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Abstract

Gas transport concepts in vertebrates have naturally been formulated based on human blood. 

However, the first vertebrates were aquatic, and fish and tetrapods diverged hundreds of millions  

years ago. Water-breathing vertebrates live in an environment with low and variable O2 levels, 

making environmental O2 an important evolutionary selection pressure in fishes, and various 

features of their gas transport differ from humans. Erythrocyte function in fish is of current interest, 

because current environmental changes affect gas transport, and because especially zebrafish is 

used as a model in biomedical studies, making it important to understand the differences in gas 

transport between fish and mammals to be able to carry out meaningful studies. Of the close to 

thirty thousand fish species, teleosts are the most species-numerous group. However, two additional 

radiations are discussed: agnathans and elasmobranchs. The gas transport by elasmobranchs may be 

closest to the ancestors of tetrapods. The major difference in their haemoglobin (Hb) function to 

humans is their high urea tolerance. Agnathans differ from other vertebrates by having Hbs, where 

cooperativity is achieved by monomer-oligomer equilibria. Their erythrocytes also lack the anion 

exchange pathway with profound effects on CO2 transport. Teleosts are characterized by highly pH 

sensitive Hbs, which can fail to become fully O2-saturated at low pH. An adrenergically stimulated 

Na+/H+ exchanger has evolved in their erythrocyte membrane, and plasma-accessible carbonic 

anhydrase can be differentially distributed among their tissues. Together, and differing from other 

vertebrates, these features can maximize O2 unloading in muscle while ensuring O2 loading in gills.

key words:  Oxygen equilibrium curve (OEC), Bohr effect, Root effect, anion exchange, adrenergically 

stimulated Na+/H+ exchange, carbonic anhydrase, erythrocyte
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1. Introduction: All vertebrates originated in an aquatic environment

Vertebrates originated in an aquatic environment. Consequently, they evolved in an environment 

that is characterized by low O2 solubility, where O2 content is only ca. 1/20 to 1/30 of that in an 

equal volume of surrounding air (depending on temperature) and varies markedly daily and 

seasonally 1. The low O2 availability of water is thought to have been an important selective force in 

the evolution of respiratory systems in fish. As a result, the O2 transport system of fish is the most 

versatile among vertebrates 2-4, with the most extreme adaptation in fishes being the ability to 

breathe air which occurs in approximately 500 species 5. Three major alternative solutions in the gas 

transport by erythrocytes have evolved in fish: that employed by agnathans 6, that used by 

elasmobranchs 7,8, and that found in teleosts 9. The pattern employed by elasmobranchs may be the 

most representative of fish ancestors of the tetrapods and hence mammals 10. Apart from mammals, 

all vertebrates have erythrocytes that are nucleated and contain other cell organelles, which may 

partly explain why many features of the regulation of erythrocyte function, important for the 

different environmental adaptations in fish, are not utilized in air-breathing mammals with their 

organelle-free erythrocytes.  In mammals these features have either been lost, become vestigial or 

alternatively, some of these features may have uniquely evolved in specific groups of fishes and thus 

may never have been present in any mammalian ancestor during the evolution of their O2 transport 

system 10-12. This is an important point to consider when using teleost fishes such as zebrafish (Danio 

rerio) to study O2-dependent phenomena with a mammalian biomedical application: the zebrafish is 

a very hypoxia-tolerant tropical cyprinid 13-15. Although direct link to gas transport cannot be yet 

made, it is of interest that different from mammals all zebrafish cells exhibit circadian rhythm 16. In 

addition to light, oxygen has marked circadian fluctuations 17, and the major oxygen-regulated 

transcription factor, HIF, shows (circadian) rhythmic behaviour 18-20. Many of the discoveries on the 

regulation of erythrocyte function in fish have been made long after the formulation of the general 

blood gas transport principles in vertebrates, which were mainly centred on mammals (for a 

thorough old account, see, e.g. Bishop and Surgenor, 1964) 21. Consequently, more contemporary 
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findings on erythrocyte function have been interpreted in light of an earlier gas transport framework 

that may not be appropriate. In this commentary, we consider erythrocyte function in fish in the 

context of their unique gas transport characteristics.

A couple of examples indicate the marked differences between mammals and fish (and also other 

vertebrates). First, as a result of retaining mitochondria, fish erythrocytes are capable of aerobic 

metabolism, and consume significant amounts of O2 – producing more than 90 % of their ATP 

aerobically 22-25. Second, connected with the presence of a nucleus, fish erythrocytes are capable of 

active gene expression throughout their life span, although gene transcription and translation 

decrease with age 26,27. In view of this, after giving a very short background on the basic vertebrate 

models of gas transport, we consider the different fish solutions in detail with emphasis on their 

unique features. 

2. The basic model of vertebrate oxygen and carbon dioxide transport

Oxygen-carrying pigments are needed to increase the amount of O2 carried by blood, because 

without respiratory pigment the amount of O2 carried would be limited by its low solubility in 

aqueous media such as plasma. Thus, in the absence of respiratory pigments, the O2 consumption 

rate of multicellular animals cannot be high. This is exemplified by icefish, which have secondarily 

lost Hb entirely from their circulatory system. They are able to live in the absence of Hb largely due 

to their low metabolic rate in their low-temperature habitat 28,29. 

The simplest solution to increase the O2-carrying capacity of a solution is to have monomeric globins 

or other monomeric respiratory pigments. However, to be the most effective, O2 binding at the gas 

exchanger should occur at as low an O2 tension as possible and O2 release at the tissues at an O2 

tension as high as possible. This is difficult to accomplish for monomeric globins with hyperbolic 

oxygen equilibrium curves (OEC); by having tetrameric globins, where subunit interactions result in a 

sigmoidally shaped OEC, both the O2 loading and unloading can be more easily fine-tuned to 

respiratory requirements.
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A standard OEC is presented in Figure 1. As shown over a century ago, increasing the partial pressure 

of carbon dioxide (PCO2) decreases Hb-O2 affinity 30. When the pH concept was later formalized, the 

pH-dependent change of O2 affinity was named the Bohr effect (as an increase in PCO2 causes a 

decrease in pH). A single numerical value, P50 is often used to describe Hb-O2 affinity. The value gives 

the partial pressure of O2 (PO2) where Hb is half-saturated, which generally increases as pH 

decreases, indicating a reduction in Hb-O2 affinity. A second major discovery in studies of Hb 

function is now more than 50 years old; in the late 1960’s organic phosphates within the erythrocyte 

were shown to regulate Hb-O2 affinity 31,32. Since then, Hb function has been reviewed several times 

in journals 4,33-35, and books 36-38 to which the reader is referred. The present contribution briefly 

reviews the basics to provide the background for a discussion on the unique solutions in fish 

presented here. 

In the simplest models, tetrameric Hb molecules exist in two major conformations: the high affinity 

R(relaxed)-state and the low affinity T(tense)-state. The existence of high- and low-affinity 

conformations is the prerequisite of cooperative O2 binding (sigmoidal OEC). Perutz (1990) 6 has 

discussed cooperativity in detail. Two main factors influence the T-R-state equilibrium. First, the 

binding of the first O2 molecules to deoxygenated T-state Hb facilitates the binding of consecutive O2 

molecules (i.e. tends to shift the Hb conformation from the T-state towards the R-state). Second, the 

binding of protons (H+s), organic phosphates and other anions (the most important of which appear 

to be Cl- 39 and HCO3
- 40) stabilize the T-state (these so-called allosteric effectors bind to sites other 

than the O2 binding site). The overall OEC of Hb molecules is determined by the probabilities of T- or 

R-state occurrence; the equilibrium between T- and R-states is virtually instantaneous.

Gas transport in fish is optimized in part through pH effects on Hb function. In this context it is 

important to emphasize the linked function concept 41: the effects of H+s on Hb-O2 affinity (Bohr 

effect) and the effects of O2 on the binding of H+s (Haldane effect) describe the same phenomenon. 

Thus, a large numerical value of a Bohr coefficient (∆logP50/∆pH) is necessarily associated with a 
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large numerical value of Haldane coefficient, i.e.  difference in the acid dissociation constants (pKa-

values) of oxy- and deoxyHb with the overall pKa of deoxyHb being much higher than that of oxyHb. 

Often, the effect of pH on Hb-O2 affinity (usually given as ∆logP50/∆pH) is given in terms of plasma 

pH values. However, the ratio of ∆pHe/∆pHi is less than unity, which means that the Bohr coefficient 

obtained using plasma pH is smaller than if the value is estimated either based on erythrocyte pH or 

for Hb solutions i.e. the true value experienced by Hb molecule. The error caused by using plasma 

pH instead of erythrocyte pH remains constant in mammals regardless of the experimental 

conditions, since erythrocyte pH cannot be regulated. The same is true for undisturbed fish 42. 

However, in many groups of fishes, erythrocyte pH can vary independently from plasma pH (see 

below), which makes the values for the Bohr coefficient calculated on the basis of plasma pH 43 less 

meaningful under various stresses and thus such values should be interpreted critically. It is further 

of note that the effect of pH on the Hb-O2 affinity may depend on the pH range studied. In the 

physiologically relevant pH range, a decrease in pH causes a decrease of Hb-O2 affinity (alkaline Bohr 

effect). However, in acid conditions (e.g. below pH 6 for human 37), a decrease in pH may increase 

Hb-O2 affinity (acid Bohr effect). Since the alkaline Bohr effect is the physiologically relevant one, we 

simply refer to that from this point forward as the Bohr effect.

In typical tetrameric Hbs, an increase in temperature decreases the overall O2 affinity, because Hb-

O2 binding is exothermic. However, the heat of oxygenation of each successive O2 molecule that 

binds to the tetramer varies markedly 44. In addition to the exothermic O2 binding by haem, the 

overall temperature effect on Hb-O2 affinity is affected by the endothermic reactions between Hb 

and allosteric effectors such as H+s and organic phosphates  45. Consequently, the higher the: i) 

concentration of allosteric effectors, ii) number of allosteric effector binding sites per Hb tetramer 

and iii) binding affinities of these allosteric effectors, the smaller the temperature-induced decrease 

in Hb-O2 affinity. At an extreme, the final result can be a reversed, endothermic overall Hb 

oxygenation reaction, whereby Hb-O2 affinity increases with increasing temperature 46,47.
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With regard to the transport of CO2, the end product of aerobic respiration, two properties of most 

vertebrate erythrocytes are considered to be of primary importance. First, erythrocytes possess high 

carbonic anhydrase (CA) activity 48,49. Carbonic anhydrase catalyzes the hydration/dehydration 

reactions between CO2 and carbonic acid, which are the rate-limiting steps in establishing the 

equilibrium between CO2 and HCO3
-. Second, the transport of HCO3

- across the erythrocyte 

membrane is accelerated by the anion exchange protein, allowing rapid Cl-/HCO3
- exchange 50,51. The 

rapid Cl-/HCO3
- exchange enables the function of the Jacobs-Stewart cycle, utilized in CO2 transport 

52. In most vertebrates, more than 50% of CO2 excreted originates from plasma HCO3
- that must 

enter the erythrocyte and be converted to CO2 by the CA-catalysed reaction before it can be 

excreted across the respiratory epithelium. The usual pattern of CO2 excretion in vertebrates (Figure 

2c) has been described in a number of reviews 9,53-55.

