed electricity generation capacity for all assessed scenarios

increases by 15 – 18 GW and electricity generation by 65 – 74 TWh/y by 2050, which

amounts to over a threefold increase compared to current levels, as can be seen in Fig-

ure 4.12 on the next page. The configuration of the power sector for 2017 and 2050 will

depend according to the policy case and climate scenario outcomes that may transpire.

Whereas the current portfolio is a hydrothermal one dominated by large scale hydro-

power generation, the model shows that the future could hold a number of different

options, as can be seen Figure 4.13 on the following page. Notice that the scenarios

which use the NoCC and the Mean climate assumptions give very similar results when

compared across all three sets of policy assumptions. Therefore, the discussion below

will mostly focus on the results of using the Wet and Dry climate scenarios, compared

with the NoCC scenario.

The Boost Hydropower policy case under any climate scenario implies the deployment

of large fractions of hydropower ROR and DAM in the electricity mix. The Constrain

Hydropower and Environment Priority policy cases are more conservative for hydro-

power deployment, reflecting the limitations that were forced to limit its deployment.

It is also seen that the scenarios employ different proportions of ROR and DAM type

plants, which can be seen in Figure 4.14 on page 201 where the capacity range of each

technology in 2050 has been depicted. This reflects the fact that these two types of

technologies were modelled differently in terms of price, potential, size and availability.

Under the followed methodological approach and assumptions, the results suggest

that in general, under all climate change scenarios, similar proportions of ROR and

DAM capacity is suggested by TIMES-EC (this will change once risk is introduced in

the model, as will be presented in following Section 4.3 on page 220). This potentially

draws into question whether or not the Ecuadorian Government’s focus on very large

DAM projects, e.g. Santiago-G8 (2,400 MW) CELEC, 2017 – is the best approach from

a cost-optimal strategy, especially considering that natural gas, hydro ROR or other

renewables such as biomass and geothermal power could also be used to provide base

load generation. Only in the Boost Hydropower policy case with a Wet climate scenario,

does the model deploy almost close to 12 GW of hydropower by 2050. All other scenarios
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Figure 4.12: Projected total electricity capacity (top) and generation in Ecuador at scenario level
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Figure 4.13: Installed capacity (top) and electricity generation in the power sector in 2017 and
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Figure 4.14: Installed capacity (top) and electricity generation (bottom) by technology type,
policy case and climate change scenario by 2050
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show levels below the threshold of the remaining assessed potential of 13 GW (see

Figure 4.13 on the preceding page).

The deployment path of hydropower capacity and generation per type, climate change

scenario and policy case can be seen in Figure 4.17 on page 204. Notice that the model

only deploys large shares of hydropower DAM (~6 GW) when it is forced in the Boost

Hydropower policy case. In comparison, the Constrain Hydropower and Environment

priority scenarios show lower and similar installed capacity development pathways for

hydropower that vary little depending on the climate occurrence, except for the Con-

strain Hydropower policy case with Dry climate scenario in which the model chooses

not to deploy Hydropower DAM. Hydropower generation levels change according to

climate scenario, generating less for Dry occurrences, however similar values for the

Wet, Mean and NoCC climate scenario, corroborating the fact that increases in precip-

itation do not necessarily translate into windfall production of hydropower energy, but

decreases can signify significant losses.

As was mentioned in the Introduction chapter on page 3, Ecuador’s main energy

policy was to achieve a 90% share of hydropower generation in the power matrix by

2021 and continue efforts to maintain a high share of hydropower generation. Across

the climate change scenarios, the share of total electricity which can be generated by hy-

dropower varies significantly by 2050 (29 – 86%) and changes throughout the modelling
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Figure 4.15: Installed capacity by policy case and climate change scenarios in Ecuador for
2017–2050
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Figure 4.16: Electricity generation by policy case and climate change scenarios in Ecuador for
2017–2050
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Figure 4.17: Hydropower installed capacity pert type, climate change scenario and policy for
2017–2050

Climate change scenario Wet Mean NoCC Dry
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Figure 4.18: Share of hydropower in the generation matrix for the 2017–2050 period per policy
case and climate change scenario
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Table 4.6: Main results from the TIMES-EC model for installed capacity and annual average
hydropower generation in 2050

Policy case 2017 Climate scenario in 2050

NoCC Dry ∆ Mean ∆ Wet ∆
(G

W
) Boost Hydropower 5.1 11.8 11.6 -1% 11.3 -4% 11.3 -5%

Constrain Hydropower - 7.5 5.6 -25% 7.5 0% 8.0 7%

Environment priority - 8.1 7.5 -8% 8.1 0% 8.1 0%

(T
W

h) Boost Hydropower 24.5 59.5 44.2 -25% 58.6 -1% 63.5 7%

Constrain Hydropower - 37.0 20.9 -44% 38.0 3% 44.8 21%

Environment priority - 39.6 28.0 -30% 40.7 3% 44.9 14%
Note: ∆ is the difference in percent respect to the NoCC climate change scenario.

horizon, as shown in Figure 4.18 on the facing page. In the Boost Hydropower scen-

ario, the share of electricity demand that can be supplied by hydropower ranges from

62% up to 86% in 2050, which shows that hydropower can remain a major generation

source even in the occurrence of a dry climate scenario, but not reaching the desired 90%

threshold. In the Constrain Hydropower scenario the share of electricity demand that

can be supplied by hydropower ranges from 29% up to 62% in 2050, which represents

a negative offset of around -30% compared to the estimated range for the Boost Hydro-

power scenario. In the Environment Priority case, the share of electricity demand that

could be supplied by hydropower is roughly between the Boost Hydropower and the

Constrain Hydropower cases between 43% – 66%. Table 4.6 summaries the findings for

year 2050, showing the variation of hydropower capacity and generation for all climate

scenarios and policy cases. The next paragraphs will further detail findings for each

policy case scenario and on electricity demand.

In this subsection, electricity portfolio configurations for a snapshot in 2050 have been

assessed. For electricity installed capacity, generation and demand pathways for the

entire modelling horizon 2017–2050 please see Figure 4.15 on page 202, Figure 4.16 on

page 203 and Figure 4.22 on page 214, respectively.

4.2.1.1 Boost Hydropower policy case

Generally, it can be observed in Figure 4.13 on page 200 that the Boost Hydropower case

results, which are intended to represent the Ecuadorian Government’s intended policy

trajectory in favour of hydropower until 2025, have the highest proportion of ROR and

DAM hydropower capacity. However, once the fixed DAM capacity is installed until

2025, in line with the current policies stated in the PME (MEER, 2017a), TIMES-EC then
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installs only ROR hydropower for the remainder of the time horizon (see Figure 4.17 on

page 204).

Even though this policy case is dominated by hydropower, its installed capacity con-

figuration does not change greatly depending on climate change scenario, as as can be

seen in Figure 4.14 on page 201. The configuration of the system remains a hydrothermal

one with the majority of the capacity corresponding to hydropower and complemented

mainly by gas-fired thermoelectricity. Despite the configuration of installed capacity not

varying much, generation share varies greatly depending on climate change scenario.

Interestingly, in the Dry scenario (where there is a significant drop in runoff), reduced

hydropower generation is supplemented with a significant uptake of gas-fired genera-

tion from 10 TWh in the Wet and NoCC scenario to 25 TWh in the Dry scenario.

Natural gas technologies are the ones buffering hydropower variability in the Boost

Hydropower scenario, even though its installed capacity does not vary much irrespective

of climate scenario (3.5 – 5 GW). This finding means that even in the occurrence of an

optimistic NoCC or Wet scenario, thermal capacity must still be deployed as a backup

for the dry season months (October to January), regardless of the amount of hydropower

capacity. The model prefers to install gas-fired capacity and have it be idle during most

part of the year, rather than deploying more hydropower DAM with storage capacity.

Given that hydropower with its low marginal cost is forced in this scenario, other non-

hydro renewables are displaced and there are only small shares of geothermal, wind and

PV that are deployed. However, an important share of geothermal generation is present

ranging from 1 to 5 TWh, unfortunately its capacity is capped at 0.9 GW according

to resource inventory. The model does not deploy further oil generation capacity or

biomass generation, CSP, or any fossil technology with CCS.

The Boost Hydropower policy case shows the highest capacity and generation val-

ues when compared to the the Constrain Hydropower and Environment Priority cases

across all climate scenarios (see Table 4.6 on the preceding page). Hydropower installed

capacity values is around 11 GW for all climate scenarios, but electricity generation

ranges significantly between 44.2 – 63.5 TWh in 2050 depending on climate scenario.

Generation in the Wet scenario is 6.8% higher when compared to the NoCC case (59.5

TWh), but falls considerably by -25.6% lower for a Dry scenario.

4.2.1.2 Constrain Hydropower policy case

The Constrain Hydropower policy case assumption prohibits the investment in addi-

tional large hydropower projects, representing a future where environmental and social

concerns limit their construction. This policy case is characterised by the highest level
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of investment (6 – 8 GW) and electricity generation with gas-fired thermal plants when

compared to the Boost Hydropower and Environment Priority cases. Although all cli-

mate scenarios under the Constrain Hydropower policy case make use of some hydro-

power resources of small and medium capacity (~7.5 GW), gas-fired thermoelectricity

is a dispatchable electricity generation technology that is less sensitive to climatic vari-

ations, and one that appears to effectively fill in the gap created by the restriction of

large hydropower capacity in this scenario (see Figure 4.13 on page 200).

The Constrain Hydropower case shows the potential for the leading role that natural

gas generation might come to play in Ecuador in the event that large hydropower de-

velopment is not possible and a dry climate scenario comes to pass (up to 45 TWh in

the Dry scenario, Figure 4.14 on page 201). While not explicitly modelled in our ana-

lysis, it is also worth highlighting that higher annual temperatures driven by climate

change could well have effects on plant cooling systems required for thermal electricity

generation (Sathaye et al., 2012).

In this policy case, TIMES-EC suggests to deploy geothermal capacity at its maximum

potential (0.9 GW) and wind capacity at double (0.5 GW) of what was deployed in the

Boost Hydropower policy case (see Figure 4.14, top). PV, CSP or biomass generation

are not selected at all in this scenario, which are totally displaced by highly flexible gas-

fired plants. Hydropower total capacity in the Constrain Hydropower policy is roughly

two-thirds of what was suggested for the Boost Hydropower policy and hydropower

generation share only reaches half in the NoCC and Wet scenarios (37 – 48 TWh) but

falls down to 20 TWh in the Dry scenario, which is the lowest share of hydropower in

any of the assessed scenarios (see Table 4.6 on page 205). TIMES-EC conclusively shows

that if large hydropower (>450 MW) is restricted, and there are no economic incentives

or polices to enforce the deployment of non-hydro renewables, the least-cost expansion

of the power sector is with gas-fired CCGT.

4.2.1.3 Environment Priority policy case

This scenario restricts the future deployment of large hydropower projects at the same

time as constraining cumulative emissions for the 2017–2050 period at the level of those

expected for the Boost Hydropower and NoCC scenario (53 GtonCO2e), which reflects

Ecuador’s current position on energy system decarbonisation. This policy scenario gen-

erally shows the highest total cumulative installed capacity (up to 18 GW) out of all

scenarios, as can be seen in Figure 4.12 on page 200. Compared to the Boost Hydro-

power and the Constrain Hydropower cases, the TIMES-EC model compensates for the

shortfall in electricity from large hydropower in the Environment Priority case by de-
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ploying a significant capacity of biomass electricity (1 – 3 GW) and solar PV (0.5 – 2

GW) capacity (see Figure 4.13 on page 200).

Given the larger shares of intermittent generation capacity from weather-dependant

renewables, the model also installs thermal generation capacity in a proportional fash-

ion in order to provide back-up to the system. Which is the typical paradox around

large deployment of intermittent renewables – the more climate friendly intermittent renew-

ables, the more flexible fossil fuel thermal back up (Schaeffer et al., 2012). Gas-fired electricity

capacity in the Environment Priority scenarios (5 – 6 GW) reaches levels lower than

the Constrain Hydropower policy case but higher than those of the Boost Hydropower

scenario. However, given that emissions are capped, a part of the thermal back-up has

to be with biomass. Generation from biomass (mainly through direct biomass combus-

tion plants with CEST) is the source of electricity generation that the model appears

to rely the most to buffer the possible negative variations in future hydropower output.

This can be seen very clearly in the Environment Priority Dry scenario where electricity

generated from direct biomass combustion plant almost equates to the output of hydro-

power (~20 TWh/y). Even though emissions level is capped in this policy scenario, no

CCS technologies are detected in the results, despite being available for the model to

choose.

Even though PV has a considerable level of installed capacity in these scenarios, it

only reaches a maximum share of 3% of electricity generated in 2050 (3 TWh/y). Taking

a closer look at solar technologies, it is verified that PV technology, both at the utility

scale and at the level of distributed generation is the preferred choice in the model. Con-

centrating Solar Power (CSP) type plants with several hours of thermal energy storage

systems are available in the model but are still not found to be economical to deploy

even in the most critical Dry scenario. Wind power resources above 7.5 m/s at 80 m are

deployed while geothermal potential is also installed at levels similar to those found in

the Boost Hydropower scenario (0.9 GW). The model still considers small and medium

ROR hydropower plant deployment as the least-cost source of electricity for mitigating

emissions with levels similar to the Constrain Hydropower scenarios (~ 8 GW).

This scenario unveils the potential importance of biomass generation for future deep

decarbonisation policy in Ecuador. Given that wind and geothermal potential are al-

most completely tapped in 2050, that solar PV may also reach its technical potential due

to intermittency issues, and that concentrating solar power and natural gas with CCS

appear to be prohibitively expensive to deploy, the main alternative left in the model

for a low-carbon scenario that has constraints on large hydropower plants appears to be

biomass generation. Biomass power could also have its own issues that merit further
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investigation. It should be highlighted that the biomass resource itself could be exposed

to climate vulnerabilities due to the effects of higher temperatures and extreme hydro-

logical conditions, such as both floods and droughts. The use of biomass for energy

generation also brings with it a broader set of social and environmental concerns, that

should be investigated in future research efforts.

4.2.2 Power system costs

The analysis using TIMES-EC finds that future policy decisions and variations in hydro-

power production associated with climate change have an uncertain impact on future

electricity system costs, namely average generation costs, marginal generation costs and

cumulative investment costs, which are presented in Figure 4.19 and Table 4.7 on the

following page. Regarding average generation cost, the Constrain Hydropower policy

case is the cheapest (4 – 6 US¢/kWh). Although as discussed ahead, the Constrain

Hydropower case may bring with it significant implications for future GHG emissions

and energy security. The most expensive option from an average generation cost per-

spective is the Environment Priority case (9 – 13 US¢/kWh), with a range that almost

doubles the one of the Constrain Hydropower case. The Boost Hydropower case has

a middle-of-the-road average generation cost compared to the other policy cases (6 – 8

US¢/kWh).

Average generation cost results indicate that the optimal power expansion pathway

from a least-cost perspective would be with a gas-fired dominated power matrix. How-

ever, these results consider a single trajectory for natural gas that considers current

prices at 3 US$/Btu and 5 US$/Btu in 2050 according to the reference scenario of the

US Energy Information Administration Outlook EIA (2017). This assumption of con-

stant and low gas prices will be challenged in Section 4.3 on page 220 by considering

the volatility that prices of natural gas could have. The Boost Hydropower scenario,

although more expensive would somehow mean a more robust approach in terms of

price, given that it is only slightly higher than the Constrain Hydropower costs and

would rely less on gas. The idea that large hydropower infrastructure offers the pos-

sibility of low average generation costs will likewise be challenged in Section 4.3 on

page 220 by introducing the uncertainty of large hydropower infrastructure capital cost.

The Environment Priority scenario stands out for having very high average generation

costs, given the fact that more expensive non-hydro renewables have to be deployed

to comply with emission constraints and also overcome the restriction to deploy large

hydropower. However, in the occurrence of a Wet scenario, the Environment Priority
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Figure 4.19: Average long-term electricity generation cost, average marginal cost and cumulative
investment for policy cases and climate change scenarios, for the period 2017–2050.
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Table 4.7: System cost summary for policy case and climate change scenario in Ecuador for
2017–2050

Climate scenario in 2050

Policy case NoCC Dry ∆ Mean ∆ Wet ∆

Average Boost Hydropower 7.7 6.7 -13% 8.1 5% 7.0 -9%

cost Constrain Hydropower 5.8 3.9 -33% 5.2 -10% 6.2 7%

(US¢/kWh) Environment priority 12.7 13.2 4% 12.5 -2% 9.0 -29%

Marginal Boost Hydropower 13.3 16.3 23% 12.8 -4% 11.7 -12%

cost Constrain Hydropower 16.5 16.7 1% 16.5 0% 16.4 -1%

(US¢/kWh) Environment priority 25.9 26.1 1% 25.8 0% 25.5 -2%

Cumulative Boost Hydropower 63.1 68.6 9% 64.6 2% 62.7 -1%

investment Constrain Hydropower 40.9 29.7 -27% 41.6 2% 42.4 4%

(bill. US$) Environment priority 58.5 64.4 10% 59.2 1% 55.6 -5%
Note: ∆ is the difference in percent respect to the NoCC climate change scenario.

cost falls to the levels of the Boost Hydropower scenario; meaning that if there is water

availability in the future, an intensive hydropower policy could have the same costs as

a more diversified generation portfolio with larger shares of non-hydro renewables and

only small and medium hydropower.

While the average generation cost is important for investors, the marginal cost is the

metric that will likely affect government policies the most (such as subsidies for clean

energy), as consumers are charged based on marginal costs. Average marginal costs

for the modelling horizon can be seen in Figure 4.19 (middle panel). It is observed

that marginal cost is largely impacted by the climate change scenarios only in the Boost

Hydropower policy case (12 – 16 US¢/kWh), in which part of the peak demand could

be covered with cheap hydropower, particularly in the occurrence of a Wet or NoCC

scenario. The marginal costs of the boost scenario are affected by the constraint that
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forces hydropower into the system – this constraint also has a price and it lowers the

marginal cost of electricity (similar to feed in tariffs for solar PV and wind generation

lowers the marginal cost of electricity market prices). Fluctuations in the marginal price

are then a consequence of the volume of low-cost hydropower electricity pushed into

the market. The cost of this forcing is reflected clearly in the cumulative investment cost

shown in Figure 4.19 on the facing page (right panel).

The marginal cost achieved under the Constrain Hydropower scenarios set, although

slightly more expensive than the Boost Hydropower scenarios, stands out for its narrow

range of variation under different climate conditions (all instances 16 US¢/kWh) and

accordingly appears to have a low level of climate vulnerability. In this gas dominated

power matrix, flexible gas-fired generation will be the technology of preference to cover

peak demands although some might still be covered by DAM hydropower. The marginal

costs found under the Environment Priority case have also a narrow uncertainty band

respect to climate scenario (see Figure 4.19, middle panel), but it is very high reflecting

the fact that expensive biomass generation is being used to cover demand peaks (look

at Figure 4.13 on page 200 to see the share of biomass generation in the Environment

Priority policy case).

