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Abstract. This paper seeks to analyze the imprecision associated with the statistical modelling
method employed in devising a predictive maintenance framework on a plasma etching cham-
ber. During operations, the plasma etching chamber may fail due to contamination as a result of
a high number of particles that is present. Based on a study done, the particle count is observed
to follow a Negative Binomial distribution model and it is also used to model the probability
of failure of the chamber. Using this model, an optimum threshold failure probability is de-
termined in which maintenance is scheduled once this value is reached during the operation
of the chamber and that the maintenance cost incurred is the lowest. One problem however is
that the parameter(s) used to define the Negative Binomial distribution may have uncertainties
associated with it in reality and this eventually gives rise to uncertainty in deciding the optimum
threshold failure probability. To address this, the paper adopts the use of Confidence structures
(or C-boxes) in quantifying the uncertainty of the optimum threshold failure probability. This
is achieved by introducing some variations in the p-parameter of the Negative Binomial dis-
tribution and then plotting a series of Cost-rate vs threshold failure probability curves. Using
the information provided in these curves, empirical cumulative distribution functions are con-
structed for the possible upper and lower bounds of the threshold failure probability and from
there, the confidence interval for the aforementioned quantity will be determined at 50%, 80%,
and 95% confidence level.
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1 INTRODUCTION

Predictive maintenance (PdM) is the technique which seeks to predict the time in which
a maintenance of an equipment is to be carried out through the monitoring of its operating
conditions in real-time. A key advantage of PdM over the conventional practice of preventive
maintenance (PM) is that PdM allows for the lowering of maintenance costs owing to the fact
that maintenance is conducted only when necessary instead of on a routine basis as observed in
the case of PM [1]. This is the basis on which the literature by Duc et al. [2] is written.

In this conference paper, a case-study based on this literature will be presented in section 2.1
with a study of the statistical modelling method employed in devising a PdM framework on a
plasma etching chamber. This devised framework seeks to determine an optimized threshold
failure probability (PrF) beyond which, maintenance is performed on the chamber. The statis-
tical model adopted, however, contains a parameter which was determined with a significant
degree of uncertainty. As such, the research methodology proposed in this literature aims to
investigate the effect of this uncertainty in determining the optimum PrF and the quantification
of its associated uncertainty. This is achieved using Confidence boxes (or C-boxes) to which
details will be provided in section 3.1. Using this tool, the 2-sided confidence interval of the op-
timum threshold PrF can be determined and it will be attained at 50%, 80%, and 95% confidence
level.

2 CASE-STUDY: PLASMA ETCHING CHAMBER

2.1 Background

In his paper, Duc starts off by highlighting the key reasoning behind the decrease in the
production yield of the plasma etching chamber, and therefore its reliability, being the presence
of particles on the wafer [3]. These particles are generated as by-product of the plasma etching
process [4] and its amount can be monitored via the Particle per Wafer Pass (PWP) method [5].
However, only particles exceeding a specified size are recorded in the total particle count.

Next, Duc identifies the stochastic nature associated with the total particle count based on
data obtained over 8-months of chamber operation and models it to follow a Negative Binomial
distribution [6] as shown below:

P (Y = y) =
Γ(y + r)

y! · Γ(r)
· pr · (1− p)y (1)

In Equation (1), y indicates the random variable for particle count, r indicates the number of
runs by the chamber in which the particle count is zero, p indicates the probability of the particle
count being zero within a single run, and Γ() represents the Gamma function [7]. According
to the literature, the value of r was determined to be 2.2608 (rounded down to 2) while that
of p was determined to be 0.039 (±30%) [2]. Based on these information, he then derives a
cumulative distribution function to model the PrF of the chamber. Here, failure is defined as the
event in which the particle count reaches or exceeds a certain threshold value, kt. As such, the
mathematical expression for the PrF is as follows:

P (Y ≥ kt) =
∞∑
k=kt

P (Y = k) (2)

To ensure cost-effectiveness, a threshold PrF has to be set such that upon reaching this value,
the plasma etching chamber undergoes a scheduled maintenance. This threshold value of PrF
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cannot take values which are either too small or too large. A small threshold value would
mean that maintenance would now have to be performed more frequently resulting in high
maintenance costs. A large threshold value, on the other hand, would imply that the chamber is
allowed to operate for a longer duration without maintenance but this increases the occurrence
of failure due to high particle count which leads to a loss in production yield and earnings.
As such, Duc proceeds to devise a method to determine the optimum value of threshold PrF
analytically.

