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Objective: To determine drug resistance mutation (DRM) patterns
in a large cohort of patients failing nonnucleoside reverse transcrip-
tase inhibitor (NNRTI)-based first-line antiretroviral therapy regi-
mens in programs without routine viral load (VL) monitoring and to
examine intersubtype differences in DRMs.

Design: Sequences from 787 adults/adolescents who failed an
NNRTI-based first-line regimen in 13 clinics in Uganda, Kenya,
Zimbabwe, and Malawi were analyzed. Multivariable logistic
regression was used to determine the association between specific
DRMs and Stanford intermediate-/high-level resistance and factors
including REGA subtype, first-line antiretroviral therapy drugs,
CD4, and VL at failure.

Results: The median first-line treatment duration was 4 years
(interquartile range 30–43 months); 42% of participants had
VL $100,000 copies/mL and 63% participants had CD4 ,100

cells/mm3. Viral subtype distribution was A1 (40%; Uganda and
Kenya), C (31%; Zimbabwe and Malawi), and D (25%; Uganda
and Kenya), and recombinant/unclassified (5%). In general,
DRMs were more common in subtype-C than in subtype-A and/
or subtype-D (nucleoside reverse transcriptase inhibitor muta-
tions K65R and Q151M; NNRTI mutations E138A, V106M,
Y181C, K101E, and H221Y). The presence of tenofovir resis-
tance was similar between subtypes [P (adjusted) = 0.32], but
resistance to zidovudine, abacavir, etravirine, or rilpivirine was
more common in subtype-C than in subtype-D/subtype-A
[P (adjusted) , 0.02].

Conclusions: Non-B subtypes differ in DRMs at first-line failure,
which impacts on residual nucleoside reverse transcriptase inhibitor
and NNRTI susceptibility. In particular, higher rates of etravirine and
rilpivirine resistance in subtype-C may limit their potential utility in
salvage regimens.
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INTRODUCTION
Large databases of HIV drug resistance mutations

(DRMs), invaluable for individual patient clinical decision-
making, are largely populated with data from subtype-B
viruses, dominant in Europe and North America. The preva-
lence and pattern of DRMs differ between B and non-B
subtypes. Studies comparing different non-B subtypes have
typically had small numbers of participants failing first-line
therapy, and thus limited power to detect subtype differences,
given confounding associated with setting-specific factors,
such as first-line regimens and monitoring approaches.1

More than 15 million people receive antiretroviral
therapy (ART) in sub-Saharan Africa, mostly delivered using
the WHO public health approach that recommends using 2
nucleoside reverse transcriptase inhibitor (NRTI) drugs com-
bined with a nonnucleoside reverse transcriptase inhibitor
(NNRTI) drug for first-line treatment and with a protease
inhibitor (PI) for second-line treatment.2,3 Regular viral load
(VL) monitoring is not widely available, and treatment failure
is consequently detected late, at which time there is extensive
resistance.3 Current WHO guidelines recommend selecting the
NRTI drugs for second-line therapy using an algorithm based
on first-line NRTI drug exposure.3 An understanding of
subtype differences in mutational patterns and residual drug
susceptibility might allow more refined NRTI selection
predictions in areas where a single subtype predominates
and might also clarify the role of second-generation NNRTIs
in third-line therapy.

We assessed resistance in a large cohort of sub-Saharan
African adults/adolescents with first-line treatment failure to
determine the impact of viral subtype on mutational patterns
and corresponding drug susceptibility.

METHODS
This study included participants failing NNRTI-based

first-line therapy enrolled in the EARNEST trial, a large trial
testing several PI-based treatment regimens for second-line
therapy, and was performed at 13 sites in 4 sub-Saharan African
countries (1 trial site excluded from this study, see below).4 In
the 3–5 years preceding this trial, these sites were delivering
ART using the public health approach with standardized first-
line ART regimens (stavudine- and nevirapine-based regimens
predominating in earlier years, with increasing use of tenofovir-
and efavirenz-based regimens subsequently). At most sites,
first-line failure was detected using clinical monitoring, some-
times supplemented with intermittent CD4 monitoring. In the
year before enrollment, some sites were performing targeted VL
testing in suspected treatment failures, but none had imple-
mented regular routine VL testing.