The cumulative investment costs for the 2017–2050 period are also presented in Figure

4.19 (right). The Boost Hydropower policy case is found to generally be the most capital-

intensive option (around US$ 65 billion), the Constrain Hydropower case is generally the

cheapest option (around US$ 35 billion), and the Environment Priority case appears to

represent an intermediate point between the two (around US$ 60 billion). The Boost

Hydropower policy case combined with the Dry climate change scenario is found to be

the most capital-intensive pathways of all with total investment costs close to US$ 70

billion. This is because this occurrence would account not only for building new large

hydropower plants but also a requirement to install further thermal capacity to supply

electricity as a result of the risk of generation shortfalls due to dry conditions.

The Constrain Hydropower policy case combined with a Dry climate pathway presents

the least capital-intensive option (US$ 30 billion), as it is dominated by natural gas tech-

nologies with lower investment costs compared to hydropower and other renewables.

However, it should be noted that this scenario does little to keep Ecuador on a path

towards a low carbon future and has high emissions, as well as having implications

for energy security due to the requirement for future natural gas imports, as discussed

ahead. The Environment Priority policy case is the middle case – less capital intensive

than the Boost Hydropower approach while also offering a generation matrix that is

capable of maintaining low emissions consistent with Ecuador’s current NDC.
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4.2.3 Electricity and final energy demand

In line with the expected socio-economic development for Ecuador in the period 2017 to

2050, end-use energy demand increases between 58 – 68 TWh by 2050 as the projections

shown in Figure 4.20 on the facing page. Electricity demand grows accordingly and var-

ies depending on the electricity prices resulting from different policy cases and climate

scenarios. By 2050, electricity demand is highest in the Boost Hydropower police cases

(~65 TWh) and lowest in the Environment Priority policy cases (~60TWh). The feature

of being able to capture the reaction of the demand side to changes on the availability of

supply is one of the key advantages of using an integrated energy system model, such

as TIMES.

In general, the residential, industrial and strategic industry sectors are the largest

consumers of electricity by 2050, as can be seen in Figure 4.21 on the next page. By

2050, power demand in the Boost Hydropower policy case is 65 TWh, except for the

Wet climate scenario in which total power demand grows to 68 TWh. In this case, the

abundance of hydropower generation with low marginal costs incentives energy service

demands in the residential sector to switch from fossil fuel to electricity. Particularly

shifting water heating and cooking from LPG to electricity, which is the only possible

fuel switch in the residential sector.

The Constrain Hydropower shows demand in 2050 to be 65 TWh and there is no

differences for climate scenarios (see Figure 4.21 on the facing page). Most probably this

is due to higher marginal costs of a system with larger shares of gas-fired generation that

does not offer incentives to switch energy services to electric appliances. In comparison,

power demand of the Environment Priority policy case is lower at ~60 TWh by 2050 and

does show changes depending on climate scenario. In this case, the industrial sector

seems to react to higher marginal and average generation costs. The availability of runoff

causes the industrial sector to slightly use more electricity in direct heat demands in the

Wet climate scenario, than in the Dry climate scenario.

It is emphasised that while demand shifts and fuel switching according to electricity

(or energy) prices have been captured in this study, this in reality will depend on the

price elasticity of demand and the policies that are implemented to allow such changes.

Demand changes can be driven by energy price changes, but are mainly consequence of

energy efficiency improvements, structural changes to low carbon or zero carbon fuel/-

technologies, and reduction in energy-service demands itself (useful energy) (Li and Pye,

2018). This research is focused on the least-cost configuration of a hydrothermal power

system and therefore the analysis of how demand my evolve due to climate change
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Figure 4.20: Projected total electricity demand in Ecuador at scenario level
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Figure 4.21: Electricity demand per economic sectors in 2017 and 2050
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Figure 4.22: Electricity demand per economic sector in Ecuador for 2017–2050
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impacts and polices requires further research with modelling technics and assumptions

that can capture consumer behaviour more accurately, such as with the elastic demand

version of TIMES (Kesicki and Anandarajah, 2011).

Beyond electricity demand, the energy system model also allows to assess the whole

energy system in terms of its final energy demand. Figure 4.23 on the next page shows

final demand by sector and fuel, which in 2050 reaches almost 1,200 PJ, compared to 574

PJ in 2017. By 2050, the lion’s share of final energy demand corresponds to the trans-

port sector, followed by industry, which together consume around 70% of total energy

demand. The residential and commercial sectors see smaller increases due to popula-

tion growth stagnation and the implementation of energy efficiency policies, particularly

moving away from LPG to electricity for cooking. In terms of fuel, petroleum products

and gas dominate over 75% of final energy demand in 2050, the remaining being sup-

plied by electricity and a small share of biomass (see bottom panel of Figure 4.23). It

must be noted that the differences registered in the power sector due to policy case or

climate change scenarios translate only to small variations in final energy demand, this

is mainly because the electricity sector is projected to be only a small part of the energy

system by 2050 and that the largest consumers, which are the industrial and transport

sectors, mainly use fossil fuels to operate.

In addition, it can be seen in Figure 4.23 on the following page (bottom) that by 2050

gas imports play an important role not only for the power sector, but for the industrial

sector. Ecuador has only a relatively small level of proven natural gas reserves (10.9

billion m3) (OPEC, 2017) and there is not any infrastructure built or planned that would

allow the import of gas. Therefore the country would likely depend on foreign imports

of LNG, creating an energy security issue that leaves the country vulnerable to shortages

in the event that LNG import contracts cannot be secured in a timely fashion or in the

event that sufficient on-shore or even floating storage regasification units (FSRU) are not

built in due time. Energy security can also be negatively impacted due to the economic

impacts due to the volatility of international energy markets.

Opening the Ecuadorian energy matrix to natural gas would need political will and

significant investment, and a lock-in to natural gas might also be created in the power

sector if non-hydro renewables fail to deploy, as was shown in the Constrain Hydro-

power scenario (see Figure 4.13 on page 200). If the country fails to introduce natural

gas into the matrix, the needed base load generation would need to operate with liquid

fuels, e.g. heavy and residual fuel oil, as has currently been occurring until now in

Ecuador.
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Figure 4.23: Final energy demand by sector and fuel in Ecuador by climate change scenarios and
policy case in 2017 and 2050
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Figure 4.24: Cumulative electricity related GHG emissions for the period 2017–2050 per policy
case and climate change scenario.
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Note: The dotted line represents Ecuador’s NDC emission level (53 GtonCO2e).

It is noticed that climate change and policy cases for the deployment of hydropower

only have a slight influence on final energy. However, it can be seen that Dry scenarios

require more energy than Wet scenarios. In comparison, policy case impacts mainly the

balance between oil products and electricity, particularly detected in the Environment

Priority case.

4.2.4 Electricity related GHG emissions

Figure 4.24 shows cumulative electricity-related GHG emissions for the period 2017-

2050 for all modelled scenarios. The emission level of the Boost Hydropower policy

case and NoCC climate scenario is considered in this analysis as the expected value

associated with the Ecuadorian NDC (53 GtonCO2e). It can be seen that under the

Boost Hydropower policy case set, the impact of climate variation on emissions is small,

although there is a doubling in emissions under Dry conditions (100 GtonCO2e) and a

slight fall under Wet conditions (48 GtonCO2e).

The Constrain Hydropower policy case, where large hydropower is prohibited, im-

plies large increases in emissions as compared to the Boost Hydropower case. The most

critical case is in the event of a dry scenario where future climate change decreases run-

off availability in Ecuador, and where the government does not wish to (or is unable

to) pursue large hydropower projects. In this case electricity related GHG emissions

reach 350 GtonCO2e, representing almost a seven-fold increase compared to the level

implied in the current Ecuadorian NDC. Even when future climate variations result in a

wet scenario, emissions are almost four times larger (175 GtonCO2e) than the NDC. In
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general the Constrain Hydropower policy case causes a four-fold increase compared to

the Boost Hydropower policy case.

Overall, the model results indicate that it may become difficult to prevent emissions

from energy production increasing over time on a cost-optimal pathway without hydro-

power. This poses a trade-off between the social and environmental issues found at the

local level, and the efforts to mitigate GHG emissions at the regional and global levels.

As described earlier, an alternative set of pathways for maintaining emissions at the im-

plied NDC level without large-scale hydropower is explored – namely, the Environment

Priority policy case. However, this approach comes at a cost, as discussed previously.

4.2.5 Summary

This subsection has provided an assessment on the impact that different scenarios of cli-

mate change and power sector policy cases can have on Ecuador’s long-term energy sys-

tem. Results show that by 2050, hydropower will remain as one of the most cost-effective

and low emission technologies in the Ecuadorian power sector. However, constraints on

deployment and uncertainty around climate change impacts could hinder its ability to

contribute to supply electricity demand, the fulfilment of NDC targets and maintain low

power system costs. Across the climate change scenarios and policy cases, the share of

total electricity demand which can be supplied by hydropower varies significantly (29 –

86%), as can be seen in Figure 4.18 on page 204.

Selected key outcomes of this subsection are summarised below (while all key findings

are restated in the conclusion of this thesis in Chapter 6 on page 271):

• Based on the assumptions considered in TIMES-EC (see Section 3.2 on page 110)

and demand projections based on the Shared Socioeconomic Pathway 2 (SSP2),

total installed electricity generation capacity in Ecuador could increase by 15 – 18

GW by 2050, which amounts up to a threefold increase compared to current levels

(7.5 GW in 2017). Whereas the current portfolio is a hydrothermal one dominated

by large scale hydropower generation, the model shows that the future could hold

a number of different options according to the policy case and climate scenario

outcomes that may transpire. Electricity generation will need to increase by 70 –

78 TWh/y by 2050, which is up to a fourfold increase compared to current levels

(24.5 TWh in 2017). This can be seen in Figure 4.13 on page 200.

• Extensive deployment of hydropower only occurs when large-scale hydropower

potential in the Amazon can be tapped and is forced to enter the power system
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(Boost Hydropower policy case in TIMES-EC). In this case, around 12 GW of hy-

dropower would be installed by 2050 and other non-hydro renewables would be

prevented from entering the system. However, even with large hydropower ca-

pacity installed, significant shares of gas-fired generation must be deployed to

withstand the dry October to January season. This can be seen in Figure 4.14 on

page 201.

• Restricting the deployment of large hydropower has a potential lock-in for gas-

fired generating technologies, if non-hydro renewables fail to enter the system

(Constrain Hydropower policy case). Restricting the deployment of large hydro-

power combined with the occurrence of a dry climate scenario could make gas-

fired generation the main source of electricity by 2050 (> 70%), as seen in Fig-

ure 4.14 on page 201. This has implications for emissions – cumulative electricity

related GHG emissions for the 2017–2050 period could increase five to seven-fold

compared to the level implied in the current Ecuadorian NDC (53 GtonCO2e), as

seen in Figure 4.24 on page 217. In addition, a gas-fired power matrix can impact

energy security. Given Ecuador’s small natural gas resources, the Ecuadorian en-

ergy market would need to build new infrastructure and rely on foreign imports

of LNG.

• Ecuador can achieve its NDC without the need of deploying large hydropower

capacity, by deploying larges shares of biomass generation and small and medium

hydropower (Environment Priority policy case). Wind, geothermal and PV also

contribute more in this policy case, but biomass’s role combined with small/me-

dium sized hydropower is key to achieve the NDC when both emissions and large

hydro deployment are capped (see Figure 4.13 on page 200). However this solu-

tion doubles system costs and increases marginal cost considerably depending on

the price of biomass resources and technology, as can be seen in Figure 4.19 on

page 210.

• Results show that hedging strategies for Ecuador include the shift away from gas-

fired thermal generation and the uptake of non-hydro renewable energy. Table 4.8

on the following page shows a summary of the trade-offs found amongst the policy

cases explored in this subsection, namely regarding the configuration of the power

sector, its risk exposure to climate change, costs and GHG emission levels, as well

as the key issues for security of supply in each scenario.

Finally, it should be emphasised that the optimisation with TIMES-EC was made for

a given set of technical-economic characteristics that can change over time. Therefore,
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Table 4.8: Trade-offs between risks, costs and emissions for policy case scenarios for the
Ecuadorian power sector in 2050

Policy case

Boost
Hydropower

Constrain
Hydropower

Environment
Priority

Top technologies ROR, DAM, Gas Gas, ROR, DAM ROR, DAM,
Biomass

Risk to climate High Low Low

Risk soc./env. issues High Intermediate Low

Generation cost Intermediate Low High

Investment High Low Intermediate

GHG emissions Low High Low

Security of supply Good only if
precipitation

behaves as the
past or increases.

Good only if gas
imports are secured.

Good only if
biomass resource

can be tapped and
its vulnerability to
climate change is

low.

relative price changes and technological advances may change the optimal configuration

of the power sector for the Ecuadorian energy system. For example, adaptation in a less

energy-intensive scenario, e.g. with no strategic industries, would be configured differ-

ently and rely less on large deployment of hydropower. It should also be emphasised

that the impacts to which the adaptation alternatives were directed are a function of

the climate projections adopted and the hydrological and hydropower simulation mod-

elling results. That is, the impacts and least-cost adaptation alternatives described here

are subject to the uncertainties of global and regional climate models beyond energy

system modelling uncertainties. The following subsection will challenge the idea of de-

terministic and constant techno-economic conditions for the long-term by assessing the

impacts of introducing fossil fuel price uncertainty and capital cost overruns uncertainty

of electricity infrastructure in TIMES-EC with a novel Portfolio Theory approach.

4.3 cost-risk trade-off assessment with portfolio theory

The third research question of this thesis is: How does incorporating recurring uncertainties

such as the volatility of fossil fuel prices and the capital cost of electricity infrastructure impact

the investment portfolio for the power sector?4

4 The results of this chapter have been published in: Carvajal PE, Anandarajah G, Mulugetta Y (2019), A
portfolio theory approach to assessing uncertainties in power system planning - A case study for Ecuador.
Energy Economics (Under review)
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To answer this question, a financial Portfolio Theory approach was integrated into

the energy system optimisation model TIMES-EC. The methodology, which has been

detailed in Section 3.3 on page 159, assesses the recurring uncertainty of fossil fuel

prices and investment cost of electricity generation infrastructure. In addition, given

the significance of hydropower in Ecuador, climate change has also been considered in

this analysis as an additional source of uncertainty which could impact the foreseen

availability of runoff for hydropower generation.

This section will present the results in terms of the efficient frontier derived from the

trade-off between cost and cost risk, as well as the configuration of electricity generation

portfolios and the technologies that present robust long-term development pathways for

the power sector.

4.3.1 Long-term evolution of uncertain parameters

4.3.1.1 Oil and natural gas prices

To model alternative price paths of oil and gas, a Monte Carlo simulation approach gov-

erned by a multivariate Geometric Brownian Motion (GBM) price evolution model was

used (as explained in Section 3.3.2 on page 167). Inputs for the GBM model were sum-

marised in Table 3.24 on page 173 and correspond mainly to the probability distribution

functions for crude oil and natural gas prices, as well as their corresponding historic

correlation, which can be seen in Figure 4.25 on the following page.

Correlated Oil and gas prices were simulated for the period 2017–2050 through 1,000

Monte Carlo simulations, which can be seen in Figure 4.26 on page 223.5 Notice that they

do not follow a linear trend and rather follow different trajectories with seasons of high

and low prices, and sudden shifts of price change (similar to the historic reality of prices

for these commodities, see Figure 2.7 on page 85). Crude oil and natural gas prices have

been simulated respecting their historic price correlation (ρ = 0.74) and evolve around

their guided means during the modelling period – from 50 to 110 US$ per barrel for oil

and from 3 to 5 US$ per million Btu for natural gas. Figure 4.27 on page 224 shows the

correlated behaviour that has been captured between oil and gas prices for three selected

simulated paths, they follow their price trends through time. This highlights the strength

of portfolio theory for modelling recurring and correlated uncertainties, compared to a

traditional scenario analysis and even to a stochastic approach, in which the number of

5 The results for modelling are presented up to 2050, although TIMES-EC runs until 2085 to avoid issues
with end of the horizon investments. The simulated price paths beyond 2050 have been extrapolated until
2085.
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Figure 4.25: Crude oil and natural gas prices correlation matrix and probability distribution func-
tions for 1,000 Monte Carlo simulations

scenarios that can be incorporated is much lower because of computational restrictions

(Usher and Strachan, 2012).

4.3.1.2 Electricity infrastructure investment cost

Investment costs paths of hydropower, thermal plants, solar facilities and wind farms

were also modelled using 1,000 Monte Carlo simulations similar to that of oil and nat-

ural gas. Inputs for the GBM model were presented in Table 3.25 on page 174 and

consist mainly on the probability distribution functions of cost overruns for electricity

generation technologies. The probability distribution functions of infrastructure cost

overruns can be seen in Figure 4.29 on page 225 (left panels), where mean cost overrun

of hydropower infrastructure is significantly higher (70%) than for other technologies,

as well as having a much greater spread and a long tail.

Once the probability distributions for different technologies were defined, investment

cost trajectories were then generated for the period 2017–2050 through 1,000 Monte

Carlo simulations. Selected simulated electricity infrastructure capital cost paths can be

seen in Figure 4.29 on page 225 (right panels). Cost overruns are present for all tech-

nologies, with hydropower showing significant cost uncertainty compared to thermal

power plants, wind farms or solar facilities (see different scales of y-axis). Notice that

there is a reduction in the expected prices of PV and wind technology up to 2050 (re-

specting expected cost reductions BNEF, 2016), while hydroelectric and thermal plants
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Figure 4.26: Selected price paths for crude oil and natural gas modelled with 1,000 Monte Carlo
simulations. Absolute values (upper panel) and box and whiskers (lower panel).
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Note: The boxplot compactly displays the distribution of a continuous variable. The lower and upper
hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker
extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the
inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the
hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called
"outlying" points and are plotted individually.
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Figure 4.27: Correlated price paths for crude oil and natural gas
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Figure 4.28: Cost overrun probability distribution functions for electricity generation technolo-
gies

Hydroelectric plants Thermal plants Wind farms Solar facilities

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0

100

200

300

Cost overrun (%)

C
ou

nt

are considered to have reached technological stagnation and their capital costs are not

projected to reduce (Hirsch, 2003).

In contrast to the price paths simulated for oil and natural gas, the simulation of

electricity infrastructure costs evolves within a range of maximum and minimum cost

overrun deviation according to the sample of infrastructure cost overruns presented by

Sovacool et al. (2014a) (see Table 3.25 on page 174). The 1,000 scenarios of fossil fuel

prices and capital cost for power technologies for the 2017–2050 period were input to

TIMES-EC and were taken into consideration by the model according to the methodo-

logy described in Section 3.3 on page 159.
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Figure 4.29: Investment cost paths modelled with 1,000 Monte Carlo simulations.
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Note: Red dashed line in the left panel shows the mean cost overrun. Notice different scale for y-axis in
right panels. The boxplot (right panel) compactly displays the distribution of a continuous variable. The
lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The
upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where
IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers
are called "outlying" points and are plotted individually.
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4.3.2 Power sector portfolio

TIMES-EC was run for six levels of increasing risk level (from risk neutral to risk averse)

and three scenarios of climate change (Dry, NoCC and Wet), as was detailed in Table 3.27

on page 176. The integration of the risk of fossil fuel prices and capital cost for infrastruc-

ture causes installed capacity to range between 15 – 23 GW and electricity generation to

range between 72 – 83 TWh by 2050, as can be seen in Figure 4.30 on the facing page.

Dry climate scenarios are seen to require larger installed capacity than NoCC and Wet

climate scenarios, but generate less electricity than these two latter.

