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ABSTRACT 
Statins can be associated with myopathy.  We have undertaken a Genome-wide 

Association Study (GWAS) to discover and validate genetic risk-factors for statin-

induced myopathy in a “real-world” setting.  135 statin myopathy patients recruited via 

the UK Clinical Practice Research Datalink were genotyped using the Illumina 

OmniExpress Exome v1.0 Bead Chip, and compared to the Wellcome Trust Case-Control 

Consortium (n=2501).  Nominally statistically significant SNP signals in the GWAS 

(p<5x10-5) were further evaluated in several independent cohorts (comprising 332 

cases and 449 drug-tolerant controls).  Only one (rs4149056/c.521C>T in the SLCO1B1 

gene) SNP was genome-wide significant in the severe myopathy (CK>10xULN or 

rhabdomyolysis) group (p=2.55x10-9; OR 5.15, 95%CI 3.13-8.45).  The association with 

SLCO1B1 was present for several statins and replicated in the independent validation 

cohorts.  The data highlight the role of SLCO1B1 c.521C>T SNP as a replicable genetic 

risk-factor for statin myopathy. No other novel genetic risk-factors with a similar effect 

size were identified.   
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INTRODUCTION 
HMG-CoA inhibitors, or statins, are a widely prescribed class of drugs for the treatment of 

hyperlipidaemia.  Though generally well-tolerated, a small proportion of patients can 

develop muscle related adverse-effects (2).  These can range from mild muscle pain 

without creatine phosphokinase CPK elevation, where causality can be difficult to assess, 

to myopathy where the CPK becomes elevated (>4xULN), with the most extreme 

reactions being rhabdomyolysis with renal impairment (3).  A systematic review 

suggested that the incidence of statin-induced mild muscle pain is 190 cases/100,000 

patient years with myopathy and rhabdomyolysis at 5 and 1.6 cases/100,000 patient 

years, respectively (4). 

A number of genetic studies (5-9) have identified a non-synonymous polymorphism 

(p.V147L/c.521C>T) in the SLCO1B1 gene (rs4149056), encoding an hepatic uptake 

transporter protein as a predisposing factor for statin myopathy.  Our pilot proof-of-

principle candidate gene study which analysed a subset of the cohort in this study (77 

cases and 372 statin-tolerant controls) replicated the association between the SLC01B1 

gene polymorphism and statin myopathy (10) showing the validity of our recruitment 

strategy via the UK Clinical Practice Research Datalink (CPRD), an electronic health 

record database.  The association with the SLCO1B1 gene has biological plausibility in that 

it leads to impaired hepatic uptake of statins by the transporter (11, 12), causing 

increased circulating drug concentrations (13, 14).  However, to date no other clinically 

relevant, reproducible genetic variants have been identified. 

Other genetic markers have been associated with statin-myopathy including 

polymorphisms in the coenzyme Q2 4-hydroxybenzoate polyprenyltransferase (COQ2) 

(15) and human eyes shut ortholog (EYS) (16) genes, but have not been independently 
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replicated.  The genetic association of statin myopathy with the GATM gene (17) has also 

not been replicated (18, 19). 

Utilising statin-myopathy patients recruited via CPRD (20), the aims of our study were 

two-fold: to undertake a genome-wide association study to identify novel genetic risk 

factors predisposing individuals to statin-induced myopathy; and to validate any 

association in independent patient groups and perform meta-analysis of any association 

signals.  Taking all cohorts together, this represents the largest genome-wide association 

study of the pharmacogenetics of statin myopathy undertaken to date. 

 

RESULTS 
Case-Control Discovery GWAS 

A total of 128 out of 135 myopathy case samples and 654,642 SNPs passed the 

predefined genotyping QC criteria.  Of the 7 individuals excluded, 3 failed sample call-

rate criteria, 3 failed the gender identity check (due to sample mislabelling) and 1 

individual was excluded as a population outlier after principal component analysis 

(figure S1). The individual statins responsible for the muscle toxicity are shown in table 

S1. 

