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Abstract

Previous studies have identified differences in DNA methylation in autistic individuals compared to neurotypical
individuals. Yet, it is unclear if this extends to autistic traits—subclinical manifestation of autism features in the general
population. Here, we investigate the association between DNA methylation at birth (cord blood), and scores on the Social
and Communication Disorders Checklist (SCDC), a measure of autistic traits, in 701 8-year-olds, by conducting a
methylome-wide association study (MWAS). We did not identify significant CpGs associated with SCDC. The most
significant CpG site was cg14379490, on chromosome 9 (MWAS beta = − 1.78 ± 0.35, p value = 5.34 × 10−7). Using
methylation data for autism in peripheral tissues, we did not identify a significant concordance in effect direction of CpGs
with p value < 10−4 in the SCDC MWAS (binomial sign test, p value > 0.5). In contrast, using methylation data for autism
from post-mortem brain tissues, we identify a significant concordance in effect direction of CpGs with a p value < 10−4 in
the SCDC MWAS (binomial sign test, p value = 0.004). Supporting this, we observe an enrichment for genes that are
dysregulated in the post-mortem autism brain (one-sided Wilcoxon rank-sum test, p value = 6.22 × 10−5). Finally,
integrating genome-wide association study (GWAS) data for autism (n= 46,350) with mQTL maps from cord-blood (n =
771), we demonstrate that mQTLs of CpGs associated with SCDC scores at p value thresholds of 0.01 and 0.005 are
significantly shifted toward lower p values in the GWAS for autism (p < 5 × 10−3). We provide additional support for this
using a GWAS of SCDC, and demonstrate a lack of enrichment in a GWAS of Alzheimer’s disease. Our results highlight the
shared cross-tissue methylation architecture of autism and autistic traits, and demonstrate that mQTLs associated with
differences in DNA methylation associated with childhood autistic traits are enriched for common genetic variants
associated with autism and autistic traits.

Introduction
Autism is a neurodevelopmental condition character-
ized by social-communication difficulties, unusually re-
strictive, repetitive behavior and narrow interests, and
sensory difficulties [1, 2]. The condition can be thought
as a continuum, with autistic traits being normally dis-
tributed in the general population, and autism at the
extreme end of the continuum [3–5]. Both autism and
autistic traits are highly heritable [6–9], with variation

across the allelic spectrum associated with the condi-
tion [10–12]. Despite a significant SNP heritability
(Autism: h2SNP – 0.49 [12] – 0.12 [11]), recent studies
have demonstrated that the variance explained per SNP
is small, suggesting a highly polygenic architecture
[11, 13]. None of the significant SNPs associated with
autism alter protein coding, suggesting that gene
expression is regulated through other mechanisms
[11, 14]. For instance, a recent genome-wide associ-
ation study (GWAS) of autism has identified an enrich-
ment of GWAS signals in H3K4me1 histone marks,
particularly in brain and neural cell lines [11, 13].
Previous studies have investigated autism associated

methylation signatures in both peripheral tissues [14–16]
(50 <N < 2917) and in the post-mortem brain [17–20]
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(31 <N < 81). While post-mortem brain is pertinent for
a neurodevelopmental condition like autism, it is not
readily accessible, and will be confounded by post-
mortem effects on DNA methylation. Studies of methy-
lation signatures in post-mortem brains in autism have
replicably identified differential methylation [17–20].
Further, they have demonstrated an enrichment for dif-
ferentially methylated signatures in the immune sys-
tem, synaptic signaling, and neuronal regulation [17,
18, 20]. In contrast, recent large-scale analysis of three
different peripheral tissue datasets have not identified
significantly differentially methylated CpG sites in aut-
istic individuals compared to typically developing indi-
viduals [14, 16]. The lack of significant results in
peripheral tissues may be attributable to small effect
sizes, and significant heterogeneity in both CpG methy-
lation and autism.
While a few studies have investigated DNA methyla-

tion underlying autism, to our knowledge, there has
been no study investigating DNA methylation under-
lying autistic traits in the general population, which are
subthreshold manifestations of the autism phenotype.
One measure of autistic traits is the Social and Com-
munication Disorders Checklist (SCDC) [21]. Scores on
the SCDC are associated (Cohen’s D = 2.8, p value <
0.001) [21] and genetically correlated with autism (rg ~
0.3) [5, 21, 22]. The SCDC has a modest SNP heritability
(h2SNP = 0.24, s.e. = 0.07) [23], and polygenic scores for
autism are associated with SCDC scores in the general
population (max R2 = 0.13%) [22]. An advantage of using a
continuous measure of autistic traits is that it captures the
underlying variance better, and minimizes heterogeneity
attributable to different diagnostic criteria and practices
used to diagnose autism.
One potential mechanism through which common gen-

etic variants can regulate gene expression is through DNA
methylation. DNA methylation is partly heritable (0.05 <
h2twin < 0.19, defined as the proportion of variance in
methylation that is attributable to genetics) [24–26]. A
few studies have integrated genetics and methylation to
identify convergent signatures in autism. Andrews and
colleagues demonstrated that autism associated GWAS
loci are enriched for methylation QTLs (mQTLs) in fetal
brain and blood, suggesting that at least some of the gen-
etic loci associated with autism may contribute to the con-
dition through differential methylation [27]. In line with
this, Hannon and colleagues demonstrated that polygenic
risk for autism is associated with differential methylation
at birth [14]. While these studies have demonstrated a role
for common genetic variants associated with autism and
influencing methylation, to our knowledge no study has
investigated if methylation of CpGs associated with autis-
tic traits are enriched for common genetic variants associ-
ated with autism or autistic traits. One way to test this

hypothesis is using mQTLs. We hypothesized that
mQTLs of significant CpGs in a methylome-wide associ-
ation study (MWAS) of autistic traits will be enriched for
lower p values in a GWAS of autism or autistic traits.
To address these questions, we investigated the associ-