Figure 4.31 on the next page shows the installed capacity and electricity generation

for 2017 and 2050, and illustrates the model’s preferred options to reduce overall cost

risk for each climate change scenario. In general, results show that as the level of risk

moves from risk-neutral to risk-averse, the power system moves away from a generation

portfolio with gas-fired generation and ROR hydropower, towards one with more DAM

hydropower, geothermal, solar PV and wind. Hydropower maintains an important ca-

pacity share (>50%) for any scenario by 2050. Non-hydro renewables are therefore con-

sidered as a way of hedging against uncertainty, in particular solar PV and geothermal

capacity in the occurrence of a Dry climate change scenario. The variation range of

installed capacity and electricity generation can be seen more clearly in Figure 4.32 on

page 228, in which technologies are depicted separately and risk level is shown by a

gradient of colours – blue is risk averse while red is risk neutral.

Taking a look at the portfolio configuration in 2050 for the NoCC and Wet scenarios,

it is seen that these results are somewhat similar (see Figure 4.31 on the next page). In

these scenarios, total installed capacity falls as risk level increases driven my progressive

reduction of ROR hydro. However, this is replaced by an increase in hydropower DAM,

geothermal, PV and wind. The installed capacity of gas-fired electricity generation is

maintained at fairly constant levels and reduces only slightly with the risk level. Biomass

generation technology is only considered by the model for risk neutral levels in the Dry

and NoCC scenario and is replaced by larger shares of geothermal and PV as risk level

increases. No capacity additions of oil-fired generation are registered in any of the

modelled scenarios, nor CCS technologies.

The increase of DAM hydro to reduce risk in the NoCC and Wet scenarios might seem

counterintuitive, considering DAM hydro’s higher cost and risk compared to other gen-

erating technologies. This is an interesting finding, which is explained by the fact that

even though DAM hydro is more expensive than ROR hydro and they are considered

to have similar cost risk profiles, the model will prefer DAM over ROR because DAM
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Figure 4.30: Projected total electricity capacity (top) and generation in Ecuador at scenario level
for Portfolio Theory in TIMES-EC
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Figure 4.31: Installed electricity capacity and generation by 2050 per technology, risk aversion
level and climate change scenario
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Figure 4.32: Installed capacity (top) and electricity generation (bottom) by technology type,
policy case and climate change scenario by 2050
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hydro has storage capabilities that can help to replace risky gas-fired backup necessary

for an increased uptake of intermittent renewables (solar PV and wind). However no-

tice that the replacing of hydro DAM with hydro ROR is not proportional (Figure 4.32)

– roughly 1 GW of DAM replaces 2 GW of ROR. the deployment of intermittent PV

and wind is also accompanied by corresponding capacities of geothermal energy which

has been considered as firm capacity in the model. It is also noticed that despite the

increasing level of risk of natural gas prices, the model maintains a consistent minimal

share of natural gas capacity (~1 GW) for all risk levels.

The Dry climate scenario shows a different approach to power sector risk hedging by

increasing total installed capacity, as when compared with the NoCC and Wet scenarios

which show total capacity reductions. At the risk neutral level, the model chooses to

have a power system with large shares of gas-fired thermal electricity, similar to the

Constrain Hydropower policy case with Dry climate explained in the previous section.

As the risk level increases the model first replaces natural gas with hydropower ROR,

in an attempt to move away from risky natural gas resources with volatile prices. But

as risk level continues to increase further, the model suggests cutting back slightly on

hydropower ROR and replaces it with larger shares of wind, geothermal and solar PV

(~4 GW for the risk averse scenario), and a slight increase in hydro DAM. Given the

reduced availability of runoff, the model prefers installing ROR than the more expensive

DAM that would not have any water available to benefit from its storage capabilities.
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Figure 4.33: Installed capacity by risk level and climate change scenario in Ecuador for 2017–2050
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Figure 4.34: Electricity generation by risk level and climate change scenario in Ecuador for
2017–2050
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In terms of total electricity generation (Figure 4.31 on page 227, bottom), TIMES-EC

shows that by 2050, hydropower ROR will maintain an important share in power gener-

ation (with exception of the risk neutral Dry climate scenario in which the model picks

large shares of natural gas). The share of non-hydro renewables introduced into the gen-

eration matrix to reduce risk depends on the climate scenario. Non-hydro renewables

reach a maximum of 25% of generation share in the Dry climate scenario, while only

a 10% share in the Wet climate scenario. Geothermal and biomass generation are the

most important non-hydro renewable generation sources in the Mean and Wet scenarios,

while significant shares of PV and wind only appear in the Dry scenario case.

Table 4.9 on the following page summarises the findings for hydropower for year

2050, showing the variation of installed capacity and generation for all risk levels and

climate change scenarios. More water availability translates into less capacity of hydro-

power being installed, but more electricity being produced. The differences between the

NoCC, Wet scenarios and Dry scenarios can be captured in these results. The NoCC

and Wet scenarios seek to reduce installed capacity and hydropower generation as risk

level increases, which would seem logical as the model tries to move away from the un-

certain capital cost of hydropower. However, in the Dry scenario, as risk level increases,

installed capacity and electricity production from hydropower increase, because in a

scenario with lower water availability the other only reliable alternative for abundant

generation is gas-fired generation, which by the assumptions of this research would

have a worse cost risk profile in the long-term. Therefore the model prefers the risk of

hydropower than the risk of a power matrix dominate by gas.

In this subsection, electricity portfolio configurations for a snapshot in 2050 have been

assessed. For electricity installed capacity, generation and demand pathways for the

entire modelling horizon 2017–2050 please see Figure 4.33 on page 229, Figure 4.34 and

Figure 4.41, respectively.

4.3.3 Efficient frontier – cost v. risk

Figure 4.35 on page 233 illustrates the modelling outcomes when running the TIMES-EC

model for increasing levels of risk level aversion (confidence interval) and three scen-

arios of climate change (Dry, NoCC and Wet). Each marker represents a single optimal

generation portfolio in 2050 in terms of expected average generation cost (vertical axis)

and cost risk (UpAbsDev of cost, horizontal axis), which lie on their respective “efficient

frontier” according to each climate change scenario. This means that any portfolio that

is not on the efficient frontier is necessarily suboptimal (by the measures calculated in
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Table 4.9: Main results from the TIMES-EC model with Portfolio Theory extension for hydro-
power installed capacity and annual average generation in 2050

Risk level 2017 Climate scenario in 2050

NoCC Dry ∆ Wet ∆

(G
W

)

50% – Risk neutral 5.1 13.8 8.1 -41% 13.6 -1%

65% - 14.5 15.3 6% 13.7 -6%

75% - 14.4 15.5 8% 13.7 -5%

90% - 12.2 14.8 21% 12.0 -2%

95% - 12.1 15.7 30% 11.4 -6%

99% – Risk averse - 11.6 15.7 35% 10.8 -7%

(T
W

h)

50% – Risk neutral 24.5 67.6 31.0 -54% 72.3 7%

65% - 71.4 54.7 -23% 73.5 3%

75% - 70.9 55.1 -22% 73.6 4%

90% - 61.4 53.4 -13% 65.1 6%

95% - 60.7 56.5 -7% 62.6 3%

99% – Risk averse - 58.3 56.6 -3% 60.2 3%
Note: ∆ is the difference in percent respect to the NoCC climate change scenario.

this study). This type of curves are the typical results from studies that use Portfolio

Theory to assess the trade-offs between cost and cost risk in the power sector (Awerbuch

and Yang, 2007; Vithayasrichareon et al., 2015; Jansen et al., 2006). The idea they want

to transmit is that to reduce cost risk in a system, it is necessary to increase its cost. A

colour gradient has been used to represent increasing six levels of risk considered in this

study – from risk neutral (red) to risk averse (blue).

Analogously, Figure 4.36 on the next page shows the efficient frontier in terms of the

trade-off between average generation cost (vertical axis) and the considered level of risk

(or confidence interval of the probability distributions, horizontal axis).6 This figure

shows that when a broader measure of risk is taken into the account in the model, the

cost of the least-cost portfolio increases. In this case, the colour gradient represents

the cost risk that is reduced as a higher level of risk is considered in the model. The

generation portfolios with the lowest expected average generation cost occur for a Wet

climate change scenario, and the highest expected costs are for a Dry scenario (see Figure

4.35). Therefore, an interesting finding of our work is that the efficient frontier depends

strongly on the climate change scenario that is taken into account for Ecuador. Although

in the risk-neutral case (see Figure 4.36), all scenarios have similar expected average

generation cost regardless of climate change (~4 US¢/kWh), as risk level consideration is

6 Probability distributions for fossil fuel price and electricity generation costs were shown previously in
Section 4.3.1 on page 221
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Figure 4.35: Efficient frontier showing the trade-off between expected average generation cost
and cost risk
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Figure 4.36: Efficient frontier showing the trade-off between expected average generation cost
and risk interval (confidence interval)
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increased the climate change scenario defines how high the expected average generation

cost will have rise to reduce cost risk.

Focusing on the efficient frontier shown in Figure 4.35, the reduction of cost risk is first

achieved with a relatively small increase in expected additional cost. However, further

reducing cost risk comes at increasing cost. The efficient frontiers within each climate

change scenarios are steep, suggesting that beyond a certain point, varying the propor-

tion of generation technologies has minimal impact on the cost risk of a portfolio. Given

uncertainties around hydropower investment cost, operating large shares of hydropower

carries a similar level of cost risk. In general, expected average generation cost roughly

doubles/triples when moving from the risk-neutral to risk-averse level. Expected av-
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erage generation cost increases in the Wet climate scenario from 4 to 8.5 US¢/kWh, in

the NoCC from 4 to 11 US¢/kWh and in the Dry scenario it increases from 4 to 12.5

US¢/kWh.

The clear implication is that it is not possible to reduce portfolio cost risk without

having a negative impact on generation cost, thus the cost-risk trade-off is represen-

ted. Based on this technique, the suggestion is that risk averse policy makers that take

into consideration the full range of uncertainty into the model (99% confidence interval)

should expect their budgets to increase by around 100% but benefit from a small cost

deviation of US¢ 1 – 2.5/kWh. If the decision-makers are more risk tolerant and decide

to leave risk out of the model (50% confidence level), they could stay with their initial

expected least-cost budget of around 4 US¢/kWh; however, they should expect signi-

ficant deviation, up to additional 2.5 US¢/kWh for the Wet scenario, 4 US¢/kWh for

the NoCC scenario and even up to 7 US¢/kWh deviation for the case of a Dry climate

change scenario.

As shown in the previous subsection, the share of intermittent renewable energy

(namely, solar PV and wind) increases in the generation portfolio to hedge against risk.

Therefore, there will be an increasing need to curtail them and also to provide enough

reserve capacity back-up, causing the marginal risk that can be reduced per installed

unit of capacity of wind turbines or PV panels to drop, making it costlier to reduce

risk. This in part explains the convex and steep shape of the efficient frontiers presen-

ted in this study (Figure 4.35 on the previous page), owing to an ever-diminishing risk

reduction potential of non-hydro renewables.

The least-cost decisions that the model is making to reduce risk has to be translated

into a change in the investment and operational decisions for the technologies in the

power sector. The breakdown of the different cost components – investment, fixed costs,

variable costs and fuel costs, that change as TIMES-EC seeks to reduce cost risk is presen-

ted in Figure 4.37. In general the model invests in a more expensive system configuration

to move away from a riskier one (as was seen in the previous section in Figure 4.31 on

page 227). This basically shows the model choosing to increase its investment cost as to

reduce its fuel spending.

For example, in the Dry climate change scenario, the model invests in larger shares

of hydro ROR, expensive PV and expensive wind capacity, which mean an incremental

annual investment and fixed cost of the power system that reaches US$ 220 million per

year when compared to the risk neutral scenario. This investment in renewable energy

causes fuel and variable costs to reduce proportionally, although these cost savings do

not fully compensate the higher investment and fixed costs, and therefore the net total
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Figure 4.37: Breakdown of the additional cost of the six portfolio runs under scenarios of climate
change
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Table 4.10: Average incremental annual cost per risk level and climate scenario

Average incremental annual cost (US$ million/yr)

Confidence interval 50% 65% 75% 90% 95% 99%

Risk level Risk
neutral

−→ Risk
averse

Climate scenario
Dry 0 9 12 14 21 21

NoCC 0 6 9 12 14 17

Wet 0 5 7 8 11 14

annual cost of the power system increases by US$ 21 million (see black line in Figure

4.37). Table 4.10 summarises the net average annual incremental cost of the power sys-

tem per risk level and climate scenario. In comparison, for the NoCC and Wet scenarios,

the model makes lower investments to move away from a riskier portfolio, fuel savings

are consequently smaller, but net annual increases are still positive. There is an addi-

tional finding discovered here, which is that a Dry climate scenario is not only more

expensive in terms of cost risk (as seen in Figure 4.35 and Figure 4.36), but will de-

mand more capital intensive investments to hedge against risk, as when compared to

the NoCC and Wet climate scenarios. The availability of hydropower power is key to

determine the amount of investments required to minimise power system cost risk.
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4.3.4 Robust electricity generation portfolios

The approach used in this thesis internalises risk into the optimisation process of TIMES

and therefore it is possible to identify system configurations and technologies that are

robust to the uncertainties and the input assumptions. Robust technologies are under-

stood as ‘no-regret options’ for decision makers, i.e. investment in these technologies

is a prudent decision regardless of how the uncertainties play out (Labriet et al., 2015).

In this thesis, this means electricity generation technologies that TIMES-EC decides to

deploy, regardless of the recurring uncertainties of fossil fuel prices and electricity tech-

nology investment costs, and the long-term uncertainty of climate change.

Figure 4.38 on the facing page shows the evolution of installed capacity of individual

electricity generation technologies to assess robustness of investment decisions in the

mid-term or long-term. If the deployment or retirement of a technology is consistent

for all the assessed scenarios, it is considered to be robust (overlapping trajectories).

Otherwise, different paths to expand capacity indicate a technology that is susceptible

to uncertainty and the risk seeking preferences of the decision maker. A risk averse

decision maker would follow the capacity expansion plan for the Dry scenario and the

risk aversion level (represented with blue lines in Figure 4.38). A risk neutral (or risk

seeker) decision maker would opt for expansion plans for the Mean and Wet scenario

and a risk neutral level (represented in red lines in Figure 4.38).

Notice that TIMES-EC deploys the same value of hydropower ROR capacity up to

2025 regardless of the risk level or climate scenario (see last row in Figure 4.38), after

which further deployment depends on the desired risk level of the decision maker and

varies significantly, ranging between 6 – 12 GW by 2050. Lower capacity levels of ROR

hydropower are preferable if decision makers are risk averse (blue colour gradients for

lower capacity levels). In contrast to ROR hydropower, solar PV and DAM hydropower

shows that increased capacity levels are preferable for risk aversion (blue gradients for

higher capacity levels). All scenarios show that the reduction of oil-fired capacity in the

generation matrix is a robust decision (consistent pathway regardless of scenario). This

is somewhat similar to the installed capacity of gas-fired plants, which show a fairly

constant level of capacity expansion throughout all risk level scenarios.

Geothermal is not deployed in any scenario before 2025, after which their deployment

depends on the risk level and climate scenario and is suggested to be deployed to its

maximal potential in all climate scenarios by 2050. Hydropower DAM also shows a ro-

bust capacity deployment up to 2020, after which the model suggests larger capacities

for risk reduction between 2.5 and 4.5 GW in 2050. Figure 4.38 also informs about the
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Figure 4.38: Evolution of the least-cost installed electricity capacity for individual electricity gen-
eration technologies according to risk level and per climate change scenario
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positive, negative or inexistent correlations for technology deployment. For instance,

higher shares of PV, geothermal and hydropower DAM call for lower shares of hydro-

power ROR, natural gas and biomass, while wind and oil follow a fairly consistent

path regardless of risk level. It is also seen that hydropower DAM shows a more robust

pathway development compared to hydropower ROR, of course this depends of the feas-

ibility of continuing large-scale hydropower projects in the Amazon, where most of the

country’s potential lies (see Section 3.2.5 on page 124) – restrictions on large hydropower

deployment was not considered in the Portfolio Theory approach.

As can be seen in Figure 4.38, increased investment in non-hydro renewables (except

biomass technologies) provides an effective hedge against risks (in general blue gradi-

ents are seen for higher capacities and red gradients for lower capacities, particularly

for solar PV and geothermal energy). Investment in non-hydro renewables could there-

fore be considered a kind of “insurance” against potentially extreme future fossil fuel

prices, capital costs and detrimental (Dry) climate change scenarios. The additional cost

of investing now in non-hydro renewable technologies effectively insures industry stake-

holders against an uncertain future. In contrast, continuing to operate with large ROR

hydropower and an emissions intensive oil- and gas-fired generation portfolio, is likely

to significantly increase industry costs and cost risk. Notice that bioenergy has an oppos-

ite trend as compared to other non-hydro renewables due to the thermal plants having

higher cost escalations than wind and solar, as was shown in Figure 4.29 on page 225.

Although bioenergy itself has been considered cost-risk free in this analysis, the capital

cost overruns of bioenergy technology are sufficient for the model to move away from

this source. This would also be equivalent for gas-fired thermal plants, although gas

in this study is priced lower that biomass, and therefore the model shows a preference

for gas-fired than for biomass-fired thermal technologies. Considering lower prices for

biomass, could produce the model to show a larger preference on biomass to reduce

risk. However, biomass resources was excluded from the uncertainty analysis due to the

lack of historic data to assess the volatility of its price.

Figure 4.38 also shows that only when TIMES-EC does not take cost risk into consider-

ation (red colour gradients) that it suggests for the continued deployment of large ROR

hydropower and gas-fired thermal capacity. However, fossil fuel prices and technology

costs depend on events at a global scale. For example, if international communities work

on climate change and if all governments work together to the meet the Paris Agreement

commitments, long-term (2050) demand for oil and natural gas will decline, leading to

lower prices and a changing correlation among oil and gas prices. Moving away from

fossil fuels will cause heavy investments in cleaner technologies which will, in turn, lead
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to further reductions in the investment cost of hydro and non-hydro renewables, as has

been already experienced in the last few years (BNEF, 2016). This is why this research

has considered a broad uncertainty for fossil fuel prices and electricity generation tech-

nologies. The effects of the uncertainty has been captured by the model by suggesting

different development paths for each generation technology.

4.3.5 Electricity and final energy demand

The advantage of using an integrated energy system optimisation model is that the inter-

action of both electricity supply and demand can be captured. Figure 4.39 on page 242

shows projected electricity demand growth for the modelling horizon at the scenario

level. In general demand appears to reduce for drier climate occurrences and also due

to higher levels of risk level. This means that electricity demand is responding to price

changes in electricity supply due to risk reducing decisions, which make the price of

electricity more expensive and therefore cause a reduction in electricity consumption.

In addition it reacts to higher prices due to lower water availability that reduces the

amount of cheap hydropower in the mix. Demand is shown to evolve differently and

diverges towards 2050 with a range between 65 – 75 TWh, with drier scenarios demand-

ing less electricity ~65 TWh and NoCC and Wet scenarios having a greater and broader

range 68 – 75 TWh.