Trial eligibility required participants to have been taking
an NNRTI-based first-line regimen for .12 months and to be
currently adherent (no more than 3 ART doses missed in the

month before screening). Failure of first-line ART was defined
by clinical, immunological, or virological criteria (modified
from WHO 2010 guidelines and confirmed by VL .400
copies/mL).4 A baseline plasma sample was obtained before
the switch to second-line ART, stored locally, and shipped to
a central repository at the Joint Clinical Research Centre,
Kampala, Uganda, within 12 months of collection.

All 37 participants recruited at 1 site in Zambia (3% of the
total sample size), and 41 (3%) participants from the other 13
sites had no baseline samples stored and were excluded. Three
participants not taking standard 2NRTI + NNRTI at failure (2
previously NNRTI exposed, 1 ineligible4) were also excluded.
Samples from all remaining participants randomized to PI/NRTI
(N = 398) and PI/raltegravir (N = 393) arms were selected, and
15 samples from those randomized to PI monotherapy who had
received only tenofovir and lamivudine/emtricitabine (with
NNRTI) in their first-line regimen were added to increase
numbers receiving the current WHO-recommended first-line
regimen (total 806 baseline samples assayed). Patient demo-
graphics and medical and treatment history (including antire-
troviral drugs) were obtained from case records and patient
self-report. VL and CD4 counts were performed at trial screening
(,6 weeks before baseline) using standard methods at local sites.

HIV genotyping was performed using an in-house
sequencing method encompassing codons 1–300 of reverse
transcriptase at a WHO-designated laboratory (Joint Clinical
Research Centre, Kampala, Uganda).5 In brief, RNA was
extracted using the Qiagen RNA extraction kit and reverse
transcribed followed by a nested PCR. The cleaned PCR
product was cycle sequenced using the ABI 3730xl. Sequences
were edited using the SeqScape version 2.7 and subsequently
on Recall as recommended by WHO.6 Amino acid sequences
were compared with consensus subtype-B, DRMs were defined
using the International AIDS Society—USA list,7 and suscep-
tibility was predicted using the Stanford algorithm version 7.0
using the full sequence data available.8 Subtype was deter-
mined by the REGA algorithm version 3.0.9 Sequences of viral
isolates in this study were submitted to GenBank.

Statistical Analysis
Multivariable logistic regression was used to determine

associations between specific DRMs and 2 main factors of
interest: subtype and ART exposure at first-line failure
(stavudine, tenofovir, zidovudine, or other NRTI for NRTI
DRMs; efavirenz or nevirapine for NNRTI DRMs). As well as
including these 2 factors, models adjusted for the following
potential confounders: ART drug exposure before the regimen
they failed on, time on first-line ART, CD4 and log10 VL at
failure, and presence/absence of clinical failure. Exact logistic
regression (continuous factors dichotomized at approximate
midpoints) was used where logistic regression failed because of
small numbers. Similar approaches were used to determine
associations between Stanford intermediate-/high-level resis-
tance to key drugs and the factors above. Participants with
recombinant viruses or where no subtype could be determined
were excluded from all models. Models did not adjust for
country because national programs determined the specific
NRTIs used in first line (Table 1); analyses assumed that any
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relationship between country and DRMs or susceptibility could
only be realized through ART received and the other
factors above.

All statistical tests presented are 2-sided, without
adjustment for multiple comparisons. All analyses were
performed in Stata version 13.1.

