

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 9 March 2017 Accepted 17 March 2017

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; platinum(II) complexes; 2-aminopyridine; eugenol.

CCDC references: 1538567; 1538566

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two platinum(II) complexes containing ethyl eugenoxyacetate and 2-amino-

Hai Le Thi Hong,^a Thao Nguyen Thu,^a Hien Nguyen^a and Luc Van Meervelt^b*

^aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and ^bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. *Correspondence e-mail: luc.vanmeervelt@kuleuven.be

In the title complexes, trans-(2-aminopyridine- κN)dichlorido{4-ethoxycarbonylmethoxy-3-methoxy-1-[(2,3-n)-prop-2-en-1-yl]benzene}platinum(II), [PtCl₂- $(C_5H_6N_2)(C_{14}H_{18}O_4)]$, (I), and (2-aminopyridine- κN)chlorido{5-ethoxycarbonylmethoxy-4-methoxy-1-[(2,3- η)-prop-2-en-1-yl]phenyl- κC^{1} }platinum(II), [Pt- $(C_{14}H_{17}O_4)Cl(C_5H_6N_2)]$, (II), the central Pt^{II} metal atom displays a distorted square-planar coordination, with the Pt^{II} atom coordinated by the pyridine N atom, the C=C double bond of the eugenol ligand and two Cl atoms for (I) or one Cl atom and a C atom of the phenyl ring for (II). The allyl fragment in (I) is disordered, with population parameters 0.614 (14) and 0.386 (14) for the two positions of the central C atom. The least-squares planes through the two aromatic ring systems make a dihedral angle of $51.10(13)^{\circ}$ for (I) and $78.5(2)^{\circ}$ for (II). Intramolecular N-H···O and N-H··· π interactions occur in (I). In (I), inversion dimers formed by $C-H\cdots Cl$ interactions are further linked into chains parallel to the *b* axis by $C-H \cdots O$ hydrogen bonds. Both aromatic rings are involved in π - π interactions, with centroid-to-centroid distances of 3.508 (3) and 3.791 (3) Å. In (II), inversion dimers form chains parallel to the b axis by $C-H \cdots O$ interactions.

1. Chemical context

pyridine

Since the discovery of the anticancer activity and subsequent clinical success of cisplatin {cis-[PtCl₂(NH₃)₂]}, platinumbased compounds have been widely synthesized and studied as potential chemotherapeutic agents (Wong & Giandomenico, 1999). Despite the great success in treating certain kinds of cancer, there are several side effects, and both intrinsic and acquired resistance limit the organotropic profile of the drug (Chabner & Roberts, 2005; Kelland, 2007; Wilson & Lippard, 2014). Hence, there is continuing interest in the development of new platinum complexes that have high activities but low toxicity (Johnstone *et al.*, 2014).

Several natural arylolefins, such as safrole (in sassafras oil), eugenol (in clove oil) and anethole (in anise and fennel oil), and their derivatives have been used as important intermediate materials to synthesize many compounds that have various applications in the flavouring, food and pharmaceutical industries (Jadhav *et al.*, 2004). Recently, a number of Pt^{II} complexes containing natural arylolefins as ligands, *i.e.* safrole or derivatives of eugenol such as methyleugenol and alkyleugenoxyacetate, have been prepared (Da *et al.*, 2010, 2012; Da, Chi *et al.*, 2015; Da, Hai *et al.*, 2015; Nguyen Thi Thanh *et al.*, 2016; Le Thi Hong *et al.*, 2016). The insertion of these natural arylolefins into the coordination with Pt^{II} and their transformations formed complexes with novel structures and

high applicability. In particular, many of these organoplatinum(II) complexes exhibit significant inhibitory activities against human cancer cells (Da *et al.*, 2012; Da, Chi *et al.*, 2015; Da, Hai *et al.*, 2015).

Herein, we report the syntheses and crystal structure determinations of organoplatinum(II) complexes formed by the complexation of 2-aminopyridine as ligand with the mononuclear platinum(II) complex $K[PtCl_3(Eteug)]$ and the binuclear platinum(II) complex $[Pt_2(Eteug-1H)_2Cl_2]$ (Eteug is ethyleugenoxylacetate).

2. Structural commentary

In both title complexes, the central Pt^{II} metal atom displays a distorted square-planar coordination (Fig. 1). In addition to the two Cl atoms in dichloride complex (I), the pyridine N atom and the C==C double bond of the eugenol ligand coordinate to the central Pt^{II} atom. In monochloride complex (II),

Figure 1

Views of the asymmetric units in (a) (I) and (b) (II), showing the atomlabelling schemes. Displacement ellipsoids are drawn at the 50% probability level. Orange bonds in (a) show the allyl fragment with a population parameter of 0.386 (14). Blue dotted lines indicate intramolecular interactions in (a).

one Cl atom is replaced by a C atom of the eugenol phenyl group. An overlay of the Pt–2-amino fragment present in both structures clearly shows the differences in coordination (Fig. 2). Where in (I) the Cl atoms are *trans* with respect to each other, this is the case for the two aromatic rings in (II). One Cl and the C=C coordinations in (I) are replaced by, respectively, C=C and a phenyl C atom in (II). In both cases, the 2-aminopyridine ligand only interacts *via* the ring N atom. In (I), the CH₂-CH=CH₂ fragment is disordered, with population parameters of 0.614 (14) and 0.386 (14) for the two positions of the central C atom. The dihedral angles between the planes through the two aromatic rings are 78.5 (2) and

Figure 2

Overlay of the Pt–2-aminopyridine fragment present in (I) (green bonds) and (II) (red bonds).

51.10 (13)° for (I) and (II), respectively. In (I), the H atoms of the amino group are involved in a weak intramolecular N– H···O interaction (N8–H8B···O25, Table 1) and an N– H··· π interaction (N8–H8A···Cg1, Table 1; Cg1 is the centroid of the C14–C19 ring). Similar interactions are not possible in (II) due to the different orientation of the ligands.

3. Supramolecular features

The complexes crystallize in different space groups, *viz*. $P\overline{1}$ for dichloride complex (I) and $P2_1/c$ for monochloride complex (II).

Figure 3

Packing diagram of (I), showing the C-H···O (red dotted lines) and C-H···Cl interactions (green dotted lines). [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z.]

The crystal packing of (I) is dominated by hydrogen bonding and $\pi-\pi$ interactions. Inversion dimers formed by C18-H18···Cl9ⁱ hydrogen bonds are further linked into chains parallel to the *b* axis by C7-H7···O26ⁱⁱ hydrogen bonds [Table 1 and Fig. 3; symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1]. Both aromatic rings show $\pi-\pi$ stacking, with $Cg1\cdots Cg1^{iii} = 3.791$ (3) Å for the phenyl ring and $Cg2\cdots Cg2^{iv} = 3.508$ (3) Å for the pyridine ring [Cg1 and Cg2 are the centroids of the C14-C19 and N2/C3-C7 rings;

Figure 4

Partial packing diagram of (I), showing $\pi - \pi$ stacking (gray dotted lines). [*Cg*1 and *Cg*2 are the centroids of the C14–C19 and N2/C3–C7 rings; symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 2.]

Table 1					
Hydrogen-bond	geometry	(Å,	°)	for	(I).

Cg1 is the centroid of the C14–C19 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N8-H8 <i>B</i> ···O25	0.88	2.19	3.054 (5)	167
$C7-H7\cdots O26^{i}$	0.95	2.49	3.258 (6)	138
C18-H18···Cl9 ⁱⁱ	0.95	2.78	3.460 (5)	130
N8-H8 A ··· $Cg1$	0.88	2.53	3.166 (4)	129

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1.

symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 2; Fig. 4].

