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This paper is concerned with the problem of the absolute and robustly absolute stability for the uncertain neutral-type Lur’e
systemwith time-varying delays. By introducing amodified Lyapunov-Krasovskii functional (LKF) related to a delay-product-type
function and two delay-dependent matrices, some new delay-dependent robustly absolute stability criteria are proposed, which can
be expressed as convex linear matrix inequality (LMI) framework. The criteria proposed in this paper are less conservative than
some recent previous ones. Finally, some numerical examples are presented to show the effectiveness of the proposed approach.

1. Introduction

In many real systems, time delay is often considered as
the main cause of poor performance and even instability.
The stability of time-delay systems is always a hot topic for
researchers. As a result, to obtain stability criteria of time-
delayed systems by using the Lyapunov theorem, the main
efforts are concentrated on the following several directions;
one is finding an appropriate positive definite functional with
a negative definite time derivative along the trajectory of
system, for example, LKF with delay partitioning approach
[1, 2], LKF with augmented terms [3], LKF with triple-
integral and quadruple-integral terms [4, 5], and so on. The
other is reducing the upper bounds of the time derivative of
LKF as much as possible by developing various inequality
techniques, such as Jensen inequality [6], Wirtinger-based
inequality [7], auxiliary function based inequality [8], and
Bessel-Legendre inequality [9]. Besides, further to increase
the freedom of solving LMIs, there are some other methods,
for instance, the generalized zero equality [10, 11], the one- or
second-order reciprocally convex combinations [12–15], the
free-weighting-matrix approach [16], and so on.

In practical engineering applications, most systems are
nonlinear. As is known to all, Lur’e system,which is composed
of the feedback connection of the linear dynamical system
and the nonlinearity satisfying the sector-bounded condi-
tion, can represent many deterministic nonlinear systems,
for example, Chua’s Circuit and the Lorenz system [17].
Therefore, the study on the stability of Lur ’e systems becomes
more and more popular [18–21]. Moreover, the paper [22]
pointed out that many practical systems can be modeled as
neutral time-delayed systems, in which not only the system
states or outputs contain time delays, but also the derivative of
the system states. Due to the theoretical and practical signif-
icance, the analysis of the robust stability of the time-delayed
neutral-type Lur’e systems has attached great importance
by many scholars [23–29], where many important robust
stability criteria were given. However, the main improvement
of stability criteria depends on the development of LKF
and the update of inequality techniques based on linear
systems. For example, recently, [29] improved the stability
results of some previous ones by combining the extended
double integral with Wirtinger-based inequalities technique;
however, the range of delay with nonzero lower bound and
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the lower bound of the delay derivative are not involved; in
[30], some less conservative stability criteria than some recent
previous ones were derived for time-delayed Lur’e system
via the second-order Bessel-Legendre inequality approach, a
novel inequality technique; in [21], some improved stability
criteria for time-delayed neutral-type Lur’e systemwere given
by constructing a novel LKF consisting of a quadratic term
and integral terms for the time-varying delays and the
nonlinearities, and so on. Recently, C. Zhang [31] considered
the effect of the LKFs while discussing the relationship
between the tightness of inequalities and the conservatism of
criteria for linear systems. The results illustrate the integral
inequality thatmakes the upper bound closer to the true value
does not always deduce a less conservative stability condition
if the LKF is not properly constructed. Particularly, another
novel LKF was proposed by C. Zhang et al. [31, 32] with
delay-product-type terms ℎ(𝑡)𝑃1 and (ℎ − ℎ(𝑡))𝑃2. Compared
with the general LKF, 𝑃1 and 𝑃2 were just symmetrical, not
always positive definite, which can lead to a less conservative
stability condition by extending the freedom for checking
the feasibility of stable conditions based on LMI. Recently,
to fully utilize the information of delay derivative, a new
LKF was constructed by W. Kwon et al. [33] with delay-
dependent Lyapunov matrices 𝑄1(𝑡) and 𝑄2(𝑡). W. Kwon et
al. point that the stability conditions based on an LKF with
delay-dependent matrices are less conservative than those
based on the LKF without delay-dependent matrices. As
mentioned above, the two types of LKFs only improve one
class of Lyapunov matrices, respectively, that is, only for the
Lyapunov matrix 𝑃 or the Lyapunov matrix𝑄. It is natural to
wonder about whether can both classes of Lyapunovmatrices
be improved, simultaneously.

Inspired by the above analysis, the following ideas of
reducing the conservation of the previous proposed stability
criteria should be addressed:

(i) A modified LKF with the above both classes of
Lyapunov matrices, that is delay-product-type and
delay-dependent matrices, is constructed. Compared
with the general LKFs in some previous published
papers, such as [21, 28, 30], the Lyapunov matrices of
the nonintegral item are just symmetrical, not always
positive definite, which can extend the freedom for
checking the feasibility of stable conditions based on
LMI. And the delay-dependentmatrices of the single-
integral items are utilized, which can also further
improve the utilization of time delay and its derivative
information. In addition, the results proposed by [31–
33] can be improved via the LKF modified in this
paper due to the combination of the two types of
LKFs.

(ii) The double integral items of the modified LKF in
this paper are decomposed into two subintervals, that
is [0, ℎ(𝑡)] and [ℎ(𝑡), ℎ], instead of being considered
directly in [33], which further make full use of the
information of time-varying delays ℎ(𝑡), ℎ − ℎ(𝑡) and
their derivative ℎ̇(𝑡). And the quadratic generalized
free-weightingmatrix inequality (QGFMI) technique
can be used fully in each subinterval, which can

further reduce the conservatism of the stability con-
ditions.

(iii) To deal with the delay-derivative-dependent single-
integral items feasibly, another double integral items
of𝑉4(𝑡) are also added to the LKFunder the above two
subintervals, instead of introducing a positive integral
item, which is actually difficult to estimate, to the
derivative of the LKF like [33].

(iv) Indeed, themain result of [33] was not LMI due to the
terms with ℎ2(𝑡) even ℎ3(𝑡). The matrix inequalities
of the stability criteria proposed in this paper are
converted to LMIs via the properties of quadratic
functions application, which can be solved easily by
Matlab LMI-toolbox. In conclusion, it is interesting
and still challenging problem to address the above
issues, which offers motivation to derive less conser-
vative stability criteria for the time-delayed neutral-
type Lur’e systems.

This paper mainly analyzes and studies the stability
of uncertain neutral-type Lur’e systems with mixed time-
varying delays. Some less conservative delay-dependent
absolute stability criteria and robust absolute stability criteria
than some previous ones are derived via a modified LKF
application. In the end, four popular numerical examples are
given to illustrate that this method improves some existing
methods and achieves good results in stability. The structure
of this paper is as follows: Section 1 describes the research
background and research topic status and defines the scope
of the study of this article; Section 2 describes the main
research questions, including some necessary definitions,
assumptions, and lemmas; Section 3 presents themain results,
including theorems and corollaries; in Section 4 the discus-
sions and simulations based onnumerical examples are given;
Section 5 summarizes the whole thesis.

Notation. 𝑃 > 0 (< 0) represents a positive (negative) definite
matrix. 𝐼 and 0 represent an identity matrix and a zeromatrix
with the corresponding dimensions, respectively. ∗ denotes
the symmetric terms in a block matrix and diag{⋅ ⋅ ⋅ } denotes
a block-diagonal matrix. 𝑒𝑖 (𝑖 = 1, . . . , 𝑚) are block entry
matrices with 𝑒𝑇2 = [0 𝐼 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−2

], where 𝑚 is the dimension

of the vector 𝜉. 𝐹[𝛼(𝑡),𝛽(𝑡)] denotes 𝐹 is the function of 𝛼(𝑡) and𝛽(𝑡). sym{𝐵} = 𝐵 + 𝐵𝑇.
2. Problem Formulation

Consider the following neutral-type Lur’e system with mixed
time-varying delays:�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏 (𝑡)) = [𝐴 + Δ𝐴 (𝑡)] 𝑥 (𝑡)+ [𝐴1 + Δ𝐴1 (𝑡)] 𝑥 (𝑡 − ℎ (𝑡))+ [𝐵 + Δ𝐵 (𝑡)] 𝑓 (𝜎 (𝑡)) ,



Complexity 3𝜎 (𝑡) = 𝐻𝑇𝑥 (𝑡) , ∀𝑡 ≥ 0,𝑥 (𝑠) = 𝜑 (𝑠) ,�̇� (𝑠) = �̇� (𝑠) ,𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ C.1𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ C.2,
(1)

where 𝑥(𝑡) ∈ R𝑛 and 𝜎(𝑡) ∈ R𝑚 are the state and
output vectors of the system, respectively. 𝐴, 𝐴1, 𝐵, 𝐶, and𝐻 are real constant matrices with appropriate dimensions;𝜑(𝑠) is an R𝑛-valued continuous initial functional specified
on [−max(ℎ, 𝜏), 0] or [−max(ℎ2, 𝜏), 0] with known positive
scalars ℎ, ℎ2, and 𝜏. 𝑓(𝜎(𝑡)) ∈ R𝑚 is the nonlinear functional
in the feedback path. The time-varying delays ℎ(𝑡) and 𝜏(𝑡)
are continuous-time functional and satisfy the following two
types of conditions:

C. 1. 0 ≤ 𝜏 (𝑡) ≤ 𝜏,̇𝜏 (𝑡) ≤ 𝜏𝑑 < 1,ℎ1 ≤ ℎ (𝑡) ≤ ℎ2,𝜇1 ≤ ℎ̇ (𝑡) ≤ 𝜇2 ∀𝑡 ≥ 0,
(2)

C. 2. 0 ≤ 𝜏 (𝑡) ≤ 𝜏,̇𝜏 (𝑡) ≤ 𝜏𝑑 < 1,0 ≤ ℎ (𝑡) ≤ ℎ,𝜇1 ≤ ℎ̇ (𝑡) ≤ 𝜇2,∀𝑡 ≥ 0,
(3)

where 𝜏 ≥ 0, 𝜏𝑑 < 1, ℎ1 ≥ 0, ℎ2 ≥ 0, ℎ ≥ 0, 𝜇1 and 𝜇2 < 1 are
constants.

The nonlinear functional 𝑓(𝜎(𝑡)) in the feedback path is
given by𝑓 (𝜎 (𝑡)) = [𝑓1 (𝜎1 (𝑡)) 𝑓2 (𝜎2 (𝑡)) ⋅ ⋅ ⋅ 𝑓𝑚 (𝜎𝑚 (𝑡))]𝑇 (4)

satisfying the finite sector condition:𝑓𝑖 (𝜎𝑖 (𝑡)) ∈ 𝐾[0,𝑘𝑖] = {𝑓𝑖 (𝜎𝑖 (𝑡)) | 𝑓𝑖 (0) = 0, 0< 𝜎𝑖 (𝑡) 𝑓𝑖 (𝜎𝑖 (𝑡)) ≤ 𝑘𝑖𝜎𝑖 (𝑡)2 , 𝜎𝑖 (𝑡) ̸= 0} (5)

or the infinite sector condition:𝑓𝑖 (𝜎𝑖 (𝑡)) ∈ 𝐾[0,∞) = {𝑓𝑖 (𝜎𝑖 (𝑡)) | 𝑓𝑖 (0)= 0, 𝜎𝑖 (𝑡) 𝑓𝑖 (𝜎𝑖 (𝑡)) > 0 , 𝜎𝑖 (𝑡) ̸= 0} , (6)

where𝐾 = diag{𝑘1, 𝑘2, . . . , 𝑘𝑚}.

Δ𝐴(𝑡), Δ𝐴1(𝑡), and Δ𝐵(𝑡) denote real-valued matrix
functions representing parameter uncertainties, which are
assumed to satisfy[Δ𝐴 (𝑡) Δ𝐵 (𝑡) Δ𝐴1 (𝑡)] = 𝐷𝐹 (𝑡) [𝐸𝑎 𝐸𝑏 𝐸𝑎1] , (7)

where 𝐷, 𝐸𝑎, 𝐸𝑏, and 𝐸𝑎1 are known constant matrices with
appropriate dimensions, and 𝐹(𝑡) is an unknownmatrix with
Lebesgue-measurable elements and satisfies𝐹𝑇 (𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡 ≥ 0. (8)

This paper mainly analyzes and studies the stability of
uncertain neutral-type Lur’e system (1) under conditions (2),
(3), (5), (6), (7), and (8) based on Lyapunov stability theory.
For neutral-type systems, the assumption that 𝜌(𝐶) < 1 [41]
is required, where 𝜌(⋅) denotes the spectral radius of 𝐶. To
obtain the main results of this paper, the following definition
and lemmas are important.

