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A closed-form analytical solution is developed for the first time that fully addresses the
problem of choosing feedback gains that minimize the control effort required for partial
pole placement in multi-input, multi-output systems. The norm of the feedback gain
matrix is shown to take the form of an inverse Rayleigh quotient, such that the optimal
closed-loop system eigenvectors are given as a function of the dominant (highest) eigen-
vectors of the matrix in the quotient. The feedback gains that deliver the required pole
placement with minimum effort may then be determined using standard procedures.
The original formulation by the receptance method proposed an arbitrary choice of the
closed loop eigenvectors that assigned the poles exactly but was generally wasteful of con-
trol effort that might otherwise be conserved or put to good use in satisfying additional
control objectives. The analytical solution is validated against a set of numerical examples.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Partial quadratic eigenvalue placement for flexible structures may be carried out numerically [1–3], as can minimum
norm partial pole assignment [4–6]. In the latter case, the norm of the feedback gains is minimized, thereby minimising
the control effort, while guaranteeing that the poles of the system are assigned. In general, these techniques require knowl-
edge of the mass, stiffness and damping matrices M;K;C.

Alternatively, the receptance method, proposed by Ram and Mottershead [7,8], offers a straightforward methodology for
partial pole placement using only measured receptances. For controlling structures with a single control input and several
outputs, the method considers a proportional and derivative output feedback and uses the measured receptances to deter-
mine the controller gains. Its efficiency has been demonstrated on several occasions [9–14].

Recently, the method has been generalized for Multi-Input Multi-Output systems by the same authors [13] and has seen
several numerical and experimental validations [12–18]. However, in the generalized formulation, in addition to pole place-
ment, the method requires the choice a priori of the closed loop eigenvectors of the system. Though, it does not indicate how
this choice should be made, the closed loop eigenvector affects significantly the norm of feedback gains, and thus the control
effort. This paper is concerned with the choice of the closed loop eigenvectors in order to minimize the norm of the gain
terms. For relatively small sized systems, the optimal eigenvector which minimizes the norm of the feedback gains may
be determined using numerical optimization, as in [19], where the system matrices M;K;C are required in addition to the
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measured receptances. In this paper, the optimal solution is derived analytically, and relies only on the measured recep-
tances. The norm of the feedback gain matrix is written as a function of the assigned eigenvectors, and appears as an inverse
Rayleigh quotient, xTx=xTAx; the optimal system eigenvector is then defined by the dominant eigenvector of the matrix A.

The paper is organised in four main sections: Section 2 summarises the receptance method for MIMO systems; Section 3
demonstrates the optimal eigenvectors which minimizes the norm of the feedback gains; while Section 5 is dedicated to
numerical illustration. Finally, the outcomes are reviewed in a Conclusions section.

2. Pole placement with the receptance method

Consider the partial pole placement of a dynamic structure, described with its mass, damping and stiffness matrices,
Mn�n;Cn�n and Kn�n,
M€xþ C _xþ Kx ¼ Bu; ð1Þ

where um�1is a vector ofm control input forces, and B ¼ ½b1 b2 � � �bm� is a n�m topology matrix, describing the control force
distribution over the structure.

Using the receptance method, and assuming a multi-input multi-output position feedback, i.e. u ¼ FTsþ GT
� �

x , we aim

to determine the feedback gains Fn�m ¼ ½f1 f2 � � � fm� and Gn�m ¼ ½g1 g2 � � �gm� which places the poles of the system at the
desired location.

