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As part of an epidemiological survey for gastrointestinal parasites in school children across five
primary schools on the shoreline of Lake Albert, the prevalence of giardiasis was 87.0% (n =
254) as determined by real-time PCR analysis of faecal samples with a genus-specific Giardia
18S rDNA probe. Faecal samples were further characterised with taxon assemblage-specific tri-
ose phosphate isomerase (TPI) Taqman® probes and by sequence characterisation of the β-
giardin gene. While less sensitive than the 18S rDNA assay, general prevalence by TPI probes
was 52.4%, with prevalence by taxon assemblage of 8.3% (assemblage A), 35.8% (assemblage
B) and 8.3% co-infection (A & B assemblages). While assemblage B was dominant across the
sample, proportions of assemblages A and B, and co-infections thereof, varied by school and
by age of child; mixed infections were particularly common at Runga school (OR = 6.9 [95%
CI; 2.5, 19.3]) and in children aged 6 and under (OR = 2.7 [95% CI; 1.0, 7.3]). Infection with
assemblage B was associated with underweight children (OR = 2.0 [95% CI; 1.0, 3.9]). The
presence of each assemblage was also confirmed by sequence analysis of the β-giardin gene
finding sub-assemblage AII and further genetic diversity within assemblage B. To better explore
the local epidemiology of giardiasis and its impact on child health, additional sampling of
school children with assemblage typing would be worthwhile.
© 2018 The Authors. Published by Elsevier Ltd on behalf of World Federation of Parasitologists.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
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1. Introduction

The binucleate flagellated protozoan Giardia duodenalis (syn. G. lamblia, G. intestinalis) is a common gastrointestinal parasite
able to infect a variety of mammals (Adam, 2001; Helmy et al., 2014). Where sanitation and hygiene are poor, these parasites
can cause acute and/or chronic giardiasis across all ages (Wegayehu et al., 2016; Muhsen and Levine, 2012; Rogawski et al.,
2017; Tellevik et al., 2015). While levels of endemicity of giardiasis may vary across the world, it can be common in children liv-
ing within low and middle income countries (Laishram et al., 2012; Muhsen and Levine, 2012); for example, in Uganda giardiasis
can be particularly rife (Al-Shehri et al., 2016; Fuhrimann et al., 2016), but its effect on child health is not fully appreciated but in
Rwanda nearby, the very high prevalence of G. duodenalis in children aged 5 and under, was associated with being underweight
(Ignatius et al., 2012).
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There are eight distinct groups or taxonomic assemblages (A to H) within Giardia currently recognised (Sprong et al., 2009;
Almeida et al., 2010; Takumi et al., 2012). Assemblages A and B are typically held most responsible for human infections, with
the latter assemblage associated with zoonotic transmission (Almeida et al., 2010; Feng and Xiao, 2011; Vanni et al., 2012;
Asher et al., 2014; Thompson and Ash, 2016); each assemblage can be further divided into sub-assemblages, e.g. A: AI, AII &
AIII and B: BIII and BIV on the basis of sequence variation within molecular markers e.g. glutamate dehydrogenase (GDH), β-
giardin, small subunit ribosomal DNA (18S rDNA), and triose phosphate isomerase (TPI) (Durigan et al., 2014; Karim et al.,
2015; Minetti et al., 2015). Despite efforts to investigate specific assemblages with disease symptoms and severity, there is no ab-
solute association to date (Sprong et al., 2009; Thompson and Ash, 2016).

In Uganda, general investigations on the epidemiology of giardiasis are increasing (Nizeyi et al., 1999; Graczyk et al., 2002;
Nizeyi et al., 2002; Johnston et al., 2010), although only a single study has employed molecular methods of characterisation
(Ankarklev et al., 2012). Ankarklev et al. (2012) investigated associations between taxon assemblages and Helicobacter pylori
infection in apparently healthy children aged 0–12 living in Kampala, the capital. Assemblage B was found dominant and a risk
factor for H. pylori infection (Ankarklev et al., 2012) and like in other parts of the world, assemblage B was more associated
with symptomatic infections (Pelayo et al., 2008; Puebla et al., 2014).