The crystal packing of (II) is built up by C-H···O, N-H···Cl and C-H··· π interactions (Table 2 and Fig. 5). Two types of inversion dimers are created by C-H···O interactions enclosing $R_2^2(10)$ and $R_2^2(16)$ ring motifs, and resulting in the formation of chains parallel to the *b* axis. No π - π interactions are observed in the packing of (II).

4. Database survey

The Pt—N distances of 2.066 (3) Å in (I) and 2.143 (2) Å in (II) agree well with the average Pt—N distance of 2.06 (7) Å for Pt–pyridine fragments present in the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom *et al.*, 2016).

The CSD contains 34 Pt complexes with Pt coordinated by Cl, pyridine and C=C, with 28 complexes having an additional Cl atom as the fourth ligand (27 *trans* and one *cis* coordination), three a C atom and another three an N atom.

Table 2				
Hydrogen-bond	geometry	(Å, °) for (I	I).

Cg2 is the centroid of the C12–C17 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17-H17\cdots O24^{i}$	0.95	2.60	3.501 (3)	159
$C25-H25B\cdots O23^{ii}$	0.99	2.60	3.449 (3)	144
N8−H8B····Cl27 ⁱⁱⁱ	0.88	2.67	3.413 (2)	143
$C19-H19A\cdots Cg2^{i}$	0.98	2.63	3.476 (3)	145

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

The synthesis of (II), starting from the dinuclear complex $[Pt_2Cl_2(Eteug-1H)_2]$, can be rationalized by the replacement of the Cl atom in the *trans* position with respect to the C=C bond. Verification of the Pt-Cl distances in the dinuclear complex di- μ -chlorido-bis[(η^2 -2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl- κC^1)platinum(II)], [Pt_2-(IsoPreug-1H)_2Cl_2] (IsoPreug-1H is isopropyleugenoxylacetate; CSD refcode EWAVIJ; Nguyen Thi Thanh *et al.*, 2016) indicates that the longest Pt-Cl bond [2.4773 (7) *versus* 2.3527 (7) Å] is cleaved, leading to a *cis* position of 2-aminopyridine with respect to the C=C bond.

5. Synthesis and crystallization

5.1. Synthesis of K[PtCl₃(Eteug)] and [Pt₂Cl₂(Eteug-1H)₂]

The mononuclear complex K[PtCl₃(Eteug)] and the dinuclear chelate ring complex $[Pt_2Cl_2(Eteug-1H)_2]$ were synthesized following the protocol of Da and co-workers (Da *et al.*, 2012; Da, Chi *et al.*, 2015; Da, Hai *et al.*, 2015).

Figure 5

Partial packing diagram of (II), showing the C-H···O (red dotted lines), N-H···Cl (green dotted lines) and C-H··· π (gray dotted lines) interactions. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.]

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$[PtCl_2(C_{5}H_{6}N_{2})(C_{14}H_{18}O_{4})]$	$[Pt(C_{14}H_{17}O_4)Cl(C_5H_6N_2)]$
M.	610.39	573.93
Crystal system, space group	Triclinic, P1	Monoclinic. $P2_1/c$
Temperature (K)	100	100
a, b, c (Å)	8.3187 (3), 11.4119 (3), 12.1012 (4)	15.1198 (5), 10.0855 (2), 14.1855 (4)
α, β, γ (°)	70.437 (3), 73.688 (3), 87.038 (2)	90, 117,329 (4), 90
$V(A^3)$	1037.76 (6)	1921.72 (11)
Z	2	4
Radiation type	- Μο Κα	Μο Κα
$\mu ({\rm mm}^{-1})$	7.05	7.47
Crystal size (mm)	$0.30 \times 0.30 \times 0.15$	$0.30 \times 0.30 \times 0.20$
Data collection		
Diffractometer	Agilent SuperNova diffractometer (single source at offset, Eos detector)	Agilent SuperNova diffractometer (single source at offset, Eos detector)
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)
T_{\min}, T_{\max}	0.406, 1.000	0.314, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21329, 4241, 4006	20268, 3928, 3715
R _{int}	0.052	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625	0.624
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.065, 1.04	0.016, 0.038, 1.06
No. of reflections	4241	3928
No. of parameters	265	246
No. of restraints	26	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.41, -2.25	0.69, -1.04

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS97 (Sheldrick, 2008), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

5.2. Synthesis of trans-[PtCl₂(Eteug)(C₅H₆N₂)], (I)

While stirring, a solution of 2-aminopyridine (0.22 mmol) in acetone (2 ml) was added slowly to a solution of K[PtCl₃-(Eteug)] (0.2 mmol) in acetone (15 ml). After 2 h, a white precipitate of KCl was separated out. After stirring for 3 h at room temperature, ethanol (2 ml) was added to the obtained solution. Slow evaporation of the solvent at room temperature afforded the desired product as bright orange–yellow crystals. The yield was 80%. The product is soluble in acetone and chloroform, but only slightly soluble in ethanol and insoluble in water. Single crystals suitable for X-ray diffraction were obtained from an acetone/ethanol (3:1 ν/ν) solution *via* slow evaporation of the solvents at 277–278 K.

5.3. Data for trans-[PtCl₂(Eteug)($C_5H_6N_2$)], (I)

IR (Impack-410 Nicolet spectrometer, KBr, cm⁻¹): 3454, 3341 (ν_{NH}); 3060, 2930 (ν_{CH}); 1739 ($\nu_{\text{C=O}}$); 1598, 1512 (aromatic, $\nu_{\text{C=C}}$, $\nu_{\text{C=N}}$).

¹H NMR (δ p.p.m.; Bruker AVANCE 500 MHz, CDCl₃): 7.15 (1H, *d*, ⁴*J* = 1.5 Hz, Ar), 7.00 (1H, *t*, ³*J* = 8.0 Hz, ⁴*J* = 1.5 Hz, Ar), 6.77 (1H, *d*, ³*J* = 8 Hz, Ar), 4.82 (1H, *d*, ²*J* = 17 Hz, *OCH*₂), 4.77 (1H, *d*, ²*J* = 16.5 Hz, OCH₂), 3.91 (3H, *s*, *OCH*₃), 4.28 (2H, *q*, ³*J* = 7 Hz, -CH₂CH₃), 1.33 (3H, *t*, ³*J* = 7 Hz, CH₂CH₃), 3.26 (1H, *dd*, ²*J* = 15 Hz, ³*J* = 7.5 Hz, CH₂CH), 3.39 (1H, *dd*, ²*J* = 15 Hz, ³*J* = 7.5 Hz, CH₂CH), 5.99 (1H, *m*, ²*J*_{PtH} = 70 Hz, CH=CH₂), 4.69 (1H, d, ${}^{3}J = 8$, ${}^{2}J_{PtH} = 70$ Hz, *cis*-alkene), 4.78 (1H, *ov*, *trans*-alkene), 6.47 (1H, d, ${}^{3}J = 8.5$ Hz, Ar of 2-aminopyridine), 6.6 (1H, *t*, ${}^{3}J = 6$ Hz, Ar), 7.35 (1H, *m*, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.5$ Hz, Ar), 7.86 (1H, d, ${}^{3}J = 6$ Hz, Ar), 5.21 (*ov*, NH₂).