2.1. The method

The quadratic eigenvalue problems associated with the open loop and the closed loop system, respectively, are given by,
k2kMþ kkCþ K
� �

vk ¼ 0; k ¼ 1; � � � ;2n ð2Þ

l2
kMþ lkCþ K

� �
wk ¼ B lkF

T þ GT
� �

wk; k ¼ 1; � � � ;2n ð3Þ
Each assigned eigenvalue lk

� �p
k¼1 is assumed distinct from the uncontrolled system eigenvalues kkf g2nk¼1, while for

k ¼ pþ 1; � � � ;2n, the eigenvalues are kept invariant lk ¼ kk. A non-trivial solution of Eq. (3) may then be written as,
wk ¼ vk; for k ¼ pþ 1; � � � ;2n ð4Þ

and
B kkF
T þ GT

� �
vk ¼ 0 ð5Þ
Then, by virtue of (2), and since B is arbitrary,
kkF
T þ GT

� �
vk ¼ 0; for k ¼ pþ 1; � � � ;2n ð6Þ
The first p equations of Eq. (3) may be re-cast as,
wk ¼ l2
kMþ lkCþ K

� ��1
B lkF

T þ GT
� �

wk ð7Þ
The receptance matrix is now defined as,
H sð Þ ¼ s2Mþ sCþ K
� ��1 ð8Þ
and the transfer matrix as,
rs ¼ H sð ÞB ð9Þ

so that, from Eq. (7),
wk ¼ rlk
lkF

T þ GT
� �

wk ð10Þ
where rlk
¼ H lk

� �
B: The matrix H sð Þ is invertible at s ¼ lk

� �p
k¼1, since the assigned eigenvalues lk are distinct from the open

loop eigenvalues kk: In most practical problems, only the transfer matrix rs is measurable, with a finite number of sensors.
By introducing
ak ¼ lkF
T þ GT

� �
wk ð11Þ
It becomes apparent from Eq. (10) that
wk ¼ rlk
ak ð12Þ
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Eq. (11) may be now be cast in matrix terms
lkw
T
k 0 . . . 0 wT

k 0 . . . 0
0 lkw

T
k . . . 0 0 wT

k . . . 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . lkw
T
k 0 0 . . . wT

k

2
666664

3
777775

f1
..
.

fm
g1

..

.

gm

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ ak ð13Þ
or
Pky ¼ ak ð14Þ

with the obvious definition of Pkand y. Similarly, for the invariant poles kkf g2nk¼pþ1, Eq. (6) may be cast in a similar style to

Eq. (13) as,
kkvT
k 0 � � � 0 vT

k 0 � � � 0
0 kkvT

k � � � 0 0 vT
k � � � 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 � � � kkvT
k 0 0 � � � vT

k

2
666664

3
777775

f1
..
.

fm
g1

..

.

gm

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ 0 ð15Þ
or
Q ky ¼ 0; k ¼ pþ 1; � � � ;2n ð16Þ

Pole placement for MIMO systems with the method of receptance may thus be achieved as follows. First, choose arbitrar-

ily the parameters ak;j, elements of the vector ak, for k ¼ 1;2; � � � ; p and j ¼ 1;2; � � � ;m, and obtain the closed loop eigenvector
wk; k ¼ 1;2; � � � ; p; by using Eq. (12). Then, solve the system of linear equations,
K

f1
..
.

fm
g1

..

.

gm

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

a1

a2

..

.

ap

0
0
..
.

0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð17Þ
with
K ¼

P1

P2

..

.

Pp

Q pþ1

Q pþ2

..

.

Q 2n

2
66666666666666664

3
77777777777777775

ð18Þ
If the feedback gains F and G are real, and fl;wg is an eigenpair of the closed loop system of Eq. (3), then it may be shown

that its complex conjugate fl;� w
� g is an eigenpair too. It thus follows by Eq. (10) that each pair of vectors ak, associated with

the eigenvalue pair l;l
�n o

, must be chosen closed under conjugation too, so that F and G are real.
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2.2. Problem statement

In practice, the feedback gains may be found by following the 5 steps shown in the flowchart of Fig. 1. However, each
choice of the eigenvector wk or ak (step 3) will lead to a different matrix K;and thus to a different solution. Indeed, Eq.
(17) admits an exact solution as long as the square matrix K is full rank; however, the most critical situation is when the
vector ak (equivalentlywk) is chosen in such a way the matrix K is nearly singular, which leads to high values of the feedback
gains F and G, and thus to a large and unfeasible control effort; this is illustrated in Fig. 2 for a simple 2 d.o.f. system. To avoid
such a situation, the parameters ak (equivalently eigenvectors wk) may be chosen in order to minimize the control effort.
This paper aims to determine a priori the optimal parameters ak, or eigenvectors wk, which lead to the minimum norm
of the feedback gains.
Fig. 1. Flowchart: Calculation of feedback gains by the receptance method.