Definition 1 (robustly absolute stability). The uncertain
neutral-type Lur’e system described by (1) is said to be
robustly absolutely stable in the sector [0, 𝐾] (or [0,∞)), if
the system is asymptotically stable for any nonlinear function𝑓(𝜎(𝑡)) satisfying (5) (or (6)) and all admissible uncertainties.

Lemma 2 (see [15]). For given vectors 𝛼1, 𝛼2 and positive real
scalars 𝜆 satisfying 0 < 𝜆 < 1, symmetric positive definite
matrix 𝑅1, 𝑅2 ∈ R𝑛×𝑛, and any matrix 𝑈01, 𝑈02 ∈ R𝑛×𝑛, the
following inequality holds𝛼𝑇1𝑅1𝛼1𝜆 + 𝛼𝑇2𝑅2𝛼21 − 𝜆 ≥ [𝛼1𝛼2]𝑇⋅ [𝑅1 + (1 − 𝜆) 𝑇1 (1 − 𝜆)𝑈01 + 𝜆𝑈02∗ 𝑅2 + 𝜆𝑇2 ][𝛼1𝛼2] , (9)

where 𝑇1 = 𝑅1 − 𝑈02𝑅−12 𝑈𝑇02, 𝑇2 = 𝑅2 − 𝑈𝑇01𝑅−11 𝑈01.
Lemma 3 (QGFMI [33]). For any given matrices 𝑋, 𝑌, a
positive definite matrix 𝑅 and a continuous differentiable
function {𝜔(𝑠) | 𝑠 ∈ [𝑎, 𝑏]}, the following inequality holds− ∫𝑏
𝑎
𝜔𝑇 (𝑠) 𝑅𝜔 (𝑠) 𝑑𝑠 ≤ [𝜂0𝜂1]𝑇

⋅ [[[(𝑏 − 𝑎)𝑋𝑅
−1𝑋𝑇 𝑋[𝐼 0]∗ 𝑏 − 𝑎3 𝑌𝑅−1𝑌𝑇 + sym {𝑌 [−𝐼 2𝐼]}]]][𝜂0𝜂1] ,

(10)

where 𝜂0 is an any vector, and 𝜂𝑇1 =[∫𝑏
𝑎
𝜔𝑇(𝑠)𝑑𝑠 (1/(𝑏 − 𝑎)) ∫𝑏

𝑎
∫𝑏
𝜃
𝜔𝑇(𝑠)𝑑𝑠 𝑑𝜃].

Lemma 4 (see [42]). For a given quadratic function 𝑙(𝑠) =𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0, where 𝑎𝑖 ∈ 𝑅 (𝑖 = 0, 1, 2), ℎ12 = ℎ2 − ℎ1, if
the following inequalities hold(𝑖) 𝑙 (ℎ1) < 0;(𝑖𝑖) 𝑙 (ℎ2) < 0;(𝑖𝑖𝑖) − ℎ212𝑎2 + 𝑙 (ℎ1) < 0, (11)

one has 𝑙(𝑠) < 0, for all 𝑠 ∈ [ℎ1, ℎ2].
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ℎ1𝑡 = ℎ(𝑡) − ℎ1, ℎ2𝑡 = ℎ2 − ℎ(𝑡), ℎ12 = ℎ2 − ℎ1,ℎ𝑑 = 1 − ℎ̇(𝑡), 𝜇1 = 𝜇1 + ℎ̇(𝑡), 𝛾𝑇(𝑠) = [𝑥𝑇(𝑠) �̇�𝑇(𝑠)],
V1(𝑡) = ∫𝑡

𝑡−ℎ1

𝑥𝑇(𝑠)ℎ1 𝑑𝑠, V2(𝑡) = ∫𝑡−ℎ1𝑡−ℎ(𝑡) 𝑥𝑇(𝑠)ℎ1𝑡 𝑑𝑠, V3(𝑡) = ∫𝑡−ℎ(𝑡)𝑡−ℎ2

𝑥𝑇(𝑠)ℎ2𝑡 𝑑𝑠,𝜔1(𝑡) = ℎ1V1(𝑡), 𝜔2(𝑡) = ℎ1𝑡V2(𝑡), 𝜔3(𝑡) = ℎ2𝑡V3(𝑡),𝜁𝑇 (𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇(𝑡 − ℎ2) 𝜔1(𝑡) 𝜔2(𝑡) 𝜔3(𝑡)],𝜁𝑇1 (𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇(𝑡 − ℎ2) V2(𝑡)],𝜁𝑇2 (𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇(𝑡 − ℎ2) V3(𝑡)],Δ𝑇(𝑡) = [𝜔𝑇2 (𝑡) 𝑥𝑇(𝑡 − ℎ1) − 𝑥𝑇(𝑡 − ℎ(𝑡)) 𝜔𝑇3 (𝑡) 𝑥𝑇(𝑡 − ℎ(𝑡)) − 𝑥𝑇(𝑡 − ℎ2)],𝜉𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ2) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − ℎ1) �̇�𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − ℎ2) V1 (𝑡) V2 (𝑡) V3 (𝑡)∫𝑡
𝑡−ℎ1
∫𝑡
𝑢
(𝑥𝑇 (𝑠) /ℎ1) 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ1𝑡−ℎ(𝑡) ∫𝑡−ℎ1𝑢 (𝑥𝑇 (𝑠) /ℎ1𝑡) 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ(𝑡)𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝑢

(𝑥𝑇 (𝑠) /ℎ2𝑡) 𝑑𝑢 𝑑𝑠 �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑓𝑇 (𝜎 (𝑡))],𝜂1 (𝑡) = [ 𝜔2(𝑡)𝑥(𝑡 − ℎ1) − 𝑥(𝑡 − ℎ(𝑡))] , 𝜂2 (𝑡) = [ 𝜔3(𝑡)𝑥(𝑡 − ℎ(𝑡)) − 𝑥(𝑡 − ℎ2)] .
Box 1: Notations of several symbols and matrices in Theorems 8 and 14.

Proof. The proof is similar to lemma 2 of [42]. First, in the
case of 𝑎2 ≥ 0, 𝑙 is a convex function. So, (i) and (ii) guarantee𝑙(𝑠) < 0, ∀𝑠 ∈ [ℎ1, ℎ2]. Next, for 𝑎2 < 0, 𝑙 is a concave function.
So, 𝑙(𝑠) ≤ ̇𝑙(ℎ2)(𝑠−ℎ2)+𝑙(ℎ2) = (2𝑎2ℎ2+𝑎1)𝑠−𝑎2ℎ22+𝑎0 fl 𝑔(𝑠).
Then 𝑔(ℎ1) = −𝑎2ℎ212 + 𝑎2ℎ21 + 𝑎1ℎ1 + 𝑎0 = −𝑎2ℎ212 + 𝑙(ℎ1) < 0
from (iii) and 𝑔(ℎ2) = 𝑙(ℎ2) < 0 from (ii) guarantee that 𝑙(𝑠) <0, for all 𝑙 ∈ [ℎ1, ℎ2]. This completes the proof.

Remark 5. It is interesting to note that, in Lemma 4, whenℎ1 = 0, inequalities (11) can be rewritten in those of lemma 2
in [42]. Hence the established Lemma 4 covers the lemma in
[42].

Lemma 6 (see [43]). Given matrices Γ, Ξ, and Ω = Ω𝑇, the
following inequalityΩ + Γ𝐹 (𝜎) Ξ + Ξ𝑇𝐹𝑇 (𝜎) Γ𝑇 < 0 (12)

holds for any𝐹(𝜎) satisfying𝐹𝑇(𝜎)𝐹(𝜎) ≤ 𝐼, if and only if there
exists a scalar 𝜀 > 0 such thatΩ + 𝜀−1ΓΓ𝑇 + 𝜀Ξ𝑇Ξ < 0. (13)

Remark 7. Recently, [29] improved the stability results of the
uncertain neutral-type Lur’e system (1) by combining the
extended double integral with Wirtinger-based inequalities
technique. In practice, it is known that the range of delay with
nonzero lower bound is often encountered, and such systems
are referred to as interval time-delay systems. So, both the
range of delay with zero lower bound and that with nonzero
lower bound are considered in this paper. In addition, the
lower bound of the delay derivative is also involved in this
paper, which is not mentioned in [29].

3. Main Results

3.1. Absolute Stability Criteria for Nominal Form. In this
section, we will investigate the robustly absolute stability
problem of the system (1). First, we give an absolute stability
criterion for nominal formof system (1)without uncertainties
described as�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏 (𝑡)) = 𝐴𝑥 (𝑡) + 𝐴1𝑥 (𝑡 − ℎ (𝑡))+ 𝐵𝑓 (𝜎 (𝑡)) ,𝜎 (𝑡) = 𝐻𝑇𝑥 (𝑡) , ∀𝑡 ≥ 0,𝑥 (𝑠) = 𝜑 (𝑠) ,�̇� (𝑠) = �̇� (𝑠) ,𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ C.1𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ C.2.

(14)

For the sake of simplicity on matrix representation, the
notations of several symbols and matrices are defined as
Box 1 of Appendix A. The following theorem will give an
absolute stability criterion for Lur’e system (14) satisfying the
conditions C. 1 and (5).

Theorem 8. e system (14) satisfying the conditions (2) and
(5) is absolutely stable for given values of ℎ2 ≥ ℎ1 ≥ 0,𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1 and 𝑘𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑚),
if there exist symmetric matrices 𝑃 ∈ R7𝑛×7𝑛, (𝑃𝑎, 𝑃𝑏 ∈
R5𝑛×5𝑛), (𝑄𝑎, 𝑄𝑏, 𝑅0𝑎, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive definite matri-
ces (𝑄2 ∈ R𝑛×𝑛), (𝑄1, 𝑅0, 𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈ R2𝑛×2𝑛),𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚} and any
matrices (𝑈01, 𝑈02 ∈ R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛), 𝑋0 ∈ R3𝑛×2𝑛,𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝜆 ∈ R4𝑛×2𝑛 (𝑖 = 1, . . . , 4; 𝜆 = 0, . . . , 4) such that
the following LMIs hold for [ℎ(𝑡), ℎ̇(𝑡)] ∈ {[ℎ1, ℎ2] × [𝜇1, 𝜇2]}:𝑄𝑎 > 0,𝑄𝑏 > 0,𝑅0𝑎 > 0,



Complexity 5𝑅𝑎 > 0,𝑅𝑏 > 0,Ω1[ℎ(𝑡)] > 0,Ω2[ℎ(𝑡)] > 0,
(15)[[Ω4[ℎ1] + 1ℎ12 𝐽𝑇Ω3[ℎ1]𝐽 𝐸1𝑈02∗ ℎ12Ω2[ℎ1]]] > 0,[[Ω4[ℎ2] + 1ℎ12 𝐽𝑇Ω3[ℎ2]𝐽 𝐸2𝑈𝑇01∗ ℎ12Ω1[ℎ2]]] > 0,
(16)

𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ1 ,ℎ̇(𝑡)] Ω01 Ω02 Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] ℎ𝑑Ω[ℎ1]𝑏[2,1,3] Ω[ℎ1]𝑏[2,1,1]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ12𝑅𝑏 0 0 0∗ ∗ ∗ ∗ −𝜇1ℎ12𝑄𝑏 0 0∗ ∗ ∗ ∗ ∗ −3ℎ𝑑ℎ12𝑅𝑎 0∗ ∗ ∗ ∗ ∗ ∗ −3ℎ12𝑄𝑎

]]]]]]]]]]]]]]]]
< 0, (17)

𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ1 ,ℎ̇(𝑡)] Ω01 Ω02 Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] Ω[ℎ1]𝑏[3,2,4] 𝜇1Ω[ℎ1]𝑏[3,2,2]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ12𝑅𝑏 0 0 0∗ ∗ ∗ ∗ −𝜇1ℎ12𝑄𝑏 0 0∗ ∗ ∗ ∗ ∗ −3ℎ12𝑅𝑏 0∗ ∗ ∗ ∗ ∗ ∗ −3𝜇1ℎ12𝑄𝑏

]]]]]]]]]]]]]]]]
< 0, (18)

𝑙 (ℎ2, ℎ̇ (𝑡) , 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ2 ,ℎ̇(𝑡)] Ω01 Ω02 ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] ℎ𝑑Ω[ℎ2]𝑏[2,1,3] Ω[ℎ2]𝑏[2,1,1]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ𝑑ℎ12𝑅𝑎 0 0 0∗ ∗ ∗ ∗ −ℎ12𝑄𝑎 0 0∗ ∗ ∗ ∗ ∗ −3ℎ𝑑ℎ12𝑅𝑎 0∗ ∗ ∗ ∗ ∗ ∗ −3ℎ12𝑄𝑎

]]]]]]]]]]]]]]]]
< 0, (19)

𝑙 (ℎ2, ℎ̇ (𝑡) , 1 − 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ2 ,ℎ̇(𝑡)] Ω01 Ω02 ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] Ω[ℎ2]𝑏[3,2,4] 𝜇1Ω[ℎ2]𝑏[3,2,2]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ𝑑ℎ12𝑅𝑎 0 0 0∗ ∗ ∗ ∗ −ℎ12𝑄𝑎 0 0∗ ∗ ∗ ∗ ∗ −3ℎ12𝑅𝑏 0∗ ∗ ∗ ∗ ∗ ∗ −3𝜇1ℎ12𝑄𝑏

]]]]]]]]]]]]]]]]
< 0, (20)



6 Complexity−𝑎2ℎ212 + 𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) < 0,−𝑎2ℎ212 + 𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) < 0, (21)

where the related notations are defined in Box 3 of Appendix B.