Figure 4.40 on page 242 shows a snapshot in 2050 of total electricity demand by the

sectors detailed in TIMES-EC. By 2050, the largest consumer is industry (traditional +

strategic), followed by the residential, commercial, transport and other sectors. Notice

that in the Dry - risk neutral scenario, power demand is lower (68 TWh) than the cor-

responding NoCC and Wet risk neutral scenarios (75 TWh), showing that demand is

reacting to high electricity prices in the occurrence of a Dry climate scenario with lower

hydropower generation. In this case the industrial sector cuts back electricity consump-

tion and switch to LNG in thermal processes. Nonetheless, most of the changes detected

in the demand side are due to the consideration of a greater level of risk in the model.

The NoCC and Wet scenario show the industrial and residential sectors reducing de-

mand as risk level increases. In other words, TIMES-EC suggest that a shift to electricity

in the industrial and residential sectors is appropriate from a least-cost perspective if

there is cheap hydropower generation available (availability of runoff) and there are low

to no cost overruns expected for hydropower infrastructure.

The shift away from electricity for higher risk levels causes the broader energy system

to switch to gas and petroleum products, which would be counter productive. Given
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that fossil fuel equipment is less efficient than electric ones, final energy demand in-

creases for higher risk levels. This is evidenced in Figure 4.42 on page 244 where total

final energy demand by sector and fuel in Ecuador by 2050 can be seen. It is seen that

the industrial and residential sector have increasing final energy demand, since they are

the ones moving away from electricity. The residential sector switches from electricity

to LPG, while the industrial sector switches from gas to oil products.

This effect can also be observed in terms of fuel use in Figure 4.42 on page 244 (bot-

tom), where the reduction of electricity (blue bar) reduces and there is an uptake in

oil products. Crude oil and petroleum products are cheaper than gas, therefore given

that gas and oil prices are positively correlated (similar risk level), the system prefers to

consume oil rather than gas in the energy system. Risk levels have been the focus of this

research and it has dedicated to include the risk of electricity generation technologies,

therefore most changes in system configuration are within the power sector.

It is highlighted that including risk into other energy sectors and demand-side con-

version technologies could produce different changes in the final energy mix, which is

suggested as an area for further research. Only two specific uncertainties have been

added in this analysis: climate change and cost overruns. But many more have not (e.g.

investment cost trends, bioenergy prices, fossil fuel resource uncertainty, consumer be-

haviour, etc.). Also, more generally, the portfolio approach has the shortcoming that it

needs to focus on costs. This means, for example, that climate still needs to be represen-

ted through scenarios, as opposed to including it directly in the decision making of the

model. Therefore, the same limitation applies to any other elements that would be reflec-

ted in the objective function through constraints, instead of costs (e.g. resource poten-

tials, demand projections, availability factors, construction delays). This all means that

where in reality there could be even great uncertainties, the model sees good, risk-free

hedging opportunities (or leave critical choices for the decision maker – what climate

scenario to follow).

The results of this section should be considered within the scope of the analysis

defined as the motivation of this work - i.e. to assess the least-cost expansion of a

hydropower-based power system. It serves as an alternative set of scenarios to other

power expansion exercises that would only consider a least-cost approach, without tak-

ing into consideration the probability of cost overruns of technologies and fossil fuel

prices. However, the underlying assumption is that both capital cost and climate change

are the most important uncertainties when looking into the deployment of large hydro-

power infrastructure and rule out the fact, for example, that unforeseen construction

time delays of hydropower infrastructure could have an impact on the way that the
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power system evolves. In a sense, this is why the “No Large Hydropower” scenario was

assessed in the previous set of scenarios, in which a cap on hydropower deployment

was set to see how the system reacts. However, there is a limitation also to include prob-

ability of construction delays in the portfolio theory approach, because lead time is not

a cost component of the objective function, although one could argue that cost overruns

somehow factor-in the cost overruns of delayed projects.
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Figure 4.39: Projected total electricity demand in Ecuador per climate scenario and risk level
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Figure 4.40: Total electricity demand by demand sector per risk aversion level and climate change
scenario in 2017 and 2050
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Figure 4.41: Electricity demand per economic sector in Ecuador for 2017–2050
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Figure 4.42: Final energy demand by sector and fuel in Ecuador by climate change and risk level
in 2017 and 2050
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4.3.6 Electricity related GHG emissions

Figure 4.43 shows cumulative electricity-related GHG emissions for the period 2017–2050

for all modelled scenarios. The emission level of most scenarios is lower than the NDC

level (53 GtonCO2e), except for the risk-neutral cases in which the lack of consideration

of fossil fuel price risk causes the model to choose gas as the least-cost generation op-

tion. In the Dry - risk neutral scenario, emission levels almost quintuply (250 GtonCO2e)

when compared to the NDC level (see Figure 4.31 on page 227 which detailed power

generation for all scenarios). It is noted that, at first, increasing risk levels reduces emis-

sions abruptly as the power system moves away from gas-fired generation. However,

as risk level increases further, emissions increase slightly due to the need to uptake

gas-fired thermoelectric plants to back-up intermittent non-hydro. Hedging risk in the

model mainly translates in replacing hydropower with other non-hydro renewable tech-

nologies, therefore beyond the initial reduction of emissions, increasing the risk level

further does not to reduce emissions greatly.

Figure 4.43: Electricity related GHG emissions for the period 2017 – 2050 per risk level and
climate change scenario.
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4.3.7 Summary

The results presented in this subsection have demonstrated that different perceptions on

risk can lead to different least-cost electricity generation portfolio choices. It has been

conclusively demonstrated that, for the Ecuadorian power system, hedging against fossil

fuel and power technologies cost risk means moving from a power system with gas-

fired thermal generation and ROR hydropower, towards one which is more diversified

and balanced with more DAM hydro, geothermal, wind and solar PV (see Figure 4.31

on page 227). However, reducing exposure to cost risk implies increasing system cost,
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which is the main argument of financial Portfolio Theory approaches that seek to capture

the trade-off between cost and cost risk by defining an efficient frontier. This efficient

frontier was assessed and presented in Figure 4.35 on page 233, showing the increase

in average generation cost of the power system required for cost risk reduction and the

impact that impact that different climate change scenarios has in the trade-off.

Selected key outcomes of this subsection are summarised below (while all key findings

are restated in the conclusion of this thesis in Chapter 6 on page 271):

• For all assessed scenarios (six levels of risk for three climate change scenarios),

hydropower maintains an important capacity share (>50%) by 2050. ROR hydro-

power installed capacity ranges broadly (between 5 GW and 12 GW by 2050) with

lower shares considered to be favourable for a risk averse portfolio, however the

model suggests that higher shares of DAM hydro should be taken into consid-

eration for risk reduction, although in smaller range (between 2.5 and 5 GW).

This can be seen in Figure 4.31 on page 227 and Figure 4.32 on page 228. Gas-

fired thermal electricity is consistently reduced to hedge against gas price volatil-

ity, while non-hydro renewables considered are deployed to hedge agains hydro

ROR cost overrun uncertainty, in particular solar PV (4 GW), wind (1 GW) and

geothermal capacity (0.9 GW) in the occurrence of a Dry climate change scenario.

• It is not possible to reduce portfolio cost risk without having a negative impact

on generation cost, thus the cost-risk trade-off has been captured with the integ-

ration of a Portfolio Theory approach in TIMES-EC. At first, the reduction of risk

is achieved with a relatively small increase in expected additional cost. However,

further reducing risk comes at increasing cost. In general, expected average gener-

ation cost roughly doubles when moving from the risk-neutral to risk-averse level

(see Figure 4.35 on page 233). Risk hedging decisions translate into investment

and operation decisions. A Dry climate scenario will require of more capital in-

tensive investments (more PV and wind) to hedge against fuel cost risk, as the cost

breakdown of cost hedging decisions evidenced in Figure 4.37 on page 235.

• Electricity demand responds to risk-level and climate change scenario. Electricity

demand is lower for dry climate scenarios and for high risk levels, thus showing

its response to increase in electricity price due to high cost risk-hedging strategies

and lower water availability that restricts cheap hydropower generation. Figure

4.40 shows electricity demand by sector, where demand changes are specifically

experienced by the industrial and residential sectors. Moving away from electricity

translates into an uptake of less efficient fossil fuels, and therefore an increase in



4.3 cost-risk trade-off assessment with portfolio theory 247

final energy demand, mainly due to the switch from electricity to gas and oil

products. This switch is shown in Figure 4.42 on page 244 where final energy

demand by sectors and fuels was shown.

• Emission levels for risk hedging scenarios are lower than the implied NDC level

(53 GtonCO2e) in all scenarios, except in risk-neutral levels in which higher shares

of gas-fired thermal electricity is allowed. Figure 4.43 on page 245 showed how

emission levels change with the inclusion of cost risk in the model. A risk neutral -

Dry climate could raise emission levels up to five-fold (250 GtonCO2e). Therefore

showing that if risk is not considered and a dry occurrence comes to happen, the

system could lock-in to gas-fired generation.

Finally, according to the findings of this subsection, a risk-hedging strategy for the power

sector would try to follow the installed capacity suggestions for the risk averse case

(99% confidence interval). Table 4.11 on the following page shows the list of generations

technologies, their suggested installed capacity ranges by 2050 and the trend they should

follow for risk hedging against climate change uncertainty, fossil fuel price volatility

and capital cost overruns. This was elaborated based on the results of Figure 4.32 on

page 228 and Figure 4.38 on page 237 that showed the installed capacity trajectories for

generation technologies. The ranges of capacity should be taken as suggestions for the

configuration of generation portfolios that are least-cost, however the trend direction

should gives and idea of the preferred value for a more robust portfolio.

The broader considerations of assumptions, modelling technics and other relevant

issues of the findings will be discussed in the next chapter.
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Table 4.11: Risk-hedging electricity generation portfolio for Ecuador in 2050

Technology Capacity
range

Trend for
risk-hedging

Comment

Hydro DAM 2.5–5 GW ⇑ Hydro DAM allows the system to move
away from risky hydro ROR and reduce the
need for risky gas-fired backup.

Hydro ROR 5–12 GW ⇓ Hydro ROR varies greatly with risk level
and climate occurrence. Lower shares are
preferred for risk hedging when they can be
replaced by solar PV.

Oil 0 GW ⇓ Oil-fired generation phase out is suggested
in all assessed scenarios.

Gas 1–5 GW ⇓ Gas-fired generation is preferred at low
levels (~1 GW), except in the case of risk
neutrality and a Dry climate.

Biomass ~0.2 GW ⇓ Only good for small levels of risk-hedging
in any climate scenario.

Geothermal 0.9 GW ⇑ Install at full resource limit if possible in the
Dry and NoCC climate scenarios.

Wind 0.5–1 GW ⇑ Higher capacities in the Dry climate
scenario.

Solar PV 1–4.5 GW ⇑ PV highest hedging potential is in the Dry
climate scenario when combined with larger
shares of Hydro DAM for back-up.
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D I S C U S S I O N , L I M I TAT I O N S A N D F U T U R E W O R K

5.1 discussion overview

The previous chapter presented the results from the three research questions of this PhD

thesis, which are restated below:

1. How broad is the uncertainty of hydro-climatic variables portrayed in a large en-

semble of climate projections and the impact on the availability of runoff for hy-

dropower generation?

2. How does hydropower output variations due to climate change impact the long-

term least-cost power system development pathway?

3. How does incorporating recurring uncertainties such as the volatility of fossil fuel

prices and the capital cost of electricity infrastructure impact the investment port-

folio for the power sector?

Based on these research questions, the analyses undertaken in the previous chapter has

delivered insights on the magnitude of impacts of climate change associated to precipit-

ation, runoff and hydropower generation availability. Including also an analysis on how

this issue evolves under different policy cases and when other recurring uncertainties

are considered in an energy system model.

It was specifically shown that even under a dry climate change scenario, hydropower

will maintain its role as an important source of electricity generation in Ecuador. How-

ever, in the long-term, a generation matrix with larger shares of non-hydro renewables

can help reduce capital investment and reduce risk of cost overruns of the generation

portfolio. The study also showed that the deployment of gas-fired thermal generation is

needed for back-up and that alternatives such as biomass and geothermal energy can be

considered, which are less risky options with lower variable costs than gas-fired options.

This contrast between a gas-dominated power matrix and the more diversified matrix

249
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with larger shares of non-hydropower alternatives has resulted in contested views re-

garding the evolution of capacity expansion for the long-term in Ecuador.

As with other modelling exercises, these findings need to be considered within the

context of assumptions, and the modelling approach itself has some limitations. Because

different assumptions present serious implications for determining the least-cost system

configuration, a number of influencing factors are further investigated in this chapter

and used as a way to frame the discussion around limitations and future work. This

chapter discusses the following issues related to each one of the research questions:

1. Hydrological and hydropower modelling under long-term climate change projec-

tions,

2. Modelling of the power sector in energy system optimisation models,

3. Portfolio theory to assess recurring uncertainties in energy system optimisation

models.

A number of limitations on generalisation of this work are also provided at the end of

this chapter.

5.2 hydropower modelling under uncertain climate change

5.2.1 Climate change scenario definitions

This study has used a large ensemble of 40 GCMs to characterise the uncertainty space

of climate change and used the mean and standard deviation of the ensemble as a

proxy for the definition of hydrological scenarios. This decision will have down-stream

implications for all subsequent modelling steps, i.e. hydropower simulation and energy

system optimisation. All the results obtained with the chain of models used in this

thesis, have the assumptions of climate change scenarios as their underlying premise.

While the mean and standard deviation has been used as a statistical measure of

GCM ensemble uncertainty. It should be mentioned that there is no statistical fix in

ensemble results and one should not confuse the range of diverse outcomes across an

ensemble of model simulations (projections) – such as the one used in this study from

the CMIP5 – with a statistical measure of uncertainty in the behaviour of the Earth. As

Smith and Petersen (2014) state – This does not remotely suggest that there is no information

in the ensemble or that GCM models are worthless, but it does imply that each dimension of

reliability needs to be assessed.
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In the case that ensemble results are to be considered as a measure of probability, the

necessary condition would be that the integral of P (x|I) is equal to 1. Thus, meaning

that the reality of the Earth’s state is actually captured by one of the ensemble scenarios.

The distribution of a climate ensemble is not a true probability distribution but instead

an expert judgement with respect to potential future climatic conditions (Moss et al.,

2010) and therefore assigning probability statistics to them might be misleading (Taylor

et al., 2012; Collins et al., 2013). Nonetheless, for the purpose of analysing impacts of

climate change, GCMs are still the only credible tools currently available to simulate

the physical processes that determine global climate (Parkinson and Djilali, 2015). The

recent abundance of GCMs and growing number of future concentration scenarios calls

for new methods and approaches that shed light on new methods and approaches to use

this information on studies that assess climate change impacts on natural and human

systems, especially when there is a need to parameterise the probability space.

5.2.2 From hydrological modelling to hydropower simulation and to availability factors

5.2.2.1 Hydrological modelling

The simulation of key hydrological indicators, such as river runoff, driven by various

climate projections from GCMs brings a number of limitations associated with making

such projections (Kundzewicz et al., 2018). With regards to the projections of runoff,

there are two sources of uncertainty that result in the failing to capture the behaviour

of the river with high degree of precision: the hydrological model and the data used

for its development. Different hydrological models can be applied to study the impacts

of climate change on hydroelectric generation. Physical hydrological models are data

intensive, so they are limited to small and well ’measured’ catchment area projects (Har-

rison and Whittington, 2002). As a whole hydropower system was investigated in this

thesis, which is spread out in larger and different basins; the application of hydrological

physical models becomes more complicated. Therefore, the use of a statistical or concep-

tual model may be better utilised, which loses in precision but gains in the amount and

size of basins that can be considered. According to De Lucena et al. (2009), the decisive

criterion to select the hydrological model depends on the size and geographical disper-

sion of the hydropower system. It should be noted that, unlike studies of hydrological

impacts, where the different components of the hydrological cycle are the object of final

study; climate change impact studies on hydroelectric systems are focused on energy.

Thus, a good fit of the model and the production of results that can be applied to the
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energy modelling is more important than to describe in detail the local hydrological

cycle. Ultimately, the energy model itself, its characteristics and its data requirements

are crucial factors in choosing the hydrological model.

Historic inflow values provided by the Ecuadorian power grid operator (CENACE),

which were used to assess the performance of the hydrological model, may be subject to

human or instrumental error. CENACE uses only one gauging station per hydropower

station instead of multiple ones. This does not allow to perform a convergence analysis

for inflow data. Historic inflow data uncertainty can only be overcome by better on-site

measurements with more gauging stations that comply with international standards

and are periodically calibrated and validated, such as the quality tests suggested by the

Global Runoff Data Centre (GRDC, 2016).

Regarding temperature and precipitation datasets from the University of Anglia Cli-

mate Research Unit (CRU), it must be mentioned that these are only approximations

based on the interpolation of data from disperse weather stations in the region (only

seven identified for Ecuador), whose data may contain discontinuities or be poorly cal-

ibrated (Harris et al., 2014). Reliance on historic hydroclimatic data from the CRU and

future climate data from KNMI may also result in incorrect information for regions

with complex topography where there are sharp changes in rainfall and runoff over

short distances, such as for the Tropical Andes (Buytaert et al., 2009). Derived poten-

tial evapotranspiration values computed by CRU using the Penman-Monteith approach

also bring an additional uncertainty source; however, using a more advanced method

would not have necessarily helped to reduce uncertainty since it would have depended

on other variables provided by the same CRU dataset.

The use of the delta method to estimate the percentage changes of climate variables

compared to a historic baseline entails assumptions about the nature of these changes,

including a lack of variability of spatial patters (Roy et al., 2010). The lack of meteor-

ological data and high variability of the climate system in the Tropical Andes region

complicate the use of more complex downscaling methods (Buytaert et al., 2010) and us-

ing downscaled information can be no more reliable than the climate model simulation

that underlies it. As stated by Taylor et al. (2012) – more detail does not automatically imply

better information. However, future development of Regional Climate Models (RCMs) for

the Tropical Andes and South America in general would help refine the calculations at

the basin level. Structural uncertainty associated with the hydrological model could not

be assessed, since only one model was developed in this study. The analysis of struc-

tural uncertainty of several hydrological model applied to the Tropical Andes could be

a future area of research.

http://www.cru.uea.ac.uk
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It is also mentioned that ceteris paribus was assumed in this study in terms of other hy-

drological variables e.g. land use and vegetation cover. The change of these variables can

cause erosion and consequently alter sedimentation processes, which can substantially

affect the operation and life-span of hydroelectric dams. Sediment entrapment within

reservoirs, has been shown to gradually decline storage capacity and hence power pro-

duction over the years (Wisser et al., 2013). The use of an additional model, e.g. a

semi-distributed model (Ho et al., 2015), would allow inter-comparison of hydrological

models and also include hydrological parameters such as sediment yield and land-use

change in an explicit manner. All such aspects should be considered in order to draft

a compelling and comprehensive study of the greater implication of water resource

management on hydropower generation; this is also recognised as an area for further

research. However, for the case of Ecuador, most of the assessed capacity and future hy-

dropower potential in Ecuador are on the eastern slopes of the Andes facing the Amazon

flood plain (Figure 3.11 on page 125) where currently less than 4% of the country’s pop-

ulation lives meaning that unregulated river flow would remain as such in this region

(INEC, 2017).

