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Aims Undetected atrial fibrillation (AF) is a major health concern. Blood biomarkers associated with AF could simplify
patient selection for screening and further inform ongoing research towards stratified prevention and treatment
of AF.

...................................................................................................................................................................................................
Methods
and results

Forty common cardiovascular biomarkers were quantified in 638 consecutive patients referred to hospital [mean-
± standard deviation age 70 ± 12 years, 398 (62%) male, 294 (46%) with AF] with known AF or >_2 CHA2DS2-VASc
risk factors. Paroxysmal or silent AF was ruled out by 7-day ECG monitoring. Logistic regression with forward se-
lection and machine learning algorithms were used to determine clinical risk factors, imaging parameters, and bio-
markers associated with AF. Atrial fibrillation was significantly associated with age [bootstrapped odds ratio (OR)
per year = 1.060, 95% confidence interval (1.04–1.10); P = 0.001], male sex [OR = 2.022 (1.28–3.56); P = 0.008],
body mass index [BMI, OR per unit = 1.060 (1.02–1.12); P = 0.003], elevated brain natriuretic peptide [BNP, OR
per fold change = 1.293 (1.11–1.63); P = 0.002], elevated fibroblast growth factor-23 [FGF-23, OR = 1.667 (1.36–
2.34); P = 0.001], and reduced TNF-related apoptosis-induced ligand-receptor 2 [TRAIL-R2, OR = 0.242 (0.14–
0.32); P = 0.001], but not other biomarkers. Biomarkers improved the prediction of AF compared with clinical risk
factors alone (net reclassification improvement = 0.178; P < 0.001). Both logistic regression and machine learning
predicted AF well during validation [area under the receiver-operator curve = 0.684 (0.62–0.75) and 0.697 (0.63–
0.76), respectively].

...................................................................................................................................................................................................
Conclusion Three simple clinical risk factors (age, sex, and BMI) and two biomarkers (elevated BNP and elevated FGF-23) iden-

tify patients with AF. Further research is warranted to elucidate FGF-23 dependent mechanisms of AF.
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Introduction

Atrial fibrillation (AF) is often only identified after a complication, e.g.
a stroke.1,2 Initiation of oral anticoagulation can prevent such

events,3–5 leading to calls for systematic AF screening in at risk popu-
lations6 to allow timely initiation of anticoagulation. Unfortunately,
ECG screening is resource-intensive and burdensome for patients.7

Therefore, clinical risk factors associated with AF8 such as older age,
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..prior stroke, obesity, hypertension, diabetes, ischaemic heart disease,
chronic kidney disease, and heart failure, are used to identify subpo-
pulations suitable for ECG screening. These risk factors, individually
or in combination, have modest predictive ability and their determin-
ation requires specialist knowledge (e.g. for diagnosing heart failure),
presenting a challenge for effective screening.

Blood biomarkers have the potential to support community
screening programmes for AF (e.g. incorporated into point-of-care
tests). Several candidate biomarkers for detection of AF have been
proposed, such as N-terminal prohormone of brain natriuretic pep-
tide (NT-proBNP)9 and brain natriuretic peptide (BNP)10 reflecting
atrial strain, C-reactive protein11 reflecting inflammation, Galectin-
312 correlating with cardiac fibrosis, or cystatin or glomerular filtra-
tion rate13 as a marker of chronic kidney disease. Brain natriuretic
peptide, the best-studied marker, is similarly elevated both in patients
with prevalent AF10,14 and in cohorts analysed for incident AF.9,15 So
far, most analyses identifying biomarkers in patients with AF have
been hypothesis-driven and involved measurement of a single or a
small selection of blood biomarkers.16 These biomarkers also com-
pete with other cardiovascular markers related to prognosis or diag-
nosis of other cardiac conditions (e.g. heart failure, atherosclerosis,
and coronary events) or death.16

To enable a data-driven analysis of AF specific biomarkers, we
quantified 40 cardiovascular biomarkers in an unselected cohort of
patients. All patients without known AF were screened for silent, un-
diagnosed AF using 7-day event monitoring. We combined biomark-
er concentrations with known clinical risk factors of AF to determine
which markers best distinguish patients with and without AF. In a sec-
ondary analysis, we also included imaging parameters that have been
associated with AF.17 Using both logistic regression and machine
learning algorithms, we identified robust markers for AF.