Fig. 2. Frobenius norm of the feedback gains F and G as a function of the orientation of the vector a1. The minimum norm is reached when a1 is chosen to
minimize Eq. (32).
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3. Minimum feedback norm – Optimal ak

Consider pole placement with the receptance method and, without loss of generality, assume that only the first pole pair

fl1;l
�
1g is assigned, and the other poles kkf g2nk¼3 are kept unchanged, i.e. p ¼ 2. The orthogonality condition of Eq. (15) may be

packed into the form,
k2vT
2 vT

2

k
�
2v
�T

2 v
�T

2

k3vT
3 vT

3

..

. ..
.

knvT
n vT

n

k
�
nv
�T

n v
�T

n

2
66666666666664

3
77777777777775

F

G

" #
¼ 0 ð19Þ
This means that the rows of the matrix F
G

� 	
must be a combination of the null space of the complex matrix V 2 C2n�2n�2, such

that,
V ¼

k2vT
2 vT

2

k
�
2v
�T

2 v
�T

2

k3vT
3 vT

3

..

. ..
.

knvT
n vT

n

k
�
nv
�T

n v
�T

n

2
66666666666664

3
77777777777775

ð20Þ
If z1 and z2 denote the orthonormal basis vectors of the null space of V, then the feedback matrix F
G

� 	
may be written as a

linear combination of these two vectors,
F
G

� 	
¼ z1 z2½ �b ð21Þ
where b is an unknown 2�m matrix.

Then, the Frobenius norm of the feedback gain matrix F
G

� 	
is obtained as
F
G











2

F

¼ tr
F
G

� 	H F
G

� 	 !
¼ tr bH z

�
1 z

�
2

h iT
z1 z2½ �b

� �
ð22Þ
where the superscript H denote the Hermitian (i.e. the conjugate transpose). Given that the vectors z1 and z2 are orthonor-
mal, Eq. (22) becomes,
F
G











2

F

¼ tr bHb
� �¼ tr bbH

� � ð23Þ
The goal is to determine the vector a1 which minimizes the control effort, or alternatively Eq. (23). To do so, consider Eq.
(13), which may be re-arranged as,
aT
1 l1r

T
l1

rTl1

h i F
G

� 	
¼ aT

1 ð24Þ
where w1 has been replaced by rlk
a1, as defined in Eq. (12). By incorporating Eq. (21) into Eq. (24), it is seen that,
aT
1 l1r

T
l1

rTl1

h i
z1 z2½ �b ¼ aT

1 ð25Þ
Now, by introducing,
J ¼ l1r
T
l1

rTl1

h i
z1 z2½ � ð26Þ
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so that when each side of Eq. (25) is multiplied by its Hermitian, it is found that,
aT
1Jbb

HJHa
�
1 ¼ 1 ð27Þ
where a1 is normalized, aT
1a
�
1 ¼ 1. The matrix bbH is of rank 2 and may be written as a function of its singular values as,
bbH ¼ r2
1u1uH

1 þ r2
2u2uH

2 ð28Þ

where r1 and r2 are the singular values and u1 and u2 are the left eigenvectors of the matrix b. The Frobenius norm of b is
simply the sum of its two singular values. Thus, the optimal solution to the problem is to minimize these singular values. The
combination of Eqs. (27) and (28) leads to,
aT
1Ju1u