From the case-control discovery GWAS, a total of 21 SNPs were initially identified as 

notionally significant (p<5x10-5) (12 from the all myopathy analysis and 9 from the 

severe myopathy analysis) (Figure 2A and B, respectively).  However, only one signal 

reached genome-wide significance: rs4149056 in the SLCO1B1 locus (p=2.5x10-9) 

(Table 1).  Sensitivity analysis of discovery cases (all myopathy) for simvastatin cases 

only (figure S3 and table S4) showed no genome-wide significant association signals 

(p>5x10-8) though SLCO1B1 was amongst the top associated loci. Similarly sensitivity 
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analysis of atorvastatin cases only (figure S4 and table S5) also showed no genome-wide 

significant associations. SLCO1B1 was not identified in the top associated loci. 

Univariate analysis of non-genetic variables for myopathy (n=128) and severe 

myopathy (n=32) cases versus statin tolerant controls (n=585) was undertaken (Table 

S1). Age, gender, BMI, antihypertensive co-medication, occurrence of cramps and 

previous history of hypertension showed an association with p<0.10 for all myopathy 

and mean daily dose, age and occurrence of cramps showed an association with p<0.10 

for “severe myopathy”.  These variables were incorporated into the replication cohort 

logistic regression model for case-control analysis.  

Replication cohort analysis 

Twenty-one SNPs below a threshold of p<5x10-5 in the discovery GWAS analysis were 

carried forward for genotyping in the “Replication Cohort” (consisting of the CPRD 

statin-exposed controls (n=585) and the EUDRAGENE statin-myopathy cases (n=19)).  

A total of 9 SNPs (2 from the severe myopathy analysis and 7 from the all myopathy 

analysis) however were subsequently excluded because of inability to design TaqMan 

or MassArray assays due to proximal sequence constraints (n=4), low genotyping call 

rate (n=4) and Hardy-Weinberg deviation (n=1). Thus, a total of 12 SNPs was genotyped 

(5 for all myopathy and 7 for severe myopathy) (Table 1).   

Data from simvastatin and atorvastatin cases only sensitivity analyses for the 12 SNP 

initially identified in the overall discovery cohort is reported in Table S3. None of the 12 

signals showed a statistically significant association with atorvastatin myopathy.  Eight 

loci were notionally associated with simvastatin “all myopathy” albeit not to genome-

wide significance. 
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Replication cohort: Candidate gene analysis of the 19 EUDRAGENE myopathy cases (13 

severe) with the 585 statin tolerant controls identified 2/12 associations of nominal 

significance (p<0.05) both of which were for the severe myopathy phenotype (Table 1). 

These were SLCO1B1 rs4149056 (p=0.001, OR 3.98, 95%CI 1.75-9.03) and SLCO1A2 

rs4149000 (p=0.05, OR 2.53, 95%CI 1.00-6.39). No other statistically significant 

associations were observed in the other 9 SNPs (p<0.05).  Minor allele frequencies for 

the 12 SNPs were comparable for both simvastatin and atorvastatin controls  

Association Signal Validation 

“Simvastatin” Cohort:  Summary statistics from this cohort (Table 1) showed a genome 

wide significant association for 2 of 12 SNPs, both of which were associated with the 

severe myopathy phenotype in the initial analysis.  Both rs4149056 in SLCO1B1 and 

rs4149000 in SLCO1A2 were significantly associated with both definite myopathy 

(p=7.30x10-14 and p=7.62x10-11 respectively) and the incipient or definite myopathy 

phenotype (p=1.33x10-11 and 6.49x10-12).  None of the other SNPs were significantly 

associated with either myopathy phenotype (p>0.05). 

“Cerivastatin” Cohort: Summary statistics from the cerivastatin rhabdomyolysis 

validation cohort (Table 1) showed that the same 2 SNPs (rs4149056 and rs4149000) 

showed a significant (albeit not to a genome-wide threshold) association (3.90x10-4 and 

0.007 respectively).  None of the other SNPs showed an association (p>0.05). 

Further analysis of the SLCO1B1 and SLCO1A2 signals 

The 2 SNPs which appear to be strongly associated with statin myopathy in the 

discovery and replication cohorts are within 2 gene loci (SLCO1B1 and SLCO1A2) that 

are in a strong block of LD in the discovery cohort (data not shown).  Conditional 
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analysis correcting for the SLCO1B1 rs4149056 genotype was undertaken. The analysis 

of the 32 discovery severe myopathy cases vs 585 statin tolerant controls abolished the 

rs4149000 genotype association (p=0.934), as well as for the all myopathy phenotype 

(p=0.368) indicating that the 2 risk alleles are not acting in cis on the same haplotype 

and that the SLCO1A2 association is not acting independently of SLCO1B1. 