5.4. Synthesis of [Pt(Eteug-1H)Cl(C₅H₆N₂)], (II)

A solution of 2-aminopyridine (0.22 mmol) in acetone (2 ml) was added slowly to a mixture of $[Pt_2(Eteug-1H)_2Cl_2]$ (0.1 mmol) and acetone/ethanol (6 ml, 1:2 ν/ν). After stirring for 2 h at room temperature, a yellow solution was obtained. A white precipitate was formed by slow evaporation of the solvent at 277–278 K. The precipitate was collected by filtration and washed with ethanol. The product is soluble in acetone and chloroform, but only slightly soluble in ethanol and insoluble in water. The yield was 75%. Single crystals suitable for X-ray diffraction were obtained from a acetone/ ethanol (1:1 ν/ν) solution *via* slow evaporation of the solvents at 277–278 K.

5.5. Data for [Pt(Eteug-1H)Cl(C₅H₆N₂)], (II)

IR (Impack-410 Nicolet spectrometer, KBr, cm⁻¹): 3446, 3332 (ν_{NH}); 3070, 2941, 2849 (ν_{CH}); 1756 ($\nu_{\text{C=O}}$); 1566 (aromatic, $\nu_{\text{C=C}}$, $\nu_{\text{C=N}}$).

¹H NMR (δ p.p.m.; Bruker AVANCE 500 MHz, CD₃COCD₃): 6.66 (1H, *s*, Ar), 7.04 (1H, *s*, ³*J*_{PtH} = 40 Hz, Ar), 4.59 (1H, *d*, ²*J* = 16 Hz, 2*H*, OCH₂), 4.55 (1H, *d*, ²*J* = 16 Hz, OCH₂), 3.73 (3H, *s*, ³*J* = 7 Hz, OCH₃), 4.21 (2H, *m*, ³*J* = 7 Hz, CH₂CH₃), 1.28 (3H, *t*, ³*J* = 7.0 Hz, CH₂CH₃), 2.65 (1H, *d*, ²*J* = 16.5; ³*J*_{PtH} = 100 Hz, CH₂CH), 3.78 (1H, ov, CH₂CH), 4.74 (1H, *m*, ²*J*_{PtH} = 75 Hz, CH=CH₂), 3.72 (1H, ov, cis-alkene), 3.82 (1H, *d*, ³*J* = 13.5 Hz, *trans*-alkene), 6.85 (1H, *d*, ³*J* = 8.5 Hz, Ar of 2-aminopyridine), 6.72 (1H, *m*, Ar), 7.56 (1H, *m*, Ar), 8.07 (1H, *d*, ³*J* = 6 Hz, Ar), 6.43 (ov, NH₂).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in idealized positions and refined in the riding mode, with $U_{iso}(H)$ values assigned as $1.2U_{eq}$ of the parent atoms (1.5 times for methyl groups), and with C-H distances of 0.95 (aromatic and ==CH₂), 0.98 (CH₃), 0.99 (CH₂) and 1.00 Å (CH), and N-H distances of 0.88 Å (NH₂).

In (I), the central C atom in the CH_2-CH =CH₂ fragment is disordered over two positions [population parameters = 0.614 (14) and 0.386 (14)] and was refined with constraints for bond lengths and anisotropic displacement parameters present in this fragment.

Acknowledgements

The authors thank VLIR-UOS for financial support and the Hercules Foundation for supporting the purchase of the diffractometer.

Funding information

Funding for this research was provided by: Vlaamse Interuniversitaire Raad (VLIR-UOS) Belgium (award No. ZEIN2014Z182); Hercules Foundation Belgium (award No. AKUL/09/0035).

References

- Chabner, B. A. & Roberts, T. G. (2005). Nat. Rev. Cancer, 5, 65-72.
- Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala, K. P. & Dinh, N. H. (2015). Polyhedron, 85, 104–109.
- Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.
- Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536.
- Da, T. T., Kim, Y. M., Mai, T. T. C., Cuong, N. C. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jadhav, B. K., Khandelwal, K. R., Ketkar, A. R. & Pisal, S. S. (2004). Drug Dev. Ind. Pharm. 30(2), 195–203.
- Johnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). *Anticancer Res.* **34**, 471–476.
- Kelland, L. (2007). Nat. Rev. Cancer, 7, 573-584.
- Le Thi Hong, H., Dao Thi Bich, D., Nguyen Bich, N. & Van Meervelt, L. (2016). Acta Cryst. E72, 912–917.
- Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758–764.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Wilson, J. J. & Lippard, S. J. (2014). Chem. Rev. 114, 4470-4495.
- Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.

Acta Cryst. (2017). E73, 573-578 [https://doi.org/10.1107/S2056989017004285]

Crystal structures of two platinum(II) complexes containing ethyl eugenoxyacetate and 2-aminopyridine

Hai Le Thi Hong, Thao Nguyen Thu, Hien Nguyen and Luc Van Meervelt

Computing details

For both compounds, data collection: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); cell refinement: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); data reduction: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for (I); SUPERFLIP (Palatinus & Chapuis, 2007) for (II). For both compounds, program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

(I) *trans*-(2-Aminopyridine-*κN*)dichlorido{4-ethoxycarbonylmethoxy-3-methoxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}platinum(II)

Crystal data

$[PtCl_2(C_5H_6N_2)(C_{14}H_{18}O_4)]$
$M_r = 610.39$
Triclinic, $P\overline{1}$
a = 8.3187 (3) Å
b = 11.4119 (3) Å
c = 12.1012 (4) Å
$\alpha = 70.437 \ (3)^{\circ}$
$\beta = 73.688 \ (3)^{\circ}$
$\gamma = 87.038 \ (2)^{\circ}$
V = 1037.76 (6) Å ³

Data collection

Agilent SuperNova diffractometer (single source at offset, Eos detector) Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 15.9631 pixels mm⁻¹ ω scans

Z = 2 F(000) = 592 $D_x = 1.953 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13838 reflections $\theta = 2.7-29.0^{\circ}$ $\mu = 7.05 \text{ mm}^{-1}$ T = 100 K Block, orange $0.3 \times 0.3 \times 0.15 \text{ mm}$

Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) $T_{min} = 0.406, T_{max} = 1.000$ 21329 measured reflections 4241 independent reflections 4006 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.065$	$w = 1/[\sigma^2(F_o^2) + (0.0193P)^2 + 4.6851P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4241 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
265 parameters	$\Delta \rho_{\rm max} = 1.41 \text{ e } \text{\AA}^{-3}$
26 restraints	$\Delta \rho_{\rm min} = -2.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pt1	0.11518 (2)	0.08277 (2)	0.62392 (2)	0.02167 (7)	
N2	-0.0430 (4)	0.0375 (3)	0.7993 (3)	0.0155 (7)	
C3	-0.0741 (5)	0.1198 (4)	0.8603 (4)	0.0146 (8)	
C4	-0.1797 (5)	0.0846 (4)	0.9812 (4)	0.0170 (8)	
H4	-0.2041	0.1432	1.0232	0.020*	
C5	-0.2465 (5)	-0.0343 (4)	1.0371 (4)	0.0205 (9)	
Н5	-0.3167	-0.0591	1.1187	0.025*	
C6	-0.2119 (6)	-0.1198 (4)	0.9745 (4)	0.0208 (9)	
H6	-0.2573	-0.2030	1.0124	0.025*	
C7	-0.1108 (5)	-0.0804 (4)	0.8570 (4)	0.0175 (9)	
H7	-0.0870	-0.1380	0.8139	0.021*	
N8	-0.0004(4)	0.2351 (3)	0.8045 (3)	0.0174 (7)	
H8A	0.0666	0.2556	0.7296	0.021*	
H8B	-0.0193	0.2898	0.8429	0.021*	
C19	-0.0885 (2)	0.20013 (13)	0.55243 (12)	0.0524 (5)	
C110	0.30457 (16)	-0.05058 (16)	0.70053 (13)	0.0431 (4)	
C11	0.2551 (6)	0.0923 (4)	0.4411 (4)	0.0277 (11)	
H11A	0.1965	0.1311	0.3822	0.033*	0.614 (14)
H11B	0.2525	0.0041	0.4747	0.033*	0.614 (14)
H11C	0.3564	0.0494	0.4378	0.033*	0.386 (14)
H11D	0.1567	0.0527	0.4423	0.033*	0.386 (14)
C12A	0.3491 (9)	0.1682 (6)	0.4797 (6)	0.023 (2)	0.614 (14)
H12A	0.4508	0.1263	0.5000	0.028*	0.614 (14)
C12B	0.2510 (13)	0.2166 (8)	0.4441 (9)	0.017 (3)	0.386 (14)
H12B	0.1698	0.2651	0.4012	0.020*	0.386 (14)
C13	0.3685 (9)	0.2936 (6)	0.4434 (6)	0.063 (2)	
H13A	0.2955	0.3289	0.3893	0.075*	0.614 (14)
H13B	0.4857	0.3167	0.3923	0.075*	0.614 (14)
H13C	0.3991	0.3586	0.3616	0.075*	0.386 (14)
H13D	0.4693	0.2450	0.4510	0.075*	0.386 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.3340 (7)	0.3596 (5)	0.5366 (4)	0.0345 (13)
C15	0.4254 (6)	0.3359 (4)	0.6219 (4)	0.0270 (11)
H15	0.5109	0.2775	0.6217	0.032*
C16	0.3922 (5)	0.3972 (4)	0.7070 (4)	0.0175 (9)
C17	0.2668 (5)	0.4837 (4)	0.7075 (4)	0.0170 (8)
C18	0.1784 (6)	0.5086 (4)	0.6213 (4)	0.0243 (10)
H18	0.0940	0.5679	0.6201	0.029*
C19	0.2133 (7)	0.4467 (5)	0.5364 (4)	0.0315 (12)
H19	0.1527	0.4649	0.4773	0.038*
O20	0.4752 (4)	0.3819 (3)	0.7940 (3)	0.0220 (7)
C21	0.6142 (6)	0.3034 (5)	0.7900 (5)	0.0313 (12)
H21A	0.6947	0.3334	0.7087	0.047*
H21B	0.5748	0.2180	0.8068	0.047*
H21C	0.6687	0.3047	0.8516	0.047*
O22	0.2431 (4)	0.5390 (3)	0.7957 (3)	0.0178 (6)
C23	0.1152 (5)	0.6250 (4)	0.8002 (4)	0.0187 (9)
H23A	0.1245	0.6827	0.7165	0.022*
H23B	0.1309	0.6750	0.8497	0.022*
C24	-0.0586 (5)	0.5614 (4)	0.8548 (4)	0.0163 (8)
O25	-0.0878 (4)	0.4502 (3)	0.9044 (3)	0.0201 (6)
O26	-0.1749 (3)	0.6460 (3)	0.8437 (3)	0.0170 (6)
C27	-0.3490 (5)	0.5976 (4)	0.9030 (4)	0.0188 (9)
H27A	-0.3670	0.5590	0.9923	0.023*
H27B	-0.3737	0.5333	0.8710	0.023*
C28	-0.4627 (5)	0.7039 (4)	0.8770 (4)	0.0192 (9)
H28A	-0.4425	0.7425	0.7885	0.029*
H28B	-0.4399	0.7657	0.9113	0.029*
H28C	-0.5798	0.6727	0.9143	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.03045 (11)	0.01466 (10)	0.01438 (10)	-0.00576 (7)	0.00493 (7)	-0.00608 (7)
N2	0.0166 (17)	0.0131 (17)	0.0137 (17)	0.0016 (14)	-0.0029 (14)	-0.0015 (14)
C3	0.0140 (19)	0.013 (2)	0.018 (2)	0.0038 (15)	-0.0069 (16)	-0.0051 (16)
C4	0.016 (2)	0.020 (2)	0.015 (2)	0.0041 (16)	-0.0037 (16)	-0.0067 (17)
C5	0.014 (2)	0.027 (2)	0.017 (2)	-0.0024 (17)	-0.0031 (17)	-0.0031 (18)
C6	0.023 (2)	0.015 (2)	0.020 (2)	-0.0071 (17)	-0.0048 (18)	0.0001 (17)
C7	0.021 (2)	0.015 (2)	0.016 (2)	-0.0006 (17)	-0.0051 (17)	-0.0042 (17)
N8	0.0212 (18)	0.0122 (17)	0.0168 (18)	0.0005 (14)	-0.0011 (14)	-0.0054 (14)
C19	0.1016 (13)	0.0365 (8)	0.0210 (6)	0.0429 (8)	-0.0248 (7)	-0.0113 (6)
C110	0.0236 (6)	0.0824 (11)	0.0382 (7)	0.0192 (7)	-0.0099 (5)	-0.0404 (8)
C11	0.038 (3)	0.022 (2)	0.014 (2)	-0.007 (2)	0.0094 (19)	-0.0080 (18)
C12A	0.020 (4)	0.024 (4)	0.016 (4)	-0.007 (3)	0.009 (3)	-0.006 (3)
C12B	0.024 (6)	0.020 (5)	0.005 (5)	-0.001 (4)	-0.003 (4)	-0.004 (4)
C13	0.071 (4)	0.072 (4)	0.038 (3)	-0.051 (4)	0.030 (3)	-0.040 (3)
C14	0.040 (3)	0.039 (3)	0.018 (2)	-0.031 (3)	0.015 (2)	-0.015 (2)
C15	0.022 (2)	0.023 (2)	0.028 (3)	-0.0113 (19)	0.0111 (19)	-0.012 (2)

C16	0.016 (2)	0.013 (2)	0.019 (2)	-0.0036 (16)	-0.0001 (17)	-0.0037 (17)
C17	0.015 (2)	0.017 (2)	0.015 (2)	-0.0030 (16)	-0.0003 (16)	-0.0024 (17)
C18	0.024 (2)	0.022 (2)	0.020 (2)	-0.0099 (19)	-0.0062 (19)	0.0024 (19)
C19	0.038 (3)	0.036 (3)	0.014 (2)	-0.023 (2)	-0.004 (2)	0.001 (2)
O20	0.0160 (15)	0.0223 (16)	0.0280 (17)	0.0099 (13)	-0.0059 (13)	-0.0104 (14)
C21	0.020(2)	0.028 (3)	0.038 (3)	0.012 (2)	-0.001 (2)	-0.007 (2)
O22	0.0159 (14)	0.0168 (15)	0.0246 (16)	0.0060 (12)	-0.0075 (12)	-0.0112 (13)
C23	0.016 (2)	0.012 (2)	0.028 (2)	0.0032 (16)	-0.0051 (18)	-0.0079 (18)
C24	0.018 (2)	0.015 (2)	0.016 (2)	0.0015 (16)	-0.0059 (16)	-0.0042 (17)
O25	0.0216 (16)	0.0144 (15)	0.0222 (16)	-0.0002 (12)	-0.0033 (13)	-0.0057 (13)
O26	0.0130 (14)	0.0128 (14)	0.0220 (16)	0.0001 (11)	-0.0015 (12)	-0.0044 (12)
C27	0.013 (2)	0.019 (2)	0.021 (2)	-0.0030 (17)	0.0005 (17)	-0.0057 (18)
C28	0.015 (2)	0.024 (2)	0.017 (2)	0.0017 (17)	-0.0038 (17)	-0.0062 (18)