H
1 J

Ha
�
1r2

1 þ aT
1Ju2u

H
2 J

Ha
�
1r2

2 ¼ 1 ð29Þ

One possible option is to restrict a1 to real values, such that the rank of the feedback gain matrix reduces to unity with the

result that r2 ¼ 0. Then, as explained in the Appendix, the matrix b becomes rank-1, with the result, from Eq. (21), that the

columns (and rows) of the matrix F
G

� 	
are proportional to each other. Thus, Eq. (29) may be simplified to obtain,
r2
1 ¼ 1

aT
1Ju1uH

1 J
Ha1

ð30Þ
The term aT
1Ju1 in the denominator is maximal when the vectors u1 and JHa1 are collinear, such that
u1 ¼ JHa1

aT
1JJ

Ha1

� �1
2

ð31Þ
Finally, after substituting Eq. (31) into Eq. (30), we obtain the singular value r2
1, and thus the norm of feedback gains and

bbH, as a function of a1,
r2
1 ¼ bk k2F ¼ F

G











2

F

¼ 1
aT

1JJ
Ha1

ð32Þ
The ratio of Eq. (32) is simply the inverse of Rayleigh quotient (since the matrix JJH is Hermitian). It is minimum when a1

is equal to the eigenvector associated with the maximum eigenvalue of JJH . This is the optimal solution which minimizes the
norm of the feedback gain matrix.

In order to obtain a minimum norm feedback, the arbitrary choice of a1 in step 3 of the flowchart of Fig. 1 is determined
systematically as follow:

1- Calculate the null space of the matrix V in Eq. (20);
2- Build the matrix J, using Eq. (26);
3- Choose the eigenvector a1 as the dominant eigenvector of JJH .

Lemma

If the eigenvectors vk form an orthogonal basis, then the control effort for assigning each pole pair independently with
minimum effort leads to the same minimum as when assigning all the pole pairs at the same time.

Proof

As described previously, let FðjÞ

GðjÞ

� 	
be the optimal feedback gain matrix for assigning the jth pole pair flj;l

�
jg, while con-

serving the other poles unchanged. If the proposition is assumed true, then feedback gain matrix for assigning p pole pairs is
given by
F
G

� 	
¼
Xp
j¼1

FðjÞ

GðjÞ

" #
ð33Þ
and its Frobenius norm is,
F
G











2

F

¼ tr
Xp
i¼1

Xp
j¼1

F ið Þ

G ið Þ

" #T
F jð Þ

G jð Þ

" #0
@

1
A ð34Þ
or
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F
G











2

F

¼
Xp
i¼1

F ið Þ

G ið Þ













2

F

þ 2 tr
Xp
i–j

F ið Þ

G ið Þ

" #T
F jð Þ

G jð Þ

" #0
@

1
A ð35Þ
Recalling from the previous analysis that the columns of FðiÞ and GðiÞ are proportional to each other, then, in order to satisfy

the orthogonality condition of Eq. (15), the columns of the matrices FðiÞ and GðiÞ are seen also to be proportional to the eigen-
vector vj. Thus, since the eigenvectors vj are orthogonal to each other, then
F ið ÞTF jð Þ ¼ G ið ÞTG jð Þ ¼ 0; for j – i ð36Þ

and the second term of Eq. (3) vanishes, leading to
F
G











2

F

¼
Xp
i¼1

F ið Þ

G ið Þ













2

F

ð37Þ
The columns of the matrices FðiÞ and FðjÞ, and GðiÞ and GðjÞ, are orthogonal to each other, so that Eq. (33) is true and the
proposition is proven.

Remark

If the procedure described above is applied to incomplete modal vectors, such that vk do not form an orthogonal basis,

then an optimal solution F jð Þ

G jð Þ

� 	
is obtained at every step, but the overall solution F

G

� 	
is in general not optimal in term

of the effort required to assign the complete system of poles.

4. Numerical illustration

In this section, through three numerical examples, we validate the findings of the previous section. First, we consider a 2
degrees of freedom system identical to the example in [13], where the poles are not complex conjugate (overdamped system
with coupled eigenvectors). Then, we consider a lightly damped 3 degree of freedom mass-spring system, with a Rayleigh
damping matrix, such that the eigenvectors of the system are the mode shapes of the structure. We compare the situation
when all the degrees of freedom are measurable and when only 2 degrees of freedom, among 3, are measured (i.e. the eigen-
vectors are measured partially and, thus, are not orthogonal).

