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Abstract

Background

Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by infections

due to Trypanosoma brucei subspecies. In addition to the well-established environmental

and behavioural risks of becoming infected, there is evidence for a genetic component to

the response to trypanosome infection. We undertook a candidate gene case-control study

to investigate genetic associations further.

Methodology

We genotyped one polymorphism in each of seven genes (IL1A, IL1RN, IL4RN, IL6, HP,

HPR, and HLA-G) in 73 cases and 250 controls collected from 19 ethno-linguistic subgroups

stratified into three major ethno-linguistic groups, 2 pooled ethno-linguistic groups and 11

ethno-linguistic subgroups from three Cameroonian HAT foci. The seven polymorphic loci

tested consisted of three SNPs, three variable numbers of tandem repeat (VNTR) and one

INDEL.

Results

We found that the genotype (TT) and minor allele (T) of IL1A gene as well as the genotype

1A3A of IL1RN were associated with an increased risk of getting Trypanosoma brucei
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gambiense and develop HAT when all data were analysed together and also when stratified

by the three major ethno-linguistic groups, 2 pooled ethno-linguistic subgroups and 11

ethno-linguistic subgroups.

Conclusion

This study revealed that one SNP rs1800794 of IL1A and one VNTR rs2234663 of IL1RN

were associated with the increased risk to be infected by Trypanosoma brucei gambiense

and develop sleeping sickness in southern Cameroon. The minor allele T and the genotype

TT of SNP rs1800794 in IL1A as well as the genotype 1A3A of IL1RN rs2234663 VNTR

seem to increase the risk of getting Trypanosoma brucei gambiense infections and develop

sleeping sickness in southern Cameroon.

Author summary

Human African Trypanosomiasis (HAT), or sleeping sickness, is a parasitic disease caused

by flagellated parasites of the genus Trypanosoma. This disease has been included into the

WHO roadmap for neglected tropical diseases with elimination as a public health problem

targeted for 2020 and the interruption of transmission to humans for 2030. To achieve

these elimination and interruption goals, it is important to identify and understand the

factors that may hamper these goals. Understanding the contribution of human genetics

to the response of trypanosome infections is important for the development of new con-

trol strategies. In this study, polymorphism in seven genes was investigated between con-

trols and sleeping sickness patients of three sleeping sickness foci of Southern Cameroon

in order to see if there is any association with the development of disease. Results of this

study have shown that the genotype (TT) and minor allele (T) of IL1A gene and the geno-

type 1A3A VNTR of IL1RN are associated with an increased risk of getting T. b. gambiense
infections and develop sleeping sickness in major ethno-linguistic groups of the Cameroo-

nian population. They suggest that the association between host genetic determinants and

the susceptibility to T. b. gambiense infections could vary according to the population

studied. These results will improve our knowledge on the role of human genetics determi-

nants and the risk to be infected by T. b. gambiense and develop sleeping sickness. They

could thus lead to the identification of novel biomarkers which could open a frame work

for the development of new diagnostics, treatments and intervention strategies.

Introduction

Human African Trypanosomiasis (HAT), or sleeping sickness, is a parasitic infection caused

by flagellated parasites of the genus Trypanosoma. The parasites belong to Trypanosoma brucei
complex which is subdivided into three subspecies: Trypanosoma brucei gambiense (Dutton,

1902) is responsible for the chronic form of the disease in West and Central Africa, T. b. rhode-
siense (Stephen and Fantham, 1910) causes the acute form of HAT in East and South Africa

whilst T. b. brucei is only infective to animals. These trypanosomes are transmitted through

the bites of haematophagous flies of the genus Glossina commonly known as tsetse flies [1, 2].

HAT was considered to be under control during the 1960s, but the disease has re-emerged in

the last decades as a public health problem in many sub-Saharan African countries due to the
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abandonment of control measures after independence and also to socio-political and environ-

mental upheavals [2]. HAT is often fatal unless treated and is endemic in 36 sub-Saharan

Africa countries with about 65 million people in more than 250 foci exposed to the risks of

infections [3]. Currently, more than 98% of the reported cases are due to T. b. gambiense infec-

tion [3]. Control efforts undertaken by the national sleeping sickness control programs have

succeeded in considerably reducing the number of cases, and less than 2200 new cases were

officially reported in 2016 [4]. Sleeping sickness has been included in the WHO roadmap for

neglected tropical diseases with elimination as a public health problem targeted for 2020, and

the interruption of transmission to humans for 2030.

To achieve the elimination and interruption goals, it is important to identify and gain a bet-

ter understanding of the clinical evolution of the disease and the factors that may hamper this

goal. Addressing the contribution of human genetics to the response to T. b. gambiense infec-

tions is important for the development of new control strategies because a range of clinical pre-

sentations of HAT including asymptomatic carriers and spontaneous cure without treatment

have been reported in West Africa [5]. Understanding the genetic bases of these new disease

profiles may help to identify more susceptible populations for more effective control operation.

Previous studies have identified polymorphisms in APOL1, IL6, HLA-G and HP/HPR that reg-

ulate the human susceptibility to trypanosome infections [6, 7, 8, 9, 10, 11, 12, 13]. Most of

these genes seem to play important roles during T. b. gambiense infection [14]. For instance,

HLA-G has been reported to be involved in HAT progression. In addition, IL1 participates in

macrophage activation during early T. b. gambiense infection in mice [15]. It also plays a key

role in the recruitment of leukocytes into the CNS during T. b. gambiense infections [16, 17].

However, contrasting results on the association between gene polymorphisms and the risk to

be infected by T. b. gambiense and develop HAT have been reported between countries and

therefore, efforts are needed to better understand the genetic bases of human susceptibility to

T. b. gambiense infections. In this current study, polymorphisms in seven genes were geno-

typed to identify any association with HAT. Our data suggest that the association between host

genetic determinants and the susceptibility to be infected by T. b. gambiense and develop sleep-

ing sickness could vary according to the population studied.

Materials and methods

Study areas

This study was conducted in three active sleeping sickness foci in the forest region of Southern

Cameroon. The three HAT foci were Bipindi and Campo in the Southern region and Fontem

in the South-west region of Cameroon.

The Campo focus (2˚82’00"N, 9˚85’20"E) is located in the equatorial forest and extends

from the Atlantic coast along the Ntem river which delimits the Cameroon–Equatorial Guinea

border. It is a hypo-endemic focus where no epidemic outbreak has been observed for many

decades [18]. It is a cosmopolitan area with several ethnic groups (mainly the Iyassa, Kwasse,

Maabi, Mvae and Ngoumba) with most of them speaking Bantu family languages. Other

minor ethnic groups are semi Bantus, Sao-Sudanese and Baka [19].