Proof. Construct an LKF candidate as

𝑉 (𝑡) = 5∑
𝑖=1

𝑉𝑖 (𝑡) (22)

with

𝑉1 (𝑡) = 𝜁𝑇 (𝑡) 𝑃𝜁 (𝑡) + ℎ1𝑡𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡)+ ℎ2𝑡𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡) ,𝑉2 (𝑡) = ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄1 (𝑡) 𝛾 (𝑠) 𝑑𝑠
+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄2 (𝑡) 𝛾 (𝑠) 𝑑𝑠,
𝑉3 (𝑡) = ∫𝑡

𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑄1𝛾 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡−𝜏(𝑡)

�̇�𝑇 (𝑠) 𝑄2�̇� (𝑠) 𝑑𝑠
+ 2 𝑚∑
𝑖=1

𝜆𝑖 ∫𝜎𝑖
0
𝑓𝑖 (𝜎𝑖) 𝑑𝜎𝑖,

𝑉4 (𝑡) = ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

∫𝑡−ℎ1
𝜃

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 𝑑𝜃
+ 𝜇1 ∫𝑡−ℎ(𝑡)

𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠 𝑑𝜃
𝑉5 (𝑡) = ∫𝑡

𝑡−ℎ1

∫𝑡
𝜃
𝛾𝑇 (𝑠) 𝑅0𝛾 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

∫𝑡−ℎ1
𝜃

𝛾𝑇 (𝑠) 𝑅1𝛾 (𝑠) 𝑑𝑠 𝑑𝜃
+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑅2𝛾 (𝑠) 𝑑𝑠 𝑑𝜃,

(23)

where notations of several symbols andmatrices can be found
in Boxes 1 and 3 of Appendixes A and B.

First step, because the positive definiteness of the Lya-
punov matrices 𝑃, 𝑃𝑎, and 𝑃𝑏 is not required, the positive

definiteness of the LKF (22) should be proved. The 𝑃𝑎− and𝑃𝑏− dependent terms can be rewritten as

ℎ1𝑡𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡) + ℎ2𝑡𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡)
= [[[[[[[[[

𝑥 (𝑡)𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ (𝑡))𝑥 (𝑡 − ℎ2)0
]]]]]]]]]
𝑇

[ℎ1𝑡𝑃𝑎 + ℎ2𝑡𝑃𝑏] [[[[[[[[[
𝑥 (𝑡)𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ (𝑡))𝑥 (𝑡 − ℎ2)0

]]]]]]]]]
+ 2[[[[[[[[[

𝑥 (𝑡)𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ (𝑡))𝑥 (𝑡 − ℎ2)0
]]]]]]]]]
𝑇

⋅ {{{{{{{{{{{{{{{{{
𝑃𝑎 [[[[[[[[[

0000𝜔2 (𝑡)
]]]]]]]]]
+ 𝑃𝑏 [[[[[[[[[

0000𝜔3 (𝑡)
]]]]]]]]]
}}}}}}}}}}}}}}}}}+ 𝜔𝑇2 (𝑡) 𝐸𝑃𝑎𝐸𝑇𝜔2 (𝑡)ℎ1𝑡 + 𝜔𝑇3 (𝑡) 𝐸𝑃𝑏𝐸𝑇𝜔3 (𝑡)ℎ2𝑡 ,

(24)

where 𝐸 = [0 0 0 0 𝐼].
Based on𝑄1(𝑡) > 0,𝑄2(𝑡) > 0 and Jensen’s inequality, the𝑉2(𝑡) term can be estimated as

𝑉2 (𝑡) ≥ 𝜂𝑇1 (𝑡) 𝑄1 (𝑡) 𝜂1 (𝑡)ℎ1𝑡 + 𝜂𝑇2 (𝑡) 𝑄2 (𝑡) 𝜂2 (𝑡)ℎ2𝑡 . (25)

According to Ω𝑖[ℎ(𝑡)] > 0 (𝑖 = 1, 2) and Lemma 2, we can
obtain the following inequality from (24) and (25)

𝑉2 (𝑡) + 𝜔𝑇2 (𝑡) 𝐸𝑃𝑎𝐸𝑇𝜔2 (𝑡)ℎ1𝑡 + 𝜔𝑇3 (𝑡) 𝐸𝑃𝑏𝐸𝑇𝜔3 (𝑡)ℎ2𝑡≥ 𝜂𝑇1 (𝑡) ([ 𝐸𝑃𝑎𝐸𝑇 00 0 ] + 𝑄1 (𝑡)) 𝜂1 (𝑡)ℎ1𝑡+ 𝜂𝑇2 (𝑡) ([ 𝐸𝑃𝑏𝐸𝑇 00 0 ] + 𝑄2 (𝑡)) 𝜂2 (𝑡)ℎ2𝑡
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≥ Δ𝑇 (𝑡) Ω3[ℎ(𝑡)]ℎ12 Δ (𝑡)− (1 − 𝛼)ℎ12 𝜂𝑇1 (𝑡) 𝑈02Ω−12[ℎ(𝑡)]𝑈𝑇02𝜂1 (𝑡)− 𝛼ℎ12 𝜂𝑇2 (𝑡) 𝑈𝑇01Ω−11[ℎ(𝑡)]𝑈01𝜂2 (𝑡) .
(26)

It follows from (15)-(16), (22), (24), (25), and (26) and𝑄1 > 0,𝑄2 > 0, 𝑅𝑖 > 0 (𝑖 = 0, 1, 2) that
𝑉 (𝑡) > 0. (27)

Thus, the LKF (22) is positive definite.
Second step, the time derivative of 𝑉(𝑡) with respect to

time along the trajectory of the system (14) is as follows:

�̇�1 (𝑡) = ℎ̇ (𝑡) 𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡) − ℎ̇ (𝑡) 𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡)+ 2𝜁𝑇 (𝑡) 𝑃 ̇𝜁 (𝑡) + 2ℎ1𝑡𝜁𝑇1 (𝑡) 𝑃𝑎 ̇𝜁1 (𝑡) + 2ℎ2𝑡𝜁𝑇2 (𝑡)⋅ 𝑃𝑏 ̇𝜁2 (𝑡) = ℎ̇ (𝑡) 𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡) − ℎ̇ (𝑡) 𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡)
+ 2𝜁𝑇 (𝑡) 𝑃

[[[[[[[[[[[[[[[

�̇� (𝑡)�̇� (𝑡 − ℎ1)ℎ𝑑�̇� (𝑡 − ℎ (𝑡))�̇� (𝑡 − ℎ2)𝑥 (𝑡) − 𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ1) − ℎ𝑑𝑥 (𝑡 − ℎ (𝑡))ℎ𝑑𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2)

]]]]]]]]]]]]]]]+ 2ℎ1𝑡𝜁𝑇1 (𝑡)
⋅ 𝑃𝑎
[[[[[[[[[[[[

�̇� (𝑡)�̇� (𝑡 − ℎ1)ℎ𝑑�̇� (𝑡 − ℎ (𝑡))�̇� (𝑡 − ℎ2)𝑥 (𝑡 − ℎ1) − ℎ𝑑𝑥 (𝑡 − ℎ (𝑡)) − ℎ̇ (𝑡) V2 (𝑡)ℎ1𝑡
]]]]]]]]]]]]+ 2ℎ2𝑡𝜁𝑇2 (𝑡)

⋅ 𝑃𝑏
[[[[[[[[[[[[

�̇� (𝑡)�̇� (𝑡 − ℎ1)ℎ𝑑�̇� (𝑡 − ℎ (𝑡))�̇� (𝑡 − ℎ2)ℎ𝑑𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2) + ℎ̇ (𝑡) V3 (𝑡)ℎ2𝑡
]]]]]]]]]]]]
,

(28)

�̇�2 (𝑡) = 𝛾𝑇 (𝑡 − ℎ1) 𝑄1 (𝑡) 𝛾 (𝑡 − ℎ1) + ℎ𝑑𝛾𝑇 (𝑡 − ℎ (𝑡))⋅ [𝑄2 (𝑡) − 𝑄1 (𝑡)] 𝛾 (𝑡 − ℎ (𝑡)) − 𝛾𝑇 (𝑡 − ℎ2) 𝑄2 (𝑡)⋅ 𝛾 (𝑡 − ℎ2) − ℎ̇ (𝑡) ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄11𝛾 (𝑠) 𝑑𝑠 − ℎ̇ (𝑡)
⋅ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄21𝛾 (𝑠) 𝑑𝑠,
(29)

�̇�3 (𝑡) ≤ 𝛾𝑇 (𝑡) 𝑄1𝛾 (𝑡) − 𝛾𝑇 (𝑡 − ℎ1) 𝑄1𝛾 (𝑡 − ℎ1)+ �̇�𝑇 (𝑡) 𝑄2�̇� (𝑡) − (1 − 𝜏𝑑) �̇�𝑇 (𝑡 − 𝜏 (𝑡))⋅ 𝑄2�̇� (𝑡 − 𝜏 (𝑡)) + 2𝑓𝑇 (𝜎 (𝑡)) Λ𝐻𝑇�̇� (𝑡) , (30)

�̇�4 (𝑡) = ℎ1𝑡𝛾𝑇 (𝑡 − ℎ1) 𝑄𝑎𝛾 (𝑡 − ℎ1) + 𝜇1⋅ ℎ𝑑ℎ2𝑡𝛾𝑇 (𝑡 − ℎ (𝑡)) 𝑄𝑏𝛾 (𝑡 − ℎ (𝑡))− ℎ𝑑 ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 − 𝜇1
⋅ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠,
(31)

�̇�5 (𝑡) = ℎ1𝛾𝑇 (𝑡) 𝑅0𝛾 (𝑡) + ℎ1𝑡𝛾𝑇 (𝑡 − ℎ1) 𝑅1𝛾 (𝑡 − ℎ1)+ ℎ𝑑ℎ2𝑡𝛾𝑇 (𝑡 − ℎ (𝑡)) 𝑅2𝛾 (𝑡 − ℎ (𝑡))− ∫𝑡
𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑅0𝛾 (𝑠) 𝑑𝑠
− ℎ𝑑 ∫𝑡−ℎ1

𝑡−ℎ(𝑡)
𝛾𝑇 (𝑠) 𝑅1𝛾 (𝑠) 𝑑𝑠

− ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑅2𝛾 (𝑠) 𝑑𝑠.
(32)

For additional symmetricmatrices𝑄𝑎,𝑄𝑏,𝑅0𝑎,𝑅𝑎, and𝑅𝑏 the
following zero equations are satisfied0 = ℎ̇ (𝑡) [𝑥𝑇 (𝑡 − ℎ1) 𝑄𝑎𝑥 (𝑡 − ℎ1)− 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑄𝑎𝑥 (𝑡 − ℎ (𝑡))− 2∫𝑡−ℎ1