Geometric parameters (Å, °)

Pt1—N2	2.066 (3)	С13—Н13С	0.9900
Pt1C19	2.2860 (14)	C13—H13D	0.9900
Pt1-Cl10	2.2990 (14)	C13—C14	1.513 (7)
Pt1-C11	2.161 (4)	C14—C15	1.395 (8)
Pt1—C12A	2.221 (7)	C14—C19	1.376 (8)
Pt1—C12B	2.217 (10)	С15—Н15	0.9500
N2—C3	1.352 (5)	C15—C16	1.389 (6)
N2—C7	1.358 (5)	C16—C17	1.399 (6)
C3—C4	1.412 (6)	C16—O20	1.375 (5)
C3—N8	1.348 (5)	C17—C18	1.386 (6)
C4—H4	0.9500	C17—O22	1.377 (5)
C4—C5	1.364 (6)	C18—H18	0.9500
С5—Н5	0.9500	C18—C19	1.391 (7)
C5—C6	1.397 (6)	С19—Н19	0.9500
С6—Н6	0.9500	O20—C21	1.426 (5)
С6—С7	1.367 (6)	C21—H21A	0.9800
С7—Н7	0.9500	C21—H21B	0.9800
N8—H8A	0.8800	C21—H21C	0.9800
N8—H8B	0.8800	O22—C23	1.413 (5)
C11—H11A	0.9500	C23—H23A	0.9900
C11—H11B	0.9500	С23—Н23В	0.9900
C11—H11C	0.9500	C23—C24	1.518 (6)
C11—H11D	0.9500	C24—O25	1.211 (5)
C11—C12A	1.458 (8)	C24—O26	1.333 (5)
C11—C12B	1.429 (9)	O26—C27	1.467 (5)
C12A—H12A	1.0000	C27—H27A	0.9900
C12A—C13	1.353 (9)	C27—H27B	0.9900
C12B—H12B	1.0000	C27—C28	1.502 (6)
C12B—C13	1.344 (9)	C28—H28A	0.9800
С13—Н13А	0.9900	C28—H28B	0.9800
C13—H13B	0.9900	C28—H28C	0.9800

N2—Pt1—C19	89.18 (10)	C12A—C13—H13B	107.2
N2—Pt1—C110	88.85 (10)	C12A—C13—C14	120.4 (6)
N2—Pt1—C11	167.04 (16)	C12B—C13—H13C	107.2
N2—Pt1—C12A	153.0 (2)	C12B—C13—H13D	107.2
N2—Pt1—C12B	153.2 (3)	C12B—C13—C14	120.7 (6)
C19—Pt1—C110	174.90 (6)	H13A—C13—H13B	106.8
C11—Pt1—C19	91.10(15)	H13C—C13—H13D	106.8
C11—Pt1—C110	89.77 (15)	C14—C13—H13A	107.2
C11—Pt1—C12A	38.8 (2)	C14—C13—H13B	107.2
C11—Pt1—C12B	38.1 (2)	C14—C13—H13C	107.2
C12A— $Pt1$ — $C19$	1030(2)	C14—C13—H13D	107.2
C12A— $Pt1$ — $C110$	80.8 (2)	C_{15} C_{14} C_{13}	121.1 (6)
C12B— $Pt1$ — $C19$	75 1 (3)	C19 - C14 - C13	1199(6)
C12B $Pt1$ $C110$	1084(3)	C19 - C14 - C15	119.9(0) 119.0(5)
$C_3 N_2 P_1$	100.4(3)	C_{14} C_{15} H_{15}	119.0 (5)
$C_3 N_2 C_7$	122.0(5) 1191(4)	C_{16} C_{15} C_{14}	119.0 120.5(5)
C7 N2 Pt1	119.1(4) 118.0(3)	$C_{16} = C_{15} = C_{14}$	110.8
$N_2 C_3 C_4$	110.9(3) 120.4(4)	C_{15} C_{16} C_{17}	117.0 120.0(4)
$N_2 = C_3 = C_4$ N8 C3 N2	120.4(4)	020 C16 C15	120.0(4) 125.3(4)
$N_{0} = C_{0} = N_{2}$	120.8(4)	020 - C16 - C17	123.5(+) 114.6(4)
$C_3 = C_4 = C_4$	120.8 (4)	C_{18} C_{17} C_{16}	114.0(4) 110.3(4)
$C_5 C_4 C_3$	120.3 110 A (A)	022 017 016	115.5(4)
$C_{5} = C_{4} = C_{5}$	119.4 (4)	022 - C17 - C18	115.0(4) 125.1(4)
$C_3 - C_4 - H_4$	120.3	$C_{12} = C_{13} = C_{18}$	120.0
$C_4 = C_5 = C_6$	119.9 120.1 (4)	$C_{17} = C_{18} = C_{19}$	120.0 120.0(5)
C4 - C5 - C0	120.1 (4)	$C_{10} = C_{10} = C_{19}$	120.0 (3)
C5 C6 H6	119.9	$C_{14} = C_{10} = C_{18}$	120.0 121.2(5)
C_{3}	120.9 118 1 (4)	$C_{14} = C_{19} = C_{18}$	121.2(3)
C7 C6 H6	120.0	C18 $C10$ $H10$	119.4
C = C = 10	120.9 122.0(4)	$C_{16} = C_{19} = 1119$	119.4 116.7(A)
$N_2 = C_7 = H_7$	122.9 (4)	$C_{10} = 020 = 021$	100.5
$N_2 = C_7 = H_7$	118.5	$O_{20} = C_{21} = H_{21R}$	109.5
$C_0 - C_1 - H_1$	110.5	$O_{20} = C_{21} = H_{21}C$	109.5
$C_2 = N_0 = H_0 P_1$	120.0	$U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 $	109.5
	120.0	$H_2 IA = C_2 I = H_2 IC$	109.5
D+1 C11 U11A	120.0	$H_2 IR C_{21} H_{21} C$	109.5
$\begin{array}{cccc} \mathbf{P}_{11} & \mathbf{C}_{11} & \mathbf{H}_{11} \mathbf{R} \\ \mathbf{P}_{11} & \mathbf{C}_{11} & \mathbf{H}_{11} \mathbf{R} \end{array}$	84.7	11210 - 021 - 11210	109.3 117.0(3)
$\mathbf{P}_{1} = \mathbf{C}_{1} = 1_{1} = 1_{1} = \mathbf{C}_{1}$	04./ 113./	022 - 023 + 023	117.0(3)
$P_{1} = C_{11} = H_{11} D$	82.0	O22 - C23 - H23R	109.2
	120.0	022 - 023 - 023 - 024	109.2 112.2(3)
	120.0	$U_{22} = U_{23} = U_{24}$	112.2(3)
$\Gamma_{12} = \Gamma_{11} = \Gamma_{11}$	120.0 72 8 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
$C_{12A} = C_{11} = H_{11A}$	12.0 (3)	C_{24} C_{23} H_{23} H	109.2
C12A $C11$ $H11B$	120.0	C_{24} C_{23} C_{23} C_{23}	109.2 125.1 (4)
C12R C11 Pt1	73.1(A)	025 - 024 - 025	123.1(4) 124.8(4)
C12B $C11$ $H11C$	120.0	025 - 024 - 020	127.0(4) 110 1 (3)
C12B_C11_H11D	120.0	$C_{24} = C_{24} = C_{23}$	115.6(3)
$Pt1_C12A_H12A$	111 8	026-020-027 026-027-027	110.0
$1 11 - 12 \Lambda - 1112 \Lambda$	111.0	$020 - 027 - 1127\Lambda$	110.0