 

Meta-analysis of SLCO1B1 and SLCO1A2 association signals  

Meta-analysis combining the discovery and all replication cohorts (limited to severe 

cases only) (271 cases vs. 7,493 controls) yielded a meta-analytic genome-wide 

significant P value for SLCO1B1, rs4149056 (p=2.63x10-18; OR 2.99, 95% 2.34-3.82) 

(Table 1), highlighting the predominant role of SLCO1B1 in predisposing to myopathy 

caused by a variety of statins.  An increased statistical significance of the association 

signal within the SLCO1A2 was also observed but no other meta-analysis demonstrated 

an increased statistical significance of the signal initially identified in the discovery 

case-control study (Table 1).  Meta-analysis of the SLCO1B1 signal for rs4149056 

limited to the simvastatin-exposed cases and controls only (Figure 3) led to a p-value of 

1.46x10-21 (OR 5.91, 95% CI 4.10-8.51; I2=1.00) for the severe myopathy phenotype, and 

a p-value of 2.01x10-14 (OR 2.75, 95% CI 2.12-3.56, I2=0.78) for the all myopathy 

phenotype.   

 

DISCUSSION 
Our discovery GWAS identified 12 SNPs which were nominally associated with either all 

myopathy (CK>4xULN ± muscle symptoms) or severe myopathy (CK>10xULN or 

rhabdomyolysis).  Replication was undertaken in 3 separate patient cohorts, which 
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showed that only the previously identified (7, 10) and widely replicated c.521C>T 

variant (rs4149056) in SLCO1B1, and an intronic SNP in the SLCO1A2 gene, were risk 

factors for statin myopathy though the latter.  The latter however was not significant 

after adjustment for SLCO1B1 genotype.  Our data concur with a previous statin 

myopathy GWAS (10), as well as our own pilot data (10) and other candidate gene 

studies (5, 6, 9, 21), that the SLCO1B1 c.521C>T polymorphism (rs4149056) is the 

predominant genetic risk factor for statin-induced myopathy.  Our finding is also 

consistent with a recent meta-analysis of 14 studies comprising 3265 myopathy 

patients and 7743 controls (22).  Additionally, previously reported associations in the 

GATM (17), COQ2 (15), and EYS (16) gene loci were not replicated. 

Our discovery cohort was heterogeneous in terms of the severity of myopathy and 

statin implicated.  The association with the rs4149056 variant in SLCO1B1 was stronger 

in patients with the severe form of myopathy (CPK>10x ULN or rhabdomyolysis) 

irrespective of the statin involved, reaching genome-wide significance (Figure 3).  The 

lower effect size observed in patients with the less severe form of statin myopathy 

(defined in our discovery cohort as CK>4xULN) may reflect multiple causes in the mildly 

affected cases, and the difficulty in attributing causality to statins in all cases.   

Of the different statins implicated, simvastatin was the most common accounting for 

66% of our cases, and 69% of the severe cases.  Meta-analysis of our discovery severe 

myopathy cohort with the simvastatin definite myopathy cohort did strengthen the 

association (p=7.17x10-19) with little evidence of heterogeneity between the two (I2=1). 

Further incorporation of the cerivastatin cohort marginally weakened the association in 

keeping with the different effect sizes of the SLCO1B1 locus for different statins.  These 

data are consistent with the fact the pharmacokinetic effect of the SLCO1B1 variant is 
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greatest for simvastatin.  The AUC for simvastatin acid is increased by 221% in CC 

homozygotes compared with those individuals who are TT homozygotes for the 

SLCO1B1 c.521C>T polymorphism (23). Corresponding values for the other statins are 

as follows: atorvastatin (145%) (24), fluvastatin (19%) (25), lovastatin acid (186%) 

(26), pitavastatin (208%) (27), pravastatin (91%) (25), and rosuvastatin (65%) (24).  

