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Abstract 

We describe a practical and flexible procedure to compute the charge carrier mobility in the 

transient localization regime. The method is straightforward to implement and computationally 

very inexpensive. We highlight the practical steps and provide sample computer codes. To 

demonstrate the flexibility of the method and generalize the theory, the correlation between 

the fluctuations of the transfer integrals is assessed. The method can be transparently linked 

with the results of electronic structure calculations and can therefore be used to extract the 

charge mobility at no additional cost.  
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1. Introduction 

The mechanism of charge transport in molecular semiconductors is highly debated and already 

the topic of several recent reviews1–6. The community is gradually converging toward the idea 

that the charge carrier dynamics in the molecular semiconductor is strongly coupled with low-

frequency nuclear motions that modulate the intermolecular coupling and is ultimately 

determined by them7–9. Because of the similarity between the energy scales of intermolecular 

transfer integral, phonon energy and thermal energy the quantum dynamics for these systems 

is extremely challenging to model and a family of alternative method is emerging10–20. Building 

on existing numerical evidence, an alternative approach that avoids explicit quantum dynamics 

simulation (cf. Refs.21–26) was originally introduced by Fratini et al, and benchmarked on a one-

dimensional model, where it was shown to reproduce the main qualitative features of 

transport6. It is based on the observation that the large amplitude thermal molecular motions 

act as a source of dynamical disorder leading to a “transient localization” of the wavefunctions 

on timescales shorter than the period of molecular oscillations  which strongly restrict 

the carrier diffusion. As will be explained later, the main assumption in the transient localization 

theory is the relaxation time approximation, i.e., the idea that the dynamical properties of the 

electronic system, described by current-current anticommutator correlation function 
 
C+ (t) , can 

be expressed in terms of those of a reference system (
 C+

ref (t)) from which it decays over the time 

(
 C+

(t)= C
+
ref (t)e- t t ). The reference system is the organic semiconductor with only static 

disorder, i.e., with frozen molecular displacements. At a time shorter than t  (e.g., ( ) set 

by the inter-molecular transfer integrals) the system will not be distinguishable from the static 

disorder case because the molecular motions appear as frozen at such short time scales. As a 

result, the electronic and transport properties of the organic semiconductor can be directly 

inferred from the study of a reference system with frozen molecular displacements, i.e., a time-

independent Hamiltonian. When this theory was applied to a range of realistic materials using 

parameters computed from electronic structure calculations it proved able to predict quite 

accurately the charge mobility of single crystalline molecular semiconductors27.  
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Solving for the reference system still requires the exact evaluation of the electron dynamics in a 

disordered environment, which must be done numerically. In Ref. 27, this was achieved via the 

direct computation of the time-dependent quantum spread 
 
DX2(E,t)= [X̂(t)- X̂(0)]2

E
 of 

electrons, using a real-space method based on orthogonal polynomials28. This method was 

originally devised to deal very efficiently with large system sizes, of up to 106 orbitals. However, 

given the rather short localization lengths characteristic of organic semiconductors, typically in 

the range of few to few tens of molecules, the required accuracy is expected to be within reach 

of more standard methods of much simpler implementation.  

The majority of computational works addressing the charge transport properties of molecular 

semiconductors with a variety of methods produces the parameters required for the evaluation 

of the mobility using transient localization theory. In this work, we present the simplest possible 

methodology to perform such calculation at a virtually negligible additional cost (sample 

computer codes are also provided). The associated code is distributed freely and we believe it 

has a great potential to screen high-mobility materials and possibly to increase the pace of 

material discovery. The theory can be linked with first principle calculations of the solid-state 

model Hamiltonian29–33 or semi-classical molecular dynamics/quantum chemistry evaluation of 

the model34–38, i.e., the two main families of computational methods used so far. In the 

presentation, we highlight the practical steps of the procedure and some numerical 

considerations. We also generalize the theory to allow for correlation in the fluctuation of the 

transfer integral between different pairs of molecules and discuss the impact of such 

generalization on the computed mobility. The transfer integrals correlation is very frequently 

invoked in case of static disorder in organics39 and explicitly discussed in some work on 

molecular crystals40. In this paper, we provide a quantitative mean to quantify their importance 

both in model and realistic systems.  