ation of CpG methylation in cord blood using scores on
the SCDC at age 8. The use of cord blood CpGs mini-
mizes (though, does not eliminate) reverse causation
(where the phenotype influences DNA methylation), as
the methylation of CpG sites is measured very early in life.
To investigate how comparable an MWAS of an autistic
trait is to other MWAS of autism and related phenotypes
conducted across different tissues, we investigated the
overlap between the MWAS of SCDC and other MWAS
of autism and communication-related traits in peripheral
and post-mortem brain tissues. We further investigated if
genes that are transcriptionally dysregulated in the post-
mortem autism brain are enriched for methylation CpGs
associated with SCDC. Finally, integrating GWAS data for
autism from 46,350 individuals, we investigated if mQTLs
of CpGs associated with SCDC scores at various p value
thresholds are significantly shifted toward lower p values
in the autism GWAS. We validated these results using a
smaller GWAS for SCDC.
In summary, this study had two specific aims: (1) to in-

vestigate if an MWAS for autistic traits identifies signifi-
cant CpG methylation and if it is comparable to MWAS
of autism; and (2) to investigate if mQTLs of CpGs associ-
ated with autistic traits at various p value thresholds are
enriched in GWAS of autism and autistic traits.

Methods
Participants
Participants were children from the Accessible Resource
for Integrated Epigenetic Studies (ARIES, www.ariesepi-
genomics.org.uk) [28], a subset of the Avon Longitudinal
Study of Children and Parents (ALSPAC) [29]. Methyla-
tion data was only available for participants in the
ARIES substudy. ALSPAC is a longitudinal cohort in
which the participants were pregnant women in the
Avon region in the UK. The initial cohort consists of 14,
541 initial pregnancies and 13,988 children who were
alive at the age of 1. In addition, children were enrolled
in further phases. Details of the data available can be
found on the online data dictionary here: http://www.
bristol.ac.uk/alspac/researchers/access/. Written in-
formed consent was obtained from the parent or the
guardian of the child and assent was obtained from the
child where possible. The study was approved by the
ALSPAC Ethics and Law committee, and the Cambridge
Human Biology Research Ethics Committee.
The participants of the primary MWAS of SCDC were

701 children who completed the SCDC at age 8, and for
whom epigenetic data was available (341 males and 360
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females). Of the participants included in the primary
MWAS (SCDC), only five participants had an autism
diagnosis based on a parental questionnaire at 9.5 years
of age. We conducted a secondary MWAS of pragmatic
communication in 666 children. Pragmatic communica-
tion was measured using the Children’s Communication
Checklist [30] (CCC) at age 9 (323 males and 340 fe-
males). In addition, we conducted a GWAS of SCDC
scores in a sample of 5,628 8-year-olds from ALSPAC,
details of which are provided below. This sample in-
cluded participants who were included in the two
MWAS (SCDC and CCC).

Phenotypic measures
The SCDC is a 12-item questionnaire that measures diffi-
culties in verbal and nonverbal communication and social
interaction including reciprocal interaction [21]. Scores
range from 0 to 24 with high scores reflecting difficulties in
social interaction and communication. The SCDC has good
psychometric properties—internal consistency of 0.93 and
test-retest reliability of 0.81 [21]. We used mother-reported
SCDC scores on children aged 8. The mean of SCDC
scores in our sample was 14.65 (standard deviation = 3.44).
Previous research has demonstrated that the SCDC is
stable over time and scores at different ages are genetically
correlated [22, 31]. SNP heritability is highest for SCDC
scores in childhood (at the age of 91 months) and in later
adolescence (17 years) [22, 31]. We focused on SCDC
scores at 91 months as the sample size was the largest, has
highest genetic correlation with autism [22], and the expos-
ure to environmental factors is limited at 91 months com-
pared to other time points.
A second measure that we used in this study is the 53-

item parent-completed CCC which measures pragmatic
communication [30]. The CCC and subscales have mod-
erate to high twin heritability [32], and moderate SNP
heritability (h2SNP = 0.18) [23]. There is a negative correl-
ation between the CCC and the SCDC [33]. The mean
of the CCC in the sample of 666 children was 151.83
(standard deviation = 6.77), with scores ranging from
111 to 162. To make the analysis comparable with the
SCDC (which measures difficulties rather than ability),
we reverse scored the CCC so that higher scores meas-
ure difficulties in pragmatic communication.
The histograms of both the phenotypes in the samples

used in the study are provided in Additional file 1: Fig-
ure S1. We calculated the phenotypic correlation be-
tween the CCC and the SCDC in the samples used in
this study using Pearson’s correlation.

Cord blood DNA methylation, quality control, and
normalization
Array-based cord blood methylation quantification was
conducted by ARIES [28]. Briefly, DNA was extracted

from cord blood drawn from the umbilical cord upon de-
livery. Following extraction, DNA was bisulfite-converted
using the Zymo EZ-DNA MethylationTM kit (Zymo, Ir-
vine, CA). Then, methylation of over 485,000 CpG sites
was measured using the Illumina HumanMethylation450
BeadChip array according to the standard protocol. The
arrays were scanned using an Illumina iScan and initial
quality review was assessed using GenomeStudio (version
2011.1).
Methylation assays utilize a pair of probes to detect

methylation of cytosine at CpG sites. One is used to de-
tect methylated loci (M) and the other is used to detect
unmethylated CpG islands (U). The level of methylation
at a locus is then estimated based on the ratio of signals
from M to U, called “beta” value. Beta values range from
0 (no cytosine methylation) to 1 (complete cytosine
methylation). Sample information and participant demo-
graphics are provided in Additional file 1: Table S1.