To shed light on the taxonomic assemblages of Giardiawithin school children living on the shoreline of Lake Albert, we undertook a
molecular characterisation of previously characterised stool samples as reported byAl-Shehri et al. (Al-Shehri et al., 2016). Faecal samples
were further characterised with assemblage-specific TaqMan® TPI probes and the presence of each taxon assemblage confirmed by se-
quence analysis of the β-giardin gene. Associations between taxon assemblage and collected epidemiological data were explored.
2. Materials and methods

2.1. Faecal material and epidemiological information

Faecal samples were available for further molecular analysis (see below) that were initially collected within the epidemiolog-
ical survey of 254 school children from five primary schools (Bugoigo, Runga, Walakuba, Biiso and Busingiro) as reported by Al-
Shehri et al. (Al-Shehri et al., 2016). Each sampled child underwent an epidemiological questionnaire and clinical examination;
data on socio-demographical aspects and standard biometry were recorded (height with a clinical stadiometer, model
214; SECA, Hanover, MD and weight by weighing scales with a model 803; SECA, Hanover; MD). Heights and weights
were used to assess stunting, height-for-age Z-score (HAZ), and wasting, weight-for-age Z-score (WAZ). Children were de-
fined as stunted if their height-for-age Z score was −2 ≤ SD and underweight if their weight-for-age Z score was −2 ≤ SD
(WHO, 2007). Finger-prick blood was collected from each child and tested for haemoglobin levels by HemoCue® portable
haemoglobin photometer (HemoCue, CA 92630, USA). Children were considered anaemic if haemoglobin levels were
below 115 g/L (WHO, 2011).

During the surveys, all sampled stools were tested for faecal occult blood (Mission Test, Acon Laboratories, San Diego, CA, USA)
but owing to a limited supply of rapid diagnostic tests (RDTs), only stools collected from Bugiogo and Runga were tested in-field
with Quik-Chek RDTs for giardiasis and cryptosporidiosis (GIADIA/CRYPTOSPORIDIUM Quik-Chek, Alere, Galway, Ireland). Stools
were then stored in absolute ethanol for later DNA analysis.
2.2. Molecular profiling of G. duodenalis assemblages

After transfer to the UK and each faecal sample was spiked with Phocine Herpes Virus to act as an internal control for genomic
DNA extraction and amplification performance of later real-time PCR assays. Genomic DNA was extracted, and detection of Giardia
18S rDNA was performed using TaqMan® assay following primers, probes and protocols of Verweij et al. (Verweij et al., 2004).
These extractions were again retested with a duplex real-time PCR assay with assemblage-specific A and B probes using the
TPI locus (Elwin et al., 2014). The real-time PCR analysis of faecal extractions from each school was completed in separate PCR
plates that each contained negative and positive controls; a negative control (without genomic DNA template) of extraction elu-
tion buffer (10 mM Tris-HCl [pH 8], 1 mM EDTA) and a positive control (with reference genomic Giardia DNA template) from a
heavily infected individual excreting approximately 1000 cysts per gram of faeces as estimated by microscopy. As a further
quality control, reamplification of 10% of samples was undertaken to assess assemblage assay reliability. Assays were
performed in a Chromo-4 with Opticon monitor™ version 3.1. (Bio-Rad, UK). The infection was determined according to
Ct values; for the 18S rDNA TaqMan® assay no-infection was Ct ≥ 40 and positive infection Ct ≤ 39 while for
assemblages-specific probes was Ct ≤ 45.

To further confirm assemblage A and B, the β-giardin gene was amplified from samples from six children using nested PCR
following protocols of Minetti et al. (Minetti et al., 2015). PCR products were purified using the QIAquick® PCR purification kit
(QIAGEN Ltd.) and were sequenced in both directions by Sanger sequencing. Nucleotide sequences and chromatograms were
analysed and edited using Geneious software (Vejlsøvej55, 8600 Silkeborg, Denmark). Sequences from this study were aligned
with each other and reference sequences downloaded from GenBank (listed below). The assemblages and sub-assemblages at
each locus were identified by BLAST searches against the following reference sequences: β-giardin (accession nos. X14185.1–AI,
AY072723.1–AII, DQ650649.1–AIII, AY072726.1–BIII, AY072725.1–BIV).
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2.3. Statistical analyses

Statistical analysis was performed using Minitab Ltd.® (Brandon Court, Unit E1-E2 Coventry CV3 2TE UK). Binary logistic re-
gression tests were performed to compare data from each school and as well as risk variables as an independent indicator to as-
sess any associations with specific assemblages.

