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Abstract

Lipids represent a diverse array of molecules essential to the cell’s structure, defense, 

energy, and communication. Lipid metabolism can often become dysregulated during tumor 

development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause 

widespread and drastic changes in lipid composition. Molecular imaging techniques have been 

developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment 

response. For decades, magnetic resonance spectroscopy has been the dominant noninvasive 

technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations 

driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that 

can be exploited using optical imaging, mass spectrometry imaging, and positron emission 

tomography. These novel imaging modalities have provided researchers a diverse toolbox to 

examine changes in lipids in response to a wide array of anticancer strategies including 

chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy or 

a combination of these strategies. The understanding of lipid metabolism in response to cancer 

therapy continues to evolve as each therapeutic method emerges, and this review seeks to 

summarize the current field and areas of unmet needs. 
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Abbreviations

18F-fluorodeoxyglucose (FDG)

2,5-dihydroxybenzoic acid (DHB) 

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)

acetyl-coenzyme A (acetyl-CoA) 

acute myeloid leukemia (AML) 

AMP-activated protein kinase (AMPK) 

ATP-citrate lyase (ACLY) 

beta-oxidation (β-Ox) 

black Hole Quencher (BHQ-3)

choline kinase (ChoK)

choline transporters (ChoTs)

cisplatin (CDDP)

7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one  (DDAO)

diacylglycerol (DAG) 

(4′,6-diamidino-2-phenylindole) (DAPI_

elongation-of-very-long-chain-fatty acids (ELOVL) 

endoplasmic reticulum (ER) 

epidermal growth factor receptor (EGFR) 

fatty acid binding protein-4 (FABP-4)

G-protein coupled receptor (GPCR)

glycerophosphocholine (GPC) 

hormone-sensitive lipase (HSL) 

hypoxia inducible factor (HIF) 

Indocyanine green (ICG) 
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isocitrate dehydrogenase-1 (IDH1) 

lipoprotein lipase (LPL)

low density lipoprotein (LDL)

lysophosphatidylcholine (LPC)

magnetic resonance spectroscopy (MRS) 

mass spectrometry imaging (MSI)

matrix-assisted laser desorption ionization (MALDI)

mono-unsaturated fatty acids (MUFAs) 

nanostructure-initiator mass spectrometry (NIMS)

OKN007 (2,4-disulfophenyl-PBN) 

optical coherence tomography (OCT) 

PBN (α-phenyl-tert-butylnitrone) 

peroxisome proliferator-activated receptor alpha (PPARα) 

phosphatidylcholine (PtdCho)

phosphatidylethanolamine (PtdEtn)

phosphatidylinositol (4,5) phosphate-2 (PIP2) 

phosphatidylinositol (PtdIns)

phosphatidylserine (PtdSer)

phosphocholine (PC)

phosphoethanolamine (PE)

Phosphoinositides (PI) 

phospholipase (PL) 

phosphomonoester (PME) 

plasma membrane citrate transporter (PMCT)

polyunsaturated fatty acid (PUFA)
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positron emission tomography (PET) 

protein kinase C (PKC) 

PtdCho-specific PLC (PC-PLC) 

pyropheophorbide-a (Pyro) 

reactive oxygen species (ROS) 

secondary ion mass spectrometry (SIMS)

sphingosine-1-phosphate (S1P) 

stearoyl-CoA desaturase-1 (SCD1)

sterol response element-binding proteins (SREBPs)

total choline (tCho) 

tricarboxylic acid (TCA)

unfolded protein response (UPR)

α-cyano-4-hydroxycinnamic acid (CHCA)
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Introduction

Cancer cells exist in a hyperactive state of growth and use a complex network of lipid 

metabolic pathways to support this growing biomass. Lipids are a broad class of compounds that 

include fatty acids, triglycerides, steroids, phospholipids, and sphingolipids, among others. These 

molecules play critical roles in cellular compartmentalization, structural barriers, communication 

signals, energy storage, and homeostasis. Despite high vascularization, many cancer cells exist in 

regions of nutrient deprivation and tumors have adopted alternative strategies to maintain sources 

of lipid. In some cases the altered lipid metabolic state offers a therapeutic vulnerability, while in 

others, adaptations to intracellular lipid composition can be used by refractory tumors to resist 

therapies. Because these cancer-driven aberrations in lipid metabolism often contrast the 

surrounding tissue, there are several molecular imaging strategies that have been developed to 

monitor tumor margin, stage, and treatment response. 

I. Lipid Metabolism

A. Exogenous Lipid Uptake

De novo lipid synthesis pathways are crucial during embryogenesis and fetal 

development, but, after maturation, cells in most tissues are capable of acquiring sufficient 

circulating lipids to meet their biosynthetic and energetic needs (1-3). Cancer cells can access 

circulating lipids by overexpressing lipid-scavenging proteins. High exogenous lipids are 

associated with local invasive index, and obesity is also correlated with higher cancer incidence 

rates (4). Higher expression of low density lipoprotein (LDL) receptor has been found in 

transformed colorectal cells relative to normal cells (5). The LDL receptor in prostate cancer 

provides a major source of cellular cholesterol and essential fatty acids (6). Breast cancer and 

select sarcoma cells have been observed to secrete lipoprotein lipase (LPL) to release fatty acids 
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from triglycerides in circulating lipoproteins (7). Although macropinocytosis has been identified 

in cancer cells, little evidence exists to suggest that this is a relevant source of exogenous lipid in 

vivo (8). Instead, lipid binding proteins are thought to assist in the capture of lipids from the 

interstitial space and promote invasion (Figure 1), as overexpression of fatty acid binding 

protein-4 (FABP-4) has been observed on the surface of ovarian, prostate, bladder, and renal 

cancer cells (9,10). Fatty acid translocase, also known as CD36, is a long-chain fatty acid 

scavenger that contributes to high mammographic density in subjects at high-risk for breast 

cancer (11). Ovarian cancer cells can siphon free fatty acids from the lipid stores of the omentum 

by activating perilipin-A and hormone-sensitive lipase (HSL) in neighboring adipocytes (12). 

Studies have shown that removal of lipids from culture medium can trigger de novo lipid 

synthesis, emphasizing the dependency on lipids for cell proliferation and the adaptations cancer 

cells make to sustain their growing biomass (13).

B. De Novo Synthesis

Many cancers revert back to de novo lipid synthesis, and the lipogenic pathway is 

composed of many enzymes that are critical for tumor growth (14). Lipid synthesis starts at the 

energetic hub of the cell, the mitochondria, where acetyl-coenzyme A (acetyl-CoA) and 

oxaloacetate are condensed into citrate (Figure 1). Citrate from the TCA cycle can be shunted 

from the mitochondria and broken down by ATP-citrate lyase (ACLY) into acetyl-CoA. 

Cytosolic citrate can alternatively be sourced from the microenvironment by plasma membrane 

citrate transporter (PMCT)(Figure 1) (15). Besides feeding into the rate-limiting step of fatty acid 

synthesis, acetyl-CoA is also critical for histone acetylation and serves as a link between 

metabolic status and gene expression (16,17).
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Acetyl-CoA serves as the 2-carbon building block used for fatty acid synthesis. The 

enzyme FASN combines malonyl-CoA with repeated acetyl-CoA condensations to form 

palmitate. Palmitate is the saturated 16-carbon fatty acid from which most complex fatty acids in 

the body are derived (18). FASN overexpression is associated with poor prognosis in breast 

cancer (19) and FASN inhibitors derived from natural products (e.g. resveratrol) and synthetic 

molecules (e.g. orlistat) are being studied for their anti-neoplastic effects (20). Acetyl-CoA is 

also a synthetic precursor to 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) in the cholesterol 

biosynthesis pathway (Figure 1). Mevalonate is then produced by HMG-CoA reductase, the 

target of the lipid lowering drugs, the statins. The amplification of HMG-CoA reductase in many 

prostate tumors creates a growth dependency on cholesterol, and suggests a possible role for 

statins in treating these cancers (5,21). Mevalonate is also a precursor to farnesyl-diphosphate, 

which can further be processed to cholesterol, or used as a substrate for protein prenylation. 

Isoprenoids from the mevalonate cascade are critical for membrane anchoring and activation of 

the growth-related G-protein subunits Ras (farnesylated), Rho (geranylgeranylation), and many 

others (22) (Figure 1). 

Fatty acids can be chemically modified in many ways to meet the diverse range of 

specialized functions required for cellular function (Figure 1). Stearoyl-CoA desaturase-1 

(SCD1) produces mono-unsaturated fatty acids (MUFAs) from the saturated fatty acid chains 

sourced exogenously or from de novo synthesis. Saturated fatty acid accumulation in the 

endoplasmic reticulum (ER) triggers autophagy-induced apoptosis by activating the unfolded 

protein response (UPR) (23). By modulating MUFA to saturated fatty acid ratios intracellularly, 

SCD1 has a regulatory effect on cell survival and proliferation (24-26). The elongation-of-very-

long-chain-fatty acids (ELOVL) enzymes in the ER are responsible for polyunsaturated fatty 
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acid (PUFA) synthesis (27), as well as the conversion of saturated and monounsaturated fatty 

acids into the very long chain fatty acids (C > 18) that serve as building blocks of sphingolipids 

when combined with ceramide head groups (28). Free fatty acids are stored as triglycerides in 

lipid droplets or packed into the cell membrane as sphingolipids, cholesterol esters, or 

phospholipids. Lipid droplets in breast cancer cells have been found to increase with increasing 

malignancy and to be enriched in polyunsaturated fatty acids, especially arachidonic acid (29) 

Diacylglycerol (DAG) is an important lipid second messenger that also serves as a 

synthetic precursor for both membrane phospholipids and lipid droplet triacylglycerides (30-33). 

Major membrane phospholipids include phosphatidylcholine (PtdCho), 

phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), 

among others, and vary in function, location, and relative abundance. The Kennedy pathway of 

phospholipid synthesis describes the addition of polar head-groups to the DAG backbone, and 

enzymes in this pathway are responsible for the accumulation of phosphocholine (PC) and 

phosphoethanolamine (PE) observed in many cancers (34). Choline uptake by choline 

transporters (ChoTs) and phosphorylation by choline kinase (ChoK) have, in particular, been 

consistently linked with increased invasiveness, drug resistance, and overall malignancy (35). 

C. Lipid Mobilization and Usage

Phospholipid and triacylglyceride levels are maintained by the concerted actions of 

catabolic enzymes that mobilize fatty acids from lipid droplets and cell membranes (36). Fatty 

acid release from lipid droplet storage involves lipases that can support aggressive cancer 

phenotypes in a manner similar to the pro-tumorigenic effects of exogenous fatty acids (37). 

Fatty acid release from membrane phospholipids is carried out by the phospholipase (PL) 

enzymes. PLA1 and PLA2 cleave phospholipids at the sn-1 and sn-2 positions, respectively. The 
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PLA2 family of enzymes are the primary producers of arachidonic acid and three major 

subgroups exist: calcium-dependent or cytosolic cPLA2, calcium-independent iPLA2, and 

secretory sPLA2 (38). While cPLA2 has a tumor-supportive role in many cancers, sPLA2 is 

thought to have tumor suppressive-functions (39). In contrast, iPLAs are housekeeping enzymes, 

primarily responsible for mobilizing lipids to maintain membrane integrity and general cellular 

energy metabolism during homeostasis. PLC cleaves phospholipids at the bond between glycerol 

and phosphate and contains pleckstrin homology domains for anchoring and cooperation with G-

protein coupled receptor (GPCR) signaling networks (40). When activated by growth factor 

receptors, PLD hydrolyzes the phospholipid head group (e.g. choline, ethanolamine, inositol, 

serine) to release PA and links growth factor signaling to cell proliferation (32).

Saturated free fatty acids can be broken down into acetyl-CoA to feed into the TCA 

cycle, and some cancers have been found to prefer fatty acid oxidation to pyruvate oxidation, 

even in sufficient glucose and oxygen environments (41). β-oxidation is an important energy 

pathway in prostate cancers, where glycolytic rates are low, and rapid citrate utilization requires 

a constant supply of acetyl-CoA (42). Peroxisome proliferator-activated receptor alpha (PPARα) 

is a transcription factor whose activation triggers breakdown of very long chain fatty acids in the 

peroxisomes, and fatty acid oxidation in the mitochondria. A complex network of interactions 

with PUFAs, namely arachidonic and linoleic acids, regulates PPARα activity (43). Aside from 

their direct signaling functions (44), arachidonic acid is an important substrates for 

cyclooxygenase, lipoxygenase, and cytochrome enzymes that catalyze the production of the 

eicosanoid family of bioactive lipids that have roles in innate immunity, inflammation, 

cardiovascular disease, and cancer (45,46). 
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II. Tumor Progression and Regression

A. Oncogenic Reprogramming

A common feature of cancer cells is the metabolic transition from oxidative 

phosphorylation to glycolysis, during which the rate of glucose consumption far exceeds the 

energy requirements of the cell (14). What initially appears to be wasteful energy utilization is in 

fact a method to feed glucose-derived pyruvate into biosynthesis, including fatty acids (Figure 

2). Glutamine has been identified in some cancers as an alternative energy source that can enter 

the TCA cycle (47) and provide a carbon source for citrate production (Figure 2), however the 

dependency on glutamine for anaplerosis varies considerably even among cancers of the same 

tissue (48,49). This may be due, in part, to heterogeneity in the local tissue microenvironment 

causing gradients in nutrients, oxygen and signaling factors that influence the energetic state of 

cells.

Under hypoxic conditions, solid tumors can become dependent on unsaturated fatty acid 

uptake from serum to prevent ER stress that can arise when rapid proliferation is unmet by 

nutrient availability (50). These exogenous fatty acids can arise from lipolysis in stromal cells in 

a manner comparable to cachexia (23). The recent resurgence of interest in cancer metabolism 

has improved our understanding of the adaptations tumor cells can make when fuel availability is 

variable. These adaptations are only possible because the common driving mutations in cancers 

often have direct involvement in metabolic pathways.

Many of the clinically prevalent oncogenes are capable of altering lipid uptake, 

production, or consumption to gain a competitive growth advantage (Figure 2). The transcription 

factor hypoxia inducible factor (HIF) is a downstream effector of Myc and is tightly regulated by 

the tumor suppressor gene p53. HIF induces FASN induction and lipid droplet formation for 
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energy storage to support the tumor microenvironment (18,51,52). FASN requires the reducing 

agent NADPH, which is produced from the pentose phosphate pathway that often becomes 

upregulated during cancer reprogramming (18). There is further evidence in renal cell carcinoma 

models that HIF2α-dependent lipid storage suppresses the ER stress response promoting tumor 

cell survival (53).  Glutamine uptake in glioma and acute myeloid leukemia (AML) is often 

accompanied or driven by isocitrate dehydrogenase-1 (IDH1) mutations that reroute glutamine 

toward citrate to provide fatty acid and cholesterol precursors independent of the TCA cycle 

(Figure 2) (54,55). In hypoxic environments where glucose metabolism is diverted to anaerobic 

lactate production, mutations in mitochondrial IDH2 provide a continued source of citrate for 

lipid synthesis, by allowing reductive carboxylation of glutamine-derived α-KG (56). The 

oncometabolite 2-hydroxyglutarate is produced by many cancer-specific IDH1 and IDH2 

mutations, and has widespread epigenetic effectors by altering DNA methylation (57-59).

AMP-activated protein kinase (AMPK) serves as an energetic sensor and master switch 

by inhibiting fatty acid synthesis in low energy states and stimulating consumption of fatty acids 

for energy in the mitochondria by β-oxidation (Figure 2). Sterol response element-binding 

proteins (SREBPs) (60) can activate transcription of genes involved in cholesterol and fatty acid 

synthesis and uptake, and are directly downstream of AMPK and the PI3K/Akt/MTOR signaling 

axis that includes many oncogenes (61). Epidermal growth factor receptor (EGFR) mutations are 

common tumor-driving factors that recruit phospholipases (62,63) and ChoKα (64) to the cell 

surface, leading to membrane remodeling and induction of mitogenic signals to drive cellular 

proliferation. Mitogenic growth signals can also come in the form of sterol-derived hormones 

(estrogens, progestogens, and androgens). Release of these sex hormones, their receptor 

expression, and the downstream signaling mediators are all common tumor-driving factors in 
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prostate, breast, endometrial and ovarian cancers (65). Farnesylation of Ras and 

geranylgeranylation of Rho GTPases are essential for downstream signaling through the 

phosphoinositol family of signaling lipids (66,67). Phosphoinositides (PI) comprise 10-20% of 

total cell phospholipids and among that fraction, phosphatidylinositol (4,5) phosphate-2 (PIP2) 

and phosphatidylinositol-4-phosphate constitute approximately 0.2-1% (68-70). This class of 

membrane lipids plays an integral role in proliferation, apoptosis, metabolism and migration, and 

is pivotal to transmembrane signal transduction because it regulates the distribution of receptor 

tyrosine kinases, G-protein-coupled receptors, and adhesion molecules among others (71).