3. The agnathan solution

The jawless (agnathan) vertebrates, comprising modern hagfishes and lampreys as the sole survivors 

of a once more species-rich group, diverged from the jawed vertebrate lineage some 500 million 

years ago. Its living descendants differ in important aspects from the general pattern of vertebrate 

erythrocyte function, including the possession of structurally and functionally different globins and 

the absence of a rapid anion exchange protein in their erythrocyte membrane.

3.1. Cooperativity of oxygen binding in haemoglobin is generated via monomer-oligomer equilibria

In addition to the mechanism of cooperativity utilized by tetrameric Hbs, co-operative O2 binding can 

occur if the aggregation of globins is oxygen-dependent and the O2 affinities of aggregation states 

differ. In such a case, aggregated Hbs have a low O2 affinity and monomeric Hbs have a high O2 

affinity 6. Aggregation-dependent generation of cooperativity is utilized by the jawless vertebrates, 

hagfish and lampreys. Early studies on agnathan Hbs failed to see aggregation (and cooperativity) 56, 

Page 7 of 38 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8

because dilution favours monomerization 57.  Cooperativity stems from the fact that in the 

oxygenated state, Hb is monomeric but aggregates upon deoxygenation 57-59. A schematic depiction 

of aggregation-dependent O2 affinity regulation is given in Figure 3. In hagfish it is notable that the 

different Hb types have markedly different capabilities for aggregation and that the aggregation of 

some components is influenced by anions like HCO3
- 60. Two significant properties of lamprey Hb 

within erythrocytes are the marked Bohr effect (with a Bohr coefficient of around -1 56, which 

contrasts with a much lower mammalian value of around -0.5 61), and the reduction in the O2 

carrying capacity of the blood at air saturated O2 tensions at low pH 56, a phenomenon that is more 

commonly associated with the blood of teleost fishes 62, where it is referred to as the ‘Root effect’ 

(for review see: 10,63). In contrast, the Bohr coefficient of hagfish Hbs is small – maximally -0.5 57,60, 

and depends on the proportions of different subunits with different aggregation properties 60.

On the basis of molecular phylogenetic evidence, it appears that agnathan Hbs with monomer-

oligomer equilibria are only distantly related to the tetramer-forming Hbs of other Vertebrata 64, and 

have actually evolved from cytoglobin-like ancestors 65. As a consequence, although lampreys have 

Hb characterized by a pronounced sensitivity to H+s, resembling Bohr and Root effects of teleost fish, 

this H+ sensitivity has probably evolved independently 66.  Another major difference between 

agnathan and most tetrameric Hbs is that in the former, organic phosphates do not affect Hb-O2 

affinity 67, whereas in the latter, the effect is usually pronounced, and crucial in fine-tuning Hb-O2 

affinity 4,32,68, although some Hbs even in mammals are organic-phosphate-insensitive 69.

3.2. Agnathan erythrocytes do not have rapid anion transport: implications for carbon dioxide 

transport

In contrast to erythrocytes of other vertebrates, lamprey erythrocytes were shown to regulate 

intracellular pH actively 70,71. This was later shown to be associated with the lack of erythrocyte anion 

exchange activity 72. A similar absence of rapid erythrocyte anion exchange was reported at the 

same time for a member of the other agnathan group, the hagfish Eptatretus stouti 73. The lack of an 
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anion exchanger has a marked influence on CO2 transport, as plasma HCO3
- is consequently not 

available to erythrocyte CA for CO2 excretion, as is a common characteristic of other vertebrates 55,74-

76. Because of the short transit time of erythrocytes in the gills, and the lack of anion exchange, 

virtually all excreted CO2 stems from erythrocyte HCO3
-. The total amount of CO2 and HCO3

- that can 

be transported within erythrocytes, and thus the efficiency of CO2 excretion (Figure 2), is very 

dependent on a high erythrocyte pH, which is much higher in lampreys than hagfishes 76 [about 1 pH 

unit higher in Lampetra fluviatilis than in Myxine glutinosa at an extracellular pH of 7.6 70,77]. 

Consequently, lampreys can transport CO2 much more efficiently than hagfish. This is in keeping with 

the lifestyles of the groups: whereas hagfish are sluggish and incapable of strenuous activity 78, 

lampreys undertake long and vigorous spawning migrations 79.

4. The elasmobranchs

A detailed recent review on O2 and CO2 transport in elasmobranchs is available 80. Although 

elasmobranch Hbs are mostly tetrameric, there is evidence for oxygenation dependent formation of 

higher polymers and dissociation to dimers 7. The histidine content of Hb, and thereby the specific 

hydrogen ion buffer value in the elasmobranchs studied to date is similar to that in mammals 9,80, 

and the value of their Bohr coefficient is small, usually below -0.5 80,81. The organic phosphate 

binding site appears to resemble that of mammals 82, and their erythrocytes have robust anion 

exchange 83,84. Consequently, cartilaginous fishes differ the least among fish from the prototype 

model of jawed vertebrate gas transport 10-12. However, there are three specific points which 

warrant attention with regard to differences in O2 and CO2 transport in elasmobranchs as compared 

to the basic model. First, the plasma osmolality of marine elasmobranchs is about three- to four-fold 

higher than almost all other vertebrates. While their plasma Na+ and Cl- concentrations are much 

lower than seawater values, their plasma is isosmotic with their seawater environment because of 

the high plasma urea concentrations, typically up to 0.5 M 85. Urea at these levels usually denatures 

proteins, but urea concentrations even up to 5 M appear to have minimal effects on Hb-O2 transport 
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function 86. Although it appears that in most cartilaginous fishes urea has a minimal effect on Hb 

function 80,86, there are exceptions 87. Urea tends to antagonize the effect of organic phosphates on 

Hb function in many but not all cartilaginous fish 80.  Second, some shark species are heterothermic, 

maintaining the temperature of some tissues, such as the red swimming  muscle, up to 10-15⁰C 

higher than that of the environment 88,89. Although many of the associated adaptations are 

circulatory with a multitude of heat-exchanging retia mirabilia, Hb function also appears responsive 

80. In heterothermic fish, the effect of temperature on Hb-O2 affinity may be reduced or even 

reversed (as discussed in more detail below 80,81), and in elasmobranchs specifically the allosteric 

effector ATP may reduce or reverse the temperature-effect 90. Third, there appear to be unique 

features in the CO2 transport of elasmobranchs. Both erythrocytic and plasma-accessible CA in gills 

appear to play a role in CO2 excretion 80,91, whereby some plasma HCO3
- can be dehydrated to CO2 

directly from the plasma compartment, without entering the erythrocyte, probably by membrane-

bound extracellular gill cell CA 92. The model of CO2 excretion in elasmobranchs is schematically 

represented as Figure 2c.

5. The teleosts

5.1. The Root effect: extreme pH sensitivity of the oxygen equilibrium curve.

Although the effect of pH on Hb-O2 affinity is a property of virtually all Hbs, many teleost Hbs are 

characterized by extreme pH dependence so that Hbs fail to become fully O2-saturated at low pH 

values regardless of the O2 tension 12,62,63,93-96; Fig. 4), a phenomenon known as  the Root effect. 

When the pH becomes so low that the Root effect is induced, the cooperativity of O2 binding 

eventually disappears, and Hill’s n can even become less than 1 97, which is suggestive of large 

subunit heterogeneity in the O2 affinity of the T-state (α and β) globins 63. 

The physiological role of the Root effect in teleost Hbs can be considered as an acid-triggered 

mechanism by which oxygenated Hb can release substantial amounts of its bound O2 even in the 

presence of a high PO2 96. According to the classical viewpoint, the effect is utilised to generate 
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supra-atmospheric PO2 during one or both of the following processes: (1) the secretion of O2 into the 

teleost swim bladder for buoyancy regulation and/or (2) the improved O2 supply to the often 

avascular and relatively thick teleost retina. In both locations, the Root effect is thought to be 

elicited by local tissue acidification and co-occurs with vascular counter-current gas exchangers, the 

swim bladder rete mirabile and the choroid rete mirabile, respectively. These retia mirabilia allow for 

any O2 released via the Root effect to diffuse back from the venous to the arterial side of the rete 

mirabile and thereby multiply the initial increase in its partial pressure. Similarly, the increase in CO2 

that is associated with the initial blood acidification, can be kept localised by its back-diffusion from 

the venous to the arterial side of the rete mirabile. While the roles of the Root effect in O2 delivery 

to the swim bladder and eye are generally well accepted in the literature, a large scale evolutionary 

reconstruction of the origins of the Root effect and the swim bladder and choroid retia mirabilia has 

suggested that the Root effect evolved before the first occurrences of either the retinal or the swim 

bladder O2 secretion mechanism 12, raising the question about the initial roles of the Root effect that 

may confer selective advantages. 

The high pH dependency of teleost fish Hbs is also reflected in the magnitude of the Bohr coefficient, 

which often exceeds -1, even when calculated relative to plasma pH 97-99. The structural basis of the 

marked pH dependency of teleost Hbs has been reviewed earlier 96,97, and here we focus on how the 

erythrocyte properties of teleost fish, in light of the highly pH sensitive Hbs, affect gas transport. 

The initial evolutionarily adaptive role of the Root effect may have been to facilitate O2 unloading 

generally in working muscle of teleost fish 100,101, making it later possible to utilize the property to 

give greatly enhanced O2 secretion to the eye and swim bladder. Oxygen uptake and delivery is 

maximized by a high Hb-O2 affinity at the gills and a low Hb-O2 affinity in the tissues. In simple terms 

this means that when pH decreases in the muscle to induce the Root effect, the PO2 in unloading is 

markedly increased. Since the rate of diffusion depends directly on the partial pressure gradient, this 

speeds up the diffusion of O2 to working muscle markedly. 
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To set the stage, one needs first to consider how the large Haldane effect of teleost fish Hb, i.e. the 

markedly higher pKa of deoxy- than oxyHb, can theoretically influence arterial and venous 

erythrocyte pH in the absence of acid loads. Since the CO2/HCO3
- buffer system plays a reduced role 

in water breathers and Hb is the major non-bicarbonate buffer in their blood, erythrocyte pH in 

arterial blood would be close to the overall pKa value of oxyHb and that in venous blood close to the 

higher overall pKa value of deoxyHb in the absence of any external acid loads from the tissues, i.e. at 

constant CO2 tension. The marked increase of erythrocyte pH appears to stop at 50% Hb-O2 

saturation  102. In resting conditions the deoxygenation-induced increase in erythrocyte pH is also 

transmitted to plasma pH. This means that theoretically venous blood can have a pH value that is 

higher than that of arterial blood even in the presence of an overall acid load. The gradient between 

erythrocyte and plasma pH in selected conditions is illustrated in Figure 5.  