No similar data is available for cerivastatin. Based on these pharmacokinetic data, and 

the results of our data, together with the recent meta-analysis (22), it might be 

suggested that SLCO1B1 locus is important for all statins, but the effect size will likely 

vary being greatest for simvastatin and lowest for fluvastatin. 

The aim of our GWAS was to identify other loci associated with statin myopathy.  Apart 

from the association with SLCO1B1, we also identified an association with a SNP located 

in the 5'UTR of the SLCO1A2 locus (Figure S2).  This signal however was not 

independent of the SLCO1B1 signal.  SLCO1A2 encodes SLCO1A2, a hepatic-expressed 

efflux transporter (28), which is responsible for the sodium-independent transport of 

organic anions such as bromosulfophthalein, taurocholate and unconjugated cholate 

bile acids (29, 30).  SLCO1A2 has also been shown to have substrate specificity for 

pitavastatin (31) and rosuvastatin (32), but to date, there is no evidence of its ability to 

transport simvastatin or atorvastatin.  Determination of whether the SLCO1A2 locus can 

act as an independent risk factor for statin myopathy will require a much larger sample 

size.  None of the other loci identified in the discovery cohort were replicated in any of 

the cohorts, and meta-analysis did not provide any indication that these loci acted as 

predisposing factors for statin myopathy.   

For a number of years, the c.521T>C SLCO1B1 variant has been recognised as a clinically 

important risk factor for statin-induced myopathy, particularly with regards to 
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simvastatin, and to a lesser extend atorvastatin. Indeed, summary of product 

characteristics labelling for both drugs (33, 34) highlights the increased risk of 

myopathy in individuals who are carriers of the low-activity C allele.  It has been 

suggested that the maximum dose of simvastatin, pitavastatin and atorvastatin should 

be reduced by 4-fold in individuals who are CC homozygotes based on pharmacokinetic 

calculations(35).  Interestingly, a recent small randomised trial (n=159) of patients not 

on statins because of prior myalgia attributed to a statin showed that providing 

information on the SLCO1B1 genotype improved statin re-initiation and LDL-cholesterol 

lowering, but not adherence, when compared with the usual care arm (36). 

It is clear that whilst SLCO1B1 is a key risk factor for statin myopathy, it does not 

explain a significant proportion of the inter-individual variability in statin toxicity.  

Genetic studies to date have been limited by recruitment of significant numbers of cases 

of what is a rare ADR.  As such many studies lack statistical power to detect small effect 

sizes and have in fact only identified the “low hanging fruit”.  It is possible that much of 

the heritability of statin myopathy risk may lie either with rare variants of large effect 

sizes or with other common genetic loci with small to modest effect sizes which will 

require much larger patient numbers.  A major issue is that we do not fully understand 

the mechanism of statin myopathy and muscle damage, apart from the fact that high 

doses or high statin concentrations, increase risk.  Further functional studies to uncover 

the mechanisms of muscle damage induced by statins will be important in elucidating 

further predisposing factors.   

In conclusion, our data further confirm the predominant role of the SLCO1B1 c.521 C>T 

polymorphism in predisposing to statin-induced myopathy in a “real-world” patient 

population, in particular with simvastatin.  Moreover, the data failed to identify other 
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statin-myopathy associated genetic risk factors. However, this meta-analysis is 

relatively small and may lack statistical power. The additional signal identified in the 

SLCO1A2 locus was not independent of SLCO1B1, but may require further investigation 

from a functional perspective to determine the role of this transporter in statin 

transport.   

 
METHODS  
The study design is summarised in Figure 1. Briefly, a discovery case-control genome-

wide associations study was undertaken, followed by candidate variant replication in a 

second case-control cohort.  The same association signals were validated in existing data 

from 2 independent validation case control studies. 

CPRD Case-Control Recruitment 

From a cohort of approximately 600,000 patients receiving statins identified in the 

CPRD (www.cprd.com), a case-control design was used to identify suitable patients for 

the study as previously described (20, 37).  Participation was restricted to Caucasians 

≥18 years of age and with the first ever statin prescription at least 1 year after the start 

of CPRD data collection.   