QC and normalization
In total, there were 1,127 cord blood samples including
technical replicates (i.e., samples that were of poor qual-
ity with low detection score and were thus repeated). Of
these, 241 were from blood spots and 886 were from
white cells. Blood spots were obtained from cord blood
and not taken from heel prick. The provided data was
quality controlled by ARIES team. The QC procedure
employed by the ARIES team includes removing partici-
pants who did not pass mother-child genotype-based re-
latedness control, participants who were outliers for
genetic heterozygosity, genetic ethnicity outliers, samples
with low bead numbers, and detection p value > 0.05
(probability that the target sequence signal was distin-
guishable from the background). This resulted in a total
of 914 participants. None of these participants had a sex
mismatch, where the genetic sex was different from re-
ported sex. We further removed nine duplicate samples,
resulting in 905 participants. Further, 782 of these
participants had phenotypic data on the SCDC. Finally,
we removed 81 related individuals, resulting in a final
sample of 701 participants who had both methylation
and phenotypic data.
The data was normalized using functional normalization

implemented in the R package meffil (https://github.com/
perishky/meffil) [34]. Functional normalization is a
between-array normalization method for the Illumina Infi-
nium HumanMethylation450 platform and an extension
of quantile normalization. It removes unwanted technical
variation. The normalization procedure was performed to
the methylated and unmethylated signal intensities, and
type I and type II probes separately. For X and Y chromo-
somes, males and females were normalized separately
using the sex at birth information.
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We removed CpG sites whose probe or single-base ex-
tension overlaps with a SNP with MAF > 0.01. We further
removed cross-reactive probes identified in Chen et al.
2013 [35] as implemented in meffil. In total, 372,662 CpG
sites remained after quality control. Cell proportions for
CD4 T lymphocytes, CD8 T lymphocytes, B lymphocytes,
natural killer cells, monocytes, and granulocytes were esti-
mated using the minfi package [36]. These cell types were
estimated using post hoc procedures as cell type informa-
tion was not collected prior to DNA extraction, further
details of which are provided elsewhere [28].

Methylome-wide association
A methylome-wide association study was run using a
two-step regression model (model 1). In the first regres-
sion, normalized epigenetic probe betas were regressed
against technical covariates (slide, sample type, i.e., white
blood cells vs blood spots, and plate and cell counts),
using the following model.

βetameth ¼ β0 þ β1Slideþ β2Sampleþ β3Plate
þ β4…nCellcountþ ε ð1Þ

The residuals from this regression were further used as
corrected methylation values. In the second regression,
SCDC (or CCC) scores were regressed against corrected
methylation values with sex and the first two genetic prin-
cipal components as covariates, as provided below:

SCDC ¼ β0 þ β1εþ β2Sexþ β3PC1 þ β4PC2

þ ζ ð2Þ

We did not correct for age as methylation was measured
at birth, and SCDC was measured at 8 years of age for all
participants. Here, we were specifically testing if methyla-
tion status measured in cord blood was associated with
autistic traits or pragmatic language measured at a later
age. Given the highly skewed distribution of the SCDC
scores, we used a negative binomial regression, using the
MASS package in R, which involves by default applying a
chi-square test to validate the model (goodness of fit test).
We used a Bonferroni-corrected epigenome-wide signifi-
cant threshold of 1 × 10−7 to identify significant associa-
tions. All analyses were conducted in R version 3.2. A
Pearson correlation test between both regression coeffi-
cients and Z-score (regression Beta divided by the stand-
ard error) from both SCDC and CCC MWAS models was
performed to assess the epigenetic correlation between
both traits.
To evaluate that the results are robust to methodo-

logical differences, we used a second model to conduct
the methylome-wide association (model 2). This too was
conducted using a two-step regression. Here, in the first

regression, we used the M value [37] rather than the
methylation beta value, and regressed it against cell
counts generated using “GSE68456” [38] which includes
nucleated red blood cells in cord blood. Thus, our first
regression in model 2 is of the form:

M−valuemeth ¼ β0 þ β1Slideþ β2Sample
þ β3Plateþ β4…nCellcount þ ε ð3Þ

Where the cell counts include CD4 T lymphocytes,
CD8 T lymphocytes, B lymphocytes, natural killer cells,
monocytes, granulocyte, and nucleated RBCs. The resid-
uals from this regression were regressed against SCDC
scores using Eq. 2 outlined above. We then evaluated if
the Z-scores varied substantially between the two models
using a Pearson correlation test. Throughout the manu-
script, we report the results from the first model because
(1) beta values are easier to interpret than M-values, and
(2) only 241 participants included in the MWAS had nu-
cleated RBC count different from 0.
To identify gene sets and networks that were differen-

tially methylated in the SCDC MWAS, we used mGSEA
[39] and used Gene Ontology-based gene sets.
In order to interpret results from the MWAS, we de-

signed a multi-step enrichment strategy including (1) a
same-sample, same-tissue overlap and correlation ana-
lyses between the SCDC and the CCC; (2) a cross-tissue
overlap analysis between the SCDC MWAS and MWAS
of autism in peripheral blood and post-mortem brain tis-
sue; (3) enrichment for autism transcriptionally dysregu-
lated genes; and (4) enrichment of CpG-associated
mQTLs in autism and SCDC GWAS. A summary of the
study design is provided in Fig. 1.

Peripheral tissue (blood and blood-spot) overlap analysis
We had access to summary MWAS statistics from three
peripheral tissue datasets described in detail elsewhere
(SEED [16], Simons Simplex Collection (SSC) [16], and
MINERvA [14]). For all overlap analyses, we conducted
two statistical tests. In the first, we tested if all nominally
significant CpGs (p value < 0.01) in the three peripheral
tissue MWAS (SEED, SSC, and MINERvA) have a shift
toward lower p values in the SCDC MWAS (one-sided
Wilcoxon rank-sum test). This tests a larger number of
CpGs and is consistent with the idea that each individual
CpG contributes minimally to the phenotype suggesting
a polymethylomic (or, polyepigenetic) architecture simi-
lar to a polygenic architecture of complex traits. In
addition, this does not test effect direction as effect dir-
ection may vary based on number of factors including
tissue source. In the second analysis, we investigated
effect direction concordance for CpGs with p value <
1 × 10−4 in either of the two MWAS being tested, thus,
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conducting 12 binomial sign tests tests in total. This re-
stricts the analyses to a relatively small number of CpGs.