Induction of the Root effect requires a significant, species-dependent, decrease of erythrocyte pH. 

Assuming that metabolism causes a tissue acid load, which is adequate to cause a 30 % decrease of 

the maximal O2 saturation, that the Hb concentration is 100 g/L and that arterial blood is virtually 

fully O2-saturated, then the release of O2 to the capillary network can be adequate to increase the O2 

tension to 500 mmHg – to a value more than ten times greater than what is found in the absence of 

significant acid load in rainbow trout (Oncorhynchus mykiss) 103. Consequently, the diffusion gradient 

for O2 transfer could be increased dramatically in fish with Root effect Hbs. Such an increase will 

drastically increase the O2 available to swimming muscle, whereby the Root effect would markedly 

favour O2 delivery to the muscle of strenuously exercising teleost fish. Notably, the above is only a 

theoretical calculation and assumes that blood is in a closed system. While that is true only for blood 

in the arterial and venous system, the capillary circulation is at best a semi-open system, since the 

volume (of fish) which is in contact with tissue capillaries is limited. The only truly open part of the 

circulation is the gill circulation, where blood is in close contact with the near infinite volume of 

water in the ambient environment. 
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In line with the above prediction, we have observed that the O2 tension of blood in the caudal vessel 

of striped bass (Morone saxatilis) was significantly increased (from 118.6 to 173.3 mmHg) and supra-

atmospheric after 5-min chasing 104. The pH of sampled blood after exercise was markedly reduced 

(by 0.3 pH units) during exercise, and may be sufficiently low to induce the Root effect in this 

species. 

In conclusion, the drastically increased O2 unloading potential due to the extreme pH dependence of 

Root effect Hbs in teleost fish may represent the basis for a highly efficient O2 transport system 

relative to that found in air-breathers, which is also coupled with a more efficient respiratory gas 

exchange system (counter current exchange 2). However, the use of Root effect Hbs for acid-

triggered, sustained and drastic increases in muscle PO2 values is of benefit only, if the pH effects in 

the erythrocyte can be reversed in the time it takes such tissue capillary blood to reach the O2 

uptake site in the gills. Recent work on salmonids in particular, referred to in the following section, 

suggests that this is made possible by the β-adrenergically stimulated sodium/proton (Na+/H+) 

exchange in their erythrocytes 105 .  

5. 2. The adrenergically stimulated, oxygen-dependent sodium-proton exchanger of erythrocytes

Erythrocyte pH can be rapidly increased in teleost fish through an adrenergically stimulated Na+/H+  

exchange 12,42,106. Adrenergically stimulated Na+/H+ exchange has also been found in erythrocytes of 

amphibians 107-109; however, activation in these cells is not rapid 109 precluding a role in the short 

term regulation of O2 transport. The adrenergic Na+/H+ exchange activity of teleost erythrocytes is 

strongly oxygenation dependent 110-112, and results in rapid net H+ extrusion following stimulation 

113,114. The increase in erythrocyte pHi is dependent upon the absence of CA in the plasma which 

would otherwise short-circuit this response by rapidly catalysing the conversion of plasma HCO3
- and 

extruded H+s to CO2 113,114. Also, a marked effect of the Na+/H+ exchange on erythrocyte pH requires 

that the buffering capacity of Hb is low. Indeed, the buffering capacity of teleost Hbs is much lower 

than that of other vertebrate groups 115.  The extremely rapid H+ extrusion and its O2 dependency 
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appear unique for teleost erythrocytes, although O2 dependency in the adrenergically stimulated 

Na+/H+ exchange of the amphibian Bufo marinus 109 and in other ion transport pathways of 

vertebrate erythrocytes 116-119 has been described. Common to those ion transport pathways is that 

they seem to be involved in volume regulation, which does not appear to require as rapid a response 

as that in the O2 transport cascade.  The O2 dependency of Na+/H+ exchange appears to be generated 

not by molecular oxygen but by hydroxyl radicals 120, suggesting that oxyradicals are not only 

toxicants but also important signalling molecules in animals 121.

Characterization of the β-adrenergic receptors of teleost erythrocytes yielded a surprise: the 

receptors were clearly of the β3-subtype 122. Since this receptor subtype, characterized both 

genetically and pharmacologically, is associated with thermoregulation and fat metabolism in 

homeothermic vertebrates 123 but in teleost fish with regulation of O2 transport in stress, it 

represents an intriguing example of how the same receptor type can evolve to regulate completely 

different functions 124.

5.3. The simultaneous presence of Root effect and adrenergic Na+/H+ exchange maximizes oxygen 

unloading from erythrocytes but enables effective oxygen uptake in gills

Although the Root effect and marked pH dependency of Hb-O2 affinity may increase O2 unloading 

during a generalized blood acidosis (such as occurs in hypoxia or exhaustive exercise), O2 uptake at 

the gills would decrease if erythrocytic pHi did not recover prior to gill entry. However, recent 

studies on rainbow trout have shown that the erythrocytic pH recovery occurs well within the 

venous transit time of the erythrocyte from the tissues back to the gills 105 as a result of the 

adrenergic stimulation of erythrocyte Na+/H+ exchange, whereby pHi is largely independent of pHe 

and consequently O2 loading in gills can be maintained. While the activation of erythrocyte Na+/H+ 

exchange ensures O2 loading in the gills, it could prevent any pH decrease upon further acid load in 

tissues due to tight regulation of pHi. However, the effect of Na+/H+ exchange on erythrocytic pHi can 

be reduced by speeding up the extracellular hydration/dehydration reactions between HCO3
- and 
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CO2, as their rate in comparison to the rate of H+ extrusion determines the extent of the change in 

pHi 114,125. Thus, a decrease in erythrocyte pHi at the tissues depends mainly on the activity of 

extracellular (i.e. plasma-accessible) CA: the greater the activity, the greater the reduction in pHi and 

consequently the decrease in Hb-O2 affinity and increase in O2 unloading. In keeping with conditions 

that could maximize O2 delivery in the presence of erythrocyte Na+/H+ exchange activation, plasma 

accessible CA is absent in the gills of most teleosts that have been studied 126,127, but present in some 

tissues such as the muscle and the heart 101,128,129 of some species. The differential distribution of 

plasma accessible CA (absence in the gills and presence in the tissues) creates conditions for greatly 

enhanced O2 unloading that could more than double O2 unloading with no change in tissue perfusion 

100. The potential of this system has been demonstrated in rainbow trout blood both in vitro 130 and 

in vivo 101, as well as in other salmonids 131. Most recently the potential has been demonstrated in a 

more derived teleost, cobia (Rachycentron canadum; Shu and Brauner, unpublished). Functional 

evidence for the role of this system in enhancing O2 unloading has been demonstrated in Atlantic 

salmon (Salmo salar), where injection of a plasma accessible CA inhibitor (C18) in fish swimming at a 

moderate speed induced a 30% increase in cardiac output to compensate, and at higher swimming 

speeds fish collapsed  (Harter, T.S., Zanuzzo, F.S., Supuran, C.T., Gamperl, A.K. and Brauner, C.J., 

unpublished). Clearly more studies are required to determine just how widespread this system is 

among teleosts and its functional importance given that there are more than 25000 teleost fish 

species with marked differences in the presence and activity of the erythrocyte Na+/H+ exchange of 

those species where it has been investigated 12,112,132. Furthermore, the differential tissue 

distribution of CA has mainly been studied in salmonids.

In conclusion, maximal efficiency of O2 transport in teleosts requires that the high pH dependency of 

Hb-O2 affinity, adrenergic activation of erythrocytic Na+/H+ exchange and differential distribution of 

plasma-accessible CA function in concert (Fig. 6). Alone, each of the phenomena could cause 

problems for gas transport, but together, they form a highly efficient system that differs markedly 
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from other vertebrates. How the different components have evolved has been discussed by Randall 

et al., 2014 127 and Harter and Brauner, 2017 133, but remains a fruitful area for further investigation. 

5.4. Temperature effects on teleost haemoglobins: ectothermy and heterothermy 

It has been known for over a century that some species of tuna can maintain parts of their body at a 

temperature much higher than that of the ambient environment 134-136, a feature shared by some 

sharks 88, as discussed above and known as regional heterothermy. The swimming muscle in the 

body core has a high temperature, which permits improved muscle performance, but the 

temperature at the body surface and the gills is close to ambient. The marked difference in 

temperature between the body surface and the core can be maintained by the organization of blood 

vessels in retia mirabilia in which arteries with warm blood from the core flow counter-current, and 

in close proximity to the veins with cold blood from the body surface 137. This system allows for 

effective heat conservation in those tissues. If the effect of temperature on Hb-O2 affinity were 

similar to that of other vertebrates, this could lead to a pronounced loss of O2 from arteries to veins 

within the retia mirabilia so that the associated peripheral tissues could suffer from O2 lack. As early 

as 1960 it was observed that at 50% saturation, the O2 affinity of tuna Hb was not affected by 

temperature 138. It was later observed that in bluefin tuna blood, a reverse temperature effect exists, 

where Hb-O2 affinity actually increased with increasing temperature at saturations above 50% and 

decreased at low saturations 139,140. While the reversed temperature effect appears 

counterproductive for O2 release and O2 consumption in core muscle, this trait is thought to 

minimize the loss of O2 from arteries to veins in retia mirabilia. Interestingly, the blood of some 

ectothermic marine fishes lack the effect of temperature on Hb- O2 affinity 47,99, suggesting that a 

pre-existing trait was utilized in the evolution of Hb function of regionally heterothermic fish. 