5.2.2.2 Hydropower simulation

In this analysis, we have simulated the output of hydropower stations in isolation and

considered that they work at maximum capacity when water is available. However, the

operation of dams and hydropower stations depend not only on the availability of water

but also on the interaction with the rest of the power system and other water demanding

sectors that can affect runoff in the long-term, e.g. upstream water use for agricultural

or industrial purposes. System-wide impact studies that assess the nexus of water not

only with energy, but with agricultural and industrial demands are of interest in regions

that still have growing populations and ambitions for heavy industrialisation. The study

of Spalding-Fecher et al. (2017) on the impact of climate change on hydropower in the

Zambezi river basin, gives likely importance to the water model (WEAP) to character-

ise future water demands as to the energy system model (LEAP) used to estimate the

increase or decrease in hydropower production. Similarly, the study of van der Zwaan

et al. (2018) assesses the prospects of hydropower for Ethiopia from two perspectives:

energy (TIAM-ECN energy model) and hydrology (RIBASIM model), looking for conver-

gence between water demand and ambitious hydropower expansion plans in Ethiopia.

Future work could similarly endeavour in soft-linking TIMES-EC with a more advanced

hydrological model that captures not only hydrology but future water demands and

management from other sectors.
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The calculation of availability factors, which were derived from the results of the

hydropower simulation model are the key inputs to characterise the operation of hy-

dropower plants under different climate scenarios in TIMES-EC (Table 4.5 on page 194).

These availability factors were calculated by simulating Ecuador’s ten largest hydro-

power stations (see Table 3.1 on page 104), and assessing their sensibility to changes in

runoff. It was assumed that the availability factors of these largest systems are repres-

entative for other existing hydropower systems and in general represent the expected

availability of future deployments in each corresponding river basin. However, assum-

ing that the operation of future hydropower projects would emulate the operation of

existing ones, was a necessary rougher assumption due to the uncertainty around the

definitive size of new projects, their entry date and how these new developments might

operate. This assumption was necessary given the lack of information regarding future

hydropower systems in Ecuador.

The availability factors obtained with the hydropower simulation model were given

for different climate scenarios. According to the CMIP5 projections, all GCM results are

equiprobable and therefore the occurrence of a Dry scenario is as likely as the others.

Even if, on average, the hydropower system is able to offer a greater amount of energy

in the NoCC, Mean and Wet scenarios, its design should consider the occurrence of a

critical Dry hydrological scenario. In addition, although in the operation of the system

it is possible to perform actions aimed at adaptation (such as reservoir management, en-

ergy transmission between subsystems and thermoelectric complementation), the power

system depends firstly on a robust electrical system, which implies an installed capacity

that minimises the probability of occurrence of deficits. Long-term expansion planning

of the power sector and climate change impact studies should pay special care to the

GCMs selected under what concentration scenario and make sure that both positive and

negative precipitation trends are assessed, despite what the ensemble mean indicated of

the region or the country.

Complimentary future research of extreme events regarding changes in frequency, in-

tensity and duration of water cycles is also suggested to be included in not only hydro-

power energy modelling but hydropower infrastructure modelling. El Niño Southern

Oscillation (ENSO) (Ward et al., 2014), which has large impacts in this region, could

help to define a better picture of vulnerability hotspots where hydropower and other

renewable energy sources are critically exposed to inter-annual climate variability. The

study of Yi Ng et al. (2017) assessed the influence of ENSO on global hydropower pro-

duction with an ex-post analysis of 1,593 power plants. Their results showed that more

than one third of simulated dams exhibit statistically significant annual energy produc-
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tion anomalies in at least one of the two ENSO phases of El Niño and La Niña. The

study of disruptive extreme events, however, has an inherently different approach to the

one studied in this thesis, in which relatively consistent long-term trends are analysed.

The analysis of disruptive events, e.g. the catastrophic consequences of flooding and

droughts, needs a short-term analysis with shorter time-slices that allow to assess how

the energy system reacts to sudden intra-annual events. Future research could combine

both long-term climate trends analysis with a selection of scenarios in which extreme

events disrupt the availability of hydropower generation.

5.3 modelling of the power sector in energy system optimisation mod-

els

The results obtained with the TIMES-EC model indicate that the least-cost configuration

of the power system depends on the availability of hydropower subject to climate occur-

rence, the long-term policy and the level of risk included in the analysis. For the case of

restrictions to hydropower deployment (Constrain Hydropower and Environment Prior-

ity policy cases), this would lead to the need for a higher installed capacity based on

other sources, notably natural gas, but also geothermal, biomass and PV generation. On

the other hand, if full hydropower potential is available (Boost Hydropower policy case),

some part of the additional capacity installed (mostly natural gas) to buffer hydropower

ROR variability would be idle part of the time, being used only in critical hydrological

moments (see Figure 4.13 on page 200). In the next paragraphs we discuss the implic-

ations that the uptake of different generation technologies has within the limitations of

their representation in TIMES-EC.

5.3.1 The complementarities of hydropower with intermittent PV and wind

The results of TIMES-EC show that solar PV and on-shore wind could be important

technologies to obtain a low emission matrix (Environment Priority case, Figure 4.13

on page 200) and also a low risk one (Risk averse scenarios, Figure 4.31 on page 227).

However, we note that a limitation of our study is the time-scale resolution used in

TIMES-EC (see the time slices definition in Section 3.2.4 on page 119). This has two im-

plications for the results: i) the value of intermittent renewable energy such as solar PV

and wind could be overestimated, and ii) the full value of reservoir hydropower flexibil-
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ity is not captured and therefore its complementarity with these intermittent renewables

is underestimated.

An increased share of intermittent renewables will cause hydropower assets to move

into an intermediate or peaking role, and create new dynamics for the operation and

short-term planning of a power system that seeks to benefit from the complementarities

between hydro and intermittent renewables generation. It is likely that these plants,

particularly hydropower with reservoir, will need to cycle (ramp up/down and start-

up/shut-down) more frequently. However, the potential for the existing hydropower

assets in Ecuador to operate in this fashion is likely to be varied. A recent analyses

carried out by da Cunha Saporta (2017) regarding the flexibility of hydropower plants

with dams in the Brazilian context, has concluded that reservoir hydropower’s high

theoretical flexibility is constrained by the several other uses of water (fish hatchery,

transport by river, recreation, flood control, etc.) and by the operation of hydropower

plants in cascade mode. This poses the question of – How flexible reservoir hydropower

really is?

A combination of different availability factors has been used to characterise the value

of inter-seasonal storage capacity of reservoir hydropower (see Section 3.2.5 on page 124),

however the representation at the intra-day time scale might be limited (morning, day

and peak). A finer time scale resolution at the hourly level might show an increasing

amount of reservoir hydropower deployment necessary to cover instantaneous peak de-

mand and to provide the required flexibility to compensate for the intermittency of vari-

able renewable energy generation. However this comes at an increasing computational

effort and time in the model runs. This warrants further analysis of the Ecuadorian

power system with operational and dispatch models linked to long-term modelling ex-

ercises (soft-linking), particularly for the cases of drier climate scenarios (see examples

of soft-linking studies: Deane et al. 2012; Soria et al. 2016; Fichter et al. 2017).

Soria et al. (2016) discussed on what is the appropriate level of detail in the repres-

entation of the power system and the trade-off between simplicity (in an energy system

model – MESSAGE) and complexity (dispatch model – REMIX). They argue that if the

objective is to ensure consistency and reliability between optimal capacity expansion

and optimal power system dispatch, then soft-linking expansion with dispatch models

is a good option that does not increase computational effort too much (in comparison to

hard-link model coupling). On the other hand, if the objective is to plan the long-term

capacity expansion of the power system and to understand its impacts on the entire

energy system, then a reasonable representation of the power system within the energy

system model is sufficient. Thus, considering that the latter is the objective of this thesis,
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it is believed that the applied methodology and the time slice resolution to represent the

Ecuadorian power system in TIMES-EC is adequate.

In TIMES-EC, six river basins have been depicted to capture electricity generation,

both with regard to the potential and runoff seasonal patterns, which are quite differen-

tiated throughout the Ecuadorian territory (see Figure 3.11 on page 125 and Figure 3.13

on page 127). This has highlighted which regions would be responsible for hydropower

generation in the future, and gives an idea where transmission systems would need to

be expanded. The regional differences in the impacts of climate change on hydroelectric

generation means that a greater integration of the Ecuadorian electrical system would

be necessary, allowing a greater energy trade between different regions of the country.

This would also need to include an analysis of the regions in the country in which fu-

ture solar PV, wind, biomass and geothermal potential is available and is likely to be

deployed.

The results of TIMES-EC do not include transmission constraints, which if considered,

might considerably reduce the firm and average energy of the system as a whole. Thus,

a further enhancement to the model would be to explicitly represent the national grid

(SNI) as to assess the future investment in the country’s transmission capacity to benefit

from further electricity exchanges between regions and complementarity of multiple re-

newable energy resources. Just as hydropower producing basins were represented, non-

hydro renewable energy producing regions would bring additional geo-spatial detail to

the model. However, given that in Ecuador there is effectively only one transmission sys-

tem, which integrates all generation sources, having a single-region model is considered

to be a valid assumption.

It is also mentioned that climate change can affect solar PV and wind technologies,

however this thesis has not considered their vulnerability to climate change. This has

to implications for the results: (1) Climate related uncertainties are at the core of the

thesis and assuming that a range of technologies do not suffer from such uncertainties

makes them “risk free” alternatives in this context (when in reality they are not). This,

in turn, affects the role they would play in an optimised portfolio of energy technologies

put together to hedge against the climate related uncertainties targeted at hydro; and

(2) In many places the integrated nature of the assessment presented in this thesis is

emphasised. Looking at the integrated system does not, however, imply in this case

the integration of uncertainties related to climate. This weakens the benefits that one

can draw from doing the assessment in an integrated fashion. Regarding the first im-

plication, it has been considered that the shorter technical life-spans of solar PV and

wind energy allow them to be more adaptable and “relocatable” towards the impacts
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of a changing climate. As to compared to a long-lived hydropower stations that will

remain fixed in its position for centuries. And regarding the second point, although

an integrated energy model is used, the focus of this study is hydropower and how to

better represent it within the context of an energy system model. Therefore impacts and

the sensitivity of hydropower to these impacts will drive the results, while excluding

other technologies that could also be considered in detail and could impact results in

another way. This could only be assessed by studying the other technologies in detail

and making the corresponding conclusions.

5.3.2 Electricity generation with biomass and geothermal for back-up capacity

To the extent that, fossil fuel thermoelectric plants and reservoir hydropower are good

options to meet load variations quickly, the other least-cost alternatives presented, espe-

cially biomass thermal electricity and geothermal energy, could focus on supplying base

load generation (depending on climate and policy scenario). Geothermal power gener-

ation works with a high capacity factor, not only because of its high operational inertia,

but also because of the high investment costs associated with its construction. The op-

tion to generate electricity with biomass (mostly sugarcane bagasse), unlike geothermal,

could allow a greater degree of operational flexibility, which favours it as an option for

adapting to climate change. In addition, bioelectricity, has capital costs well below those

of geothermal energy (see electricity generation costs in Table 3.11 on page 137).

In the case that biomass is considered as a valid technology to adapt to climate change

uncertainty, this decision is not critical as long as flexible biomass technologies are

used; such as condense-extracting steam turbine (CEST) cycles or biomass integrated-

gasifier/gas turbine combined cycle (BIG/GTCC) (IRENA, 2012a). These options would

allow some generation modulation by extracting steam for other industrial purposes on

demand. The direct combustion of bagasse with conventional steam cycles1 and landfill

gas options with internal combustion engines that currently operate in Ecuador do not

have such flexibility (see Table 3.6 on page 114). For direct combustion of bagasse gener-

ation plants, a low capacity factor is unreasonable, both from a technical and economical

perspective. In this sense, the indication of TIMES-EC – which selects the biomass al-

ternative in substitution for the lost hydroelectric power and cap of natural gas-fired

generation – can be problematic if direct biomass combustion is selected.

1 The cycle currently used in Ecuador is the conventional Rankine cycle with biomass being burned (oxidised)
in a high-pressure boiler to generate steam.
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The production of sugarcane bagasse can also use instruments to make its availabil-

ity more flexible. Again, if the critical dry scenario does not occur, there must be an

alternative for the use of bagasse. There are technological options that would serve this

purpose, although the integrated analysis performed in the optimisation model did not

point to their economic viability. One option is hydrolysis, which allows the production

of cellulosic ethanol from bagasse.2 Cellulosic ethanol, in the case of hydrolysis, is a sys-

tem that consumes the bagasse, and through a bio-refinery could make biofuel available

for uses in other industries and to power the transport sector. Cellulosic biofuels are

becoming a commercial reality but are still expensive (Lynd et al., 2017). This indicates

that electricity generated from biomass should consider parallel industrial development,

particularly of the sugar cane industry.

There is a need to verify whether the conclusions of this thesis still hold under condi-

tions in which biomass (as has been projected) has restrictions to become an important

fuel source in Ecuador’s energy system. It is highlighted that the biomass resource

itself could be exposed to climate change vulnerabilities due to the effects of higher

temperatures and extreme hydrological conditions, such as both floods and droughts

(DOE, 2015). The use of biomass for energy generation also brings with it a broader

set of social and environmental concerns (Cavalett et al., 2017). Specially in dry climate

scenarios, the water requirements thereof will need to be better accounted for in future

studies. The Ecuadorian government has stated in its NDC that it is aware of the impact

that activities in the forestry sector and appropriate management of protected areas can

have on climate change. Through the National Forestry Restoration Program, Ecuador

plans to restore 500,000 additional hectares until 2017 and increase this total by 100,000

hectares per year until 2025, counteracting deforestation in the country, contributing to

the recuperation of the forest cover and combatting climate change (UNFCCC, 2015b).

How does the water demand associated with reforestation change the findings detailed in this

thesis? How would fuel switching of large parts of the transport sector to use biofuels impact

domestic water demand and irrigated agriculture in Ecuador? Perhaps the integration of a

module that considers changes in land use in TIMES-EC could be of value to address

them, such as Rochedo et al. (2018) has done for a MESSAGE energy system model for

Brazil. These are the sorts of questions that should be considered to be addressed in

follow-up work.

2 Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fibre of a plant) rather
than from the plant’s seeds or fruit.
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5.3.3 The role of natural gas

Natural gas plays a predominant role in all power sector configurations assessed with

TIMES-EC, given that it can power flexible open cycle gas turbines (OCGT) and com-

bined cycle gas turbines (CCGT). OCGT and CCGT have relatively low investment costs

compared to other technologies and these have been modelled by assigning them high

capacity credit values, to ensure their availability to cover peak demand (see Table 3.11

on page 137 for details on capacity credits).

As observed from the results, gas-fired thermoelectric capacity would be needed as a

back-up option in Dry scenarios. In Ecuador, natural gas exploration activities have (yet)

not found significant resources and the country does not have regasification facilities

(OPEC, 2017; MICSE, 2016a). Natural gas would be necessary not only supply the

power sector, but the new industrial objectives of the country (Table 3.22 on page 157).

Therefore, there would likely be a need to invest in regasification and gas transport

infrastructure to guarantee the supply of liquefied natural gas for electric generation

and other sectors of consumption.

In spite of the operational flexibility provided by gas-fired thermal plants, the non-

occurrence of critical demand periods implies not using the gas contracted for electricity

generation. To the extent that reservoir hydropower with monthly storage capacity

allows some degree for reducing generation in favour of previously contracted thermal

generation, storing water to burn gas is not the optimal economic situation for the power

sector (nor for lowering emissions). Therefore, a secondary market for natural gas would

be needed where gas-fired thermoelectric plants can pass on natural gas to the industrial

sector when hydrological conditions do not indicate for their economic dispatch. This

would require creating operational conditions by encouraging the installation of bi-fuel

burners in the industrial sector, enabling free substitution between natural gas and other

energy sources, for example fuel oil, according to the conditions of the electrical system.

TIMES-EC has allowed industrial thermal energy conversion technologies (direct heat

and process steam, Table 3.13 on page 141) to have certain degree of freedom for fuel

switching, but further research is needed to assess the limits of fuel switching in the

industrial sector, particularly in the energy intensive strategic industries planned for the

near future.

While according to the results a foreseeable decarbonisation of the power sector is

possible with the uptake of hydropower, bioelectricity and solar PV, Ecuador’s overall

energy mix would still be highly dependent on crude oil and petroleum products in

2050 (see Figure 4.23 on page 216 and Figure 4.42 on page 244). In this sense, and within
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the context of more radical transitions to achieve emission reductions at a global scale,

further research could study what the deep decarbonisation of the whole Ecuadorian

energy matrix would look like, beyond the proposed NDCs and with an aim to the new

revised target of reaching 1.5°C by the end of the century (van Vuuren et al., 2018).

5.3.4 Electricity demand

Energy demand data input to TIMES-EC relates to the expected end-use and final energy

demand for different economic sectors during the modelling horizon. As new demand

technologies continue to appear and consumer behaviour changes, different patterns of

inter-annual and intra-day electricity consumption could derive different results. For

instance, the non or partial realisation of the strategic industries projects by 2025 would

alter the base-load demand requirements of the power system, especially for the continu-

ous power demand in off-peak hours of steal and aluminium industries. The changing

intra-day demand patterns would mean that other technologies could provide energy

with more benefits than a hydropower dominated matrix, particularly solar PV if mid-

day power demands increase. Because the power demand of the considered strategic

industries is based on continuous processes (see Table 3.22 on page 157), it is assumed

that there are little changes in intra-day power demand load curves that can take place

outside of intensity changes – which would only imply that if the strategic industries do

not materialise completely, the results for the power system could be linearly adjusted.

Demand shifting initiatives can also alter the daily load curve in order to provide

convergence between electricity demand and intermittent renewable resources – either

through the policies indicated in the energy efficiency plan (see Table 3.21 on page 156)

or the uptake of more expensive smart appliances due to new socio-economic condi-

tions. According to a new analysis by the International Energy Agency – “The future of

cooling”, the growing use of air conditioners in homes and offices around the world will

be one of the top drivers of global electricity demand over the next three decades (IEA,

2018). This has major implications in the context of uncertain climate change in develop-

ing countries. While roughly half of the population in Ecuador lives in the Ecuadorian

highlands – where mild temperatures have halted the use of air conditioning or heating

– the other half lives in the warm tropical coastal areas where air conditioning has so far

only been used by upper-middle and high-income households. Increasing temperatures

can increase the uptake of air conditioning in this region and even commence its uptake

in the highlands. To assess daily electricity demand patterns, this study has obtained

hourly electricity demand data for 2016 from the national grid operator. No representat-
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ive large differences in energy consumption where found between seasons of the year or

between the coastal and highlands region, therefore the same electricity demand profile

pattern has been assumed for the entire modelling horizon (as discussed in Section 3.2.7

on page 138). However, further research is required to investigate how climate change

and growing socio-economic conditions can impact this daily and seasonal demand pro-

files.

A final word on electricity and final energy demand is concerning its interaction with

the NDC and future climate goals. Changes in final energy demand according to policy,

risk or climate change scenario have not been representative in this research. One reason

for this is that Ecuador’s main strategy to reduce energy-related emissions is centred

only on the power sector deploying large shares of hydropower capacity in the mid-term

(2025). Future mitigation efforts that arise from future international commitments could

require for the demand side sectors of the economy particularly the transport and in-

dustrial sectors to join decarobonisation efforts. Such an NDC (or whatever name future

commitments take), would require greater switches from fossil fuels towards renewable

electricity and from inefficient to more efficient demand side conversion technologies.