C11-C12A-Pt1	68.3 (3)	O26—C27—H27B	110.0
C11—C12A—H12A	111.8	O26—C27—C28	108.4 (3)
C13—C12A—Pt1	116.3 (5)	H27A—C27—H27B	108.4
C13—C12A—C11	129.2 (6)	С28—С27—Н27А	110.0
C13—C12A—H12A	111.8	С28—С27—Н27В	110.0
Pt1—C12B—H12B	110.3	C27—C28—H28A	109.5
C11-C12B-Pt1	68.8 (4)	С27—С28—Н28В	109.5
C11—C12B—H12B	110.3	C27—C28—H28C	109.5
C13—C12B—Pt1	116.9 (6)	H28A—C28—H28B	109.5
C13—C12B—C11	132.6 (8)	H28A—C28—H28C	109.5
C13—C12B—H12B	110.3	H28B—C28—H28C	109.5
C12A—C13—H13A	107.2		
Pt1—N2—C3—C4	-178.4 (3)	C13—C14—C19—C18	179.8 (4)
Pt1—N2—C3—N8	0.5 (5)	C14—C15—C16—C17	-0.2 (6)
Pt1—N2—C7—C6	177.6 (3)	C14—C15—C16—O20	-179.4 (4)
Pt1-C11-C12A-C13	-106.9 (7)	C15—C14—C19—C18	-1.7 (7)
Pt1-C11-C12B-C13	107.7 (11)	C15—C16—C17—C18	-0.9 (6)
Pt1-C12A-C13-C14	46.1 (8)	C15—C16—C17—O22	179.7 (4)
Pt1-C12B-C13-C14	-44.9 (10)	C15—C16—O20—C21	4.8 (6)
N2—C3—C4—C5	1.8 (6)	C16—C17—C18—C19	0.8 (6)
C3—N2—C7—C6	1.0 (6)	C16—C17—O22—C23	-178.8 (4)
C3—C4—C5—C6	-0.7 (6)	C17—C16—O20—C21	-174.4 (4)
C4—C5—C6—C7	-0.2 (6)	C17—C18—C19—C14	0.5 (7)
C5-C6-C7-N2	0.1 (7)	C17—O22—C23—C24	74.6 (5)
C7—N2—C3—C4	-1.9 (6)	C18—C17—O22—C23	1.9 (6)
C7—N2—C3—N8	177.0 (4)	C19—C14—C15—C16	1.5 (7)
N8—C3—C4—C5	-177.1 (4)	O20-C16-C17-C18	178.4 (4)
C11—C12A—C13—C14	128.7 (7)	O20—C16—C17—O22	-1.0 (5)
C11—C12B—C13—C14	-130.1 (10)	O22—C17—C18—C19	-179.9 (4)
C12A—C13—C14—C15	61.2 (8)	O22—C23—C24—O25	9.5 (6)
C12A—C13—C14—C19	-120.3 (7)	O22—C23—C24—O26	-172.5 (3)
C12B—C13—C14—C15	116.1 (8)	C23—C24—O26—C27	-174.6 (3)
C12B—C13—C14—C19	-65.4 (9)	C24—O26—C27—C28	-177.6 (3)
C13-C14-C15-C16	-180.0 (4)	O25—C24—O26—C27	3.5 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H···A	D—H	H···A	D···A	D—H··· A
N8—H8 <i>B</i> ···O25	0.88	2.19	3.054 (5)	167
C7—H7…O26 ⁱ	0.95	2.49	3.258 (6)	138
C18—H18…Cl9 ⁱⁱ	0.95	2.78	3.460 (5)	130
N8—H8 <i>A</i> … <i>Cg</i> 1	0.88	2.53	3.166 (4)	129

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*, –*y*+1, –*z*+1.

(II) (2-Aminopyridine- κN)chlorido{5-ethoxycarbonylmethoxy-4-methoxy-1-[(2,3- η)-prop-2-en-1-yl]phenyl- κC^{1} }platinum(II)

F(000) = 1112

 $\theta = 3.2 - 29.1^{\circ}$

 $\mu = 7.47 \text{ mm}^{-1}$

Block, white

 $k = -12 \longrightarrow 12$ $l = -17 \longrightarrow 17$

 $0.3 \times 0.3 \times 0.2 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.984 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 14326 reflections

Crystal data

[Pt(C₁₄H₁₇O₄)Cl(C₅H₆N₂)] $M_r = 573.93$ Monoclinic, $P2_1/c$ a = 15.1198 (5) Å b = 10.0855 (2) Å c = 14.1855 (4) Å $\beta = 117.329$ (4)° V = 1921.72 (11) Å³ Z = 4

Data collection

Agilent SuperNova Absorption correction: multi-scan diffractometer (single source at offset, Eos (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) detector) Radiation source: micro-focus sealed X-ray $T_{\min} = 0.314, T_{\max} = 1.000$ tube, SuperNova (Mo) X-ray Source 20268 measured reflections Mirror monochromator 3928 independent reflections Detector resolution: 15.9631 pixels mm⁻¹ 3715 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.033$ $\theta_{\text{max}} = 26.3^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ $h = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.016$	H-atom parameters constrained
$wR(F^2) = 0.038$	$w = 1/[\sigma^2(F_o^2) + (0.0159P)^2 + 1.3858P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
3928 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
246 parameters	$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.10189 (2)	0.16233 (2)	0.26543 (2)	0.00950 (4)	
N2	-0.03286 (15)	0.2169 (2)	0.12855 (16)	0.0120 (4)	
C3	-0.10502 (19)	0.1243 (3)	0.0838 (2)	0.0152 (5)	
H3	-0.0934	0.0380	0.1141	0.018*	
C4	-0.1940 (2)	0.1495 (3)	-0.0030 (2)	0.0184 (6)	
H4	-0.2437	0.0828	-0.0320	0.022*	