As discussed previously, each choice of the vector a (and equivalently of w) will lead to a different value of the feedback
gains. In order to evaluate all the possibilities, first we consider an initial vector a0, and apply a rotation operator RðhÞ on a0,
within the range h = [�p=2;p=2�. Then, for each value of h, we evaluate the Frobenius norm of the feedback gains matrix,
using Eq. (22). Finally, the Frobenius norm of the feedback gains is plotted as a function of h (i.e. the orientation of a).

Example 1

Consider the open loop system with,
M ¼ 1 0
0 2

� 	
; C ¼ 5 �5

�5 5

� 	
; K ¼ 10 �5

�5 15

� 	
The eigenpairs of the system are,
k1;2 ¼ �
ffiffiffi
5

p
i;vT

1;2 ¼ 1 1ð Þ
n o

; k3 ¼ �2:5;vT
3 ¼ 2 �1ð Þ� �

; k4 ¼ �5;vT
4 ¼ 2 �1ð Þ� �
We wish to change the eigenvalues k1;2 to l1;2 ¼ �1� i, and keep k3;4 unchanged by using MIMO control with the input
matrix,
B ¼ 1 1
0 �2

� 	
The feedback gain matrices are found by using the receptance method described in section 2 [Eq. (17)]. Fig. 2 shows
the Frobenius norm of the feedback gains as a function of a. Using Eq. (32), the optimal vector aH

1 which minimizes the

control effort is found to be aH
1 ¼ aH

2 ¼ �1 1ð ÞT. The closed loop eigenvectors wH
1 associated to the optimal vector aH

1 is
given by,
wH
1 ¼ rl1

aH
1 ¼ 1

0:6þ j

� �



444 B. Mokrani et al. /Mechanical Systems and Signal Processing 129 (2019) 437–448
This result is obtained with the feedback gains,
F ¼ f1 f2½ � ¼ �1 1
�2 2

� 	
; and G ¼ g1 g2½ � ¼ 1:5 �1:5

3 �3

� 	
;

If a1 had been chosen equal to 1 0:5ð ÞT , as in [13], then the feedback gains would be,
F ¼ f1 f2½ � ¼ �4 �2
�8 �4

� 	
; and G ¼ g1 g2½ � ¼ 6 3

12 6

� 	
;

such that the Frobenius norm of the feedback gain matrix is 3.5 times higher than the optimal gains.
Observe, that although the open loop eigenvector is real, the closed loop eigenvector which minimizes the control effort is

complex. Such a solution would not be predicted heuristically, e.g. by conserving the eigenvectors unchanged. If closed loop
eigenvector had been conserved unchanged, i.e.wH

1 ¼ v1, then the feedback gains would be only 10% higher than the optimal
solution. However, the difference is more significant when the eigenvectors are only available partially, as shown in example
3 below.

Example 2

Consider the spring-mass system of Fig. 3, with
M ¼
m 0 0
0 m 0
0 0 m

2
64

3
75;C ¼

c1 þ c2 �c2 0
�c2 c2 þ c3 �c3
0 �c3 c3

2
64

3
75;K ¼

2k �k 0
�k 2k �k

0 �k k

2
64

3
75;B ¼

1 0
0 1
0 0

2
64

3
75
The stiffness of the system is normalized with respect to the first resonance frequency (i.e. x1 ¼ 1 Hz). The mode shapes
of the system are also illustrated in Fig. 3. Rayleigh damping is considered, such that the mode shapes of the system are real,
and the modal damping is 1%. The eigenvectors of the open loop system vk are also real and equal to the mode shapes /k,
such that
v1 ¼ v2 ¼ /1 ¼ 0:33 0:6 0:74ð ÞT ; k1;2 ¼ 2p �0:01� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:012

p� �

v3 ¼ v4 ¼ /2 ¼ 0:74 0:33 �0:6ð ÞT ; k3;4 ¼ 5:6p �0:01� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:012

p� �

v5 ¼ v6 ¼ /3 ¼ 0:6 �0:74 0:33ð ÞT ; k3;4 ¼ 8:2p �0:01� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:012

p� �

We assume only two actuators are available, u1 and u2, and wish to increase the second mode damping to 10% and its

resonance frequency from 2.8 Hz to 3.2 Hz.
Fig. 3. Three degrees of freedom system. The dampers are tuned to obtain a modal damping of 1%.