This could lead to results that show greater changes in final energy and the way to

really decarbonise the whole energy system of this developing country. Future research

could reassess the role of hydropower with an enhanced representation of demand in

the energy system model. It must also be mentioned that only one middle-of-the-road

socio-economic scenario was considered – the SSP2. Choosing other socio-economic

scenarios would also shape the intensitiy of end-use energy growth differently. It is

suggeste research consider the SSP5 (high) and SSP4 (low) scenarios (Riahi et al., 2017).

5.4 integrating portfolio theory in times

This thesis provides an analysis of the least-cost future generation portfolios in Ecuador

for 2050 under highly uncertain oil and natural gas prices, electricity generation infra-

structure costs, and long-term climate change. A Monte Carlo-based financial Portfolio

Theory approach was integrated into an energy system optimisation model (TIMES-EC)

to assess expected generation costs, associated cost risk and the configuration of possible

robust electricity generation portfolios.

In scenarios that seek to reduce risk, the power system moves away from run-of-river

hydropower and natural gas, while reservoir hydropower, solar PV and geothermal

experience an uptake (see Figure 4.31 on page 227). The modelling results also show
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that an oil-fired generation phase-out is a robust decision, as well as maintaining current

capacity levels of natural gas up to 2050.

Results also indicate that the efficient frontier characteristics of future least-cost elec-

tricity generation portfolios depends strongly on the long-term climate change scenario

that is taken into account for Ecuador (Figure 2.5 on page 77). A Dry climate change

scenario has a higher risk profile for the power sector, but also has greater risk reduc-

tion potential, when compared to a long-term Wet or NoCC climate change scenario .

In terms of costs, the expected average generation cost by 2050 roughly doubles when

moving from a large hydro-dominated risk-neutral generation matrix to a more diver-

sified non-hydro renewable (PV, wind, geothermal and biomass) risk-averse generation

portfolio alternative.

5.4.1 Assumptions for implementation

To be able to implement the mathematical formulation of financial Portfolio Theory in

TIMES-EC, three fundamental assumptions are implicitly made and are discussed in the

following list in the context of the arguments presented by Nijs and Poncelet (2016):

1. Short-term uncertainty (i.e., uncertainty on fossil fuel prices and electricity infra-

structure costs) is assumed to be recurring and therefore present over the entire

modelling horizon (2017 to 2050). For the case of crude oil and natural gas, the re-

curring uncertainty around their prices has been an unresolved and ongoing issue

in international commodity markets for decades. However, while the correlation

of crude oil and natural gas prices has been assumed constant according to the

historic average, it is recognised that their price correlation might change (reduce)

in the mid-term helped by natural gas’ low prices, ample supply, and its role in re-

ducing air pollution and other emissions (IEA, 2017). For the case of hydropower,

although the technology is over a century-old, cost overruns still occur and the un-

certainty of its definitive capital cost still remains (as discussed in Section 3.3.2 on

page 167). For PV and wind technologies, although they show lower uncertainty

ranges for their capital cost, uncertainty regarding their long-term cost reduction

is still significant for the long-term.

2. It is assumed that there is path dependency over time between values of the uncer-

tain parameter (e.g. crude oil price in year t+ 1 are assumed to be dependent from

the average crude oil price in year t). This is one of the key assumptions when a

GBM model is used, as detailed in Section 3.3.2.1 on page 167. In other words,
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this means that – if price in 2030 is $100 per barrel, it is more likely to be $120 per

barrel in 2040 in this run than in a run in which price simulation would lead to $10

per barrel in 2030. This is a drawback of GBM in the sense that oil and gas prices

often show jumps caused by unpredictable events or news that are unrelated to the

immediate past, in GBM there a continuous path dependency (no discontinuities).

However, GBM has been used together with Monte Carlo sampling to go beyond

a single price path, and rather have a look at the uncertainty space that oil and gas

prices could have based on their historic volatility trends. This uncertainty space

is what the model captures as a measure of risk and procures to move away from

technologies that use fossil fuel prices that consume fuels with a large uncertainty

space.

3. Operational decision variables are assumed non-adaptive or non-recoursive. As a

consequence, cost risk (i.e. UpAbsDev cost, detailed in Section 3.3.1 on page 160) is

actually an upper limit for the average positive deviation of system costs. Under

this assumption, there is only one set of operational decisions needed. This means

that there is a lack of operation optimisation in the model, given that in reality for

example, the operator of a thermal power plant can optimise production at any

given year when information about gas prices is revealed (within the flexibility

that the installed capacity in place allows). The operator could actually decide to

not operate at all if gas prices are extremely high. This is an important shortcom-

ing as in reality one will make operational choices based on the actual situation.

Having uncertain prices and the ability to have recoursive action opens the way for

financial real options (Martínez Ceseña et al., 2013), which could be modelled with

stochastic approaches (Seljom and Tomasgard, 2015). However, while in reality,

the real option to optimise production based on fuel price information can happen

many times during a long period of time, stochastic approaches in energy system

models are still limited by the number of states-of-the-world they can represent.

5.4.2 Price and costs uncertainties

The uncertainties of fossil fuel prices and electricity infrastructure investment costs have

been characterised with normal probability distributions based on historic data sets.

However, this characterisation may not be the only valid view, and might vary if dif-

ferent cost probability distributions are applied. For example, Pye et al. (2015) use

triangular probability distributions to systematically rank uncertainty of fuel prices and



5.4 integrating portfolio theory in times 265

technology costs in an energy model for the UK and Callegari et al. (2018) use log-

normal distributions to project cost-overruns of large hydropower infrastructure (>1,

000 MW) in Brazil. Future work would benefit from inter-comparison studies that use

different statistical measures of risk, as the ones mentioned, and its subsequent impact

on the results obtained with a least-cost energy system model.

The recurring uncertainty that was defined for the capital costs of hydropower is sig-

nificantly larger (average cost overrun of 70.6%) compared to other generation technolo-

gies (Figure 4.29 on page 225). Some may argue that this level of capital cost uncertainty

is exaggerated and that it might not correspond to the Ecuadorian context. One of the

means that has been sought to consider the “uncertainty of the uncertainty” is to work

with six scenarios of increasing levels of risk, from a scenario run that considers no risk

at all (50% confidence interval) to a full consideration of the full distribution of uncer-

tainty (99% confidence interval), instead of just working with the extreme cases. This

allows to see the progressive changes that TIMES-EC performs to move the power sys-

tem away from a risky generation portfolio and can suit a more varied array of decision

makers which can be well in between the risk-neutral and risk-averse cases.

The price volatility of biomass or CO2 emissions were not taken into consideration.

However these prices might become of relevance in the future as efforts to tackle climate

change increase. In the study of Usher and Strachan (2012), the import availability and

price of biomass is identified as one of the key mid-term uncertainties in long-term

decarbonisation scenarios for the UK, however it is demonstrated that fossil fuel price

uncertainty is much larger. Likewise some studies have included the uncertainty of

volatility of carbon prices, such as the study of Losekann et al. (2013) who use Portfolio

Theory to evaluate the Brazilian generation mix expansion in three CO2 price scenarios.

Their results show that high CO2 prices increase the share of wind and biomass in

the mix, i.e. the model selects technologies that are less probable to incur in a carbon

price. It is mentioned however that using Portfolio Theory to explore the uncertainty of

carbon prices is extremely difficult given that there is not long enough historical data

on carbon prices and their correlation with other energy commodities. The favoured

approach is therefore to assess different scenarios of carbon taxes. In any case, given

Ecuador’s abundance of biomass resource (MEER, 2014) and an Ecuadorian climate

policy which makes no mention of a carbon tax (UNFCCC, 2015b), their omission should

not significantly impact the results. Future research could consider looking into these

additional sources of price uncertainties.

Although only the cost deviations of fossil fuel prices and electricity infrastructure is

explicitly addressed in this study, it is recognised that issues other than cost variabil-
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ity can have an impact on the overall risk profile of electricity supply in the long-term:

The availability of credit and financing mechanisms, learning effects and disruptive new

technologies, regulatory or policy risks (such as a new government enforcing a new

energy and climate policy agenda), the strength of the transmission and distribution

networks, and the risk of domestic social or industrial disputes (Allan et al., 2011; Mas-

ini and Menichetti, 2013). Future extensions to the portfolio approach may be able to

capture some qualitative aspects of these other influences (Hadian and Madani, 2014).

Alternative approaches could also move away from the quantitative approach (statistics)

and enter the realm of deep uncertainty in which the influence of non-optimal actor

behaviour is equally or more relevant than the uncertainties surrounding fuel prices

and technology costs (Li, 2017). It could also be useful to compare/complement the

Portfolio Theory approach with other quantitative methods to handle uncertainty in

energy system models, such as stochastic programming (Seljom and Tomasgard, 2017)

or modelling to generate alternative (Price and Keppo, 2017), which have recently been

integrated into TIMES.

5.5 limitations of generalisation

The findings of this PhD thesis can be generalised while taking into account three major

limitations: geographical region, hydropower share in the power generation matrix, and

capacity expansion plans based on least-cost approaches.

First, results could be only extrapolated to neighbouring countries that have similar cli-

mate characteristics – and therefore similar impacts of climate change on water resource

availability. Second, the results in this thesis can be generalised to other countries in

which the power system currently has or expects to have large shares of hydropower

generation and given similar capital costs, operation costs, and discount rate (electricity

technology costs can be consulted in Table 3.11 on page 137). TIMES-EC is a country-

specific model – as it is developed based on the energy system of Ecuador – and is

therefore likely to be different from any other energy system. In addition, hydropower

has been particularly detailed according to basin, remaining potential, size and type –

run-of-river and reservoir. The role of hydropower in the power system in TIMES-EC

is dominant and changes to its output due to climate variability or policy constraints

dictate the investment and operation of other complementary generation alternatives.

Power systems in other countries with lower shares of hydropower and predominant

thermal generation would respond differently. As a result, results are valid for en-

ergy systems with similar shares of hydropower, whereas the policy case scenarios (Sec-
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tion 3.2.10 on page 151) can be used as a sensitivity for different paths of long-term

hydropower development.

Similarly, the risk assessment with Portfolio Theory performed to answer research

question three can be generalised given that volatility of fossil fuel prices has inter-

national impacts, and infrastructure cost uncertainty was taken from a database that

assesses electricity projects worldwide in both developed and developing countries (Sec-

tion 3.3.2 on page 167). It was shown that cost risk and the hedging potential of non-

hydro renewables depends significantly with respect to different climate change scen-

arios and the level of risk that is considered (from risk-neutral to risk-averse). This

again is a consequence of the large shares of hydropower in the Ecuadorian system. The

increasing levels of risk (Section 3.3.3 on page 175) serve as a sensitivity analysis that

should be consulted if the decision maker has different perceptions towards risk. Fur-

ther, the quantitative uncertainty of cost overruns of hydropower infrastructure should

be revised for countries with significant political risk or socio-environmental issues, in

order to quantify a more relevant context-based risk-adjusted uncertainty range. The

limitations discussed previously in this section should also be consulted before general-

ising results to other countries.

Inasmuch this chapter has focused on discussing the results, limitations and mention-

ing areas for future work. The following chapter summarises the findings along with

the original contributions of this research and implication for policy.





Part IV

C O N C L U S I O N S





6
C O N C L U S I O N S

This concluding chapter summarises the findings of each research question along with

the main contributions to knowledge of this PhD thesis. This chapter also includes a set

of implications for policy making regarding hydropower deployment.

6.1 restatement of the research questions

At the time this PhD research was started, an upsurge in hydropower development was

underway in developing regions (WEC, 2015a), namely Africa, South East Asia and

South America. The abundance of financing, fast growing electricity demands, resource

availability and the efforts to decarbonise the power sector, seemed the perfect justi-

fication for the implementation of economically beneficial hydropower systems. After

carrying out a research contextualisation in the Introduction on page 3 and a literature

review in Chapter 2 on page 23, it appears that regarding power sector planning with

energy system optimisation models, hydropower has three significant uncertainties to

deal with:

1. The uncertainty of climate change on long-term hydropower generation

2. The impact of hydropower variability on the long-term overall power system; and

3. The uncertainty of hydropower’s capital costs

These research problems presented in this thesis were assessed with an innovative mod-

elling approach that combines engineering (technology explicit), economics (cost optim-

isation), and finance (portfolio theory) models, in order to investigate these issues from

multiple and interconnecting perspectives. This PhD research applied the presented

methodology in a case study for the Republic of Ecuador’s energy system until 2050.

The main findings are summarised as follow.

271
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6.2 main research findings

This thesis has presented a methodological approach to assess the role that hydropower

could play in the energy system under the uncertain impacts of climate change, policy

and costs. This approach is based on a series of models, that starts with climatic pro-

jections correspondent to GHG concentration scenarios, followed by a process of down-

scaling and forcing a hydrological model to obtain changes in seasonal inflow into hy-

dropower stations. Subsequently, these changes in inflow are fed into a hydropower

plant simulation model to obtain availability factors under different climate scenarios.

These factors are then used in an integrated energy system optimisation model to assess

least-cost adaptation options for power generation according to the projected impacts

of hydropower generation and different energy policies for hydropower deployment.

Finally, a financial Portfolio Theory feature is integrated into the energy system optim-

isation model to assess the impact of volatile fossil fuel prices and electricity generation

infrastructure investment cost on the least-cost generation portfolio.

This section summarises the main findings of the research as a whole. Below are the

main findings of the research, grouped by research question.

6.2.1 The long-term impact of climate change on Ecuador’s hydropower generation

Research question one read: “How will seasonal and annual inflow into the largest hydro-

power stations in Ecuador change over this century according to climate change projections?”

Future projections of hydroclimatic variables for six hydropower producing river basins

in Ecuador were downloaded according to 40 GCMs of the CMIP5 ensemble for the

RCP2.6, RCP4.5 and RCP8.5 concentration scenarios. A hybrid hydrological model was

used in which annual inflow was modelled by a conceptual water balancing method

and monthly variability was modelled with a statistical method. This hybrid model was

shown to be effective in contouring the limitations related to the lack of data, and can

be an interesting alternative to purely data-intensive physical hydrological models.

Subsequently, a hydropower operation model was used to estimate generation from

future inflow projections in Ecuador’s main hydropower stations. This model allows to

calculate, for a set of inflow series and technical characteristics, the monthly availabil-

ity factor of a hydropower plant. The model has the ability to simulate individual or

aggregated hydropower plants in a cascading layout.

The following findings were identified in Chapter 4 in Section 4.1 on page 181:
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• The largest source of uncertainty in long-term climate change impact studies on

water resources are the differences among individual climate projections (GCMs).

In comparison, differences among concentration scenarios – i.e. the RCP2.6, RCP4.5

and RCP8.5 were found to be much smaller compared to the difference among in-

dividual GCMs. Performing an uncertainty analysis for the three RCPs adds little

information, while assessing individual GCMs under a single RCP allows to char-

acterise a broader uncertainty space of the possible effects of climate change on

water resources.

• Using climate model ensemble mean values (e.g. the mean of the CMIP5 ensemble

for the RCP4.5 scenario) in climate impact assessment studies masks large disagree-

ment among the GCMs of the ensemble. Differences for projected annual inflow

into Ecuador’s largest hydropower stations were found to be large depending on

GCM used. Deviations from the annual mean historical inflow towards the end of

the century span from -82% to +277% (see Figure 4.5 on page 188). From 40 GCMs

used in this thesis, 22 GCMs project an increase in runoff, while 18 GCMs project

a decrease, therefore the mean of results for the ensemble shows an effective in-

crease in annual runoff. However it must be remembered that all GCMs from an

ensemble are considered to be equiprobable and therefore the ensemble mean does

not entail a higher probability of occurrence. Wet and dry scenarios or GCMs that

project both increases and decreases of precipitation should be preferably used in

climate change impact studies on water resources and hydropower generation.

• GCM projections data at the monthly level has been made available until the end

of the century and give information on seasonal changes in hydroclimatic vari-

ables (see the database of KNMI). When using the CMIP5 ensemble projections to

characterise the probability space of hydroclimatic variables, the assessment of the

seasonal patterns indicates that Ecuador has larger uncertainty for the wet months

compared to dry months. On a monthly basis there is an average decline of precip-

itation from 100 mm to close to 0 mm for the dry season compared to an increase

from 300 to a maximum 800 mm in the wet season (Figure 4.2 on page 186). Stud-

ies that look to assess hydropower generation in the future, should use climate

data at least at the monthly level.

• The scale of climate change impact on hydropower depends on technology type.

Hydropower stations with storage capabilities show less sensitivity to inflow changes

compared to runoff facilities. Reservoir-based hydropower could have certain cli-

mate change risk control advantage compared to run-of-river stations; however,

https://climexp.knmi.nl/start.cgi
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extreme dry scenarios could leave any storage capacities ineffective. The changes

in hydropower output due to climate change are not symmetrical for equiprobable

wet or dry climate change scenarios. Windfall energy production due to the occur-

rence of a wet scenario is limited by the fixed installed capacity of the hydropower

station, therefore large spillage would be expected. On the other hand, dry scen-

arios can force both run-of-river and reservoir hydropower stations to reach zero

production for continuous months. Annual hydropower generation in the largest

hydropower stations in Ecuador has been compared for different climate change

scenarios and historic generation. Results show that the historic (1971-2000) av-

erage annual availability factor of the Ecuadorian hydropower system is 57%, a

scenario that considers the RCP4.5 ensemble mean of the CMIP5 by 2050 would

increase the availability factor to 58%, while a Wet scenario (+1 SD of the CMIP5

ensemble) would increase it to 67% and a Dry scenario (-1 SD of the CMIP5 en-

semble) would reduce it to 43%. (see Figure 4.9 on page 194 and Table 4.5 on

page 194)

6.2.2 Least-cost climate change adaptation options for Ecuador’s power sector

Research question two read: “How does hydropower output variations due to climate change

impact the long-term least-cost power system development pathway of Ecuador by 2050?” or

in other words – How can the power sector adapt at the minimum cost to the variability of

hydropower in the long-term? Therefore, an integrated energy system optimisation model

for Ecuador (TIMES-EC) was developed to depict the power sector and assess least-cost

adaptation options according to hydropower availability scenarios and policy cases until

2050. The availability factors for representative hydropower stations under different

climate change scenarios obtained in research question one were used as input into

(TIMES-EC). The following key findings were identified in Chapter 4 in Section 4.2 on

page 198:

• Electricity demand increases between 58 – 68 TWh in 2050, which amounts to a

threefold increase compared to current levels (23 TWh in 2017). Electricity de-

mand will be dominated by the industrial sector and energy-intensive strategic

industries that are part of Ecuador’s economic development plan, the residential

sector follows driven by the shift of demand services such as cooking and water

heating from LPG to electricity (Figure 4.21 on page 213).
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• Total final energy demand reaches 1,200 PJ in 2050, compared to 574 PJ in 2017 and

is dominated by the transport and industrial sectors. According to the TIMES-EC

model, Ecuador would supply most of its final energy demand with oil products

(800 PJ), followed by electricity (200 PJ), gas (150 PJ) and biomass (50 PJ). Ecuador

currently does not have significant natural gas reserves and would need to open

its energy matrix to imports of LNG, with the corresponding implications for its

energy security. This can be seen in Figure 4.23 on page 216.

