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Abstract

Stirling numbers of the second kind, S(n, r), denote the number of partitions of a finite
set of size n into r disjoint nonempty subsets. The aim of this short article is to shed some
light on the generating functions of these numbers by deriving them probabilistically.
We do this by linking them to Markov chains related to the classical coupon collector
problem; coupons are collected in discrete time (ordinary generating function) or in
continuous time (exponential generating function). We also review the shortest possible
combinatorial derivations of these generating functions.
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1. Introduction

The Stirling number of the second kind, S(n, r), is defined as the number of ways to place
n labeled balls into r unlabeled boxes so that no box is empty. Clearly, S(0, r) = 0 for all
r > 0. Note that S(n, 0) = 0 if n > 0 because if you have one or more balls, you need at
least one box to put them in. But S(0, 0) = 1 because it is certainly true that you need no
boxes if you have nothing to place inside. Hence, S(n, r) is defined for all integers n, r ≥ 0
and, certainly, S(n, r) = 0 if r > n. The exponential and ordinary generating functions of the
sequence S(n, r), n = 0, 1, . . ., are respectively given by

∞∑
n=0

S(n, r)
tn

n! = (et − 1)r

r! , (1)

∞∑
n=0

S(n, r)tn = 1

(1/t − 1)(1/t − 2) · · · (1/t − r)
. (2)

See [3, Equations (24b) and (24c), Chapter 1]. For more information on Stirling numbers in
relation to probability, see [2]. Mechanical demonstrations of these formulae can be based on

Received 28 June 2018.
∗ Postal address: School of Electrical Engineering and Computer Science, Pennsylvania State University, W367
Westgate, University Park, PA 16802, USA. Email address: gik2@psu.edu
∗∗ Postal address: Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL,
UK. Email address: takiskonst@gmail.com
∗∗∗ Postal address: Department of Statistics, Athens University of Economics and Business, 76 Patission Street, Athens
10434, Greece. Email address: zazanis@aueb.gr

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/201002011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 G. KESIDIS ET AL.
TMS43.2

1871
the recursion

S(n, r) = S(n − 1, r − 1) + rS(n − 1, r),

which is easily derived by a standard argument: for any placement of n labeled balls into r

unlabeled boxes, there is either a box containing ball n only or not. But mechanical proofs
may not be too satisfactory. In this article we provide new probabilistic proofs of the two
identities. For the sake of completeness, we also review combinatorial proofs. A proof is
called combinatorial if it can be derived as a result of equality of two sets. A proof is called
probabilistic if it is a consequence of equality between two random variables. In real life, there
is not always a clear distinction between mechanical, combinatorial, and probabilistic, but when
we have a proof, we typically have a hunch of what type it is.

A combinatorial derivation of (1) is not very difficult; see Section 2. However, a combina-
torial derivation of (2), given in Section 6, is more difficult; but the probabilistic proof given in
Section 5 is simpler and more intuitive.

A few words about notation. If A is a finite set then |A| denotes its cardinality; P (A) denotes
the set of all subsets of A; Pr (A) is the set of all B ∈ P (A) such that |B| = r; for a set (or
logical clause) π , the indicator symbol 1π equals 1 on the set π (when the clause π is true)
and 0 otherwise; if f : A → B is a function from the set A into the set B then f −1(b) is the
set of all a ∈ A such that f (a) = b; for a positive integer n, we let [n] := {1, 2, . . . , n}; we
also let (n)r := n(n − 1)(n − 2) · · · (n − r + 1) and

(
n
r

) = (n)r/r!. If A1, A2 are disjoint sets
and f1, f2 functions with domains A1, A2, respectively, we let f1 × f2 be the function with
domain A1 ∪A2 which is equal to f1 on A1 and f2 on A2. The set of surjective (onto) functions
f : A → B is denoted by SUR(A, B).

2. Combinatorial derivation of the exponential generating function

Recall the definition of S(n, r) as the number of ways to place n labeled balls into r unlabeled
boxes so that no box is empty. Therefore, the number of ways to place n labeled balls into r

labeled boxes so that no box is empty is

Wn,r = r! S(n, r) (3)

because, for each placement in unlabeled boxes, there are r! corresponding placements in
labeled boxes. If we think of boxes as colors then placing balls into boxes is the same as
assigning colors to balls. With r different colors available, suppose that sj balls have color j ,
j = 1, . . . , r . Then the number of configurations is the multinomial coefficient

(
n

s1, . . . , sr

)
= n!

s1! · · · sr ! .