Methods

Study population
Seven hundred and twenty consecutive patients referred to the Sandwell
and West Birmingham Hospitals NHS Trust (Birmingham, UK), for in-
patient or outpatient evaluation of acute illnesses were recruited be-
tween September 2014 and August 2016 as part of the Birmingham and
Black Country Atrial Fibrillation Registry (BBC-AF). Eligible patients ei-
ther had diagnosed AF (confirmed by ECG4) or at least two CHA2DS2-
VASc stroke risk factors.4 Complete enrolment criteria are given in
Supplementary material online, Table S1. All patients without diagnosed
AF underwent 7-day ambulatory ECG monitoring to detect silent AF.
Clinical information was obtained from a detailed interview, review of
electronic patient records, and chart review. Transthoracic echocardiog-
raphy was performed in all patients. For analysis purposes, the cohort
was divided chronologically in an approximate 60:40 ratio, conventional
for discovery-validation paradigms (discovery cohort: patients 1–450; val-
idation cohort: patients 451–720). This study complied with the
Declaration of Helsinki, was approved by the National Research Ethics
Service Committee (BBC-AF Registry, West Midlands, UK, IRAS ID
97753), and was sponsored by the University of Birmingham, UK. All
patients provided written informed consent.

Biomarker quantification
Blood samples from all patients were fractionated and stored at -80�C
until analysis. Protein concentrations were quantified with standardized
methods using a validated proximity extension assay which simultaneous-
ly measured all protein concentrations from 1mL of EDTA plasma (Olink
Proteomics, Uppsala, Sweden; for details see Supplementary material on-
line, Methods). Data from 82 patients (11%) were removed due to assay
failure and/or flagging during quality control, and excluded from analysis.
These patients were not different in clinical characteristics from the rest
of the cohort. All data were analysed as log-2 transformed units (fold
change). For technical reasons (supply of the panel kits), Olink cardiovas-
cular Panel I was used in the discovery cohort, and Olink cardiovascular
Panel II in the validation cohort. Out of the 92 proteins quantified on each
panel, 52 were unique to either panel. The remaining 40 overlapping pro-
teins between the two panels were included in the primary analysis
(Supplementary material online, Table S2).

Statistical analysis
The baseline characteristics of patients with and without AF in both
the discovery and validation cohorts were compared. Categorical vari-
ables were assessed using v2 tests. Continuous variables were com-
pared using independent samples t-tests or Mann-Whitney U tests as
applicable after testing for data normality with the Kolmogorov–
Smirnov test. A two-tailed P-value of <0.05 was considered to be stat-
istically significant.

Using data from the discovery cohort, we considered all 40 bio-
markers and seven clinical risk factors [age, sex, hypertension, heart fail-
ure, history of stroke or transient ischaemic attack, kidney function, and
body mass index (BMI)] for variable selection. Values missing at random
were imputed (see Supplementary material online, Methods for details).
Forward selection with an entry criterion of P = 0.05 was applied as an
objective, data-driven technique to identify the smallest number of varia-
bles required for a practical model. Using logistic regression, the selected
biomarkers and clinical risk factors were modelled for their association
with AF in the discovery cohort, and subsequently evaluated in the valid-
ation cohort (Figure 1). Bootstrapping was used to adjust model coeffi-
cients for over-optimism due to potential over-fitting in the discovery
data. The area under the receiver-operator curve (AUC or C-statistic)
and Brier score were calculated using SPSS v.24 (IBM Corporation,
Armonk, NY, USA). In a sensitivity analysis, all 92 biomarkers available in
the first 450 patients were included for variable selection and modelling
(Supplementary material online, Table S3). In an additional sensitivity ana-
lysis, we randomly allocated patients to the discovery and validation
cohorts using random case sampling instead of splitting the cohort by bio-
marker panel (Supplementary material online, Analysis A1).

We further assessed the AUC of two additional models, the first with
only age as the predictor,18 the second with only clinical risk factors
selected in the forward selection procedure, and compared the AUCs
with the model which included biomarkers. The net reclassification index
(NRI) was calculated to assess the added discriminative ability of bio-
markers, using Matlab 2017a (The MathWorks, Inc., Natick, MA, USA). In
a secondary analysis, we evaluated the impact of including two imaging
parameters that have been associated with AF (mitral valve disease and
left atrial dilation)19 on the selection of biomarkers. Presence of mitral re-
gurgitation was equivalent to Grade II and above, whereas the left atrial
dilation was defined as mild, moderate, or severe dilation on
echocardiography.
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Figure 1 Forward selection logistic regression methods. Primary analysis involved forward selection for identifying variables to be fitted in the lo-
gistic regression model for biomarker discovery, evaluation of model performance in the validation cohort, comparison of performance measures
with two other models, and quantification of net reclassification index, as well as inclusion of imaging parameters in the secondary analysis.