The Bipindi HAT focus (3˚82’00"N, 10˚82’20"E) is located at about 75 km from the Atlantic

coast in the South of Cameroon. Bipindi has been known as a HAT focus since 1920. During

the last two decades, it was among the most active HAT foci of Cameroon with about 83 HAT

cases diagnosed from 1999 to 2011 [19]. About 95% of the inhabitants of the Bipindi HAT

focus are Bantu speakers and the majority belong to the Ngoumba, Nti and Fan. The remain-

ing 5% of inhabitants are Baka, semi Bantus and Sao-Sudanese speakers.
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The Fontem focus (5˚40’00”N, 9˚55’00”E) is located in the South-West Region of Camer-

oon where HAT has been known to occur since 1949 [20]. It was previously among the most

active HAT foci of Cameroon [21], but in recent decades, it has become hypo-endemic with

about 8 patients detected among 16,000 persons examined between 1998 and 2007 [22]. In this

focus, the Mundani and Banyangi are the major ethnic groups. Other minor ethnic groups

such as Bangwa and Bamileke are also found.

Study population

The Cameroonian population is made up of more than 250 ethno-linguistic subgroups from

three major ethnic groups: Bantu (e.g.: Bulu, Bassa, Bakundu, Maka, Douala), Semi Bantu

(e.g.: Bamileke, Gbaya, Bamoun, Tikar) and Sudano-Sao (e.g.: Fulbe, Mafa, Toupouri, Shoa-

Arabs, Moundang, Massa, Mousgoum) [11] (S1 Table). Beside these three groups, some minor

groups exist such as the Baka who generally speak the Bantu languages but who are not closely

related to any of these three major groups [23].The ethnic composition varies considerably

between regions, HAT foci and even within the same HAT focus.

Ethical consideration

The protocol of this study was approved by the Ethical Committee of the Ministry of Public

Health of Cameroon on 21 November 2013 with a reference number N˚2013/11/364/L/

CNERSH/SP. The local administrative and traditional authorities of each HAT focus were also

informed and gave their approval. Subsequently, the review board of the Laboratory of Micro-

biology and Anti-microbial Substances (LAMAS) of the Department of Biochemistry of the

Faculty of Science of the University of Dschang gave its approval. All adult subjects provided

informed consent, and a parent or guardian of any child participant below 18 years old pro-

vided informed consent on their behalf. Each informed consent was written because all indi-

viduals enrolled in this study gave their approval by signing an informed consent form and a

Certificate of Confidentiality. In addition, an assent form was also signed by children below 18

years old. During analyses, data for each subject were anonymized.

Sample collection

Blood samples were collected during medical surveys performed jointly with the National

Sleeping Sickness Control Program of Cameroon and the research team of the molecular para-

sitology and entomology unit of the University of Dschang. The sampling was performed in

Campo in 2014 and 2017, in Bipindi in 2015 and 2017, and in Fontem in 2015. During these

surveys, all participants at risk were tested using the Card Agglutination Test for Trypanoso-

miasis (CATT). It was performed on blood collected by finger prick [24]. This immunological

test was carried out to screen people who have been in contact with T. b. gambiense. It was ini-

tially performed on whole blood as described by Magnus et al. [24]. For all participants with a

positive CATT on whole blood, blood sample was collected in EDTA tubes and a two-fold

plasma dilution series in CATT buffer was tested to assess the end titer, i.e. the highest dilution

still positive on plasma (CATT-P). All individuals with CATT dilution on plasma�1/8 under-

went parasitological examinations by direct examination using the capillary tube centrifuga-

tion (CTC) [25] and mini-anion exchange centrifugation technique (mAECT) [26]. Beside the

CTC and mAECT, lymph node aspiration followed by a microscopic examination was per-

formed to search for trypanosomes in all individuals showing enlarged lymph nodes. All con-

trols and participants with a CATT dilution�1/8 and negative for parasitological tests were

subjected to the trypanolysis test in order to confirm their status [27].
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Trypanolysis test

Ninety micro-liters of plasma sample from each control and each individual with CATT dilu-

tion�1/8 and negative for parasitological tests were spotted on a Whatman paper disc

(divided in three equal parts with each bearing a spot of 30μl) that was sent to the “Centre

International de Recherche-Développement sur l’Élevage en Zones Sub-humides (CIRDES,

Bobo-Dioulasso, Burkina Faso)”. Each plasma sample was tested by the immune trypanolysis

test as described by Jamonneau et al. [27]. It is the highly specific test for T. b. gambiense and

constitutes a routine test for the surveillance of HAT. This test was performed on plasma as

previously described by Van Meirvenne et al. [28] with LiTat 1.3, 1.5, and 1.6 variable antigen

types (VAT).

During medical surveys, each new HAT case was defined as an individual in whom try-

panosomes were seen by at least one parasitological method. Old HAT cases were also sam-

pled. They were residents in whom trypanosomes had been previously seen by at least one

parasitological test after passive or active case detection. Old HAT cases were included only if

the information regarding the clinical status, the CATT and all parasitological tests were avail-

able in hospital records and in the National control program register.

Each HAT case was matched to at least three controls. This matching was done by age, sex,

occupation and when possible by ethno-linguistic subgroup. A control was considered as any

individual who was negative for the CATT and trypanolysis tests and all parasitological tests

including CTC, mAECT and lymph node examination [11]. These controls were enrolled dur-

ing medical surveys.

DNA extraction

Five millilitres of blood were centrifuged at 3500g for 3 minutes and the buffy coat was col-

lected. Genomic DNA was extracted from the Buffy-coat with the QIAamp DNA Blood Midi/

Maxi kit (Qiagen) according to the manufacturer’s instructions. The DNA was eluted with

200μl of sterile water and stored at -20˚C until use.

Selection of candidate genes, SNPs, VNTR and INDEL

For this study, seven genes containing three SNPs, three VNTRs and one INDEL (Table 1)

were identified and selected based on literature searches. The selected genes and loci were

associated to HAT and other diseases. The selection of HLA-G, HP and HPR genes as well as

two different cytokines genes (IL6 and IL1A) was based on their previously reported associa-

tion with HAT [6, 7, 9, 10]. HPR and haptoglobin (HP) are involved in the lysis of trypano-

somes and the scavenging of haem during trypanosome infections [8]. The IL1 gene has been

shown to enhance immune-modulating and stimulating effects on the TLF components and

inflammatory immune response activities during HAT infection [29, 30, 31]. Associations

between some polymorphic variants within these genes and the outcome of HAT have also

been previously outlined [6, 32, 33]. Loci on these genes were selected after literature searches

as follows: the SNPs rs1800794 of IL1A and rs1554606 of IL6 and the INDEL rs371194629 in

the 3’ UTR of HLA-G gene were selected due to their previously reported association with

HAT in the DRC although IL1A was not associated with HAT [6, 7]. The SNP rs1679370 of

HPR gene was selected from a study on CNV of associated with HAT [9]. Other genes such as

IL1RN, IL4R and HP were also selected not only for their association with other diseases, but

especially because HAT seems to trigger inflammatory and immunological responses with bio-

logical pathways associating the selected genes [34, 35, 36]. The polymorphic locus rs2234663

within IL1RN was selected for its association with H. Pylori gastric infections in Brazil [36]

while rs79071878-IL4RN within IL4R gene was due to its association with type II diabetes in
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India [37]. HP1/2 VNTR allele of the HP gene was selected based on its associations with

malaria [36].