Regional heterothermy in fishes may involve the whole core of the fish being regulated above 

ambient temperature, opah (Lampris guttatus) as the most extreme case 141 or only a specific tissue 

such as the eye/brain area as in billfish 46,142. It is usually thought that in regional heterothermy the 

Page 16 of 38Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17

effects of temperature on Hb-O2 affinity are reduced or reversed 45,139. At least two factors influence 

the overall heat of oxygenation: exothermic O2 binding to the haem groups of Hb and the 

endothermic dissociation of allosteric effectors (mainly H+s and organic phosphates) from the Hb 

45,46. Because both enthalpies differ depending on the oxygenation state of Hb, the apparent heat of 

oxygenation also depends on Hb-O2 saturation 140.

Apart from the evolution of Hb function in response to temperature in regional heterothermy, the 

ambient temperature to which fish are adapted appears to have had little influence on functional 

characteristics of Hb. This is important to note, when considering the possibilities of fish to adapt to 

increased temperatures, brought about by climate change. It was initially thought that fish from 

extremely cold, Arctic and Antarctic, habitats, where the temperature is stable and can be close to -

2oC, would have reduced temperature dependency of Hb-O2 affinity 143,144. However, more recently it 

has been shown that temperature sensitivity of Hb-O2 binding in Antarctic fish appears similar to 

temperate fish 145. A complicating factor in evaluating the effect of temperature on Hb-O2 binding is 

that, e.g., the enthalpy of the binding of ATP to Hb is influenced by pH 146, and pH is affected acutely 

by a change in temperature and following temperature acclimation, both of which can influence the 

apparent relationship between temperature and Hb-O2 affinity.

6. Evolutionary convergence of responses to achieve similar organismic traits

Similar to adrenergically-stimulated erythrocytes in teleost fishes, erythrocyte pH is also largely 

independent from plasma pH in the agnathan lampreys. In the latter this feature is mainly due to the 

presence of constitutively active O2-dependent Na+/H+ exchange 147 in the absence of rapid Cl-/HCO3
-

exchange 72 which results in a high erythrocyte pH 70,71,148. This is in contrast with the other agnathan 

group, hagfish, which also lack the anion exchanger 73, but have low erythrocyte pH because of 

minimal Na+/H+ exchange or other H+ extrusion mechanisms 149. Thus, in lampreys and teleosts, 

although the mechanism through which erythrocyte pH is to some degree independent of plasma pH 

is different, the final outcome is similar (convergent evolution). The evolutionary reasons for this 
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convergent evolution are necessarily speculative. However, at least two possibilities are plausible. 

First, in both groups of water-breathers, intensive short-term bouts of exercise occur. Since the 

erythrocyte pHi (and thereby Hb-O2 affinity) can be maintained high in gills, the exercise-induced 

metabolic acidosis does not appreciably reduce O2 binding in gills. Second, both teleost fish and 

lampreys are characterized by highly pH-sensitive Hbs with low buffer values 9. It is plausible that 

because of this they cannot afford to lose the ability to regulate erythrocytic pHi via Na+/H+ 

exchange. Regardless of the reason, although the lamprey and teleost fish lineages diverged about 

500 million years ago 150, O2 transport by erythrocytes has converged to enable similar organismal 

function.

7. Erythrocytes – not only for gas transport: roles in buffering and cell signalling

The above has concentrated completely on respiratory gas transport. However, while this is 

undoubtedly the primary function of erythrocytes, they possess many other important properties. 

First, as Hb is a very abundant protein with many histidine residues that can donate or accept H+s, 

Hb is a very important extracellular buffer as long as the erythrocytic Hb is accessible to extracellular 

acid loads. The buffering capacity of Hb is proportional to the histidine content, which is markedly 

reduced in teleost fish, but high in lungfish, elasmobranchs and tetrapods 11,12,115. Among the 

agnathans, the histidine content is distinctly higher in hagfish than in lampreys 9,57, which is also 

reflected in their respective H+ buffering capacities 151. It is probable that the reduction of Hb 

histidine content and thus H+ buffering capacity in both lampreys and teleost fish may be to benefit 

O2 transport characteristics (see above). Haemoglobin has a pronounced role in rapid extracellular 

buffering as long as erythrocytes have rapid anion exchange 76, as is the case for all vertebrates 

except agnathans 72,73. Because HCO3
- transport across the agnathan erythrocyte membrane is 

exceedingly slow 74,75, erythrocytic Hb cannot rapidly buffer extracellular acid loads. Although a 

number of explanations are possible, perhaps this limited ability to buffer an extracellular acid load 

is associated with a more temperate distribution where metabolic rate and thus metabolic acid loads 
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are reduced. This antitropical distribution is clearly seen for lampreys, which tend to have freshwater 

ammocoetes (usually river-resident lamprey larvae) with a low thermal tolerance 152. 

Another role for Hb is its influence on redox balance and nitrite-nitrate-nitric oxide equilibrium. This 

may have an influence on the regulation of erythrocyte adrenergic Na+/H+ exchangers and other 

oxygenation-dependent ion transporters. For example, potassium transport in crucian carp 

erythrocytes appears to have two different oxygenation-dependent sensors 119. One appears to be a 

hydroxyl radical sensor 121,153, where Hb may be the primary regulator of hydroxyl radical level. 

Based on mammalian studies, Hb appears to be a biological Fenton reagent with deoxyhaemoglobin 

as the form responsible for hydroxyl radical generation 154. So far, the sensing mechanism of the 

other O2 sensor described has not been clarified.

Mammalian studies also suggest that Hb is an oxido-reductase, largely depending on its level of 

oxygenation 155. It plays an important role in regulating vasodilatation and vasoconstriction by 

influencing nitric oxide (and nitrite) level. When Hb is oxygenated, it scavenges NO and the vessels 

are constricted. When Hb is deoxygenated, it reduces nitrite to form NO, whereby vessels 

dependent on NO signalling are dilated 155. Marked formation of NO from nitrite occurs in the 

erythrocytes of a teleost fish, carp 156. Further, the nitrite reductase activity correlates with the Hb-

O2 affinity, and changes when the erythrocyte NTP level changes 157, the latter being modulated in 

response to hypoxia in fish 68. In view of these findings Hb appears to play a part in NO-dependent 

signalling. This is appropriate, as NO-signalling plays a role in vascular tone, i.e. regulating O2 

transport to capillaries. Another signalling molecule, hydrogen sulphide, has also been demonstrated 

to be especially important in regulating the vasculature in response to hypoxia 158,159. Not 

surprisingly, Hb regulates the sulphide turnover both in fish and humans 160,161. There are significant 

species-dependent differences both in the formation of sulphaemoglobin 162 and in the effects of 

sulphide on membrane ion transport 163 in the erythrocytes of teleost fish, but the physiological 

significance of these differences has not been evaluated.  The involvement of Hb in sulphide 
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signalling may be a reason for the continuous presence of ferric methaemoglobin, which does not 

carry O2, but enables reversible sulphide reactions 160,161. Also another gaseous signalling molecule, 

CO, interacts and is regulated by Hb at least in mammals 164. The overall picture that emerges is that 

gaseous signalling plays an important role in erythrocyte function and that Hb is important in its 

regulation. However, so far this remains a little studied area, which would clearly be worthy of 

further investigation.

8. The functions of “new” globins

Tetrameric Hb is at very high concentration within erythrocytes with most fish expressing multiple 

isoforms 165. However, in addition, fish erythrocytes transcribe at least cytoglobin, globin x and 

neuroglobin 166. In particular, a high mRNA level of the gene encoding neuroglobin was found. In 

three-spined stickleback, neuroglobin transcription in erythrocytes was the most active of any tissue, 

and even more active than that of Hb 166. The function of neuroglobin is far from clear, but it has 

been suggested to play a role  in redox or NO regulation 167 and in regulating free sulphide levels 168. 

As discussed above, all of these signalling systems may be active in erythrocytes and can involve Hb. 

Thus, neuroglobin formation in teleost erythrocytes may be related to redox, NO or sulphide 

regulation. Globin x is a membrane-bound globin 169, which can also take part in either redox 170 or 

NO 171 regulation. Another plausible function for globin x would be in the regulation of adrenergic 

Na+/H+ exchanger. It was proposed that Hb may be a regulator of the erythrocyte adrenergic Na+/H+ 

exchanger 172. However, properties of bulk Hb did not fit the requirements for the O2 sensor 118. A 

minor, membrane-bound globin with O2 affinity different from bulk Hb, such as globin x, on the 

other hand, could be involved. 

9. Conclusions

From the preceding sections it is clear that the erythrocyte functions of fishes are underpinned by 

various unique mechanisms, which are vastly different in the different fish groups. These erythrocyte 

functions often deviate from the prototype textbook dogma. Thus when using fish in environmental 
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research, their phylogenetic relationships need to be taken into account. When fish are used with 

biomedical questions in mind, it must be remembered that their O2 transport system can be far 

more efficient than that in mammals because of the need for efficient O2 extraction from their low- 

O2 environment. It is not well understood how the O2-dependent phenomena beyond gas transport 

are different in zebrafish and humans. Perhaps the major difference between human and fish 

erythrocytes is that the former do not possess nuclei and other cellular organelles. Consequently, 

while mammalian erythrocytes are devoid of gene expression and produce energy anaerobically, fish 

erythrocytes are aerobic, and many of their adaptations can involve active protein production. 

Notably, however, the effectiveness of gene expression decreases with the age of the erythrocyte 27, 

adding age-dependent selective removal of erythrocytes to possible regulatory mechanisms behind 

gas transport. Such selective removal of erythrocytes would affect, e.g., the adrenergic 

responsiveness of the erythrocytes 173, and affect the seasonality of the responses of erythrocytes 174.

Conflict of interest

There is no conflict of interest.

Acknowledgements

 CJB was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) 

Discovery Grant (2018-04172). We thank Jacelyn Shu for creating Figure 2 and Ari Karhilahti for 

drawing the rainbow trout for Figure 6.

10. References

1. Nikinmaa M. Respiratory adjustments of rainbow trout (Salmo gairdneri Richardson) to 
changes in environmental temperature and oxygen availability, University of Helsinki, 
Finland; 1981.

2. Piiper J. Respiratory gas exchange at lungs, gills and tissues: mechanisms and adjustments. J 
exp Biol. 1982;100:3-22.

Page 21 of 38 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22

3. Piiper J, Dejours P, Haab P, Rahn H. Concepts and basic quantities in gas exchange 
physiology. Respir Physiol. 1971;13:292-304.

4. Weber RE, Jensen FB. Functional adaptations in hemoglobins from ectothermic vertebrates. 
Annu Rev Physiol. 1988;50:161-179.