Figure 2 Machine learning methods. Analysis involved feature selection using the Random Forest algorithm, and model training using five different
algorithms and five-fold cross-validation.
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Using the imputed dataset, each continuous variable was centralized
to the mean and scaled to the standard deviation, whereas categor-
ical variables were coded into binary numbers (0 and 1). Backward
feature selection with the random forest algorithm was used to
identify variables for inclusion in the model according to the best
AUC. Models were then created using five-fold cross-validation

with each training unit being sampled using random over-sampling
examples (Figure 2). The best model from cross-validation was
trained using the whole discovery dataset and evaluated on the val-
idation dataset. The performance of machine learning models was
also evaluated by the AUC (see Supplementary material online,
Methods for details). The R language for statistical computing was
used for analysis.

............................................................. ...............................................................

....................................................................................................................................................................................................................

Table 1 Baseline demographics of the study population

Discovery Validation

No AF (n 5 215) AF (n 5 169) No AF (n 5 129) AF (n 5 125)

Age (years)a 66.0 (57.0–74.0) 73.0 (63.0–79.0)b 67.0 (59.1–74.0) 75.0 (67.0–81.5)b

Male 130 (60.5) 117 (69.2) 83.0 (64.3) 68.0 (54.4)

Ethnicity

Caucasian 133.0 (61.9) 142.0 (84.0)b 104.0 (80.6) 116.0 (92.8)b

Asian 55.0 (25.6) 14.0 (8.3) 13.0 (10.1) 5.0 (4.0)

Afro-Caribbean 25.0 (11.6) 9.0 (5.3) 12.0 (9.3) 4.0 (3.2)

Unknown 2.0 (0.9) 4.0 (2.4) — —

BMI (kg/m2)a 28.1 (25.2–32.7) 29.6 (26.0–33.6) 29.1 (25.5–33.4) 28.9 (24.8–32.9)

eGFR (mL/min/1.73 m2)a 72.0 (57.0–87.0) 69.0 (57.5–84.0) 73.0 (58.3–85.0) 64.0 (44.5–79.0)b

Diabetes 89.0 (41.4) 37.0 (21.9)b 56.0 (43.4) 26.0 (20.8)b

Stroke 24.0 (11.2) 21.0 (12.4) 13.0 (10.1) 10.0 (8.0)

CAD 87.0 (40.5) 29.0 (17.2)b 78.0 (60.5) 29.0 (23.2)b

Hypertension 142.0 (66.0) 104.0 (61.5) 89.0 (69.0) 61.0 (48.8)

Heart failure 31.0 (14.4) 28.0 (16.6) 8.0 (6.2) 12.0 (9.6)

Ejection fraction (%)a 60.0 (53.1–67.3) 57.7 (45.0–65.0)b 57.0 (45.5–62.5) 55.0 (41.3–61.0)

Admission criteria

Inpatient 160 (41.6) 97 (25.3) 124 (48.8) 97 (38.2)

Outpatient 55 (14.3) 72 (18.8) 5 (2.0) 28 (11.0)

Concomitant medication

NOAC 4.0 (1.9) 63.0 (37.3)b 1.0 (0.8) 44.0 (35.2)b

VKA 5.0 (2.3) 48.0 (28.4)b 2.0 (1.6) 41.0 (32.8)b

Aspirin 137.0 (63.7) 39.0 (23.1)b 98.0 (76.0) 41.0 (32.8)b

Antiplatelet agents (clopidogrel, prasugrel,

and ticagrelor)

94.0 (43.7) 33.0 (19.5)b 82.0 (63.6) 27.0 (21.6)b

ACEi 44.0 (20.5) 36.0 (21.3) 58.0 (45.0) 37.0 (29.6)b

Angiotensin II receptor blocker 39.0 (18.1) 28.0 (16.6) 22.0 (17.1) 25.0 (20.0)

Beta-blocker 115.0 (53.5) 83.0 (49.1) 85.0 (65.9) 72.0 (57.6)

