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Abstract 

Background: As part of ongoing co‑surveillance of intestinal schistosomiasis and malaria in Ugandan school 
children, a non‑invasive detection method for amplification of Plasmodium DNA using real‑time (rt)PCR analysis of 
ethanol preserved faeces (EPF) was assessed. For diagnostic tabulations, results were compared to rtPCR analysis of 
dried blood spots (DBS) and field‑based point‑of‑care (POC) rapid diagnostic tests (RDTs).

Methods: A total of 247 school children from 5 primary schools along the shoreline of Lake Albert were examined 
with matched EPF and DBS obtained. Mean prevalence and prevalence by school was calculated by detection of 
Plasmodium DNA by rtPCR using a 18S rDNA  Taqman® probe. Diagnostic sensitivity, specificity, positive and negative 
predictive values were tabulated and compared against RDTs.

Results: By rtPCR of EPF and DBS, 158 (63.9%; 95% CI 57.8–69.7) and 198 (80.1%, 95% CI 74.7–84.6) children were 
positive for Plasmodium spp. By RDT, 138 (55.8%; 95% CI 49.6–61.9) and 45 (18.2%; 95% CI 13.9–23.5) children were 
positive for Plasmodium falciparum, and with non‑P. falciparum co‑infections, respectively. Using RDT results as a 
convenient field‑based reference, the sensitivity of rtPCR of EPF and DBS was 73.1% (95% CI 65.2–79.8) and 94.2% 
(95% CI 88.9–97.0) while specificity was 47.7% (95% CI 38.5–57.0) and 37.6% (95% CI 29.0–46.9), respectively. With one 
exception, school prevalence estimated by analysis of EPF was higher than that by RDT. Positive and negative predic‑
tive values were compared and discussed.

Conclusions: In this high transmission setting, EPF sampling with rtPCR analysis has satisfactory diagnostic perfor‑
mance in estimation of mean prevalence and prevalence by school upon direct comparison with POC‑RDTs. Although 
analysis of EPF was judged inferior to that of DBS, it permits an alternative non‑invasive sampling regime that could 
be implemented alongside general monitoring and surveillance for other faecal parasites. EPF analysis may also have 
future value in passive surveillance of low transmission settings.
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Background
Malaria continues to be a public health problem in 
90 countries worldwide [1], with the impact of global 

control flat-lining over the past 2 years; the greatest dis-
ease burden remains in sub-Saharan Africa (SSA) where 
over 90% of deaths occur [2]. Here, weak health systems 
with restricted diagnostic repertoires and inadequate 
access to prompt treatment preside, alongside favora-
ble conditions for Plasmodium transmission [2, 3]. Col-
lectively, this places certain demographical groups, e.g. 
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infants, more vulnerable than others [4] although infec-
tion prevalence and non-severe disease in other groups, 
such school children, should not be overlooked [4–6]. 
A broader appraisal of infection surveillance is needed, 
especially in the future context of gaining transmission 
control and unveiling the  importance of asymptomatic 
carriage [7–9]. Indeed, with introduction of more sensi-
tive diagnostics, over and above what current rapid diag-
nostic tests (RDTs) can provide, our understanding of the 
environmental importance of asymptomatics will change 
[10]. Exploration of non-invasive sampling, e.g. collection 
of saliva or urine, for detection of Plasmodium DNA has 
been explored but as of yet is not routinely used [7, 11, 
12].

In Uganda, for example, control of malaria is a major 
public health challenge [13], especially in young children 
[6]. The geographical distribution of malaria also aligns 
with other mosquito-borne diseases such as lymphatic 
filariasis, making co-surveillance with neglected tropi-
cal diseases justifiable [14]. On the Lake Albert shoreline, 
however, intestinal schistosomiasis is hyperendemic [15] 
and ongoing school-based preventive chemotherapy con-
trol has taken place, with periodic disease surveillance, 
over the last 15  years [16, 17]. The local prevalence of 
Plasmodium falciparum in mothers and pre-school-aged 
children is very high [18–20], with non-P. falciparum 
infections also reported [21] but the prevalence of infec-
tion in school children rarely measured [22]. As part of 
ongoing surveillance of intestinal schistosomiasis in this 
area, Al-Shehri et  al. [15] revealed that over half of the 
sampled school children harboured RDT positive asymp-
tomatic infections, a quarter being anaemic (< 115  g/L) 
and 11% had faecal occult blood in stool. The local preva-
lence of egg-patent intestinal schistosomiasis was 46.5%, 
ranging in excess of 80% in certain schools along the 
immediate shoreline [15].