Metabolic disease is a risk factor for many cancer types, promoting insulin resistance, 

hyperactive growth signals, and evasion of apoptosis that help set the conditions for malignant 

transformation (72). Histological tumor grade in the breast is clinically correlated with 

phosphomonoester (PME) accumulation (73), such as PC and PE, detectable by MR 

spectroscopy (74,75). PC promotes survival and mitogenic signaling through downstream 

cascades such as MAPK and Akt (73,76,77). PC can be formed through the actions of the 

enzyme choline kinase, or by phosphatidylcholine specific phospholipase C. Phospholipid 

catabolism can also be a source of other mitogenic second messengers such as DAG, PA, and 

lysophosphatidylcholine (LPC). DAG is released following the cleavage of phospholipids by 

PLC (78), activates protein kinase C (PKC) resulting in the release of intracellular calcium stores 

and subsequent Ca2+-dependent signaling. DAG and PC are also the synthetic precursors to the 

most abundant mammalian membrane phospholipid, PtdCho, whose levels are predictive of 

breast tumor grade, estrogen receptor status, and patient survival (79). It is intuitive to suspect 

that cancers in high adipose tissue use altered lipid metabolism to take advantage of the 

surrounding environment, however evidence of altered lipid metabolism in cancers that arise in 
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low-adipose tissues suggests that deranged lipid metabolism is a universal hallmark of cancer 

pathogenesis.

Variations in lipid composition are likely due to the heterogeneous nature of the tumor 

microenvironment, which is an ever-changing compartment of structural fibers, nutrients, 

cellular waste, and signaling molecules. Interstitial pH, extracellular matrix, bioactive lipids, and 

cytokines can alter the population and function of stromal cells and surrounding tissues. 

Extracellular lactate, the metabolic byproduct of aerobic glycolysis, is capable of transitioning 

tumor-associated macrophages from tumor-suppressive to tumor-supportive phenotypes (80,81). 

Biopsies of colon cancer specimens have been reported to contain high lipid deposition in 

regions of necrosis and infiltrating macrophages (82). These macrophages most likely resemble 

the immune-suppressive “alternatively-activated” phenotype, as classic (interferon gamma-

induced) activation does not enhance lipid phagocytosis in human myeloid populations (83). 

Alternatively-activated macrophages prefer fatty acid oxidation (84) and are thought to have 

critical roles in clearing/remodeling necrotic tissue, recruiting new blood vessels, and regulating 

innate and adaptive immunity (85). 

B. Lipid changes during Apoptosis/Necrosis

The role lipids play in nearly all cell survival pathways emphasizes their importance in 

tumor growth and invasion pathways, but lipid compartmentalization, metabolism, and signaling 

are also intricately involved in cell death pathways. During apoptosis, the release of 

lysophosphatidylcholine (LPC) and sphingosine-1-phosphate (S1P) by PLAs (86) and 

ceramidases (87) respectively, acts as a “find-me” signal to surrounding macrophages (88). Once 

recruited to the dying cell, exposed PtdSer on the apoptotic cell’s surface serves as the “eat me” 
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signal recognized by phagocytes (89). Unlike the organized compartmentalization of apoptotic 

cells into non-immunogenic apoptotic bodies, necrosis is characterized by the breakdown of the 

plasma membrane and release of the cellular contents that often triggers an immune reaction 

(90). Recently, lipid peroxidase networks have been identified as key mediators of cancer cell 

therapy resistance by reversing a non-apoptotic form of cell death known as ferroptosis can be 

induced by lipid peroxide accumulation (91).  Tumor cell response to therapy begins with 

activation of cell stress responses, which can ultimately decide the fate of the cell and 

surrounding tumor. 

Early changes in lipid metabolism have been reported in response to a wide range of 

cellular stresses (92), but lipid mobilization does not necessarily commit a cell to apoptosis (93). 

Many cells undergoing apoptosis produce lipid droplets, although there are exceptions (94), and 

fatty acids are first mobilized from membrane phospholipids by PLA2 activity (92,95). Reactive 

oxygen species (ROS) produced in the mitochondria of apoptotic cells are thought to inhibit the 

catalytically-active thiol groups on β-oxidation enzymes (96), thus free fatty acids are redirected 

into lipid droplets in the form of triglycerides and sterol esters (97,98). Lipid droplet formation in 

cancer may act as a drug reservoir to reduce intracellular concentrations of drug (99), or to 

absorb reactive oxygen species to protect further DNA damage (100). Lipogenesis of saturated 

fatty acids also makes the cell membrane less penetrable to drugs that enter by passive diffusion 

(101). Uptake of triglycerides by macrophages or neutrophils can dampen subsequent immune 

activation (102,103), providing another potential mechanism of immune escape. Ceramide 

accumulation regulates and can even trigger mitochondrial outer membrane permeability to fully 

commit a cell to apoptosis by allowing cytochrome C release to the cytosol (104). Other signs of 

cell stress that precede or arise during apoptosis are the rise in PUFA and glycerophosphocholine 
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(GPC) levels (105-107). These indicate a reprogramming of lipid metabolism and suggest that 

catabolic networks mobilize lipids from membrane phospholipids during this time. Many of 

these observations were first made using magnetic resonance spectroscopy (MRS) to non-

invasively measure lipid resonances of cancer cells undergoing stress responses and apoptosis 

(92).  

III. Imaging Metabolic Lipid Changes

The development of modern imaging techniques allows the detection of several key 

signaling pathways involved in lipid metabolism and its regulation/dysregulation in cancer. The 

ability to detect these pathways non-invasively aids in the discovery of potential targets for 

imaging or interventional therapies. In addition to developing probes to image lipids and 

alterations in lipid metabolism in mechanisms of oncogenesis, we can also image lipid-

dependent or –mediated signaling in response to therapy (108).  

A. Imaging lipids in tumors: MR Spectroscopy

MRS has been extensively employed for the study of biological material (from cell 

extracts, to homogenized tissue, and intact organisms) because it offers a non-invasive method to 

study the native distribution and dynamic nature of many relevant biomarkers of disease and 

therapeutic response. The search for disease-related metabolites requires the suppression of the 

overwhelming fat and water signals observed in proton MR spectra, however much can be 

learned from the diverse species that contribute to these lipid peaks. 
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B.  Choline and choline metabolites

MRS has been essential in the study of lipid metabolism and for the non-invasive 

observation of lipid metabolism in vitro and in vivo.  This is due to the ability to observe a 

number of lipid metabolites in 1H and 31P MR spectra on the basis of chemical shift 

discrimination. Due to the relative insensitivity of MR, observation is limited to soluble or MR-

visible metabolites in the high micromolar to millimolar levels. Lipid metabolites observable in 

31P MR spectra, include the PME, PC and PE and the PDE, GPC and GPE.  In 1H spectra, 

observable lipid metabolites include the total choline (tCho) resonance, a composite resonance 

encompassing free choline, PC and GPC. Thus there is overlap in the information available 

between 31P and 1H spectra, since the choline PC and GPC resonances seen in the 31P spectra are 

also observed in the tCho region of 1H spectra. The PME and PDE resonances report on 

pathways relevant to phospholipid metabolism. PC and PE are generally the anabolic products of 

choline kinase and ethanolamine kinases, although they can also be produced by the actions of 

phospholipase C.  The PDE resonances result from catabolism of phosphatidylcholine and 

phosphatidylethanolamine via the consecutive action of two phospholipases, A2 and 

lysophospholipase or A1.There are numerous excellent reviews on this topic (35,92,109,110), 

and the reader is referred to these for detailed information.  However, it is worth noting that 

consistent elevations in PMEs and tCho have been observed in a wide range of tumors including 

brain, prostate, lung, skin, ovarian and breast (111,112). As a means to monitor therapeutic 

response, tumor choline levels have been measured using MRS in animal (113-115) and human 

tumors (116-120) with mixed results, at least partly due to the technical difficulties associated 

with acquiring choline spectra on a background of high fat in normal breast tissue. The picture is 

further complicated because ChoK is not the only enzyme that contributes to PC accumulation, it 
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can be produced directly by the actions of PLC on PtdCho, or by the hydrolysis of GPC as a 

source of additional choline for subsequent phosphorylation.  Recent MRS applications have 

been used to detect changes in choline metabolism due to IDH mutations in glioma (59,121) 

explore the role of the glycerophosphodiesterase genes GDPD5 and GDPD6 on breast cancer 

cell migration/invasion (122) and profile metabolic changes in response to HIF1 and HIF2 

suppression (123).

C: Imaging lipids in tumors: MR-visible lipids

Proton MRS was originally used to detect MR-visible or mobile lipid signals in cultured 

cells and tumor biopsies. A series of resonances were observed arising from the fatty acryl chains 

in neutral lipids, triglyceride and cholesterol esters, including the terminal methyl groups, the 

methylenes in long chain fatty acids, and olefinic MUFA/PUFA resonances (124-127). MR 

detects only molecules that exist in a local environment with high rotational molecular motion 

and thus the observed signals arise predominantly from mobile or MR-visible lipids, composed 

of triglycerides and cholesterol esters sequestered in lipid droplets. In animal and human tumors, 

the observation of these lipid resonances require the use of short echo time spectroscopic pulse 

sequences due to the relatively short T2 relaxation times of mobile lipids. In vivo MRS studies 

initially used single voxel localization methods such as STEAM and PRESS for assessing the 

MRS pattern of lipids in tumors, due to the simplicity and accuracy of these methods. However, 

multi-voxel spectroscopic methods including chemical shift imaging are increasingly being used 

both in mouse glioma and xenograft models (128,129) as well as in human tumors (130) since 

these methods provide a better assessment of tumor heterogeneity. The presence of intense lipid 

signals from surrounding subcutaneous fat and muscle have been problematic in evaluating lipid 

signals by MRS methods, thus outer volume fat suppression sequences become critical. For this 
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reason, the majority of studies on intra-tumoral lipids have been focused on the brain where 

subcutaneous fat is at a minimum. However, useful insights into human tumor composition have 

still been made in other tumors, despite the problems associated with high fat content in 

peripheral tissue. 

The presence of lipids in human tumors was initially reported by Kuesel et al. (124) 

where a correlation between MR-visible lipids, tumor malignancy and necrosis was observed in 

brain tumors. These initial findings were subsequently confirmed in in vivo imaging studies as 

well as in histologically different brain tumor types (131). An early demonstration of the 

sensitivity of lipid signals for accurate diagnosis of supra-tentorial brain tumors was 

demonstrated by Preul et al. (132) suggesting lipid signals as a potential biomarker for grading of 

astrocytomas. Correlation of lipids with malignancy was also reported in pediatric brain tumors 

(133) and a further study in pediatric brain tumors suggested the presence of lipids as a marker of 

poor survival (134). Taken together, the presence of MR-visible lipid signals seems to be a 

marker for malignancy and poor prognosis. In our recent review on the role of lipids in tumors 

(92) we argued that increased MR-visible lipids in tumors are indicative of a stress response and 

that their localization reflects areas of cellular hypoxia and or necrosis.

MRS methods have been used to assess changes in the metabolic profile of tumors as 

markers of early therapeutic response. Most xenograft and clinical studies have focused on 

evaluating reductions in the total choline or lactate signal as a marker of treatment response 

Changes in lipid signals not only suggest a positive response, but increases in PUFA, a putative 

marker of apoptosis (106), may also aid in understanding the mechanism of cell death induced by 

specific treatments.
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Gene therapy induced changes in lipids

One of the first studies to implement MRS to evaluate changes in metabolism during 

gene therapy reported a progressive increase in the lipid resonance at 1.3 ppm in 9L rat tumors 

that were injected intratumorally with adenoviral HSV-to followed by ganciclovir treatment 

(135). These initial studies were followed by several studies of the HSV-tk positive BT4C 

glioma model treated with ganciclovir (106,129,136), which established accumulation of PUFA 

resonances as a marker of treatment induced apoptosis. The PUFA resonances arise from 

phospholipase A2 activity leading to hydrolysis of phospholipids in the cell membrane (137). 

These studies indicate that early increases in mobile lipid resonances after therapeutic 

intervention may be suggestive of apoptosis and positive treatment response. The temporal 

evolution of these resonances may be variable, with a decrease in lipid resonances during 

formation of scar tissue after cell death and lysis. However, the mode and nature of therapeutic 

interventions could affect changes in lipid resonances. A recent study involving oncolytic viral 

treatment of immunocompetent Syrian hamster carcinomas as well as a patient with 

neuroblastoma reported lower unsaturated fatty acids, as measured from the olefinic resonance at 

5.3 ppm (Figure 3) in responding tumors than in non-responding tumors (138), which appears to 

be an exception to the norm. Unlike previous studies, which resulted in an apoptotic tumor cell 

death after treatment, treatment with oncolytic viruses resulted in multifocal necrosis and a 

substantial cellular inflammatory response. Taken together, these studies indicate that changes in 

PUFA resonances could possibly be used to differentiate apoptosis from necrosis, although 

further data is needed to substantiate this finding. 

A decreased PUFA resonance, in comparison to normal breast tissue, was reported in a 

patient with breast cancer using selective multiple quantum coherence spectroscopy (139). In 
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contrast to most tumors, a decrease in total tumor lipids was observed in pancreatic cancer 

compared to pancreatitis as evaluated by MR studies of patient biopsy samples (140) as well as 

in vivo comparing focal pancreatitis to pancreatic adenocarcinoma (141). Although the exact 

reason for this apparent anomaly is unclear, the pancreatic tumor microenvironment includes 

stromal tissue that comprises up to 80% of the tumor mass (142). Thus, it is possible that the 

dominant factor contributing to the MR visible lipid signal in pancreatic cancer arises from the 

dynamic assortment of extracellular matrix components, infiltrating immune cells, macrophages, 

pancreatic stellate cells, vascular cells, fibroblasts and myofibroblasts.  

Chemotherapy induced changes in lipids

There have been several MRS studies describing alterations in lipid levels in response to 

treatment with cytotoxic agents. Increased triglyceride resonances were observed in the 

malignant MDA-MB-435 breast cancer cell line treated with the anti-inflammatory agent 

indomethacin (143), a drug that has been shown to reduce tumor invasion and inhibit metastasis. 

Similar increases have also been observed in cells treated with antimitochondrial agents and 

other cytotoxic drugs (96,144-148). Treatment of DU145 prostate cancer cells with the 

differentiating agents phenylacetate or phenylbutyrate also led to a time dependent increase in 

lipid signals, accompanied by increased in GPC, indicating cell stress that precedes the induction 

of apoptosis (107,147). Increased apoptosis in BT4C glioma cells after exposure to cisplatin 

resulted in increases in both saturated fatty acids and PUFA resonances (149). Treatment with 

subcytotoxic doses of cisplatin induced similar increases in saturated and total unsaturated fatty 

acid (5.3 ppm) resonances in HER2+ ovarian cancer cells (150) (Figure 4).  Exposure of the 

VEGFR tyrosine kinase inhibitor SU1498 on human U87 glioma cells induced a significant 

increase in lipids with a concomitant decrease in GPC (151). Although cell studies point towards 
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an increase in MR-visible lipid signals in tumors as a marker of response to chemotherapy, 

translation of these findings to in vivo settings have been challenging due to the confounding 

presence of lipid signals from hypoxic/necrotic regions in the tumor or contamination from lipid 

signals outside the tumor. 

Many factors influence in vivo MRS and make it difficult to predict whether it will 

provide useful biomarkers for new therapeutic interventions. For example, the PI3K/mTOR 

inhibitor voxtali in the presence or absence of temozolomide directly alters the phosphorylation 

of the phospholipid PtdIns in glioblastoma tumors, but causes no detectable changes in 1H MR 

spectra, even though hyperpolarized 13C MRS showed reduced conversion of pyruvate to lactate 

(152). Nevertheless, many studies have successfully evaluated changes in lipid signals in 

response to chemotherapy in tumor xenografts. The efficacy of etoposide, a topoisomerase 

inhibitor, was tested on a murine lymphoma model and a significant increase in the 1.3 ppm 

methylene mobile lipid resonance was noted following etoposide-induced apoptosis (153). 