Diuretic 59.0 (27.4) 66.0 (39.1)b 37.0 (28.7) 55.0 (44.0)b

Calcium channel antagonist 61.0 (28.4) 42.0 (24.9) 39.0 (30.2) 24.0 (19.2)b

Cardiac glycoside — 33.0 (19.5)b — 28.0 (22.4)b

Aldosterone antagonist 13.0 (6.0) 12.0 (7.1) 5.0 (3.9) 10.0 (8.0)

Verapamil/diltiazem 12.0 (5.6) 14.0 (8.3) 5.0 (43.9) 7.0 (5.6)

Antiarrhythmics (amiodarone, dronedarone,

flecainide, propafenone, and sotalol)

4.0 (1.9) 17.0 (10.1)b 3.0 (2.3) 12.0 (9.6)b

Categorical variables are reported as n (%), whereas continuous variables are reported as mean (standard deviation) [or median (IQR) for non-parametric distributions]. The in-
dependent t-test (or Mann–Whitney U test for non-parametric distributions) and v2 tests were used to compare continuous and categorical characteristics between patients
within the two cohorts.
ACEi, angiotensin-converting enzyme inhibitor; BMI, body mass index; CAD, coronary artery disease; eGFR, estimated glomerular filtration rate; NOAC, non-vitamin K antag-
onist oral anticoagulant; VKA, vitamin K antagonist.
aNon-parametric distributions.
bA two-tailed significant difference P < 0.05 between patients with and without AF.
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Elevated brain natriuretic peptide and
fibroblast growth factor 23 are associated
with atrial fibrillation and improve
detection of patients with atrial
fibrillation
There was no significant difference in sex distribution, BMI, prior
stroke, hypertension, and heart failure between the groups (Table 1).
Patients with AF were older than patients without AF, and were less
likely to have diabetes or coronary artery disease. Medications also
differed as expected in patients with AF, with higher use of oral anti-
coagulants, rate and rhythm control drugs than in patients without
AF. The forward selection process identified three clinical risk factors

to be significantly associated with AF: male sex, odds ratio (OR)
2.022 [95% confidence interval (CI) = 1.28–3.56, P = 0.008] older age
(OR = 1.060 per year increase; 95% CI = 1.04–1.10, P = 0.001); and
higher BMI (OR = 1.060 per BMI unit increase; 95% CI = 1.02–1.12,
P = 0.003; Figure 3).

Three biomarkers were also selected: elevated BNP and fibro-
blast growth factor-23 (FGF-23) were robustly associated with AF
(OR = 1.293 per fold change increase; 95% CI = 1.11–1.63;
P = 0.002 and OR = 1.667, 95% CI = 1.36–2.34; P = 0.001, respect-
ively). Both BNP {U = 13517, P < 0.001; median [interquartile range
(IQR)] 1.650 (0.522–3.917) vs. 2.958 (01.458–4.589)} and FGF-23
[U = 14263, P < 0.001; median (IQR) 3.330 (2.784–3.984) vs. 3.604
(3.067–4.946)] were significantly elevated in patients with AF com-
pared with those in sinus rhythm (Figure 4). The increase in BNP

Figure 4 Comparison of biomarker levels between patients with and without atrial fibrillation. Elevated brain natriuretic peptide and fibroblast
growth factor 23 levels observed in atrial fibrillation groups in both discovery and validation cohorts. **P < 0.001; error bars represent the SEM. BNP,
brain natriuretic peptide; FGF-23, fibroblast growth factor 23.

Figure 3 Odds ratios of the logistic regression model predicting atrial fibrillation (discovery cohort). Three clinical risk factors (age, sex, and body
mass index) and two biomarkers (brain natriuretic peptide and fibroblast growth factor 23) were associated with increased odds of having atrial fibril-
lation, whereas biomarker TNF-related apoptosis-induced ligand-receptor 2 was associated with decreased odds of having atrial fibrillation. No sig-
nificant interaction between age and sex were found. Error bars represent the 95% confidence interval. BMI, body mass index; BNP, brain natriuretic
peptide; FGF-23, fibroblast growth factor 23; TRAIL-R2, TNF-related apoptosis-induced ligand-receptor 2.