3. Results

Out of the 254 samples examined, 221 tested positive (87.0%) by targeting Giardia 18S rDNA assay while 133 (52.3%) tested
positive with TPI assemblage-specific probes. Across Bugoigo and Runga schools, the prevalence of giardiasis by Quik-Chek RDT
was 41.6%. Of the 133-tested positive by TPI probes, 21 samples were positive for assemblage A (15.8%) only, 91 positives for as-
semblage B (68.4%) only and 21 positives for both assemblage A and B (15.8%), mixed assemblage infections.

Across these samples assemblage, A was less common than assemblage B, an approximate ratio of 1: 2.7, with assemblage B
dominant. To ascertain if there was any amplification bias in assemblage detection, Fig. 1A shows a bivariate plot of Ct values for
Giardia 18S rDNA TaqMan® probe and the corresponding Ct value of assemblage A TPI TaqMan® probe (18S rDNA = 0.203
+ 0.6991 TPI, with R-squared 34.91% (P b 0.005), and positive correlation (r = 0.60)); Fig. 1B shows bivariate plot for assemblage
B (18S rDNA = 0.228 + 0.6947 TPI, with R-squared 28.39% (P b 0.005), and positive correlation (r = 0.54)). The performance of
each TaqMan® assay appeared equivalent. Of note, however, is that mixed assemblage infections appear more common at Runga
school where the local prevalence of assemblage A was also much higher.

Table 2 shows epidemiological associations cross-tabulated against available assemblage information. Most notable is the asso-
ciation of mixed assemblages in younger children (OR = 2.7 [95% CI; 1.0, 7.3]) that assemblage B was associated with the pres-
ence of faecal occult blood (OR = 2.2 [95% CI; 1.0, 5.2]). It appeared that there was also a significant association of infection with
assemblage B and children of lower weight-for-age, i.e. wasting (OR = 2.0 [95% CI; 1.0, 3.9]).

Table 3 details the point mutations with the six representative samples for the β-giardin gene, finding an exact match with
sub-assemblage AII and no sequence within the three sample inspected. By contrast, each of the three samples for assemblage
B was different and did not match either BIII and BIV precisely. The sequence from Sample 102 is particularly notable as there
appeared to be allelic variation within the TPI gene as evidenced by split-peak chromatograms of A/G or T/C at three locations
present within this region (see Annex Supplemental Fig. 1).

4. Discussion

The high prevalence of giardiasis reported here by real-time PCR with the 18S rDNA probe analysis (87.0%) demonstrates that
children living on the shoreline of Lake Albert are at very high risk of both acute and more likely, chronic infections. The high
burden of giardiasis was also corroborated in field by the Quik-Chek RDT at Runga and Bugoigo schools confirming that some
41.6% of children were patently shedding copious amounts of Giardia cysts within their stools. It is unsurprising perhaps that
the levels are so high since this lakeshore environment has very poor local sanitation and water hygiene, as well as being hyper-
endemic for intestinal schistosomiasis, an another waterborne disease (Al-Shehri et al., 2016). Nonetheless the prevalence of giar-
diasis here is much elevated in comparison to other parts of the world (Thompson and Smith, 2001), although in Rwanda over
60% of rural children have been shown to be infected with Giardia by molecular typing methods (Ignatius et al., 2014). More
broadly, the diagnostic sensitivity of real-time PCR methods is known to be superior to alternative diagnostic methods, often
Fig. 1. Bivariate plot of Ct values obtained for each sample using Giardia TaqMan® 18S rDNA versus Ct value of assemblage-specific TaqMan® TPI probe with
dashed lines showing the 95% prediction interval. Fig. 1A. Using assemblage A probe; Fig. 1B Using assemblage B probe.



Table 1
Prevalence (%) of G. duodenalis and assemblages across all five schools by real-time PCR; the odds ratio of assemblages A, B or A/B by school compared against the total
given (with 95% confidence limits).