The paper is organized as follows. We first define the parameters of the model with a discussion 

on how they can be obtained from computational method. We then provide an outline of the 

transient localization method followed by a number of examples.  
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2. Methodology 

Background Theory and Definitions 

We consider a standard tight-binding Hamiltonian for molecular semiconductors,  

                 
(1)

 

where the first two terms indicate the electronic part of the Hamiltonian, the third term 

describes the lattice phonons, and the last two terms correspond to local and non-local 

electron-phonon couplings;  ei  represents the on-site electronic energy of the hole (the trivial 

changes required to described electrons as mentioned below); 
 
J

ij
0  the transfer integral elements 

between adjacent molecules at the equilibrium geometry;  
ĉ

i
+(ĉ

i
) the creation (annihilation) 

operator for a hole at site  i  (there is one state per site);  < ij >  nearest-neighbour pairs of 

occupied sites;  the reduced Planck constant;  
w

I  the phonon frequency of mode  I;  gi
I and 

 
g

ij
I  

the local and non-local electron-phonon couplings measuring the strength of interaction 

between holes (electrons) and intra-molecular and inter-molecular vibrations; and 
 âI
+(â

I
), the 

phonon creation (annihilation) operators, respectively. Eq. (1) implies harmonic modes and 

linear electron-phonon coupling41 and the factor of 2-1/2 is included for consistency with other 

computational works referenced below. When realistic parameters for molecular 

semiconductors are considered, the local electron-phonon coupling causes the modulation of 

site energies while the non-local term leads to the fluctuation of the transfer integral which is 

typically of the same order of magnitude of the transfer integral itself, e.g., dynamic disorder.  

The implementation of the transient localization theory requires the construction of a reference 

Hamiltonian including static disorder with statistical characteristics (variance and covariance of 

the expectation values of the electronic Hamiltonian) identical to that of dynamic disorder.  We 

consider the quantum-mechanical thermal average of an arbitrary operator  O over the lattice 

phonons,  
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O =

Tr[exp(-HPh k
B
T)O]

Tr[exp(-HPh k
B
T)]                                           

(2) 

where  is the Hamiltonian of lattice phonons. Considering 

 
Ĵ
ij
= J

ij
0 + g

ij
I (a

I
+a

I
+ )

I
å , equation (2) can be implemented to evaluate the variance of transfer 

integral (
 
s

ij ,T

2 ) as a global measure of its thermal fluctuations42, 

                 
 (3) 

where  
k

B
T  indicates the thermal energy. It should be noted that the transient localization theory 

is a high-temperature theory in character as it does not account for phonon quantum effects 

and therefore breaks down at temperatures  

To analyse the correlation for pairs of intermolecular couplings that share a common molecule 

we use two quantities from bivariate statistics: the covariance and correlation coefficient. The 

covariance between the transfer integrals involving a common molecule is defined as, 

 
cov(Jij ,Ji'j' )= (Jij - Jij ).(Ji'j' - Ji'j' ) = Jij.Ji' j' - Jij Ji'j'

                     
                        (4) 

when the expansion in normal phonon modes (eq. 3) is substituted in the covariance formula 

(eq. 4) one finds, 

                                    
(5)

 

The covariance itself does not depict immediate information and is usually divided against the 

standard deviations, leading to the Pearson correlation coefficient 
 
g

ij, ¢i ¢j
= cov(J

ij
,J

i'j'
) s

ij,T
s

¢i ¢j ,T
.  

Early applications of the theory assumed null covariance between pairs on the basis of 

computational observations indicating fairly small correlation coefficients18. We will assess the 

impact of this approximation in the results section. 