Treatment of F98 rat gliomas with the choline kinase inhibitor MN58b resulted in a significant 

increase in both saturated (1.3 ppm) and polyunsaturated (2.8 ppm) fatty acids (Figure 5) that 

correlated with increased treatment-induced apoptosis (114). Similar increases in saturated and 

polyunsaturated lipid resonances were observed in GL261 glioma tumors in mice treated with 

temozolomide (128) (Figure 6).  In contrast, treatment of C6, RG2, and GL261 glioma models 

with the nitrones, PBN (α-phenyl-tert-butylnitrone) and OKN007 (2,4-disulfophenyl-PBN) 

resulted in a decrease in lipid resonances after treatment, which was attributed to a decrease in 

necrosis and normalization of the metabolic profile rather than the increase in apoptosis 

generally reported in tumor treatment studies (154). Increases in neutral lipid resonances were 

also correlated with tumor growth arrest and treatment response in a mouse model of HER2+ 
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ovarian cancer treated with cisplatin (150). No changes in total choline were noted in this study, 

as the authors found changes in neutral lipids to be a more sensitive marker of treatment 

response.

Radiation therapy induced changes in lipids

Radiation therapy is one of the most commonly used therapeutic strategies for solid 

tumors in the clinic. Although several studies point towards increased lipid resonances in 

radiation-induced necrosis, relatively few studies have evaluated changes in lipid resonances as a 

marker of early response to radiation therapy. Cervical cancer biopsy samples obtained from 

patients treated with radiation therapy were studied by HR-MAS, which revealed a direct 

correlation between the degree of apoptosis and lipid resonances (155) confirming the 

observations made in cell and xenograft studies. A xenograft model of non-Hodgkin’s diffuse 

large B cell lymphoma treated with radiation therapy demonstrated a significant increase in both 

mono and unsaturated lipid resonances within 3 days of treatment (156). The increase in lipid 

resonances corresponded with histology findings of increased apoptosis and oil red O staining, 

supporting the idea that unsaturated (PUFA) lipid accumulation is a marker of therapy induced 

apoptosis. 

D. Positron Emission Tomography

Positron emission tomography (PET) measures the gamma rays produced when an 

electron collides with a positron emitted from a beta-decaying nucleus. PET scans require the 

administration of a radioactive substrate, but the high sensitivity of PET means that only tracer 

levels of radiolabeled material are needed. For tumor imaging, 18F-fluorodeoxyglucose (FDG) is 

by far the most commonly employed PET tracer (Figure 7). FDG exploits the enhanced aerobic 

glycolysis observed in many tumors, a phenomenon known as the Warburg effect. 
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Overexpression of plasma membrane glucose transporters and hexokinase activity rapidly 

internalize FDG and phosphorylate it in the first step of glycolysis. This reaction traps FDG-6-P 

in the cell, but the substrate is unable to be metabolized further. FDG-PET is widely used 

clinically for the staging of primary tumors, but because of the ability of PET to perform a full-

body scan, it is also important for the detection of metastases. FDG-PET can also be used to 

monitor tumor regression post-therapy, and has been used in several instances to monitor FASN 

inhibitor therapies due to the link between glycolysis and fatty acid synthesis (157,158). One 

caveat is that it is difficult to assess enhanced FDG tumor uptake in tissues with high glucose 

utilization (e.g. brain and heart) or in organs of excretion (e.g. kidney and bladder). There is also 

the potential for background labeling in metabolically active cells, such as lymphocytes in sites 

of inflammation. Furthermore, some tumors, such as the prostate, are not FDG avid and have 

relatively low uptake.

A promising alternative to FDG for tumor lipid imaging is 18F or 11C labeled choline 

(Figure 7). This strategy relies on the upregulation of choline transporters and ChoK in tumor 

cells. The concerted action of these components achieves tumor tissue contrast by rapidly 

internalizing and phosphorylating the choline mimetic radioligands. Choline PET is becoming 

more widely used for tumor detection, especially in the prostate (159) but also in other tumors 

such as gliomas (160). Choline PET has also been used to track tumor recurrence, metastasis, 

and response to chemo and radiotherapy (161-164). One challenge facing choline PET is the 

discrepancy between labeled choline tracer uptake and steady state metabolites observed using 

MRS (165). This could be due to intrinsic differences between choline transport and 

phosphorylation that manifest as differences in tracer uptake relative to steady-state levels, but it 
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could also be due to alternative pathways such as metabolism of the choline tracers in other 

organs such as liver (166).

The low FDG avidity of prostate tumors is linked to their metabolic preference for β-

oxidation of fatty acids, rather than glutaminolysis or glucose metabolism, as a primary energy 

source (42). A variety of 18F-labeled fatty acid analogs have been synthesized (Figure 7), and the 

metabolism of these probes effectively trap the radiolabel specifically in cells with high usage of 

β-oxidation (167,168). In metabolizable probes, labeling at the hydrophobic end of the molecule 

allows these probes to be consumed through β-oxidation. In non-metabolizable probes, chemical 

modifications are nearer to the carboxyl group, which still allows cell uptake and potential 

incorporation into phospholipids or triglycerides, but further oxidative metabolism is prevented 

(169). Labeled fatty acid probes, such as BMIPP (Figure 7), have been primarily employed to 

monitor metabolism in tissues with high levels of β-oxidation, mostly cardiac and to a lesser 

extent skeletal muscle (170-176). Use of these probes to study cancer has been limited, even 

though the use of β-oxidation as a potential cancer energy source has been known for decades 

(177,178).  

Although the half-life of 11C is quite short (20 min), it is still possible to observe 11C 

palmitate uptake and distinguish storage in triglycerides vs metabolism by β-oxidation (179,180). 

Regions of high fatty acid synthesis have been imaged using 11C-acetate incorporation into 

palmitate (181), although the intermediate acetyl-CoA has other potential metabolic fates such as 

the Krebs cycle or histone modification. For this reason, 11C-acetate has been used to monitor 

prostate tumors during therapy and recurrent lesions, but is incapable of distinguishing malignant 

tumors from benign hyperplastic nodules (182-185). Several radiolabeled ether lipids containing 

PC moieties (186) have been made (Figure 7) based upon early observations of elevated 
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phospholipid-ethers in neoplastic tissue (187,188). Due to the preferential accumulation and 

retention of these alkylphosphonium analogs, 124I-CLR1404 was developed and recently tested in 

brain tumor PET imaging where a tumor/normal brain signal ratio of 30 was reported (189). 

Replacement of the PET isotope with the radio-ablative 131I-CLR1404 agent improved survival 

in tumor-bearing rodents and provided a novel theranostic platform wherein 124I can assist in the 

planning of 131I therapy.

E. Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) is a powerful modality for the detailed spatial 

detection of protein, metabolite and drug distribution in tissues. MSI consists of a family of 

techniques that includes matrix-assisted laser desorption ionization (MALDI) MSI, secondary 

ion mass spectrometry (SIMS), matrix electrospray-MSI (ES-MSI), and nanostructure-initiator 

mass spectrometry (NIMS). For the detection of lipids, the most commonly used technique is 

MALDI MSI (190), which has a large range of applications and provides a good overall 

combination of spatial resolution, intact molecule sensitivity and probing depth (190). MALDI 

provides a critical platform for the spatial detection of lipids and lipid metabolites, as there is a 

lack of suitable reagents and antibodies for the analysis of tissue lipids in situ (191). 

MSI techniques are invasive procedures, requiring the preparation and embedding of a 

thin tissue slice followed by rasterized destruction by laser or primary ion beams. For MALDI, 

tissue is embedded in a matrix such as gelatin and α-cyano-4-hydroxycinnamic acid (CHCA) or 

2,5-dihydroxybenzoic acid (DHB) (192). Washing the tissues with aqueous solutions of 

ammonium formate or phospholipases prior to embedding can be used to enhance certain lipid 

species and improve signal to noise (191). MSI can detect hundreds of molecules in a single 

sample with a routine spatial resolution of 50−100 μm, and a small molecule resolution as high 
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as 5−10 μm (193). Because matrix deposition is a slow process and the application of a wet 

matrix to tissue can cause metabolite shift, matrix-free techniques using nanoparticle initiators 

have been developed and these often provide simpler spectra to interpret (194,195). These NIMS 

procedures provide comparable lipid profiles, but with improved spatial resolution (196).

MSI has been used extensively to study lipid in primary human tumor tissue as well as 

tumor cell lines and xenografts. In human tissues, a consistent observation of elevated 

phospholipids has been observed in cancer compared to normal tissues. This includes breast 

tumors and invasive ductal carcinomas compared to carcinoma in situ (197-199), gastric cancers 

(200), renal cell carcinomas (201), human lung squamous cell carcinoma (202) and colorectal 

carcinoma (203,204). The most frequent observation is of increased PtdCho in tumors, but 

increases in PtdEtn, PtdIns, and PA have also been observed (199,205,206). Some studies have 

demonstrated increases in ether-linked lipids (199). Lyso-phospholipids have been reported to 

increase in colorectal tumors, but decrease in gastric and prostate cancers (200,203,207) (Figure 

8). Fatty acid levels have also been observed to increase in a number of tumors (199), but it is 

uncertain whether these are free fatty acids or acyl components of more complex lipids. 

Studies in tumor xenografts have confirmed the general observations of increased 

phospholipids and ether-linked lipids in tumor tissues. Measurement of choline metabolites in 

breast cancer xenografts using MR spectroscopic imaging combined with MALDI-MSI revealed 

differences in spatial distribution with PC and choline levels concentrated in normoxic tumor 

regions (208). When correlated with the expression of a hypoxia-response element, PtdCho 

elevation was concentrated in hypoxic regions whereas LPC was elevated in necrotic regions 

(192,209). Further studies have indicated distinct microenvironmental lipid distribution with 

higher levels of ether-linked PtdEtn in viable tumor and ether-linked PtdCho in necrotic regions 
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(193). Elongated fatty acyl chain length in phospholipids of human lung squamous cell 

carcinomas was reproduced in mouse xenografts and correlated with the expression of the acyl 

chain elongase ELOVL6 (210). These data demonstrate the role of MSI in identifying distinct 

tumor microenvironments by their molecular signatures.  

While MSI has revealed a number of potential lipid-related cancer markers, there are very 

few studies that have employed MSI lipids to monitor cancer treatment. One recent study has 

identified transient decreases in serum PtdCho and lyso-PtdCho associated with response to 

radiation in head and neck tumor patients (211). A second study has indicated that LPC (16:0) is 

a significant predictor of PSA recurrence in human prostate cancer patients (207). The NIMS 

technique is capable of simultaneous monitoring of drug accumulation and endogenous water-

soluble metabolite distribution (212,213). Adopting this technique to study drugs that target lipid 

metabolism in tumors should be a priority in this field. These data indicate that further 

investigation into the utility of lipid biomarkers to assess treatment response is warranted. 

F. Optical Imaging 

Optical imaging is a cost-effective and relatively easy-to-use imaging modality that 

makes it a valuable tool for non-invasive longitudinal imaging. The range of detectable 

wavelengths is broad enough to allow multiplex imaging, and these principles have been applied 

to a number of medical diagnostic platforms, including flow cytometry, fluorescence 

microscopy, and diffuse optical imaging. In vivo, optical imaging is limited by attenuated light 

penetration through tissue due to scattering and absorption in the visible wavelengths. This is 

partially alleviated by using chromophores that absorb or emit in the near infrared region (675 – 

900 nm) where absorption by hemoglobin, deoxyhemoglobin and water is at a minimum. In 
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addition, several endogenous proteins, such as laminin and elastin, autofluoresce and elevate the 

background signal during in vivo measurements. As a result, the observable depths of optical 

imaging are usually limited to 1 cm or less. Thus in vivo optical imaging has predominantly 

focused on single-channel fluorescence or bioluminescence on a macro level (< 15x 

magnification) in mice or other small animals. Bioluminescence is not practical in clinical 

settings, because it requires transfection with an invertebrate luminescent protein, but it is a 

highly sensitive reporter that, in the field of lipid metabolism, has been adapted to map regions of 

heightened fatty acid uptake (214). Advances in CCD sensitivity has recently sparked renewed 

interest in Cerenkov radiation as an additional source of emitted light that can be detected in vivo 

(215,216). This signal may one day offer functional information concordant with the 

tomographical information provided by PET (217). 

New optical imaging technologies in oncology have largely followed advancements in 

vascular imaging. Before diffuse optical tomography became a subject of interest in 

mammographic screening, the observation was made that absorption of circulating hemoglobin 

changes in an oxygen-dependent manner (218). This was a pioneering study in translational 

optical imaging, but 20 years later routine clinical optical imaging remains limited outside of 

optical coherence tomography (OCT) in ophthalmic applications (219-221). OCT uses a rastered 

application of NIR light and interferometry to produce a 3-D scanning image of the retina. The 

use of NIR wavelengths still limits the application to surface phenomena, less than 1 cm deep in 

the tissue. OCT has also been employed in oncology, most notably to detect the development of 

esophageal tumors (222,223), With regards to lipids, OCT is most commonly used for 

atherosclerotic plaque detection in cadavers and patients, which is based upon its sensitivity to 
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lipid deposits in local vascular sites (224,225). This leads to the possibility for future applications 

of OCT as a method to distinguish lipid levels in treated tumor tissue. 

In small animal optical imaging, enhanced contrast is often provided by the 

administration of exogenous NIR fluorescent compounds. There are a growing number of these 

molecular probes that allow for noninvasive optical imaging of lipid metabolism pathways. The 

probes are generally of three types: passive molecules that are used as blood pool agents and rely 

on leaky vasculature to accumulate at the site of pathology, targeted permanently fluorescent 

molecules that can be taken up selectively as substrates or inhibitors of lipid metabolic pathways, 

and smart quenched fluorescent molecules that can be selectively activated by enzymes. 

Fluorescence imaging using these probes allows for specific and localized detection of metabolic 

activity.  

Indocyanine green (ICG) is a clinically approved blood-pooling agent that has been used 

for tumor detection. Collection of ICG in solid tumors has been attributed to the enhanced 

permeability and retention caused by disordered vasculature and insufficient lymphatic systems 

in tumors (226), however tumor-associated macrophages in lipid-rich regions may have an 

underappreciated role in this phenomenon. In atherosclerotic plaques, ICG has been observed to 

accumulate preferentially in the lipid-rich macrophages in both rabbits and patients (227). MRI, 

PET, and optical imaging of tumor-associated macrophages have been described extensively 

(228-230) and these methods should be used to explore co-localization of lipid profiles with 

immune infiltration in the tumor setting. 

Lipid uptake and synthesis

Lipid uptake and synthesis are essential to the maintenance of mammalian cell 

membranes. For this reason, a constant source of precursors are required to maintain the 
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proliferative nature of the cancer cell. Tumor cells synthesize and accumulate membrane lipids, 

such as PtdCho, at a rate that greatly outpaces the surrounding normal tissue, and this offers an 

avenue that can be exploited for selective delivery of imaging and therapeutic agents. The 

introduction of fluorescently labeled lipid analogs into the tumor microenvironment can also be 

used to visualize lipid scavenger activity. Direct fluorescent labeling of PtdCho has been 

reported using visible fluorophores, so high background in normal tissues is a general feature of 

these approaches (231). A common approach is to employ fatty acid probes to which non-polar 

dyes such as BODIPY have been attached (232). Depending on the metabolic state of the cell, 

these lipid analogs can be incorporated into phospholipids or neutral lipids in lipid droplets. The 

alkylphosphocholine analogs described for PET imaging have also been adapted with BODIPY 

or heptamethine dyes for imaging of tumor margins and draining lymph nodes (233). 

Choline kinase

Choline kinase catalyzes the conversion of choline to PC, and is elevated in several types 

of cancers. Its upregulation has been correlated with the transition of normal breast epithelium 

toward a malignant phenotype, and selective inhibitors have been developed for Phase I clinical 

trials in solid tumors (ClinicalTrials.gov, NCT01215864). Based on these studies, we developed 

a series of fluorescent inhibitors that selectively bind ChoK and emit fluorescence in the near 

infrared optical window (234). The design exploited the structural similarities between ChoK 

inhibitors and cyanine dyes frequently employed for optical imaging, and did not rely on dye 

conjugation to existing inhibitor structures (235). The probe, JAS239, showed elevated uptake in 

tumors that overexpressed ChoK, and more importantly, had reduced uptake in tumors after 

chemotherapy (236).

Phosphatidylinositol signaling pathway
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Many oncogenic signaling pathways are mediated by PtdIns, which makes these lipids 

attractive targets for cancer imaging probes. In order to interrogate the role of these 

phospholipids on cell signaling, Yoon et al. engineered a fluorescent PIP2 sensor to study its role 

in membrane remodeling, regulation of membrane proteins, and regulation of the cytoskeleton  

(236-238). This probe was engineered with the visible fluorophore (2-dimethyl-amino-6-acyl-

naphthaline) optimized for its lipophilic properties, limiting its utility for detection of lipid 

dynamics in vivo. Because IP3 and DAG mediate the release of intracellular calcium and are 

activated by lipid metabolic pathways, optical probes based upon flu-4 or BAPTA can provide 

an indirect means of assessing these bioactive lipids (239-241). DAG can be evaluated directly 

using radiolabeling (242) or using optical techniques such as FRET to detect activated DAG 

intercalation in the plasma membrane (243).  