RESULTS
Of the 806 samples taken between 12 April 2010 and

29 April 2011 and assayed, sequences were obtained in 787

(98%) samples. Forty-two percent of the participants had VL
$100,000 copies/mL, and 63% participants had CD4 ,100
cells/mm3 (Table 1). The predominant viral subtypes were
A1 (40%; Uganda/Kenya), C (31%; Zimbabwe/Malawi), and
D (25%; Uganda/Kenya) with 5% recombinants/not pre-
dicted by REGA. Subtypes differed significantly in duration
of first-line ART and drugs prescribed: more stavudine/
nevirapine use and longer duration on first-line ART with
subtype-C and more tenofovir use and substitutions in first-
line NRTIs (zidovudine/stavudine to tenofovir) with subtype-
A/subtype-D infection.

TABLE 1. Characteristics of Study Population at First-Line Failure

Characteristic at
First-Line Failure

Overall (N = 787),
n (%)

Subtype-A
(N = 311, 40%),

n (%)

Subtype-C
(N = 244, 31%),

n (%)

Subtype-D
(N = 194, 25%),

n (%)
Recombinant*

(N = 38, 5%), n (%) P

Country ,0.001

Kenya 33 (4) 20 (6) 3 (1) 7 (4) 3 (8)

Malawi 69 (9) 0 68 (28) 0 1 (3)

Uganda 516 (66) 289 (93) 12 (5) 186 (96) 29 (76)

Zimbabwe 169 (21) 2 (1) 161 (66) 1 (1) 5 (13)

Sex 0.44

Female 485 (62) 193 (62) 141 (58) 126 (65) 25 (66)

Male 302 (38) 118 (38) 103 (42) 70 (36) 13 (34)

Age median (IQR) 37 (30–43) 36 (30–42) 39 (33–45) 35 (30–42) 34 (29–43) ,0.001

Years on first-line therapy
median (IQR)

4.0 (2.8–5.4) 3.8 (2.7–5.3) 4.3 (3.1–5.5) 3.9 (2.8–5.4) 3.8 (2.8–5.2) 0.02

2 or more CD4s on first-line
therapy†

549 (70) 284 (91) 71 (29) 163 (84) 31 (82) ,0.001

1 or more VLs on first-line
therapy†

160 (20) 75 (24) 26 (11) 51 (26) 8 (21) ,0.001

Drug exposure in first-line
therapy

No. of regimens 0.09

1 398 (51) 151 (49) 141 (58) 88 (45) 18 (47)

2 324 (41) 129 (41) 89 (36) 91 (47) 15 (39)

3+ 65 (8) 31 (10) 14 (6) 15 (8) 5 (13)

NNRTI

Number exposed to 0.09

1 660 (84) 270 (87) 194 (80) 166 (86) 30 (79)

2 127 (16) 41 (13) 50 (20) 28 (14) 8 (21)

NNRTI at failure 0.05

Efavirenz 193 (25) 84 (27) 45 (18) 54 (28) 10 (26)

Nevirapine 594 (75) 227 (73) 199 (82) 140 (72) 28 (74)

NRTI

Number exposed to 0.001

2 467 (59) 173 (56) 174 (70) 100 (52) 24 (63)

3 293 (37) 125 (40) 69 (28) 86 (44) 13 (34)

4/5 27 (3) 13 (4) 5 (2) 8 (4) 1 (3)

NRTI at failure ,0.001

Tenofovir 96 (12) 56 (18) 3 (1) 31 (16) 6 (16)

Stavudine 200 (25) 21 (7) 162 (66) 8 (4) 9 (24)

Zidovudine 486 (62) 233 (75) 76 (31) 154 (79) 23 (61)

None of the above‡ 5 (1) 1 (0) 3 (1) 1 (1) 0

CD4, cells/mm3 0.47

median (IQR) 67 (27–136) 69 (26–151) 66 (25–116) 71 (30–140) 54 (25–129)

,100 495 (63) 191 (61) 161 (66) 119 (61) 24 (63)

VL, copies/mL 0.33

median (IQR) 74,500 (25,400–194,130) 74,100 (23,906–183,935) 77,679 (27,591–250,864) 59,760 (24,135–163,417) 148,500 (43,542–240,725)

$100,000 334 (42) 131 (42) 109 (45) 72 (37) 22 (58)