• To supply electricity demand, total installed electricity generation capacity in Ecuador

could increase by 15 – 18 GW by 2050, which amounts up to a threefold increase

compared to current levels (7.5 GW in 2017). Whereas the current portfolio is a

hydrothermal one dominated by large scale hydropower generation, the model

shows that the future could hold a number of different options according to the

policy case and climate scenario outcomes that may transpire. This can be seen

in Figure 4.13 on page 200. Electricity generation will need to increase by 70 – 78

TWh/y by 2050, which is up to a fourfold increase compared to current levels (24.5

TWh in 2017).

• Hydropower will remain as one of the most cost-effective and low emission tech-

nologies in the Ecuadorian power sector in the long-term. However, constraints

on deployment and uncertainty around climate change impacts could hinder its

ability to contribute to supply electricity demand, the fulfilment of NDC targets

and maintain low power system costs. Across the climate change scenarios and

policy cases, hydropower installed capacity ranges from 5–12 GW by 2050 and its

share in total generation varies significantly from 29% (constrained large hydro

+ dry climate scenario) to 86% (strong hydro deployment + wet climate scenario)

(Figure 4.18 on page 204).

• Extensive deployment of hydropower only occurs when large-scale hydropower

potential in the Amazon can be tapped and hydropower deployment is forced in

the model according to government plans. The extensive deployment of hydro-

power, displaces all other non-hydro renewables from the system. Even with large

hydropower capacity installed, significant shares of natural gas-fired generation

must be deployed to supply the system during the dry periods between October

and January (Figure 4.14 on page 201). Restricting the deployment of large hydro-

power has a potential lock-in for a gas-fired dominated system. In the occurrence

of a dry climate scenario, almost half of the generation in 2050 (> 70%) could come

from gas.
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• Ecuador can achieve its implied power sector NDC level until 2050 (53 GtonCO2e)

without the need of deploying large (>450 MW) hydropower capacity. Biomass

generation, geothermal combined with small and medium hydropower is key to

achieve the NDC when both emissions and large hydro deployment are capped

(see Figure 4.13 on page 200). Wind and solar PV also contribute but in smaller

shares. However, this solution doubles average generation cost (6 to 12 US¢/kWh)

depending on the price of biomass resources and technology, as can be seen in

Figure 4.19 on page 210. No carbon capture and storage (CCS) technologies are

detected in the results, despite being available for the model to choose. In addition,

an energy policy focused on deploying large-scale hydropower proves to be the

most capital-intensive option (cumulative investment 2017-2050 ~US$ 65 billion),

while a diversified power matrix with non-hydro renewables and small/medium

hydro is less capital intensive (~US$ 50 billion).

6.2.3 Integrating recurring uncertainties in an energy system model

Research question three read: “How does incorporating recurring uncertainties such as the

volatility of fossil fuel prices and the capital cost of electricity infrastructure impact the in-

vestment portfolio for the power sector?” Energy modelling is subject to the underlying

technical-economic assumptions of the analysed technologies, which may vary over time

and can alter the suggested least-cost configuration of the energy system. A financial

Portfolio Theory approach was integrated into the TIMES-EC model to assess the impact

that the volatility of fossil fuel prices and electricity generation technology costs has in

the optimisation process. The following key findings were identified in Chapter 4 in

Section 4.3 on page 220:

• Financial Portfolio Theory applied to the power sector allows to model the trade-

off between cost and cost-risk of generation portfolios (efficient frontier). The

reduction of portfolio cost risk translates into investment and operational decisions

that seek to deploy larger shares of technologies that have lower inherent cost-risk.

However, reducing risk has an impact on the system generation cost, thus the

risk level consideration in the model will depend on the risk characteristics of

the decision maker – risk neutral or risk averse. Results show that for Ecuador,

the trade-off between cost and cost risk by 2050 depends strongly on the climate

change scenario that is taken into account and that expected average generation

cost increases in the Wet climate scenario from 4 to 8.5 US¢/kWh, while for the Dry
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scenario it increases from 4 to 12.5 US¢/kWh when moving from a risk-neutral to

risk-averse generation portfolio. This can be see Figure 4.35 on page 233 where the

efficient frontier has been shown.

• To hedge against cost risk, TIMES-EC suggests that the generation portfolio should

move away from oil/gas-fired thermal generation and ROR hydropower, towards a

more diversified system configuration with larger shares of reservoir hydropower,

geothermal and solar PV. It was shown that even considering the large uncertainty

of hydropower capital costs, this technology maintains an important capacity share

(>50%) in all assessed scenarios by 2050, although there is a negative correlation

between the deployment of run-of-river and reservoir hydro. Run-of-river hydro-

power installed capacity ranges broadly (5–12 GW by 2050) with lower shares con-

sidered to be favourable for a risk averse portfolio, however the model suggests

that higher shares of reservoir hydro should be taken into consideration for risk

reduction, although in a smaller range (2.5–5 GW). This can be seen in Figure 4.31

on page 227 and Figure 4.32 on page 228.

• Uptake of non-hydro renewables are considered as a way of hedging the power

system against risk. The share of non-hydro renewables introduced into the gen-

eration matrix to reduce risk depends on the climate scenario. Non-hydro renew-

ables reach a maximum of 25% of generation share in the Dry climate scenario,

while only a 10% share in the Wet climate scenario. PV is particularly important

for risk hedging in the Dry scenario, where it reaches installed capacities of 4 GW.

Geothermal is suggested to be deployed at its maximum potential (0.9 GW) and

wind also should be deployed (1 GW) by 2050. Biomass generation is only con-

sidered to be good for risk hedging for low levels of risk consideration and the

model suggest a total phase out of oil-fired capacity (Figure 4.38 on page 237).

• Emission levels for risk hedging scenarios are lower than the Ecuadorian implied

NDC level for the power sector (cumulative of 53 GtonCO2e between 2017-2050).

Given that hydropower maintains a large share of generation, all scenarios show

lower cumulative emissions than the NDC level, except for the risk-neutral cases

in which gas-fired generation has larger shares. In a risk-neutral + dry scenario,

a gas-fired dominated power system would be the least-cost alternative which

would cause a five fold increase over the NDC level (250 GtonCO2e) (Figure 4.43

on page 245).
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• Electricity and final energy demand react to the consideration of risk in the model

due to the change of power supply prices. Electricity demand decreases from

75 TWh to 65 TWh in 2050 as the system moves from risk neutral to risk averse.

Given that a risk averse system implies higher generation costs, the energy sys-

tem shifts away from electricity towards petroleum products, particularly in the

industrial sector (heating processes) and the residential sector (cooking and water

heating) (Figure 4.40). Moving away from electricity towards less efficient petro-

leum products has a negative impact in final energy demand, which increases in

30 PJ when moving from risk neutral to risk averse. It must be mentioned that

capital cost risk was only considered for electricity generation technologies. In-

cluding risk characteristics in other elements of the energy sector can have other

implications for final energy demand.

6.3 originality and contribution

Based on the research questions and the literature review,1 the contributions of this

thesis can be classified in three major areas:

1. Use of large ensembles of long-term climate change projections,

2. Depicting hydropower in an energy system model of a hydro-dominated power

system, and

3. Combination of Portfolio Theory with an energy system optimisation model.

The justification for each contribution is provided in the following paragraphs.

6.3.1 Contribution 1: Use of large ensembles of long-term climate change projections

Past studies have consistently stated that one of the greatest uncertainties surrounding

climate change impact assessments is the large disagreements among GCM projections,

particularly in relation to the magnitude and sign of change of long-term precipitation

(Escobar et al., 2011; Kundzewicz et al., 2018; Bates et al., 2008; Ho et al., 2015). The

latest AR5 report of the IPCC (Cisneros et al., 2014; IPCC, 2014a) insists on the import-

ance of considering uncertainties surrounding climate in supporting national adaptation

and mitigation strategies, and recognises the lack of consistent tools to deal with these

1 Research gaps found in the literature were discussed in Section 2.4 on page 86.
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uncertainties. In this context, there are a number of novelties in this research worth

noting.

Firstly, whereas past climate change impact studies focusing on hydropower have

used a combination of a few GCMs and emission/concentration scenarios (see Table 2.6

on page 59), this work assesses a large ensemble of 40 GCMs to characterise the long-

term monthly runoff availability for hydropower generation in individual Ecuadorian

river basins across a comprehensive range (as detailed in Section 3.1.3 on page 99). This

allows for a much more granular level of spatial (basin level) and temporal (monthly)

resolution in the energy model than has been possible in previous studies, and a more

rigorous representation of climate change uncertainty. Although from the whole en-

semble of GCMs, only three realisations have been extracted (wet, dry and mean), these

realisations are informed by the full range of GCM projections. This matters because it

uses the range of uncertainty that climate modellers are providing to inform the uncer-

tainty of the water resource availability in the future for the energy model.

Second, this thesis has taken one step forward in depicting hydropower inter-annual

seasonality at the monthly level making direct use of monthly GCM projections already

available for the end of the century. This contrasts with other recent studies that use

energy system optimisation models and depict hydropower only at the quarterly level

(spring, summer, autumn and winter), e.g. Teotonio et al. (2017) for Portugal, Seljom

and Tomasgard (2015) for Denmark and Kannan and Turton (2014) for Switzerland. The

monthly resolution used in this study allows to capture high and (critical) low flow

months that would be blurred out if only a seasonal (three or six-month resolution)

would have been used.

Thirdly, the study uses a simple conceptual/statistical hydrological model that is not

data intensive, which can be replicated in data scarce regions that are considering large

deployment of hydropower infrastructure. The novelty of this approach is that is uses

hydrological model used historic and future hydroclimatic data made available online

by the University of East Anglia Climate Research Unit (CRU) and the Royal Dutch

Meteorological Institute (KNMI). This approach makes the method transparent and rep-

licable and easy to adopt for other countries or regions looking into how to model the

prospective changes of water resources using online hydrometeorological data.

Finally, the uncertainty of the impacts of climate change upon the Tropical Andes has

not been systematically investigated, despite the importance for hydropower deploy-

ment for the region (Finer and Jenkins, 2012b; Buytaert et al., 2011). Therefore this study

adds to the literature of developing regions which are envisioning rapid economic and

energy growth, and are contemplating the deployment of large hydropower systems as

http://www.cru.uea.ac.uk
https://climexp.knmi.nl/start.cgi
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a cheap and reliable solution for the long-term. This work brings insights regarding the

vulnerability of hydropower to climate change and what alternatives to power genera-

tion should be further paid attention for more robust power systems in the long-term.

6.3.2 Contribution 2: Modelling hydropower in energy system models – a case study for

Ecuador

This thesis showcases the first application of the energy system optimisation model

TIMES (Loulou and Labriet, 2008), to develop a detailed long-term energy system as-

sessment for the Republic of Ecuador (TIMES-EC) until 2050. Details on the TIMES-EC

model structure and assumptions were presented in Section 3.2 on page 110, where

hydropower was assessed in detail due to the particular importance of hydropower in

Ecuador’s power sector and its relevance for Ecuador’s NDC contribution to the Paris

Agreement. Using an energy system optimisation model adds significant value by rep-

resenting not only the impacts of climate change on hydropower electricity generation,

but also the way in which the whole energy system adapts in a least-cost manner to new

conditions.

The majority of previous studies in this area have mostly used hydropower electricity

simulation models in isolation from the rest of the energy system, and the ones that use

energy system models, do so for developed countries, as was discussed in Section 2.2.2

on page 46 (see also Table 2.6 on page 59). While these studies have been used as a ref-

erence, it is noted that the power systems in developed countries have already tapped

most of their hydropower potential or their energy demand has reached a saturation

point for which new large capacity additions of hydropower are not envisioned. This

directs interest and research towards developing and emerging economies that have still

large untapped hydropower resources and are planning to rely intensively on hydro-

power infrastructure. This thesis builds on the the literature that is growing to inform

these countries about their hydropower-dominated future. Implications for policy will

be expanded further below in Section 6.4.

In addition, this thesis has not only assessed the impact that climate change can

have on hydropower generation, but how different long-term hydropower development

polices can impact the system as well. Most studies usually have assessed either cli-

mate change or policy developments. TIMES-EC has allowed to assess these two dis-

tinct levels of uncertainties simultaneously with an integrated scenario approach that

broadens the analysis of the possibilities of hydropower future role in the power sys-
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tem’s configuration. The policies presented in this thesis are relevant for countries rely-

ing on hydropower deployment to meet economic and climate targets.

6.3.3 Contribution 3: Combination of portfolio theory with an energy system optimisation

model

A number of modelling capabilities were required to undertake this research, including:

hydrological modelling, simulation of the operation of hydropower systems, energy sys-

tem modelling, Monte Carlo analysis, Geometric Brownian stochastic modelling and

Portfolio Theory cost-risk analysis. As shown in Table 2.6 on page 59 and Table 2.8 on

page 82, the full extent of these capabilities is not present in an integrated manner in

previous studies. The complexities in energy system modelling require to link a series

of models and approaches. Thus using the strengths of each model to improve the data

input to the following model. This thesis has shown how to soft link a hydrological and

hydropower simulation model, and then use those results to improve the representation

of hydropower in an energy system model. While combining a set of specific things for

the first time probably happens in almost every single piece of research, the combina-

tion of new tools with new data available for hydropower modelling and the enhanced

representation of this specific technology in an (not new) energy system model is still of

worth.

Traditionally, energy system optimisation models have not been capable to combine

cost-risk (from a portfolio theory perspective) of the volatility of fossil fuel prices and

uncertainty of capital cost overruns into the cost optimisation process. Furthermore,

studies that have explored this applied to the power sector do it exogenously once a set

of plausible energy system portfolio have been determined for a milestone year in the

future (as was discussed in Section 2.3.2 on page 72). Consequently, there was a need

to expand on a current energy system model in order to tackle the research question,

particularly of how taking into consideration the significant cost uncertainties of large

hydropower impact the least-cost solution. A TIMES energy system optimisation model

was developed, which integrates thousands of simulated price and cost evolution paths

into the cost optimisation decision process. The approach presented in this thesis allows

the energy system model to perform the Portfolio Theory assessment endogenously and

dynamically, i.e. it minimises cost and risk simultaneously while optimising the long-

term investment for the power sector in each period of the modelling horizon. There

are some previous studies that have endogenised a measure or risk into the objective

function of and energy system optimisation model (e.g. Messner et al. 1996; Krey and



282 conclusions

Riahi 2009), but they have only considered capital cost uncertainty of power technologies

and cost overruns based on theoretical deviations, differing from the approach presented

in this thesis that uses actual statistical cost overrun data from a large set of 400 power

generation projects worldwide to characterise the uncertainty of generation technologies.

In addition, these studies have used a Monte Carlo approach based on a GBM model

to sample price and cost trends into the future. This adds to the analysis by using

more complex approaches that allow an improved exploration of the uncertainty space.

This expansion of an existing energy system model to integrate risk constitutes and

additional contribution of this PhD thesis.

6.4 implications for policy

Ecuador’s move towards large hydropower over the past decade and for the foreseeable

future has been justified on the grounds that it is the least-cost and low-emission al-

ternative for power capacity expansion. From a purely energy system cost-optimisation

perspective, the findings in this thesis may not give substantial reasons to oppose the

ambitious plans for hydropower development in Ecuador as currently intended by na-

tional energy authorities. The partial equilibrium cost-optimisation model (TIMES-EC)

shows that extensive hydropower development could meet the government’s targets

for economic growth (strategic industries) while maintaining average system costs and

GHG emissions low. However it is also shown that in the occurrence of a dry climate

scenario, hydropower could face serious shortages in the long-term and therefor altern-

ative non-hydro low-carbon options should be considered as an insurance in the face of

uncertain climate change.

According to the results presented in this thesis, hydropower would remain as an

important generation source for Ecuador. The modelling activities, however, are merely

based on hydrological, economic and financial approaches, and thus do not take into

consideration a series of other relevant factors, such as environmental, political and so-

cial ones. Such factors may persuade Ecuadorian government officials to take a different

course of action and reduce their hydropower ambitions substantially.

In this sense, important messages to policy makers are:

• Although hydropower could be considered a low-cost renewable technology, evid-

ence shows that cost-overruns and delays have become a feature of large-scale hy-

dropower projects and should be factored into the energy planning process. The

failure to complete large energy projects has a series of knock-on effects such as:
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loss of the economic justification of the project, price hikes for consumers and redu-

cing the investment attractiveness of the country. This takes relevance, particularly

in developing countries where large electricity projects are under governmental

management and their failure puts a strain on nationally owned power utilities

and on the national financing capacity in terms of foreign borrowing and do-

mestic credit. Ecuador’s eight hydropower government-lead flagship projects have

been almost totally financed (US$ 6 billion) through oil-backed loan mechanisms

with the China Development Bank and China Ex-Im Bank (The InterAmerican Dia-

logue, 2016; Bräutigam and Gallagher, 2014; Gallagher and Irwin, 2015). Delays

and overruns of these projects have needed constant renegotiations of loan con-

ditions, which require the debt to be serviced throughout the construction of the

project and is not necessarily binding to the projects on-time completion. Policy

makers are urged to run comprehensive risk assessments of possible unexpected

events that could upset budgets and completion times of large-scale energy infra-

structure.

• The conventional ex-ante energy system modelling for energy planning should be

supplemented with an ex-post risk assessment, including the documented uncer-

tainties of previous domestic or foreign energy projects – something that is rarely

done today. For Ecuador, which by 2017 had already achieved a hydro-intensive

electricity generation mix, and has five further hydropower projects in the pipeline

(an additional 780 MW by 2020), it would be prudent to conduct an analysis of fi-

nal cost and construction times once all eight flagship projects are commissioned,

before embarking on further large hydropower capacity expansion efforts. Ac-

cording the Electricity Master Plan 2016-2025 MEER (2017a), the next ’strategic’

hydropower project is Zamora-Santiago – a 3,600 MW reservoir hydropower sta-

tion in the Santiago river (CELEC, 2017). This project already has final design

studies and is expected to be built in three consecutive phases of 1,200 MW each

by 2025. Policy makers are suggested to balance budgets and schedules of this

mega-project under the light of the previous ones.

• It is suggested that Ecuador’s energy planning authorities take into account the

possible effects of climate change in terms of precipitation at the local level (both

positive and negative occurrences). As our results have shown, there could be sub-

stantial reduction in the dry season from October to January which is coincident

in both Pacific and Amazon regions and would lead to substantial reductions in

hydropower production levels, regardless of the installed capacity. The untapped
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water resource potential in the Amazon region should be researched in greater

detail in terms of climate change impacts and be complemented by social and

financial feasibility studies of realistic investment options and requirements for

hydropower development. The results of such studies should inform national low-

emission development strategies that have a strong focus on hydropower and are

presented as plans to comply with the country’s Paris Agreement commitments.

Hydropower could remain as a key mitigating technology but analyses should in-

clude a set of alternatives with non-hydro renewable energy sources, energy saving

options and water use efficiencies, in order to avoid an over-reliance on a single

technology and natural water resources. It is highlighted that only when detailed

environmental assessments thereof yield results that are aligned with the findings

of this study, can it justify pursuing a large expansion of the use of hydropower.

• The scenarios investigated in our study and the level of detail used in our com-

putations suggest that possible future climatic trends will substantially impact

hydropower production on a river basin level, with the uncertainty of magnitude

and sign of change. Yet at the local level, individual hydropower plants may be

subject to precipitation variability emanating from climate change that could lead

to larger hydropower production losses than on average nation-wide. Since there

are multiple uncertainties surrounding the long-term behaviour of precipitation

patterns, as was shown from the disagreement among GCMs, it is recommended

to continue multidisciplinary research such as the the hydrological + hydropower +

energy system three-model-based approach presented in this thesis. Such research

can yield insights that cannot be achieved from one disciplinary perspective, or

through one type of model only.