𝑡−ℎ(𝑡)
𝑥𝑇 (𝑠) 𝑄𝑎�̇� (𝑠) 𝑑𝑠+ 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑄𝑏𝑥 (𝑡 − ℎ (𝑡))− 𝑥𝑇 (𝑡 − ℎ2) 𝑄𝑏𝑥 (𝑡 − ℎ2)− 2∫𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥𝑇 (𝑠) 𝑄𝑏�̇� (𝑠) 𝑑𝑠] ,
(33)



8 Complexity0 = 𝑥𝑇 (𝑡) 𝑅0𝑎𝑥 (𝑡) − 𝑥𝑇 (𝑡 − ℎ1) 𝑅0𝑎𝑥 (𝑡 − ℎ1)− 2∫𝑡
𝑡−ℎ1

𝑥𝑇 (𝑠) 𝑅0𝑎�̇� (𝑠) 𝑑𝑠, (34)

0 = ℎ𝑑 [𝑥𝑇 (𝑡 − ℎ1) 𝑅𝑎𝑥 (𝑡 − ℎ1)− 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑅𝑎𝑥 (𝑡 − ℎ (𝑡))− 2∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝑥𝑇 (𝑠) 𝑅𝑎�̇� (𝑠) 𝑑𝑠] + 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑅𝑏𝑥 (𝑡− ℎ (𝑡)) − 𝑥𝑇 (𝑡 − ℎ2) 𝑅𝑏𝑥 (𝑡 − ℎ2)− 2∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝑥𝑇 (𝑠) 𝑅𝑏�̇� (𝑠) 𝑑𝑠.
(35)

Taking the zero inequalities in �̇�2 and �̇�4, we have the
following integral terms.𝜑 = −∫𝑡−ℎ1

𝑡−ℎ(t)
𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠

− (𝜇1 + ℎ̇ (𝑡)) ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠
− ∫𝑡
𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑅0𝑎𝛾 (𝑠) 𝑑𝑠
− ℎ𝑑 ∫𝑡−ℎ1

𝑡−ℎ(𝑡)
𝛾𝑇 (𝑠) 𝑅𝑎𝛾 (𝑠) 𝑑𝑠

− ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑅𝑏𝛾 (𝑠) 𝑑𝑠.
(36)

It follows from Lemma 3 with an augmented vector 𝛾(𝑠) that
−∫𝑡
𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑅0𝑎𝛾 (𝑠) 𝑑𝑠 ≤ [𝑊𝑇01𝑊𝑇02]𝑇[[[ℎ1𝑋0𝑅
−1

0𝑎𝑋𝑇0 𝑋0𝐻01∗ ℎ13 𝐺0𝑌0𝑅−10𝑎𝑌𝑇0 𝐺0 + sym {𝐺0𝑌0𝐻02}]]][𝑊
𝑇
01𝑊𝑇02] , (37)

−∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 ≤ [𝑊𝑇1𝑊𝑇2 ]𝑇[[[ℎ1𝑡𝑋1𝑄
−1

𝑎 𝑋𝑇1 𝑋1𝐻1∗ ℎ1𝑡3 𝐺1𝑌1𝑄−1𝑎 𝑌𝑇1 𝐺1 + sym {𝐺1𝑌1𝐻3}]]][𝑊
𝑇
1𝑊𝑇2 ] , (38)

−𝜇1 ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠 ≤ 𝜇1 [𝑊𝑇1𝑊𝑇3 ]𝑇[[[ℎ2𝑡𝑋2𝑄
−1

𝑏 𝑋𝑇2 𝑋2𝐻2∗ ℎ2𝑡3 𝐺2𝑌2𝑄−1𝑏 𝑌𝑇2 𝐺2 + sym {𝐺2𝑌2𝐻4}]]][𝑊
𝑇
1𝑊𝑇3 ] , (39)

−ℎ𝑑 ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑅𝑎𝛾 (𝑠) 𝑑𝑠 ≤ ℎ𝑑 [𝑊𝑇1𝑊𝑇2 ]𝑇[[[ℎ1𝑡𝑋3𝑅
−1

𝑎 𝑋𝑇3 𝑋3𝐻1∗ ℎ1𝑡3 𝐺1𝑌3𝑅−1𝑎 𝑌𝑇3 𝐺1 + sym {𝐺1𝑌3𝐻3}]]][𝑊
𝑇
1𝑊𝑇2 ] , (40)

−∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑅𝑏𝛾 (𝑠) 𝑑𝑠 [𝑊𝑇1𝑊𝑇3 ]𝑇[[[ℎ2𝑡𝑋4𝑅
−1

𝑏 𝑋𝑇4 𝑋4𝐻2∗ ℎ2𝑡3 𝐺2𝑌4𝑅−1𝑏 𝑌𝑇4 𝐺2 + sym {𝐺2𝑌4𝐻4}]]][𝑊
𝑇
1𝑊𝑇3 ] . (41)

For any appropriately dimensioned matrices 𝑈 =[𝑈𝑇1 𝑈𝑇2 𝑈𝑇3 𝑈𝑇4 ]𝑇, it is true that
0 = 2 [𝑥𝑇 (𝑡) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑓𝑇 (𝜎 (𝑡))]⋅ 𝑈 [𝐴𝑥 (𝑡) + 𝐴1𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑓 (𝜎 (𝑡))+ 𝐶�̇� (𝑡 − 𝜏 (𝑡)) − �̇� (𝑡)] . (42)

Letting 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚} > 0, it follows from (5) that

2𝑓𝑇 (𝜎 (𝑡)) 𝑆 [𝐾𝐻𝑇𝑥 (𝑡) − 𝑓𝑇 (𝜎 (𝑡))] ≥ 0. (43)

Finally, from the above derivation, we have�̇� (𝑡) ≤ 𝜉𝑇 (𝑡) {Π[ℎ(𝑡),ℎ̇(𝑡)] + ℎ1 [𝑊01𝑋0𝑅−10𝑎𝑋𝑇0𝑊𝑇01
+ 13𝑊02𝐺0𝑌0𝑅−10𝑎𝑌𝑇0 𝐺0𝑊𝑇02]+ ℎ1𝑡 [ℎ𝑑𝑊1𝑋3𝑅−1𝑎 𝑋𝑇3𝑊𝑇1 +𝑊1𝑋1𝑄−1𝑎 𝑋𝑇1𝑊𝑇1 ]+ ℎ2𝑡 [𝑊1𝑋4𝑅−1𝑏 𝑋𝑇4𝑊𝑇1 + 𝜇1𝑊1𝑋2𝑄−1𝑏 𝑋𝑇2𝑊𝑇1 ]+ ℎ1𝑡 [ℎ𝑑3 𝑊2𝐺1𝑌3𝑅−1𝑎 𝑌𝑇3 𝐺1𝑊𝑇2
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+ 13𝑊2𝐺1𝑌1𝑄−1𝑎 𝑌𝑇1 𝐺1𝑊𝑇2 ]+ ℎ2𝑡 [13𝑊3𝐺2𝑌4𝑅−1𝑏 𝑌𝑇4 𝐺2𝑊𝑇3+ 𝜇13 𝑊3𝐺2𝑌2𝑄−1𝑏 𝑌𝑇2 𝐺2𝑊𝑇3 ]} 𝜉 (𝑡)= 𝜉𝑇 (𝑡) {Π[ℎ(𝑡),ℎ̇(𝑡)] + ℎ1 [𝑊01𝑋0𝑅−10𝑎𝑋𝑇0𝑊𝑇01
+ 13𝑊02𝐺0𝑌0𝑅−10𝑎𝑌𝑇0 𝐺0𝑊𝑇02]+ ℎ1𝑡 [ℎ𝑑𝑊1𝑋3𝑅−1𝑎 𝑋𝑇3𝑊𝑇1 +𝑊1𝑋1𝑄−1𝑎 𝑋𝑇1𝑊𝑇1 ]+ ℎ2𝑡 [𝑊1𝑋4𝑅−1𝑏 𝑋𝑇4𝑊𝑇1 + 𝜇1𝑊1𝑋2𝑄−1𝑏 𝑋𝑇2𝑊𝑇1 ]+ 𝛼ℎ12 [ℎ𝑑3 𝑊2𝐺1𝑌3𝑅−1𝑎 𝑌𝑇3 𝐺1𝑊𝑇2+ 13𝑊2𝐺1𝑌1𝑄−1𝑎 𝑌𝑇1 𝐺1𝑊𝑇2 ] + (1 − 𝛼)⋅ ℎ12 [13𝑊3𝐺2𝑌4𝑅−1𝑏 𝑌𝑇4 𝐺2𝑊𝑇3+ 𝜇13 𝑊3𝐺2𝑌2𝑄−1𝑏 𝑌𝑇2 𝐺2𝑊𝑇3 ]} 𝜉 (𝑡)

(44)

with 𝛼 = (ℎ(𝑡) − ℎ1)/ℎ12 ≥ 0, 1 − 𝛼 = (ℎ2 − ℎ(𝑡))/ℎ12 ≥ 0.
Therefore, LMIs (17)–(21) hold, which togetherwith Schur

complement equivalence, Lemma 4 and the convex function
theory imply that �̇�(𝑡) < 0. Hence, it follows from the
Lyapunov stability theory that the nominal system (14) is
absolutely stable for any nonlinear function𝑓(𝜎(𝑡)) satisfying
(5). From Definition 1, this completes the proof.

The following theorem will give an absolute stability
criterion for the Lur’e system (14) satisfying the conditionsC.
2 and (5).

Corollary 9. e system (14) satisfying the conditions (3)
and (5) is absolutely stable for given values of ℎ ≥ 0,𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1, and 𝑘𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑚), if there
exist symmetric matrices 𝑃 ∈ R5𝑛×5𝑛, (𝑃𝑎, 𝑃𝑏 ∈ R4𝑛×4𝑛),(𝑄𝑎, 𝑄𝑏, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive definite matrices (𝑄2 ∈
R𝑛×𝑛), (𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈ R2𝑛×2𝑛), 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚},Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚} and any matrices (𝑈01, 𝑈02 ∈
R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛), 𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝑖 ∈ R4𝑛×2𝑛 (𝑖 =1, . . . , 4) such that LMIs (15) and (16) and the following LMIs
hold for [ℎ(𝑡), ℎ̇(𝑡)] ∈ {[0, ℎ] × [𝜇1, 𝜇2]}:𝑙 (0, ℎ̇ (𝑡) , 𝛼)

= [[[[[[[[[[
Π[0,ℎ̇(𝑡)] Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] ℎ𝑑Ω[0]𝑏[2,1,3] Ω[0]𝑏[2,1,1]∗ −ℎ𝑅𝑏 0 0 0∗ ∗ −𝜇1ℎ𝑄𝑏 0 0∗ ∗ ∗ −3ℎ𝑑ℎ𝑅𝑎 0∗ ∗ ∗ ∗ −3ℎ𝑄𝑎

]]]]]]]]]]< 0,
(45)𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼)

= [[[[[[[[[[
Π[0,ℎ̇(𝑡)] Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] Ω[0]𝑏[3,2,4] 𝜇1Ω[0]𝑏[3,2,2]∗ −ℎ𝑅𝑏 0 0 0∗ ∗ −𝜇1ℎ𝑄𝑏 0 0∗ ∗ ∗ −3ℎ𝑅𝑏 0∗ ∗ ∗ ∗ −3𝜇1ℎ𝑄𝑏

]]]]]]]]]]< 0,
(46)

𝑙 (ℎ, ℎ̇ (𝑡) , 𝛼)
= [[[[[[[[[[
Π[ℎ,ℎ̇(𝑡)] ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] ℎ𝑑Ω[ℎ]𝑏[2,1,3] Ω[ℎ]𝑏[2,1,1]∗ −ℎ𝑑ℎ𝑅𝑎 0 0 0∗ ∗ −ℎ𝑄𝑎 0 0∗ ∗ ∗ −3ℎ𝑑ℎ𝑅𝑎 0∗ ∗ ∗ ∗ −3ℎ𝑄𝑎

]]]]]]]]]]< 0,
(47)

𝑙 (ℎ, ℎ̇ (𝑡) , 1 − 𝛼)
= [[[[[[[[[[
Π[ℎ,ℎ̇(𝑡)] ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] Ω[ℎ]𝑏[3,2,4] 𝜇1Ω[ℎ]𝑏[3,2,2]∗ −ℎ𝑑ℎ𝑅𝑎 0 0 0∗ ∗ −ℎ𝑄𝑎 0 0∗ ∗ ∗ −3ℎ𝑅𝑏 0∗ ∗ ∗ ∗ −3𝜇1ℎ𝑄𝑏

]]]]]]]]]]< 0,
(48)

− 𝑎2ℎ2 + 𝑙 (0, ℎ̇ (𝑡) , 𝛼) < 0,− 𝑎2ℎ2 + 𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼) < 0, (49)

where the related notations are defined in Box 4 of Appendix C.