The same ab-initio methods that yield fluctuations of  J also provide fluctuations of the local 

energy at zero extra cost. Some of these modes are as slow as the intermolecular modes and 
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should be included in the evaluation of the mobility (in practice, by defining the relevant local 

energy fluctuations up to a suitable cut-off in the mode-frequency, one typically obtains 

diagonal fluctuations in the range ~10-50 meV at room temperature). However, this is not the 

focus of the present study and is, thus, not discussed in further detail. The interested reader is 

referred to Refs.43–45. 

When the transient localization theory is implemented for realistic systems one can evaluate 

explicitly the electron-phonon interaction matrix elements in the Hamiltonian eq. (1) (as done 

for example in7,8,33,35,46–48) and derive the variance and covariance from eq. (2)-(5) or directly 

compute the variance and covariance from computing the transfer integral along a molecular 

dynamics trajectory (as done for example in18,34,49,50 and implemented in distributed software 

like VOTCA51).  

Transient localization theory will be outlined for a generic 2D crystal (generalization to 3D is 

trivial) following the theory presented in Ref.6.  According to the Kubo formula, a relation 

between the particle’s mean-squared displacement ( DX2 (DY2 )) and the current correlations can 

be obtained through the retarded current-current anticommutator correlation function52,53, 

 
C
+x(y)

(t)=Q(t) { ĵ
x(y)

(t), ĵ
x(y)

(0)}
                                                                                                                    

(6)   

where  Q(t) is the Heaviside step function. Considering the current operator in terms of the 

velocity operator 
 
ĵ
x(y)

= -eV̂
x(y)

= -edx(y) dt  and performing the time derivative, one can 

demonstrate that this function is directly related to the mean-squared displacement of the total 

position operator along the chosen direction: 

 

dDX2(DY2)(t)
dt

=
1
e2

C
+x(y)

0

t

ò ( ¢t )d ¢t
                                                                                                                    

(7)   

with  e being the elementary charge. The key step of the theory is the introduction of the 

Relaxation Time Approximation (RTA), i.e. the assumption that the dynamical properties of the 

electronic system can be expressed in terms of those of a reference system (
 C+

ref (t)) from which 

it decays over time. The simplest possible form of RTA is 
 C+

(t)= C
+
ref (t)e- t t , where the relaxation 

is determined by a single characteristic time capturing the timescale of the fluctuation of the 

electronic Hamiltonian. The reference system usually is defined as an idealized version of the 
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organic semiconductor with only static disorder, i.e., all the molecular displacements are frozen. 

The chosen form for the correlation function is correct in the short and the long time limit and 

can be seen as the simplest interpolation between the two. The success of the method can be 

ascribed to the weak dependence on the mobility on the parameter t .  This reference ensures 

that in the limit of large t  the system recovers the dynamics of a statically disordered system 

subject to Anderson localization.54 On the other hand, upon introducing a finite relaxation time 

t , the system recovers a diffusive behaviour at long time  t > t, while it can show features of 

(transient) localization at shorter times. The relaxation time t  can be associated with the 

inverse of the typical intermolecular oscillation frequency 
 w0

 and it is customarily assumed that 

. Previous studies depict a distribution of intermolecular frequency modes typically 

peaked at  in several materials. In Ref.27 the quantitative dependence of the 

mobility on the fluctuation time t  is investigated and it is shown that through variation of   

between 2.5 and 10 meV, the 
 
Lt

2 t , which governs the mobility (eq. (10)), changes between 1.3 

and 1. Therefore, one can conclude that the impact of t  on the mobility is rather weak which 

again justifies the validity of the chosen form of correlation function. Hence, the characteristic 

time of the transfer integral fluctuation has been set to a constant ( ). The 

chosen value corresponds to the typical value (within 15%) evaluated for all materials computed 

in Refs.27,55. 

We consider hole transport here and, therefore, in the Boltzmann statistics the significant 

contributions originate from the top edge of the band. The squared transient localization length 

attained at a time t  in  x  and  y  directions is given by, 

                               
(8) 

with (
 
n ,

 
m ) and (

 En
,
 Em

) being respectively the eigenstates and eigenvalues of the 

Hamiltonian in which dynamic disorder is replaced by static disorder of the same order of 

magnitude. 
 