Point-of-care (POC) and reference laboratory diag-
nostics tests play a critical role in monitoring and sur-
veillance of disease control programmes, yet finding 
synergies for integrated surveillance is limited [23]. 
Indeed, current siloing of diseases and infection detection 
is unfortunate for there could be opportunities, where 
appropriate, to share programmatic costs and interven-
tion repertoires for intestinal schistosomiasis and malaria 
[13, 24]. Faecal samples are widely collected for surveil-
lance of intestinal schistosomiasis but have not been fully 
exploited to co-detect malaria, for example, by real-time 
PCR (rtPCR) analysis for Plasmodium DNA [25–27]. By 
contrast, non-invasive faecal sampling has burgeoned the 
detection of Plasmodium DNA in non-human primates, 
developing our epidemiological understanding of natural 
and zoonotic malaria immensely [28–31].

This study sought to investigate whether rtPCR analysis 
of extracted DNA from ethanol preserved faeces (EPF), 
collected during routine surveillance for intestinal schis-
tosomiasis, could be informative for population surveil-
lance of Plasmodium infection in school children.

Methods
Study area
In this cross-sectional survey, field sampling and exami-
nations of children took place during May 2015 in five 
primary schools in Buliisa District located within the 
Lake Albert region. Three of these five schools have been 
visited previously as sentinel surveillance sites of the 
national control programme [32] and the global posi-
tioning system (GPS) coordinates for each school were 
recorded: Walakuba (GPS 01°50.323N, 031°22.740E), 
Bugoigo (GPS 01°54.004N, 031°24.750E) and Runga 
(GPS 01°43.828N, 031°18.603E) were located on the 
immediate shoreline  at an approximate altitude of 
615  m on average above sea level, while Biiso (GPS 01° 
45.516N, 031°25.236E) and Busingiro (GPS 01°44.090N, 
031°26.855E) were located over 10 km away inland with 
an altitude of 1295  m on average above sea level. This 
purposeful selection aimed to represent the current 
control landscape of preventive chemotherapy for schis-
tosomiasis across high- and low-endemic settings and 
capture an altitudinal range where malaria transmission 
was suspected to vary.

Sample collection and POC diagnosis of malaria
After obtaining written informed consent and verbal 
assent, a pre-target enrolment of 60 children per school, 
of equal gender, randomly recruited from classes primary 
1 to 3, were assessed for study eligibility and requested 
to provide two stool samples on consecutive days, a sin-
gle urine sample and a finger-prick blood sample. Point-
of-care diagnosis of malaria was made according to an 
RDT (SD Bioline Malaria Ag P.f/Pan test, SD Diagnostics, 
Korea). A single drop of blood was spotted onto filter 
paper (Whatman 3 MM, Whatman International, Maid-
stone, England), dried at ambient temperature and sealed 
in a plastic bag with dessicant silica gel to preserve each 
DBS before transportation to the LSTM. DBS were then 
stored at − 20  °C before DNA extraction. Stool samples 
were filtered through a 212 µm metal mesh before 0.5 g 
were placed in 1  mL of 95% ethanol for the EPF before 
transfer to the LSTM and subsequent DNA extraction.