2.2 Methodology

In the literature, he introduces a new quantity called the Cost-rate, g, which is defined to be
the mean total costs associated with maintenance and particle count failures, C, divided by the
total time between two successive scheduled maintenance, T . This value of T would depend
on the value of PrF that is set. Further details to the calculation of C and T can be found in
reference [2]. From there, Duc proceeds to tabulate the values of g for the respective values of
threshold PrF and plots a graph to illustrate the relationship between these two quantities. The
result is as shown in the next section.

2.3 Results

Figure 1: Graph of Cost-rate, g, against threshold PrF. Image obtained from [2].

Based on the results illustrated in Figure 1, the optimum threshold PrF corresponds to the
value at which the C is at a minimum. From this, the optimum threshold PrF is determined to
be 0.16 [2]. This implies that a scheduled maintenance is performed once the PrF of the plasma
etching chamber reaches 16% during its operation.
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3 PROPOSED FRAMEWORK

3.1 Concept of C-boxes

C-boxes are structures which serve to provide a generalized approach in producing confi-
dence distributions. They can be used as a tool to estimate values of fixed, real-valued quantities
obtained through random sampling and contains information of its Neyman-Pearson confidence
at every level of confidence [9]. Unlike traditional confidence intervals, C-boxes can be prop-
agated via mathematical calculations and can be used in calculations to produce results with
identical confidence interval interpretation. From there, it is able to reflect both the uncertainty
associated with the sampled quantity which stems from the process of inferring observations as
well as the effects of imprecision in the data and demographic uncertainty which comes from
the process of characterizing a continuous parameter based on discrete observations. One sig-
nificant advantage of C-boxes is that it can be constructed even if the distribution of the sampled
quantity is unknown [10] which makes it the favoured method to perform uncertainty quantifi-
cation for the purpose of this research. More details to the theory of C-boxes can be found in
reference [9].

A C-box can be constructed using one of the two forms of cumulative distribution functions
(CDFs): Continuous or Empirical. In this paper, the latter is used given that the distribution to
which the parameter p follows is unknown. Empirical CDFs can be described as a step-function
which jumps up by 1

n
unit of probability at each of the n data points where n is the total number

of data available [11]. Like continuous CDFs, the value of the cumulative probability increases
with the value of the data point. A simple illustration of an empirical CDF is provided below as
an example:

Figure 2: Empirical CDF curve obtained for x ∈ {0.1994, 0.2089, 0.2362, 0.4501, 0.4587, 0.6073, 0.6358, 0.6790,
0.7093, 0.9452}. As seen in the image, the cumulative probability, F (x), increases by 1

10 with each value of x.

For a set of data x with its associated uncertainty, each data consists of a lower bound,
x, and an upper bound value, x. Based on these information, the empirical CDF for the lower
bound values (the Belief function), F (x), and the upper bound values (the Plausibility function),
F (x), can be plotted simultaneously. This gives rise to an interval which exists between F (x)
and F (x), within which the empirical CDF of the actual value of x could possibly exist. This
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resulting plot is a C-box structure. To determine a two-sided confidence interval of a parameter
θ at 1− α confidence level, θ is such that F (θ) = α

2
while θ is such that F (θ) = 1− α

2
.

3.2 Methodology

The proposed methodology in this conference paper seeks to supplement the work by Duc et
al. by introducing some “noise” into a key parameter within the Negative Binomial distribution
model and then observing its effects in the determination of the optimum threshold PrF and its
associated uncertainty. As seen in Equation (1), the Negative Binomial distribution is defined
by two parameters: r and p, whose respective values can be found in section 2.1. Given that it
was mentioned that the value of p has an upper and lower bound of 30%, this provides a degree
of uncertainty in p which can be adopted to realize the outcome of this research.

To perform the investigation, 20 sets of values of threshold PrF and Cost-rate will first be
extracted from the Cost-rate vs threshold PrF curve in Figure 1 using the Getdata Graph Dig-
itizer software [8]. The obtained values of threshold PrF will serve as references to obtain the
approximate values of kt from the PrF function shown in Equation 2 with parameters r = 2 and
p = 0.039. This process is done using Wolfram Mathematica and the results are presented in
Table 1 of section 3.3.