Genotyping of SNPs in IL6, IL1A and HPR by PCR-RFLP

In this study, the SNPs in IL6, IL1A and HPR were investigated by PCR-RFLP where a DNA

fragment of each of these genes was amplified and subsequently digested by a specific restric-

tion enzyme. The following primer pairs were used: IL6-PF (GTCAAATGTTTAAAACTCCC

ACAGGTT) and IL6–PR (GCAGCCAGAGAGGGAAAAGG) for IL6 [6], IL1-P-PF (GGCCA

CAGGAATTATAAAAGCTGAGA) and IL1-P-PR (GGGAGAAAGGAAGGCATGGATTTT)

for IL1A [6] and Hpr-F (GAGCCACAAATTCTGACGAG) and Hpr-R (TTGAGGTTCTTGA

GGGCATT) for HPR. The primers Hpr-F and Hpr-R for HPR were designed with the Primer3

vs 4.1 software [39, 40].

For each of these three genes, the amplification reactions were performed in a final volume

of 25 μl containing 1X of PCR buffer, 1.5 mM MgCl2, 20 pmol of each primer, 0.5 units of Taq

DNA polymerase (Qiagen) and 5–10 ng of genomic DNA. The amplification program con-

tained a denaturing step at 95˚C for 5 min followed by 35 amplification cycles of 95˚C for 45 s,

Table 1. Candidate genes and SNPs, VNTR and indel loci identified and selected for this study.

Gene SNP VNTR INDEL Localization (GRCh37) Characteristics Reference

IL1A rs1800794 - - chr2:113543273 mRNA Upstream gene variant 2kb [6]

IL6 rs1554606 - - chr7:22768707 Intron variant [6]

HPR rs1697370 - - chr16:35339932 Intron variant [9]

IL1RN - rs2234663 - chr2:113888106 Intron variant [36]

IL4RN - rs79071878 - chr5:132680584 Intron variant [37]

HP - HP1/2 alleles - - VNTR [38]

HLA-G - - rs371194629 chr6:29798581 3’ UTR variant [7]

SNP: Single Nucleotide Polymorphism; VNTR: Variable Number Tandem Repeats; INDEL: Insertion and Deletion; UTR: Untranslated region; GRCh37: Reference

human genome build version.

https://doi.org/10.1371/journal.pntd.0007283.t001

Table 2. Expected number and size of DNA fragments generated at each locus genotyped.

Markers Gene Locus Size of DNA fragments in base pair Reference

Heterozygote genotype Homozygote

wild type mutant

SNPs IL1A rs1800794 236/489/725 236/489 725 [6]

IL6 rs1554606 315/543/858 315/543 858 [6]

HPR rs1697370 88/147/235 88/147 235 [9]

VNTR IL1RN rs2234663 410/335 410/500

410/240

410/595

410 335

500

240

595

[36]

IL4RN rs79071878 183/253 183 253 [37]

HP - 1757/3481 1757 3481 [38]

INDEL HLA-G rs371194629 345/359 359 345 [7]

SNP: Single Nucleotide Polymorphism; VNTR: Variable Number Tandem Repeats; INDEL: Insertion and Deletion; IL: Interleukin 6; HP: Haptoglobin; HPR:

Haptoglobin related protein.

https://doi.org/10.1371/journal.pntd.0007283.t002
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63˚C (IL6 and IL1A) or 60˚C (HPR) for 60 s and 72˚C for 60 s. A final extension step was per-

formed at 72˚C for 5 min.

PCR products were visualised by electrophoresis on 2% agarose gel containing ethidium

bromide. Ten micro-litters of IL6, IL1A and HPR PCR products were digested with Hind III,

Nco I and Bci VI respectively (all enzymes from Thermo Fisher Scientific). The digestion was

done overnight at 37˚C in the buffer 3.1 provided by the manufacturer. The digested products

of IL6 and IL1A were separated by electrophoresis on a 2% agarose gel at 100 volts for 1 h 30

min. For HPR, the digested products were resolved by electrophoresis on 3.5% agarose gel at

100 volts for 2 hours.

For rs1554606 of IL6 and rs1800794 of IL1A, three different profiles were expected

(Table 2): the homozygote wild type genotype with two DNA fragments of 236 and 489 bp for

IL1A, 315 and 543 bp for IL6, the heterozygote genotype showing three DNA fragments of

236, 489 and 725 bp for IL1A, and 315, 543 and 858 bp for IL6, and the homozygote genotype

with one DNA fragment of 725 bp for IL1A and 858 bp for IL6.

For rs1697370 of HPR, three different profiles were expected (Table 2): the homozygote

wild type genotype with two DNA fragments of 88 and 147 bp, the heterozygote genotype

showing three DNA fragments of 88, 147 and 235 bp, and the homozygote mutant genotype

with one DNA fragment of 235 bp.

To minimize misinterpretation of heterozygote frequency that could result from partial

digestion, the amplified product of each sample (control and HAT case) was quantified and

the same amount of DNA was subjected to restriction enzyme digestion. Between different

amplification and digestion series, an internal control made of sample with known genotype

was added. This sample was used to control the reproducibility and digestion efficiency

between different amplification and digestion series.

Amplification of 70 bp and 86 bp tandem repeats of IL4RN and IL1RN
genes

The 70 bp tandem repeat (rs79071878) region of IL4RN gene was amplified with IL4-70 bp-F

(AGGCTGAAAGGGGGAAAGC) and IL4-70 bp-R (CTGTTCACCTCAACTGCTCC) prim-

ers [37] while the 86bp tandem repeat (rs2234663) of IL1RN gene was amplified with IL1RN-F

(CTCAGCAACACTCCTAT) and IL1RN-R (TCCTGGTCTGCAGGTAA) primers as des-

cribed by Santos et al. [36]. For these two genes, the PCR reactions were performed in a final

volume of 25 μl contained 5–10 ng of DNA, 2.5 mM and 2 mM MgCl2 for IL4 and IL1RN
respectively, 0.2 mM of each dNTP, 20 pmol of each primer and 0.5 units of Taq polymerase

(Qiagen). The amplification program was 95˚C for 5 min followed by 35 cycles of 95˚C for 45

s, 61˚C for 45 s and 72˚C for 60 s. A final extension was performed at 72˚C for 5 min. PCR

products were separated by electrophoresis on a 2% agarose gel at 100 volts for 1 h 30 min.

The size and number of tandem repeats were evaluated for each sample. For IL4RN, the

PCR products of 183bp (two repeats of 70b p) and 253 bp (three repeats of 70 bp) correspond

to homozygote wild type (genotype R1R1) and homozygote mutant (genotype R2R2) respec-

tively (Table 2). Sample with two DNA fragments of 183 bp and 253 bp was considered as a

heterozygote with genotype R1R2.