Post-mortem brain tissue overlap analysis
We had access to summary statistics from two post-
mortem brain tissue datasets to investigate overlap with
the SCDC MWAS. MWAS in both these datasets were
conducted using the Illumina HumanMethylation450
BeadChip making the MWAS comparable to the SCDC
MWAS. We used a recent MWAS conducted using tis-
sue from 38 idiopathic autistic individuals and 38 con-
trols [20]. Further details are provided elsewhere [20].
To investigate if there was an overlap between the SCDC
MWAS and a neuron-specific MWAS in post-mortem
autism brains, we used summary MWAS data from
FACS-sorted neurons in brain samples from 15 autistic
individuals and 16 typical controls. Further details are
provided elsewhere [17]. We did not have access to so-
cial communication data in the two post-mortem sam-
ples, making this comparison impossible.
For both datasets, our analysis was similar to the ana-

lysis of peripheral tissue MWAS. We investigated effect
direction concordance between the two post-mortem
brain autism MWAS and the SCDC MWAS for all
CpGs with p value < 1 × 10−4 in the post-mortem brain

MWAS (binomial sign test). Additionally, we investi-
gated if CpGs with p value < 0.01 in either of the two
post-mortem brain MWAS had a significant shift toward
lower p values in the SCDC MWAS (one-sided Wil-
coxon rank-sum test).

Enrichment with autism-associated transcriptionally
dysregulated genes
For enrichment analyses with transcriptionally dysregu-
lated gene expression data, we used an RNA-sequencing
study of 167 post-mortem cortical samples with n = 85
with a diagnosis of autism and n = 82 from nonpsychiat-
ric controls. Samples were from BA9 (prefrontal cortex),
or BA41/42 (temporal cortex) [40]. Significantly
dysregulated genes had a Benjamini-Hochberg adjusted
FDR < 0.05. We conducted enrichment analyses using a
one-sided Wilcoxon rank-sum test. We first mapped the
CpGs to genes using the CpG to gene annotation for the
Illumina 450k methylation array using the IlluminaHu-
manMethylation450k.db package in R (http://www.biocon-
ductor.org/packages/release/data/annotation/html/Illumi-
naHumanMethylation450kprobe.html). We restricted our
analysis only to CpGs that were mapped onto the genes
tested for differential expression in the post-mortem brain
dataset [40]. We then compared the distribution of the

Fig. 1 Schematic diagram of the study design. Schematic diagram of the study design

Massrali et al. Molecular Autism           (2019) 10:31 Page 5 of 14

http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450kprobe.html
http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450kprobe.html
http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450kprobe.html


SCDC p values for CpGs mapped to significantly differen-
tially dysregulated genes vs the other genes.

Enrichment of CpG-associated mQTLs in GWAS of autism
and SCDC
We investigated if mQTLs of CpGs below four p value
thresholds in the SCDC MWAS (PSCDC) had lower
p values compared to other mQTLs in the GWAS
(PGWAS) of (1) autism, (2) SCDC, and (3) as a negative
control, Alzheimer’s. We hypothesized that the mQTLs of
CpGs below PSCDC will have significantly lower PGWAS in
comparison with remaining mQTLS. To map CpGs to
mQTLS, we used mQTL maps generated by the ARIES
cohort in cord blood (n = 771), restricting our analysis to
only significant mQTLS identified after FDR correction
(p value < 0.05 after FDR correction) [41]. This cohort
overlapped with the sample in which the MWAS was con-
ducted. All mQTLs had a minor allele frequency > 1%. For
each CpG-mQTL pair, we restricted our analysis to only
those CpG-mQTL pairs investigated in both the SCDC
MWAS and the GWAS of interest. In other words, the
CpGs must have been investigated in the SCDC MWAS
and the paired mQTL of the CpG must have been investi-
gated in the GWAS of interest. As none of the CpGs meet
the strict p value threshold, we had to use several thresh-
olds at different levels of stringency. To control the signal-
to-noise ratio in the context of an MWAS, we considered
four empirical PSCDC thresholds: 0.05, 0.01, 0.005, and
0.001. Enrichment was conducted using permutation test-
ing, where we defined 10,000 null sets. We identified three
potential factors that may influence this analysis: (1) the
linkage disequilibrium (LD) structure of mQTLs, (2) the
number of mQTLs mapped onto a CpG, and (3) the num-
ber of CpGs a single mQTL is mapped onto. To address
LD, first, we clumped the list of mQTLs using an r2 of 0.6
and distance of 1000 kb, to ensure that linkage disequilib-
rium among these mQTLs does not confound the out-
come. In this clumped list of mQTLs, the majority were
mapped to only one mQTL. Second, to account for the
number of mQTLs mapped onto CpGs, we binned the
CpGs into six groups based on the number of SNPs
they mapped onto (1–5, 6–10, 11–15, 15–20, 20–25,
and above 25), and conducted enrichment analysis so
that every mQTL in the null set matched the original
mQTL based on CpG bins. Third, one single mQTL
may map onto multiple CpGs, resulting in non-unique
CpG-mQTL pairs with PSCDC < threshold, and PSCDC >
threshold. We retained unique CpG-mQTL pairs in
each list before conducting permutation-based enrich-
ment analysis. Finally, to account for multiple testing,
as we tested across four non-independent p value
thresholds, the empirical p values were corrected for
the four tests using Benjamini-Hochberg FDR correc-
tion. Empirical p values were significant at FDR < 0.05.

We examined the results identified in the Autism
GWAS using a GWAS of log-transformed SCDC scores
in ALSPAC (details below). As a negative control, we used
GWAS data for Alzheimer’s (phase I), downloaded from
IGAP (http://web.pasteur-lille.fr/en/recherche/u744/igap/
igap_download.php) [42], and tested for enrichment using
an identical procedure as mentioned above. The Alzhei-
mer’s GWAS (phase I, for which genome-wide summary
data is available) consists of 17,008 cases and 37,154 con-
trols, and identified 14 significant GWAS loci. While both
autism and Alzheimer’s are neuropsychiatric conditions,
the genetic correlation between the two conditions is non-
significant (rg = 0.04 ± 0.10; p value = 0.102), suggesting
minimal shared genetics. The number of cases and con-
trols used in the two studies (phase 1 for the Alzheimer’s
GWAS) are comparable, providing approximately similar
statistical power (mean chi-square: Alzheimer’s = 1.114,
autism = 1.2). Further, they are distinct in that autism is a
neurodevelopmental condition diagnosable at childhood,
while Alzheimer’s is largely diagnosed in individuals who
are 65 or older.