All cases conformed to internationally agreed standards for statin induced myopathy 

and rhabdomyolysis (3).  Cases were categorised into two: (a) myopathy: patients who 

discontinued their implicated statin with a rise in CPK >4x ULN; and (b) severe 

myopathy: individuals with a history of rhabdomyolysis or CPK>10x ULN after statin 

exposure.  Controls were defined as individuals receiving statins for at least 3 months 

with no previous history of abnormal serum CPK measurements.   

http://www.cprd.com/
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GPs were contacted with a list of potential cases and/or controls identified from their 

practice.  They were first asked to review the medical records of listed individuals and 

remove any patients they considered to not fulfil the case or control criteria.  They were 

then asked to contact suitable patients by letter requesting participation.  Individuals 

who gave written informed consent were invited to provide either a saliva sample (by 

post) or a blood sample (by visiting the practice).  All samples were then forwarded 

onto The University of Liverpool for processing.  To preserve anonymity, patient and 

practice identifier codes were used throughout the recruitment process and all patient 

contact was via the GP only. A total of 149 myopathy cases and 585 controls were 

recruited between April 2010 and June 2013 though only 135 cases were available at 

the time of genotyping (20).  Relevant clinical and demographic data (summarised in 

Table 1) was retrospectively obtained from the CPRD. 

In addition to the above, 5 supplemental cases of statin-induced myopathy conforming 

to our phenotype criteria were identified in the tertiary adult muscle clinic run through 

Salford Royal NHS Foundation Trust, UK, and recruited into the UKMYONET genetic 

study (1).   

Additional Cohorts and Studies 

Three replication cohorts were utilised to validate associations identified in the case-

control discovery GWAS (summarised in Figure 1) 

EUDRAGENE Cohort: A total of 19 Adult (>18 years of age) statin-exposed myopathy 

cases (5 simvastatin, 5 atorvastatin, 2 rosuvastatin, 1 fluvastatin) matching the case 

phenotype (defined above) were recruited using spontaneous adverse drug reaction 

reports and laboratory CPK results  from the European pharmacovigilance centre and 

UK primary care practices from 2006 to 2012 via the EUDRAGENE collaborative 
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network (38).  All cases were adjudicated using internationally accepted criteria for 

myopathy and severe myopathy (3) by an independent panel , consisting of clinicians 

and pharmacovigilance experts.  Of the 19 cases, 13 were categorised as having severe 

myopathy.  EUDRAGENE cases were combined with the 585 CPRD statin-tolerant 

controls to form the “Replication cohort”.  

The “Simvastatin” validation case-control study: A total of 141 simvastatin myopathy 

patients were recruited via the SEARCH collaborative group (7).  These consisted of 54 

“definite” statin myopathies (defined as otherwise unexplained muscle symptoms with 

CK>10x ULN) and 87 “incipient” statin myopathies (defined as ALT>1.7x ULN and CK 

both >5x baseline and >3x ULN).   For the purpose of meta-analysis, the “definite” 

myopathy phenotype was aligned to this studies severe myopathy phenotype with both 

“incipient and definite” aligning to the all myopathy phenotype.  A total of 4,046 statin-

tolerant controls were included from the SEARCH and Heart Protection Study (HPS) 

groups (7, 39).   

The “Cerivastatin” validation case-control study The study sample consisted of data from 

172 cases of cerivastatin rhabdomyolysis and 361 statin-using controls from the Heart 

and Vascular Health Study (HVH) as previously reported (8).  All cases and controls 

were of European ancestry.   Controls with creatine kinase levels >10X ULN were 

excluded.  

Study approvals 

Ethical approval for recruitment via CPRD was obtained from the National Research 

Ethics Committee North West 2 – Liverpool Central. Furthermore, approval to use the 

CPRD data was obtained from the Independent Scientific Advisory Committee (ISAC) at 

the Medicines and Healthcare products Regulatory Agency.  In addition, site-specific 
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approval (SSI) to contact the GP practices was obtained for each of 132 primary care 

trusts across the UK, as described previously (40).  Written informed consent was 

obtained from all study subjects or their guardians.  The UKMYONET study was 

approved by the North West Research Multi-Centre Research Ethics Committee (MREC 

98/8/86), and all participants gave written informed consent. 

Multi-Centre ethics approval was obtained from the South East Research Ethics 

Committee for the SEARCH study, and from the local ethics committees covering each of 

the 69 UK hospitals involved in the Heart Protection Study. 