Z = ebEn

n
å  is the partition function with  

b =1 k
B
T . The current operator  ̂j  along  x  

and  y directions, can be expressed in the energy eigenstatates’ basis as follows, 
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n ĵ

x(y)
m = i n [Ĥ,x(y)] m = i(E

n
-E

m
) n x(y) m

                              
(9)

    
where  x  and  y  represent the position fluctuation in different directions. These steps give access 

to mobility through the Einstein relation in the framework of transient localization, 

 
m

x(y)
=

e
k

B
T

L
x(y)
2 (t)

2t                           
(10) 

with 
 
L

x(y)
2 (t)  being the disorder-averaged squared transient localization length56. In the following 

we shall report results for the average of the squared transient localization length over different 

directions, 

 
L2(t)=

L
x
2(t)+ L

y
2(t)

2
.                      

(11)
 
 

Practical Implementation 

In practice, to implement the transient localization theory one may follow the following 

procedure: 

1) Define a supercell of the system, i.e., the geometric position of all sites with appropriate 

periodic boundary conditions. The supercell size should be sufficiently large as discussed 

below.  

2) Build a disordered electronic Hamiltonian of the size of the supercell with static disorder 

identical (in terms of variance and, eventually, correlations) to the dynamic disorder of 

the system.  

3) Diagonalize the Hamiltonian and evaluate the transient localization length using eq. (8) 

and a fluctuation time t . 

4) Repeat steps 2)-3) N times with different realizations of disorder and compute average 

transient localization length. The statistical error on transient localization length can be 

made arbitrarily small by increasing the number of realizations. 

5) Use eq. (10) to evaluate the mobility.  

For the present method to be applicable, the size of the supercell should obviously be larger 

than the transient localization length. As the latter depends on the amount of disorder (which in 

turns depends on the temperature) one should check the convergence with the system size. We 

illustrate the procedure through a series of examples from simplified to more realistic models 
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requiring an increasing number of system-specific parameters.  

 

3. Examples 

Model Systems 

To illustrate the procedure in a simple 2D case we consider the model proposed in Ref.27 which 

provides the opportunity of studying a family of realistic model Hamiltonians. This is useful to 

visualize trends and avoid focusing on the peculiarity of one particular material. The model 

exploits the fact that almost all molecular semiconductors pack into crystal structures where 

one can determine a high-mobility plane, whereas the mobility perpendicular to the molecular 

layers in the same crystal is one to two orders of magnitude smaller [16]. Therefore, we shall 

consider a two-dimensional lattice with unit vectors a and b where each molecule is surrounded 

by six neighbours with only three distinct couplings (see Fig. 1.(I)).  

 

  

 

Figure 1: (I) A generic crystalline molecular structure with one molecule per site and three distinct nearest-

neighbour electronic couplings  
J

a
, J

b and 
 
J

c
. The equivalent couplings are indicated by grey dashed lines and the 

same subscripts as the main ones. a and b denote the unit cell vectors. (II) Rubrene crystal structure with unit cell 

vectors a and b. (III) Transfer integrals in different directions on the spherical surface defined by 
 J= J

a
2 + J

b
2 + J

c
2 and  

the azimuthal angle 
 
q= cos-1(J

a
J). 
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The average values of nearest-neighbour transfer integrals in three directions are indicated by 

 Ja
,J

b
,J

c
 such that 

 J= J
a
2 + J

b
2 + J

c
2 is a constant.  

Hence, with a given set of transfer integrals, one can identify a one- to-one correspondence 

between points on a spherical surface and a molecular semiconductor. 