Fig. 4. Frobenius norm of the feedback gains F and G as a function of the orientation of the vector a3. The minimum is reached when a3 is chosen to
minimize Eq. (32).
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By following the same steps as in the previous example, where we vary the orientation of the vector a3, the results shown
in Fig. 4 are similar to those of the previous example. The minimum Frobenius norm of the feedback gain is obtained with

aH
3 ¼ aH

4 ¼ 1 0:45ð ÞT, which corresponds to the eigenvector pair
wH
3 ¼ w

�
H
4 ¼ rl3

aH
3 ¼ �

�0:1� 0:73j
0:23� 0:44j
0:04þ 0:46j

0
B@

1
CA
The closed loop eigenvector wH
3 is complex, its projection on the open loop eigenvector v1 is also complex, it is given by

(after normalizing the two vectors),
vT
3w

H
3 ¼ �0:173þ 0:95j
and vT
3w

H
3

�� �� ¼ 0:97 � 1, which means that the two vectors are almost parallel. Once again, the optimal eigenvectorwH
3 is very

close to the open loop eigenvector v3.
Finally, for a relatively small variation of the poles (i.e. the placed poles are close to the open loop poles), the optimal

eigenvectorwH
k is very close to the open loop eigenvector vk; for this example, the difference in the control gains normwould

be only 3%, if w3 would have been chosen equal to the open loop eigenvector v3. However, if the pole variation is significant,
particularly when the resonance frequencies are placed close to other poles (thus the closed loop stiffness matrix changes
significantly), then the feedback gains arising fromw3 ¼ v3 would be significantly higher than those arising from the optimal
solution. For example, for reducing the resonance frequency of the second mode by half, from 2.8 Hz to 2 Hz, the optimal
solution wH

3 leads to feedback gains 2.5 times smaller than the gains obtained with w3 ¼ v3.

Example 3

Consider again Example 2, where the number of sensors n is reduced from 3 to 2. The sensor on the second mass is dis-
carded, and the eigenvectors become:
v1 ¼ v2 ¼ /1 ¼ 0:33 0:74ð ÞT

v3 ¼ v4 ¼ /2 ¼ 0:74 �0:6ð ÞT

v5 ¼ v6 ¼ /3 ¼ 0:6 0:33ð ÞT
The measured eigenvectors are no longer orthogonal (e.g. v1 and v5 are almost parallel, vT
5v1 ¼ 0:8). We wish to keep the

damping of the first mode unchanged and increase the resonance frequency by only 10%, from 1 Hz to 1.1 Hz. Since there are
only two sensors, the maximum number of pole pairs which can be controlled is 2; we keep the third mode unchanged,
while the second mode is not controlled.

The Frobenius norm of the feedback gains as a function of a1 curve is similar to Fig. 4, we omit to show it. Similarly, it
exhibits a minimum at the optimal aH

1 ¼ 1 1:69ð ÞT, obtained using Eq. (32). The norm of the feedback gains obtained with
w1 ¼ v1 is,
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F
G











2

F

¼ 1090
which is almost twice the optimal value obtained with aH
1 ,
FH

GH













2

F

¼ 570:
This example shows that the theory presented in Section 3 remains valid in the practical case when the number of sensors
is fewer than the number of degrees of freedom in the system.

5. Conclusion

In this paper, the problem of minimizing the control effort by MIMO receptance-based control is solved in closed form.
The analysis presented herein completes the method as described initially in the seminal work of Ram and Mottershead [13],
and offers a straightforward way to choose the eigenvectors associated with the placed poles. The paper demonstrates the
importance of this choice on the control effort.