*Called by REGA as a recombinant or not called by REGA.
†Excluding values at ART initiation and within the 90 days preceding switch to second line (since some additional testing was performed as part of trial recruitment initiatives).
‡One didanosine, 4 abacavir.
IQR, interquartile range.
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The overall prevalence of major DRMs by subtype
is shown in Figure 1 and Supplemental Digital Content, Tables
1a/b, http://links.lww.com/QAI/A970. One or more major NRTI
or NNRTI DRMs were present in 769 (98%) participants; 3
(0.4%) participants had only NRTI DRMs, 21 (3%) participants
had only NNRTI DRMs, and 745 (95%) participants had both.
Only 18 (2%) participants had no NRTI or NNRTI major DRMs.

Overall DRM prevalence (after adjustment) was broadly
similar between subtypes, but some significant differences
were seen (global P , 0.05). For NRTI DRMs (Fig. 1,
Supplemental Digital Content, Table 1a, http://links.lww.com/
QAI/A970), type-2 thymidine analog DRMs were more
common in A and C than in D, K65R and Q151M were more
common in C than in both A and D (K65R was more common
in A than in D), whereas L210W was less common in C than in
both A and D. In particular, Q151M was seen in 10% of the
subtype-C vs ,1% of subtype-A/subtype-D. For NNRTI
DRMs (Fig. 1, Supplemental Digital Content, Table 1b,

http://links.lww.com/QAI/A970), (1) E138A, V106M, and
Y181C were more common in C than in both A and D, (2)
K101E was significantly more common in C and D than in A,
(3) H221Y was more common in A and C than in D (and more
common in C than in D), (4) V108I was more common in D
than in A, and (5) P225H was less common in C than in D (the
only DRM significantly less common in C). In particular,
V106M occurred in 16% subtype-C compared with 1% A/D,
whereas P225H occurred in 2% C vs 7% A and 11% D.

Mutation prevalence by drug exposure is shown in Figure 2
and Supplemental Digital Content, Tables 2a/b, http://links.lww.
com/QAI/A970. After adjustment, participants on zidovudine
at failure were more likely to have T215F, T215Y, M41L,
K70R, D67N, L210W, type-1 thymidine analog, type-2
thymidine analog, and any thymidine analogue mutations
(TAMs); those on tenofovir to have K65R, K70E, Y115F,
and M184I; those on efavirenz to have K103N, P225H,
Y188L, and L100I; and those on nevirapine to have Y181C

FIGURE 1. Prevalence of major International AIDS Society (IAS)-USA DRMs by HIV-1 subtype. Prevalence is percentage of suc-
cessful sequences.

FIGURE 2. Prevalence of major IAS-USA DRMs by drug exposure at first-line failure. Prevalence is percentage of successful se-
quences.
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and G190A. Intermediate-/high-level resistance to tenofovir
and lamivudine was predicted in 57% and 95%, respectively
(Fig. 3), and to etravirine and rilpivirine in 55% and 65%,
respectively. The proportion with resistance to all 3 NRTIs
(zidovudine, abacavir, and tenofovir) that might be used with
lamivudine/emtricitabine in a second-line regimen was 50%

(Table 2), and to all NNRTIs (including second generation),
it was 55%. Much of the individual drug resistance was due
to cross-resistance rather than previous direct exposure to
that drug (Fig. 4).

After adjustment, subtype-C was associated with greater
abacavir and zidovudine resistance compared with subtype-A
and subtype-D (P , 0.01), with prevalence of intermediate-/
high-level resistance to abacavir and zidovudine of 95% and
86%, respectively, in subtype-C compared with 84% and 72%,
respectively, in subtype-A, and 81% and 70%, respectively, in
subtype-D. There was no significant impact of subtype on
tenofovir resistance (global P = 0.32) (Table 3). Subtype-C was
associated with greater etravirine and rilpivirine resistance than
subtype-A and subtype-D (P , 0.003) with prevalence of
intermediate-/high-level resistance to etravirine and rilpivirine of
69% and 80%, respectively, in subtype-C compared with 49%
and 63%, respectively, in subtype-A, and 55% and 61%,
respectively, in subtype-D (percentages adjusted to average over
other model factors).