The model as it is implemented in Ref.27 provides an overall consistent picture of the transient 

localization properties of the molecular semiconductors. Here we benchmark the exact-

diagonalization method represented in the preceding paragraphs by applying it to the model 

Hamiltonian of Ref.27 recovering results obtained there via numerical simulations of the carrier 

quantum dynamics over time. In addition, we generalize the model in order to assess how the 

correlation between the transfer integrals affects the mobility. The present method is of much 

simpler applicability in practice, and, as we show below, it provides accurate results despite the 

limited sizes of the matrices that can be dealt via exact diagnolization.57,58  

 

1) Uncorrelated transfer integrals 

We study the tight-binding models described in Fig. (1) considering that the ratio between the 

fluctuation (standard deviation) and the average transfer integral is a constant for each 

coupling, i.e., 
 DJ

a
J

a
= DJ

b
J
b
= DJ

c
J

c
ºDJ J  with  DJ  being the standard deviation of the 

distribution of the transfer integrals. We set  J= 0.1 eV  and assess a family of models with 

 Ja
= Jcos(q)  and 

 Jb
= J

c
= Jsin(q) 2  (see Fig. 1.(III)) as done in Ref.27, defined by a single 

parameter  0£q£ p.  For example  q = 0, p  describes a one-dimensional system with non-zero 

coupling only in one direction and  q = q0
@ 0.955  represents an isotropic system (of higher 

symmetry) with equal transfer integral in the three directions.  In addition, as was noted in 

Ref.27, the value of the fluctuation time does not vary much between materials and its impact 

on the mobility is rather weak. Therefore, a characteristic time of molecular oscillation 

 is considered throughout the calculation in this work. Also, the lattice 

parameters are set to a=(1,0) and b=(0, 3 ) (results for different unit cell sizes can be forwardly 

obtained by simple rescaling). The key quantity of interest is the squared localization length 

averaged over several realizations of disorder. Figure (2) reproduces the results shown in Ref.27 
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depicting the variation of the localization length versus the azimuthal angle q .  

Here a supercell of size 25*25 is considered and the temperature, disorder strength and number 

of realization of disorder are set to  T = 290 K,  s = DJ J= 0.5 and  N= 50,  respectively. It has to be 

noted that the unit cell is composed of two molecules which is a common occurrence in 

molecular semiconductors; therefore the mentioned supercell contains 1250 molecules. In 

Ref.27 instead, a supercell of size 200*200 was used. The number of atoms does not play specific 

role in this methodology. As depicted in the inset, the squared localization lengths are normally 

distributed and one can compute them with any target accuracy by increasing  N. With  N= 50,  

the largest standard deviation of  L
2(t)  is 2.3% of its average value. Recovering what was 

obtained in Ref.27, the smallest localization is observed for the one-dimensional structures as 

expected59,60. On the other hand, the localization effects are weakest at the point  q0  which 

corresponds to more isotropic band structures (nearest neighbours transfer integrals are as 

close as possible in absolute value and their product has a positive sign)59 leading to a robust 

behaviour against dynamic disorder and therefore larger transient localization lengths and 

mobilities.  

                             
Figure 2: Squared transient localization length calculated based on eq. (8) in the absence of couplings correlation. 

Inset represents the distribution of data marked with circles in the main panel.  
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The localization lengths are in terms of unit cells unless another unit is mentioned explicitly. It 

has to be noted that the system Hamiltonian (eq. (1)) contains certain symmetry elements due 

to the arbitrary phase of the molecular orbitals (MO). If the sign of a MO is changed two transfer 

integrals change sign, and the systems with the so-changed transfer integrals is 

undistinguishable from the original. On the other hand, changing sign of just one transfer 

integral of the three is not a symmetry operation and therefore such a system will have 

different eigenvalues, DOS, effective mass, etc. This explains the asymmetric behavior of the 

curve in Fig. (2) with respect to  p 2  as this is equivalent to changing the sign of just one transfer 

integral (not achievable by changing the sign of any MO). The described behavior is a property 

of the band structure and it is unrelated to the theory proposed here. 

                       
Figure 3: Squared transient localization length calculated for different supercell size (different number of 

molecules) at two disorder strengths namely  s = 0.3  and  s = 0.5  around  q = 0.9  and  q =1.8. The x-axis denotes 

the supercell linear size (supercell is a square) and shown are error bars defined as “standard deviation over  N

realizations of disorder” which is conceivable as a consequence of normal distribution of  L
2(t) as represented in 

Fig. (2). The mobility unit is set by 
 
(e k

B
T)a2 2t = 0.76 cm2V-1S-1 with  a = 7A0 being the lattice spacing. 