Detection of Plasmodium DNA by rtPCR TaqMan™ assay
DNA extraction from EPF was conducted according to 
protocols described by Al-Shehri et al. following standard 
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methods [33]. For DBS, DNA was extracted using Chelex 
Resin  (Chelex® 100 sodium form 50–100 mesh dry, No 
11139-85-8, Sigma) [34]. Extracted DNA was quanti-
fied and then analysed using a  TaqMan™ genus-spe-
cific  probe  targeting the  ribosomal 18S DNA gene [35]. 
In a total of 25 μL in each reaction, consisting of 12.5 μL 
IQ supermix, 5  μL of DNA template, specific forward 
primer, Plasmo-2 R primer, generic Plasmo-probe, and 
the reaction volume  was completed with nuclease-free 
 H20 (Sterile, RNase and DNase Free, 3098-2ML, UK). 
Extracted DNA-DBS and DNA-EPF for each school were 
run on different plates, included a number of controls: 
extraction of TE (10 mM Tris–HCl [pH 8], 1 mM EDTA) 
as a negative control, and four positive controls, using 
DNA extracted from reference P. falciparum, Plasmo-
dium vivax, Plasmodium ovale or Plasmodium malariae 
infections as provided by the clinical diagnostic labora-
tory at LSTM. A 10% selection of  experimental results 
were  repeated to ensure assay reproducibility. DNA-
TaqMan™ assays were performed in a Chromo-4 with 
Opticon monitor Version 3.1. (Biorad, Hemel Hemp-
stead, UK) and thermal cycling conditions of an initial 
denaturation of 3 min at 95 °C, followed by 50 cycles of 
15 s at 95 °C, 20 s at 60 °C and 15 s at 72 °C. Infected chil-
dren were identified according to  Ct values: either posi-
tive (10 > Ct ≤ 45) or negative  (Ct > 45).

Antiparasitic treatments offered
Each child was examined by the project nurse and offered 
praziquantel (40 mg/Kg, Merck KGaA, Darmstadt, Ger-
many) and albendazole (400  mg, GSK, Brentford, UK) 
irrespective of their infection status, although children 
observed with a positive malaria RDT were each offered 
a take-home, 3-day course of artemether–lumefantrine 
 (Coartem® Lonart; Cipla, Mumbai, India) treatment with 
the first and third treatment administrations overseen by 
the project nurse. The Ugandan Council for Science and 
Technology and the Liverpool School of Tropical Medi-
cine granted approvals for this study.

Statistical analysis
Statistical and regression analysis was performed using 
Minitab  Ltd® (Brandon Court, Unit E1-E2 Coventry CV3 
2TE UK), calculating prevalence, sensitivity, specificity, 
positive predictive value (PPV) and negative predictive 
value (NPV) of each of the diagnostic methods.

Results
A total of 271 children were initially screened; 247/271 
(91.1%) met the inclusion criteria of sample provision 
and obtaining verbal assent, were enrolled with mean age 
of 6.8 years (95% CI 6.6–6.9), with males accounting for 

124/247 (50.2%), and females 123/247 (49.7%). Of 247 
school-aged children that tested for malaria infection by 
RDTs using malaria Ag P.f/Pan test, 138 (55.8%; 95% CI 
49.6–61.9) were positive for P. falciparum (PfHRP-2-de-
tecting RDTs), and 45 samples (18.2%; 95% CI 13.9–23.5) 
were positive for Plasmodium species (PfHRP-II and 
pan-pLDH test lines). A singleplex rtPCR-based assay for 
DBS revealed that 198 (80.1%, 95% CI 74.7–84.6) children 
were positive for Plasmodium DNA whereas a singleplex 
rtPCR-based assay for EPF revealed that 158 (63.9%; 95% 
CI 57.8–69.7) children were positive, (Table 1).

Although absolute values differed, the trends of Plas-
modium prevalence across the three diagnostic methods 
by “Low–High Altitude” and “distance from Lake Albert” 
were similar. A positive  result by any test increased sig-
nificantly relative to distance from the lake (p < 0.001 for 
all three diagnostic tools) (Fig. 1). The highest prevalence 
of malaria  infection was by DBS analysis of 95.9% (95% 
CI 86.2–98.8) at Busingiro and, for EPF, 91.8% (95% CI 
80.8–96.7) at Biiso. At low altitudes and the shoreline 
schools of Walakuba and Runga, prevalence by RDT was 
32.5% (95% CI 20.4–47.4) and 58.0% (95% CI 44.2–70.6), 
by rtPCR for EPF was 34.8% (95% CI 22.4–49.8) and 
38.0% (95% CI 25.8–51.8), and for DBS was 76.7% (95% 
CI 62.2–86.8) and 84.0% (95% CI 71.4–91.6). In Bugoigo 
school, the prevalence of malaria by rtPCR from EPF 
appeared raised, 76.7% (95% CI 64.2–85.9), upon com-
parison to the other two diagnostic tools.