School Giardia TaqMan® 18S rDNA probe Assemblage (A & B) TaqMan® TPI probe

Number of positives
% (x/y)

95% CL Number of positives
% (x/y)

95% CL A
% (x/y)
OR [95% CI]

B
% (x/y)
OR [95% CI]

AB
% (x/y)
OR [95% CI]

Bugoigo 94.5% (52/55) [85.8–98.6] 56.3% (31/55) [43.1–69.0] 5.4% (3/55)
0.6 [0.2, 2.5]

43.6% (24/55)
1.4 [0.8, 2.8]

7.2% (4/55)
0.9 [0.3, 3.1]

Runga 94.1% (48/51) [84.8–98.5] 72.5% (37/51) [59.2–83.4] 15.6% (8/51)
4.7 [1.7, 13.3]

37.2% (19/51)
2.0 [1.0, 4.3]

19.6% (10/51)
6.9 [2.5, 19.3]

Walukuba 88.0% (44/50) [76.7–95.0] 40.0% (20/50) [27.2–54.0] 2.0% (1/50)
0.1 [0.0, 1.2]

32.0% (16/50)
0.6 [0.3, 1.8]

6.0% (3/50)
0.5 [0.1, 1.8]

Biiso 84.0% (42/50) [71.9–92.3] 54.0% (27/50) [40.2–67.4] 14.0% (7/50)
2.1 [0.8, 5.9]

36.0% (18/50)
1.0 [0.5, 2.1]

4.0% (2/50)
0.4 [0.1, 2.1]

Busingiro 72.9% (35/48) [59.1–84.0] 37.5% (18/48) [24.7–51.8] 4.1% (2/48)
0.3 [0.1, 1.5]

29.1% (14/48)
0.5 [0.3, 1.1]

4.1% (2/48)
0.3 [0.1, 1.5]

All 87.0% (221/254) [82.4–90.7] 52.4% (133/254) [46.2–58.5] 8.3% (21/254)
——————

35.8% (91/254)
——————

8.3% (21/254)
——————
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revealing giardiasis to be more pervasive (Gotfred-Rasmussen et al., 2016), and also creates opportunities for investigations of
(sub)assemblage transmission dynamics (Thompson and Ash, 2016).

Given the multi-copy nature of the 18S rDNA against the lower copy number of TPI, the diagnostic sensitivity of TPI probes is
lower, such that just under a half of the infected cases detected by 18S rDNA were missed. It has been stated previously that the
detection limit of Giardia 18S rDNA probe assay is approaching 10 pg DNA/μL (Jaros et al., 2011), presumably that of TPI assay is
much higher (Elwin et al., 2014) such that assemblage typing of ‘light’ intensity infections is not always possible. A similar level of
diagnostic discordance has been observed elsewhere (Ignatius et al., 2014) which hopefully does not lead to a systematic bias in
general reporting of each assemblage, as evidenced by Ct values in Fig. 1, but rather that typing parasites with assemblage-specific
primers is not possible when shedding cysts are too few in number.

Nonetheless, in this sample assemblage B dominates upon comparison to assemblage A. Notably this 1:2.7 ratio varied by
school with Runga having a greater proportion of assemblage A, as well as co-infection with assemblage B thereof, see Table 1,
and more broadly, there appeared to be some interesting epidemiological associations by assemblage, see Table 2. Although
there was no association with gender, younger children appeared to harbour a greater proportion of mixed assemblage infections
than older counterparts (OR = 2.7 [95% CI; 1.0, 7.3]). There was also an indication that faecal occult blood was associated with
assemblage B (OR = 2.2 [95% CI; 1.0, 5.2]) and in children being underweight (OR = 2.0 [95% CI; 1.0, 3.9]). These findings
add to the general debate on the health consequences of giardiasis with particular emphasis on assemblage B, which also appears
more genetically heterogeneous that assemblage A here (Thompson and Ash, 2016).

It is an interesting observation that of the six samples subjected to sequence analysis of β-giardin, the three samples selected
from assemblage A were identical and could be further unequivocally assigned to sub-lineage AII, which has been reported in
Table 2
Analysis of potential epidemiological associations by binary logistic regression with Giardia assemblages A, B or A/B co-infection.