The recruitment of cerivastatin case subjects was approved by the University of 

Washington Institutional Review Board and the use of the HVH study subjects was 

approved by the Group Health Subjects Review Committee. 

DNA Extraction and Genotyping 

Case-Control “Discovery” Cohort:  For the CPRD recruits (cases and controls), genomic 

DNA was extracted from 5ml whole blood or 2ml Saliva (collected using the Oragene 

DNA Sampling kit , DNAGenotek, Ontario, Canada) using the Chemagic Magnetic Module 

(MSM) 1 system as per the manufacturer’s protocol (Chemagen Biopolymer-

Technologie AG, Baesweiler, Germany). 

At the time of analysis, DNA samples from a total of 135 myopathy cases from the 

discovery cohort were available. At least 1.5µg DNA from myopathy cases was 

genotyped for a total of 982,958 SNPs by ARK-Genomics, University of Edinburgh 

(Edinburgh, UK) using the Illumina OmniExpress Exome v1.0 Bead Chip array according 

to the manufacturers protocol (Illumina Inc., San Diego, CA). 
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Discovery case-control study- population controls: Population control genotype data for 

the initial discovery case-control GWAS was obtained from the Wellcome-Trust Case-

Control consortium 2 (WTCCC2) cohort of 2,501 individuals from the UK Blood Service.  

Replication Study: All 585 CPRD statin-tolerant controls and 19 myopathy patients from 

the EUDRAGENE cohort were genotyped for statistically significant association signals 

identified in the case-control discovery GWAS (p<5x10-5) using either the Agena 

MassArray iPLEX platform (Agena Biosciences Inc., San Diego CA) or TaqMan real-time 

PCR SNP genotyping assay (Life Technologies, Paisley, UK) according to the 

manufacturer’s protocols.   

Genotyping QC and Imputation  

Case-Control “Discovery” Cohort:  Cases identified via CPRD recruitment were excluded if 

they failed to meet the following criteria: a) gender as determined by the “Sex Check” 

function within PLINK (41) differed from that reported in the clinical data; b) genotype 

call-rate <90%; and c) principle component analysis (PCA) (using SNPRelate (42)in R 

v3.01) demonstrated that the individual did not cluster with the HapMap CEU (Utah 

residents with European ancestry) population (Figure S1). 

 

SNPs, in both the discovery and replication cohorts, were excluded if: a) minor allele 

frequency (MAF) <0.01, b) Hardy-Weinberg Equilibrium (HWE) p<0.0001 and c) 

genotype success rate<95%.  All QC analysis was undertaken using PLINK v1.07 (41) 

unless otherwise stated. 

For the purpose of the discovery case-control study, the CPRD case genotype dataset 

was merged with the WTCCC dataset prior to SNP phasing using SHAPEIT (43) and 
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imputation using IMPUTE2 (44, 45) was undertaken using 1000 genome phase 3 

reference panel. 

The “simvastatin” validation case-control study: Genotype imputation was undertaken 

using minimac (46) with the 1000 genomes European reference panel.  Data for the 

association signal SNPs were provided for the validation and meta-analysis. 

The “cerivastatin” validation case-control study: Samples were excluded from analysis 

for sex mismatch or call rate <95%. The following variant exclusions were applied to 

obtain a cleaned set of variants for imputation: call rate <97%, HWE P<10-5, >2 

duplicate errors or Mendelian inconsistencies (for reference CEPH trios), heterozygote 

frequency = 0.  MaCH (46) was used to pre-phase the genotypes.  The phased genotypes 

were imputed into a reference panel of 1,092 individual of multiple ethnicities from the 

Phase 1 (version 3) haplotypes of 1000 Genomes project using minimac (46). 

Genotyping and SNP calling was performed using the Illumina 370CNV Bead Chip as 

previously described (8).    Data for the association signal SNPs were provided for the 

validation and meta-analysis. 