1272 W. Chua et al.
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and FGF-23 was not correlated with duration of AF (BNP,
P=0.879; FGF-23, P=0.932; Supplementary material online, Analysis
A2). In contrast, reduced TRAIL-R2 levels were associated with AF
(OR = 0.242 per fold change increase, 95% CI = 0.14–0.32,
P = 0.001), but TRAIL-R2 concentrations were not different

between patients in AF and in sinus rhythm (P = 0.727). This model
of three clinical risk factors and three biomarkers has an AUC of
0.765 (95% CI 0.717–0.813, Table 2) and a Brier score 0.197, with
comparable values in the validation cohort [AUC 0.684 (95%
CI = 0.62–0.75), Brier score 0.232].

Figure 5 Feature selection using Random Forest. Seven clinical risk factors and 40 biomarkers were initially considered for inclusion. Backward se-
lection with Random Forest was used to identify the model with the best area under the receiver-operator curve. Twenty-five variables were
selected in the best model (four clinical risk factors in green; 21 biomarkers in blue) and ranked by importance with the most important variable given
a score of 100. AM, adrenomedullin; BNP, brain natriuretic peptide; CCL3, C-C motif chemokine 3; CXCL1, C-X-C motif chemokine 1; FGF-23,
fibroblast growth factor 23; HB-EGF, heparin-binding EGF-like growth factor; IL-18, interleukin-18; IL-1ra, interleukin-1 receptor antagonist protein;
IL-27, interleukin-27; PAPPA, pappalysin-1; PAR-1, proteinase-activated receptor 1; PDGF subunit B, Platelet-derived growth factor subunit B; PIGF,
placenta growth factor; PSGL-1, P-selectin glycoprotein ligand 1; RAGE, receptor for advanced glycosylation end products; SCF, stem cell factor;
SRC, proto-oncogene tyrosine-protein kinase Src; TIE2, angiopoietin-1 receptor; TM, thrombomodulin; TRAIL-R2, TNF-related apoptosis-induced
ligand-receptor 2; VEGF-D, vascular endothelial growth factor D.
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Validation by machine learning and
sensitivity analyses
As a complementary approach to account for dataset complexity
and also to broaden the rubric of the statistical model, we performed
machine learning analyses on the data. The process of feature selec-
tion identified a subset of variables that were most relevant for build-
ing the model. The variables selected, in decreasing order of
importance, were BNP, age, FGF-23, IL-27, PAPPA, TRAIL-R2, PIGF,
SCF, VEGF-D, CXCL1, IL-18, IL-1ra, RAGE, PAR-1, CCL3, TM, TIE2,
ADM, PSGL-1, SRC, HB-EGF, PDGF subunit B, eGFR, sex, and heart
failure (Figure 5). The best cross-validation algorithm was the Lasso
and elastic-net regularized generalized linear model with an AUC of
0.697 (95% CI = 0.63–0.76). The algorithms ranked variables by order
of scaled importance (SI) according to the most important variable
(ranked as 1; Table 3). There were considerable overlaps in important
variables ranked by the algorithms with the variables identified using
forward selection. Particularly, age and biomarkers associated with
AF identified in the logistic regression were highly ranked.

In our sensitivity analysis, when logistic regression with forward se-
lection was applied to all 92 biomarkers in the first 450 patients (dis-
covery cohort), elevated NT-proBNP (precursor fragment of BNP;
OR = 1.918 per fold change increase; 95% CI = 1.51–2.94; P = 0.001),
and FGF-23 (OR = 1.721 per fold change increase; 95% CI = 1.43–
2.45; P = 0.001) were associated with high odds of having AF. In add-
ition, three other biomarkers were also identified [monocyte chemo-
tactic protein 1, MCP-1 (OR = 1.799; 95% CI = 1.32–3.49, P = 0.003),
ST2 (OR = 1.607; 95% CI = 1.12–2.33, P = 0.003), and receptor for
advanced glycation end products, RAGE (OR = 1.656; 95%
CI = 1.11–2.88, P = 0.012)].

Effect of biomarkers and imaging on
atrial fibrillation prediction
To assess the clinical usefulness of biomarkers for identifying patients
with AF, we compared the models using only age, only clinical risk
factors, and the model including both clinical risk factors and bio-
markers. The model with clinical risk factors performed better than

..................................

....................................................................................................................................................................................................................