Phospholipases 

Phospholipases are catabolic enzymes that can be targeted with lipid based quenched 

optical probes that are activated by enzymatic hydrolysis (39). Upregulation of cPLA2 has been 

observed in breast and prostate cancers (112), and elevated levels of PC and 

phosphoethanolamine have been attributed to PLC activation in breast cancer, ovarian cancer 

and melanoma (109). Activatable probes with phospholipid-based structures, a linker that 

regulates enzyme accessibility, a quenchable fluorophore or light-emitting compound, and a 

cleavable quenching domain have been designed as fluorescent agents for quantifying 

phospholipase activity. The advantage of this approach is the enhanced signal to noise available 

from the continuous enzymatic release of fluorescent substrates. Enzyme activated BODIPY 

probes have been employed to examine phospholipase activity in many systems including the 
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digestive physiology of the zebra fish (244-247). While useful for cells, small transparent 

animals and intravital microscopy, the optical properties of BODIPY limit its detection in tissue. 

There are several quenched fluorophores commercially available with emission in the visible 

range. In the NIR range, we developed analogous probes targeting PLA2 and PLC for in vivo 

applications (248). These self-quenching probes were composed of pyropheophorbide-a (Pyro) 

tethered to PtdEtn and a Black Hole Quencher (BHQ-3). While Pyro has an excitation maximum 

excitable Soret band at 418 nm that emits at 660 nm, its absorption peak at 670 with emission at 

725 nm makes it suitable for in vivo imaging. The specificity of these probes to various 

phospholipase isoforms could be modulated by altering the spacer length between Pyro and the 

glycerol backbone. The resulting construct, Pyro-PtdEtn-BHQ, was highly specific to PtdCho-

specific PLC (PC-PLC) both in vitro and in vivo and we used this to detected upregulation and 

activation of this enzyme in DU145 prostate cancer xenografts (Figure 9) (112).  

Arachidonic acid, a PUFA found in the sn-2 position of phospholipids, is mobilized by 

the activity of cytosolic or cPLA2 acting on membrane-associated phospholipids.  The redox 

activity of COX-2 catalyzes the conversion of arachidonic acid to prostaglandins that act as a 

lipid second messenger.  Arachidonic acid is first converted to prostaglandin G2, and then the 

peroxidase activity of COX-2 converts it to the unstable H2 isoform that is converted to one of 

several homologous tissue- and function-specific isoforms of prostaglandins.  It is prostaglandin 

E2 that is notably upregulated in several types of cancer contributing to aberrant signaling (249). 

In order to utilize this signal transduction pathway to image pathogenic events, there are several 

points of interrogation possible: using activatable probes to evaluate COX-2 activity, directly 

measure PGE2 levels with targeted probes, or evaluate activation of further downstream events.  
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Detection of cPLA2 using a cleavable construct requires a probe that contains 

arachidonic acid, to account for the specificity of the enzyme for this fatty acid, as well as a 

small enough head group to fit into the active site.  Previous studies had shown that arachidonic 

acid esterified to visible fluorophores such as 7-hydroxycoumarin were highly specific for 

cPLA2 and displayed similar hydrolysis kinetics to native substrates (250). We adapted this 

caged fluorescence protocol using fluorophores that emit in the red wavelength range (660-680 

nm) to create cPLA2 sensitive probes suitable for in vivo imaging. Probe selectivity could be 

modulated by choice of fatty acids and fluorophores, with DDAO arachidonate performing the 

best in vitro, in cells and tumors. Here, arachidonic acid provided the optimum fatty acid 

substrate for cPLA2 and DDAO (7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) was 

the most resistant to non-specific aqueous hydrolysis. Probe activation was shown to be 

proportional to cPLA2 expression levels in cells and tumors, and high relative to a non-specific 

control probe, DDAO palmitate. 

Apoptosis

In addition to using imaging techniques to noninvasively detect components of lipid 

metabolism, other biomarkers can be detected that offer information pertaining to non-

homeostatic states of cells and tissues in situ.  Apoptosis is often indicative of patient response to 

cancer therapy, accordingly, targeting markers of apoptosis can be useful to evaluate the efficacy 

of various interventions (251). Among these events are plasma membrane reorganization marked 

by PtdSer translocation to the outer leaflet of the membrane. PtdSer translocation can be detected 

using labeled ligands that bind anionic phospholipids, including proteins such as Annexin 5 or 

synaptotagmin (252) or organic molecules such as zinc dipicolylamine (253). A number of 
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labeling strategies have used this approach to create apoptosis sensors for optical (254), MR 

(255-257) and nuclear imaging when radiolabeled with 99Tc or 123I (258). Annexin has shown 

some promise as a molecular probe for this purpose though this strategy can be limited by 

suboptimal pharmacokinetics (259), and non-specific labeling of necrotic cells (260). 

Conclusion

Lipid metabolism is an essential component of cellular homeostasis that can become 

drastically altered during the process of malignant transformation. Most common driver 

mutations and oncogenes are related to growth cues and cellular stress responses, and many 

therapeutic strategies target these pathways such that the measurement of lipid metabolic 

changes can serve as a proxy for drug response pharmacodynamics. While MRS and PET 

approaches offer the ability to serially-measure lipid composition and flux, they are limited by 

spatial resolution. MSI and Optical Imaging, on the other hand, permit the appreciation of 

intratumoral heterogeneity but often require surgical exposure of the tissue site. Still, these 

approaches are finding increasing value in image-guided surgical resection and are experiencing 

fast-paced improvements in technology including the ability to image endogenous contrast, more 

specific probes that provide kinetic information, and sub-cellular resolution. For a balance 

between resolution and ability to image endogenous lipid signals without the need for new FDA-

approved contrast agents, MRS remains the gold standard for measuring lipid metabolic states in 

tumor and other tissues. New advances including two-dimensional MRS, hyperpolarized MR 

spectroscopic imaging, and higher field strength MRS continue to reshape our understanding of 

lipid metabolic changes during tumor growth and treatment response. This comes at a critical 

time as therapy continues to evolve with new signal transduction inhibitors, metabolic targeting 

agents, and immunotherapies change the landscape of cancer care.
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Figure Legends

Figure 1: Lipid metabolism pathways in the cell. Glucose transported into the cell is 

metabolized to pyruvate via the glycolytic pathway, and can be fed into the tricarboxylic acid 

(TCA) cycle for ATP production in the mitochondria. Citrate from the TCA cycle or from 

exogenous sources is converted to Acetyl-CoA in the cytoplasm and can be used for cholesterol 

or fatty acid (e.g. palmitate) biosynthesis. Cholesterol produced in this fashion can be used to 

synthesize membranes or be incorporated into sterols. Fatty acids can be desaturated or extended 

and then incorporated into triglycerides or incorporated into phospholipids via the Kennedy 

Pathway. Cholesterol and triglycerides fatty acids can also be taken up through specific transport 

mechanisms. The resulting lipid droplets, shown in the inset, contain fatty acids stored in 

phospholipid and fatty acid form that can be mobilized by phospholipases and lipases, 

respectively. Beta-oxidation (β-Ox) of free fatty acids from lipid droplets can be triggered to 

meet energy needs. In place of the third acyl group (Acyl3) attached to the glycerol moiety of 

triacylglycerides (orange oval), phospholipids have a phosphorylated polar head group (yellow 

sphere) that confers water solubility and creates organized bi-layer and micelle structures. 

Phospholipases can also elicit 2nd messenger signaling cascades by releasing bioactive fatty acids 

(e.g. sphingolipids, eicosanoids) and/or polar head groups in response to growth or stress cues. 

External cell signaling cues can also be transmitted by lipids in the case of isoprenylation and 

subsequent transport of small GTPases to dock with G protein-coupled receptors (GPCRs) on the 

cell surface.   

Figure 2: Major lipid metabolic pathways altered in cancer cells.  Metabolic 

reprogramming during malignant transformation mimics autonomous growth signaling in 

unicellular organisms. Common oncogenes in the PI3K/Akt/MTOR pathway, are often mutated 
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or upregulated due to their presence downstream of external growth factors and their ability to 

re-route cellular carbon sources toward fatty acid utilization as an energy source. Cancer cells 

can also supply the TCA cycle from glucose via aberrant glycolysis and from glutamine via IDH 

mutations, although the contributions of these pathways differ greatly depending on the energy 

needs of the cell. The transcription factor Myc promotes many malignant processes in cancer 

cells because it is a master regulator capable of triggering survival pathways in response to 

hypoxia and nutrient deprivation. Hypoxic conditions are a factor in many solid tumors and 

influence the local tumor microenvironment by dampening the immune response and activating 

hypoxia-inducible factor-1α (HIF1α), which among other things, initiates the regulatory function 

of sterol regulatory element binding protein 1 (SREBP-1) on fatty acid synthesis. Free fatty acids 

such as palmitate are used as energy sources or converted to bioactive eicosanoids to dampen the 

immune response and stabilize the ER stress that can result from saturated fatty acid 

accumulation.

Figure 3:  Changes in lipid metabolism in response to oncolytic viral treatment of Syrian 

hamster carcinomas. The oncolytic viral treatment induces coagulative necrosis, which is seen as 

hypo-intense areas within the tumor on T2-weighted MR image. In vivo MRS from the voxel 

(overlaid on the image) is shown on the right demonstrating resonances from unsaturated fatty 

acids, taurine and choline. Unlike the increased PUFA resonances observed during apoptosis 

(Figure 3), no No changes in PUFA resonances were observed in coagulative necrosis resulting 

from oncolytic viral treatment. Reprinted with permission from (138). 
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Figure 4. A) Confocal micrographs of SKOV3.ip cells treated for 48 h with cisplatin 

(CDDP) show increased lipid droplets as measured by Nile red staining, compared to untreated 

controls (CTRL). Fixed cells were counterstained with phalloidin 488 for actin (green) and DAPI 

for nuclei (blue). Scale bar represents 23.8 μm. (B) 1H NMR spectra of intact SKOV3.ip cells 

treated with 5 mM CDDP for 48 h (red) show increases in mobile lipids compared with untreated 

control cells (black). Labeled lipid resonances include: methine protons at 5.3 ppm (-CH=CH-); 

fatty chain methylene group at 1.3 ppm (-(CH2)n)- ; methyl group at 0.9 ppm (-CH3) ; and total 

choline (tCho) at 3.2 ppm (-N.(CH3)3). Reprinted with permission from (150). 

Figure 5: Increased lipids in response to choline kinase inhibition as an alternate therapy 

for the treatment of gliomas. In vivo MRS from an untreated F98 rat glioma (bottom spectrum) 

and after 5 days of treatment with a choline kinase inhibitor, MN58b (top spectrum). Increased 

mono-unsaturated lipid peaks (1.3 ppm) are evident with treatment. In addition, a significant 

increase in the poly-unsaturated fatty acids (PUFA, 2.8 ppm), indicating apoptotic cell death. As 

expected, a decrease in the total choline (tCho) peak was also observed in response to choline 

kinase inhibition. The MR image demonstrates placement of the voxel for MRS studies. 

Reprinted with permission from (114).

Figure 6: Single voxel 1H MR spectra from a GL261 tumor implanted into a mouse 

brain. Treatment with three cycles of temozolomide led to significant (*) increases in mobile 

lipid:Cre and tCho:Cre resonances at 28 days post inoculation (left) compared to spectra 

acquired before treatment (tight). Labeled resonances: Cho (choline: 3.2 ppm, Cre (creatine): 3.3 
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ppm, MLs (mobile lipid methylenes): 1.3 ppm, PUFAs: 2.8 ppm. Reprinted with permission 

from (128). 

Figure 7: Chemical structure of the common PET tracers used for detection of lipid 

metabolism. The radioactive isotope is denoted in red. 

Figure 8: MALDI-MSI images and corresponding H&E sections from human colorectal 

tumors (A-C) and adjacent tumor free regions (D-F). A selective projection of m/z 478.3 onto 

MALDI-MSI images reveals elevations in 1-palmitoyl-lysophosphatidylcholine in cancer-

containing areas compared to the non-tumor bearing tissue sections. Elevations in m/z 504.3, 

representing 1-oleoyl-lysophosphatidylcholine, were also observed in this study. Reprinted with 

permission from (203).   

Figure 9: In vivo NIR fluorescence imaging of phospholipase activity using the PC-PLC 

activatable probe Pyro-PL-BHQ in DU145 prostate tumor xenografts. Each mouse received 80 

nmol i.v. of (A) Pyro-PtdEtn, a permanently fluorescent analog used as a control, (B) Pyro-

PtdEtn-BHQ or (C) Pyro-PtdEtn-BHQ plus pre- and post- injections of the PC-PLC inhibitor 

D609. The fluorescence intensity from Pyro-PL-BHQ activation peaked at 6-7 h, and was 

inhibited by D609 treatment. Fluorescence persisted for up to 31 h in tumor tissue (T) excised 

from mice when compared to muscle (M) control. Reprinted with permission from (112).
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Abstract

Lipids represent a diverse array of molecules essential to the cell’s structure, defense, 

energy, and communication. Lipid metabolism can often become dysregulated during tumor 

development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause 

widespread and drastic changes in lipid composition. Molecular imaging techniques have been 

developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment 

response. For decades, magnetic resonance spectroscopy has been the dominant noninvasive 

technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations 

driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that 

can be exploited using optical imaging, mass spectrometry imaging, and positron emission 

tomography. These novel imaging modalities have provided researchers a diverse toolbox to 

examine changes in lipids in response to a wide array of anticancer strategies including 

chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy or 

a combination of these strategies. The understanding of lipid metabolism in response to cancer 

therapy continues to evolve as each therapeutic method emerges, and this review seeks to 

summarize the current field and areas of unmet needs. 
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Abbreviations

18F-fluorodeoxyglucose (FDG)

2,5-dihydroxybenzoic acid (DHB) 

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)

acetyl-coenzyme A (acetyl-CoA) 

acute myeloid leukemia (AML) 

AMP-activated protein kinase (AMPK) 

ATP-citrate lyase (ACLY) 

beta-oxidation (β-Ox) 

black Hole Quencher (BHQ-3)

choline kinase (ChoK)

choline transporters (ChoTs)

cisplatin (CDDP)

7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one  (DDAO)

diacylglycerol (DAG) 

(4′,6-diamidino-2-phenylindole) (DAPI_

elongation-of-very-long-chain-fatty acids (ELOVL) 

endoplasmic reticulum (ER) 

epidermal growth factor receptor (EGFR) 

fatty acid binding protein-4 (FABP-4)

G-protein coupled receptor (GPCR)

glycerophosphocholine (GPC) 

hormone-sensitive lipase (HSL) 

hypoxia inducible factor (HIF) 

Indocyanine green (ICG) 
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isocitrate dehydrogenase-1 (IDH1) 

lipoprotein lipase (LPL)

low density lipoprotein (LDL)

lysophosphatidylcholine (LPC)

magnetic resonance spectroscopy (MRS) 

mass spectrometry imaging (MSI)

matrix-assisted laser desorption ionization (MALDI)

mono-unsaturated fatty acids (MUFAs) 

nanostructure-initiator mass spectrometry (NIMS)

OKN007 (2,4-disulfophenyl-PBN) 

optical coherence tomography (OCT) 

PBN (α-phenyl-tert-butylnitrone) 

peroxisome proliferator-activated receptor alpha (PPARα) 

phosphatidylcholine (PtdCho)

phosphatidylethanolamine (PtdEtn)

phosphatidylinositol (4,5) phosphate-2 (PIP2) 

phosphatidylinositol (PtdIns)

phosphatidylserine (PtdSer)

phosphocholine (PC)

phosphoethanolamine (PE)

Phosphoinositides (PI) 

phospholipase (PL) 

phosphomonoester (PME) 

plasma membrane citrate transporter (PMCT)

polyunsaturated fatty acid (PUFA)
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positron emission tomography (PET) 

protein kinase C (PKC) 

PtdCho-specific PLC (PC-PLC) 

pyropheophorbide-a (Pyro) 

reactive oxygen species (ROS) 

secondary ion mass spectrometry (SIMS)

sphingosine-1-phosphate (S1P) 

stearoyl-CoA desaturase-1 (SCD1)

sterol response element-binding proteins (SREBPs)

total choline (tCho) 

tricarboxylic acid (TCA)

unfolded protein response (UPR)

α-cyano-4-hydroxycinnamic acid (CHCA)
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Introduction

Cancer cells exist in a hyperactive state of growth and use a complex network of lipid 

metabolic pathways to support this growing biomass. Lipids are a broad class of compounds that 

include fatty acids, triglycerides, steroids, phospholipids, and sphingolipids, among others. These 

molecules play critical roles in cellular compartmentalization, structural barriers, communication 

signals, energy storage, and homeostasis. Despite high vascularization, many cancer cells exist in 

regions of nutrient deprivation and tumors have adopted alternative strategies to maintain sources 

of lipid. In some cases the altered lipid metabolic state offers a therapeutic vulnerability, while in 

others, adaptations to intracellular lipid composition can be used by refractory tumors to resist 

therapies. Because these cancer-driven aberrations in lipid metabolism often contrast the 

surrounding tissue, there are several molecular imaging strategies that have been developed to 

monitor tumor margin, stage, and treatment response. 