GWAS of SCDC scores
We conducted a log-transformed GWAS of SCDC
scores at age 8 in the ALSPAC data. Note that log-
transformed phenotype models are computationally
more efficient for high-dimensional GWAS data than
negative binomial models used in the MWAS. Further,
we identified a high correlation between the log-
transformed SCDC MWAS and the negative binomial
SCDC MWAS (rBeta = 0.98, P 2.2 × 10−16; rZscores = 0.99,
P 2.2 × 10−16), suggesting that the results are almost
identical between the two statistical models. Participants
were genotyped using the Illumina® HumanHap550 quad
chip by Sample Logistics and Genotyping Facilities at
Wellcome Sanger Institute and LabCorp (Laboratory
Corporation of America) using support from 23andMe.
We restricted our analysis only to individuals of Euro-
pean descent. This was identified using multidimen-
sional scaling analysis and compared with Hapmap II
(release 22) [43]. We excluded individuals with sex mis-
matches, high missingness (> 3%), and disproportionate
heterozygosity, and if cryptic relatedness, identified using
identity by descent, was greater than 0.1. We removed
SNPs with greater than 5% missingness, those that vio-
lated Hardy-Weinberg equilibrium (p value < 1 × 10−6),
and those with a minor-allele frequency less than 1%.
This resulted in a total of 526,688 genotyped SNPs. Hap-
lotypes were estimated using data from mothers and
children using ShapeIT (v2.r644) [44]. Imputation was
performed using Impute2 V2.2.2 against the 1000 ge-
nomes reference panel (Phase 1, Version 3) [45]. Im-
puted SNPs were excluded from all further analyses if
they had a minor allele frequency < 1% and info < 0.8.
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After quality control, there were 8,282,911 genotyped
and imputed SNPs that were included in subsequent
analyses. GWAS analysis was conducted for mother-
reported SCDC scores at age 8 that was log-transformed
given the highly skewed distribution. Linear regression
was conducted in Plink v1.9 [46] that converted allele
dosages into hard calls. We included the first two ances-
try principal components and sex as covariates in the
regression model. The first two ancestry principal com-
ponents were calculated using Plink 1.9 in unrelated in-
dividuals, using SNPs with MAF > 5% that were pruned
for LD (r2 < 0.1).
As reported previously [5, 22, 31], the SNP heritability

as quantified using LDSC [47, 48] was h2 = 0.12 ± 0.05.
The LDSR intercept (0.99) suggested that there was no
inflation in GWAS estimates due to population stratifi-
cation. The λGC was 1.013. We replicated the previously
identified genetic correlation (constrained intercept) [5]
with autism using our SCDC GWAS (PGC-autism: rg =
0.46 ± 0.20, p value = 0.019; iPSYCH-autism: rg = 0.45 ±
0.18, p value = 0.01).

Data, software, and script availability:

a. MWAS summary statistics:
� The summary statistics for the MWAS (SCDC

and CCC) can be downloaded from here:
https://www.dropbox.com/sh/8za5xspmbjydpst/
AAA_ZGmMLOE8Ql7egi5Mcu8Ha?dl=0 . These
summary statistics are also provided as RData
files with this manuscript.

� Summary statistics for the SEED and the SSC
MWAS can be obtained from here: https://
molecularautism.biomedcentral.com/articles/10.
1186/s13229-018-0224-6 .

� Summary statistics for the MINERvA cohort can
be obtained by contacting Jonas Bybjerg-
Grauholm.

b. GWAS summary statistics:
� The summary statistics for the autism GWAS

(iPSYCH) can be downloaded from http://www.
med.unc.edu/pgc/results-and-downloads
(iPSYCH-PGC GWAS-2017).

� The Alzheimer’s GWAS can be downloaded
from http://web.pasteur-lille.fr/en/recherche/
u744/igap/igap_download.php.

� The summary statistics for the SCDC GWAS
can be obtained from https://www.dropbox.com/
sh/8za5xspmbjydpst/AAA_ZGmMLOE8Ql7
egi5Mcu8Ha?dl=0.

c. Scripts for running the two regression models for
the MWAS and running the enrichment analyses
with the mQTL data are available here: https://

github.com/autism-research-centre/MWAS_
autistictraits

d. mQTL data used in this (coord blood) is a part of
the ARIES cohort, and can be downloaded here:
http://www.mqtldb.org/

e. We used the following software/packages: Plink
(http://zzz.bwh.harvard.edu/plink/);
IlluminaHumanMethylation450k.db (http://www.
bioconductor.org/packages/release/data/annotation/
html/IlluminaHumanMethylation450kprobe.html);
MASS (https://cran.r-project.org/web/packages/
MASS/index.html); LDSC (https://github.com/bulik/
ldsc/wiki/Heritability-and-Genetic-Correlation).

Results
Methylome-wide association study of the SCDC scores
Methylome-wide association analysis (Methods, model
1) did not identify any significant loci after Bonferroni
correction (p value < 1 × 10−7). The top CpG site was
cg14379490, on chromosome 9 (MWAS beta = − 1.78 ±
0.35, p value = 5.34 × 10−7), which is equivalent to a 0.51
standard deviation unit decrease in SCDC scores. This
CpG site is an “Open Sea” CpG site, whose closest gene
is FAM120A, which encodes a scaffold protein that is
expressed in a wide number of human tissues. We iden-
tified 19 CpG sites with suggestive p values (p value <
1 × 10−4) (Additional file 1: Table S2). The QQplot and
the Manhattan plot are provided in Fig. 2. We did not
find any evidence for inflation in p values (λ = 0.88), pos-
sibly because of the relatively small sample size and the
regression model used. Further, gene-set analysis also
did not identify significant association after correcting
for multiple testing (Additional file 1: Table S3). To con-
firm that the results are robust to methodological differ-
ences, we re-ran the MWAS by using M values instead
of beta values and using a different cell count estimate
which included nucleated RBCs (Methods, model 2).
There was a high correlation in Z-scores (r = 0.92,
95% CI = 0.92–0.92, p value < 2.2 × 10−16) between the
two models. Subsequent analyses were conducted
using model 1 MWAS results as these are easier to
interpret.
To provide confidence to our primary analyses, we con-