Table 2 Comparison of models predicting atrial fibrillation

Model AUC 95% CI Brier score

Lower Upper

Age only (years) 0.618 0.562 0.675 0.238

Clinical risk factors only (age, sex, and BMI) 0.659 0.605 0.713 0.216

Clinical risk factors and biomarkers (age, sex, BMI, BNP, FGF-23, and TRAIL-R2) 0.765 0.717 0.813 0.197

Bootstrapped performance measures between three models showing incremental improvement with the addition of clinical risk factors and biomarkers identified by the logistic
regression.
AUC, area under the ROC curve; BMI, body mass index; BNP, brain natriuretic peptide; FGF-23, fibroblast growth factor 23; TRAIL-R2, TNF-related apoptosis-induced ligand
receptor 2.

....................................................................................................................................................................................................................

Table 3 Ranking of the 10 most important variables for each of the algorithms run

Algorithms

Ranking

Lasso and elastic-net

regularized generalized

linear model

Support vector machines

with linear Kernel

Random

forest

Stochastic

gradient boosting

Recursive

partitioning

1 Age BNP Age PIGF PSGL-1

2 TRAIL-R2 Sex FGF-23 FGF-23 FGF-23

3 RAGE FGF-23 IL-27 SCF CXC1

4 TM VEGF-D BNP PAPPA TIE2

5 PAR-1 IL-27 PDGF sub-B VEGF-D Age

6 VEGF-D RAGE SRC IL-27 IL-27

7 IL-1ra CCL3 TRAIL-R2 Age PAPPA

8 PAPPA ADM ADM TRAIL-R2 RAGE

9 PSGL-1 SCF Sex PSGL-1 TM

10 Sex PAPPA IL-1ra BNP IL-1ra

The most important variable is ranked as 1. Note that collinearity exists in machine learning techniques, allowing the best set of related variables to determine predictive accur-
acy. Variables which overlap with the forward selection logistic regression are in bold.
ADM, adrenomedullin; BNP, brain natriuretic peptide; CCL3, C-C motif chemokine 3; CXCL1, C-X-C motif chemokine 1; FGF-23, fibroblast growth factor 23; IL-1ra, interleu-
kin-1 receptor antagonist protein; IL-27, interleukin-27; PAPPA, pappalysin-1; PAR-1, proteinase-activated receptor 1; PDGF subunit B, platelet-derived growth factor subunit B;
PIGF, placenta growth factor; PSGL-1, P-selectin glycoprotein ligand 1; RAGE, receptor for advanced glycosylation end products; SCF, stem cell factor; SRC, Proto-oncogene
tyrosine-protein kinase Src; TIE2, angiopoietin-1 receptor; TM, thrombomodulin; TRAIL-R2, TNF-related apoptosis-induced ligand-receptor 2; VEGF-D, vascular endothelial
growth factor D.
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..age alone, and the addition of biomarkers to the clinical risk factors
resulted in a significant net gain in reclassification of 11.2% (35 cor-
rectly reclassified, 16 incorrectly reclassified, P = 0.008) for patients
who had AF and 6.5% for patients without AF (28 correctly reclassi-
fied, 14 incorrectly reclassified, P = 0.031), yielding an overall NRI of
0.178 (P < 0.001; Table 3). The AUC and Brier score improved as
well.

When echocardiography parameters were included in the for-
ward selection, left atrial dilation was selected, whereas BMI and
BNP were dropped from the model; both FGF-23 and TRAIL-R2
remained in the model. Subsequent model fitting indicated a sig-
nificant association between left atrial dilation and increased odds
for AF (OR = 2.809, 95% CI = 1.70–5.24; P = 0.001). We found
marked BNP elevation in patients with atrial dilation [U = 6165,
P < 0.001; median (IQR) 3.441 (1.797–5.293) vs. 1.006 (0.482–
2.839) without left atrial dilation].

Discussion

This data-driven assessment of common cardiovascular biomarkers
confirmed prior reports that AF was associated with elevated BNP
levels.10,20 We also identified FGF-23—a protein associated with car-
diac hypertrophy, chronic kidney disease, and vascular stiffness—as a
robust marker for AF.21,22 A simple assessment of age, sex, BMI, and
these two biomarkers robustly identified patients with AF in both the
discovery and validation cohorts in our study.