• According to the results, constraining the deployment of new large hydropower

projects in the Amazon region could lead to Ecuador introducing large shares of

gas-fired thermoelectric generation with the consequential failure to meet climate

change control contributions. Opening the Ecuadorian energy matrix to natural

gas would need political will and significant investment, with the huge caveat

of a power system lock-in to this energy source. Ecuador has small natural gas

resources and therefore would need to rely on foreign imports of LNG, creating

an energy security issue that leaves the country vulnerable to shortages and to

the economic impacts due to the volatility of international energy markets. If the

country fails to introduce natural gas into the matrix, the needed base load gener-

ation would need to be operated with liquid fuels, e.g. with heavy and residual
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fuel oil, as has currently been occurring in Ecuador. This would have devastating

effects in terms of GHG emission and would leave the country with obsolete and

low efficiency generation technologies. In this context, Ecuador should consider

the deployment of non-hydro renewables as an insurance against a lock-in to gas,

or ever worse a lock-in to liquid fossil fuels for power generation.

• Ecuador’s government should be aware of some of the possible negative social,

environmental and governance effects that accompany the deployment of large

hydropower systems. At the local level, bottom-up social aspects and public ac-

ceptance related to the building of new hydropower dams may collide with top-

down centralised plans pursued at the national level. In addition, the construction

of large hydropower projects, necessitate significant financial and human capacity

investments. Thus far, many contracts for hydropower construction have been

granted without due competitive bidding, directly assigned to Chinese construc-

tion companies due to political alliances (Ray et al., 2015). This poses a challenge

to future governance by hampering access to financing from international institu-

tions for infrastructure endeavours in other economic sectors. In terms of capacity

building, most of qualified workers have been coming from abroad without any

local capacity building – large hydropower may help Ecuador to have electricity

but not to develop other technical skills required for integral economic and social

development. Among the environmental effects, the change of natural habitats

for animals and vegetation may not be the only issues of large dams in sensible

areas. The accumulation of waste products in the water reservoirs and associ-

ated emissions of environmental pollutants (including GHGs) could also offset the

’renewability’ of hydropower energy. Ambitious hydropower development plans

clearly necessitate independent environmental impact assessments.

Finally, large-scale electricity generation infrastructure projects are usually seen as stra-

tegic to increase energy security of supply at low costs. It is argued that the evidence

shows that they should rather be seen as ‘non-strategic’. A paradigm shift from ‘strategic

projects’ to ‘strategic portfolios’ is suggested. Energy planners should avoid focusing on a

single or a few large one-of-a-kind projects, but instead assess alternatives of diversified

investment portfolios that are economically viable, reduce risk and are able to meet the

ultimate goal of supplying electricity demand within budget and on time.
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Table A.1: Inventory of new hydropower projects used to represent remaining hydropower po-
tential in TIMES-EC

No. Name River Capacity Study level Basin Watershed

1 Santiago G8 Santiago 3,600 Final design Santiago Amazon

2 Santiago G9 y G10 Zamora 3,180 Prefeasibility Santiago Amazon

3 Verdeyacu Chico Verdeyacu 1,172 Other estimated Napo Amazon

4 Catacahi Mulatos 748 Other estimated Napo Amazon

5 Paute Cardenillo Paute 596 Final design Santiago Amazon

6 Chespi -Palma real Guayllabamba 460 Final design Esmeraldas Pacific

7 Cedroyacu Chalupas 270 Other estimated Napo Amazon

8 El Retorno Zamora 261 Other estimated Santiago Amazon

9 Tortugo Guayllabamba 201 Feasibility Esmeraldas Pacific

10 Abitagua Pastaza 198 Prefeasibility Pastaza Amazon

11 Lligua-Muyo Pastaza, Muyo 170 Prefeasibility Pastaza Amazon

12 Llurimaguas Guayllabamba 162 Feasibility Esmeraldas Pacific

13 Chirapi Guayllabamba 160 Prefeasibility Esmeraldas Pacific

14 Calderón Guayllabamba 147 Prefeasibility Esmeraldas Pacific

15 Parambas Mira 145 Prefeasibility Esmeraldas Pacific

16 Los Bancos Blanco 92.2 Other estimated Esmeraldas Pacific

17 Palanda 2 Palanda 84.7 Other estimated Santiago Amazon

18 San Pedro Guayllabamba 83.4 Prefeasibility Esmeraldas Pacific

19 Las Cidras Isimanchi 77.3 Other estimated Santiago Amazon

20 Lelia Toachi 62.3 Other estimated Esmeraldas Pacific

21 Pilatón-Santa Ana Pilaton 58.5 Other estimated Esmeraldas Pacific

22 Cubí Guayllabamba 53 Prefeasibility Esmeraldas Pacific

23 Cuyes Cuyes 51.3 Other estimated Santiago Amazon

24 Isimanchi Isimanchi 51.1 Other estimated Santiago Amazon

25 Mira 2 Mira 47.8 Other estimated Esmeraldas Pacific

26 Cinto Saloya/cinto 45.8 Other estimated Esmeraldas Pacific

27 Milpe Blanco 43.7 Other estimated Esmeraldas Pacific

28 Vacas Galindo 2 Intag 42 Prefeasibility Esmeraldas Pacific

29 Mira Mira 41 Other estimated Esmeraldas Pacific

30 Pamplonna Intag 40.5 Other estimated Esmeraldas Pacific

31 La Barquillla Chingual 40.1 Other estimated Napo Amazon

32 Guayabal Mira 39.8 Other estimated Esmeraldas Pacific

33 Numbalá Numbalá 39.2 Other estimated Santiago Amazon

34 Calderón II San Pedro 38.7 Other estimated Esmeraldas Pacific

289
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Table A.1 (continued)
No. Name River Capacity Study level Basin Watershed

35 Negro (2) Negro 36 Other estimated Esmeraldas Pacific

36 Puniyacu Puniyacu 35.6 Other estimated Esmeraldas Pacific

37 Aluriquin Toachi 34.5 Other estimated Esmeraldas Pacific

38 Yacuchaqui Toachi 32.2 Other estimated Esmeraldas Pacific

39 Sucua Tutanangoza 31.6 Other estimated Santiago Amazon

40 Gualleturo Cañar 27.7 Other estimated Jubones Pacific

41 Las Juntas Toachi 27.7 Other estimated Esmeraldas Pacific

42 Sarapullo Sarapullo 27 Other estimated Esmeraldas Pacific

43 Cosanga Cosanga 27 Other estimated Napo Amazon

44 Langoa Langoa 26 Prefeasibility Napo Amazon

45 Paquishapa Paquishapa 26 Other estimated Jubones Pacific

46 Chingual Chigual 25.6 Other estimated Napo Amazon

47 Victoria 2 Pastaza 25 Prefeasibility Pastaza Amazon

48 Quijos-1 Quijos 24.2 Other estimated Napo Amazon

49 Chilma Chilma 23.7 Other estimated Esmeraldas Pacific

50 El Cañaro Yanuncay 5.6 Other estimated Santiago Amazon

51 Chinambi Chinambi 5 Other estimated Esmeraldas Pacific

52 Tandayapa Alambi 5 Other estimated Esmeraldas Pacific

53 Pacayacu 1 Quindigua 4.8 Other estimated Guayas Pacific

54 Huarhuallá Huarhuallá 4.6 Other estimated Pastaza Amazon

55 Ambato Ambato 4 Other estimated Pastaza Amazon

56 Chillayacu Chillayacu 3.9 Other estimated Jubones Pacific

57 Chimbo-Guaranda Illangama 3.8 Other estimated Guayas Pacific

58 Guápulo Queb. El Batan 3.2 Prefeasibility Esmeraldas Pacific

59 La Concepcion Santiaguillo 3.1 Other estimated Esmeraldas Pacific

60 Rircay Rircay 3.1 Other estimated Jubones Pacific

61 Solanda Solanda 3 Other estimated Jubones Pacific

62 El Laurel La Plata 2.3 Other estimated Esmeraldas Pacific

63 Chuquiraguas Chuquiraguas 2.3 Other estimated Guayas Pacific

64 Ganancay Ganancay 2.2 Other estimated Jubones Pacific

65 Campo Bello Suquibi 1.7 Other estimated Guayas Pacific

66 Intag 2 Intag 1.7 Final design Esmeraldas Pacific

67 Salunguire Salunguire 1.7 Other estimated Guayas Pacific

68 Mariano Acosta Chamachán 1.6 Other estimated Esmeraldas Pacific

69 Tululbi Tululbi 1.6 Other estimated Esmeraldas Pacific

70 M.J. Calle Canal de riego 1.4 Other estimated Jubones Pacific

71 Vacas Galindo 1 Intag 1.2 Other estimated Esmeraldas Pacific

72 Mirador 1 Gala 1.1 Prefeasibility Jubones Pacific

73 Rio Luis-2 (2) Luis 1.1 Other estimated Jubones Pacific

TOTAL 13,001.7

Source: ARCONEL (2015)
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Table A.2: Installed capacity and electricity generation per river basin in 2017

Watersheds Basin
Installed capacity Under

construction
Remaining Generation

MW % MW MW GWh %

Pacific Esmeraldas 240 5.5% 250 2,200 2,268 8.0%

Guayas 290 6.6% 0 10 1,353 4.8%

Jubones 20 0.5% 270 70 1,479 5.2%

Amazon Santiago 1,850 42.0% 190 7,970 11,011 39.1%

Pastaza 500 11.4% 0 500 2,888 10.2%

Napo 1,500 34.1% 0.05 2,330 9,195 32.6%

Total 4,486 100% 710.05 13,080 28,194 1

Figure A.1: Paute Integral

Source: CELEC (2018a)
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Figure A.2: Single line diagram of the Ecuadorian Interconnected System - SNI (2018)

Source: CENACE. Available at: www.cenace.org.ec

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjqp9WOl4rcAhVkIcAKHTLvDysQFgg4MAE&url=http%3A%2F%2Fwww.cenace.org.ec%2Findex.php%3Foption%3Dcom_phocadownload%26view%3Dcategory%26id%3D7%3Aphocatunifsni%26download%3D709%3Adiagrama-unifilar-sistema-nacional-interconectado-del-ecuador-diciembre-de-2018%26Itemid%3D1&usg=AOvVaw0l2FgUBXfRMlyjTM075Dyn


B
A P P E N D I X B

The allocation of the socio-economic drivers and the sensitivity parameters to model

demand are shown in Table B.1. For example, the demand ’Food & beverage’ will

be projected as the associated driver gross domestic product (GDP) adjusted by the

calibration parameters ranging from 1 to 0.65 from 2014 to 2050. The formula used in

the automatic routine of TIMES is set as follows:

Dt = Dt−1 ∗
(

Calibration +

(
Drivert

Drivert−1
− 1
)
∗ Sensitivity

)
(B.1)

Figure B.1: Share of energy service demands according to industrial sub-sector

0%

25%

50%

75%

100%

Chem., plast.
rubber

Food
beverage

Manuf.
others

Mining
non−metals

Textile Wood
paper

S
ha

re
 (

%
)

Energy
service
demand

Machine drive

Other

Process heat

Steam

293



294 appendix b

Table B.1: Socio-economic driver sensitivities

Sector Sub-sector Energy
service
demand

Driver 2014 2020 2030 2040 2050

Residential Refrigeration GDPHSH 1.0 0.95 0.86 0.78 0.70

Lighting GDPPC 1.0 0.95 0.86 0.78 0.70

Water heating GDPHSH 1.0 0.99 0.98 0.96 0.95

Cooking GDPHSH 1.0 0.96 0.89 0.82 0.75

Other uses GDPHSH 1.0 0.93 0.82 0.71 0.59

Industry Food & beverage Steam GDP 1.0 0.94 0.84 0.74 0.65

Minerals &
non-metals

Machine
drives

GDP 1.0 1.00 1.00 1.00 1.00

Textile Process heat GDP 1.0 0.95 0.86 0.78 0.70

Wood & paper Other uses GDP 1.0 0.93 0.82 0.71 0.59

Chemicals, plastic &
rubber

GDP 1.0 0.98 0.95 0.93 0.90

Manufacturing &
others

GDP 1.0 0.99 0.98 0.96 0.95

Commercial Electrical
appliances

GDPPC 1.0 0.97 0.93 0.89 0.85

Other uses GDPPC 1.0 0.92 0.80 0.67 0.54

Transport Freight Heavy freight GDP 1.0 0.97 0.91 0.85 0.80

Light freight GDP 1.0 0.95 0.86 0.78 0.70

Maritime GDP 0.8 0.74 0.64 0.54 0.45

Passengers Private
commute

GDPPC 1.2 1.11 0.95 0.80 0.64

Public
commute

GDPHSH 1.2 1.14 1.04 0.94 0.85

Aviation GDP 1.0 0.98 0.95 0.93 0.90

Agriculture,
construction
& others

Lighting GDP 1.0 0.97 0.91 0.85 0.80

Other uses GDP 1.0 0.95 0.86 0.78 0.70
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Table B.2: Transport sector vehicles fuel and efficiency assumptions, million vehicle-km/PJ

Technology Class Fuel 2015 2020 2030 2040 2050

Car Alternative Gas 38 38 38 38 38

Conventional Gasoline 35 35 36 37 45

Alternative Gas-hybrid 53 54 54 54 54

Alternative Gasoline-hybrid 36 37 38 39 40

Alternative Electric 30 30 30 30 30

Alternative LPG 35 35 35 35 35

Heavy freight Conventional Diesel 8 9 10 10 11

Alternative Diesel efficient 10% 10 11 12 12 13

Alternative Diesel efficient 20% 12 13 14 14 14

Conventional Gas 6 8 9 9 9

Alternative LPG 5 6 6 6 7

Light freight Alternative Gas 23 28 29 29 29

Conventional Diesel 20 20 21 22 23

Alternative Gas-hybrid 32 40 40 40 40

Alternative Diesel-hybrid 32 32 32 32 32

Alternative Electric 79 104 110 132 152

Alternative LPG 21 22 23 24 25

Bus Conventional Diesel 15 16 17 18 18

Alternative Diesel-hybrid 12 18 18 18 19

Conventional Gasoline 9 9 10 11 11





C
A P P E N D I X C

R script for creating GBM paths of correlated daily asset prices based on on Revell (2013)

and Systematic-investor (2012).

Listing C.1: Function to create simulated asset paths in R

# GEOMETRIC BROWNIAN MOTION (GBM) - STOCHASTIC MODELLING OF ASSETS.

# SIMULATING MULTIPE ASSET PATHS IN R

# Based on: https://www.r-bloggers.com/simulating-multiple-asset-paths-in-r/

# INPUTS:

#s0 - stock price

# mu - expected return (growth rate)

# sigma - volatility

# nsteps - number of time steps to calculate

# dt - size of time steps

# nsims - number of simulation paths to generate

# OUTPUTS

# S - a matrix where each column represents a simulated asset price path.

# NOTES

# Calculate the drift:

# nu = mu - sigma*sigma/2

# Generate potential paths

# S = S0*[ones(1,nsims); cumprod(exp(nu*dt+sigma*sqrt(dt)*randn(steps,nsims)),1)]

###############################################################################

297
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# Load Systematic Investor Toolbox (SIT)

# <a class="vglnk" href="http://systematicinvestor.wordpress.com/systematic-

investor-toolbox/" rel="nofollow"><span>http</span><span>://</span><span>

systematicinvestor</span><span>.</span><span>wordpress</span><span>.</span><

span>com</span><span>/</span><span>systematic</span><span>-</span><span>

investor</span><span>-</span><span>toolbox</span><span>/</span></a>

###############################################################################

# Must install ’curl’ package first and devtools

install.packages(’curl’, repos = ’http://cran.r-project.org’)

devtools::install_github(’systematicinvestor/SIT.date’)

# Download Sistematic Investor Toolbox (SIT) database (http://systematicinvestor.

github.io/about/)

curl_download(’https://github.com/systematicinvestor/SIT/raw/master/SIT.tar.gz’, ’

sit’,mode = ’wb’,quiet=T)

install.packages(’sit’, repos = NULL, type=’source’)

install.packages(’truncnorm’)

install.packages("gridGraphics")

install.packages("RCurl")

install.packages("ggpubr")

library(curl)

library(’SIT’)

library("reshape")

library("cowplot")

library("pryr")

library("gridGraphics")

library("xlsx")

library("ggplot2")

library("scales")

library("plotly")

library("dplyr")

library("ggthemes")

library("easyGgplot2")

library(devtools)

library(plyr)

library(gcookbook)

library(RCurl)
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library(gridExtra)

library(cowplot)

library("ggpubr")

# Multiple paths function

asset.paths <- function(s0, mu, sigma,

nsims = 10000,

periods = c(0, 1) # time periods at which to simulate

prices

)

{

s0 = as.vector(s0)

nsteps = len(periods)

dt = c(periods[1], diff(periods))

if( len(s0) == 1 ) {

drift = mu - 0.5 * sigma^2

if( nsteps == 1 ) {

s0 * exp(drift * dt + sigma * sqrt(dt) * rnorm(nsims))

} else {

temp = matrix(exp(drift * dt + sigma * sqrt(dt) * rnorm(nsteps * nsims)), nc=

nsims)

for(i in 2:nsteps) temp[i,] = temp[i,] * temp[(i-1),]

s0 * temp

}

} else {

require(MASS)

drift = mu - 0.5 * diag(sigma)

n = len(mu)

if( nsteps == 1 ) {

s0 * exp(drift * dt + sqrt(dt) * t(mvrnorm(nsims, rep(0, n), sigma)))

} else {

temp = array(exp(as.vector(drift %*% t(dt)) + t(sqrt(dt) * mvrnorm(nsteps *

nsims, rep(0, n), sigma))), c(n, nsteps, nsims))

for(i in 2:nsteps) temp[,i,] = temp[,i,] * temp[,(i-1),]

s0 * temp

}

}
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} �
Listing C.2: Code to visualize simulated asset paths in R

#******************************************************************

# Plot some price paths

#******************************************************************

S = c(48.94,4.5)

X = 98

Time = 0.5

r = 0.025

sigma = c(0.11,0.16)

rho = 0.74

N = 1000

# Single Asset for 33 years (2017-2050)

periods = 0:33

set.seed(100)

prices = asset.paths(S[1], r, sigma[1], N, periods = periods)

# plot

matplot(prices[,1:100], type=’l’, xlab=’Years’, ylab=’Prices’,

main=’Selected Price Paths’)

# Multiple Assets for 33 years

periods = 0:33

cov.matrix = sigma%*%t(sigma) * matrix(c(1,rho,rho,1),2,2)

prices = asset.paths(S, c(r,r), cov.matrix, N, periods = periods)

# plot

layout(1:2)

matplot(prices[1,,1:100], type=’l’, xlab=’Years’, ylab=’Prices’,

main=’Selected Price Paths for Asset 1’)

matplot(prices[2,,1:100], type=’l’, xlab=’Years’, ylab=’Prices’,

main=’Selected Price Paths for Asset 2’) �
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Figure C.1: Simulated asset paths for only one asset

Figure C.2: Correlated simulated asset path for Asset 1

Figure C.3: Correlated simulated asset path for Asset 2
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