I. Lipid Metabolism

A. Exogenous Lipid Uptake

De novo lipid synthesis pathways are crucial during embryogenesis and fetal 

development, but, after maturation, cells in most tissues are capable of acquiring sufficient 

circulating lipids to meet their biosynthetic and energetic needs (1-3). Cancer cells can access 

circulating lipids by overexpressing lipid-scavenging proteins. High exogenous lipids are 

associated with local invasive index, and obesity is also correlated with higher cancer incidence 

rates (4). Higher expression of low density lipoprotein (LDL) receptor has been found in 

transformed colorectal cells relative to normal cells (5). The LDL receptor in prostate cancer 

provides a major source of cellular cholesterol and essential fatty acids (6). Breast cancer and 

select sarcoma cells have been observed to secrete lipoprotein lipase (LPL) to release fatty acids 
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from triglycerides in circulating lipoproteins (7). Although macropinocytosis has been identified 

in cancer cells, little evidence exists to suggest that this is a relevant source of exogenous lipid in 

vivo (8). Instead, lipid binding proteins are thought to assist in the capture of lipids from the 

interstitial space and promote invasion (Figure 1), as overexpression of fatty acid binding 

protein-4 (FABP-4) has been observed on the surface of ovarian, prostate, bladder, and renal 

cancer cells (9,10). Fatty acid translocase, also known as CD36, is a long-chain fatty acid 

scavenger that contributes to high mammographic density in subjects at high-risk for breast 

cancer (11). Ovarian cancer cells can siphon free fatty acids from the lipid stores of the omentum 

by activating perilipin-A and hormone-sensitive lipase (HSL) in neighboring adipocytes (12). 

Studies have shown that removal of lipids from culture medium can trigger de novo lipid 

synthesis, emphasizing the dependency on lipids for cell proliferation and the adaptations cancer 

cells make to sustain their growing biomass (13).

B. De Novo Synthesis

Many cancers revert back to de novo lipid synthesis, and the lipogenic pathway is 

composed of many enzymes that are critical for tumor growth (14). Lipid synthesis starts at the 

energetic hub of the cell, the mitochondria, where acetyl-coenzyme A (acetyl-CoA) and 

oxaloacetate are condensed into citrate (Figure 1). Citrate from the TCA cycle can be shunted 

from the mitochondria and broken down by ATP-citrate lyase (ACLY) into acetyl-CoA. 

Cytosolic citrate can alternatively be sourced from the microenvironment by plasma membrane 

citrate transporter (PMCT)(Figure 1) (15). Besides feeding into the rate-limiting step of fatty acid 

synthesis, acetyl-CoA is also critical for histone acetylation and serves as a link between 

metabolic status and gene expression (16,17).
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Acetyl-CoA serves as the 2-carbon building block used for fatty acid synthesis. The 

enzyme FASN combines malonyl-CoA with repeated acetyl-CoA condensations to form 

palmitate. Palmitate is the saturated 16-carbon fatty acid from which most complex fatty acids in 

the body are derived (18). FASN overexpression is associated with poor prognosis in breast 

cancer (19) and FASN inhibitors derived from natural products (e.g. resveratrol) and synthetic 

molecules (e.g. orlistat) are being studied for their anti-neoplastic effects (20). Acetyl-CoA is 

also a synthetic precursor to 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) in the cholesterol 

biosynthesis pathway (Figure 1). Mevalonate is then produced by HMG-CoA reductase, the 

target of the lipid lowering drugs, the statins. The amplification of HMG-CoA reductase in many 

prostate tumors creates a growth dependency on cholesterol, and suggests a possible role for 

statins in treating these cancers (5,21). Mevalonate is also a precursor to farnesyl-diphosphate, 

which can further be processed to cholesterol, or used as a substrate for protein prenylation. 

Isoprenoids from the mevalonate cascade are critical for membrane anchoring and activation of 

the growth-related G-protein subunits Ras (farnesylated), Rho (geranylgeranylation), and many 

others (22) (Figure 1). 

Fatty acids can be chemically modified in many ways to meet the diverse range of 

specialized functions required for cellular function (Figure 1). Stearoyl-CoA desaturase-1 

(SCD1) produces mono-unsaturated fatty acids (MUFAs) from the saturated fatty acid chains 

sourced exogenously or from de novo synthesis. Saturated fatty acid accumulation in the 

endoplasmic reticulum (ER) triggers autophagy-induced apoptosis by activating the unfolded 

protein response (UPR) (23). By modulating MUFA to saturated fatty acid ratios intracellularly, 

SCD1 has a regulatory effect on cell survival and proliferation (24-26). The elongation-of-very-

long-chain-fatty acids (ELOVL) enzymes in the ER are responsible for polyunsaturated fatty 
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acid (PUFA) synthesis (27), as well as the conversion of saturated and monounsaturated fatty 

acids into the very long chain fatty acids (C > 18) that serve as building blocks of sphingolipids 

when combined with ceramide head groups (28). Free fatty acids are stored as triglycerides in 

lipid droplets or packed into the cell membrane as sphingolipids, cholesterol esters, or 

phospholipids. Lipid droplets in breast cancer cells have been found to increase with increasing 

malignancy and to be enriched in polyunsaturated fatty acids, especially arachidonic acid (29) 

Diacylglycerol (DAG) is an important lipid second messenger that also serves as a 

synthetic precursor for both membrane phospholipids and lipid droplet triacylglycerides (30-33). 

Major membrane phospholipids include phosphatidylcholine (PtdCho), 

phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), 

among others, and vary in function, location, and relative abundance. The Kennedy pathway of 

phospholipid synthesis describes the addition of polar head-groups to the DAG backbone, and 

enzymes in this pathway are responsible for the accumulation of phosphocholine (PC) and 

phosphoethanolamine (PE) observed in many cancers (34). Choline uptake by choline 

transporters (ChoTs) and phosphorylation by choline kinase (ChoK) have, in particular, been 

consistently linked with increased invasiveness, drug resistance, and overall malignancy (35). 

C. Lipid Mobilization and Usage

Phospholipid and triacylglyceride levels are maintained by the concerted actions of 

catabolic enzymes that mobilize fatty acids from lipid droplets and cell membranes (36). Fatty 

acid release from lipid droplet storage involves lipases that can support aggressive cancer 

phenotypes in a manner similar to the pro-tumorigenic effects of exogenous fatty acids (37). 

Fatty acid release from membrane phospholipids is carried out by the phospholipase (PL) 

enzymes. PLA1 and PLA2 cleave phospholipids at the sn-1 and sn-2 positions, respectively. The 
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PLA2 family of enzymes are the primary producers of arachidonic acid and three major 

subgroups exist: calcium-dependent or cytosolic cPLA2, calcium-independent iPLA2, and 

secretory sPLA2 (38). While cPLA2 has a tumor-supportive role in many cancers, sPLA2 is 

thought to have tumor suppressive-functions (39). In contrast, iPLAs are housekeeping enzymes, 

primarily responsible for mobilizing lipids to maintain membrane integrity and general cellular 

energy metabolism during homeostasis. PLC cleaves phospholipids at the bond between glycerol 

and phosphate and contains pleckstrin homology domains for anchoring and cooperation with G-

protein coupled receptor (GPCR) signaling networks (40). When activated by growth factor 

receptors, PLD hydrolyzes the phospholipid head group (e.g. choline, ethanolamine, inositol, 

serine) to release PA and links growth factor signaling to cell proliferation (32).

Saturated free fatty acids can be broken down into acetyl-CoA to feed into the TCA 

cycle, and some cancers have been found to prefer fatty acid oxidation to pyruvate oxidation, 

even in sufficient glucose and oxygen environments (41). β-oxidation is an important energy 

pathway in prostate cancers, where glycolytic rates are low, and rapid citrate utilization requires 

a constant supply of acetyl-CoA (42). Peroxisome proliferator-activated receptor alpha (PPARα) 

is a transcription factor whose activation triggers breakdown of very long chain fatty acids in the 

peroxisomes, and fatty acid oxidation in the mitochondria. A complex network of interactions 

with PUFAs, namely arachidonic and linoleic acids, regulates PPARα activity (43). Aside from 

their direct signaling functions (44), arachidonic acid is an important substrates for 

cyclooxygenase, lipoxygenase, and cytochrome enzymes that catalyze the production of the 

eicosanoid family of bioactive lipids that have roles in innate immunity, inflammation, 

cardiovascular disease, and cancer (45,46). 

Page 69 of 128

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

11

II. Tumor Progression and Regression

A. Oncogenic Reprogramming

A common feature of cancer cells is the metabolic transition from oxidative 

phosphorylation to glycolysis, during which the rate of glucose consumption far exceeds the 

energy requirements of the cell (14). What initially appears to be wasteful energy utilization is in 

fact a method to feed glucose-derived pyruvate into biosynthesis, including fatty acids (Figure 

2). Glutamine has been identified in some cancers as an alternative energy source that can enter 

the TCA cycle (47) and provide a carbon source for citrate production (Figure 2), however the 

dependency on glutamine for anaplerosis varies considerably even among cancers of the same 

tissue (48,49). This may be due, in part, to heterogeneity in the local tissue microenvironment 

causing gradients in nutrients, oxygen and signaling factors that influence the energetic state of 

cells.

Under hypoxic conditions, solid tumors can become dependent on unsaturated fatty acid 

uptake from serum to prevent ER stress that can arise when rapid proliferation is unmet by 

nutrient availability (50). These exogenous fatty acids can arise from lipolysis in stromal cells in 

a manner comparable to cachexia (23). The recent resurgence of interest in cancer metabolism 

has improved our understanding of the adaptations tumor cells can make when fuel availability is 

variable. These adaptations are only possible because the common driving mutations in cancers 

often have direct involvement in metabolic pathways.

Many of the clinically prevalent oncogenes are capable of altering lipid uptake, 

production, or consumption to gain a competitive growth advantage (Figure 2). The transcription 

factor hypoxia inducible factor (HIF) is a downstream effector of Myc and is tightly regulated by 

the tumor suppressor gene p53. HIF induces FASN induction and lipid droplet formation for 
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energy storage to support the tumor microenvironment (18,51,52). FASN requires the reducing 

agent NADPH, which is produced from the pentose phosphate pathway that often becomes 

upregulated during cancer reprogramming (18). There is further evidence in renal cell carcinoma 

models that HIF2α-dependent lipid storage suppresses the ER stress response promoting tumor 

cell survival (53).  Glutamine uptake in glioma and acute myeloid leukemia (AML) is often 

accompanied or driven by isocitrate dehydrogenase-1 (IDH1) mutations that reroute glutamine 

toward citrate to provide fatty acid and cholesterol precursors independent of the TCA cycle 

(Figure 2) (54,55). In hypoxic environments where glucose metabolism is diverted to anaerobic 

lactate production, mutations in mitochondrial IDH2 provide a continued source of citrate for 

lipid synthesis, by allowing reductive carboxylation of glutamine-derived α-KG (56). The 

oncometabolite 2-hydroxyglutarate is produced by many cancer-specific IDH1 and IDH2 

mutations, and has widespread epigenetic effectors by altering DNA methylation (57-59).

AMP-activated protein kinase (AMPK) serves as an energetic sensor and master switch 

by inhibiting fatty acid synthesis in low energy states and stimulating consumption of fatty acids 

for energy in the mitochondria by β-oxidation (Figure 2). Sterol response element-binding 

proteins (SREBPs) (60) can activate transcription of genes involved in cholesterol and fatty acid 

synthesis and uptake, and are directly downstream of AMPK and the PI3K/Akt/MTOR signaling 

axis that includes many oncogenes (61). Epidermal growth factor receptor (EGFR) mutations are 

common tumor-driving factors that recruit phospholipases (62,63) and ChoKα (64) to the cell 

surface, leading to membrane remodeling and induction of mitogenic signals to drive cellular 

proliferation. Mitogenic growth signals can also come in the form of sterol-derived hormones 

(estrogens, progestogens, and androgens). Release of these sex hormones, their receptor 

expression, and the downstream signaling mediators are all common tumor-driving factors in 
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prostate, breast, endometrial and ovarian cancers (65). Farnesylation of Ras and 

geranylgeranylation of Rho GTPases are essential for downstream signaling through the 

phosphoinositol family of signaling lipids (66,67). Phosphoinositides (PI) comprise 10-20% of 

total cell phospholipids and among that fraction, phosphatidylinositol (4,5) phosphate-2 (PIP2) 

and phosphatidylinositol-4-phosphate constitute approximately 0.2-1% (68-70). This class of 

membrane lipids plays an integral role in proliferation, apoptosis, metabolism and migration, and 

is pivotal to transmembrane signal transduction because it regulates the distribution of receptor 

tyrosine kinases, G-protein-coupled receptors, and adhesion molecules among others (71).

Metabolic disease is a risk factor for many cancer types, promoting insulin resistance, 

hyperactive growth signals, and evasion of apoptosis that help set the conditions for malignant 

transformation (72). Histological tumor grade in the breast is clinically correlated with 

phosphomonoester (PME) accumulation (73), such as PC and PE, detectable by MR 

spectroscopy (74,75). PC promotes survival and mitogenic signaling through downstream 

cascades such as MAPK and Akt (73,76,77). PC can be formed through the actions of the 

enzyme choline kinase, or by phosphatidylcholine specific phospholipase C. Phospholipid 

catabolism can also be a source of other mitogenic second messengers such as DAG, PA, and 

lysophosphatidylcholine (LPC). DAG is released following the cleavage of phospholipids by 

PLC (78), activates protein kinase C (PKC) resulting in the release of intracellular calcium stores 

and subsequent Ca2+-dependent signaling. DAG and PC are also the synthetic precursors to the 

most abundant mammalian membrane phospholipid, PtdCho, whose levels are predictive of 

breast tumor grade, estrogen receptor status, and patient survival (79). It is intuitive to suspect 

that cancers in high adipose tissue use altered lipid metabolism to take advantage of the 

surrounding environment, however evidence of altered lipid metabolism in cancers that arise in 
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low-adipose tissues suggests that deranged lipid metabolism is a universal hallmark of cancer 

pathogenesis.

Variations in lipid composition are likely due to the heterogeneous nature of the tumor 

microenvironment, which is an ever-changing compartment of structural fibers, nutrients, 

cellular waste, and signaling molecules. Interstitial pH, extracellular matrix, bioactive lipids, and 

cytokines can alter the population and function of stromal cells and surrounding tissues. 

Extracellular lactate, the metabolic byproduct of aerobic glycolysis, is capable of transitioning 

tumor-associated macrophages from tumor-suppressive to tumor-supportive phenotypes (80,81). 

Biopsies of colon cancer specimens have been reported to contain high lipid deposition in 

regions of necrosis and infiltrating macrophages (82). These macrophages most likely resemble 

the immune-suppressive “alternatively-activated” phenotype, as classic (interferon gamma-

induced) activation does not enhance lipid phagocytosis in human myeloid populations (83). 

Alternatively-activated macrophages prefer fatty acid oxidation (84) and are thought to have 

critical roles in clearing/remodeling necrotic tissue, recruiting new blood vessels, and regulating 

innate and adaptive immunity (85). 

B. Lipid changes during Apoptosis/Necrosis

The role lipids play in nearly all cell survival pathways emphasizes their importance in 

tumor growth and invasion pathways, but lipid compartmentalization, metabolism, and signaling 

are also intricately involved in cell death pathways. During apoptosis, the release of 

lysophosphatidylcholine (LPC) and sphingosine-1-phosphate (S1P) by PLAs (86) and 

ceramidases (87) respectively, acts as a “find-me” signal to surrounding macrophages (88). Once 

recruited to the dying cell, exposed PtdSer on the apoptotic cell’s surface serves as the “eat me” 
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signal recognized by phagocytes (89). Unlike the organized compartmentalization of apoptotic 

cells into non-immunogenic apoptotic bodies, necrosis is characterized by the breakdown of the 

plasma membrane and release of the cellular contents that often triggers an immune reaction 

(90). Recently, lipid peroxidase networks have been identified as key mediators of cancer cell 

therapy resistance by reversing a non-apoptotic form of cell death known as ferroptosis can be 

induced by lipid peroxide accumulation (91).  Tumor cell response to therapy begins with 

activation of cell stress responses, which can ultimately decide the fate of the cell and 

surrounding tumor. 