Those on tenofovir at failure had less zidovudine
resistance compared with those on zidovudine/stavudine (P ,
0.01), whereas those on zidovudine appeared to have more
tenofovir resistance than those on tenofovir (P = 0.06); there was
no difference in abacavir resistance in those receiving zidovu-
dine vs tenofovir (P = 0.26). Those with first-line nevirapine
exposure had more etravirine and rilpivirine resistance (P ,
0.01). After adjustment, higher VL at failure was strongly
associated with greater tenofovir, zidovudine, and abacavir
resistance (P , 0.01), and more weakly with greater etravirine
resistance (P = 0.04). Lower CD4 count at failure was
independently associated with higher risk of resistance to all
drugs (P , 0.01).

FIGURE 3. Overall resistance to NRTI
and NNRTI drugs. 3TC, lamivudine;
ABC, abacavir; D4T, stavudine; DDI,
didanosine; EFV, efavirenz; ETR, etra-
virine; FTC, emtricitabine; NVP, nevir-
apine; RPV, rilpivirine; TDF, tenofovir;
ZDV, zidovudine. Prevalence is per-
centage of successful sequences.

TABLE 2. Resistance to Potential Future NRTI and NNRTI Drug
Options

Drug

Intermediate/High
Resistance

(N = 787), n (%)
High Resistance
(N = 787), n (%)

NRTI

ABC, TDF, ZDV 392 (50) 191 (24)

ABC, ZDV (not TDF) 168 (21) 177 (22)

ABC, TDF (not ZDV) 54 (7) 51 (6)

ABC (not TDF ZDV) 32 (4) 18 (2)

ZDV (not TDF ABC) 0 111 (14)

TDF (not ZDV ABC) 0 2

None of ABC, TDF, ZDV 141 (18) 237 (30)

NNRTI

EFV, NVP, ETR RPV 432 (55) 83 (11)

EFV, NVP, RPV (not ETR) 79 (10) 98 (12)

NVP, ETR, RPV (not RPV) 0 19 (2)

EFV, NVP (not ETR RPV) 252 (32) 373 (47)

NVP, RPV (not EFV, ETR) 2 6 (1)

NVP (not EFV, ETR, RPV) 1 184 (23)

None of EFV, NVP, ETR, RPV 21 (3) 24 (3)

ABC, abacavir; EFV, efavirenz; ETR, etravirine; NVP, nevirapine; RPV, rilpivirine;
TDF, tenofovir; ZDV, zidovudine.

J Acquir Immune Defic Syndr � Volume 75, Number 2, June 1, 2017 HIV Drug Resistance Mutations in Non-B Subtypes

Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. www.jaids.com | e49

Copyright � 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.



DISCUSSION
We found DRMs conferring resistance to 1 or more

NRTI/NNRTI drugs in 98% of participants failing NNRTI-
based first-line ART (resistance to both classes in 95%), similar
to smaller studies in Malawi,10 Nigeria,11 and the A5230
study.12 Previous studies have shown that patients monitored
without VL accumulate DRMs at a rate of 1 new TAM
approximately every 15 months (low-income setting) to 4.3
years (high-income setting), and 1 new NNRTI DRM every
1.6 years (high-income setting) with continued drug exposure
after virological failure.13–15 The high VL/low CD4 in this
cohort suggests that participants had protracted virological
failure before second-line switch, consistent with the fact that
they were managed in programs using immunological and
clinical monitoring (without regular VL testing) to detect
treatment failure. The very high level of accumulated DRMs
in this cohort is therefore not surprising. Conversely, although
regular VL monitoring detects failure earlier and may allow the
chance for resuppression (one-third after 3 months’ adherence
support),16 resistance often occurs simultaneously with VL
rebound; so, regular VL testing may not always prevent its
development. In a research cohort taking WHO-recommended
NNRTI-based first-line regimens with VL tested 1 year after
starting ART, 70% of those with detectable VL had 1 or more
DRMs, with 53% and 60% having 184V and NNRTI DRMs,
respectively.17 Similarly, a large South African program in
which VL was tested 6-monthly found 86% of patients had at
least 1 DRM at second-line switch, likely reflecting delays in
acting on VL results and illustrating programmatic barriers to
reducing resistance development.18