C5	-0.2007(2)	0 2756 (2)	-0.0476(2)	0.0195 (6)
С5 H5	-0.2705	0.2750 (5)	-0.1084	0.0185 (0)
C6	-0.1378(2)	0.3701 (3)	-0.0039(2)	0.022
Е0 Н6	-0.1479	0.4561	-0.0344	0.0172 (0)
C7	-0.0487(2)	0.4301 0.3305 (2)	0.0344 0.0864 (2)	0.021
N8	0.0487(2) 0.02411(16)	0.3393(2) 0.4301(2)	0.0804(2) 0.13082(18)	0.0131(5)
	0.02411(10)	0.4301 (2)	0.13082 (18)	0.0190(3)
	0.0604	0.4007	0.1001	0.023*
	0.0134 0.1752 (2)	0.3109	0.1040	0.025
	0.1755 (2)	0.1410 (5)	0.1094 (2)	0.0103 (0)
НУА	0.2434	0.1627	0.2122	0.020*
H9B C10	0.1320	0.2033	0.1191	0.020*
	0.13895 (19)	0.0178 (3)	0.18011 (19)	0.0141 (5)
HIO	0.0818	-0.0176	0.1146	0.017*
CII	0.20439 (19)	-0.0853 (3)	0.25867 (19)	0.0140 (5)
HIIA	0.1626	-0.1585	0.2626	0.017*
HIIB	0.2511	-0.1227	0.2345	0.017*
C12	0.26227 (18)	-0.0239 (2)	0.36696 (18)	0.0106 (5)
C13	0.22571 (18)	0.0934 (2)	0.38748 (19)	0.0105 (5)
C14	0.27648 (18)	0.1489 (2)	0.48888 (19)	0.0102 (5)
H14	0.2536	0.2298	0.5043	0.012*
C15	0.35958 (18)	0.0873 (2)	0.56683 (18)	0.0104 (5)
C16	0.39390 (17)	-0.0322 (2)	0.54590 (18)	0.0099 (5)
C17	0.34544 (18)	-0.0865 (2)	0.44517 (19)	0.0105 (5)
H17	0.3691	-0.1666	0.4295	0.013*
O18	0.47426 (13)	-0.08947 (17)	0.62958 (13)	0.0129 (4)
C19	0.52470 (19)	-0.1911 (3)	0.6034 (2)	0.0148 (5)
H19A	0.5461	-0.1566	0.5526	0.022*
H19B	0.4797	-0.2664	0.5719	0.022*
H19C	0.5831	-0.2202	0.6679	0.022*
O20	0.40683 (13)	0.14275 (17)	0.66777 (13)	0.0113 (4)
C21	0.50526 (18)	0.1854 (2)	0.6969 (2)	0.0124 (5)
H21A	0.5375	0.1211	0.6697	0.015*
H21B	0.5436	0.1867	0.7752	0.015*
C22	0.50842 (19)	0.3214 (3)	0.65427 (19)	0.0135 (5)
O23	0.43843 (14)	0.39064 (19)	0.60292 (15)	0.0208 (4)
O24	0.60368 (13)	0.35149 (17)	0.68185 (14)	0.0140 (4)
C25	0.6206 (2)	0.4778 (3)	0.6433 (2)	0.0177 (6)
H25A	0.5806	0.5482	0.6543	0.021*
H25B	0.6007	0.4719	0.5665	0.021*
C26	0.7291 (2)	0.5093 (3)	0.7039 (2)	0.0240 (6)
H26A	0.7436	0.5898	0.6749	0.036*
H26B	0.7681	0.4353	0.6978	0.036*
H26C	0.7466	0.5234	0.7788	0.036*
Cl27	0.04241 (4)	0.25459 (6)	0.37522 (5)	0.01518 (13)
				(10)

Atomic displacement parameters	(\AA^2)	
--------------------------------	-----------	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.00860 (6)	0.00919 (6)	0.00852 (6)	0.00084 (3)	0.00203 (4)	0.00005 (3)
N2	0.0111 (10)	0.0127 (11)	0.0102 (10)	0.0025 (9)	0.0033 (8)	0.0001 (8)
C3	0.0147 (13)	0.0158 (13)	0.0155 (13)	-0.0001 (11)	0.0074 (11)	-0.0018 (11)
C4	0.0147 (14)	0.0216 (15)	0.0171 (13)	0.0003 (11)	0.0058 (11)	-0.0074 (11)
C5	0.0140 (13)	0.0283 (16)	0.0101 (12)	0.0096 (12)	0.0029 (10)	-0.0020 (11)
C6	0.0182 (14)	0.0192 (14)	0.0134 (13)	0.0088 (11)	0.0066 (11)	0.0030 (11)
C7	0.0150 (13)	0.0148 (14)	0.0122 (12)	0.0055 (10)	0.0084 (11)	0.0014 (10)
N8	0.0184 (12)	0.0116 (11)	0.0218 (12)	0.0009 (9)	0.0047 (10)	0.0043 (9)
C9	0.0136 (13)	0.0237 (15)	0.0113 (12)	0.0045 (11)	0.0051 (11)	0.0000 (11)
C10	0.0145 (13)	0.0167 (14)	0.0093 (11)	0.0025 (11)	0.0039 (10)	-0.0050 (10)
C11	0.0127 (13)	0.0128 (13)	0.0129 (12)	0.0019 (10)	0.0028 (10)	-0.0034 (10)
C12	0.0103 (12)	0.0133 (13)	0.0088 (11)	-0.0013 (10)	0.0049 (10)	-0.0018 (10)
C13	0.0086 (12)	0.0111 (13)	0.0125 (12)	0.0000 (10)	0.0054 (10)	0.0015 (10)
C14	0.0106 (12)	0.0090 (12)	0.0122 (12)	0.0005 (9)	0.0063 (10)	-0.0004 (9)
C15	0.0109 (12)	0.0128 (13)	0.0088 (11)	-0.0051 (10)	0.0056 (10)	-0.0019 (9)
C16	0.0080 (11)	0.0117 (13)	0.0093 (11)	0.0004 (10)	0.0034 (9)	0.0033 (9)
C17	0.0123 (12)	0.0083 (12)	0.0127 (12)	0.0015 (10)	0.0072 (10)	0.0009 (10)
O18	0.0132 (9)	0.0119 (9)	0.0107 (8)	0.0044 (7)	0.0031 (7)	0.0026 (7)
C19	0.0134 (13)	0.0159 (13)	0.0154 (13)	0.0049 (11)	0.0069 (11)	0.0043 (11)
O20	0.0100 (9)	0.0159 (9)	0.0079 (8)	-0.0030 (7)	0.0039 (7)	-0.0033 (7)
C21	0.0103 (12)	0.0146 (13)	0.0103 (12)	-0.0017 (10)	0.0031 (10)	-0.0010 (10)
C22	0.0142 (13)	0.0156 (14)	0.0088 (12)	-0.0022 (10)	0.0036 (10)	-0.0051 (10)
O23	0.0140 (10)	0.0204 (10)	0.0204 (10)	0.0014 (8)	0.0014 (8)	0.0044 (8)
O24	0.0126 (9)	0.0120 (9)	0.0178 (9)	-0.0010 (7)	0.0072 (8)	0.0013 (7)
C25	0.0212 (14)	0.0124 (14)	0.0179 (13)	-0.0023 (11)	0.0076 (11)	0.0017 (11)
C26	0.0211 (15)	0.0194 (15)	0.0300 (16)	-0.0059 (12)	0.0103 (13)	0.0030 (12)
Cl27	0.0151 (3)	0.0148 (3)	0.0144 (3)	0.0038 (2)	0.0058 (2)	-0.0020 (2)

Geometric parameters (Å, °)

Pt1—N2	2.143 (2)	C12—C17	1.389 (3)
Pt1—C9	2.127 (3)	C13—C14	1.399 (3)
Pt1-C10	2.127 (2)	C14—H14	0.9500
Pt1-C13	2.003 (2)	C14—C15	1.382 (3)
Pt1—Cl27	2.3209 (6)	C15—C16	1.397 (4)
N2—C3	1.353 (3)	C15—O20	1.391 (3)
N2—C7	1.346 (3)	C16—C17	1.385 (3)
С3—Н3	0.9500	C16—O18	1.376 (3)
C3—C4	1.367 (4)	C17—H17	0.9500
C4—H4	0.9500	O18—C19	1.425 (3)
C4—C5	1.392 (4)	C19—H19A	0.9800
С5—Н5	0.9500	C19—H19B	0.9800
C5—C6	1.363 (4)	C19—H19C	0.9800
С6—Н6	0.9500	O20—C21	1.416 (3)
C6—C7	1.402 (4)	C21—H21A	0.9900