Proof. The LKF (22) can be reduced to the following one by
taking ℎ1 = 0, ℎ2 = ℎ, 𝑄1 = 0, and 𝑅0 = 0:

�̃� (𝑡) = 4∑
𝑖=1

�̃�𝑖 (𝑡) (50)
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with�̃�1 (𝑡) = 𝜁𝑇 (𝑡) 𝑃𝜁 (𝑡) + ℎ (𝑡) 𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡)+ (ℎ − ℎ (𝑡)) 𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡) ,�̃�2 (𝑡) = ∫𝑡
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄1 (𝑡) 𝛾 (𝑠) 𝑑𝑠
+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇 (𝑠) 𝑄2 (𝑡) 𝛾 (𝑠) 𝑑𝑠,�̃�3 (𝑡) = ∫𝑡
𝑡−𝜏(𝑡)

�̇�𝑇 (𝑠) 𝑄2�̇� (𝑠) 𝑑𝑠
+ 2 𝑚∑
𝑖=1

𝜆𝑖 ∫𝜎𝑖
0
𝑓𝑖 (𝜎𝑖) 𝑑𝜎𝑖,

�̃�4 (𝑡) = ∫𝑡
𝑡−ℎ(𝑡)

∫𝑡
𝜃
𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜇1 ∫𝑡−ℎ(𝑡)
𝑡−ℎ

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠 𝑑𝜃�̃�5 (𝑡) = ∫𝑡
𝑡−ℎ(𝑡)

∫𝑡
𝜃
𝛾𝑇 (𝑠) 𝑅1𝛾 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑅2𝛾 (𝑠) 𝑑𝑠 𝑑𝜃,

(51)

where notations of several symbols and matrices can be
found in Boxes 2 and 4 of Appendixes A and C. The
proof of Corollary 9 is omitted because of the similarity to
Theorem 8.

Remark 10. Theorem 8 and Corollary 9 can reduce the
conservatism of stability conditions based LMI via the LKFs
(22) and (50) application. For nonintegral item 𝑉1(𝑡), the
matrices 𝑃, 𝑃𝑎, and 𝑃𝑏 are just symmetrical, not always
positive definite, and 𝑄1(𝑡) and 𝑄2(𝑡) of the single-integral
item 𝑉2(𝑡) are delay-dependent matrices which can also
further improve the utilization of time delay and its derivative
information. When proving 𝑉(𝑡) > 0, we calculate 𝑉1(𝑡)
and 𝑉2(𝑡) as a whole applying Lemma 2, which may expand
the feasible regions of LMIs (15) and (16). When bounded
the derivative of the LKFs, three additional zero equations
(33)–(35) and Lemma 3 have been used to narrow the gap
between the upper bound and the true value, which may be
another contribution of reducing the conservatismof stability
conditions.

Remark 11. It is worth noting that the delay-product-type
itemwas introduced firstly by C. Zhang et al. [31, 44]; another
novel LKF with delay-dependent matrix was constructed
by W. Kwon et al. [33], where some improved stability
conditions for linear systems with time-varying delay were
given. C. Zhang and W. Kwon et al. pointed that the LKFs
with delay-product-type itemor delay-dependentmatrixmay
reduce the conservatism of stability conditions based on the
same inequality scaling technique. The LKFs (22) and (50)
constructed in this paper, which combine the advantage of

the delay-product-type item and delay-dependentmatrix, are
more general than those given in [31, 33]. In fact, letting𝑄11 =𝑄21 = 0, 𝑄20 = diag{𝑄2, 0}, 𝑄𝑎 = 𝑄𝑏 = 0, and 𝑅1 = 𝑅2, the
LKF (50) can be reduced to the LKF (18) of [31]. And taking𝑃𝑎 = 𝑃𝑏 = 0, 𝑄𝑎 = 𝑄𝑏 = 0, and 𝑅1 = 𝑅2 the LKF (50) can
be reduced to the LKF (16) of [33]. However, the derivation
method of [31, 33] cannot be applied directly. The positive
definiteness of the LKF and negative definiteness of the LKF’s
derivative are proved inTheorem 8.

Remark 12. It is worth noting that in [33], to bound the
integral item for −𝜇 ≤ ℎ̇(𝑡) ≤ 𝜇, (𝜇 > 0)−ℎ̇ (𝑡) ∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇𝑄𝑎𝛾 𝑑𝑠 − ℎ̇ (𝑡) ∫𝑡−ℎ(𝑡)

𝑡−ℎ
𝛾𝑇𝑄𝑏𝛾 𝑑𝑠 (52)

via the QGFMI technique, the following addition zero equa-
tion was introduced0 = 𝜇∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠

− 𝜇∫𝑡
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠
+ 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠− 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠.
(53)

Then, the above integral item can be rewritten as the
following form:𝜑 = − (𝜇 + ℎ̇ (𝑡)) ∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇𝑄𝑎𝛾 𝑑𝑠

− (𝜇 + ℎ̇ (𝑡)) ∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇𝑄𝑏𝛾 𝑑𝑠+ 𝜇∫𝑡
𝑡−ℎ(𝑡)

𝛾𝑇𝑄𝑎𝛾 𝑑𝑠 + 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇𝑄𝑏𝛾 𝑑𝑠.
(54)

The first two items on the right can be bounded via
the QGFMI technique like (39) of this paper; however,
there are fewer proper techniques for obtaining a tight
upper bound of the integral terms 𝜇∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇(𝑠)𝑄𝑎𝛾(𝑠)𝑑𝑠

and 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇(s)𝑄𝑏𝛾(𝑠)𝑑𝑠 due to their positive definiteness.
Thus, to avoid introducing the two positive define integral
terms, we give the modified LKF (22) with a double integral
item 𝑉4(𝑡).
Remark 13. In addition, the main result of [33] was not
LMI due to the terms ℎ2(𝑡) even ℎ3(𝑡). In this paper, all
matrices inequations of Theorem 8 and Corollary 9 are LMI
via Lemma 4 application, which can be solved easily by using
Matlab LMI-toolbox. Moreover, the double integral items𝑉4(𝑡) and𝑉5(𝑡) of the LKF (22) divide the time-delay interval[ℎ1, ℎ2] into two subintervals, that is, [ℎ1, ℎ(𝑡)] and [ℎ(𝑡), ℎ2],
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ℎ𝑑 = 1 − ℎ̇ (𝑡) , 𝛾𝑇 (𝑠) = [𝑥𝑇 (𝑠) �̇�𝑇 (𝑠)] , 𝜇1 = 𝜇1 + ℎ̇(𝑡),
V1(𝑡) = ∫𝑡

𝑡−ℎ(𝑡)

𝑥𝑇(𝑠)ℎ(𝑡) 𝑑𝑠, V2(𝑡) = ∫𝑡−ℎ(𝑡)𝑡−ℎ

𝑥𝑇(𝑠)ℎ − ℎ(𝑡)𝑑𝑠,𝜔1 (𝑡) = ℎ (𝑡) V1 (𝑡) , 𝜔2 (𝑡) = (ℎ − ℎ (𝑡)) V2 (𝑡) , 𝜁𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) 𝜔1 (𝑡) 𝜔2 (𝑡)],𝜁𝑇1 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) V1 (𝑡)] , 𝜁𝑇2 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) V2 (𝑡)],Δ𝑇(𝑡) = [𝜔𝑇1 (𝑡) 𝑥𝑇(𝑡) − 𝑥𝑇(𝑡 − ℎ(𝑡)) 𝜔𝑇2 (𝑡) 𝑥𝑇(𝑡 − ℎ(𝑡)) − 𝑥𝑇(𝑡 − ℎ)],𝜉𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − ℎ) V1 (𝑡) V2 (𝑡),∫𝑡
𝑡−ℎ(𝑡)

∫𝑡
𝑢
(𝑥𝑇 (𝑠) /ℎ (𝑡)) 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ(𝑡)

𝑡−ℎ
∫𝑡−ℎ(𝑡)
𝑢

(𝑥𝑇 (𝑠) / (ℎ − ℎ (𝑡))) 𝑑𝑢 𝑑𝑠 �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑓𝑇 (𝜎 (𝑡))],𝜂1 (𝑡) = [ 𝜔1(𝑡)𝑥(𝑡) − 𝑥(𝑡 − ℎ(𝑡))] , 𝜂2 (𝑡) = [ 𝜔2(𝑡)𝑥(𝑡 − ℎ(𝑡)) − 𝑥(𝑡 − ℎ)] .
Box 2: Notations of several symbols and matrices in Corollaries 9 and 15.

instead of using the item ∫𝑡
𝑡−ℎ
𝛾𝑇(𝑠)𝑅𝛾(𝑠)𝑑𝑠 directly, which

further make full use of the information of time-varying
delays ℎ(𝑡) − ℎ1, ℎ2 − ℎ(𝑡) and their derivative ℎ̇(𝑡). Thus,
the QGFMI technique can be used fully in each subinterval,
which can further reduce the conservatism of the stability
conditions.

3.2. Robustly Absolute Stability Criteria for Uncertain Form.
Next, we extend the obtained absolute stability conditions
to robustly absolute stability problem for the uncertain
neutral-type Lur’e system (1) with time-varying parameter
uncertainties satisfying (7) and (8).

Theorem 14. e system (1) satisfying the conditions (2), (5),
(7), and (8) is robustly absolutely stable for given values ofℎ2 ≥ ℎ1 ≥ 0, 𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1, and 𝑘𝑗 > 0 (𝑗 =1, 2, . . . , 𝑚), if there exist symmetric matrices 𝑃 ∈ R7𝑛×7𝑛,(𝑃𝑎, 𝑃𝑏 ∈ R5𝑛×5𝑛), (𝑄𝑎, 𝑄𝑏, 𝑅0𝑎, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive
definite matrices (𝑄2 ∈ R𝑛×𝑛), (𝑄1, 𝑅0, 𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈
R2𝑛×2𝑛), 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚},
anymatrices (𝑈01, 𝑈02 ∈ R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛),𝑋0 ∈ R3𝑛×2𝑛,𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝜆 ∈ R4𝑛×2𝑛 (𝑖 = 1, . . . , 4; 𝜆 = 0, . . . , 4) and𝜀 > 0 such that LMIs (15)-(16) and the following LMIs hold for[ℎ(𝑡), ℎ̇(𝑡)] ∈ {[ℎ1, ℎ2] × [𝜇1, 𝜇2]}:𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2 + sym {𝐽2Φ𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (55)

𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (56)

𝐽1𝑙 (ℎ2, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2 + sym {𝐽2Φ𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (57)

𝐽1𝑙 (ℎ2, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (58)

− 𝑎2ℎ212 + 𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (59)

− 𝑎2ℎ212 + 𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (60)

whereΦ1 = [𝑒1𝐸𝑇𝑎 + 𝑒2𝐸𝑇𝑎1 + 𝑒16𝐸𝑇𝑏 ]𝑇 ,Φ2 = [𝑒1𝑈1𝐷 + 𝑒5𝑈2𝐷 + 𝑒15𝑈3𝐷 + 𝑒16𝑈4𝐷]𝑇 ,𝐽𝑇1 = [𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 0] ,𝐽𝑇2 = [𝐼 0 0 0 0 0 0 0] ,𝐽𝑇3 = [0 0 0 0 0 0 0 𝐼] .
(61)

Proof. If we replace 𝐴, 𝐴1, and 𝐵 in LMIs (17)–(21) with𝐴 + 𝐷𝐹(𝑡)𝐸𝑎, 𝐴1 + 𝐷𝐹(𝑡)𝐸𝑎1, 𝐵 + 𝐷𝐹(𝑡)𝐸𝑏, respectively,
Theorem 14 can be proved based on Lemma 6 easily.

The following corollary will give the robustly absolute
stability criterion for the Lur’e system (1) satisfying the
condition C. 2.