For IL1RN, different alleles with specific sizes could be generated after electrophoresis as

described by Santos et al. [36]: alleles 1–4 (410 bp), 2–2 (240 bp), 3–5 (500 bp), 4–3 (335 bp)

and 5–6 (595 bp). Samples showing one DNA fragment or one allele of 410 bp were considered

as homozygote wild type and those with one DNA fragment at 240, 335, 500 or 595 pb were

homozygote mutants. Samples presenting two DNA fragments with 410 bp and another one

were considered as heterozygote (Table 2).
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Amplification of variable number of tandem repeats of HP gene

Genotyping the HP polymorphism was performed using two approaches: a PCR approach

described by Koch et al. [38] and PCR-RFLP using two restriction enzymes to confirm results

obtained by PCR [38].

The direct PCR approach consists of two separate PCR reactions with specific DNA frag-

ment characterizing each genotype. Primers A/B (GAGGGGAGCTTGCCTTTCCATTG and

GAGATTTTTGAGCCCTGGCTGGT) amplified DNA fragments of 1,757 bp and 3,481 bp for

homozygote wild type (genotype Hp1/1) and homozygote mutant (genotype Hp2/2) respec-

tively. Samples showing two DNA fragments at 1,757 bp and 3,481 bp were considered as het-

erozygote with genotype Hp1/2. Since the 3,481 bp fragment might not amplify due to lower

efficiency of PCR for large fragments or sheared genomic DNA, the results were subsequently

validated by a second amplification with primers C (CCTGCCTCGTATTAACTGCACCAT)

and D (CCTGCCTCGTATTAACTGCACCAT), which amplify a specific DNA fragment of

349 bp for the Hp2 allele [38].

For each of these pairs of primers, the PCR reactions were carried out in a final volume of

25 μl containing 5–10 ng of DNA, 2.5 mM MgCl2, 0.2 mM of each dNTP, 20 pmol of each

primer and 0.5 units of Taq polymerase (Qiagen). The amplification program was 95˚C for 5

min followed by 35 cycles of 95˚C for 60 s, 69˚C for 90 s (primers A/B) or 60 s (primers C/D)

and 72˚C for 2 min. A final extension was done at 72˚ C for 5 min. The amplified products

were separated by electrophoresis on a 2% agarose gel at 100 volts for 1 h30 min.

To confirm results (alleles of Hp1 and Hp2) obtained by PCR, the DNA fragments of 1757

bp and 3481 bp of primers A/B were digested with MlsI, while the fragment of 349 bp of prim-

ers C/D was digested with DraI. Briefly, 10 μl of amplified DNA fragments of each of the prim-

ers set was digested with MlsI or DraI as recommended by the supplier (Thermo Fisher). The

digestion was done overnight at 37˚C in the buffer 3.1 provided by the manufacturer. The

digested products were separated by electrophoresis on a 2% agarose gel at 100 volts for 2 h 30

min.

Polymorphism in HLA-G genes through the analysis of 14bp Indel

The polymorphism at 3’UTR (rs371194629) of HLA-G was evaluated by PCR as described by

Castelli et al. [41]. PCR reactions were performed in a final volume of 25 μl containing 0.2 mM

of each dNTP, 1.5 mM MgCl2, 20 pmol of each primer (HLA-G8F: TGTGAAACAGCTGCC

CTGTGT and HLA-G8R: GTCTTCCATTTATTTTGTCTCT), 0.5 unit of Taq polymerase

(Qiagen) and 5–10 ng of genomic DNA. The amplification program was 95˚C for 5 min fol-

lowed by 35 cycles. Each of these cycles was made up of 95˚C for 45 s, 56˚C for 45 s and 72˚C

for 1 min. A final extension was performed at 72˚ C for 5 min.

The amplified products were resolved by electrophoresis on 4% agarose gel for 4 hours at

100 volts. After this resolution, homozygote mutant and homozygote wild type genotypes were

identified through DNA fragments of 345 bp and 359 bp for deletion (Del) and insertion (Ins)

alleles respectively. For heterozygote genotype, two DNA fragments of 345 bp and 359 bp were

expected.

Statistical analysis

For this study we assumed an additive genetic model where two risk alleles of a SNP (homozy-

gous) have twice the effect of one risk allele (heterozygous) [42]. Power calculation was under-

taken using the PGA modeller package in MATLAB software [42]. For this package, the power

was calculated by considering an odd ratio (OR) or relative risk (RR) >2 for loci with disease

allele frequencies of 0.052–0.500 with 7 loci genotyped. Other factors taken into consideration
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include the disease prevalence estimated at<0.01 [43], the standard linkage parameter (r2) for

Linkage disequilibrium (LD) of 0.7 [42], a type 1 error of 5% risk and sampling size. This later

was estimated as described by Kasiulevicius et al. [44] using the independent case-control sam-

pling size formula [44]. For this estimation, we assumed an expected exposure proportions in

control of 0.20, a disease prevalence of< 0.01 [43] and a case-control ratio of 1:3. With the

independent case-control sampling size formula, the sampling size to detect a real odds ratio

or case exposure rate with power and two-sided type I error of 5% risk was 480 including 120

HAT cases and 360 controls.

Due to the heterogeneity of the study population formed by 19 ethno-linguistic subgroups

(S1 Table) and its effect on the Hardy-Weinberg equilibrium and the risk that associations

results might be bias by the stratified population rather than infections due to T. b. gambiense,

the data were firstly stratified and analysed by three major ethno-linguistic groups (Bantu,

Semi-Bantu and Baka). A second analysis was performed when 10 ethno-linguistic subgroups

were pooled into two groups on the basis of similarities in language spoken and their geo-

graphical proximity [45, 46]. These two groups include the Beti-Fang (Bulu, Eton, Fan, Iyassa,

Kwasse, Maabi, Mvae and Ngoumba ethno-linguistic subgroups) and Wovea (Douala and

Bassa ethno-linguistic subgroups) (S2 Table). To confirm results generated on the population

that was stratified into major ethno-linguistic groups and two pooled ethno-linguistic sub-

groups, 11 ethno-linguistic subgroups derived from this stratified population including the

Bamilike, Bassa, Douala, Eton, Fan, Iyassa, Kwasse, Maabi, Mvae, Mundani and Baka (S2

Table) were further separately analysed with the fisher exact test at midpoint.

Hardy-Weinberg analysis was run not only on the entire population, but also on each indi-

vidual ethno-linguistic group or subgroup in order to observe the effect the population hetero-

geneity on HWE, the power of our study and association results. Ethno-linguistic groups or

subgroups with HWE p-value deviation and less than 10 individuals or no informative data at

a locus were removed for subsequent analyses.

The Cochran-Mantel-Haenszel (CMH) test implemented in PLINKv1.9 package [47] was

performed with the allelic frequencies because this test can only be done with binary vars.