C7—N8	1.345 (3)	C21—H21B	0.9900
N8—H8A	0.8800	C21—C22	1.509 (4)
N8—H8B	0.8800	C22—O23	1.196 (3)
С9—Н9А	0.9500	C22—O24	1.343 (3)
C9H9B	0.9500	024-025	1454(3)
	1 205 (4)	C_{25} U_{25}	1.434(3)
C9—C10	1.395 (4)	C25—H25A	0.9900
C10—H10	1.0000	С25—Н25В	0.9900
C10—C11	1.514 (3)	C25—C26	1.495 (4)
C11—H11A	0.9900	C26—H26A	0.9800
C11—H11B	0.9900	C26—H26B	0.9800
C11—C12	1.509 (3)	C26—H26C	0.9800
C12—C13	1 391 (4)		
012 013	1.591 (1)		
N2 Pt1 C127	90.28 (6)	C13 C12 C11	1175(2)
$\frac{1}{12} - \frac{1}{11} - \frac{1}{12}$	90.28 (0)		117.3(2)
C9— $Pt1$ — $N2$	90.24 (9)		121.0 (2)
C9—Pt1—C10	38.29 (10)	C17—C12—C13	121.3 (2)
C9—Pt1—Cl27	161.33 (7)	C12—C13—Pt1	114.69 (17)
C10—Pt1—N2	92.85 (9)	C12—C13—C14	118.2 (2)
C10-Pt1-Cl27	160.20(7)	C14—C13—Pt1	127.13 (19)
C13—Pt1—N2	174.40 (9)	C13—C14—H14	119.6
C13—Pt1—C9	87 89 (10)	C_{15} C_{14} C_{13}	120.7(2)
C_{13} P_{t1} C_{10}	82 42 (10)	C_{15} C_{14} H_{14}	110.6
$C_{13} = 1t_1 = C_{10}$	02.42(10)	$C_{13} - C_{14} - C_{14}$	119.0 120.5(2)
	93.18 (7)		120.5 (2)
C3—N2—Pt1	118.29 (17)	C14—C15—O20	119.5 (2)
C7—N2—Pt1	122.69 (17)	O20—C15—C16	120.0 (2)
C7—N2—C3	119.0 (2)	C17—C16—C15	119.2 (2)
N2—C3—H3	118.6	O18—C16—C15	116.5 (2)
N2—C3—C4	122.8 (3)	O18—C16—C17	124.3 (2)
С4—С3—Н3	118.6	C12—C17—H17	120.0
C3—C4—H4	120.9	C_{16} $-C_{17}$ $-C_{12}$	120.0(2)
$C_3 C_4 C_5$	1181(3)	C_{16} C_{17} H_{17}	120.0
$C_5 = C_4 = C_5$	120.0	$C_{16} = C_{17} = 1117$	120.0
$C_3 - C_4 - \Pi_4$	120.9		110.52 (19)
C4—C5—H5	120.1	018—C19—H19A	109.5
C6—C5—C4	119.9 (2)	018—С19—Н19В	109.5
С6—С5—Н5	120.1	O18—C19—H19C	109.5
С5—С6—Н6	120.2	H19A—C19—H19B	109.5
C5—C6—C7	119.6 (3)	H19A—C19—H19C	109.5
С7—С6—Н6	120.2	H19B—C19—H19C	109.5
N2—C7—C6	120.6 (2)	C15—O20—C21	113.37 (19)
N8—C7—N2	118.4 (2)	O20—C21—H21A	109.1
N8-C7-C6	1210(2)	020 - C21 - H21B	109.1
C7 N8 H8A	120.0	$O_{20} C_{21} C_{22}$	109.1 112.4(2)
C7 N9 H9D	120.0	$U_{20} = U_{21} = U_{22}$	107.0
	120.0	$H_2IA = C_2I = H_2IB$	107.9
	120.0	C22—C21—H21A	109.1
PtI—C9—H9A	107.3	C22—C21—H21B	109.1
Pt1—C9—H9B	91.7	O23—C22—C21	126.4 (2)
Н9А—С9—Н9В	120.0	O23—C22—O24	125.2 (2)
C10-C9-Pt1	70.86 (15)	O24—C22—C21	108.4 (2)

С10—С9—Н9А	120.0	C22—O24—C25	116.0 (2)
С10—С9—Н9В	120.0	O24—C25—H25A	110.1
Pt1-C10-H10	115.6	O24—C25—H25B	110.1
C9-C10-Pt1	70.85 (15)	O24—C25—C26	107.8 (2)
C9—C10—H10	115.6	H25A—C25—H25B	108.5
C9—C10—C11	122.4 (2)	С26—С25—Н25А	110.1
C11—C10—Pt1	107.81 (16)	С26—С25—Н25В	110.1
C11—C10—H10	115.6	С25—С26—Н26А	109.5
C10-C11-H11A	109.6	С25—С26—Н26В	109.5
C10-C11-H11B	109.6	С25—С26—Н26С	109.5
H11A—C11—H11B	108.1	H26A—C26—H26B	109.5
C12—C11—C10	110.2 (2)	H26A—C26—H26C	109.5
C12—C11—H11A	109.6	H26B—C26—H26C	109.5
C12—C11—H11B	109.6		
Pt1—N2—C3—C4	179.4 (2)	C13—C12—C17—C16	-0.2 (4)
Pt1—N2—C7—C6	179.41 (18)	C13—C14—C15—C16	-0.5 (4)
Pt1—N2—C7—N8	1.5 (3)	C13—C14—C15—O20	-178.1 (2)
Pt1-C9-C10-C11	-99.4 (2)	C14—C15—C16—C17	1.9 (4)
Pt1-C10-C11-C12	-28.5 (2)	C14-C15-C16-O18	-177.0 (2)
Pt1-C13-C14-C15	177.68 (18)	C14—C15—O20—C21	-115.9 (2)
N2—C3—C4—C5	1.0 (4)	C15-C16-C17-C12	-1.5 (4)
C3—N2—C7—C6	-1.3 (4)	C15—C16—O18—C19	-164.7 (2)
C3—N2—C7—N8	-179.2 (2)	C15—O20—C21—C22	83.1 (3)
C3—C4—C5—C6	-0.7 (4)	C16—C15—O20—C21	66.4 (3)
C4—C5—C6—C7	-0.5 (4)	C17—C12—C13—Pt1	-177.47 (19)
C5—C6—C7—N2	1.5 (4)	C17—C12—C13—C14	1.5 (4)
C5—C6—C7—N8	179.4 (3)	C17—C16—O18—C19	16.5 (3)
C7—N2—C3—C4	0.0 (4)	O18—C16—C17—C12	177.3 (2)
C9—C10—C11—C12	49.7 (3)	O20-C15-C16-C17	179.5 (2)
C10-C11-C12-C13	21.0 (3)	O20-C15-C16-O18	0.6 (3)
C10-C11-C12-C17	-162.9 (2)	O20-C21-C22-O23	1.2 (4)
C11-C12-C13-Pt1	-1.4 (3)	O20-C21-C22-O24	-177.57 (19)
C11-C12-C13-C14	177.6 (2)	C21—C22—O24—C25	177.5 (2)
C11—C12—C17—C16	-176.2 (2)	C22—O24—C25—C26	165.5 (2)
C12—C13—C14—C15	-1.2 (4)	O23—C22—O24—C25	-1.3 (4)

Hydrogen-bond geometry (Å, °)

*Cg*2 is the centroid of the C12-C17 ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A	_
C17—H17····O24 ⁱ	0.95	2.60	3.501 (3)	159	
C25—H25 <i>B</i> ···O23 ⁱⁱ	0.99	2.60	3.449 (3)	144	
N8—H8B····Cl27 ⁱⁱⁱ	0.88	2.67	3.413 (2)	143	
C19—H19 A ···Cg2 ⁱ	0.98	2.63	3.476 (3)	145	

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, y+1/2, -z+1/2.