 

As previously mentioned, to guarantee the applicability of the method, the size of the supercell 

should obviously be larger than the squared transient localization length. This is substantiated in 
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Fig. (3), illustrating the convergence with the system size. As can be seen, in typical situations of 

interest the rate of convergence is rapid (achieved even with a supercell of size 20*20) and high 

accuracy is attainable with a growing size of supercell and smaller localization lengths. This 

implies that for low disorder the method is limited by the ability of diagonalizing large matrices 

and the user of the code must check it for convergence. As a critical point, in a computer system 

with a memory of 15 GB, the code breaks down for systems of size greater than 69*69. For the 

rest of the paper we present results with system size 25*25 and 50 realizations of disorder to 

achieve a good balance between accuracy and computational speed.  

 

II) Correlated transfer integrals  

This section focuses on evaluating transient localization in the presence of arbitrary correlation 

between transfer integrals involving a common molecule. We use the Cholesky decomposition 

algorithm as a general approach to produce random data with arbitrary correlation. To generate 

 k  number of correlated normally distributed random variables, with  N observations, given a 

positive (semi-) definite correlation matrix 
 Rk*k

, one needs to finding a matrix 
 Mk*k

 such that 

 M
+M=R,  where  M  is computed by the Cholesky decomposition for symmetric positive definite 

 R61–63. Then, after generating a matrix of uncorrelated and normally distributed variables 
 UN*k

, 

the matrix 
 (UM)

N*k  contains a N observation of  k  normally distributed variables with the desired 

correlation.  

To explore systematically the effect of correlation we consider the same model of the previous 

section and assume that the correlation between any two matrix elements is g , if they share a 

common index (i.e., a common molecule), and zero otherwise. Therefore, this parameter allows 

us to study the system in the presence of an arbitrary amount of correlation. It should be noted 

that the paradigmatic 1D case with one mode per molecule, which has been studied in 

depth4,5,64,65 corresponds to  g = 0.5 60. It has to be noted that with multiple modes with positive 

and negative correlation one can have all correlations between -0.5 and 0.5.  

Figure (4) compares the squared localization length of correlated systems with the case of null 

correlation. The following points are notable: (i) the localization length decreases in the 

presence of transfer integrals correlation (the stronger the correlation the smaller the mobility). 
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Intuitively this can be rationalized considering that strong positive correlation in a system with 

all positive transfer integrals is equivalent to a strong amplification of the disorder, with sites 

more strongly or more weakly coupled with all their neighbours at the same time, (ii) the 

decrease in localization length is larger in the region of the high symmetry point 
 q0

.  

                             
Figure 4: Squared transient localization calculated upon varying the amount of correlation between the thermal 

fluctuations of transfer integrals.  

 

Realistic Systems: Correlation derived from non-local electron-phonon coupling 

To compute the localization length in realistic systems (whether correlated or uncorrelated) the 

first step involves the Hamiltonian construction based on the real electronic couplings. We have 

used the electronic couplings presented in Ref66 where the transfer integrals of Tetracene and 

Rubrene molecular semiconductors are computed by employing the localized highest-occupied 

molecular orbital (HOMO) of each moiety at the studied molecular pair. Calculations of the 

transfer integrals are carried out performing ab-initio calculations at the B3LYP/6-31G* level of 

theory as implemented in Gaussian 0967. To assess the impact of correlation in realistic systems, 

based on eq. (2)-(5) one has to use the nonlocal electron-phonon couplings (
 
g

ij
I ) and phonon 

frequencies (
 wI

) to extract the correlation coefficient between different molecular pairs (
 
g

ij, ¢i ¢j
). 