This study, the largest to date of resistance in patients
failing NNRTI-based first-line therapy in sub-Saharan Africa,
makes a substantial contribution to the existing literature on
differences in mutational patterns in non-B subtypes. In
general, resistance-conferring DRMs were more common in
subtype-C than in either or both of subtypes-A and subtype-
D. K65R was more common in subtype-C than in A or D,
supporting previous observations in subtype-C compared
with subtype-AE and subtype-B in a global study of patients
failing stavudine-containing regimens,19 and in comparison

with non-C subtypes in an African cohort study (although this
effect was not significant after adjustment for drugs).17

Differential codon usage has been hypothesized to underlie
this difference and could also contribute to other variations in
resistance at failure. Q151M, a rare mutation that confers
cross-class NRTI resistance, was present in 11% of subtype-
C, but negligible levels in other subtypes (not previously
described). Subtype differences in L210W have previously
been noted (higher in A than other subtypes in Nigeria).20

We found more intersubtype differences in NNRTI
DRMs, with many being substantially more common in
subtype-C than in 1 or both other subtypes. The (almost)
exclusive occurrence of V106M in subtype-C has been noted
previously.17 This mutation confers resistance to efavirenz and
nevirapine and was found in 31% of those in a small cohort
failing first-line therapy in South Africa.21 Another sub-
stitution at this position, V106I (not seen in our study), is
significantly more common in subtype-G.20 Substitutions at
position 138 (found in 13% overall) confer resistance to
rilpivirine and etravirine and are therefore particularly con-
cerning, given that these drugs may be considered for use in
third-line therapy.7 A Kenyan study reported substitutions at
this position in 14% of those failing nevirapine or efavirenz-
based first-line therapy, mainly subtype-A22; and a study in
Nigeria, mainly subtype-G and circulating recombinant form
(CRF)-02_AG, found these substitution in 9%11; our finding
that these DRMs are significantly more common in subtype-C
(18%) than in other non-B subtypes is novel (a previous study
of this mutation in several large databases showed a difference
in frequency between subtype-C and subtype-B, but not
between C and non-B subtypes).23 The H221Y mutation
(conferring rilpivirine resistance7 and with Y181C possibly
etravirine resistance24) has been noted in patients with non-B
subtypes failing first-line nevirapine or efavirenz-based regi-
mens in a predominantly subtype-G and CRF02 Nigerian
cohort and subtype-C South African cohort.25,26 However, our
study is the first to report differences between non-B subtypes
for this mutation (more common in subtype-C). To our
knowledge, the differences we found in the other NNRTI
DRMs, K101E (rilpivirine and etravirine resistance), Y181C

FIGURE 4. A, Intermediate-/high-level resistance according to exposure or cross-resistance. B, High-level resistance according to
exposure or cross-resistance. 3TC, lamivudine; ABC, abacavir; D4T, stavudine; DDI, didanosine; EFV, efavirenz; ETR, etravirine; FTC,
emtricitabine; NVP, nevirapine; RPV, rilpivirine; TDF, tenofovir; ZDV, zidovudine. Prevalence is percentage of successful sequences.
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TABLE 3. Factors Predicting Intermediate-/High-Level Resistance to Drugs for Potential Use in a Second-Line Regimen

Abacavir Resistance Tenofovir Resistance Zidovudine Resistance

OR (95% CI) P OR (95% CI) P OR (95% CI) P

NRTI at failure ,0.001 ,0.001 ,0.001

Tenofovir vs Stavudine 10.77 (3.51 to 33.05) ,0.001 1.76 (0.82 to 3.78) 0.15 0.31 (0.13 to 0.75) 0.009