ducted an MWAS of scores on the CCC, which was re-
versed scored to identify difficulties in communication
(Methods). The most significant CpG was cg13711424
(MWAS beta = − 3.73 ± 0.71, p value = 1.79 × 10−7), equiva-
lent to a 0.55 standard deviation unit decrease in CCC
scores. The Manhattan plot and QQ plot are included in
Additional file 1: Figure S2. Of the 19 SCDC-associated
CpGs of suggestive significance (p value < 1 × 10−4), the ef-
fect direction was concordant for 18 of them in the CCC
MWAS (p value = 7.62 × 10−5, binomial sign test). Simi-
larly, of the 32 CpGs with p value < 1 × 10−4 in the CCC
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MWAS, 28 had concordant effect direction in the SCDC
MWAS (p value = 1.93 × 10−5, binomial sign test). Scores
on the CCC and the SCDC were phenotypically correlated
(r = 0.39, 95% CI = 0.32–0.45, p value < 2.2 × 10−16) in the
participants who were included in the MWAS (n = 666),
and both questionnaires measure difficulties in pragmatic
communication. Given that we were testing correlated
phenotypes in the same cohort using CpG methylation
measured in the same tissue, we hypothesized that
the MWAS for the two phenotypes will be positively cor-
related. The Z-scores for the MWAS of the two pheno-
types were significantly correlated (r = 0.157, 95% CI =
0.153–0.160, p value < 2.2 × 10−16), which increased if we
considered only CpGs with p value < 0.01 in either one of
the phenotypes (PSCDC < 0.01: r = 0.40, 95% CI = 0.36–0.43,
p value < 2.2 × 10−16, PCCC < 0.01: r = 0.40, 95% CI = 0.37–
0.42, p value < 2.2 × 10−16).

Enrichment analyses with peripheral blood methylation
signatures
To investigate if there is an overlap between the SCDC
MWAS and MWAS of autism conducted in peripheral
tissues, we conducted effect direction concordance ana-
lysis with three autism MWAS datasets (MINERvA,
SEED, and SSC, Methods). For all of them, we first investi-
gated concordance in effect direction of all CpG sites with
p value < 1 × 10−4. In contrast to the findings with the
CCC MWAS, we did not identify a significant concord-
ance in effect direction between the SCDC MWAS and
any of the other three autism MWAS datasets. Comparing
the three MWAS datasets to each other, we did not iden-
tify a significant concordance in effect direction for the
suggestive CpGs in each of the comparisons (Table 1).

Given that there was limited evidence for concordance
in effect direction between the datasets, we next tested if
nominally significant CpGs (p value < 0.01) in the three
autism MWAS have a shift toward lower p values in the
SCDC MWAS using a one-sided Wilcoxon-rank sum
test. This tests more CpGs than an effect direction con-
cordance test and is agnostic to effect direction which
may be discordant in different peripheral tissues mea-
sured at different developmental stages. After Bonferroni
correction (alpha = 0.016), we did not identify a signifi-
cant shift toward lower p values for the nominally sig-
nificant CpGs from any of the three datasets (SEED: p
value = 0.02; SSC: p value = 0.48; MINERvA: p value =
0.91), though we note a nominally significant shift in the
SEED dataset. This lack of overlap may be due to the
low statistical power of the MWAS of SSC and the three
autism MWAS, none of which have identified signifi-
cantly differentially methylated CpGs.

Enrichment analyses with autism post-mortem brain
methylation signatures
Methylation signatures in post-mortem brain tissues are
more relevant to neurodevelopmental phenotypes than
methylation signatures in peripheral tissue, and, for aut-
ism, are statistically better powered than MWAS in per-
ipheral tissues, as these have identified more differentially
methylated loci compared to peripheral tissue analyses
[17, 20]. Considering this, we investigated if there is an
overlap between the SCDC MWAS and MWAS of the
post-mortem autism brain. Using data from the latest
post-mortem brain study [20], we investigated concord-
ance in effect direction between all CpG probes with
p value < 1 × 10−4 from the cross-cortex analysis in the

Fig. 2 Manhattan plot and QQ plot for the SCDC MWAS. a Manhattan plot of the social and communication disorders (SCDC) MWAS. The blue
line indicates the threshold of suggestive significance (p value < 1 × 10−4), and the red line indicates the threshold of statistical significance after
multiple testing correction (1 × 10−7). b Quantile-Quantile plot of the SCDC MWAS
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SCDC MWAS. Further, 171 out of 293 CpGs had a con-
cordant effect direction in the two datasets (p value =
0.004). At a more stringent p value threshold of p value <
1 × 10−5, 88 of the 133 probes had concordant effect direc-
tions in the two datasets (p value = 2.4 × 10−4, binomial
sign test). In contrast, Wilcoxon rank-sum test of all CpGs
with p value < 0.01 in the post-mortem MWAS did not
identify a significant shift toward lower p values (p value =
0.99, one-tailed Wilcoxon rank-sum test). We next tested
if the results were supported in a different dataset. A pre-
vious study investigated differential methylation in post-
mortem neurons from the frontal lobe (identified using
FACS sorting) in autism [17]. First, testing effect direction
concordance, 44 of the 87 CpGs with p value < 1 × 10−4

had concordant effect direction in the two datasets
(p value = 1, binomial sign test). However, we identified a
significant shift toward lower p values (p value = 9.3 ×
10−3, one-tailed Wilcoxon rank-sum test) of all CpGs with
p value < 0.01 in the SCDC MWAS.