Statistical Analysis 

The study design and statistical analysis is summarised in Figure 1. In the discovery 

phase, cases passing genotype QC (n=128) recruited via CPRD were compared with 

WTCCC2 controls (n=2,501) using a logistic regression analysis undertaken in SNPTest 

(47) and adjusting for the first two principle components as covariates.  All SNPs giving 

a p-value for association of <5x10-5 were genotyped in the statin-tolerant cohort 

(n=585) and EUDRAGENE cohort (n=19) which together formed the replication cohort 
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A univariate analysis of non-genetic covariates (Chi-square for categorical outcomes 

and Student’s T-Test for continuous variables) was undertaken (Table 1) using SPSS 

version 17.0.  Variables demonstrating a p-value <0.10 between the discovery cohort 

cases and tolerant controls were carried forward and adjusted for in the SNP 

association analyses (Table S1).  Logistic regression analysis of the candidate SNPs in 

the cases (discovery and replication) and statin-tolerant controls was undertaken using 

SNPTest.  Meta-analysis of the combined discovery and replication cohorts along with 

the 2 validation studies was undertaken using a fixed-effects model with inverse-variant 

effect size weighting in GWAMA (48). Forest plots were prepared using the ‘forestplot’ 

function in R. 

 

 

 

 

 

STUDY HIGHLIGHTS 

What is the current knowledge on the topic? 

Risk of statin-induced myopathy is associated with variation of the SLCO1B1 gene which 

encodes the OATP1B1 hepatic uptake transporter, of which statins are substrates. To 

date no other validated genetic risk factors have been identified. 

What question did this study address? 

Undertaking a genome-wide association study in a “real-world” patient cohort recruited 

via the Clinical Practice Datalink (CPRD), this study aimed to determine whether any 

other novel genetic risk loci for statin myopathy could be identified. 
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What knowledge does this study add to our knowledge? 

The study suggests that aside from SLCO1B1, no other risk loci for statin myopathy are 

apparent.  The unexplained statin myopathy risk is likely due to non-genetic risk factors 

or the influence of rare genetic variants analysed in this study 

How might this change clinical pharmacology or translational science? 

Common genetic variants do not appear to explain statin myopathy risk.  The data 

presented seem to suggest that future translational work in this field should focus on 

rare variant analysis and on identifying non-genetic risk factors. 
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Table 1. SNPs suggested to be associated with A) all statin-induced myopathy and B) severe myopathy from the discovery case-control 

analysis; replication analysis; independent simvastatin and cerivastatin study analyses and the combined meta-analysis.  Data indicates 

p-values and odds ratios (95% CI) (per-allele) derived from logistic regression for discovery cohort vs. WTCCC cohort (n=2,501).   Only 

associations <5x10-5 in the initial discovery cohort are shown with those reaching genome-wide significance (p<5x10-8) highlighted in 

bold. NA denotes where data is not available. 

A) All Myopathy Discovery Case-Control Study  
CPRD cases (n=128) vs.  

WTCCC (n=2,501) 

Replication Study 
EUDRAGENE cases (n=19) vs. 
CPRD statin-Tolerant (n=585) 

Simvastatin validation  
case-control study 

Definite/Incipient myopathy 
cases (n=141) vs.  

controls (n=4,046) 

Cerivastatin validation 
case-control study 

 Cases (n=172)  
vs. controls (n=361) 

Combined  
Meta-analysis 
Cases (n=460)  

vs. controls (n=7,493) 

rs# Chr Gene 
per allele 

OR (95%CI) p 
per allele OR  

(95% CI) p 
per allele OR  

(95% CI) p 
per allele 

OR (95% CI) p 
 per allele 

OR (95% CI) p I2 

rs36121096 5 PDE4D 3.82 (2.20-6.62) 2.0x10-5 0 (0-∞) 1.00 1.37 (0.56-6.07) 0.61 1.51 (0.60-3.82) 0.38 2.01 (1.22-3.31) 0.006 0.00 

rs55902659 5 SLC12A2 0.44 (0.31-0.66) 4.9x10-6 0.42 (0.15-1.18) 0.10 0.81 (0.76-1.90) 0.24 1.00 (0.72-1.37) 0.99 0.74 (0.59-0.92) 0.008 0.84 

rs17359612 9 TLE1 2.49 (1.71-3.64) 1.1x10-5 1.59 (0.58-4.35) 0.36 1.25 (0.51-4.17) 0.54 1.21 (0.63-2.33) 0.56 1.67 (1.19-2.34) 0.003 0.00 

rs79860430 14 ATG14 2.59 (1.76-3.82) 8.4x10-6 0 (0-∞) 1.00 1.13 (0.34-8.16) 0.81 1.27 (0.62-2.58) 0.51 2.17 (1.48-3.17) 7.61x10-5 0.53 

rs77855582 16 GALNS 3.88 (2.25-6.69) 1.9x10-5 3.60 (0.99-13.0) 0.05 1.61 (0.78-4.55) 0.45 NA NA NA NA NA 

 