Corollary 15. System (1) satisfying the conditions (3) and
(5), (7), and (8) is robustly absolutely stable for given values
of ℎ ≥ 0, 𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1, and 𝑘𝑗 > 0 (𝑗 =1, 2, . . . , 𝑚), if there exist symmetric matrices 𝑃 ∈ R5𝑛×5𝑛,(𝑃𝑎, 𝑃𝑏 ∈ R4𝑛×4𝑛), (𝑄𝑎, 𝑄𝑏, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive definite
matrices (𝑄2 ∈ R𝑛×𝑛), (𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈ R2𝑛×2𝑛), 𝑆 =
diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚}, any matrices(𝑈01, 𝑈02 ∈ R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛), 𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝑖 ∈
R4𝑛×2𝑛 (𝑖 = 1, . . . , 4) and 𝜀 > 0 such that LMIs (15)-(16) and
the following LMIs hold for [ℎ(𝑡), ℎ̇(𝑡)] ∈ {[ℎ1, ℎ2] × [𝜇1, 𝜇2]}:𝐽1𝑙 (0, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (62)



12 Complexity𝐽1𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (63)

𝐽1𝑙 (ℎ, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (64)

𝐽1𝑙 (ℎ, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (65)

− 𝑎2ℎ2 + 𝐽1𝑙 (0, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2+ sym {𝐽2Φ̃𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (66)

− 𝑎2ℎ2 + 𝐽1𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2+ sym {𝐽2Φ̃𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (67)

whereΦ̃1 = [𝑒1𝐸𝑇𝑎 + 𝑒2𝐸𝑇𝑎1 + 𝑒12𝐸𝑇𝑏 ]𝑇 ,Φ̃2 = [𝑒1𝑈1𝐷 + 𝑒4𝑈2𝐷 + 𝑒11𝑈3𝐷 + 𝑒12𝑈4𝐷]𝑇 ,𝐽𝑇1 = [𝐼 𝐼 𝐼 𝐼 𝐼 0] ,𝐽𝑇2 = [𝐼 0 0 0 0 0] ,𝐽𝑇3 = [0 0 0 0 0 𝐼] .
(68)

Remark 16. If the nonlinear function 𝑓(𝜎) in the feedback
path satisfies the infinite sector conditions (6), for any 𝑠𝑖 ≥0, 𝑖 = 1, 2, . . . , 𝑚, it follows from (6) that𝑠𝑖𝑓𝑖 (𝜎𝑖) ℎ𝑇𝑖 𝑥 (𝑡) ≥ 0, (69)

which is equivalent to2𝑥𝑇 (𝑡)𝐻𝑆𝑓 (𝜎) ≥ 0, (70)

where 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}.
Therefore, the corresponding absolute and robustly abso-

lute stability criteria can be obtained by replacing the matrixΘ1 of Theorems 8 and 14 and Corollaries 9 and 15 with Θ2 =𝑒1𝐻𝑆𝑒𝑇16 and Θ̃2 = 𝑒1𝐻𝑆𝑒𝑇12, respectively.

Remark 17. For one special case, in the absence of the
nonlinear function, that is, in case of 𝐵 = 0, the system (1)
is simply written as the following linear neutral system�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏 (𝑡)) = (𝐴 + Δ𝐴) 𝑥 (𝑡)+ (𝐴1 + Δ𝐴1) 𝑥 (𝑡 − ℎ (𝑡)) ,𝑥 (𝑠) = 𝜑 (𝑠) ,�̇� (𝑠) = �̇� (𝑠) , 𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.1

(71)

𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.2, (72)
and for another special case, in the absence of the nonlinear
function and neutral-type item, that is, in case of 𝐵 = 0 and𝐶 = 0, the system (1) is simply written as the following linear
time-delayed system:�̇� (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝐴1 + Δ𝐴1) 𝑥 (𝑡 − ℎ (𝑡)) ,𝑥 (s) = 𝜑 (𝑠) , 𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.1𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.2. (73)

Obviously, take Theorem 8 as an example. Only letting Θ1 =0,Π4 = [𝑒1𝑈1+𝑒5𝑈2+𝑒15𝑈3] andΠ5 = [𝐴𝑒𝑇1+𝐴1𝑒𝑇2+𝐶𝑒𝑇15−𝑒𝑇5 ],
the stability criteria proposed in this paper are also applied
to this linear neutral system (71) with time-varying delays;
taking Θ1 = 0, 𝑄2 = 0, Π4 = [𝑒1𝑈1 + 𝑒5𝑈2] and Π5 =[𝐴𝑒𝑇1 + 𝐴1𝑒𝑇2 ], the stability criteria proposed in this paper
are also applied to this linear system (73) with time-varying
delays. We will not elaborate here due to the limited space
available. However, some results of detailed comparisons will
be given in the next section directly.

Remark 18. It is worth pointing out that in this paper,
the upper and lower bounds constraints of the time-delay
derivative are 𝜇1 ≤ ℎ̇(𝑡) ≤ 𝜇2, where 𝜏𝑑 < 1, 𝜇2 < 1
due to the diagonal entry −(1 − ̇𝜏(𝑡))𝑄2, −(1 − ℎ̇(𝑡))�̇�𝑇(𝑡 −ℎ(𝑡))(𝑄1(𝑡) − 𝑄2(𝑡))�̇�(𝑡 − ℎ(𝑡)) in Π[ℎ(𝑡),ℎ̇(𝑡)], and −(1 −ℎ̇(𝑡)) ∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇(𝑠)𝑅1𝛾(𝑠)𝑑𝑠 in �̇�5(𝑡). Similar to Remark 5 of

[45], one can establish a stability criterion for system (1) in
the case 𝜏𝑑 ≥ 1 and 𝜇2 ≥ 1 if 𝜉(𝑡), 𝜁(𝑡), 𝜁1(𝑡), 𝜁2(𝑡), 𝛾(𝑠) and𝑉5(𝑡) are replaced with

𝜉𝑇 (𝑡)= [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ2) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − ℎ1) �̇�𝑇 (𝑡 − ℎ2) V1 (𝑡) V2 (𝑡) V3 (𝑡) ∫𝑡
𝑡−ℎ1

∫𝑡
𝑢

𝑥𝑇 (𝑠)ℎ1 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ1𝑡−ℎ(𝑡) ∫𝑡−ℎ1𝑢 𝑥𝑇 (𝑠)ℎ1𝑡 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ(𝑡)𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝑢

𝑥𝑇 (𝑠)ℎ2𝑡 𝑑𝑢 𝑑𝑠 𝑓𝑇 (𝜎 (𝑡))] ,𝜁𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ2) 𝜔1 (𝑡) 𝜔2 (𝑡) 𝜔3 (𝑡)] ,𝜁𝑇1 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ2) V2 (𝑡)] ,𝜁𝑇2 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ2) V3 (𝑡)] ,𝛾𝑇 (𝑠) = 𝑥𝑇 (𝑠) ,𝑄2 = 0,𝑉5 (𝑡) = ∫𝑡
𝑡−ℎ1

∫𝑡−ℎ1
𝜃

𝑥𝑇 (𝑠) 𝑅0𝑥 (𝑠) 𝑑𝑠 𝑑𝜃 + ∫𝑡−ℎ1
𝑡−ℎ2

∫𝑡−ℎ1
𝜃

𝑥𝑇 (𝑠) 𝑅1𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.
(74)

Due to page limitation, this result is omitted.
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4. Numerical Examples

In this section, we give three types of examples, including
the Lur’e system, the linear neutral system, and two linear
systems, to show the effectiveness of the criteria proposed
in this paper. Moreover, the conservatism of the criteria is
checked based on the calculated maximal admissible delay
upper bounds (MADUBs). And the index of the number of
decision variables (NoVs) is applied to show the complexity
of criteria.The stability criteria proposed in this paper are just
dependent on 𝜏𝑑, ℎ, 𝜇1, and 𝜇2, however, independent on 𝜏
and 𝜏(𝑡). So, only 𝜏𝑑 of the information of the neutral-type
time delay 𝜏(𝑡) is given for Examples 1 and 3. For the sake of
simplicity, let −𝜇1 = 𝜇2 = 𝜇.
Example 1. Consider the nominal neutral-type Lur’e system
(14) with the time-varying delays satisfying 𝐶.2 and the
nonlinearity satisfying (6), and the system parameters are
described as 𝐴 = [−2 0.50 −1] ,𝐴1 = ( 1 0.40.4 −1) ,𝐵 = ( −0.5−0.75) ,𝐶 = (0.2 0.10.1 0.2) ,𝐻 = (0.20.6) .

(75)

Let the nonlinearity 𝑓(𝜎(𝑡)) = 𝜎3(𝑡), where 𝜎(𝑡) =𝐻𝑇𝑥(𝑡) = 0.2𝑥1(𝑡)+0.6𝑥2(𝑡).Then, it follows from the infinite
sector condition (6) and 𝑓𝑖(𝜎𝑖(𝑡))/𝜎𝑖(𝑡) = 𝑓(𝜎𝑖(𝑡))/𝜎(𝑡) =𝜎2(𝑡) > 0, that is 𝑓𝑖(𝜎𝑖(𝑡)) ∈ 𝐾[0,∞). Under the condition
C. 2, in Table 1, the MADUBs ℎ of the Lur’e system (14)
for 𝜏𝑑 = 0.1 and different 𝜇 by using Remark 16 and
recent methods in [26, 27, 29, 34] are compared. From the
table, notwithstanding the NoVs of our criteria are bigger
than those of the criteria [26, 27, 29, 34], only [29] is less
conservative than Remark 16 under 𝜇 = 0.2. However our
results become better and better with the increasing of 𝜇.
Figure 1 displays the responses of system states 𝑥(𝑡) for ℎ(𝑡) =2.8490/2+(2.8490/2) sin(0.8𝑡/2.8490), 𝜏(𝑡) = 0.5+|sin(0.1𝑡)|
and initial condition 𝑥(0) = [0.2 − 0.2]𝑇. It is possible to see
that, for this realization, the trajectory converges to the origin,
as expected.

Remark 2. The MADUBs ℎ of the Lur’e system (14) for 𝜏𝑑 =0.1 and different 𝜇 by using our results are less than those of
[21] because the slope restrictions for nonlinearity and the
lower bound of the derivative of the neutral-type delay ̇𝜏(𝑡)
were considered in [21], where these restrictions are more
strict than those of this paper. Thus, the related results of [21]
were not compared with the ones of this paper.
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Figure 1: The state responses for Example 1.

In addition, the construction of the LKF with delay-
dependent matrices is the main reason to reduce the conser-
vatism of the stability criterion in [29], and another one is that
the lower bound of the delay derivative is also involved in this
paper, which is not mentioned in [29].

Example 2. Consider the following Chua’s circuit

�̇� = 𝛼 (𝑦 − 𝑔 (𝑥))̇𝑦 = 𝑥 − 𝑦 + 𝑧�̇� = −𝛽𝑦, (76)

where𝑚0 = −1/7,𝑚1 = 2/7, 𝛼 = 9, 𝛽 = 14.28, and 𝑐 = 1, and
the nonlinear function𝑔(𝑥) is given by𝑔(𝑥) = 𝑚1𝜃1+0.5(𝑚0−𝑚1)(|𝑥 + 𝑐| − |𝑥 − 𝑐|). This Chua’s circuit can be expressed as
a Lur’e-type system.

In [19], a master-slave synchronization scheme through
a time-delayed state error feedback control is devised for the
Chua’s circuit (76), which is given as

𝑀𝑎𝑠𝑡𝑒𝑟 : {{{�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓 (𝐶𝑥 (𝑡))𝑝 (𝑡) = 𝑊𝑥 (𝑡) ,
𝑆𝑙𝑎V𝑒 : {{{ ̇𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝐵𝑓 (𝐶𝑦 (𝑡)) + 𝑢 (𝑡)𝑞 (𝑡) = 𝑊𝑦 (𝑡) ,𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 : 𝑢 (𝑡) = −𝐾𝑎 (𝑥 (𝑡) − 𝑦 (𝑡))+ 𝐾𝑏 (𝑝 (𝑡 − ℎ (𝑡)) − 𝑞 (𝑡 − ℎ (𝑡))) ,

(77)

where 𝑓(𝜃) = 0.5(|𝜃 + 1| − |𝜃 − 1|) ∈ [0, 1], 𝐶 = 𝑊 = [1 0 0]
and
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Table 1: MADUBs ℎ for different 𝜇 (Example 1).𝜏𝑑 Methods\𝜇 0.2 0.4 0.6 0.8 NoVs

0.1

[26] 2.9962 2.1316 1.7138 1.3204 75
[27] 3.1743 2.1789 1.7467 1.7153 96
[34] 3.4880 2.3787 1.8062 1.4625 93
[29] 3.8557 2.8490 2.4014 2.2130 117

Remark 16 3.6076 2.8490 2.5501 2.4526 705

Table 2: MADUBs ℎ for different 𝜇 (Example 2).