Early changes in lipid metabolism have been reported in response to a wide range of 

cellular stresses (92), but lipid mobilization does not necessarily commit a cell to apoptosis (93). 

Many cells undergoing apoptosis produce lipid droplets, although there are exceptions (94), and 

fatty acids are first mobilized from membrane phospholipids by PLA2 activity (92,95). Reactive 

oxygen species (ROS) produced in the mitochondria of apoptotic cells are thought to inhibit the 

catalytically-active thiol groups on β-oxidation enzymes (96), thus free fatty acids are redirected 

into lipid droplets in the form of triglycerides and sterol esters (97,98). Lipid droplet formation in 

cancer may act as a drug reservoir to reduce intracellular concentrations of drug (99), or to 

absorb reactive oxygen species to protect further DNA damage (100). Lipogenesis of saturated 

fatty acids also makes the cell membrane less penetrable to drugs that enter by passive diffusion 

(101). Uptake of triglycerides by macrophages or neutrophils can dampen subsequent immune 

activation (102,103), providing another potential mechanism of immune escape. Ceramide 

accumulation regulates and can even trigger mitochondrial outer membrane permeability to fully 

commit a cell to apoptosis by allowing cytochrome C release to the cytosol (104). Other signs of 

cell stress that precede or arise during apoptosis are the rise in PUFA and glycerophosphocholine 
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(GPC) levels (105-107). These indicate a reprogramming of lipid metabolism and suggest that 

catabolic networks mobilize lipids from membrane phospholipids during this time. Many of 

these observations were first made using magnetic resonance spectroscopy (MRS) to non-

invasively measure lipid resonances of cancer cells undergoing stress responses and apoptosis 

(92).  

III. Imaging Metabolic Lipid Changes

The development of modern imaging techniques allows the detection of several key 

signaling pathways involved in lipid metabolism and its regulation/dysregulation in cancer. The 

ability to detect these pathways non-invasively aids in the discovery of potential targets for 

imaging or interventional therapies. In addition to developing probes to image lipids and 

alterations in lipid metabolism in mechanisms of oncogenesis, we can also image lipid-

dependent or –mediated signaling in response to therapy (108).  

A. Imaging lipids in tumors: MR Spectroscopy

MRS has been extensively employed for the study of biological material (from cell 

extracts, to homogenized tissue, and intact organisms) because it offers a non-invasive method to 

study the native distribution and dynamic nature of many relevant biomarkers of disease and 

therapeutic response. The search for disease-related metabolites requires the suppression of the 

overwhelming fat and water signals observed in proton MR spectra, however much can be 

learned from the diverse species that contribute to these lipid peaks. 
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B.  Choline and choline metabolites

MRS has been essential in the study of lipid metabolism and for the non-invasive 

observation of lipid metabolism in vitro and in vivo.  This is due to the ability to observe a 

number of lipid metabolites in 1H and 31P MR spectra on the basis of chemical shift 

discrimination. Due to the relative insensitivity of MR, observation is limited to soluble or MR-

visible metabolites in the high micromolar to millimolar levels. Lipid metabolites observable in 

31P MR spectra, include the PME, PC and PE and the PDE, GPC and GPE.  In 1H spectra, 

observable lipid metabolites include the total choline (tCho) resonance, a composite resonance 

encompassing free choline, PC and GPC. Thus there is overlap in the information available 

between 31P and 1H spectra, since the choline PC and GPC resonances seen in the 31P spectra are 

also observed in the tCho region of 1H spectra. The PME and PDE resonances report on 

pathways relevant to phospholipid metabolism. PC and PE are generally the anabolic products of 

choline kinase and ethanolamine kinases, although they can also be produced by the actions of 

phospholipase C.  The PDE resonances result from catabolism of phosphatidylcholine and 

phosphatidylethanolamine via the consecutive action of two phospholipases, A2 and 

lysophospholipase or A1.There are numerous excellent reviews on this topic (35,92,109,110), 

and the reader is referred to these for detailed information.  However, it is worth noting that 

consistent elevations in PMEs and tCho have been observed in a wide range of tumors including 

brain, prostate, lung, skin, ovarian and breast (111,112). As a means to monitor therapeutic 

response, tumor choline levels have been measured using MRS in animal (113-115) and human 

tumors (116-120) with mixed results, at least partly due to the technical difficulties associated 

with acquiring choline spectra on a background of high fat in normal breast tissue. The picture is 

further complicated because ChoK is not the only enzyme that contributes to PC accumulation, it 
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can be produced directly by the actions of PLC on PtdCho, or by the hydrolysis of GPC as a 

source of additional choline for subsequent phosphorylation.  Recent MRS applications have 

been used to detect changes in choline metabolism due to IDH mutations in glioma (59,121) 

explore the role of the glycerophosphodiesterase genes GDPD5 and GDPD6 on breast cancer 

cell migration/invasion (122) and profile metabolic changes in response to HIF1 and HIF2 

suppression (123).

C: Imaging lipids in tumors: MR-visible lipids

Proton MRS was originally used to detect MR-visible or mobile lipid signals in cultured 

cells and tumor biopsies. A series of resonances were observed arising from the fatty acryl chains 

in neutral lipids, triglyceride and cholesterol esters, including the terminal methyl groups, the 

methylenes in long chain fatty acids, and olefinic MUFA/PUFA resonances (124-127). MR 

detects only molecules that exist in a local environment with high rotational molecular motion 

and thus the observed signals arise predominantly from mobile or MR-visible lipids, composed 

of triglycerides and cholesterol esters sequestered in lipid droplets. In animal and human tumors, 

the observation of these lipid resonances require the use of short echo time spectroscopic pulse 

sequences due to the relatively short T2 relaxation times of mobile lipids. In vivo MRS studies 

initially used single voxel localization methods such as STEAM and PRESS for assessing the 

MRS pattern of lipids in tumors, due to the simplicity and accuracy of these methods. However, 

multi-voxel spectroscopic methods including chemical shift imaging are increasingly being used 

both in mouse glioma and xenograft models (128,129) as well as in human tumors (130) since 

these methods provide a better assessment of tumor heterogeneity. The presence of intense lipid 

signals from surrounding subcutaneous fat and muscle have been problematic in evaluating lipid 

signals by MRS methods, thus outer volume fat suppression sequences become critical. For this 
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reason, the majority of studies on intra-tumoral lipids have been focused on the brain where 

subcutaneous fat is at a minimum. However, useful insights into human tumor composition have 

still been made in other tumors, despite the problems associated with high fat content in 

peripheral tissue. 

The presence of lipids in human tumors was initially reported by Kuesel et al. (124) 

where a correlation between MR-visible lipids, tumor malignancy and necrosis was observed in 

brain tumors. These initial findings were subsequently confirmed in in vivo imaging studies as 

well as in histologically different brain tumor types (131). An early demonstration of the 

sensitivity of lipid signals for accurate diagnosis of supra-tentorial brain tumors was 

demonstrated by Preul et al. (132) suggesting lipid signals as a potential biomarker for grading of 

astrocytomas. Correlation of lipids with malignancy was also reported in pediatric brain tumors 

(133) and a further study in pediatric brain tumors suggested the presence of lipids as a marker of 

poor survival (134). Taken together, the presence of MR-visible lipid signals seems to be a 

marker for malignancy and poor prognosis. In our recent review on the role of lipids in tumors 

(92) we argued that increased MR-visible lipids in tumors are indicative of a stress response and 

that their localization reflects areas of cellular hypoxia and or necrosis.

MRS methods have been used to assess changes in the metabolic profile of tumors as 

markers of early therapeutic response. Most xenograft and clinical studies have focused on 

evaluating reductions in the total choline or lactate signal as a marker of treatment response 

Changes in lipid signals not only suggest a positive response, but increases in PUFA, a putative 

marker of apoptosis (106), may also aid in understanding the mechanism of cell death induced by 

specific treatments.
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Gene therapy induced changes in lipids

One of the first studies to implement MRS to evaluate changes in metabolism during 

gene therapy reported a progressive increase in the lipid resonance at 1.3 ppm in 9L rat tumors 

that were injected intratumorally with adenoviral HSV-to followed by ganciclovir treatment 

(135). These initial studies were followed by several studies of the HSV-tk positive BT4C 

glioma model treated with ganciclovir (106,129,136), which established accumulation of PUFA 

resonances as a marker of treatment induced apoptosis. The PUFA resonances arise from 

phospholipase A2 activity leading to hydrolysis of phospholipids in the cell membrane (137). 

These studies indicate that early increases in mobile lipid resonances after therapeutic 

intervention may be suggestive of apoptosis and positive treatment response. The temporal 

evolution of these resonances may be variable, with a decrease in lipid resonances during 

formation of scar tissue after cell death and lysis. However, the mode and nature of therapeutic 

interventions could affect changes in lipid resonances. A recent study involving oncolytic viral 

treatment of immunocompetent Syrian hamster carcinomas as well as a patient with 

neuroblastoma reported lower unsaturated fatty acids, as measured from the olefinic resonance at 

5.3 ppm (Figure 3) in responding tumors than in non-responding tumors (138), which appears to 

be an exception to the norm. Unlike previous studies, which resulted in an apoptotic tumor cell 

death after treatment, treatment with oncolytic viruses resulted in multifocal necrosis and a 

substantial cellular inflammatory response. Taken together, these studies indicate that changes in 

PUFA resonances could possibly be used to differentiate apoptosis from necrosis, although 

further data is needed to substantiate this finding. 

A decreased PUFA resonance, in comparison to normal breast tissue, was reported in a 

patient with breast cancer using selective multiple quantum coherence spectroscopy (139). In 
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contrast to most tumors, a decrease in total tumor lipids was observed in pancreatic cancer 

compared to pancreatitis as evaluated by MR studies of patient biopsy samples (140) as well as 

in vivo comparing focal pancreatitis to pancreatic adenocarcinoma (141). Although the exact 

reason for this apparent anomaly is unclear, the pancreatic tumor microenvironment includes 

stromal tissue that comprises up to 80% of the tumor mass (142). Thus, it is possible that the 

dominant factor contributing to the MR visible lipid signal in pancreatic cancer arises from the 

dynamic assortment of extracellular matrix components, infiltrating immune cells, macrophages, 

pancreatic stellate cells, vascular cells, fibroblasts and myofibroblasts.  

Chemotherapy induced changes in lipids

There have been several MRS studies describing alterations in lipid levels in response to 

treatment with cytotoxic agents. Increased triglyceride resonances were observed in the 

malignant MDA-MB-435 breast cancer cell line treated with the anti-inflammatory agent 

indomethacin (143), a drug that has been shown to reduce tumor invasion and inhibit metastasis. 

Similar increases have also been observed in cells treated with antimitochondrial agents and 

other cytotoxic drugs (96,144-148). Treatment of DU145 prostate cancer cells with the 

differentiating agents phenylacetate or phenylbutyrate also led to a time dependent increase in 

lipid signals, accompanied by increased in GPC, indicating cell stress that precedes the induction 

of apoptosis (107,147). Increased apoptosis in BT4C glioma cells after exposure to cisplatin 

resulted in increases in both saturated fatty acids and PUFA resonances (149). Treatment with 

subcytotoxic doses of cisplatin induced similar increases in saturated and total unsaturated fatty 

acid (5.3 ppm) resonances in HER2+ ovarian cancer cells (150) (Figure 4).  Exposure of the 

VEGFR tyrosine kinase inhibitor SU1498 on human U87 glioma cells induced a significant 

increase in lipids with a concomitant decrease in GPC (151). Although cell studies point towards 
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an increase in MR-visible lipid signals in tumors as a marker of response to chemotherapy, 

translation of these findings to in vivo settings have been challenging due to the confounding 

presence of lipid signals from hypoxic/necrotic regions in the tumor or contamination from lipid 

signals outside the tumor. 

Many factors influence in vivo MRS and make it difficult to predict whether it will 

provide useful biomarkers for new therapeutic interventions. For example, the PI3K/mTOR 

inhibitor voxtali in the presence or absence of temozolomide directly alters the phosphorylation 

of the phospholipid PtdIns in glioblastoma tumors, but causes no detectable changes in 1H MR 

spectra, even though hyperpolarized 13C MRS showed reduced conversion of pyruvate to lactate 

(152). Nevertheless, many studies have successfully evaluated changes in lipid signals in 

response to chemotherapy in tumor xenografts. The efficacy of etoposide, a topoisomerase 

inhibitor, was tested on a murine lymphoma model and a significant increase in the 1.3 ppm 

methylene mobile lipid resonance was noted following etoposide-induced apoptosis (153). 

Treatment of F98 rat gliomas with the choline kinase inhibitor MN58b resulted in a significant 

increase in both saturated (1.3 ppm) and polyunsaturated (2.8 ppm) fatty acids (Figure 5) that 

correlated with increased treatment-induced apoptosis (114). Similar increases in saturated and 

polyunsaturated lipid resonances were observed in GL261 glioma tumors in mice treated with 

temozolomide (128) (Figure 6).  In contrast, treatment of C6, RG2, and GL261 glioma models 

with the nitrones, PBN (α-phenyl-tert-butylnitrone) and OKN007 (2,4-disulfophenyl-PBN) 

resulted in a decrease in lipid resonances after treatment, which was attributed to a decrease in 

necrosis and normalization of the metabolic profile rather than the increase in apoptosis 

generally reported in tumor treatment studies (154). Increases in neutral lipid resonances were 

also correlated with tumor growth arrest and treatment response in a mouse model of HER2+ 
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ovarian cancer treated with cisplatin (150). No changes in total choline were noted in this study, 

as the authors found changes in neutral lipids to be a more sensitive marker of treatment 

response.

Radiation therapy induced changes in lipids

Radiation therapy is one of the most commonly used therapeutic strategies for solid 

tumors in the clinic. Although several studies point towards increased lipid resonances in 

radiation-induced necrosis, relatively few studies have evaluated changes in lipid resonances as a 

marker of early response to radiation therapy. Cervical cancer biopsy samples obtained from 

patients treated with radiation therapy were studied by HR-MAS, which revealed a direct 

correlation between the degree of apoptosis and lipid resonances (155) confirming the 

observations made in cell and xenograft studies. A xenograft model of non-Hodgkin’s diffuse 

large B cell lymphoma treated with radiation therapy demonstrated a significant increase in both 

mono and unsaturated lipid resonances within 3 days of treatment (156). The increase in lipid 

resonances corresponded with histology findings of increased apoptosis and oil red O staining, 

supporting the idea that unsaturated (PUFA) lipid accumulation is a marker of therapy induced 

apoptosis. 

D. Positron Emission Tomography

Positron emission tomography (PET) measures the gamma rays produced when an 

electron collides with a positron emitted from a beta-decaying nucleus. PET scans require the 

administration of a radioactive substrate, but the high sensitivity of PET means that only tracer 

levels of radiolabeled material are needed. For tumor imaging, 18F-fluorodeoxyglucose (FDG) is 

by far the most commonly employed PET tracer (Figure 7). FDG exploits the enhanced aerobic 

glycolysis observed in many tumors, a phenomenon known as the Warburg effect. 
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Overexpression of plasma membrane glucose transporters and hexokinase activity rapidly 

internalize FDG and phosphorylate it in the first step of glycolysis. This reaction traps FDG-6-P 

in the cell, but the substrate is unable to be metabolized further. FDG-PET is widely used 

clinically for the staging of primary tumors, but because of the ability of PET to perform a full-

body scan, it is also important for the detection of metastases. FDG-PET can also be used to 

monitor tumor regression post-therapy, and has been used in several instances to monitor FASN 

inhibitor therapies due to the link between glycolysis and fatty acid synthesis (157,158). One 

caveat is that it is difficult to assess enhanced FDG tumor uptake in tissues with high glucose 

utilization (e.g. brain and heart) or in organs of excretion (e.g. kidney and bladder). There is also 

the potential for background labeling in metabolically active cells, such as lymphocytes in sites 

of inflammation. Furthermore, some tumors, such as the prostate, are not FDG avid and have 

relatively low uptake.

A promising alternative to FDG for tumor lipid imaging is 18F or 11C labeled choline 

(Figure 7). This strategy relies on the upregulation of choline transporters and ChoK in tumor 

cells. The concerted action of these components achieves tumor tissue contrast by rapidly 

internalizing and phosphorylating the choline mimetic radioligands. Choline PET is becoming 

more widely used for tumor detection, especially in the prostate (159) but also in other tumors 

such as gliomas (160). Choline PET has also been used to track tumor recurrence, metastasis, 

and response to chemo and radiotherapy (161-164). One challenge facing choline PET is the 

discrepancy between labeled choline tracer uptake and steady state metabolites observed using 

MRS (165). This could be due to intrinsic differences between choline transport and 

phosphorylation that manifest as differences in tracer uptake relative to steady-state levels, but it 
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could also be due to alternative pathways such as metabolism of the choline tracers in other 

organs such as liver (166).