5. Graham JB. Air-Breathing Fishes. San Diego: Academic Press; 1997.
6. Perutz M. Mechanisms of cooperativity and allosteric regulation in proteins. Cambridge: 

Cambridge University Press; 1990.
7. Fyhn UEH, Sullivan B. Elasmobranch hemoglobins: dimerization and polymerization in 

various species. Comp Biochem Physiol. 1975;50B:119-129.
8. Wells RMG. Haemoglobin function in aquatic animals: molecular adaptations to 

environmental challenge. Marine And Freshwater Research. 1999;50(8):933-939.
9. Nikinmaa M. Vertebrate red blood cells. Vol 28. Berlin-Heidelberg-New York: Springer-verlag; 

1990.
10. Brauner CJ, Berenbrink M. Gas Transport and Exchange. In: David JM, ed. Fish Physiology

Primitive Fishes. Volume 26 ed.: Academic Press; 2007:213-282.
11. Berenbrink M. Evolution of vertebrate haemoglobins: Histidine side chains, specific buffer 

value and Bohr effect. Respiratory Physiology & Neurobiology. 2006;154(1-2):165-184.
12. Berenbrink M, Koldkjaer P, Kepp O, Cossins AR. Evolution of oxygen secretion in fishes and 

the emergence of a complex physiological system. Science. 2005;307(5716):1752-1757.
13. Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural 

history and new notes from the field. Zebrafish. 2007;4(1):21-40.
14. Barrionuevo WR, Fernandes MN, Rocha O. Aerobic and anaerobic metabolism for the 

zebrafish, Danio rerio, reared under normoxic and hypoxic conditions and exposed to acute 
hypoxia during development. Brazilian Journal of Biology. 2010;70(2):425-434.

15. Abdallah SJ, Thomas BS, Jonz MG. Aquatic surface respiration and swimming behaviour in 
adult and developing zebrafish exposed to hypoxia. J Exp Biol. 2015;218(Pt 11):1777-1786.

16. Steindal IAF, Whitmore D. Circadian Clocks in Fish-What Have We Learned so far? Biology-
Basel. 2019;8(1).

17. Nikinmaa M, Rees BB. Oxygen-dependent gene expression in fishes. American Journal Of 
Physiology-Regulatory Integrative And Comparative Physiology. 2005;288(5):R1079-R1090.

18. Egg M, Koblitz L, Hirayama J, et al. Linking Oxygen to Time: The Bidirectional Interaction 
Between the Hypoxic Signaling Pathway and the Circadian Clock. Chronobiology 
International. 2013;30(4):510-529.

19. Pelster B, Egg M. Hypoxia-inducible transcription factors in fish: expression, function and 
interconnection with the circadian clock. Journal of Experimental Biology. 2018;221(13).

20. Sandbichler AM, Jansen B, Peer BA, Paulitsch M, Pelster B, Egg M. Metabolic Plasticity 
Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells. Cellular Physiology and 
Biochemistry. 2018;46(3):1159-1174.

21. Bishop C, Surgenor DM. The red blood cell: a comprehensive treatise. New York: Academic 
Press; 1964.

22. Eddy FB. Oxygen uptake by rainbow trout blood, Salmo gairdneri. J Fish Biol. 1977;10:87-90.
23. Ferguson RA, Boutilier RG. Metabolic-membrane coupling in red blood cells of trout:the 

effects of anoxia and adrenergic stimulation. J exp Biol. 1989;143:149-164.
24. Sephton DH, Macphee WL, Driedzic WR. Metabolic enzyme activities, oxygen consumption 

and glucose utilization in sea raven (Hemitripterus americanus) erythrocytes. J exp Biol. 
1991;159:407-418.

25. Walsh PJ, Wood CM, Thomas S, Perry SF. Characterization of red blood cell metabolism in 
rainbow trout. J exp Biol. 1990;154:475-489.

26. Lund SG, Phillips MCL, Moyes CD, Tufts BL. The effects of cell ageing on protein synthesis in 
rainbow trout (Oncorhynchus mykiss) red blood cells. Journal of Experimental Biology. 
2000;203(14):2219-2228.

Page 22 of 38Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

23

27. Gotting M, Nikinmaa MJ. Transcriptomic Analysis of Young and Old Erythrocytes of Fish. 
Frontiers in Physiology. 2017;8.

28. Cheng CHC, Detrich HW. Molecular ecophysiology of Antarctic notothenioid fishes. 
Philosophical Transactions of the Royal Society B-Biological Sciences. 2007;362(1488):2215-
2232.

29. Portner HO, Peck L, Somero G. Thermal limits and adaptation in marine Antarctic 
ectotherms: an integrative view. Philosophical Transactions of the Royal Society B-Biological 
Sciences. 2007;362(1488):2233-2258.

30. Bohr C, Hasselbalch KA, Krogh A. Uber einen in biologischer Beziehung wichtigen Einfluss, 
den die Kohlensaurespaunung des Blutes auf dessen Sauerstoffbindung ubt. Skand Arch 
Physiol. 1904;16:402-412.

31. Benesch R, Benesch RE. The effect of organic phosphates from the human erythrocyte on 
the allosteric properties of hemoglobin. Biochem Biophys Res Comm. 1967;26:162-167.

32. Chanutin A, Curnish RR. Effect of organic and inorganic phosphates on the oxygen 
equilibrium of human erythrocytes. Arch Biochem Biophys. 1967;121:96-102.

33. Bauer C. On the respiratory function of haemoglobin. Rev Physiol Biochem Pharmacol. 
1974;70:1-31.

34. Mairbaurl H, Weber RE. Oxygen Transport by Hemoglobin. Comprehensive Physiology. 
2012;2:1463-1489.

35. Bunn HF. Regulation of hemoglobin function in mammals. Am Zool. 1980;20:199-211.
36. Dickerson RE, Geis I. Hemoglobin: Structure, function, evolution, and pathology. Menlo Park: 

Benjamin/Cummings; 1983.
37. Bunn HF, Forget BG. Hemoglobin: molecular, genetic and clinical aspects. 690 pp ed. 

Philadelphia: W.B.Saunders; 1986.
38. Storz JF. Hemoglobin. Insights into Protein Structure, Function, and Evolution. Oxford: Oxford 

University Press; 2018.
39. Giardina B, Condo SG, Sherbini SE, et al. Arctic life adaptation-I. The function of reindeer 

hemoglobin. Comp Biochem Physiol. 1989;94B:129-133.
40. Bauer C, Forster M, Gros G, et al. Analysis of bicarbonate binding to crocodilian hemoglobin. 

J Biol Chem. 1981;256:8429-8435.
41. Wyman J, Jr. Linked functions and reciprocal effects in hemoglobin: a second look. Adv 

Protein Chem. 1964;19:223-286.
42. Nikinmaa M. Membrane transport and the control of haemoglobin-oxygen affinity in 

nucleated erythrocytes. Physiol Rev. 1992;72:301-321.
43. Nikinmaa M, Weber RE. Hypoxic acclimation in the lamprey, Lampetra fluviatilis: Organismic 

and erythrocytic responses. J exp Biol. 1984;109:109-119.
44. Mayo KH, Chien JCW. Effect of temperature on functional properties of carp hemoglobin. J 

Mol Biol. 1980;142:63-73.
45. Weber RE, Campbell KL. Temperature dependence of haemoglobin-oxygen affinity in 

heterothermic vertebrates: mechanisms and biological significance. Acta Physiol (Oxf). 
2011;202(3):549-562.

46. Weber RE, Campbell KL, Fago A, Malte H, Jensen FB. ATP-induced temperature 
independence of hemoglobin-O2 affinity in heterothermic billfish. J exp Biol. 2010;213(Pt 
9):1579-1585.

47. Clark TD, Rummer JL, Sepulveda CA, Farrell AP, Brauner CJ. Reduced and reversed 
temperature dependence of blood oxygenation in an ectothermic scombrid fish: 
implications for the evolution of regional heterothermy? Journal Of Comparative Physiology 
B-Biochemical Systemic And Environmental Physiology. 2010;180(1):73-82.

48. Carter MJ. Carbonic anhydrase: isozymes, properties, distribution and functional 
significance. Biol Rev (Cambridge). 1972;47:465-513.

Page 23 of 38 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

24

49. Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 
1967;47:595-781.

50. Tanner MJA. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin 
Hematol. 1993;30(1):34-57.

51. Hamasaki N, Okubo K. Band 3 protein: Physiology, function and structure. Cell Mol Biol. 
1996;42:1025-1039.

52. Jacobs MH, Stewart DR. The role of carbonic anhydrase in certain ionic exchanges involving 
the erythrocyte. J Gen Physiol. 1942;25:539-552.

53. Klocke RA. Carbon dioxide transport. In: Farhi LE, Tenney SM, eds. Handbook of 
Physiology.The respiratory system.Vol IV.Gas exchange. Bethesda Maryland: American 
Physiological Society; 1987:173-197.

54. Roughton FJW. Transport of oxygen and carbon dioxide. In: Fenn WO, Rahn H, eds. 
Handbook of physiology. Respiration  Vol I. Washington D.C.: American Physiological Society; 
1964:767-825.

55. Tufts BL, Perry SF. Carbon dioxide transport and excretion. In: Perry SF, Tufts BL, eds. Fish 
Respiration. Vol 17. San Diego: Academic Press; 1998:229-281.

56. Nikinmaa M. Haemoglobin function in intact Lampetra fluviatilis erythrocytes. Respir Physiol. 
1993;91:283-293.

57. Fago A, Weber RE. Hagfish haemoglobins. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H, 
eds. The Biology of Hagfishes. London: Chapman & Hall; 1998:321-333.

58. Briehl RW. The relation between the oxygen equilibrium and aggregation of subunits in 
lamprey hemoglobin. J Biol Chem. 1963;238:2361-2366.

59. Qiu Y, Maillett DH, Knapp J, Olson JS, Riggs AF. Lamprey hemoglobin - Structural basis of the 
Bohr effect. Journal of Biological Chemistry. 2000;275(18):13517-13528.

60. Fago A, Giangiacomo L, D'Avino R, et al. Hagfish hemoglobins - Structure, function, and 
oxygen-linked association. Journal of Biological Chemistry. 2001;276(29):27415-27423.

61. Lapennas GN. The magnitude of the Bohr coefficient: optimal for oxygen delivery. Respir 
Physiol. 1983;54:161-172.

62. Root RW. The respiratory function of the blood of marine fishes. Biol Bull mar biol Lab 
Woods Hole. 1931;61:427-457.

63. Berenbrink M. TRANSPORT AND EXCHANGE OF RESPIRATORY GASES IN THE BLOOD | Root 
Effect: Molecular Basis, Evolution of the Root Effect and Rete Systems. In: Farrell AP, ed. 
Encyclopedia of Fish Physiology. San Diego: Academic Press; 2011:935-943.