Methods\𝜇 0 0.3 0.6 0.9 NoVs
[19] 0.1622 0.1591 0.1566 0.1527 10
[23] 0.1745 0.1698 0.1698 0.1698 160
[24] 0.1747 0.1710 0.1703 0.1703 140
[27] 0.1771 0.1721 0.1715 0.1715 194
[21] 0.1894 0.1894 0.1894 0.1893 627
[30] 0.2638 0.2578 0.2540 0.2510 809
Corollary 9 0.2707 0.2700 0.2545 0.2544 1548

𝐴 = [[[
−𝛼𝑚1 𝛼 01 −1 10 −𝛽 0]]] ,

𝐵 = [[[
−𝛼 (𝑚0 − 𝑚1)00 ]]] .

(78)

Letting 𝑒 = 𝑥 − 𝑦, then the resultant error system is given bẏ𝑒 (𝑡) = (𝐴 + 𝐾𝑎) 𝑒 (𝑡) − 𝐾𝑏𝑊𝑒 (𝑡 − ℎ (𝑡))+ 𝐵𝜑 (𝐶𝑒 (𝑡)) . (79)

Suppose the synchronization controller gains are designed by
[18]

𝐾𝑎 = [[[
−1 0 00 −1 00 0 −1]]] ,

𝐾𝑏 = [[[
6.00291.3367−2.1264]]] .

(80)

InTable 2, we calculate theMADUBs ℎ of the error system
(79) for different 𝜇 and the condition C. 2 by using our
results and methods in [18, 19, 21, 23, 27, 30] are compared.
From the table, it is found that notwithstanding the NoVs
of Corollary 9 are bigger than those of the criteria [19, 23,
24, 27], the MADUBs computed by Corollary 9 are larger.
Compared with the criteria in [21, 30], Corollary 9 obtains
less conservative MADUBs but requires less computation
complexity. Moreover, for ℎ(𝑡) = 0.2707 and initial condition𝑒(0) = [−0.1 0.4 − 0.3]𝑇, Figure 2 depicts the error state
responses for the error system (79) under control of the
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Figure 2: The error state responses for Example 2.

synchronization controller. Thus, one can see that the error
system is asymptotically stable for the time-varying delay ℎ(𝑡)
less than 0.2707.

Remark 3. In Example 2, the purpose of this paper is to
enlarge the MADUBs under the same controller to [19]. At
this point, the error system (79) can be seen as a new Lure
system within the given gain matrices 𝐴 + 𝐾𝑎, −𝐾𝑏𝑊 and 𝐵
proposed by [19]. The MADUBs of are calculated by solving
the LMIs in Theorem 8. For an example, an MADUB ℎ =0.2700 is obtained for 𝜇 = 0.3 byTheorem 8, then the stability
of the error system (79) must be guaranteed by Theorem 8
under the same controller to [19] for 0 ≤ ℎ(𝑡) ≤ ℎ and |𝜇| ≤0.3. In otherwords, this paper does not design any controllers,
but analyzes the stability. The same controller gains of [19]
are seen as the known system matrices of the error system
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Table 3: MADUBs ℎ for 𝜏𝑑 = 0.6 and different 𝜇1 and 𝜇2 (Example 3).𝜇1 Methods\𝜇2 0.5 0.9 NoVs

Ignore 𝜇1 [25] 1.5572 1.5572 10
[27] 1.6635 1.5742 160
[35] 1.5812 1.5745 140

-0.5 [28] 1.8763 1.7352 120
Remark 17 2.0555 1.9357 518

-0.2 [28] 1.8780 1.7453 120
Remark 17 2.0671 1.9558 518

Table 4: MADUBs ℎ for different 𝜇 (Example 4).

Methods\𝜇 0.1 0.2 0.5 0.8 NoVs
[36] 6.6103 4.0034 1.6875 1.0287 23𝑛2 + 4𝑛
[37] 7.1672 4.5179 2.4158 1.8384 142𝑛2 + 18𝑛
[38] 7.1765 4.5438 2.4963 1.9225 114𝑛2 + 18𝑛
[39] 7.2030 4.5126 2.3860 1.8476 203𝑛2 + 9𝑛
[40] 7.1905 4.5275 2.4473 1.8562 70𝑛2 + 12𝑛
[30] 7.2734 4.6213 2.6505 2.0612 185.5𝑛2 + 21.5𝑛
[3] 7.4001 4.7954 2.7175 2.0894 108𝑛2 + 12𝑛
[33] 8.6565 5.8907 3.1754 2.3953 91.5𝑛2 + 4.5𝑛
Remark 17 8.9647 7.1866 4.9390 3.8477 165.5𝑛2 + 19.5𝑛
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Figure 3: The state responses for Example 3.

(79). Therefore, the controller gains obtained in [19] will also
stabilize the system considered in Example 2 under a bounds
of ℎ(𝑡) obtained byTheorem 8.

Example 3. Consider the linear neutral-type system (71)
with the time-varying delays satisfying 𝐶.2, and the system
parameters are described as

𝐴 = (−1 10 −1) ,

𝐴1 = (0.5 00.5 −0.5) ,𝐶 = (0.4 00 0.4) ,𝐷 = diag {1, 1} ,𝐸𝑎 = diag {0.05, 0.05} ,𝐸𝑎1 = diag {0.1, 0.1} .
(81)

Under the condition C. 2, in Table 3, we calculate the
MADUBs ℎ of the linear neutral-type system (71) for 𝜏𝑑 =0.6 and different 𝜇1, 𝜇2 by using Remark 16 and methods
in [25, 27, 28, 35] are compared. From the table, it is found
that notwithstanding the NoVs of our criteria are bigger
than those of the criteria [25, 27, 28, 35], the MADUBs
computed by our criteria are larger. Figure 3 displays the
responses of system states 𝑥(𝑡) for ℎ(𝑡) = 2.0555/2 +(2.0555/2) sin(𝑡/2.0555), 𝜏(𝑡) = 1.2| sin(0.5𝑡)| and initial
condition𝑥(0) = [−0.2 0.2]𝑇. It is possible to see that, for this
realization, the trajectory converges to the origin, as expected.

Example 4. Consider the linear systems (73) with time-
varying delays, where the system parameters are described as𝐴 = [ 0 1−1 −2] ,𝐴1 = [ 0 0−1 1] . (82)
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As a special case pointed out by Remark 16, Corollary 9
removed some redundant terms which can be used to check
the stability of the linear systems with time-varying delays.
In order to make a comparison with some existing stability
criteria, the MADUBs under the condition C. 2 are listed
in Table 4, which shows that notwithstanding the NoVs of
Corollary 9 are bigger than those of the criteria [3, 33, 36,
38, 40], the MADUBs computed by Corollary 9 are larger.
Comparedwith the criteria in [30, 37, 39], Corollary 9 obtains
less conservative MADUBs but requires less computation
complexity.

5. Conclusion

In this paper, some improved absolute and robustly absolute
stability criteria are proposed for the uncertain neutral-
type Lur’e systems with mixed time-varying delays and
sector-bounded nonlinearities via a novel LKF combining
the delay-product-type function and the delay-dependent
matrix. An effective technique, QGFMI, is applied to fur-
ther reduce the conservatism of the proposed criteria from
some existing results. Finally, some numerical examples
are used to illustrate the effectiveness of the proposed
approaches.

Appendix

A. Boxes 1 and 2

See Boxes 1 and 2.

B. Box 3

Ω1[ℎ(𝑡)] = [𝐸𝑃𝑎𝐸𝑇 00 0] + 𝑄1 (𝑡) ,
Ω2[ℎ(𝑡)] = [𝐸𝑃𝑏𝐸𝑇 00 0] + 𝑄2 (𝑡) ,
Ω3[ℎ(𝑡)] = [(2 − 𝛼)Ω1[ℎ(𝑡)] (1 − 𝛼)𝑈01 + 𝛼𝑈02∗ (1 + 𝛼)Ω2[ℎ(𝑡)] ] ,
Ω4[ℎ(𝑡)] = 𝑃 + [[[[[[[[[[

𝑒𝑇1𝑒𝑇2𝑒𝑇3𝑒𝑇40
]]]]]]]]]]

𝑇

[ℎ1𝑡𝑃𝑎 + ℎ2𝑡𝑃𝑏] [[[[[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇3𝑒𝑇40
]]]]]]]]]]

+ sym
{{{{{{{{{{{{{{{{{{{{{
[[[[[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇3𝑒𝑇40
]]]]]]]]]]