The low FDG avidity of prostate tumors is linked to their metabolic preference for β-

oxidation of fatty acids, rather than glutaminolysis or glucose metabolism, as a primary energy 

source (42). A variety of 18F-labeled fatty acid analogs have been synthesized (Figure 7), and the 

metabolism of these probes effectively trap the radiolabel specifically in cells with high usage of 

β-oxidation (167,168). In metabolizable probes, labeling at the hydrophobic end of the molecule 

allows these probes to be consumed through β-oxidation. In non-metabolizable probes, chemical 

modifications are nearer to the carboxyl group, which still allows cell uptake and potential 

incorporation into phospholipids or triglycerides, but further oxidative metabolism is prevented 

(169). Labeled fatty acid probes, such as BMIPP (Figure 7), have been primarily employed to 

monitor metabolism in tissues with high levels of β-oxidation, mostly cardiac and to a lesser 

extent skeletal muscle (170-176). Use of these probes to study cancer has been limited, even 

though the use of β-oxidation as a potential cancer energy source has been known for decades 

(177,178).  

Although the half-life of 11C is quite short (20 min), it is still possible to observe 11C 

palmitate uptake and distinguish storage in triglycerides vs metabolism by β-oxidation (179,180). 

Regions of high fatty acid synthesis have been imaged using 11C-acetate incorporation into 

palmitate (181), although the intermediate acetyl-CoA has other potential metabolic fates such as 

the Krebs cycle or histone modification. For this reason, 11C-acetate has been used to monitor 

prostate tumors during therapy and recurrent lesions, but is incapable of distinguishing malignant 

tumors from benign hyperplastic nodules (182-185). Several radiolabeled ether lipids containing 

PC moieties (186) have been made (Figure 7) based upon early observations of elevated 
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phospholipid-ethers in neoplastic tissue (187,188). Due to the preferential accumulation and 

retention of these alkylphosphonium analogs, 124I-CLR1404 was developed and recently tested in 

brain tumor PET imaging where a tumor/normal brain signal ratio of 30 was reported (189). 

Replacement of the PET isotope with the radio-ablative 131I-CLR1404 agent improved survival 

in tumor-bearing rodents and provided a novel theranostic platform wherein 124I can assist in the 

planning of 131I therapy.

E. Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) is a powerful modality for the detailed spatial 

detection of protein, metabolite and drug distribution in tissues. MSI consists of a family of 

techniques that includes matrix-assisted laser desorption ionization (MALDI) MSI, secondary 

ion mass spectrometry (SIMS), matrix electrospray-MSI (ES-MSI), and nanostructure-initiator 

mass spectrometry (NIMS). For the detection of lipids, the most commonly used technique is 

MALDI MSI (190), which has a large range of applications and provides a good overall 

combination of spatial resolution, intact molecule sensitivity and probing depth (190). MALDI 

provides a critical platform for the spatial detection of lipids and lipid metabolites, as there is a 

lack of suitable reagents and antibodies for the analysis of tissue lipids in situ (191). 

MSI techniques are invasive procedures, requiring the preparation and embedding of a 

thin tissue slice followed by rasterized destruction by laser or primary ion beams. For MALDI, 

tissue is embedded in a matrix such as gelatin and α-cyano-4-hydroxycinnamic acid (CHCA) or 

2,5-dihydroxybenzoic acid (DHB) (192). Washing the tissues with aqueous solutions of 

ammonium formate or phospholipases prior to embedding can be used to enhance certain lipid 

species and improve signal to noise (191). MSI can detect hundreds of molecules in a single 

sample with a routine spatial resolution of 50−100 μm, and a small molecule resolution as high 
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as 5−10 μm (193). Because matrix deposition is a slow process and the application of a wet 

matrix to tissue can cause metabolite shift, matrix-free techniques using nanoparticle initiators 

have been developed and these often provide simpler spectra to interpret (194,195). These NIMS 

procedures provide comparable lipid profiles, but with improved spatial resolution (196).

MSI has been used extensively to study lipid in primary human tumor tissue as well as 

tumor cell lines and xenografts. In human tissues, a consistent observation of elevated 

phospholipids has been observed in cancer compared to normal tissues. This includes breast 

tumors and invasive ductal carcinomas compared to carcinoma in situ (197-199), gastric cancers 

(200), renal cell carcinomas (201), human lung squamous cell carcinoma (202) and colorectal 

carcinoma (203,204). The most frequent observation is of increased PtdCho in tumors, but 

increases in PtdEtn, PtdIns, and PA have also been observed (199,205,206). Some studies have 

demonstrated increases in ether-linked lipids (199). Lyso-phospholipids have been reported to 

increase in colorectal tumors, but decrease in gastric and prostate cancers (200,203,207) (Figure 

8). Fatty acid levels have also been observed to increase in a number of tumors (199), but it is 

uncertain whether these are free fatty acids or acyl components of more complex lipids. 

Studies in tumor xenografts have confirmed the general observations of increased 

phospholipids and ether-linked lipids in tumor tissues. Measurement of choline metabolites in 

breast cancer xenografts using MR spectroscopic imaging combined with MALDI-MSI revealed 

differences in spatial distribution with PC and choline levels concentrated in normoxic tumor 

regions (208). When correlated with the expression of a hypoxia-response element, PtdCho 

elevation was concentrated in hypoxic regions whereas LPC was elevated in necrotic regions 

(192,209). Further studies have indicated distinct microenvironmental lipid distribution with 

higher levels of ether-linked PtdEtn in viable tumor and ether-linked PtdCho in necrotic regions 
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(193). Elongated fatty acyl chain length in phospholipids of human lung squamous cell 

carcinomas was reproduced in mouse xenografts and correlated with the expression of the acyl 

chain elongase ELOVL6 (210). These data demonstrate the role of MSI in identifying distinct 

tumor microenvironments by their molecular signatures.  

While MSI has revealed a number of potential lipid-related cancer markers, there are very 

few studies that have employed MSI lipids to monitor cancer treatment. One recent study has 

identified transient decreases in serum PtdCho and lyso-PtdCho associated with response to 

radiation in head and neck tumor patients (211). A second study has indicated that LPC (16:0) is 

a significant predictor of PSA recurrence in human prostate cancer patients (207). The NIMS 

technique is capable of simultaneous monitoring of drug accumulation and endogenous water-

soluble metabolite distribution (212,213). Adopting this technique to study drugs that target lipid 

metabolism in tumors should be a priority in this field. These data indicate that further 

investigation into the utility of lipid biomarkers to assess treatment response is warranted. 

F. Optical Imaging 

Optical imaging is a cost-effective and relatively easy-to-use imaging modality that 

makes it a valuable tool for non-invasive longitudinal imaging. The range of detectable 

wavelengths is broad enough to allow multiplex imaging, and these principles have been applied 

to a number of medical diagnostic platforms, including flow cytometry, fluorescence 

microscopy, and diffuse optical imaging. In vivo, optical imaging is limited by attenuated light 

penetration through tissue due to scattering and absorption in the visible wavelengths. This is 

partially alleviated by using chromophores that absorb or emit in the near infrared region (675 – 

900 nm) where absorption by hemoglobin, deoxyhemoglobin and water is at a minimum. In 
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addition, several endogenous proteins, such as laminin and elastin, autofluoresce and elevate the 

background signal during in vivo measurements. As a result, the observable depths of optical 

imaging are usually limited to 1 cm or less. Thus in vivo optical imaging has predominantly 

focused on single-channel fluorescence or bioluminescence on a macro level (< 15x 

magnification) in mice or other small animals. Bioluminescence is not practical in clinical 

settings, because it requires transfection with an invertebrate luminescent protein, but it is a 

highly sensitive reporter that, in the field of lipid metabolism, has been adapted to map regions of 

heightened fatty acid uptake (214). Advances in CCD sensitivity has recently sparked renewed 

interest in Cerenkov radiation as an additional source of emitted light that can be detected in vivo 

(215,216). This signal may one day offer functional information concordant with the 

tomographical information provided by PET (217). 

New optical imaging technologies in oncology have largely followed advancements in 

vascular imaging. Before diffuse optical tomography became a subject of interest in 

mammographic screening, the observation was made that absorption of circulating hemoglobin 

changes in an oxygen-dependent manner (218). This was a pioneering study in translational 

optical imaging, but 20 years later routine clinical optical imaging remains limited outside of 

optical coherence tomography (OCT) in ophthalmic applications (219-221). OCT uses a rastered 

application of NIR light and interferometry to produce a 3-D scanning image of the retina. The 

use of NIR wavelengths still limits the application to surface phenomena, less than 1 cm deep in 

the tissue. OCT has also been employed in oncology, most notably to detect the development of 

esophageal tumors (222,223), With regards to lipids, OCT is most commonly used for 

atherosclerotic plaque detection in cadavers and patients, which is based upon its sensitivity to 
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lipid deposits in local vascular sites (224,225). This leads to the possibility for future applications 

of OCT as a method to distinguish lipid levels in treated tumor tissue. 

In small animal optical imaging, enhanced contrast is often provided by the 

administration of exogenous NIR fluorescent compounds. There are a growing number of these 

molecular probes that allow for noninvasive optical imaging of lipid metabolism pathways. The 

probes are generally of three types: passive molecules that are used as blood pool agents and rely 

on leaky vasculature to accumulate at the site of pathology, targeted permanently fluorescent 

molecules that can be taken up selectively as substrates or inhibitors of lipid metabolic pathways, 

and smart quenched fluorescent molecules that can be selectively activated by enzymes. 

Fluorescence imaging using these probes allows for specific and localized detection of metabolic 

activity.  

Indocyanine green (ICG) is a clinically approved blood-pooling agent that has been used 

for tumor detection. Collection of ICG in solid tumors has been attributed to the enhanced 

permeability and retention caused by disordered vasculature and insufficient lymphatic systems 

in tumors (226), however tumor-associated macrophages in lipid-rich regions may have an 

underappreciated role in this phenomenon. In atherosclerotic plaques, ICG has been observed to 

accumulate preferentially in the lipid-rich macrophages in both rabbits and patients (227). MRI, 

PET, and optical imaging of tumor-associated macrophages have been described extensively 

(228-230) and these methods should be used to explore co-localization of lipid profiles with 

immune infiltration in the tumor setting. 

Lipid uptake and synthesis

Lipid uptake and synthesis are essential to the maintenance of mammalian cell 

membranes. For this reason, a constant source of precursors are required to maintain the 
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proliferative nature of the cancer cell. Tumor cells synthesize and accumulate membrane lipids, 

such as PtdCho, at a rate that greatly outpaces the surrounding normal tissue, and this offers an 

avenue that can be exploited for selective delivery of imaging and therapeutic agents. The 

introduction of fluorescently labeled lipid analogs into the tumor microenvironment can also be 

used to visualize lipid scavenger activity. Direct fluorescent labeling of PtdCho has been 

reported using visible fluorophores, so high background in normal tissues is a general feature of 

these approaches (231). A common approach is to employ fatty acid probes to which non-polar 

dyes such as BODIPY have been attached (232). Depending on the metabolic state of the cell, 

these lipid analogs can be incorporated into phospholipids or neutral lipids in lipid droplets. The 

alkylphosphocholine analogs described for PET imaging have also been adapted with BODIPY 

or heptamethine dyes for imaging of tumor margins and draining lymph nodes (233). 

Choline kinase

Choline kinase catalyzes the conversion of choline to PC, and is elevated in several types 

of cancers. Its upregulation has been correlated with the transition of normal breast epithelium 

toward a malignant phenotype, and selective inhibitors have been developed for Phase I clinical 

trials in solid tumors (ClinicalTrials.gov, NCT01215864). Based on these studies, we developed 

a series of fluorescent inhibitors that selectively bind ChoK and emit fluorescence in the near 

infrared optical window (234). The design exploited the structural similarities between ChoK 

inhibitors and cyanine dyes frequently employed for optical imaging, and did not rely on dye 

conjugation to existing inhibitor structures (235). The probe, JAS239, showed elevated uptake in 

tumors that overexpressed ChoK, and more importantly, had reduced uptake in tumors after 

chemotherapy (236).

Phosphatidylinositol signaling pathway
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Many oncogenic signaling pathways are mediated by PtdIns, which makes these lipids 

attractive targets for cancer imaging probes. In order to interrogate the role of these 

phospholipids on cell signaling, Yoon et al. engineered a fluorescent PIP2 sensor to study its role 

in membrane remodeling, regulation of membrane proteins, and regulation of the cytoskeleton  

(236-238). This probe was engineered with the visible fluorophore (2-dimethyl-amino-6-acyl-

naphthaline) optimized for its lipophilic properties, limiting its utility for detection of lipid 

dynamics in vivo. Because IP3 and DAG mediate the release of intracellular calcium and are 

activated by lipid metabolic pathways, optical probes based upon flu-4 or BAPTA can provide 

an indirect means of assessing these bioactive lipids (239-241). DAG can be evaluated directly 

using radiolabeling (242) or using optical techniques such as FRET to detect activated DAG 

intercalation in the plasma membrane (243).  

Phospholipases 

Phospholipases are catabolic enzymes that can be targeted with lipid based quenched 

optical probes that are activated by enzymatic hydrolysis (39). Upregulation of cPLA2 has been 

observed in breast and prostate cancers (112), and elevated levels of PC and 

phosphoethanolamine have been attributed to PLC activation in breast cancer, ovarian cancer 

and melanoma (109). Activatable probes with phospholipid-based structures, a linker that 

regulates enzyme accessibility, a quenchable fluorophore or light-emitting compound, and a 

cleavable quenching domain have been designed as fluorescent agents for quantifying 

phospholipase activity. The advantage of this approach is the enhanced signal to noise available 

from the continuous enzymatic release of fluorescent substrates. Enzyme activated BODIPY 

probes have been employed to examine phospholipase activity in many systems including the 
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digestive physiology of the zebra fish (244-247). While useful for cells, small transparent 

animals and intravital microscopy, the optical properties of BODIPY limit its detection in tissue. 

There are several quenched fluorophores commercially available with emission in the visible 

range. In the NIR range, we developed analogous probes targeting PLA2 and PLC for in vivo 

applications (248). These self-quenching probes were composed of pyropheophorbide-a (Pyro) 

tethered to PtdEtn and a Black Hole Quencher (BHQ-3). While Pyro has an excitation maximum 

excitable Soret band at 418 nm that emits at 660 nm, its absorption peak at 670 with emission at 

725 nm makes it suitable for in vivo imaging. The specificity of these probes to various 

phospholipase isoforms could be modulated by altering the spacer length between Pyro and the 

glycerol backbone. The resulting construct, Pyro-PtdEtn-BHQ, was highly specific to PtdCho-

specific PLC (PC-PLC) both in vitro and in vivo and we used this to detected upregulation and 

activation of this enzyme in DU145 prostate cancer xenografts (Figure 9) (112).  

Arachidonic acid, a PUFA found in the sn-2 position of phospholipids, is mobilized by 

the activity of cytosolic or cPLA2 acting on membrane-associated phospholipids.  The redox 

activity of COX-2 catalyzes the conversion of arachidonic acid to prostaglandins that act as a 

lipid second messenger.  Arachidonic acid is first converted to prostaglandin G2, and then the 

peroxidase activity of COX-2 converts it to the unstable H2 isoform that is converted to one of 

several homologous tissue- and function-specific isoforms of prostaglandins.  It is prostaglandin 

E2 that is notably upregulated in several types of cancer contributing to aberrant signaling (249). 

In order to utilize this signal transduction pathway to image pathogenic events, there are several 

points of interrogation possible: using activatable probes to evaluate COX-2 activity, directly 

measure PGE2 levels with targeted probes, or evaluate activation of further downstream events.  
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Detection of cPLA2 using a cleavable construct requires a probe that contains 

arachidonic acid, to account for the specificity of the enzyme for this fatty acid, as well as a 

small enough head group to fit into the active site.  Previous studies had shown that arachidonic 

acid esterified to visible fluorophores such as 7-hydroxycoumarin were highly specific for 

cPLA2 and displayed similar hydrolysis kinetics to native substrates (250). We adapted this 

caged fluorescence protocol using fluorophores that emit in the red wavelength range (660-680 

nm) to create cPLA2 sensitive probes suitable for in vivo imaging. Probe selectivity could be 

modulated by choice of fatty acids and fluorophores, with DDAO arachidonate performing the 

best in vitro, in cells and tumors. Here, arachidonic acid provided the optimum fatty acid 

substrate for cPLA2 and DDAO (7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) was 

the most resistant to non-specific aqueous hydrolysis. Probe activation was shown to be 

proportional to cPLA2 expression levels in cells and tumors, and high relative to a non-specific 

control probe, DDAO palmitate. 