Hence,

r! S(n, r) =
∑

s1,...,sr≥1, s1+···+sr=n

(
n

s1, . . . , sr

)
. (4)

The sum is over all integers s1, . . . , sr that sum to n and are all positive because each color
must be used at least once (no box can be left empty). This last identity is what is behind (1).
The rest is mechanical. Multiply both sides by tn/n! and sum over all n to obtain

∑
n≥0

r! S(n, r)
tn

n! =
∑
n≥0

∑
s1,...,sr≥1, s1+···+sr=n

tn

s1! · · · sr ! =
∑

s1,...,sr≥1

t s1+···+sr

s1! · · · sr !
∑
n≥0

1s1+···+sr=n .
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The last sum is clearly equal to 1 because s1 +· · ·+sr is a nonnegative integer. We are therefore
left with a sum over s1, . . . , sr that, since ‘variables separate’, splits into a product:

∑
s1,...,sr≥1

t s1+···+sr

s1! · · · sr ! =
∑
s1≥1

t s1

s1! · · ·
∑
sr≥1

t sr

sr ! = (et − 1)r .

The last equality follows from et = 1 + ∑
s≥1 t s/s!.

3. Probabilistic derivation of the exponential generating function

Consider the classical coupon collector problem. There are M distinct coupons. Select n

coupons at random with replacement, and let Yn be the number of distinct coupons selected.
Then the distribution of Yn is

P(Yn = r) = 1

Mn

(
M

r

)
r! S(n, r). (5)

To see why (5) holds, first note that our sample space is the set of all ordered n-tuples of coupons,
a set of cardinality Mn. On the other hand, the subset of the sample space defined by the event
{Yn = r} is the set of all ordered n-tuples that use exactly r coupons. Given a subset of the
set of coupons of cardinality r , there are r! S(n, r) ordered n-tuples that use these r coupons.
Since there are

(
M
r

)
ways to select the subset of coupons of size r , the formula follows.

Next observe that the sequence Y0 := 0, Y1, Y2, . . . is a Markov chain. For background on
Markov chains, see, e.g. [1]. We can think of this as the coupon selection process in discrete
time. Let N(t), t ≥ 0, be an independent Poisson process with rate M and consider the
stochastic process YN(t), t ≥ 0, to be a continuous-time coupon selection process that is also
a Markov chain. We can think of it in a different manner. Split the Poisson process N into
M independent copies. Thus, let N1, . . . , NM be independent rate-1 Poisson processes. Then
N(t) = ∑M

j=1 Nj(t), t ≥ 0, is a rate-M Poisson process. Instead of having a single person
collecting coupons at the ticks of the Poisson process N , we have M people collecting coupons:
person j collects coupons of type j at the points of Nj . Let τj be the first point of the Poisson
process Nj . Then

P(YN(t) = r) = P(r of the τj s are less than or equal to t and the rest are greater than t)

=
(

M

r

)
P(τ1, . . . , τr ≤ t)P(τr+1, . . . , τM > t)

=
(

M

r

)
(1 − e−t )r (e−t )M−r . (6)

On the other hand, using (5) and the fact that N is independent of (Yn),

P(YN(t) = r) =
∞∑

n=0

(Mt)n

n! e−Mt
P(Yn = r) =

∞∑
n=0

(Mt)n

n! e−Mt 1

Mn

(
M

r

)
r! S(n, r). (7)

Equating (6) and (7) yields (1).

4. Coda

Let A and B be two nonempty finite sets. The set BA of all functions from A to B has
cardinality |B||A|.

Administrator
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The set of all injective (one-to-one) functions from A to B has cardinality

|B|(|B| − 1) · · · (|B| − |A| + 1),

a number that is obviously 0 if |A| > |B|.
The set of all surjective (onto) functions from A to B has cardinality

|B|! S(|A|, |B|)
(a number that is obviously 0 if |B| > |A|), because we can think of a surjective function
f : A → B as a placement of labeled balls (the elements of A) into labeled boxes (the elements
of B) so that no box is left empty. See (3).

Each function f : A → B is obviously a surjective function onto some nonempty set, namely
the set f (A). Hence,

BA =
⋃

C⊂B, C 
=∅

{f ∈ BA : f (A) = C} =
|B|⋃
r=1

⋃
C⊂B, |C|=r

{f ∈ BA : f (A) = C},

a splitting of BA according to the image of each of its elements. Both unions are disjoint in the
last display. Hence,

|B||A| =
|B|∑
r=1

∑
C⊂B, |C|=r

|C|! S(|A|, |C|)

=
|B|∑
r=1

r! S(|A|, r)
∑

C⊂B, |C|=r

1

=
|B|∑
r=1

r! S(|A|, r)
(|B|

r

)
,

and this verifies that (5) is a probability function.