Used as an extension of the chi-square test, the CMH test enabled to estimate the odds ratio

and 95% confidence interval across the stratified populations represented here by ethno-lin-

guistic subgroups. Using these later as covariates, it enabled to test for associations between

alleles and the probability to be infected by T. b. gambiense and develop HAT within each

ethno-linguistic subgroup. However, the CMH2 test, also implemented in PLINKv1.9 package,

was used to determine if there were significant differences in the allele frequencies between dif-

ferent ethno-linguistic groups or subgroups. Data were visualised with R/Rstudio version 3.3.2

(2016-10-31). Results of multiple tests were adjusted by the Bonferroni correction which

assumes that each of the statistical tests is independent. The significance of genotype and allele

frequency differences between cases and controls within each ethno-linguistic group or sub-

group were obtained and confirmed with the Fisher exact test for 2x2 contingency table.

A meta-analysis was performed on samples from ethno-linguistic subgroups that were in

HWE and that showed significant association with the Fisher exact test. This was done not

only on each major ethno-linguistic group, but also on the Beti-Fang and Wovea ethno-lin-

guistic groups and the 10 ethno-linguistics subgroups mentioned above.

Results

Study designed

For this study, a total of 323 individuals including 73 (22.60%) HAT cases and 250 (77.40%)

controls were analysed. The 323 individuals belonged to 19 different ethno-linguistic
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subgroups (S1 Table). Of these 323 individuals, 211 (65.33%) were Bantu, 84 (26.01%) semi-

Bantu, 21 (6.50) Baka and 7 (2.17%) Sudano-Sao (S1 Table). The mean age (range) was 45.75

±5 (14–91) for HAT cases and 37.58±5 (9–88) for controls. No significant difference (t =

-0.206, P = 0.837) was observed between the age of controls and HAT cases. The overall sex

ratio (male/female) was 1.006 with 49.85% (161/323) of female and 50.15% (162/323) of male.

For this study, we genotyped one polymorphism in each of the seven genes (IL1A, IL1RN,

IL4RN, IL6, HP, HPR, and HLA-G) in 73 cases and 250 controls collected from 19 ethno-lin-

guistic subgroups from three Cameroonian HAT foci.

With LD r2 of 0.7, a disease prevalence of<0.01, the disease allele frequencies of 0.052–

0.500 for 7 loci genotyped, and a sampling size of 323 individuals including 73 HAT cases and

250 controls, the power of this study was estimated at 82%.

Genes and loci selected and genotyped

Seven loci containing 3 SNPs, 3 VNTRs and one indel were tested from 7 candidate genes. The

polymorphism at each of these loci was investigated on 323 samples containing 73 HAT cases

and 250 controls from three HAT foci of southern Cameroon. From 323 samples that were

analyses at different loci, more than 94% were successfully genotyped at each of the 7 loci. At

all loci except HLA-G, the reference allele was at higher frequency than the alternate allele. The

genotypes 1A1A (allele 1–4: 410 bp), 1A4A (allele 4–3: 335 bp) and 1A3A (allele 3–5: 500 bp)

were identified for IL1RN gene while the genotypes 2A2A (allele 2–2: 240 bp) and 5A5A (allele

5–6: 595 bp) or their heterozygote genotypes combinations were absent in our studied

population.

For the 318 samples that were successfully genotyped at the SNPs rs1800794 of IL1A, 97

(30.5%), 179 (56.3%) and 42 (13.2%) were respectively heterozygote, homozygote wild-type

and homozygote mutant. At SNP rs1554606 of IL6, 98.8% (319/323) of samples were success-

fully genotyped: 41.4% (132/319) were heterozygote while 49.2% (157/319) and 9.4% (30/319)

were homozygote wild-type and mutant respectively. At SNP rs1697370 of HPR, 99.4% (321/

323) of samples were genotyped: 33.3% (107/321) were heterozygote whereas 57.0% (183/321)

and 9.7% (31/321) were homozygote wild-type and mutant respectively.

Regarding the VNTR, 322 (99.7%: 322 /323) samples were successfully genotyped for the

genes HP and IL4RN. For HP, 180 (55.9%: 180/322) samples were heterozygote while 82

(25.5%: 82/322) and 60 (18.6%: 60/322) were homozygote wild-type and mutant respectively.

For IL4RN at locus rs79071878, 176 (54.7%: 176/322), 77 (23.9%: 77/322) and 69 (21.4%: 69/

322) were heterozygote, homozygote wild-type and homozygote mutant respectively. At locus

rs2234663 of IL1RN, 99.1% (320/323) of samples were genotyped: 89.1% (285/320) were

homozygote wild-type and the remaining was heterozygote.

For the indel HLA-G at locus rs371194629, 99.1% (320/323) of samples were genotyped

and 55.9% (179/323), 18.1% (58/320) and 25.9% (83/320) were heterozygote, homozygote

wild-type and homozygote mutant respectively.

Association study performed on the whole population

Allele and genotype frequencies of all cases were compared with those of all controls at all loci

using chi-squared tests. No significant difference was observed for the 14 bp indel located at

rs371194629 of HLAG, the SNPs rs1554606 and rs1697370 of IL6 and HPR respectively and

the VNTRs of IL4RN and HP (Table 3). However, a significant increased risk to be infected by

T. b. gambiense and develop HAT was observed with the TT genotype in IL1A gene with an

OR of 2.938 (CI95 [1.56–3.89]) and a P value of 0.0010. In addition, the genotype 1A/3A

located at locus rs2234663 of IL1RN VNTR with an OR of 2.71 (CI95 [0.97–7.58]) and a P
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value of 0.0012 was also associated with an increased risk of getting T. b. gambiense infections

and develop HAT. However, the frequencies of this genotype were low in both cases (8.3%)

and controls (3.6%) (Table 3) and this observation should be considered provisional until rep-

licated in larger studies because only 7 cases and 9 controls were enrolled in the analyses. The

observed differences in the allelic frequencies distribution (S3 Table) and their corresponding

p values for the 7 loci within IL1A, IL6, HP, HPR, IL1RN, IL4RN and HLA-G were deduced

from genotypes data contained in Table 3. Although IL1A seems to be associated with an

increased risk of getting T. b. gambiense infections and develop HAT, the allele frequencies

were not in Hardy-Weinberg equilibrium (HWE) (0.007). However, when the population was

stratified into ethno-linguistic subgroups or major ethno-linguistic groups, the allele frequen-

cies were in HWE for most loci genotyped as shown in S4 Table. These results indicate that the

heterogeneous nature of the studied population, formed by several ethno-linguistic subgroups,

has an impact on the HWE. Due to these variations and the deviation of HWE in the entire

population, additional analyses were performed with the Cochran-Mantel-Haentszel test

Table 3. Genotype frequency distribution for gene polymorphisms within the global Cameroon population.