Clinical implications
Including biomarker measurements in clinical practice could better
identify patients with undiagnosed prevalent AF. A point-of-care test
for BNP and/or FGF-23 could allow such screening in many settings,
especially in environments without immediate input from medically
trained personnel.7,23 This can refine ongoing approaches using only
age and BNP to select patients for screening.23

The detailed phenotyping in our study allowed transthoracic echo-
cardiography imaging parameters to be integrated in our analyses.
Brain natriuretic peptide was elevated in patients with dilated left
atrium, rendering BNP a potential marker for atrial dilation in lieu of
imaging. Thus, a BNP test can facilitate screening for AF in settings
without cardiac imaging, e.g. in community and primary care.
Conversely, BNP measurements could be omitted in patients under-
going cardiac imaging with quantification of left atrial size. Further val-
idation is needed to confirm this proposition.

Implications for stratified prevention and
therapy
Our data confirmed elevated BNP (and its precursor fragment NT-
proBNP)10,14 as a marker for AF and for atrial dilation. Brain natri-
uretic peptide is a natriuretic peptide synthesized by cardiomyocytes
in response to increased pressure and myocardial stretch.24 Our find-
ings illustrate the importance of detecting increased atrial load and
strain for identifying AF in patients. Load reduction—e.g. through
antihypertensive therapy—which appears to have potential for

Take home figure Data-driven discovery identifies BNP and FGF-23 as biomarkers for AF. Brain natriuretic peptide and fibroblast growth fac-
tor 23 identified by regression and machine learning to be robustly associated with atrial fibrillation in a cohort of 638 patients presenting to hospital.
AF, atrial fibrillation; BNP, brain natriuretic peptide; FGF-23: fibroblast growth factor 23.
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prevention of AF,25 could be particularly useful to treat AF in patients
with atrial dilation or elevated BNP.

FGF-23 is elevated with decreasing kidney function and is
associated with all-cause mortality and cardiovascular disease in
patients with chronic kidney disease.26 The relationship be-
tween elevated FGF-23 levels with AF and left ventricular func-
tion, independently of kidney disease, was unclear until now in
the literature, showing association in some cohorts,21 but not
in others.27 Our study confirms that FGF-23 levels are elevated
in patients with AF.

FGF-23 is a phosphate and calcium-regulating hormone primar-
ily secreted by osteocytes and osteoblasts. As FGF-23 promotes
myocardial remodelling and cardiac hypertrophy,28 it can cause
or enhance hypertrophy-related ectopic activity and automaticity,
leading to AF. FGF-23 is also associated with endothelial dysfunc-
tion.29 It is possible that all of the mechanisms discussed contrib-
ute in some part to the development of AF in patients with
elevated FGF-23.22,28,29

We observed an inverse association of TRAIL-R2 with AF,
but we did not find a difference in TRAIL-R2 concentrations
between patients in sinus rhythm and in AF. This observation
most likely reflects complex interactions between AF and clinic-
al characteristics in our patient demographics which show an
enrichment of patients with coronary artery disease and dia-
betes in sinus rhythm.

In summary, our analysis suggests that volume load (reflected
by elevated BNP) and cardiac stiffness (reflected by elevated
FGF-23) are two major drivers of AF, possibly pointing to two
clinically relevant types of AF.30 Clearly, further research is war-
ranted to understand the mechanisms linking elevated FGF-23
and BNP to AF.

Limitations
Supporting our findings, both conventional statistical techniques
and novel machine learning analyses yielded similar results, but
there are limitations. Firstly, we acknowledge potential observa-
tion biases for patient selection, although our inclusion criteria
were broad, creating a data set that is representative of the range
of patients referred to hospital. In addition, there was a small num-
ber of missing data which were imputed. Statistical approaches
were applied to minimise over-fitting, and a variety of analytical
approaches supported our main results, but our findings, particu-
larly pertaining to FGF-23, need further external validation in sep-
arate populations.

Conceptually, biomarker measurements in a population-based
sample and long-term follow-up for incident AF are desirable for val-
idation of our findings. Fortunately, longitudinal population-based
studies for incident AF9,15 have identified similar markers for AF as
cross-sectional studies (mainly BNP), suggesting that markers for
prevalent AF also identify patients at risk of incident AF.

Conclusions

Elevated BNP is an established marker for prevalent AF, while ele-
vated FGF-23 as a new biomarker robustly associated with AF. A sim-
ple assessment of age, sex, BMI, BNP, and FGF-23 can identify

patients with AF, e.g. to enrich populations undergoing ECG screen-
ing. Brain natriuretic peptide and FGF-23 may also be useful to stratify
patients with AF.

Supplementary material

Supplementary material is available at European Heart Journal online.
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