   

B) Severe Myopathy 
Discovery Case-Control Study  

CPRD cases (n=32) vs.  
WTCCC (n=2,501) 

Replication Study 
EUDRAGENE cases (n=13) vs. 
CPRD Statin-Tolerant (n=585) 

Simvastatin validation  
case-control study  

Definite myopathy cases 
(n=54) vs. controls (n=4,046)  

Cerivastatin validation 
case-control study 
  Cases (n=172) vs.  
controls (n=361) 

Combined 
 Meta-analysis 
Cases (n=271)  

vs. controls (n=7,493) 

rs# Chr Gene 
per allele OR 

(95%CI) p 
per allele OR  

(95% CI) p 
per allele OR  

(95% CI) P 
per allele 

OR (95% CI) p 
per allele 

OR (95% CI) p I2 

rs73089338 3 CDCP1 4.63 (2.70-7.96) 1.9x10-7 1.07 (0.25-4.54) 0.92 0.70 (0.26-1.90) 0.49 1.02 (0.49-2.16) 0.95 1.94 (1.27-2.98) 0.002 0.86 

rs504365 5 RASGRF2 0.18 (0.07-0.44) 2.9x10-6 1.63 (0.73-3.65) 0.23 1.60 (0.99-2.57) 0.06 1.28 (0.94-1.75) 0.11 1.17 (0.92-1.50) 0.20 0.82 

rs2247256 8 ERICH1 0.16 (0.06-0.43) 1.9x10-6 1.81 (0.80-4.07) 0.15 0.58 (0.36-0.91) 0.02 1.03 (0.76-1.40) 0.85 0.78 (0.61-0.99) 0.04 0.82 

rs117576073 11 CYP2R1 8.36 (3.66-19.06) 2.8x10-5 0 (0-∞) 1.00 0.48 (0.03-8.68) 0.62 0.31 (0.04-2.31) 0.26 3.11 (1.25-7.78 0.01 0.79 

rs4149056 12 SLCO1B1 5.15 (3.13-8.45) 2.5x10-9 3.98 (1.75-9.03) 0.001 4.91 (3.09-7.77) 1.3x10-11 1.86 (1.32-2.62) 3.9x10-4 2.99 (2.34-3.82) 2.63x10-18 0.87 

rs4149000 12 SLCO1A2 3.94 (2.36-6.57) 2.9x10-6 2.53 (1.00-6.39) 0.050 7.29 (4.13-12.8) 6.5x10-12 1.74 (1.16-2.60) 0.007 2.81 (2.10-3.75) 3.31x10-12 0.91 

rs28447350 13 Intergenic 3.66 (2.23-6.00) 5.3x10-7 0.55 (0.21-1.43) 0.219 0.88 (0.49-1.59) 0.676 1.06 (0.73-1.52) 0.76 1.32 (1.01-1.74) 0.04 0.84 
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FIGURE LEGENDS 

Figure 1.  Schematic representation of the discovery, replication and validation cohort 
case-control analyses and subsequent meta-analysis performed. Patient numbers 
represent those included in analyses post-sample QC. 
 
Figure 2. Manhattan plot of genome-wide association analysis of statin-induced 
myopathy.  The data represents logistic regression derived log p-values (y-axis) of SNPs 
for the discovery case-control analysis of A) the “all myopathy” phenotype (n=128) and 
B) the “severe myopathy” sub-phenotype (n=32) with the WTCCC2 population controls 
(n=2,501). X-axis is the position of the SNP with the chromosome indicated. 

Figure 3. Forest plot depicting meta-analysis for the SLCO1B1 c.521T>C (rs4149056) 
polymorphism for both “all myopathy” (CK>4xULN) and “severe myopathy” 
(CK>10xULN/ rhabdomyolysis) phenotypes caused by all statins (upper panels) and 
simvastatin-only (lower panel). 