64. Hoffmann FG, Opazo JC, Storz JF. Gene cooption and convergent evolution of oxygen 
transport hemoglobins in jawed and jawless vertebrates. Proc Natl Acad Sci U S A. 
2010;107(32):14274-14279.

65. Burmester T, Hankeln T. Function and evolution of vertebrate globins. Acta Physiologica. 
2014;211(3):501-514.

66. Berenbrink M. TRANSPORT AND EXCHANGE OF RESPIRATORY GASES IN THE BLOOD | 
Evolution of the Bohr Effect. In: Farrell AP, ed. Encyclopedia of Fish Physiology. San Diego: 
Academic Press; 2011:921-928.

67. Nikinmaa M, Weber RE. Gas transport in lamprey erythrocytes. In: Bicudo JEPW, ed. The 
vertebrate gas transfer cascade. Adaptations to environment and mode of life. Boca Raton, 
Florida: CRC Press; 1993:179-187.

68. Wood SC, Johansen K. Adaptation to hypoxia by increased HbO2 affinity and decreased red 
cell ATP concentration. Nature New Biol. 1972;237:278-279.

69. Bunn HF. Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian 
hemoglobins. Science. 1971;172(3987):1049-1050.

70. Nikinmaa M. Red cell pH of lamprey (Lampetra fluviatilis) is actively regulated. J Comp 
Physiol B. 1986;156:747-750.

Page 24 of 38Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

25

71. Nikinmaa M, Kunnamo-Ojala T, Railo E. Mechanisms of pH regulation in lamprey (Lampetra 
fluviatilis) red blood cells. J exp Biol. 1986;122:355-367.

72. Nikinmaa M, Railo E. Anion movements across lamprey (Lampetra fluviatilis) red cell 
membrane. Biochim Biophys Acta. 1987;899:134-136.

73. Ellory JC, Wolowyk MW, Young JD. Hagfish (Eptatretus stouti) erythrocytes show minimal 
chloride transport activity. J exp Biol. 1987;129:377-383.

74. Tufts BL, Boutilier RG. The absence of rapid chloride/bicarbonate exchange in lamprey 
erythrocytes: implications for CO2 transport and ion distributions between plasma and 
erythrocytes in the blood of Petromyzon marinus. J exp Biol. 1989;144:565-576.

75. Tufts BL, Boutilier RG. CO2 transport in agnathan blood: evidence of erythrocyte Cl-/HCO3
- 

exchange limitations. Respir Physiol. 1990;80:335-348.
76. Nikinmaa M. Oxygen and carbon dioxide transport in vertebrate erythrocytes: An 

evolutionary change in the role of membrane transport. J exp Biol. 1997;200:369-380.
77. Tufts BL, Boutilier RG. CO2 transport properties of the blood of a primitive vertebrate Myxine 

glutinosa. Exp Biol. 1990;48:341-347.
78. Martini FH. The ecology of hagfishes. In: J.M. J, Lomholt JP, Weber RE, Malte H, eds. The 

biology of hagfishes. London: Chapman & Hall; 1998:57-78.
79. McKenzie DJ, Hale ME, Domenici P. Locomotion in Primitive Fishes. In: Fish Physiology. Vol 

26. Academic Press; 2007:319-380.
80. Morrison PR, Gilmour KM, Brauner CJ. 3 - Oxygen and Carbon Dioxide Transport in 

Elasmobranchs. In: Shadwick RE, Farrell AP, Brauner CJ, eds. Fish Physiology. Vol 34. 
Academic Press; 2015:127-219.

81. Andersen ME, Olson JS, Gibson QH, Carey FG. Studies on ligand binding to hemoglobins from 
teleosts and elasmobranchs. J Biol Chem. 1973;248:331-341:331-341.

82. Aschauer H, Weber RE, Braunitzer G. The primary structure of the hemoglobin of the dogfish 
shark (Squalus acanthias). Antagonist effects of ATP and urea on oxygen affinity on an 
elasmobranch hemoglobin. Biol Chem Hoppe-Seyler. 1985;366:589-599.

83. Musch MW, Davis EM, Goldstein L. Oligomeric forms of skate erythrocyte band 3 - Effect of 
volume expansion. J Biol Chem. 1994;269(31):19683-19686.

84. Perlman DF, Musch MW, Goldstein L. Band 3 in cell volume regulation in fish erythrocytes. 
Cell Mol Biol. 1996;42:975-984.

85. Yancey PH. 4 - Organic Osmolytes in Elasmobranchs. In: Shadwick RE, Farrell AP, Brauner CJ, 
eds. Fish Physiology. Vol 34. Academic Press; 2015:221-277.

86. Ingermann RL. Vertebrate Hemoglobins. Comprehensive Physiology. 2011:357-408.
87. Weber RE, Wells RMG, Tougaard S. Antagonistic effect of urea on oxygenation-linked 

binding of ATP in an elasmobranch hemoglobin. Life Sci. 1983;32:2157-2161.
88. Carey FG, Teal JM. Mako and porbeagle: warm-bodied sharks. Comp Biochem Physiol. 

1969;28:199-204.
89. Patterson JC, Sepulveda CA, Bernal D. The vascular morphology and in vivo muscle 

temperatures of thresher sharks (Alopiidae). J Morphol. 2011;272(11):1353-1364.
90. Larsen C, Malte H, Weber RE. ATP-induced reverse temperature effect in isohemoglobins 

from the endothermic porbeagle shark (Lamna nasus). J Biol Chem. 2003;278(33):30741-
30747.

91. Gilmour KM, Perry SF. Branchial membrane-associated carbonic anhydrase activity maintains 
CO2 excretion in severely anemic dogfish. American Journal Of Physiology-Regulatory 
Integrative And Comparative Physiology. 2004;286(6):R1138-R1148.

92. Gilmour KM, Bayaa M, Kenney L, McNeill B, Perry SF. Type IV carbonic anhydrase is present 
in the gills of spiny dogfish (Squalus acanthias). American Journal Of Physiology-Regulatory 
Integrative And Comparative Physiology. 2007;292(1):R556-R567.

Page 25 of 38 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

26

93. Scholander PV, Van Dam L. Secretion of gases against high pressure in the swimbladders of 
deep sea fishes I. Oxygen dissociation in blood. Biol Bull mar biol Lab Woods Hole. 
1954;107:247-259.

94. Brittain T. The Root effect. Comp Biochem Physiol. 1987;86B:473-481.
95. Berenbrink M, Koldkjaer P, Hannah Wright E, Kepp O, Jose da Silva A. Magnitude of the Root 

effect in red blood cells and haemoglobin solutions of fishes: a tribute to August Krogh. Acta 
Physiol (Oxf). 2011;202(3):583-592.

96. Berenbrink M. Historical reconstructions of evolving physiological complexity: O-2 secretion 
in the eye and swimbladder of fishes. Journal of Experimental Biology. 2007;210(9):1641-
1652.

97. Jensen FB, Fago A, Weber RE. Hemoglobin structure and function. In: Perry SF, Tufts BL, eds. 
Fish Respiration. San Diego: Academic Press; 1998:1-40.

98. Nikinmaa M, Soivio A. Oxygen dissociation curves and oxygen capacities of blood of a 
freshwater fish, Salmo gairdneri. Ann Zool Fennici. 1979;16:217-221.

99. Barlow SL, Metcalfe J, Righton DA, Berenbrink M. Life on the edge: O2 binding in Atlantic cod 
red blood cells near their southern distribution limit is not sensitive to temperature or 
haemoglobin genotype. J Exp Biol. 2017;220(Pt 3):414-424.

100. Rummer JL, Brauner CJ. Root Effect Haemoglobins in Fish May Greatly Enhance General 
Oxygen Delivery Relative to Other Vertebrates. Plos One. 2015;10(10).

101. Rummer JL, Mckenzie DJ, Innocenti A, Supuran CT, Brauner CJ. Root Effect Hemoglobin May 
Have Evolved to Enhance General Tissue Oxygen Delivery. Science. 2013;340(6138):1327-
1329.

102. Jensen FB. Pronounced influence of Hb-O2 saturation on red cell pH in tench blood in vivo 
and in vitro. J Exp Zool. 1986;238:119-124.

103. Soivio A, Nikinmaa M, Nyholm K, Westman K. The role of gills in the responses of Salmo 
gairdneri during moderate hypoxia. Comp Biochem Physiol. 1981;70A:133-139.

104. Nikinmaa M, Cech JJ, Jr., McEnroe M. Blood oxygen transport in stressed striped bass 
(Morone saxatilis): role of beta-adrenergic responses. J Comp Physiol B. 1984;154:365-369.

105. Harter TS, May AG, Federspiel WJ, Supuran CT, Brauner CJ. The time-course of red blood cell 
intracellular pH recovery following short-circuiting in relation to venous transit times in 
rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol. 2018.

106. Nikinmaa M. Effects of adrenaline on red cell volume and concentration gradient of protons 
across the red cell membrane in the rainbow trout, Salmo gairdneri. Mol Physiol. 
1982;2:287-297.

107. Palfrey HC, Greengard P. Hormone-sensitive ion transport systems in erythrocytes as models 
for epithelial ion pathways. Ann N Y Acad Sci. 1981;372:291-308.

108. Kaloyianni M, Rasidaki A. Adrenergic responses of R. ridibunda red cells. J Exp Zool. 
1996;276:175-185.

109. Kristensen K, Koldkjae P, Berenbrink M, Wang T. Oxygen-sensitive regulatory volume 
increase and Na transport in red blood cells from the cane toad, Bufo marinus. Journal of 
Experimental Biology. 2007;210(13):2290-2299.

110. Salama A. The role of cAMP in regulating the beta-adrenergic response of rainbow trout 
(Oncorhynchus mykiss) red blood cells. Fish Physiol Biochem. 1993;10(6):485-490.

111. Salama A, Nikinmaa M. The adrenergic responses of carp (Cyprinus carpio) red cells: effects 
of Po2 and pH. J exp Biol. 1988;136:405-416.

112. Salama A, Nikinmaa M. Species differences in the adrenergic responses of fish red cells: 
studies on whitefish, pikeperch, trout and carp. Fish Physiol Biochem. 1989;6:167-173.

113. Motais R, Fievet B, Garcia-Romeu F, Thomas S. Na+-H+ exchange and pH regulation in red 
blood cells: role of uncatalyzed H2CO3 dehydration. Am J Physiol. 1989;256:C728-C735.

Page 26 of 38Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

27

114. Nikinmaa M, Tiihonen K, Paajaste M. Adrenergic control of red cell pH in salmonid fish: Roles 
of the sodium/proton exchange, Jacobs-Stewart cycle and membrane potential. J exp Biol. 
1990;154:257-271.