Next, an assumption will be made that the Cost-rate, g, is only affected by kt. This is because
physically, it is the amount of particles which will determine the machine down-time due to the
duration of cleaning. In essence, the more particles there are, the longer time it takes to clean,
the longer the down-time and the higher the costs incurred due to failure (excluding the costs
from scheduled maintenance), thus increasing g. With this in mind, new threshold PrF values
will be obtained for the respective values of kt via Equation (2) for different values of p while r
is kept at 2. The values of p are chosen such that they are within the aforementioned upper and
lower bounds with respect to the derived value of 0.039. As such, p will take values ranging
between 0.028 to 0.050 in steps of 0.002. For each value of p, a graph of Cost-rate, g, vs
threshold PrF will be plotted in similar fashion to Figure 1. This would yield a family of curves
for all 13 values of p as shown in Figure 3 of section 3.3. From there, the optimum threshold
PrF for each of these curves and its range of values of the threshold PrF will be determined
graphically. The results are summarized in Table 2 of section 3.3.

Finally, to perform the necessary uncertainty quantification associated with the optimum
threshold PrF values, C-boxes will be constructed with empirical CDFs of the lower bounds,
upper bounds, and the optimum threshold PrF using the data presented in Table 2. The resulting
C-box diagram is illustrated in Figure 4 of section 3.3.
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3.3 Results

Threshold PrF kt Threshold PrF kt
0.05642 115 0.18401 78
0.06426 111 0.20825 73
0.07424 107 0.22607 71
0.08422 103 0.24817 67
0.09420 99 0.26955 65
0.10346 96 0.29735 61
0.11986 91 0.31731 59
0.13055 89 0.33299 57
0.14908 84 0.36365 54
0.16548 81 0.39644 51

Table 1: Results for kt and its respective values of threshold PrF for the default parameter values of r = 2 and
p = 0.039.

Figure 3: Graph of Cost-rate, g, against threshold PrF for different values of p. r is kept constant at 2.
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Value of p Optimum Threshold PrF Threshold PrF range
0.028 0.31552 [0.14756 0.58013]
0.030 0.27888 [0.12183 0.54516]
0.032 0.24572 [0.10026 0.51138]
0.034 0.21584 [0.08227 0.47887]
0.036 0.18879 [0.06732 0.44772]
0.038 0.16605 [0.05495 0.41798]
0.039 0.15484 [0.05000 0.40000]
0.040 0.14490 [0.04474 0.38966]
0.042 0.12559 [0.03635 0.36278]
0.044 0.10863 [0.02947 0.33732]
0.046 0.09361 [0.02385 0.31328]
0.048 0.08042 [0.01926 0.29062]
0.050 0.06898 [0.01553 0.26931]

Table 2: Results for optimum threshold PrF and the range of threshold PrF for the respective values of p.

Figure 4: Confidence structure (C-boxes) summarizing the data in Table 2.
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3.4 Discussion

Based on the C-box constructed, the confidence interval for the value of threshold PrF can
be determined at 50%, 80%, and 95% confidence level and the results are summarized in Table
3 below:

Confidence level Confidence interval of threshold PrF
50% [0.02947 0.47887]
80% [0.01926 0.54516]
95% [0.01553 0.58013]

Table 3: Confidence interval of threshold PrF for the respective level of confidence.

The results above could serve as a guide for the industry in the decision–making of suitable
value of threshold PrF under uncertainty and from there, devise and compare the numerous PdM
plan for the plasma etching chamber based on the range of threshold PdF chosen as well as the
respective maintenance costs associated with the respective PdM plan.

4 CONCLUSION

This paper has addressed the problem of quantifying the uncertainty associated with the
optimum threshold PrF as a result of the uncertainty in the determination of p which is a key
parameter of the Negative Binomial distribution model as seen in Equation (1). In summary,
the threshold PrF values are calculated for the respective values of kt using different values
of p whilst assuming that the Cost–rate is only affected by kt. From there, the Cost–rate vs
threshold PrF curves are plotted for the different values of p and the information illustrated in
the family of curves is then used to construct the C-box structure. Using the C-box structure,
the confidence interval of the optimum threshold PrF value is obtained at 50%, 80%, and 95%
confidence level.
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