Enrichment with autism dysregulated genes
A few studies have identified consistent sets of dysregu-
lated genes in autism, and co-expression modules
enriched for these dysregulated genes [28–31]. Previous
studies have identified a significant enrichment for dif-
ferentially methylated autism CpGs in genes that are
transcriptionally dysregulated in the post-mortem cortex
in autism [14]. We investigated if CpGs mapped to tran-
scriptionally dysregulated genes in the autism post-
mortem cortex [40] and associated co-expression mod-
ules had a shift toward lower p values in the SCDC
MWAS when compared to the other genes. We identi-
fied a significant shift toward lower p values for the tran-
scriptionally dysregulated genes (one-sided Wilcoxon
rank-sum test, p value = 6.22 × 10−5), but did not identify
a significant enrichment for any of the modules (M4:
p value = 0.58, M9: p value = 0.59, M16: p value = 0.042,
M10: p value = 0.31, M20: p value = 0.42, M19: p value =
0.105).

Genetic influences in SCDC methylation patterns
We next investigated if CpGs associated with SCDC
scores are enriched for GWAS signals for autism. DNA
methylation is under cis and, to a smaller extent, trans
genetic control. We identified mQTLS associated with
SCDC CpGs below four p value thresholds (PSCDC,
Methods), and compared the distribution of p value of
these mQTLS in the autism GWAS against the p value
distributions of mQTLs above the PSCDC (Methods).
After multiple testing correction, mQTLS of CpGs with
PSCDC = 0.01, and 0.005 have significantly lower p values
in the autism GWAS (PSCDC 0.01: FDR-corrected
p value = 5 × 10−4, PSCDC 0.005, FDR-corrected p value =
4.75 × 10−3) (Table 2, Fig. 2). We provide additional sup-
port for this enrichment in a GWAS of SCDC, which is
genetically correlated with autism. We identified an en-
richment at PSCDC 0.005 (FDR-corrected p value = 0.046)
and at PSCDC 0.001 (FDR-corrected p value = 0.046). In
contrast, we did not identify an enrichment for mQTLs
in the Alzheimer’s GWAS (Table 2, Fig. 3).

Discussion
This study investigated the shared biology of autism and
autistic traits by integrating genetic, methylation, and
post-mortem gene expression data. We first investigated
the validity of considering autistic traits for methylation
studies. Considering autistic traits over a case-control
design is useful in that (1) it captures greater variance
across the underlying liability spectrum, (2) it can be
used to increase sample sizes by phenotyping individuals
for whom methylation data is available, and (3) it can be
used to link methylation signatures from tissues col-
lected in early life to the phenotype, as this can be more
difficult for autism.
We conducted a prospective MWAS of autistic traits

(SCDC) by measuring methylation signatures in the cord
blood and linking it to autistic traits measured later in life.
While we did not identify a significant CpG association
with autistic traits after multiple testing correction, we were
able to confirm that this analysis produced biologically

Table 1 Sign concordance of the SCDC MWAS and the three peripheral tissue MWAS at top loci (p value < 1 × 10−4)

Testing dataset Number
of CpGs
in the
discovery
dataset

ALSPAC MINERvA SEED SSC

Discovery dataset ALSPAC NA 10 11 4 17

MINERvA 14 NA 17 19 29

SEED 19 21 NA 18 37

SSC 19 21 23 NA 47

The table above provides the results of the tests for effect direction concordance. CpGs with p value < 1 × 10−4 in the discovery dataset were tested for
concordance in effect direction in the testing dataset. The numbers in the cells (in italic) provides the total number of CpGs with concordant effect direction in
the testing dataset. The number of CpGs in the discovery dataset provides the total number of CpGs in the discovery dataset with p value < 1 × 10−4. None of the
results were significant (binomial sign test) after correcting for the multiple tests conducted
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meaningful signals by identifying significant correlation
with an MWAS of a similar childhood phenotype (CCC)
measured in the same cohort. Notably, the correlation in
methylation values mirrored the phenotypic correlation.
This, in principle, is similar to the idea of genetic

correlation analysis of related phenotypes measured in the
same cohort, though the methods used are very different.
Despite this, we did not identify a significant overlap

between the MWAS of SCDC and MWAS of autism
conducted using peripheral tissues [14, 16]. We note

Table 2 Results of the enrichment analysis of the top CpGs

CpG p value threshold GWAS p value Mean difference FDR-corrected p value

0.05: Autism 0.54 0.004 0.54

0.01: Autism 1.0 × 10−4 0.039 5 × 10−4

0.005 Autism 1.9 × 10−3 0.031 4.75 × 10−3

0.001: Autism 0.040 0.037 0.063

0.05: SCDC 0.735 0.007 0.73

0.01: SCDC 0.301 0.015 0.40

0.005 SCDC 0.022 0.038 0.046

0.001: SCDC 0.023 0.065 0.046

0.05: Alzheimer’s 0.343 0.008 0.853

0.01: Alzheimer’s 0.710 0.003 0.853

0.005 Alzheimer’s 0.853 − 0.003 0.853

0.001: Alzheimer’s 0.793 − 0.009 0.853

The table provides the results of the enrichment analyses for the top loci. We calculated the difference between the average p values for all the mQTLs mapped to CpGs
below a selected threshold in the MWAS (CpG p value threshold) and the mQTLs mapped to CPGs above the threshold in the SCDC MWAS. This value is referred to as
“mean difference” in the table. A positive difference suggests and enrichment. We then permuted the results after correcting for various factors, and computed a permuted p
value (p value). We then corrected it for multiple testing using FDR correction (FDR-corrected p value). This was done using a GWAS for autism, SCDC, and Alzheimer’s