The following remarks concerning the energy-conserving receptance method can be made:

1) The method is applied sequentially, one pole pair lj;l
�
j

� �
at a time while the remaining poles are retained unchanged,

and at each step the Frobenius norm F jð Þ

G jð Þ











F

is minimized. The pole pair is therefore assigned with minimum control

energy.
2) The feedback gain vectors f i and gi are found to be proportional to each other, such that
ak;jf j ¼ ak;lf l; and ak;jgj ¼ ak;lgl;

This appears in the calculated gains in Example 1 (and also in the other examples). Thus, the elements of the vector ak

may be seen as weighting factors for the control input contribution. If ak;j ¼ 0;then the jth actuator will not contribute

to the control of the kth pole; conversely, if ak;j � ak;iði–jÞ, then the kth pole will be principally controlled with the jth actu-
ator. Alternatively, if the parameters ak;j are equal, then the feedback gains of each input j, f j and gj, will be identical for all
the control loops. This may be useful, for example, in configurations where the actuators are not identical, and instead of
choosing the vector ak to be optimal, it can be chosen in order to suit the capability of the actuators (e.g. stroke, band-
width and control authority over the targeted mode).
3) When all the degrees of freedom are available:

a. the control effort required to assign each pole pair independently with minimum effort leads to the same mini-
mum as when assigning all the pole pairs at the same time.

b. choosing the closed eigenvector equal to the open loop one leads to nearly optimal feedback gains, provided that
the open- and the closed loop poles are not too far away from each other.

c. while the modes occur in pairs with real orthogonal eigenvectors (as in Example 2), then one possible solution to
satisfy the orthogonality condition of Eq. (19) is that the rows of the feedback gain matrices FT and GT are a com-
bination of the open loop eigenvectors vT

j ¼ /T
j . Thus, the feedback gain matrices project the outputs into the modal

coordinates. Such a situation is very similar to the classical ‘‘Independent Modal Space Control”, formulated by
Meirovich [20].

4) The same method may be applied in the case of incomplete measured modes (eigenvectors vk not forming an orthog-
onal basis). This will lead to an optimal solution at each step (as in (1) above) but in general will not lead to an overall

minimum-energy solution for F
G

� 	
.
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Appendix. – Rank of b

The problem of Eq. (17) may be rearranged in the form,
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and the feedback gains are found as,
F
G

� 	
¼

l1w
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1 wT
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The left multiplying 2n� 2n matrix is full rank (as long as the eigenvector wk has been chosen properly), the rank of the
feedback gains matrix is then,
rank
F
G

� 	� �
	 2;
since the matrix ak a
�
k 0 � � � 0

h iT
is rank 2. In the case where the parameters ak are real, then ak ¼ a

�
k and the rank of

this matrix reduces to unity. Thus, the rank of F
G

� 	
and b is also 1.
References

[1] B.N. Datta, S. Elhay, Y.M. Ram, D.R. Sarkissian, Partial eigenstructure assignment for the quadratic pencil, J. Sound Vib. 230 (2000) 101–110.
[2] B.N. Datta, W.W. Lin, J.N. Wang, Robust partial pole assignment for vibrating structures with aerodynamic effect, IEEE Trans. Automat. Control 51

(2006) 1979–1984.
[3] Y. Ram, S. Elhay, Pole assignment in vibratory systems by multi-input control, J. Sound Vib. 230 (2000) 309–321.
[4] B.N. Datta, Numerical Methods for Linear Control Systems Design and Analysis, Elsevier, Academic Press, New York, 2003.
[5] S. Brahma, B.N. Datta, An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating

structures, J. Sound Vib. 324 (2009) 471–489.
[6] Z.J. Bai, B.N. Datta, J.W. Wang, Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: a new optimization approach,

Mech. Syst. Sig. Process. 24 (2010) 766–783.
[7] J.E. Mottershead, Y.M. Ram, Inverse eigenvalue problems in vibration absorption: passive modification and active control, Mech. Syst. Sig. Process. 20

(1) (2005) 5–44.
[8] Y.M. Ram, J.E. Mottershead, Receptance method in active vibration control, AIAA J. 45 (3) (2007) 562–567.
[9] E. Papatheou, N.D. Tantaroudas, A. Da Ronch, J.E. Cooper, J.E. Mottershead, A. Da Ronch, Active control for flutter suppression: an experimental

investigation, in: International Forum on Aeroelasticity and Structural Dynamics (IFASD), June 24-26, 2013, Bristol, UK, pp. 1-14.
[10] M. Ghandchi Tehrani, R.N.R. Elliott, J.E. Mottershead, Partial pole placement in structures by the method of receptances: theory and experiments, J.