We use the nonlocal electron-phonon coupling for the prototypical molecular semiconductor 
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Rubrene and Tetracene (two of the best performing molecular semiconductors68). The values of 

 
g

ij
I and 

 wI
 are extracted from Ref.66 in which the phonon modes are obtained from quantum 

chemical methods69,70 and a supercell approach71,72 is implemented for sampling the 

momentum space to avoid mixing the intra- and intermolecular modes. We wish to include the 

correlation between transfer integrals that involve at least one common molecule. Fig. 1(II) 

illustrates the minimum number of transfer integrals in addition to 
 Ja

, J
b
, J

c
 that need to be 

considered. They are shown in grey and indicated as 
 ¢Ja

( ¢¢J
a
), ¢Jb

, ¢Jc  as their respective equivalent 

couplings. Furthermore, as 
 Jb
= J

c
therefore, 

 Jb
¢ = J

c
¢ . The standard deviation s of 

 Ja
(J

b
)  in 

Rubrene was found to increase from 44.88 (8.54)  meV  to 58.71 (11.00)  meV  with rising 

temperature from  T =200 K  to  T = 350 K  which is consistent with the  s µ T  rule (cf. eq. 3) and 

with previously published data 66,73. Within the same temperature window, the standard 

deviation s of 
 Ja

, J
b
, J

c  in Tetracence was increased from 23.0, 12.8, 23.8 meV to 29.6, 16.3, 

30.2 meV which is in accordance with the data presented in Ref 74. In Table I and II, the 

correlation coefficients in Rubrene and Teracene, between the couplings sharing a molecule are 

listed. As can be seen, the symmetry of the system is reflected in the correlation coefficients, 

i.e., the equivalent couplings such as (
 Ja

J
b
) and (

 ¢Ja ¢Jb
) exhibit the same correlation coefficient. It 

has to be noted that, although the symmetry is preserved in the correlation coefficients leading 

to some identical coefficients but one cannot consider a constant single correlation value for a 

realistic material, which was the main assumption in the above presented model system. The 

correlation coefficients are generally very small, both positive and negative, with the largest 

coefficient being just below 0.2 found for the 
 Ja ¢Jb

 pair in Rubrene and 0.268 for 
 Ja

J
c
 in Teracene. 

It has to be noted that the sign of the correlation coefficient is not arbitrary and it is uniquely set 

by the choice of sign of the MO basis. Once the sign of the transfer integral are computed 

consistently, they can be presented in four alternative ways, e.g. the original sign and the sign of 

 Ja
, J

b  or 
 Ja

, J
c

 or 
 Jb

, J
c  changed but not in any possible way. The sign of the correlation 

coefficient depends on the choice of the sign of the transfer integral but they cannot be 

changed arbitrarily, if the sign of one MO is changed, the sign of all transfer integral involving 
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that MO will change and the correlation between a given 
 J1

 and 
 J2

 will change sign if only one 

transfer integral between 
 J1

 or 
 J2

 has changed sign.  

 

Table 1: The correlation coefficient for pairs of intermolecular couplings in rubrene that involve a common 

molecule at   T =290 K.   

   

 
 Ja

 
 Jb

 
 Jc

  ¢Ja
  ¢Jb

  ¢Jc
  ¢¢J

a
 

 Ja
 1 0.166 0.013 0.197 0.022 -0.025 0 

 Jb
 0.166 1 -0.007 0.022 -0.036 -0.039 0.117 

 Jc
 0.013 -0.007 1 0.021 -0.039 0.008 0.095 

 ¢Ja
 0.197 0.022 0.021 1 0.166 0.013 0 

 ¢Jb
 0.022 -0.036 -0.039 0.166 1 -0.007 0 

 ¢Jc
 -0.025 -0.039 0.008 0.013 -0.007 1 0 

 ¢¢J
a

 0 0.117 0.095 0 0 0 1 

  

Table 2: The correlation coefficient for pairs of intermolecular couplings in tetracene that involve a common 

molecule at 
  T =290 K.  