115. Jensen FB. Hydrogen ion equilibria in fish haemoglobins. J exp Biol. 1989;143:225-234:225-
234.

116. Gibson JS, Cossins AR, Ellory JC. Oxygen-sensitive membrane transporters in vertebrate red 
cells. Journal of Experimental Biology. 2000;203(9):1395-1407.

117. Virkki LV, Salama A, Nikinmaa M. Regulation of ion transport across lamprey (Lampetra 
fluviatilis) erythrocyte membrane by oxygen tension. J exp Biol. 1998;201:1927-1937.

118. Berenbrink M, Volkel S, Heisler N, Nikinmaa M. O2-dependent K+ fluxes in trout red blood 
cells: the nature of O2 sensing revealed by the O2 affinity, cooperativity and pH dependence 
of transport. Journal Of Physiology-London. 2000;526(1):69-80.

119. Berenbrink M, Volkel S, Koldkjaer P, Heisler N, Nikinmaa M. Two different oxygen sensors 
regulate oxygen-sensitive K+ transport in crucian carp red blood cells. Journal Of Physiology-
London. 2006;575(1):37-48.

120. Nikinmaa M, Bogdanova A, Lecklin T. Oxygen dependency of the adrenergic Na/H exchange 
in rainbow trout erythrocytes is diminished by a hydroxyl radical scavenger. Acta 
Physiologica Scandinavica. 2003;178(2):149-154.

121. Bogdanova A, Berenbrink M, Nikinmaa M. Oxygen-dependent ion transport in erythrocytes. 
Acta Physiologica. 2009;195(3):305-319.

122. Nickerson JG, Dugan SG, Drouin G, Perry SF, Moon TM. Activity of the unique -adrenergic 
Na+/H+ exchanger in trout erythrocytes is controlled by a novel 3-AR subtype. Am J Physiol Regul 
Integr Comp Physiol. 2003.

123. Strosberg AD. Structure and function of the beta(3)-adrenergic receptor. Annual Review of 
Pharmacology and Toxicology. 1997;37:421-450.

124. Nikinmaa M. beta(3)-Adrenergic receptors - studies on rainbow trout reveal ancient 
evolutionary origins and functions distinct from the thermogenic response. American Journal 
Of Physiology-Regulatory Integrative And Comparative Physiology. 2003;285(3):R515-R516.

125. Nikinmaa M, Boutilier RG. Adrenergic control of red cell pH, organic phosphate 
concentrations and haemoglobin function in teleost fish. In: Heisler N, ed. Mechanisms of 
systemic regulation: Respiration and circulation. Berlin: Springer; 1996.

126. Gilmour KM, Perry SF. Carbonic anhydrase and acid-base regulation in fish. Journal of 
Experimental Biology. 2009;212(11):1647-1661.

127. Randall DJ, Rummer JL, Wilson JM, Wang S, Brauner CJ. A unique mode of tissue oxygenation 
and the adaptive radiation of teleost fishes. Journal of Experimental Biology. 
2014;217(8):1205-1214.

128. Wang Y, Henry RP, Wright PM, Heigenhauser GJ, Wood CM. Respiratory and metabolic 
functions of carbonic anhydrase in exercised white muscle of trout. Am J Physiol. 
1998;275(6):R1766-1779.

129. Alderman SL, Harter TS, Wilson JM, Supuran CT, Farrell AP, Brauner CJ. Evidence for a 
plasma-accessible carbonic anhydrase in the lumen of salmon heart that may enhance 
oxygen delivery to the myocardium. Journal of Experimental Biology. 2016;219(5):719-724.

130. Rummer JL, Brauner CJ. Plasma-accessible carbonic anhydrase at the tissue of a teleost fish 
may greatly enhance oxygen delivery: in vitro evidence in rainbow trout, Oncorhynchus 
mykiss. Journal of Experimental Biology. 2011;214(14):2319-2328.

131. Shu JJ, Harter TS, Morrison PR, Brauner CJ. Enhanced hemoglobin-oxygen unloading in 
migratory salmonids. Journal of Comparative Physiology B-Biochemical Systemic and 
Environmental Physiology. 2018;188(3):409-419.

132. Hyde DA, Perry SF. Absence of adrenergic red cell pH and oxygen content regulation in 
American eel (Anguilla rostrata) during hypercapnic acidosis in vivo and in vitro. J Comp 
Physiol B. 1990;159:687-693.

Page 27 of 38 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

28

133. Harter TS, Brauner CJ. 1 - The O2 and CO2 Transport System in Teleosts and the Specialized 
Mechanisms That Enhance Hb–O2 Unloading to Tissues. In: Gamperl AK, Gillis TE, Farrell AP, 
Brauner CJ, eds. Fish Physiology. Vol 36. Academic Press; 2017:1-106.

134. Carey FG. Fishes with warm bodies. Sci Amer. 1973;228:36-44.
135. Carey FG, Teal JM. Regulation of body temperature by the bluefin tuna. Comparative 

Biochemistry and Physiology. 1969;28(1):205-213.
136. Fudge DS, Stevens ED. The visceral retia mirabilia of tuna and sharks: an annotated 

translation and discussion of the Eschricht & Müller 1835 paper and related papers. . Guelph 
Ichtyology Reviews. 1996;4(1-92).

137. Carey FG, Teal JM. Heat conservation in tuna fish muscle. Proc Natl Acad Sci U S A. 
1966;56(5):1464-1469.

138. Rossi-Fanelli A, Antonini E. Oxygen equilibrium of haemoglobin from Thunnus thynnus. 
Nature. 1960;186:895-896.

139. Carey FG, Gibson QH. Reverse temperature dependence of tuna hemoglobin oxygenation. 
Biochem Biophys Res Commun. 1977;78:1376-1382.

140. Ikeda-Saito M, Yonetani T, Gibson QH. Oxygen equilibrium studies on hemoglobin from the 
bluefin tuna (Thunnus thynnus). J Mol Biol. 1983;168:673-686.

141. Wegner NC, Snodgrass OE, Dewar H, Hyde JR. Animal physiology. Whole-body endothermy 
in a mesopelagic fish, the opah, Lampris guttatus. Science. 2015;348(6236):786-789.

142. Carey FG. A brain heater in the swordfish. Science. 1982;216(4552):1327-1329.
143. di Prisco G, Condo SG, Tamburrini M, Giardina B. Oxygen transport in extreme 

environments. Trends in Biochemical Sciences. 1991;16:471-474.
144. di Prisco G, D'Avino R, Camardella L, Caruso C, Romano M, Rutigliano B. Structure and 

function of hemoglobin in Antarctic fishes and evolutionary implications. Polar Biol. 
1990;10:269-274.

145. Fago A, Wells RMG, Weber RE. Temperature-dependent enthalpy of oxygenation in Antarctic 
fish hemoglobins. Comp Biochem Physiol B. 1997;118:319-326.

146. Greaney GS, Hobish MK, Powers DA. The effects of temperature and pH on the binding of 
ATP to carp (Cyprinus carpio) deoxyhemoglobin. J Biol Chem. 1980;255:445-453.

147. Virkki LV, Nikinmaa M. Activation and physiological role of Na+/H+ exchange in lamprey 
(Lampetra fluviatilis) erythrocytes. J exp Biol. 1994;191:89-105.

148. Boutilier RG, Ferguson RA, Henry RP, Tufts BL. Exhaustive Exercise in the Sea Lamprey 
(Petromyzon marinus) - Relationship Between Anaerobic Metabolism and Intracellular Acid 
Base Balance. J exp Biol. 1993;178:71-88:71-88.

149. Nikinmaa M, Tufts BL, Boutilier RG. Volume and pH regulation in agnathan erythrocytes - 
Comparisons between the hagfish, Myxine glutinosa, and the lampreys, Petromyzon marinus 
and Lampetra fluviatilis. J Comp Physiol B. 1993;163(7):608-613.

150. Janvier P. Living Primitive Fishes and Fishes From Deep Time. In: Fish Physiology. Vol 26. 
Academic Press; 2007:1-51.

151. Jensen FB. Haemoglobin H+ equilibria in lamprey (Lampetra fluviatilis) and hagfish (Myxine 
glutinosa). J Exp Biol. 1999;202 (Pt 14):1963-1968.

152. Potter IC, Gill HS, Renaud CB, Hauocher D. The Taxonomy, Phylogeny, and Distribution of 
Lampreys. In: Docker MF, ed. Lampreys: Biology, Conservation and Control. Dordrecht, 
Germany: Springer Science+Business Media; 2015.

153. Bogdanova A, Nikinmaa M. Reactive oxygen species regulate oxygen-sensitive potassium flux 
in rainbow trout erythrocytes. J Gen Physiol. 2001;117(2):181-190.

154. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton 
reagent. J Biol Chem. 1984;259(23):14354-14356.

155. Helms CC, Gladwin MT, Kim-Shapiro DB. Erythrocytes and Vascular Function: Oxygen and 
Nitric Oxide. Front Physiol. 2018;9:125.

Page 28 of 38Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

29

156. Jensen FB. Nitric oxide formation from nitrite in zebrafish. Journal of Experimental Biology. 
2007;210(19):3387-3394.

157. Jensen FB, Kolind RAH, Jensen NS, Montesanti G, Wang T. Interspecific variation and 
plasticity in hemoglobin nitrite reductase activity and its correlation with oxygen affinity in 
vertebrates. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 
2017;206:47-53.

158. Olson KR. Vascular actions of hydrogen sulfide in nonmammalian vertebrates. Antioxidants 
& Redox Signaling. 2005;7(5-6):804-812.

159. Olson KR, Whitfield NL, Bearden SE, et al. Hypoxic pulmonary vasodilation: a paradigm shift 
with a hydrogen sulfide mechanism. American Journal Of Physiology-Regulatory Integrative 
And Comparative Physiology. 2010;298(1):R51-R60.

160. Jensen B, Fago A. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under 
physiological conditions. J Inorg Biochem. 2018;182:133-140.

161. Bianco CL, Savitsky A, Feelisch M, Cortese-Krott MM. Investigations on the role of 
hemoglobin in sulfide metabolism by intact human red blood cells. Biochem Pharmacol. 
2018;149:163-173.

162. Volkel S, Berenbrink M. Sulphaemoglobin formation in fish: A comparison between the 
haemoglobin of the sulphide-sensitive rainbow trout (Oncorhynchus mykiss) and of the 
sulphide-tolerant common carp (Cyprinus carpio). Journal of Experimental Biology. 
2000;203(6):1047-1058.

163. Volkel S, Berenbrink M, Heisler N, Nikinmaa M. Effects of sulfide on K+ flux pathways in red 
blood cells of crucian carp and rainbow trout. Fish Physiology and Biochemistry. 
2001;24(3):213-223.

164. Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-
releasing molecules. Am J Physiol Cell Physiol. 2017;312(3):C302-C313.

165. Weber RE. Functional significance and structural basis of multiple hemoglobins with special 
reference to ectothermic vertebrates. In: Truchot J-P, Lahlou B, eds. Animal nutrition and 
transport processes 2. Transport, respiration and excretion:comparative and environmental 
aspects. Basel: Karger; 1990:58-75.

166. Gotting M, Nikinmaa M. More than hemoglobin - the unexpected diversity of globins in 
vertebrate red blood cells. Physiol Rep. 2015;3(2).

167. Burmester T, Hankeln T. What is the function of neuroglobin? Journal of Experimental 
Biology. 2009;212(10):1423-1428.

168. Ascenzi P, di Masi A, Leboffe L, et al. Neuroglobin: From structure to function in health and 
disease. Molecular Aspects of Medicine. 2016;52:1-48.

169. Blank M, Wollberg J, Gerlach F, et al. A Membrane-Bound Vertebrate Globin. Plos One. 
2011;6(9).

170. Koch J, Burmester T. Membrane-bound globin X protects the cell from reactive oxygen 
species. Biochemical and Biophysical Research Communications. 2016;469(2):275-280.

171. Corti P, Xue JM, Tejero J, et al. Globin X is a six-coordinate globin that reduces nitrite to nitric 
oxide in fish red blood cells. Proceedings of the National Academy of Sciences of the United 
States of America. 2016;113(30):8538-8543.

172. Motais R, Garcia-Romeu F, Borgese F. The control of Na+/H+ exchange by molecular oxygen 
in trout erythrocytes.A possible role of hemoglobin as a transducer. J Gen Physiol. 
1987;90:197-207.

173. Lecklin T, Tuominen A, Nikinmaa M. The adrenergic volume changes of immature and 
mature rainbow trout (Oncorhynchus mykiss) erythrocytes. Journal of Experimental Biology. 
2000;203(19):3025-3031.

174. Koldkjaer P, Pottinger TG, Perry SF, Cossins AR. Seasonality of the red blood cell stress 
response in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology. 
2004;207(2):357-367.

Page 29 of 38 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

30

175. Brauner CJ, Gilmour KM, Perry SF. Effect of haemoglobin oxygenation on Bohr proton 
release and CO2 excretion in the rainbow trout. Resp Physiol. 1996;106:65-70.

 

Figure captions

Figure 1  a. O2 equilibrium curves with O2 saturation (%) of Hb on y-axis and the partial pressure of 

O2 (kPa) of the Hb solution on x-axis. Often, the O2 affinity of Hb is given as the P50 value, which is the 

partial pressure of O2 at which Hb is 50% O2-saturated. The effect of decreasing pH is shown by a 

right shift of the O2 equilibrium curve from A to B. The numerical value for the pH effect (Bohr 

coefficient) is usually given as ∆ log P50 value/∆pH. b. The interaction between O2-binding Hb 

subunits (n; sigmoidality) is given by the Hill plot, where the y-axis is the logarithm of the ratio of the 

oxygenated Hb fraction (S) over the deoxygenated Hb fraction (1-S) [log (S/(1-S))] and the x-axis is 

the logarithm of the partial pressure of O2). 1. gives the log P50 value for Hb in the R-state , 2. the 

slope of the line is n (interaction between O2-binding Hb subunits),  3. gives the log P50 value for T-

state Hb, and 4. the overall log P50 value (=the same as the log P50 value derived from OEC).

Figure 2. Schematic representations of basic patterns of CO2 excretion in vertebrates. In the 

agnathans, hagfish (a) and lamprey (b), sharks (c) and teleosts (d). In the agnathans, the red blood 

cells lack Cl-/HCO3
- exchange. In the hagfish, carbonic anhydrase (CA) catalyzes the conversion of 

HCO3
- to CO2 from both the plasma compartment (via plasma accessible CA; CA-IV) and the 

erythrocyte. In lamprey, CA-IV is absent and all HCO3
- converted to CO2 is from the erythrocyte and 

oxygenation of Hb provides H+ for this reaction through a large Haldane effect. In sharks, the 

presence of CA-IV permits CO2 directly from the plasma compartment and erythrocyte Cl-/HCO3
- 

exchange permits plasma HCO3
- to enter the erythrocyte for conversion to CO2. This pattern 

represents the general vertebrate pattern of CO2 excretion in vertebrates and is similar in air-

breathers. In teleosts, CA-IV is absent and all CO2 excreted is through the erythrocyte where a tight 

coupling of O2 uptake and CO2 excretion exists due to the presence of a large Haldane effect. 
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Figure 3. The generation of cooperativity by aggregation/dissociation reactions in lamprey Hbs. 

Monomers have the highest O2 affinity, and oxygenation favours dissociation of oligomers to 

monomers. Dissociation of oligomers to monomers is also favoured by an increase in pH and 

dilution.

Figure 4. O2 equilibrium curves of rainbow trout A. at resting plasma pH (7.65) and B. at pH 7.40, 

where the Root effect has been induced (i.e. O2  saturation approaches asymptotically a value below 

full saturation, in this case maximal O2 saturation is 69%, i.e. Root effect 31%; data from 98). 

Figure 5. Arterio-venous pH difference (dpH) in rainbow trout A. theoretically, if the only thing 

affecting blood pH were the difference in pKa value between oxy- and deoxyHb (data based on 175), 

B. in normoxic conditions, and C. in moderate hypoxia (40% air saturation) (data for b and c from 

103). A decrease in the negative value of dpH (as compared to A) or an increase in its positive value 

indicates acid input to blood.  

Figure 6. Schematic representation on how the presence of Root effect Hb, adrenergic Na+/H+ 

exchange of erythrocyte membrane, and the absence of carbonic anhydrase in the gills and its 

presence in the muscle allow to secure O2 loading at gills, but increase O2 unloading in muscle of 

strenuously exercised rainbow trout. In gills, there is no plasma-accessible carbonic anhydrase. Thus, 

the adrenergically activated Na+/H+ exchange increases erythrocyte pH after the blood has left the 

muscle. Consequently, the Hb-O2 affinity increases and O2 loading in gills remains effective (i.e. Hb 

reaches close to full saturation) despite plasma acidification. From gills, blood flows to working 

muscle, which has plasma-accessible carbonic anhydrase. Consequently, erythrocyte pH decreases, 

even though the adrenergic Na+/H+ exchange of membrane is active. The pH drop can be adequate 

to induce the Root effect, whereby O2 is released from Hb and increases the partial pressure of O2 

and speeds up diffusion to O2-requiring structures. The changes occur at physiologically relevant 

time scales.
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Figure 1  a. O2 equilibrium curves with O2 saturation (%) of Hb on y-axis and the partial pressure of O2 
(kPa) of the Hb solution on x-axis. Often, the O2 affinity of Hb is given as the P50 value, which is the partial 
pressure of O2 at which Hb is 50% O2-saturated. The effect of decreasing pH is shown by a right shift of the 
O2 equilibrium curve from A to B. The numerical value for the pH effect (Bohr coefficient) is usually given as 

∆ log P50 value/∆pH. 
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Figure 1b. The interaction between O2-binding Hb subunits (n; sigmoidality) is given by the Hill plot, where 
the y-axis is the logarithm of the ratio of the oxygenated Hb fraction (S) over the deoxygenated Hb fraction 

(1-S) [log (S/(1-S))] and the x-axis is the logarithm of the partial pressure of O2). 1. gives the log P50 
value for Hb in the R-state , 2. the slope of the line is n (interaction between O2-binding Hb subunits),  3. 
gives the log P50 value for T-state Hb, and 4. the overall log P50 value (=the same as the log P50 value 

derived from OEC). 
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Figure 2. Schematic representations of basic patterns of CO2 excretion in vertebrates. In the agnathans, 
hagfish (a) and lamprey (b), sharks (c) and teleosts (d). In the agnathans, the red blood cells lack Cl-

/HCO3- exchange. In the hagfish, carbonic anhydrase (CA) catalyzes the conversion of HCO3- to CO2 from 
both the plasma compartment (via plasma accessible CA; CA-IV) and the erythrocyte. In lamprey, CA-IV is 
absent and all HCO3- converted to CO2 is from the erythrocyte and oxygenation of Hb provides H+ for this 

reaction through a large Haldane effect. In sharks, the presence of CA-IV permits CO2 directly from the 
plasma compartment and erythrocyte Cl-/HCO3- exchange permits plasma HCO3- to enter the erythrocyte 

for conversion to CO2. This pattern represents the general vertebrate pattern of CO2 excretion in 
vertebrates and is similar in air-breathers. In teleosts, CA-IV is absent and all CO2 excreted is through the 
erythrocyte where a tight coupling of O2 uptake and CO2 excretion exists due to the presence of a large 

Haldane effect. 
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Figure 4. O2 equilibrium curves of rainbow trout A. at resting plasma pH (7.65) and B. at pH 7.40, where 
the Root effect has been induced (i.e. O2  saturation approaches asymptotically a value below full 

saturation, in this case maximal O2 saturation is 69%, i.e. Root effect 31%; data from 92). 
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Figure 5. Arterio-venous pH difference (dpH) in rainbow trout A. theoretically, if the only thing affecting 
blood pH were the difference in pKa value between oxy- and deoxyHb (data based on 170), B. in normoxic 
conditions, and C. in moderate hypoxia (40% air saturation) (data for b and c from 97). A decrease in the 

negative value of dpH (as compared to A) or an increase in its positive value indicates acid input to blood.   
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Figure 6. Schematic representation on how the presence of Root effect Hb, adrenergic Na+/H+ exchange of 
erythrocyte membrane, and the absence of carbonic anhydrase in the gills and its presence in the muscle 
allow to secure O2 loading at gills, but increase O2 unloading in muscle of strenuously exercised rainbow 

trout. In gills, there is no plasma-accessible carbonic anhydrase. Thus, the adrenergically activated Na+/H+ 
exchange increases erythrocyte pH after the blood has left the muscle. Consequently, the Hb-O2 affinity 

increases and O2 loading in gills remains effective (i.e. Hb reaches close to full saturation) despite plasma 
acidification. From gills, blood flows to working muscle, which has plasma-accessible carbonic anhydrase. 
Consequently, erythrocyte pH decreases, even though the adrenergic Na+/H+ exchange of membrane is 

active. The pH drop can be adequate to induce the Root effect, whereby O2 is released from Hb and 
increases the partial pressure of O2 and speeds up diffusion to O2-requiring structures. The changes occur 

at physiologically relevant time scales. 
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