5. Probabilistic derivation of the ordinary generating function

It suffices to prove (2) for t = 1/M, M = 1, 2, . . .. Consider the probability distribution
defined by (5) and sum over n:

∞∑
n=0

P(Yn = r) =
(

M

r

)
r!

∞∑
n=0

S(n, r)M−n = (M)r

∞∑
n=0

S(n, r)M−n.

Here (M)r := M(M − 1) · · · (M − r + 1). As mentioned earlier, the random sequence Yn,

n = 0, 1, 2, . . ., is a Markov chain. We refer to the index n as ‘time’. We can easily compute
the transition probabilities

P(Yn+1 = r + 1 | Yn = r) = M − r

M
, r = 0, 1, . . . .

Let σ(r) be the total time that the chain remains in state r . Then σ(r) is a geometric random
variable with parameter (M − r)/M:

P(σ (r) = k) =
(

r

M

)k−1
M − r

M
, k = 1, 2, . . . .
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Hence,

Eσ(r) = M

M − r
.

But σ(r) = ∑∞
n=0 1Yn=r , and so

Eσ(r) =
∞∑

n=0

P(Yn = r).

Hence,
∞∑

n=0

S(n, r)M−n = 1

(M)r

M

M − r
= 1

(M − 1)(M − 2) · · · (M − r)
,

and this yields (2) for t = 1/M .

6. Combinatorial derivation of the ordinary generating function

The combinatorial derivation of the ordinary generating function (2) is more difficult. It is
suggested as an exercise in Stanley’s book; see [3, Exercise 16, Chapter 1, p. 46]. By multiplying
both sides of (2) by r! and expanding the right-hand side, we see that proving correctness of
(2) is equivalent to showing that

r! S(n, r) =
∑

k1,...,kr≥1, k1+···+kr=n

1k1 2k2 · · · rkr . (8)

As noted in (4), the number r! S(n, r) is the cardinality of the set SUR([n], [r]) of surjections
from a set of size n onto a set of size r . We will show that the right-hand side of (8) counts the
same thing by exhibiting a bijection

� : SUR([n], [r]) →
⋃

k1,...,kr≥1, k1+···+kr=n

([1]k1 × [2]k2 × · · · × [r]kr ). (9)

Let f : [n] → [r] be a surjective function. Consider the set [n] = {1, . . . , n} in its natural
order, and let i1 < i2 < · · · < ir be the points at which the function takes a new value for the
first time. That is, let

i1 := 1 ip+1 := min{i > im : f (i) 
= f (i1), . . . , f (ip)}, p = 1, . . . , r − 1.

Then the numbers f (i1), . . . , f (ir ) are just the numbers 1, . . . , r in a different order. Let
L : [r] → [r] then be defined by

L(f (ip)) := p, p = 1, . . . , r,

a relabeling of the values of f . Let

K1 := [i1, i2), K2 := [i2, i3), . . . , Kr := [ir , n],
and define gp ∈ [p]Kp by

gp(i) := L(f (i)), i ∈ Kp.

Finally, let
�f := g1 × · · · × gr .

(See the notational note at the end of Section 1.) It is easy to see that � is a bijection from
SUR([n], [r]) onto

⋃
K1,...,Kr

([1]K1 × [2]K2 × · · · × [r]Kr ), where the union is taken over
disjoint intervals K1, . . . , Kr such that K1 = [1, i1), K2 = [i2, i3), . . . , Kr = [ir , n] for
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some 1 = i1 < i2 < · · · < ir ≤ n, and given by the right-hand side of (9). Since all sets in the
union are pairwise disjoint, its cardinality is given by the right-hand side of (8).

Remark 1. Note that, for the combinatorial derivation of the ordinary generating function, we
used the ordering of [n], something that was not done for the exponential generating function.
Combining (4) and (8) we have

∑
s1,...,sr≥1, s1+···+sr=n

(
n

s1, . . . , sr

)
=

∑
s1,...,sr≥1, s1+···+sr=n

1s12s2 · · · rsr ,

a rather curious identity whose direct proof (that is, showing that the two sides are equal without
showing that they are both equal to a known quantity) is unknown (to the authors).

Dedication

We are pleased to have been given the opportunity to contribute to the final issue of The
Mathematical Scientist and very happy that an anonymous referee is of the opinion that
Professor Joe Gani (founding editor of Journal of Applied Probability and Advances in Applied
Probability) ‘would most certainly have enjoyed this paper’. We dedicate this paper to Joe
Gani’s memory.
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