The relationship between  Ct value of rtPCR-
based assays for DBS and  Ct value for EPF was DBS 
 (Ct) = 26.93 + 0.1763 EPF  (Ct) and was statistically sig-
nificant (p = 0.01), with R-squared 4.14% (p < 0.005). The 
positive correlation as shown r = 0.2 (Fig.  2), indicat-
ing that when EPF  (Ct) increased, so did the DBS  (Ct) 
(p < 0.05), although the magnitude of this change was not 
substantive. Using RDT results as convenient field-based 
comparison, the diagnostic score tabulations are pre-
sented (Table 2). 

Discussion
In the present study, amplification of Plasmodium 
DNA from non-invasive EPF and invasive DBS sam-
pling has shown that 158 (63.9%; 95% CI 57.8–69.7) and 
198 (80.1%; 95% CI 74.7–84.6) of 247 children tested 
positive for infection (Table  1). As might be expected 
given the greater sensitivity of rtPCR methods based in 
the laboratory [7, 36, 37], the prevalence estimated by 
either EPF or DBS was higher than that by RDTs where 
138 children (55.8%; 95% CI 49.6–61.9) were judged 
infected. Using the RDT, inspecting lactate dehydroge-
nase (pLDH) reactions, 45 infected cases (18.2%; 95% 
CI 13.9–23.5) of pan-Plasmodium spp. co-infections 
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were found. The general agreement of infection mean 
prevalence and prevalence by school for EPF and RDT 
was satisfactory and would infer that this non-invasive 
sampling protocol yields very similar school-level infor-
mation. A further diagnostic evaluation might consider 
inclusion of point-of-contract microscopy [38, 39], par-
ticularly when parasite densities are below RDT detec-
tion thresholds [37].

Taking altitude and distance from Lake Albert into 
account, the highest prevalence of Plasmodium infec-
tion by any method was at Busingiro school, where 47 
out of 49 pupils (95.9%; 95% CI 86.2–98.8) tested posi-
tive by DBS sampling (Table 1). In contrast, 73.4% (95% 
CI 65.2–79.8) of the same pupils tested positive by EPF 
sampling while prevalence by RDT was 65.3% (95% CI 
51.3–77.0). The highest prevalence by EPF sampling was 
at Biiso school, and in all but one school (Runga), both 
DBS and EPF sampling provided higher prevalence of 
infection that RDTs (Fig.  1). These findings confirm 
those by Jirků et al. [25] in that Plasmodium DNA shed 
at detectable levels by rtPCR can be readily found within 
faecal material.

Unlike in previous studies where P. falciparum infec-
tion and parasite density was negatively associated with 
rising altitude [40–43], this study found that the highest 

percentages of Plasmodium DNA were in higher altitude 
schools (Biiso and Busingiro) (Fig.  2b); in both schools, 
EPF sampling detected a higher percentage of infec-
tion than RDTs. At lower altitudes, the performance of 
EPF sampling was less predictable against the two other 
methods. It is worthy to note that egg-patent intestinal 
schistosomiasis is very common in these three schools 
[44] and may perhaps confound the detection of Plas-
modium DNA. When determining the sensitivity and 
specificity of rtPCR-based assays; an initial evaluation 
of cycle threshold  (Ct) values showed that there was a 
positive correlation, although not particularly impressive, 
between DBS- and EPF-derived samples (r = 0.2), with 
a mean EPF Ct value of 36.3, and a mean DBS Ct value 
of 33.3, (Fig. 2). When correlating these results to RDTs, 
rtPCR-based assay of DBS samples showed a greater 
sensitivity than EPF samples (94.2% versus 73.1%), with 
rtPCR of DBS samples having a specificity of 37.6% and a 
PPV of 65.6%. In contrast, the specificity of EPF sampling 
was 47.7%, with a PPV of 63.9% (Table 2).