Epidemiological factors Assemblage (A, B & AB)® TaqMan probe (TPI)

Infected with A OR [95 CL] Infected with B OR [95 CL] Infected with AB OR [95 CL]

Gender
Male 10 1.0 [0.4, 2.7] 44 1.0 [0.6, 1.9] 12 1.5 [0.6, 3.9]
Female 11 0.9 [0.4, 2.4] 47 0.9 [0.5, 1.6] 9 0.6 [0.3, 1.6]

Age group
5 to 6 11 1.5 [0.6, 3.8] 38 0.9 [0.6, 1.7] 14 2.7 [1.0, 7.3]
7 to 8 9 0.9 [0.4, 2.5] 34 0.7 [0.5, 1.4] 6 0.5 [0.2, 1.5]
9 to 10 1 0.2 [0.0, 2.3] 19 1.5 [0.7, 3.1] 1 0.2 [0.0, 2.3]

Faecal occult blood (FOB)
Negative 18 0.6 [0.2, 2.4] 74 0.4 [0.2, 1.0] 17 0.4 [0.1, 1.5]
Positive 3 1.6 [0.4, 6.6] 17 2.2 [1.0, 5.2] 4 2.3 [0.7, 8.2]

Height-for-age Z score, mean
−2 N SD height-for-age Z score 17 1.3 [0.4, 4.3] 63 0.7 [0.4, 1.3] 14 0.6 [0.2, 1.7]
−2 ≤ SD height-for-age Z score 4 0.7 [0.2, 2.4] 28 1.4 [0.8, 2.6] 7 1.5 [0.6, 4.3]

Weight-for-age Z score, mean
−2 N SD weight-for-age Z score 20 3.9 [0.5,31.2] 65 0.4 [0.3, 1.0] 16 0.6 [0.2, 1.9]
−2 ≤ SD weight-for-age Z score 1 0.2 [0.0, 2.0] 26 2.0 [1.0, 3.9] 5 1.5 [0.5, 4.8]
Anaemia (b115 Hbg/L)

Negative 9 0.4 [0.1, 1.4] 46 0.5 [0.3, 1.2] 9 0.3 [0.1, 1.0]
Positive 6 2.3 [0.7, 7.5] 23 1.7 [0.8, 3.7] 8 3.1 [1.1, 9.4]
Not determined 6 – 22 – 4 –



Table 3
Single nucleotide polymorphisms within β-giardin of Giardia duodenalis.

Assemblage Isolate/Genbank number Nucleotide position

A isolates Beta-giardin (bg) 284 383 407 473 491 563 593 596 611
AI X14185.1 C T T T A G T C A
AII AY072723.1 C T T T A G T T A
AIII DQ650649.1 T C C C G A C C G

Sample 9 C T T T A G T T A
Sample 22 C T T T A G T T A
Sample 103 C T T T A G T T A

B isolates 170 176 188 233 287 314 317 398
BIII AY072726.1 C A A G C C C C
BIV AY072725.1 T A A A T T T T

Sample 24 C A A A C T T C
Sample 104 C A A A C C T C
Sample 102 C A/G A/G A C T/C T C
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other studies (Cacciò and Ryan, 2008; Plutzer et al., 2010; Cacciò and Sprong, 2010; Ryan and Cacciò, 2013; Beck et al., 2012;
Zhang et al., 2012). By contrast, of the three samples selected from assemblage B, there were each different, see Table 3, and
none matched exactly either BIII or BIV sub-assemblages. Most notable are the point mutations at positions 176, 188 and 314,
where split-peak chromatograms were observed (see Annex). This is indicative of mixed amplicon templates inferring putative
allelic variation within the TPI locus. The genomic complexity of Giardia is complex, being binucleate and sometimes aneuploid
(Aguiar et al., 2016) which might infer sample 102 was either a mixed co-infection of two independent B lineages or contains
a single infection lineage with an unusual genomic TPI variant. Nonetheless, there is greater diversity within assemblage B and
with further genetic profiling would reveal additional variants which might point towards currently unknown heterogeneities
in local transmission cycles. For example, there is numerous livestock e.g. cattle and goats, that regularly enter into the lake
and while drinking openly defecate into the water which may add to raised zoonotic potential in such domestic water directly
drawn from the lake.

To conclude, additional sampling of school children would be worthwhile if putative associations between assemblage B and
detrimental health outcomes reported here are to be fully verified statistically. Furthermore to better monitor local transmission
cycles of Giardia, we encourage future studies that track each assemblage within local livestock and undertake environmental
sampling of lake water where domestic water is drawn.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.parepi.2018.e00074.
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