Loci Genotypes Case (%) Control (%) P-value OR (95%CI) BONF X2 HWE

INDEL HLAG: rs371194629 (Case = 72, Control = 248)

Ins/Ins 11 (15.28) 47 (18.88) - - - - 0.0749

Del/Ins 41 (56.94) 138 (55.42) 0.360 1.27 (0.31–3.98) 1 0.837

Del/Del 20 (27.78) 63 (25.30) 0.758 1.36 (0.39–4.98) 1 0.554

VNTR

IL4RN: rs79071878 (Case = 73, Control = 249)

R1/R1 12(16.44) 65 (26.12) - - - - 0.3739

R1/R2 44 (60.27) 132 (53.01) 0.661 1.81 (0.83–4.05) 1 0.193

R2/R2 17 (23.29) 52 (20.88) 0.234 1.77 (0.70–4.72) 1 2.903

HP (Case = 72, Control = 250)

Hp1/1 14(19.45) 68 (27.20) - - - - 0.0965

Hp1/2 42(58.33) 138 (55.20) 0.377 1.48 (0.59–2.45) 1 0.779

Hp2/2 16(22.22) 44 (17.60) 0.357 1.77 (0.88–4.70) 1 2.059

IL1RN: rs2234663 (Case = 72, Control = 248)

1A/1A 60(84.72) 209(84.27) - - - -

1A/4A 5(6.95) 30(12.10) 0.217 0.58 (0.21–1.56) 1 1.521 1

1A/3A 7(8.33) 9(3.63) 0.0012 2.71 (0.97–4.08) 0.0084 21.727 1

SNP

IL1A: rs1800794 (Case = 72, Control = 246)

CC 31 (43.06) 148 (60.16) - - - - 0.007

TC 25 (34.72) 72 (29.27) 0.390 1.66 (1.15–4.92) 1 1.455

TT 16 (22.22) 26 (10.57) 0.0010 2.94(1.56–3.89) 0.0072 9.166

IL6: rs1554606 (Case = 73, Control = 248)

TT 37 (50.68) 120 (48.39) - - - - 0.6489

TG 26 (35.62) 108 (43.55) 0.734 0.66 (0.59–1.40) 1 0.115

GG 10 (13.70) 20 (8.06) 0.152 1.21 (079–3.37) 1 3.766

HPR: rs1697370 (Case = 73, Control = 248)

TT 41 (56.16) 142 (57.26) - - - - 0.1322

TC 22 (30.14) 85 (34.27) 0.684 0.94 (0.63–2.04) 1 0.166

CC 10 (13.70) 21 (8.47) 0.387 1.17 (0.85–3.53) 1 1.899

(%): genotype frequencies; P-value: Nominal P unadjusted asymptotic probability value; OR: odds ratio; X2: Chi-square probability value; CI: Confidence Interval at

95%; N: sample size (cases/controls); SNP: Single Nucleotide Polymorphism; VNTR: Variable Number Tandem Repeats; INDEL: Insertion and Deletion; HP:

Haptoglobin; HPR: Haptoglobin related protein; IL: Interleukins; HLA: Human Leukocyte Antigen

https://doi.org/10.1371/journal.pntd.0007283.t003

Polymorphism of IL1 associated to sleeping sickness development in southern Cameroon

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007283 March 25, 2019 11 / 21

https://doi.org/10.1371/journal.pntd.0007283.t003
https://doi.org/10.1371/journal.pntd.0007283


(CMH) that takes into account the population stratification. For these analyses, the population

was stratified on the basis of ethno-linguistic groups and subgroups.

Association study considering the stratified populations

After stratification of our study population into three major ethno-linguistic groups (Bantu, Semi-

Bantu and Baka), the observed allelic frequencies were all in Hardy–Weinberg equilibrium within

each ethno-linguistic group; suggesting random genetic exchange within each of the major ethno-

linguistic groups. Data of S4 Table shows detailed results of HWE values when the population was

structured into ethno-linguistic groups and in pooled ethno-linguistic subgroups.

The Cochran-Mantel-Haentszel test (CMH) was used to test the associations between the

allele frequencies and the probability to be infected by T. b. gambiense and develop HAT. This

test estimates an odds ratio and 95% confidence interval across the population using ethno-lin-

guistic subgroups as covariant. Data of CMH test reported in Table 4 considered only 305 indi-

viduals (69 HAT cases and 236 controls) of three major ethno-linguistic groups. The null

hypothesis of the Cochran-Mantel-Haenszel (CMH) test is that allele frequencies are the same

in cases and controls and do not differ between populations. With the CMH test, the minor

allele T of rs1800794 in IL1A which is located in the promoter region was significantly associ-

ated (unadjusted P = 0.0012, X2 = 30.01, adjusted P = 0.009) with an increased risk to be

infected by T. b. gambiense and develop this infection (Table 4). Its OR of 2.066 (CI95 [1.33–

3.20]) and P value of 0.009 indicate higher frequencies in cases compared to controls.

The null hypothesis of the CMH2 test is that allele frequencies are the same in each popula-

tion. The CMH2 test indicated that there was no significant difference in allele frequencies

between populations (P = 0.368). The Bantu major ethno-linguistic subgroups were pooled

(Beti-Fang: Bulu, Eton, Fan, Iyassa, Kwasse, Maabi, Mvae, and Ngoumba; and Wovea: Bassa

and Douala ethno-linguistic subgroups) into two groups (S4 Table) in order to trace and spot

which of these subgroups was at the centre of this effect. With CMH test, the minor allele T of

Table 4. Cochran-Mantel-Haenszel (CMH) association analysis results within the Cameroonian population.

Loci Gene rsid Alleles MAF P-value BONF CHISQ aP-value aBONF aCHISQ OR (95%CI)

SNP IL1A rs1800794 �T
��C

0.285 0.0012 0.009 10.45 0.368 1 30.01 2.066(1.33–3.20)

IL6 rs1554606 �G
��T

0.290 0.6117 1 0.258 0.654 1 17.95 0.892(0.57–1.39)

HPR rs1697370 �C
��T

0.262 0.1498 1 2.074 0.016 0.115 37.08 1.395(0.88–2.20

VNTR HP - �Hp2
��Hp1

0.483 0.0968 0.677 2.758 0.803 1 15.38 1.411(0.94–2.12)

IL4RN rs79071878 �2R
��1R

0.487 0.2673 1 1.231 0.770 1 15.99 1.26(0.84–1.89)

IL1RN rs2234663 �3A
�4A
��1A

0.051

0.0487

0.0859

0.4976

1

1

2.95

0.46

0.693

0.260

1

1

7.3416

24.72

2.651(0.86–8.15)

0.658(0.20–2.14)

INDEL HLA-G rs371194629 �Del
��Ins

0.466 0.9599 1 0.003 0.361 1 22.69 1.011(0.67–1.52)

P-value: Nominal CMH P unadjusted asymptotic probability value

�: minor allele

��: major allele: CHISQ: Chi-square probability value; OR: odds ratio; BONF: Bonferroni adjusted asymptotic p value, MAF Minor allele frequency
a: Cochran-Mantel-Haenszel for homogeneity of association across clusters (using the cmh2 test in plink), rsid: reference SNP identification code: SNP: Single

Nucleotide Polymorphism; VNTR: Variable Number Tandem Repeats; INDEL: Insertion and Deletion.

https://doi.org/10.1371/journal.pntd.0007283.t004
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rs1800794 in IL1A remains significantly (unadjusted P = 0.0005, X2 = 11.99, adjusted

P = 0.004) associated with an increased risk of getting T. b. gambiense and develop this infec-

tion in the Bantu major ethno-linguistic group. Its OR of 2.32 (CI95 [1.44–3.37]) and a P value

of 0.0005 (S2 Table) indicates higher frequencies of the allele T in cases compared to controls.