It is known that schistosomes immuno-modulate host 
responses which interplay with Plasmodium parasitae-
mia, often reducing numbers of Plasmodium within the 
blood [45]. This may lower the amount of Plasmodium 
DNA ultimately shed into the bowel but as schistosome 

Table 1 Prevalence and performance of diagnostic tests for detection of Plasmodium infection in school-aged children

a Malaria by RDT (SD Bioline Malaria Ag P.f/Pan test, SD Diagnostics, Yongin‑si, Gyeonggi‑do, Korea)
b A TaqMan‑based real‑time PCR assay that collectively detected all 4 Plasmodium species from DBS
c A TaqMan‑based real‑time PCR assay that collectively detected all 4 Plasmodium species from EPF
d Co‑infections among schoolchildren with Plasmodium species detected by rtPCR‑based assay for DBS and Schistosoma mansoni by Kato‑Katz faecal microscopy

School name Walukuba (n = 43) Runga (n = 50) Bugoigo (n = 56) Biiso (n = 49) Busingiro (n = 49) Total (n = 247)
n (%) n (%) n (%) n (%) n (%) n (%)

Prevalence

 Rapid diagnostic  testa

  Negative 29 (67.4) 21 (42.0) 26 (46.4) 16 (32.6) 17 (34.6) 109 (44.1)

  Positive 14 (32.5) 29 (58.0) 30 (53.5) 33 (67.3) 32 (65.3) 138 (55.8)

  95% CI [20.4–47.4] [44.2–70.6] [40.7–65.9] [53.3–78.7] [51.3–77.0] [49.6–61.9]

 rtPCR‑based assays for  DBSb

  Negative 10 (23.2) 8 (16.0) 24 (42.8) 5 (10.2) 2 (4.0) 49 (19.8)

  Positive 33 (76.7) 42 (84.0) 32 (57.1) 44 (89.8) 47 (95.9) 198 (80.1)

  95% CI [62.2–86.8] [71.4–91.6] [44.1–69.2] [78.2–95.5] [86.2–98.8] [74.7–84.6]

 rtPCR‑based assays for  EPFc

  Negative 28 (65.1) 31 (62.0) 13 (23.2) 4 (8.1) 13 (26.5) 89 (36.0)

  Positive 15 (34.8) 19 (38.0) 43 (76.7) 45 (91.8) 36 (73.4) 158 (63.9)

  95% CI [22.4–49.8] [25.8–51.8] [64.2–85.9] [80.8–96.7] [59.7–83.7] [57.8–69.7]

No. of infected (n = 33) (n = 42) (n = 32) (n = 44) (n = 47) Total (n = 198)

 Co‑infection (SCH,  MALd)

  Negative 4 (12.1) 6 (14.2) 21 (65.6) 36 (81.8) 43 (91.4) 110 (55.5)

  Positive 29 (87.8) 36 (85.7) 11 (34.3) 8 (18.1) 4 (8.5) 88 (44.5)

  95% CI [72.6–95.1] [72.1–93.2] [20.4–51.6] [9.5–31.9] [3.3–19.9] [37.6–51.4]
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eggs also directly perforate the bowel, and some 11% of 
children also had faecal occult blood in stool, thus there 
may be a more complicated relationship with detected 
Plasmodium DNA in faecal material than first assumed 
[25]. It remains to be assessed if this phenomenon also 
occurs in EPF sampling of non-human primates as intes-
tinal schistosomiasis can naturally occur in these animals 
[46]. Using rtPCR with  Taqman® probes for Schistosoma 
boosts the diagnostic repertoire for detection of human 
and zoonotic schistosomiasis [44, 47] and could be also 
applied in non-human primate sampling.