 

 

 
 Ja

 
 Jb

 
 Jc

  ¢Ja
  ¢Jb

  ¢Jc
  ¢¢J

a
 

 Ja
 1 0.188 0.268 -0.046 -0.028 -0.106 0 

 Jb
 0.188 1 -0.121 -0.028 -0.008 0.016 0.003 

 Jc
 0.268 -0.121 1 -0.107 0.016 -0.235 0.015 

 ¢Ja
 -0.046 -0.028 -0.107 1 0.188 0.268 0 

 ¢Jb
 -0.028 -0.008 0.016 0.188 1 -0.121 0 

 ¢Jc
 -0.106 0.016 -0.235 0.268 -0.121 1 0 

 ¢¢J
a

 0 0.003 0.015 0 0 0 1 
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Figure (5) depicts squared localization length and its components for a range of temperatures in 

the absence and presence of correlation for two realistic systems named Rubrene and 

Tetracene. In both cases, in the absence of correlation, the values of diagonal elements 
 Lx

2 (t) 

and  
L

y
2 (t) and consequently  L

2 (t)  diminish upon increasing temperature as a result of the 

increase in thermal disorder. The weak correlation between couplings reported in Table I and 

Table II leads to a slight reduction of the transient localization length, as well as to a smoother 

variation versus temperature. Overall, however, the differences between correlated and 

uncorrelated case are modest and possibly below the foreseeable ability to discriminate 

between models when comparing with experiment. To compute the mobility for a set of 

squared localization length and temperature one has to substitute these values in eq.(10). For 

instance, through substituting the temperature 290K and squared localization length 408  

and 295.5  for Rubrene and Tetracene one can obtain the mobility 6.3 cm2/Vs and 4.5 

cm2/Vs, respectively. 

 

 
 Figure 5: Temperature dependence of the squared localization length and its components in the absence and 

presence of couplings correlation. The unit of localization length is squared Angstroms. 

 

The localization reported with experimental studies such as electron spin resonance (ESR)75 

methods is very compatible with the transient localization. The spatial extent of the spin density 
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distribution (wavefunction) of the carriers evaluated from the ESR line-width reveals to be in the 

order of 10-20 molecules76,77. However it is important to keep separated the quantitative 

concept of transient localization which is derived from Kubo-Greenwood equation and is 

therefore probed by measures of mobility and other “localization lengths” which can be 

dependent on the method used to probe the carrier (its characteristic time, the presence of 

selection rule, the role of defect states). The connection with other experimental evaluations of 

localization length is to be considered only qualitative before the appropriate spectroscopic 

theory is developed. The most extensive comparison with experimental mobility (considering 8 

materials) and discussion of the sources of error is presented in detail in Ref.27. Relying on the 

analysis performed in Ref.27 and considering few recent measurements, reported in Ref.78,79, 

one can see that for Rubrene in spite of different fabrication techniques the charge carrier 

mobility data are similar and reasonable averaged experimental mobility can be estimated by 

8.6 cm2/Vs. In contrast, very few studies on Tetracene have been performed and the maximum 

of 2.4 cm2/Vs has been reached by today which is smaller than the predicted theoretical 

values80. This point was indicated previously in other theoretical works81. 

 

4.Conclusions 

In conclusion, we provide a step-by-step efficient procedure to calculate the charge mobility of 

molecular semiconductors in the framework of transient localization theory. The method is 

practically simple to implement and produces results that are fully equivalent to the standard 

formulation of the theory in terms of the quantum dynamics of charge carriers. The 

computational cost is that of a repeated direct diagonalization of matrices of moderate size with 

excellent convergence properties. The connection with routine results from electronic structure 

calculations is immediate and was exemplified here for the case of Rubrene and Tetracene. As 

an illustration of the method flexibility, we have examined the presence of correlation in the 

thermal fluctuation of transfer. This effect is found to cause a reduction of the mobility although 

the effect is very small when the specific examples are considered. This new implementation is 

sufficiently fast to allow for rapid screening of new materials and can be considered alongside 

alternative quantum propagation methods. 
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Supporting Information available. A sample code to reproduce the results in Figure 2 and two 

data sets containing the nonlocal electron-phonon coupling for Rubrene and Tetracene are 

available. A version of the code that will be maintained/updated is available at the Github 

repository https://github.com/CiuK1469/TransLoc. 
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