Zidovudine vs Stavudine 6.24 (3.00 to 13.01) ,0.001 3.13 (1.76 to 5.59) ,0.001 6.27 (3.24 to 12.13) ,0.001

Zidovudine vs Tenofovir 0.58 (0.23 to 1.48) 0.26 1.78 (0.98 to 3.24) 0.06 20.21 (9.98 to 40.96) ,0.001

NNRTI at failure

Nevirapine vs Efavirenz

NRTIs before failure 0.04 0.14 ,0.001

None (failed on initial NRTIs) 1 1 1

Stavudine only 1.78 (0.99 to 3.22) 1.31 (0.86 to 2.01) 1.51 (0.90 to 2.55)

Zidovudine only 7.82 (0.94 to 65.01) 2.58 (0.93 to 7.14) 3.80 (1.34 to 10.80)

Stavudine and Zidovudine 4.21 (0.40 to 44.19) 2.11 (0.69 to 6.51) 8.59 (2.70 to 27.28)

NNRTIs before failure
(vs failed on first NNRTI)

Efavirenz

Nevirapine

Subtype 0.002 0.32 0.02

C vs A 3.31 (1.59 to 6.88) 0.001 1.31 (0.78 to 2.20) 0.30 2.34 (1.24 to 4.42) 0.009

C vs D 4.08 (1.85 to 9.03) 0.001 1.53 (0.88 to 2.67) 0.13 2.54 (1.28 to 5.05) 0.008

D vs A 0.81 (0.48 to 1.36) 0.43 0.85 (0.57 to 1.27) 0.44 0.92 (0.58 to 1.46) 0.73

Log10 VL at failure 1.58 (1.15 to 2.16) 0.003 1.95 (1.50 to 2.53) ,0.001 1.53 (1.15 to 2.02) 0.003

CD4 at failure (per 100 cell increase) 0.59 (0.48 to 0.72) ,0.001 0.48 (0.39 to 0.59) ,0.001 0.66 (0.55 to 0.80) ,0.001

Clinical failure 0.79 (0.43 to 1.46) 0.45 0.99 (0.61 to 1.61) 0.96 0.75 (0.44 to 1.29) 0.31

Years on ART 1.13 (0.99 to 1.28) 0.07 1.03 (0.95 to 1.13) 0.47 1.19 (1.06 to 1.33) 0.003

Fit statistic, %

Area under the ROC curve 76 (71 to 80) 75 (71 to 78) 78 (74 to 82)

Etravirine Resistance Rilpivirine Resistance

OR (95% CI) P OR (95% CI) P

NRTI at failure

Tenofovir vs Stavudine

Zidovudine vs Stavudine

Zidovudine vs Tenofovir

NNRTI at failure

Nevirapine vs Efavirenz 3.39 (2.11 to 5.47) ,0.001 2.88 (1.84 to 4.50) ,0.001

NRTIs before failure

None (failed on initial NRTIs)

Stavudine only

Zidovudine only

Stavudine and Zidovudine

NNRTIs before failure
(vs failed on first NNRTI)

0.004 0.005

Efavirenz 0.51 (0.26 to 1.00) 0.39 (0.20 to 0.76)

Nevirapine 2.47 (1.28 to 4.76) 1.76 (0.92 to 3.37)

Subtype ,0.001 ,0.001

C vs A 2.37 (1.61 to 3.47) ,0.001 2.28 (1.51 to 3.46) ,0.001

C vs D 1.88 (1.23 to 2.87) 0.003 2.45 (1.56 to 3.85) ,0.001

D vs A 1.26 (0.87 to 1.83) 0.23 0.93 (0.64 to 1.36) 0.72

Log10 VL at failure 1.29 (1.01 to 1.64) 0.04 1.21 (0.94 to 1.56) 0.15

CD4 at failure (per 100 cell increase) 0.79 (0.67 to 0.93) 0.004 0.75 (0.64 to 0.89) 0.001

Clinical failure 1.24 (0.76 to 2.00) 0.39 1.32 (0.78 to 2.25) 0.30

Years on ART 0.99 (0.92 to 1.07) 0.85 0.99 (0.91 to 1.07) 0.74

Fit statistic, %

Area under the ROC curve 69 (65 to 73) 70 (66 to 74)

CI, confidence interval; OR, odds ratio; ROC, receiver-operating characteristic.
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(resistance to all NNRTIs), V108I (efavirenz and nevirapine
resistance), and P225H (efavirenz resistance) have not been
reported previously.