Although faecal sampling has been  a routine activ-
ity of the national control programme for bilharzia and 
intestinal worms for over a decade [48, 49], an immedi-
ate drawback in the use of EPF sampling is the need for 
a laboratory setting. Future advances in handheld rtPCR 
equipment may provide an alternative avenue by which 
EPF sampling becomes more portable and affordable 
in field conditions [7, 50, 51]. What is evident from the 
results of this study is that EPF sampling of Plasmodium 
infections in school children in this high transmission 

setting provides information without invasive sam-
pling. Similarly, it has been shown that EPF sampling 
can shed light on the occurrence of other parasites and 
pathogens whose nucleic acids may be shed in stool [23]. 
Such passive collection of stools, or targetted collec-
tion for faecal parasites, could aid in developing a gen-
eral monitoring and surveillance platform. For example, 
EPF sampling may have future application in evaluating 
dynamics of malaria in schools where intermittent pre-
ventive treatment has been allocated [51]. However, in 
Ebola-risk areas, due care should be taken in stool collec-
tion and processing [52]. With regard to malaria control 
in Uganda, EPF analysis could contribute to general sur-
veillance of infection in schools [13], encouraging further 
integrated mapping initiatives with neglected tropical 
diseases [53], and assessing the future impact of intermit-
tent preventive treatment initiatives [51].

Fig. 1 Location of 5 sampled schools and estimated prevalence of malaria. a Schematic map of the five sampled primary schools in the Lake Albert 
region, the blue area indicates Lake Albert. The primary schools of Bugoigo, Walakuba and Runga on the lakeshore plain (Low‑Altitude), whereas 
Biiso and Busingiro are located on top of the escarpment (High‑Altitude). Once part of Masindi District, the schools are now located within Buliisa 
District after administrative areas were revised. b Estimated prevalence of malaria infection by altitude and school distance from the shoreline for 
each examined diagnostic test
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Fig. 2 Showing the regression between rtPCR‑based assays for DBS  (Ct) and rtPCR‑based assays for EPF  (Ct) for the singleplex assay to detect 
generic Plasmodium (18S rDNA gene). The red fitted line shows the predicted value and cross line is the cut off 45  Ct. The blue dashed lines show 
the 95% prediction interval. The mean  Ct value of EPF  (Ct) is 36.3, and DBS  (Ct) is 33.3, and the actual difference between DBS  (Ct) and EPD  (Ct) is 2.3 
(95% Cl 1.1–3.5)

Table 2 Empirical estimates of  sensitivity (SS), specificity (SP), negative predictive value (NPV) and  positive predictive 
value (PPV), Cohen’s kappa for each diagnostic test against Malaria by RDT as ‘gold standard’

a rtPCR‑based assays based on detecting a region of the Plasmodium 18S DNA gene that is conserved across all five species P. falciparum, P. vivax, P. ovale and P. 
malariae

Assay Negative (%) Positive (%) Total (%) Estimate % (95% CIs) Diagnostic 
accuracy (95% 
CIs)

Diagnostic 
odds (95% 
CIs)

Cohen’s kappa

Rapid diagnostic tests (RDTs)

 rtPCR of  DBSa

  Negative 41 (83.6) 8 (16.3) 49 (19.8) Sensitivity 94.2% [88.9–97.0] 69.2% [63.2–74.6] 9.7 [4.3–22.0] 0.3 [0.2–0.4]

  Positive 68 (34.3) 130 (65.6) 198 (80.1) Specificity 37.6% [29.0–46.9]

  Total (%) 109 (44.1) 138 (55.8) 247 (100.0) PPV 65.6% [58.8–71.9]

NPV 83.6% [70.9–91.4]

 rtPCR of  EPFa

  Negative 52 (58.4) 37 (41.5) 89 (36.0) Sensitivity 73.1% [65.2–79.8] 61.9% [55.7–67.7] 2.4 [1.4–4.2] 0.2 [0.1–0.3]

  Positive 57 (36.0) 101 (63.9) 158 (63.9) Specificity 47.7% [38.5–57.0]

  Total (%) 109 (44.1) 138 (55.8) 247 (100.0) PPV 63.9% [56.1–71.0]

NPV 58.4% [48.0–68.1]
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Conclusion
Examination of EPF by rtPCR analysis in this high 
transmission setting offers an attractive non-invasive 
sampling strategy for detection of Plasmodium DNA 
in school children; prevalence of infection by school 
was in close agreement with that obtained from POC-
RDTs using finger prick blood. In future, using EPF and 
rtPCR analysis could be a powerful disease surveillance 
platform, able to synergize with helminth control pro-
grammes and likely prove useful in passive surveillance 
of infections within low transmission settings.
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