After pooling some ethno-linguistic subgroups (S2 Table), the minor allele T of rs1800794 in

IL1A with an OR of 2.40 (CI95 [1.41–4.10]) and an adjusted P value of 0.009 remains signifi-

cantly associated with an increased risk of getting T. b. gambiense infections and develop HAT

within the Beti-Fang ethno-linguistic groups.

The HP2 minor allele of HP seems to be also significantly (unadjusted P = 0.0015, X2 =

5.90, adjusted P = 0.011; OR: 3.68 (CI95 [1.23–8.33])) associated with an increasing risk of get-

ting T. b. gambiense infections and develop HAT within the Bassa and Douala ethno-linguistic

subgroups (S2 Table). For the other genes, no significant difference was observed in the associ-

ation studies as reported on whole population (Table 4).

To confirm results obtained on the stratified populations and see the impact of heteroge-

neous population or different ethno-linguistic groups and subgroups on the association

between gene polymorphism and the risk to be infected by T. b. gambiense and develop HAT,

meta analyses were performed on the basis of the three major ethno-linguistic groups and 11

ethno-linguistic subgroups.

Meta analyses on the basis of ethno-linguistic groups

Of the 323 individuals belonging to the 19 different ethno-linguistic subgroups used in this

study (S1 Table), 75 of them were excluded due to small population sample size (i.e less than

10 individuals), small HWE P values (S5 Table) and or loci that were not informative (low

genotypes and allelic frequencies). For subsequent analyses, 249 individuals belonging to the

three major ethno-linguistic groups and 11 ethno-linguistic subgroups (Bamilike, Bassa, Dou-

ala, Eton, Fan, Iyassa, Kwasse, Maabi, Mvae, Mundani and Baka) were considered for associa-

tion analysis (S5 Table). The observed allelic frequencies were all in Hardy–Weinberg

equilibrium within the ethno-linguistic subgroups; suggesting random genetic exchange

within these ethno-linguistic groups and subgroups.

Results of meta-analysis confirmed the significant (P = 0.0017, OR = 2.305) association pre-

viously reported for SNP rs1800794 of IL1A (Table 5). Its OR of 2.305 (CI95 [1.29–3.25]) and a

Table 5. Meta-analysis of the Fisher exact test results within the 11 ethno-linguistic groups clusters.

CHR GENE BP (GRch37) rsid Alleles N P P(R) OR Q I

2 IL1A 113543273 rs1800794 �T
��C

8 0.0017 0.0017 2.305 0.9176 0.00

5 IL4RN 132680584 rs79071878 �2R
��1R

9 0.1299 0.1299 0.6923 0.9781 0.00

6 HLA-G 29830805 rs371194629 �Del
��Ins

9 0.7525 0.7525 1.0793 0.8060 0.00

7 IL6 154426970 rs1554606 �G
��T

8 0.9748 0.9361 1.0082 0.2183 26.37

16 HPR 35339932 rs1697370 �C
��T

8 0.6692 0.6692 0.8867 0.8810 0.00

16 HP - - �Hp2
��HP1

10 0.09482 0.09482 0.6690 0.6859 0.00

SNP: single nucleotide polymorphism, BP (GRch37): base-pair location (Reference human genome build version); rsid: reference SNP identification code

�: minor allele

��: major allele; P: fixed-effects meta-analysis asymptotic probability value; P(R): random-effects meta-analysis asymptotic probability value; OR: fixed-effects odds ratio

estimate; Q: probability value for Cochrane’s Q statistics; I: I^2 heterogeneity index (0–100); CHR: Chromosome; N: number of valid studies for this.

https://doi.org/10.1371/journal.pntd.0007283.t005
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P value of 0.0017 confirms the higher frequencies of allele T in cases compared to controls.

The absence of significant association at different loci of other genes was also confirmed by the

meta-analysis. Results generated by meta analyses on the 11 ethno-linguistic subgroups were

consistent with those of the CMH test on the populations that were stratified into three major

ethno-linguistic groups and pooled ethno-linguistic subgroups.

Discussion

In this study, 7 polymorphisms within 7 genes were investigated for their association with T. b.

gambiense infection in southern Cameroon. The most important observation is that the minor

allele (T) of IL1A genes could influence the infections due to T. b. gambiense in HAT foci of

southern Cameroon. Indeed, when the 19 ethno-linguistic subgroups were grouped together

and considered as one population, IL1A seems to be associated with an increased risk of get-

ting T. b. gambiense infections and develop HAT, but the allele frequencies were not in HWE

(0.007). This deviation of HWE could be due to the heterogeneity of our studied population

formed by 19 ethno-linguistic subgroups with some genetic differences. This heterogeneity led

to a deviation of HWE resulting probably from the Wahlund effect [48] that is caused by the

variance in allele frequency among subpopulations [48–50]. Indeed, in rural areas were HAT

is often found, the populations are grouped according to their ethno-linguistic subgroups with

very few probabilities of marriage between people from different sub-groups. This social

behaviour may lead to Wahlund effect that has an impact on HWE due to the lack of genetic

exchange between populations of different ethno-linguistic subgroups. In consequence, an

increase of inbreeding rate, a strong genetic drift and a decrease of the genetic diversity could

be observed within and between these populations [51–53]. The small sample size of some

ethno-linguistic subgroups could also increase the inbreeding effect on the high variance of

allele frequencies (S4 Table). The heterogeneous structure of our population may impale a

strong genetic drift that changes the gene ratio of population in a random manner. Moreover,

it has been reported that the genotyping error impaled by the methods used could increase the

heterozygote frequency and the observation of some mutant alleles [54–57]. These hypotheses

are strengthened by the differences observed for the values of HWE within and between differ-

ent ethno-linguistic subgroups (S4 Table). All these factors may induce biases in the associa-

tion studies and consequently, a reduction of the power of this study.