Arising from these DRM differences, viral subtype
significantly affected the probability of resistance to drugs
that could be used in second- or third-line regimens under the
public health approach. The much higher zidovudine resis-
tance in subtype-C may be of practical importance, given that
zidovudine is currently recommended for use in second-line
therapy after failure of a tenofovir-based regimen. However,
participants were mainly on zidovudine/stavudine first line,
and the impact of subtype on zidovudine susceptibility may
differ for failure on tenofovir-based first-line regimens
(although we adjusted for this). Although we found no
significant difference in the proportion with tenofovir resis-
tance between subtypes, only a minority of our participants
were taking tenofovir at the time of failure. An analysis of
patients failing a tenofovir-based first-line regimen in Western
European cohorts showed a higher rate of tenofovir resistance
in subtype-C compared with non-C subtypes,27 although
subtype does not appear to affect long-term outcomes on
tenofovir-based regimens.28 The higher rates of etravirine and
rilpivirine resistance seen in subtype-C might also be an
important consideration in region-specific program policy
(although overall rates are high regardless of subtype, see
below). We confirmed the effects of specific first-line NRTIs
on resistance to second-line NRTI drugs, which form the basis
for the recommendations in the WHO algorithm. We also
confirmed the independent association between first-line
nevirapine use and etravirine and rilpivirine resistance.29–31

Increasing use of efavirenz over nevirapine in first-line therapy
may preserve second-generation NNRTIs for potential third-
line regimens, but the high rates of resistance seen even in
participants failing on efavirenz (40% etravirine, 51% rilpi-
virine) suggests that these are unlikely to remain sufficiently
active to be used in standardized regimens in the public health
approach. Furthermore, rates of etravirine and rilpivirine
resistance have been shown to increase when tested with deep
sequencing.26 Higher VL and lower CD4 counts indepen-
dently predicted resistance to all potential second-line NRTI
drugs, as previously observed.12 The marginal associations
between VL and etravirine and rilpivirine resistance support
this arising quickly after virological failure.

Study strengths are the large sample size, the setting
within representative sub-Saharan African programs using the
public health approach, and well-defined first-line failure.
Limitations are lack of data on CD4/VL monitoring during
first-line ART and the few participants using the currently
recommended tenofovir-based regimen for first line. There is
potential for residual confounding by setting, since viral
subtypes are strongly clustered with countries, and countries
used different drug regimens (subtype-C virus predominated in
Malawi and Zimbabwe, with more stavudine and less tenofovir
or zidovudine use at failure; NNRTI use broadly similar). Also,
the duration of virological failure on first-line ART is unknown,
may be only imperfectly adjusted for by CD4 and VL at failure,
and first-line monitoring approaches did differ between coun-
tries. Nevertheless, our large sample size allowed us to adjust
for different regimens and patient characteristics at failure and

identify some strong independent associations between subtype
and specific DRMs. The levels of statistical significance seen
likely indicate a true effect rather than an artifact of the multiple
comparisons performed. Although we did not adjust for these
multiple comparisons, this does not affect the magnitude of
observed intersubtype differences but rather requires caution in
the interpretation of borderline differences.

Our study provides important information on the
prevalence of DRMs in patients failing NNRTI-based first-
line ART in these settings, allowing a more robust compar-
ison between viral subtypes than hitherto possible. We found
substantial differences between subtypes, with particular
disadvantages for subtype-C, but these are likely to have
limited impact on the selection of standardized second-line
regimens for use in the public health approach.

Sequences have been deposited with GenBank acces-
sion numbers KY061369–KY062155.
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