Apoptosis

In addition to using imaging techniques to noninvasively detect components of lipid 

metabolism, other biomarkers can be detected that offer information pertaining to non-

homeostatic states of cells and tissues in situ.  Apoptosis is often indicative of patient response to 

cancer therapy, accordingly, targeting markers of apoptosis can be useful to evaluate the efficacy 

of various interventions (251). Among these events are plasma membrane reorganization marked 

by PtdSer translocation to the outer leaflet of the membrane. PtdSer translocation can be detected 

using labeled ligands that bind anionic phospholipids, including proteins such as Annexin 5 or 

synaptotagmin (252) or organic molecules such as zinc dipicolylamine (253). A number of 
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labeling strategies have used this approach to create apoptosis sensors for optical (254), MR 

(255-257) and nuclear imaging when radiolabeled with 99Tc or 123I (258). Annexin has shown 

some promise as a molecular probe for this purpose though this strategy can be limited by 

suboptimal pharmacokinetics (259), and non-specific labeling of necrotic cells (260). 

Conclusion

Lipid metabolism is an essential component of cellular homeostasis that can become 

drastically altered during the process of malignant transformation. Most common driver 

mutations and oncogenes are related to growth cues and cellular stress responses, and many 

therapeutic strategies target these pathways such that the measurement of lipid metabolic 

changes can serve as a proxy for drug response pharmacodynamics. While MRS and PET 

approaches offer the ability to serially-measure lipid composition and flux, they are limited by 

spatial resolution. MSI and Optical Imaging, on the other hand, permit the appreciation of 

intratumoral heterogeneity but often require surgical exposure of the tissue site. Still, these 

approaches are finding increasing value in image-guided surgical resection and are experiencing 

fast-paced improvements in technology including the ability to image endogenous contrast, more 

specific probes that provide kinetic information, and sub-cellular resolution. For a balance 

between resolution and ability to image endogenous lipid signals without the need for new FDA-

approved contrast agents, MRS remains the gold standard for measuring lipid metabolic states in 

tumor and other tissues. New advances including two-dimensional MRS, hyperpolarized MR 

spectroscopic imaging, and higher field strength MRS continue to reshape our understanding of 

lipid metabolic changes during tumor growth and treatment response. This comes at a critical 

time as therapy continues to evolve with new signal transduction inhibitors, metabolic targeting 

agents, and immunotherapies change the landscape of cancer care.
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Figure Legends

Figure 1: Lipid metabolism pathways in the cell. Glucose transported into the cell is 

metabolized to pyruvate via the glycolytic pathway, and can be fed into the tricarboxylic acid 

(TCA) cycle for ATP production in the mitochondria. Citrate from the TCA cycle or from 

exogenous sources is converted to Acetyl-CoA in the cytoplasm and can be used for cholesterol 

or fatty acid (e.g. palmitate) biosynthesis. Cholesterol produced in this fashion can be used to 

synthesize membranes or be incorporated into sterols. Fatty acids can be desaturated or extended 

and then incorporated into triglycerides or incorporated into phospholipids via the Kennedy 

Pathway. Cholesterol and triglycerides fatty acids can also be taken up through specific transport 

mechanisms. The resulting lipid droplets, shown in the inset, contain fatty acids stored in 

phospholipid and fatty acid form that can be mobilized by phospholipases and lipases, 

respectively. Beta-oxidation (β-Ox) of free fatty acids from lipid droplets can be triggered to 

meet energy needs. In place of the third acyl group (Acyl3) attached to the glycerol moiety of 

triacylglycerides (orange oval), phospholipids have a phosphorylated polar head group (yellow 

sphere) that confers water solubility and creates organized bi-layer and micelle structures. 

Phospholipases can also elicit 2nd messenger signaling cascades by releasing bioactive fatty acids 

(e.g. sphingolipids, eicosanoids) and/or polar head groups in response to growth or stress cues. 

External cell signaling cues can also be transmitted by lipids in the case of isoprenylation and 

subsequent transport of small GTPases to dock with G protein-coupled receptors (GPCRs) on the 

cell surface.   

Figure 2: Major lipid metabolic pathways altered in cancer cells.  Metabolic 

reprogramming during malignant transformation mimics autonomous growth signaling in 

unicellular organisms. Common oncogenes in the PI3K/Akt/MTOR pathway, are often mutated 
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or upregulated due to their presence downstream of external growth factors and their ability to 

re-route cellular carbon sources toward fatty acid utilization as an energy source. Cancer cells 

can also supply the TCA cycle from glucose via aberrant glycolysis and from glutamine via IDH 

mutations, although the contributions of these pathways differ greatly depending on the energy 

needs of the cell. The transcription factor Myc promotes many malignant processes in cancer 

cells because it is a master regulator capable of triggering survival pathways in response to 

hypoxia and nutrient deprivation. Hypoxic conditions are a factor in many solid tumors and 

influence the local tumor microenvironment by dampening the immune response and activating 

hypoxia-inducible factor-1α (HIF1α), which among other things, initiates the regulatory function 

of sterol regulatory element binding protein 1 (SREBP-1) on fatty acid synthesis. Free fatty acids 

such as palmitate are used as energy sources or converted to bioactive eicosanoids to dampen the 

immune response and stabilize the ER stress that can result from saturated fatty acid 

accumulation.

Figure 3:  Changes in lipid metabolism in response to oncolytic viral treatment of Syrian 

hamster carcinomas. The oncolytic viral treatment induces coagulative necrosis, which is seen as 

hypo-intense areas within the tumor on T2-weighted MR image. In vivo MRS from the voxel 

(overlaid on the image) is shown on the right demonstrating resonances from unsaturated fatty 

acids, taurine and choline. No changes in PUFA resonances were observed in coagulative 

necrosis resulting from oncolytic viral treatment. Reprinted with permission from (138). 

Figure 4. A) Confocal micrographs of SKOV3.ip cells treated for 48 h with cisplatin 

(CDDP) show increased lipid droplets as measured by Nile red staining, compared to untreated 
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controls (CTRL). Fixed cells were counterstained with phalloidin 488 for actin (green) and DAPI 

for nuclei (blue). Scale bar represents 23.8 μm. (B) 1H NMR spectra of intact SKOV3.ip cells 

treated with 5 mM CDDP for 48 h (red) show increases in mobile lipids compared with untreated 

control cells (black). Labeled lipid resonances include: methine protons at 5.3 ppm (-CH=CH-); 

fatty chain methylene group at 1.3 ppm (-(CH2)n)- ; methyl group at 0.9 ppm (-CH3) ; and total 

choline (tCho) at 3.2 ppm (-N.(CH3)3). Reprinted with permission from (150). 

Figure 5: Increased lipids in response to choline kinase inhibition as an alternate therapy 

for the treatment of gliomas. In vivo MRS from an untreated F98 rat glioma (bottom spectrum) 

and after 5 days of treatment with a choline kinase inhibitor, MN58b (top spectrum). Increased 

mono-unsaturated lipid peaks (1.3 ppm) are evident with treatment. In addition, a significant 

increase in the poly-unsaturated fatty acids (PUFA, 2.8 ppm), indicating apoptotic cell death. As 

expected, a decrease in the total choline (tCho) peak was also observed in response to choline 

kinase inhibition. The MR image demonstrates placement of the voxel for MRS studies. 

Reprinted with permission from (114).

Figure 6: Single voxel 1H MR spectra from a GL261 tumor implanted into a mouse 

brain. Treatment with three cycles of temozolomide led to significant (*) increases in mobile 

lipid:Cre and tCho:Cre resonances at 28 days post inoculation (left) compared to spectra 

acquired before treatment (tight). Labeled resonances: Cho (choline: 3.2 ppm, Cre (creatine): 3.3 

ppm, MLs (mobile lipid methylenes): 1.3 ppm, PUFAs: 2.8 ppm. Reprinted with permission 

from (128). 
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Figure 7: Chemical structure of the common PET tracers used for detection of lipid 

metabolism. The radioactive isotope is denoted in red. 

Figure 8: MALDI-MSI images and corresponding H&E sections from human colorectal 

tumors (A-C) and adjacent tumor free regions (D-F). A selective projection of m/z 478.3 onto 

MALDI-MSI images reveals elevations in 1-palmitoyl-lysophosphatidylcholine in cancer-

containing areas compared to the non-tumor bearing tissue sections. Elevations in m/z 504.3, 

representing 1-oleoyl-lysophosphatidylcholine, were also observed in this study. Reprinted with 

permission from (203).   

Figure 9: In vivo NIR fluorescence imaging of phospholipase activity using the PC-PLC 

activatable probe Pyro-PL-BHQ in DU145 prostate tumor xenografts. Each mouse received 80 

nmol i.v. of (A) Pyro-PtdEtn, a permanently fluorescent analog used as a control, (B) Pyro-

PtdEtn-BHQ or (C) Pyro-PtdEtn-BHQ plus pre- and post- injections of the PC-PLC inhibitor 

D609. The fluorescence intensity from Pyro-PL-BHQ activation peaked at 6-7 h, and was 

inhibited by D609 treatment. Fluorescence persisted for up to 31 h in tumor tissue (T) excised 

from mice when compared to muscle (M) control. Reprinted with permission from (112).
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Figure 1: Lipid metabolism pathways in the cell. Glucose transported into the cell is metabolized to pyruvate 
via the glycolytic pathway, and can be fed into the tricarboxylic acid (TCA) cycle for ATP production in the 

mitochondria. Citrate from the TCA cycle or from exogenous sources is converted to Acetyl-CoA in the 
cytoplasm and can be used for cholesterol or fatty acid (e.g. palmitate) biosynthesis. Cholesterol produced 

in this fashion can be used to synthesize membranes or be incorporated into sterols. Fatty acids can be 
desaturated or extended and then incorporated into triglycerides or incorporated into phospholipids via the 
Kennedy Pathway. Cholesterol and triglycerides fatty acids can also be taken up through specific transport 
mechanisms. The resulting lipid droplets, shown in the inset, contain fatty acids stored in phospholipid and 
fatty acid form that can be mobilized by phospholipases and lipases, respectively. Beta-oxidation (β-Ox) of 
free fatty acids from lipid droplets can be triggered to meet energy needs. In place of the third acyl group 

(Acyl3) attached to the glycerol moiety of triacylglycerides (orange oval), phospholipids have a 
phosphorylated polar head group (yellow sphere) that confers water solubility and creates organized bi-layer 

and micelle structures. Phospholipases can also elicit 2nd messenger signaling cascades by releasing 
bioactive fatty acids (e.g. sphingolipids, eicosanoids) and/or polar head groups in response to growth or 

stress cues. External cell signaling cues can also be transmitted by lipids in the case of isoprenylation and 
subsequent transport of small GTPases to dock with G protein-coupled receptors (GPCRs) on the cell 

surface.   

279x209mm (72 x 72 DPI) 

Page 119 of 128

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

 

Figure 2: Major lipid metabolic pathways altered in cancer cells.  Metabolic reprogramming during malignant 
transformation mimics autonomous growth signaling in unicellular organisms. Common oncogenes in the 
PI3K/Akt/MTOR pathway, are often mutated or upregulated due to their presence downstream of external 

growth factors and their ability to re-route cellular carbon sources toward fatty acid utilization as an energy 
source. Cancer cells can also supply the TCA cycle from glucose via aberrant glycolysis and from glutamine 

via IDH mutations, although the contributions of these pathways differ greatly depending on the energy 
needs of the cell. The transcription factor Myc promotes many malignant processes in cancer cells because it 

is a master regulator capable of triggering survival pathways in response to hypoxia and nutrient 
deprivation. Hypoxic conditions are a factor in many solid tumors and influence the local tumor 

microenvironment by dampening the immune response and activating hypoxia-inducible factor-1α (HIF1α), 
which among other things, initiates the regulatory function of sterol regulatory element binding protein 1 

(SREBP-1) on fatty acid synthesis. Free fatty acids such as palmitate are used as energy sources or 
converted to bioactive eicosanoids to dampen the immune response and stabilize the ER stress that can 

result from saturated fatty acid accumulation. 
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Figure 3:  Changes in lipid metabolism in response to oncolytic viral treatment of Syrian hamster 
carcinomas. The oncolytic viral treatment induces coagulative necrosis, which is seen as hypo-intense areas 
within the tumor on T2-weighted MR image. In vivo MRS from the voxel (overlaid on the image) is shown on 
the right demonstrating resonances from unsaturated fatty acids, taurine and choline. Unlike the increased 

PUFA resonances observed during apoptosis (Figure 3), no No changes in PUFA resonances were observed in 
coagulative necrosis resulting from oncolytic viral treatment. Reprinted with permission from (138). 
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Figure 4. A) Confocal micrographs of SKOV3.ip cells treated for 48 h with cisplatin (CDDP) show increased 
lipid droplets as measured by Nile red staining, compared to untreated controls (CTRL). Fixed cells were 
counterstained with phalloidin 488 for actin (green) and DAPI for nuclei (blue). Scale bar represents 23.8 
μm. (B) 1H NMR spectra of intact SKOV3.ip cells treated with 5 mM CDDP for 48 h (red) show increases in 

mobile lipids compared with untreated control cells (black). Labeled lipid resonances include: methine 
protons at 5.3 ppm (-CH=CH-); fatty chain methylene group at 1.3 ppm (-(CH2)n)- ; methyl group at 0.9 

ppm (-CH3) ; and total choline (tCho) at 3.2 ppm (-N.(CH3)3). Reprinted with permission from (150). 
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Figure 5: Increased lipids in response to choline kinase inhibition as an alternate therapy for the treatment 
of gliomas. In vivo MRS from an untreated F98 rat glioma (bottom spectrum) and after 5 days of treatment 
with a choline kinase inhibitor, MN58b (top spectrum). Increased mono-unsaturated lipid peaks (1.3 ppm) 

are evident with treatment. In addition, a significant increase in the poly-unsaturated fatty acids (PUFA, 2.8 
ppm), indicating apoptotic cell death. As expected, a decrease in the total choline (tCho) peak was also 

observed in response to choline kinase inhibition. The MR image demonstrates placement of the voxel for 
MRS studies. Reprinted with permission from (114). 
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Figure 6: Single voxel 1H MR spectra from a GL261 tumor implanted into a mouse brain. Treatment with 
three cycles of temozolomide led to significant (*) increases in mobile lipid:Cre and tCho:Cre resonances at 
28 days post inoculation (left) compared to spectra acquired before treatment (tight). Labeled resonances: 
Cho (choline: 3.2 ppm, Cre (creatine): 3.3 ppm, MLs (mobile lipid methylenes): 1.3 ppm, PUFAs: 2.8 ppm. 

Reprinted with permission from (128). 
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Figure 7: Chemical structure of the common PET tracers used for detection of lipid metabolism. The 
radioactive isotope is denoted in red. 

279x209mm (72 x 72 DPI) 

Page 125 of 128

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

 

Figure 8: MALDI-MSI images and corresponding H&E sections from human colorectal tumors (A-C) and 
adjacent tumor free regions (D-F). A selective projection of m/z 478.3 onto MALDI-MSI images reveals 

elevations in 1-palmitoyl-lysophosphatidylcholine in cancer-containing areas compared to the non-tumor 
bearing tissue sections. Elevations in m/z 504.3, representing 1-oleoyl-lysophosphatidylcholine, were also 

observed in this study. Reprinted with permission from (203).   

279x209mm (72 x 72 DPI) 

Page 126 of 128

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

 

Figure 9: In vivo NIR fluorescence imaging of phospholipase activity using the PC-PLC activatable probe 
Pyro-PL-BHQ in DU145 prostate tumor xenografts. Each mouse received 80 nmol i.v. of (A) Pyro-PtdEtn, a 
permanently fluorescent analog used as a control, (B) Pyro-PtdEtn-BHQ or (C) Pyro-PtdEtn-BHQ plus pre- 
and post- injections of the PC-PLC inhibitor D609. The fluorescence intensity from Pyro-PL-BHQ activation 

peaked at 6-7 h, and was inhibited by D609 treatment. Fluorescence persisted for up to 31 h in tumor tissue 
(T) excised from mice when compared to muscle (M) control. Reprinted with permission from (112). 
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Graphical Abstract:Imaging of Cancer Lipid Metabolism in Response to 

Therapy

Sean Arlauckas, Elizabeth A. Browning, Harish Poptani, E. James Delikatny

Abstract

Lipids play a critical role in biological systems ranging from structural integrity to 

signaling, energy, defense and communication.  This article reviews lipids and lipid metabolic 

pathways altered in cancer development and their changes in response to therapy that are 

amenable for study by imaging. We focus first on MR spectroscopy, which was instrumental in 

defining the field of lipid imaging (Figure) and still plays a major role, followed by 

complementary molecular imaging methods including PET, mass spectroscopic imaging and 

optical imaging.  
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