Following stratified (Table 4) and meta analyses (Table 5), the minor allele T of rs1800794

SNP of IL1A gene was significantly associated with an increased risk of getting T. b. gambiense
infections and develop HAT in major ethno-linguistic groups and subgroups of southern

Cameroon. Our observations of IL1A were not consistent with results for the same SNP in a

family based linkage study in DRC [6] which showed no significant differences in transmission

rates of the C and T alleles to affected children (p = 0.56). The discrepancy between the two

sets of results could be due to the study design, the small sample size (73 cases belonging to sev-

eral ethno-linguistic subgroups) and the genetic differences between the DRC and Cameroon

populations. Our study was a classical case-control study involving controls and HAT patients

from different families while in DRC, a family base study was performed with HAT cases and

controls from the same family [6], Indeed, IL1 participates in macrophage activation during

early T. b. gambiense infection in mice [15] and plays a key role in the recruitment of leuko-

cytes into the CNS through the blood-brain barrier during CNS infection [16, 17]. Due to the

fact that HAT cases and controls were matched according to sex, village and their activities,

they are likely subjected to equal levels of tsetse bites. Assuming their equal exposition to tsetse

bites, we can speculate that the IL1a variant might render some individuals refractory to T. b.

gambiense infections. This hypothesis may increase the likelihood that some infected HAT
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cases might self-cure as reported in West Africa [5]. It may also increase the likelihood that

some seropositive individuals could be parasitologically negative. Such individuals could be

carriers of low T. b. gambiense load that are below the detection threshold of parasitological

techniques commonly used during medical surveys. Although well confirmed and phenotyped

seropositive individuals were not included in this study, it is important to mention that an

association has been reported between gene polymorphism and the progression of sleeping

sickness from latent infection to active disease [13].

The 1A/3A genotype (P = 0.0012 and OR of 2.71) of IL1RN rs2234663 VNTR was associ-

ated with an increasing risk of getting T. b. gambiense infections and develop HAT. Although

the allelic frequency in cases and controls is low, the results obtained indicate an increasing

risk to be infected and develop T. b. gambiense infection in HAT foci of southern Cameroon.

IL1RN is located in the chromosome 2q14 [58, 59] with an 86 bp VNTR polymorphism in its

second intron [60, 61]. IL1RN polymorphisms are also closely associated with the regulation of

IL1B activity that enhance and stimulate parasite interaction and neutralisation via the com-

plement pathways [62, 63]. It has been proposed that individuals with the IL1RN 2A/2A geno-

type have elevated levels of circulating IL1B. The increased IL1B levels result in a prolonged

inflammatory response and increase the risk of pyloric gastric disease [36]. This elevated level

of IL1B also enhances immune-modulating and stimulating effects of the IL1 family gene on

some immune response components [64]. IL1 family genes have been shown to enhance

immune-modulating and stimulating effects on the TLF components and pro/inflammatory

immune response activities during HAT infection [29, 30]. Although this is the first observa-

tion of an association between IL1RN and T. b. gambiense infections, associations have been

already reported between IL1RN variants and other diseases such as keratoconus in a Korean

population [65], H. pylori gastric [36] and periodontitis disease [64] in the Brazilian popula-

tion, and hepatitis and primary biliary cirrhosis in the Chinese population [66].

Our findings suggest an association between IL1 family genes (IL1RN and IL1A) and the

risk of getting T. b. gambiense infections and develop HAT in southern Cameroon. Although

the mechanism leading to this infection is not well understood, the hypothesis is that the

blood-brain barrier permeability is modified due to the presence, in blood and/or in CNS, of

inflammatory mediators such as IL1, IL6 and TNFA [67]. It has been shown in vitro that T. b.

gambiense induces the synthesis of inflammatory and pro-inflammatory cytokines like IL6 and

IL1 from the bone marrow endothelial cells [68]. The involvement of these cytokines, whose

level increases in the cerebrospinal fluid (CSF) during T. b. gambiense infection and decreases

after treatment, has been confirmed [69]. IL1A and IL1RN are important immunologic regula-

tors that compete with other IL1 family members for the IL1 receptor and act as negative regu-

lators with anti-inflammatory effects [70, 71] and also in differential modulation of IL1 activity

[72]. These variants are in linkage disequilibrium with other unidentified and identified vari-

ants in the IL1 gene family and it remains to be determined which are the functional polymor-

phism(s).

The minor allele HP2 with a P value of 0.0015 and an OR of 3.68 is associated with an

increased risk of getting T. b. gambiense infections and develop HAT in Bassa and Douala

ethno-linguistic subgroups (S2 Table). These results are in line with those reported in South

American where an increasing risk effect of Hp2/2 genotype and HP2 allele was observed for

T. cruzi infections [73, 74]. In gastric cancer, similar results were observed for Hp2/2 genotype

[75]. However, Hp2/2 genotype and Hp2 allele were suggested to be protective against infec-

tions due to Plasmodium falciparum during severe malaria [34]. These results indicate the

involvement of Hp2/2 and HP2 in many infectious diseases. The geographical differences in

the allele frequency of Hp2 could explain its association and involvement with different sus-

ceptibility to infectious diseases [76]. Indeed, HP is involved in scavenging haem from lysed
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red blood cells and trypanosomes cause extensive lysis of red cells, leading to a decline in circu-

lating haem. A decline in the expression of the haptoglobin receptor on macrophages indicates

earliest detectable sign of infection of mice with T. congolense. This expression of haptoglobin

receptor (Cd163) declined tenfold by day 3 post infection before there was a detectable parasi-

taemia [77].

Our results showing no significant association for SNPs rs1554606 of IL6 and 14 bp indel at

rs371194629 of HLA-G do not corroborate results reported in DRC and Guinea [6, 7, 13]. For

the same genes, but at different loci, Courtin et al. [7] showed that the T allele at rs2069849 of

IL6 seems to significantly (Bonferroni corrected P = 0.04) decrease the risk of getting T. b.

gambiense infections in the DRC while Kabore et al. [13] reported an association between the

allele A at rs1818879 locus of IL6 with the low risk of HAT progression in Guinea. The discrep-

ancies between these results could be due to insufficient linkage between our SNPs and those

(rs2069849 and rs1818879) genotyped by other authors, the genetic differences between the

DRC, Guinea and the Cameroon populations, the genotyping method and the sample size.

The study designs also differed because we used a case control approach while Courtin et al.
[6] used a family-based design and our small sample size has impact on the power of this

study.

The results discussed above for IL6, IL4 and HLA-G should be considered with caution

because of the heterogeneity of the studied population that induced some smaller sample sizes

and limited the power of this study. Despite the efforts undertaken through several large-scale

field surveys conducted in three HAT foci, we were only able to collect a relatively small num-

ber of 73 HAT cases. As already indicated in our previous publication [11], our power calcula-

tions indicated that effects of the sizes could be detected with our relatively small number of

samples. However, larger cohorts of well phenotyped cases and controls may be required to

confirm our observations. Although the present data is only suggestive of an association, the

finding of suggestive associations in multiple populations may increase the probability that

these are genuine associations with sleeping sickness.

Conclusion

This study revealed that one SNP (rs1800794) of IL1A and one VNTR (rs2234663) of IL1RN
were associated with an increased risk to be infected by T. b. gambiense and develop HAT in

inhabitants of sleeping sickness foci of southern Cameroon. The minor allele (T) of SNP

rs1800794 of IL1A gene and the genotype 1A3A of IL1RN rs2234663 VNTR seem to increase

the risk of getting T. b. gambiense infections and develop HAT in southern Cameroon. Results

of this study show that the association between host genetic determinants or gene polymor-

phisms and the risk to be infected by T. b. gambiense and develop HAT may vary with the het-

erogeneity of the studied populations.
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