𝑇

⋅((
(
𝑃𝑎 [[[[[[[[[

0000̃𝑒𝑇6
]]]]]]]]]
+ 𝑃𝑏 [[[[[[[[[

0000̃𝑒𝑇7
]]]]]]]]]
))
)
}}}}}}}}}}}}}}}}}}}}}
,

𝛼 = ℎ (𝑡) − ℎ1ℎ12 ,𝐽𝑇 = [𝐸1 𝐸2] ,𝐸1 = [𝑒6 𝑒2 − 𝑒3]𝐸2 = [𝑒7 𝑒3 − 𝑒4] ,Π[ℎ(𝑡),ℎ̇(𝑡)] = sym {Π1[ℎ(𝑡),ℎ̇(𝑡)] + Π3[ℎ(𝑡),ℎ̇(𝑡)]}+ Π2[ℎ(𝑡),ℎ̇(𝑡)],Π1[ℎ(𝑡),ℎ̇(𝑡)] = Γ[ℎ(𝑡)]𝑃Ψ𝑇[ℎ̇(𝑡)]
+ [𝑒1 𝑒2 𝑒3 𝑒4 𝑒10] 𝑃𝑎 [ℎ1𝑡𝑒5 ℎ1𝑡𝑒6 ℎ1𝑡ℎ𝑑𝑒7 ℎ1𝑡𝑒8 𝑒2− ℎ𝑑𝑒3 − ℎ̇ (𝑡) 𝑒10]𝑇
+ [𝑒1 𝑒2 𝑒3 𝑒4 𝑒11] 𝑃𝑏 [ℎ2𝑡𝑒5 ℎ2𝑡𝑒6 ℎ2𝑡ℎ𝑑𝑒7 ℎ2𝑡𝑒8 ℎ𝑑𝑒3− 𝑒4 + ℎ̇ (𝑡) 𝑒11]𝑇 + Θ1 + Θ̃1 + Π4Π5,Π2[ℎ(𝑡),ℎ̇(𝑡)] = [𝑒1 𝑒5] [𝑄1 + ℎ1𝑅0] [𝑒1 𝑒5]𝑇
+ [𝑒2 𝑒6] [𝑄1 (𝑡) − 𝑄1] [𝑒2 𝑒6]𝑇
+ ℎ𝑑 [𝑒3 𝑒7] [𝑄2 (𝑡) − 𝑄1 (𝑡)] [𝑒3 𝑒7]𝑇 − [𝑒4 𝑒8] 𝑄2 (𝑡) [𝑒4 𝑒8]𝑇+ 𝑒1𝑅0𝑎𝑒𝑇1 + 𝑒2 [ℎ𝑑𝑅𝑎 − 𝑅0𝑎 + ℎ̇ (𝑡) 𝑄𝑎] 𝑒𝑇2+ 𝑒3 [𝑅𝑏 − ℎ𝑑𝑅𝑎 + ℎ̇ (𝑡)⋅ (𝑄𝑏 − 𝑄𝑎)] 𝑒𝑇3 − 𝑒4 [𝑅𝑏 + ℎ̇ (𝑡) 𝑄𝑏] 𝑒𝑇4 + 𝑒5𝑄2𝑒𝑇5− (1 − 𝜏𝑑) 𝑒15𝑄2𝑒𝑇15
+ ℎ1t [𝑒2 𝑒6] (𝑄𝑎 + 𝑅1) [𝑒2 𝑒6]𝑇+ 𝜇1⋅ ℎ𝑑ℎ2𝑡 [𝑒3 𝑒7] 𝑄𝑏 [𝑒3 𝑒7]𝑇
+ ℎ𝑑ℎ2𝑡 [𝑒3 𝑒7] 𝑅2 [𝑒3 𝑒7]𝑇 + ℎ̇ (𝑡) Π6𝑃𝑎Π𝑇6− ℎ̇ (𝑡) Π7𝑃𝑏Π𝑇7 ,Π3[ℎ(𝑡),ℎ̇(𝑡)] = 𝑊01𝑋0𝐻01𝑊𝑇02 +𝑊02𝐺0𝑌0𝐻02𝑊𝑇02+ ℎ𝑑𝑊1𝑋3𝐻1𝑊𝑇2 + ℎ𝑑𝑊2𝐺1𝑌3𝐻3𝑊𝑇2+𝑊1𝑋4𝐻2𝑊𝑇3 +𝑊3𝐺2𝑌4𝐻4𝑊𝑇3 +𝑊1𝑋1𝐻1𝑊𝑇2+𝑊2𝐺1𝑌1𝐻3𝑊𝑇2 + 𝜇1𝑊1𝑋2𝐻2𝑊𝑇3
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+ 𝜇1𝑊3𝐺2𝑌2𝐻4𝑊𝑇3 ,Ω01 = ℎ1𝑊01𝑋0,Ω02 = ℎ1𝑊02𝐺0𝑌0,Ω𝑎[𝑘,𝑗] = ℎ12𝑊𝑘𝑋𝑗,Ω[ℎ(𝑡)]𝑏[𝑘,𝑟,𝑗] = ℎ12𝑊𝑘𝐺𝑟𝑌𝑗,𝑘 ∈ [1, 2, 3] , 𝑗 ∈ [1, 2, 3, 4] , 𝑟 ∈ [1, 2] ,Γ[ℎ(𝑡)] = [𝑒1 𝑒2 𝑒3 𝑒4 ℎ1𝑒9 ℎ1𝑡𝑒10 ℎ2𝑡𝑒11] ,Ψ[ℎ̇(𝑡)] = [𝑒5 𝑒6 ℎ𝑑𝑒7 𝑒8 𝑒1 − 𝑒2 𝑒2 − ℎ𝑑𝑒3 ℎ𝑑𝑒3 − 𝑒4] ,𝑊01 = [𝑒1 𝑒2 𝑒9] ,𝑊02 = [ℎ1𝑒9 𝑒1 − 𝑒2 𝑒12 𝑒1 − 𝑒9] ,𝑊1 = [𝑒2 𝑒3 𝑒4 𝑒10 𝑒11] ,𝐺0 = diag {ℎ1, 0, 0, 0} ,𝐺1 = diag {ℎ (𝑡) − ℎ1, 0, 0, 0} ,𝐺2 = diag {ℎ2 − ℎ (𝑡) , 0, 0, 0} ,𝑊2 = [𝑒10 𝑒2 − 𝑒3 𝑒13 𝑒2 − 𝑒10] ,𝑊3 = [𝑒11 𝑒3 − 𝑒4 𝑒14 𝑒3 − 𝑒11] ,𝑎2 = sym {𝑒10𝐸𝑇 (𝑌1+ ℎ𝑑𝑌3) 𝐹𝑒𝑇10 + 𝑒11𝐸𝑇 (𝜇1𝑌2 + 𝑌4) 𝐹𝑒𝑇11} ,𝐸𝑇 = [𝐼 0 0 0] ,𝐹𝑇 = [𝐼 0] ,𝑄1 (𝑡) = 𝑄10 − ℎ (𝑡) 𝑄11,𝑄2 (𝑡) = 𝑄20 + (ℎ − ℎ (𝑡)) 𝑄21,𝑄𝑎 = 𝑄11 + [ 0 𝑄𝑎𝑄𝑎 0 ] ,𝑄𝑏 = 𝑄21 + [ 0 𝑄𝑏𝑄𝑏 0 ] ,𝑅0𝑎 = 𝑅0 + [ 0 𝑅0𝑎𝑅0𝑎 0 ] ,𝑅𝑎 = 𝑅1 + [ 0 𝑅𝑎𝑅𝑎 0 ] ,
𝑅𝑏 = 𝑅2 + [ 0 𝑅𝑏𝑅𝑏 0 ] ,
𝐻01 = [𝐼 0 0 00 𝐼 0 0] ,
𝐻02 = [−𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,
𝐻1 = [ℎ1𝑡𝐼 0 0 00 𝐼 0 0] ,
𝐻2 = [ℎ2𝑡𝐼 0 0 00 𝐼 0 0] ,

𝐻3 = [−ℎ1𝑡𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,𝐻4 = [−ℎ2𝑡𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,Θ1 = 𝑒1𝐻𝐾𝑆𝑒𝑇16 − 𝑒16𝑆𝑒𝑇16,Θ̃1 = 2𝑒5𝐻Λ𝑒𝑇16,Π4 = [𝑒1𝑈1 + 𝑒5𝑈2 + 𝑒15𝑈3 + 𝑒16𝑈4] ,Π5 = [𝐴𝑒𝑇1 + 𝐴1𝑒𝑇3 + 𝐶𝑒𝑇15 + 𝐵𝑒𝑇16 − 𝑒𝑇5 ] ,Π6 = [𝑒1 𝑒2 𝑒3 𝑒4 𝑒10] ,Π7 = [𝑒1 𝑒2 𝑒3 𝑒4 𝑒11] .
(B.1)

C. Box 4

Ω4[ℎ(𝑡)] = 𝑃 + [[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇30
]]]]]]]
𝑇

[ℎ (𝑡) 𝑃𝑎 + (ℎ − ℎ (𝑡)) 𝑃𝑏] [[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇30
]]]]]]]

+ sym{{{{{{{{{{{{{{{
[[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇30
]]]]]]]
𝑇

(𝑃𝑎 [[[[[[
000̃𝑒𝑇4
]]]]]] + 𝑃𝑏

[[[[[[
000̃𝑒𝑇5
]]]]]])

}}}}}}}}}}}}}}}
,

𝛼 = ℎ (𝑡)ℎ ,𝐽𝑇 = [𝐸1 𝐸2] ,𝐸1 = [𝑒4 𝑒1 − 𝑒2]𝐸2 = [𝑒5 𝑒2 − 𝑒3] ,Π[ℎ(𝑡),ℎ̇(𝑡)] = sym {Π1[ℎ(𝑡),ℎ̇(𝑡)] + Π3[ℎ(𝑡),ℎ̇(𝑡)]}+ Π2[ℎ(𝑡),ℎ̇(𝑡)],Π1[ℎ(𝑡),ℎ̇(𝑡)] = Γ[ℎ(𝑡)]𝑃Ψ𝑇[ℎ̇(𝑡)] + [𝑒1 𝑒2 𝑒3 𝑒7] 𝑃𝑎 [ℎ (𝑡)⋅ 𝑒4 ℎ (𝑡) ℎ𝑑𝑒5 ℎ (𝑡) 𝑒6 𝑒1 − ℎ𝑑𝑒2 − ℎ̇ (𝑡) 𝑒7]𝑇+ [𝑒1 𝑒2 𝑒3 𝑒8] 𝑃𝑏 [(ℎ − ℎ (𝑡)) 𝑒4 (ℎ − ℎ (𝑡))⋅ ℎ𝑑𝑒5 (ℎ − ℎ (𝑡)) 𝑒6 ℎ𝑑𝑒2 − 𝑒3 + ℎ̇ (𝑡) 𝑒8]𝑇 + Θ2+ Θ̃2 + Π4Π5,Π2[ℎ(𝑡),ℎ̇(𝑡)] = [𝑒1 𝑒4] 𝑄1 (𝑡) [𝑒1 𝑒4]𝑇+ ℎ𝑑 [𝑒2 𝑒5] [𝑄2 (𝑡) − 𝑄1 (𝑡)] [𝑒2 𝑒5]𝑇



18 Complexity− [𝑒3 𝑒6] 𝑄2 (𝑡) [𝑒3 𝑒6]𝑇 + 𝑒1 [ℎ𝑑𝑅𝑎 + ℎ̇ (𝑡) 𝑄𝑎] 𝑒𝑇1+ 𝑒2 [𝑅𝑏 − ℎ𝑑𝑅𝑎 + ℎ̇ (𝑡) (𝑄𝑏 − 𝑄𝑎)] 𝑒𝑇2 − 𝑒3 [𝑅𝑏+ ℎ̇ (𝑡) 𝑄𝑏] 𝑒𝑇3 + 𝑒4𝑄2𝑒𝑇4 − (1 − 𝜏𝑑) 𝑒11𝑄2𝑒𝑇11+ ℎ (𝑡) [𝑒1 𝑒4] (𝑄𝑎 + 𝑅1) [𝑒1 𝑒4]𝑇 + 𝜇1⋅ ℎ𝑑ℎ [𝑒2 𝑒5] 𝑄𝑏 [𝑒2 𝑒5]𝑇+ ℎ𝑑ℎ [𝑒2 𝑒5] 𝑅2 [𝑒2 𝑒5]𝑇 + ℎ̇ (𝑡) Π6𝑃𝑎Π𝑇6− ℎ̇ (𝑡) Π7𝑃𝑏Π𝑇7 ,Π3[ℎ(𝑡),ℎ̇(𝑡)] = ℎ𝑑𝑊1𝑋3𝐻1𝑊𝑇2 + ℎ𝑑𝑊2𝐺1𝑌3𝐻3𝑊𝑇2+𝑊1𝑋4𝐻2𝑊𝑇3 +𝑊3𝐺2𝑌4𝐻4𝑊𝑇3 +𝑊1𝑋1𝐻1𝑊𝑇2+𝑊2𝐺1𝑌1𝐻3𝑊𝑇2 + 𝜇1𝑊1𝑋2𝐻2𝑊𝑇3+ 𝜇1𝑊3𝐺2𝑌2𝐻4𝑊𝑇3 ,Ω𝑎[𝑘,𝑗] = ℎ𝑊𝑘𝑋𝑗,Ω[ℎ(𝑡)]𝑏[𝑘,𝑟,𝑗] = ℎ𝑊𝑘𝐺𝑟𝑌𝑗,𝑘 ∈ [1, 2, 3] , 𝑗 ∈ [1, 2, 3, 4] , 𝑟 ∈ [1, 2] ,Γ[ℎ(𝑡)] = [𝑒1 𝑒2 𝑒3 ℎ (𝑡) 𝑒7 (ℎ − ℎ (𝑡)) 𝑒8] ,Ψ[ℎ̇(𝑡)] = [𝑒4 ℎ𝑑𝑒5 𝑒6 𝑒1 − ℎ𝑑𝑒2 ℎ𝑑𝑒2 − 𝑒3] ,𝑊1 = [𝑒1 𝑒2 𝑒3 𝑒7 𝑒8] ,𝑊2 = [𝑒7 𝑒1 − 𝑒2 𝑒9 𝑒1 − 𝑒7] ,𝑊3 = [𝑒8 𝑒2 − 𝑒3 𝑒10 𝑒2 − 𝑒8] ,𝐺1 = diag {ℎ (𝑡) , 0, 0, 0} ,𝐺2 = diag {ℎ − ℎ (𝑡) , 0, 0, 0} ,𝐻1 = [ℎ (𝑡) 𝐼 0 0 00 𝐼 0 0] ,𝐻2 = [(ℎ − ℎ (𝑡)) 𝐼 0 0 00 𝐼 0 0] ,𝐻3 = [−ℎ (𝑡) 𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,𝐻4 = [− (ℎ − ℎ (𝑡)) 𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,Θ2 = 𝑒1𝐻𝐾𝑆𝑒𝑇12 − 𝑒12𝑆𝑒𝑇12,Θ̃2 = 2𝑒4𝐻Λ𝑒𝑇12Π4 = [𝑒1𝑈1 + 𝑒4𝑈2 + 𝑒11𝑈3 + 𝑒12𝑈4] ,Π5 = [𝐴𝑒𝑇1 + 𝐴1𝑒𝑇2 + 𝐶𝑒𝑇11 + 𝐵𝑒𝑇12 − 𝑒𝑇4 ] ,

Π6 = [𝑒1 𝑒2 𝑒3 𝑒7] ,Π7 = [𝑒1 𝑒2 𝑒3 𝑒8] .𝑎2 = sym {𝑒7𝐸𝑇 (𝑌1 + ℎ𝑑𝑌3) 𝐹𝑒𝑇7 + 𝑒8𝐸𝑇 (𝜇1𝑌2 + 𝑌4)⋅ 𝐹𝑒𝑇8 }
(C.1)
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