A

B

C

Fig. 3 Permutation histogram of SNP-enrichment in top CpGs for three GWAS. The graphs present the results of the permutation analysis of the SNP
enrichment. a Results of the autism GWAS. b Results of the SCDC GWAS. c Results of the Alzheimer’s GWAS. p value thresholds of the CpGs for enrichment
are provided at the bottom of each column. Y-axis of each plot represents the frequency of the difference in mean p value of the mQTLs of CpGs below
the threshold from the mean p value of the mQTLs of the CpGs above the threshold. X-axis represents the differences in the mean p value of the mQTLs
of CpGs below the threshold from the mean p value of the mQTLs of the CpGs above the threshold. A higher difference in the means indicates a greater
enrichment. Purple lines indicate the difference in mean of the non-permuted data point, i.e., the actual difference in mean
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several differences between the SCDC MWAS analysis
and the three MWAS for autism. Of primary importance
is the statistical model used in the analysis. While we
were interested in investigating if methylation signatures
from cord blood were associated with SCDC scores
measured in later life, all three peripheral tissue MWAS
investigated if autism diagnosis was associated with dif-
ferential methylation. Thus, in our analysis, methylation
was an independent variable, whereas in the three
MWAS for autism, methylation was a dependent vari-
able. Second, there are remarkable differences in age at
which methylation was measured, and confounding vari-
ables included in the analyses; for instance we included
genetic principle components as covariates. Third, there
are differences in tissue source as well. While the MIN-
ERvA cohort primarily used blood spots, the SEED and
the SSC cohorts used whole blood for the respective
MWAS. In comparison, our MWAS was conducted using
cord blood. Fourth, while the SCDC MWAS was con-
ducted in individuals of European ancestry, the SEED and
SSC cohorts also included individuals of non-European
ancestries. Fifth, while both the SCDC MWAS and the
MINERvA MWAS had largely balanced sex ratio, the
SEED and SSC cohorts had more male autistic individuals
than females, though sex was included as covariate in
these cohorts. None of the three autism MWAS
demonstrated a significant overlap with each other as
investigated using a sign-concordance test of the most sig-
nificant CpGs. It is critical to investigate this observed lack
of concordance, though it may be driven by the low statis-
tical power of each individual MWAS, similar to the early
GWAS studies which were underpowered.
In contrast to the results from the peripheral tissues,

we observed some degree of overlap between MWAS
conducted in post-mortem brain tissues [17, 20] and the
SCDC MWAS. First, we found a significant sign
concordance in CpGs identified in the largest cross-
cortex MWAS of autism using post-mortem tissue sam-
ples. However, we did not identify an enrichment using
a Wilcoxon rank-sum test of p values. In contrast, using
a neuron-specific MWAS generated using a different
post-mortem tissue dataset, we identified a significant
overlap using a Wilcoxon-rank sum test of p values but
not a significant sign-concordance. Additionally, using
an RNA sequencing dataset of autism and neurotypical
post-mortem brains [40], we identified a significant en-
richment for transcriptionally dysregulated genes using a
Wilcoxon rank-sum test. Overall, we are unable to
strongly suggest that there is a significant overlap be-
tween the SCDC MWAS and the MWAS of autism in
either post-mortem or peripheral blood tissues. This is
likely due to multiple factors as outlined earlier. In
addition, measuring methylation in peripheral tissue,
which is not necessarily a relevant tissue for a

neurodevelopmental condition like autism, is likely to at-
tenuate the signal-to-noise ratio. Indeed, the post-
mortem brain MWAS study [20] has identified signifi-
cant CpGs with fewer samples compared with any of the
three peripheral tissue MWAS [14, 16]. Thus, due to
both the increased statistical power and the use of a
relevant tissue, the top CpGs in the post-mortem brain
MWAS are more likely to be true positives than the top
CpGs in the peripheral tissue MWAS.
Given the highly polygenic nature of autism [11], it is

likely that GWAS loci that are not statistically significant
in the current GWAS studies may still influence methy-
lation. Thus, the second aim of this study was to investi-
gate if the top CpG sites in the SCDC MWAS were
enriched for GWAS signals for autism and autistic traits.
Our results demonstrate an enrichment for mQTLs for
CpGs associated with SCDC scores in the GWAS for
autism. We were able to provide additional support for
the results in a much smaller GWAS of SCDC scores,
but failed to identify an enrichment in a GWAS of Alz-
heimer’s [42], which is of comparable statistical power to
the GWAS of autism. This enrichment is observed at
more stringent p value thresholds providing confidence
in our results. We did not test this in other peripheral
tissue MWAS for which we had access to summary sta-
tistics given the lack of overlap between these and the
SCDC MWAS.

Limitations
Our study does not investigate causality. While methods
such as Mendelian randomization can investigate causal-
ity [14, 49], this is typically restricted to a few number of
loci based on current results of GWAS studies. In
addition, we are restricted from using Mendelian
randomization due to the low statistical power of both
the MWAS and the GWAS datasets, resulting in the
identification of a limited number of statistically signifi-
cant loci. Two mechanisms may explain the overlap ob-
served in the current dataset. The first is causal wherein
genetic loci are likely to influence autism or autistic
traits by influencing methylation of CpG sites, altering
gene expression levels. The second is horizontal plei-
otropy, where genetic loci are associated with autism or
autistic traits, and separately, also influence methylation
levels of CpG sites. This study cannot tease apart these
two mechanisms.
A few caveats must be borne in mind while interpreting

the results of this analysis. First, the current array-based
method interrogates only a small proportion of all CpG
sites in the genome. Thus, significant loci associated with
autistic traits may lie outside of the regions interrogated.
Second, due to the nature of the assay, the methylation
values may also capture hydroxymethylation. We cannot
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exclude the possibility of signal attenuation due to assay-
ing both hydroxymethylation and methylation in the
current study, and the correlation between hydroxymethy-
lation between blood and brain is low [50]. Third, while
there is a modest but significant genetic and phenotypic
correlation between autism and scores on the SCDC the
SCDC only measures social aspects of autism and is not
correlated with the non-social aspects of autism. Finally,
age of gestation was not available to include as a covariate,
and thus the current study does not account for it.

Conclusions
Our study demonstrates a degree of methylomic overlap
between autism and autistic traits, but we are limited in
making further conclusions. Two factors—sample size
and heterogeneity between the various samples—limit
our understanding of methylation in autism. Future
meta-analyses of both autism and autistic traits may help
improve the statistical power of both the MWAS and
aid in better understanding the shared etiology between
the two phenotypes. We identified an enrichment for
autism and autistic traits GWAS signals in the top CpG
loci for autistic traits, but these must be replicated in in-
dependent MWAS of autistic traits.

Additional file
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