Sound Vib. 329 (24) (2010) 5017–5035.
[11] X. Maolong, L. Sheng, Active control of structural sound radiation using receptance method, in: INTER-NOISE and NOISE-CON Congress and Conference

Proceedings, Institute of Noise Control Engineering, 2017, pp. 2218–2225.
[12] C. Zhen, S. Jiffri, D. Li, J. Xiang, J.E. Mottershead, Feedback linearization of nonlinear vibration problems: a new formulation by the method of

receptances, Mech. Syst. Sig. Process. 98 (2018) 1056–1068.
[13] Y.M. Ram, J.E. Mottershead, Multiple-input active vibration control by partial pole placement using the method of receptances, Mech. Syst. Sig. Process.

40 (2) (2013) 1–9.
[14] K.V. Singh, L.A. McDonough, R. Kolonay, J.E. Cooper, Receptance-based active aeroelastic control using multiple control surfaces, J. Aircraft 51 (1)

(2014) 335–342.
[15] S. Fichera, S. Jiffri, J.E. Mottershead, Design and wind tunnel test of a MODular aeroelastic FLEXible wing (MODFLEX), in: International Conference on

Noise and Vibration Engineering (ISMA2016), 19–21 Sept. 2016, Leuven, Belgium.
[16] B. Mokrani, F. Palazzo, S. Fichera, L.J. Adamson, J.E. Mottershead, Multi-input multi-output aeroelastic control using the receptance method, in:

International Conference on Noise and Vibration Engineering (ISMA2018), 17–19 Sept. 2018, Leuven, Belgium
[17] T.L.M. Santos, J.M. Araujo, T.S. Franklin, Receptance-based stability criterion for second-order linear systems with time-varying delay, Mech. Syst. Sig.

Process. 110 (2018) 428–441.

http://refhub.elsevier.com/S0888-3270(19)30156-6/h0005
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0010
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0010
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0015
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0020
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0020
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0025
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0025
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0030
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0030
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0035
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0035
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0040
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0050
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0050
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0055
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0055
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0055
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0060
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0060
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0065
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0065
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0070
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0070
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0085
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0085


448 B. Mokrani et al. /Mechanical Systems and Signal Processing 129 (2019) 437–448
[18] S.-H. Tsai, H. Ouyang, J.-Y. Chang, Inverse structural modifications of a geared rotor-bearing system for frequency assignment using measured
receptances, Mech. Syst. Sig. Process. 110 (2018) 59–72.

[19] Z.J. Bai, M. Lu, Q.Y. Wan, Minimum norm partial quadratic eigenvalue assignment for vibrating structures using receptances and system matrices,
Mech. Syst. Sig. Process. 112 (2018) 265–279.

[20] L. Meirovitch, Dynamics and Control of Structures, John Wiley and Sons, New York, 1990.

http://refhub.elsevier.com/S0888-3270(19)30156-6/h0090
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0090
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0095
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0095
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0100
http://refhub.elsevier.com/S0888-3270(19)30156-6/h0100

	The minimum norm multi-input multi-output receptance method for partial pole placement
	1 Introduction
	2 Pole placement with the receptance method
	2.1 The method
	2.2 Problem statement

	3 Minimum feedback norm – Optimal αk
	Lemma
	Proof
	Remark

	4 Numerical illustration
	Example 1
	Example 2
	Example 3

	5 Conclusion
	Acknowledgment
	Appendix – Rank of β
	References


