
Characterizing Sources of Ineffectual Computations
in Deep Learning Networks

Miloš Nikolić∗, Mostafa Mahmoud∗, Yiren Zhao†, Robert Mullins† and Andreas Moshovos∗
∗The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
milos.nikolic@mail.utoronto.ca, mostafa.mahmoud@mail.utoronto.ca, moshovos@ece.utoronto.ca

†Department of Computer Science and Technology
University of Cambridge, Cambridge, United Kingdom

yaz21@cam.ac.uk, robert.mullins@cl.cam.ac.uk

Abstract—Hardware accelerators for inference with neural
networks can take advantage of the properties of data they
process. Performance gains and reduced memory bandwidth
during inference have been demonstrated by using narrower
data types [1] [2] and by exploiting the ability to skip and
compress values that are zero [3] [4] [5] [6]. Similarly useful
properties have been identified at a lower-level such as varying
precision requirements [7] and bit-level sparsity [8] [9]. To date,
the analysis of these potential sources of superfluous computation
and communication has been constrained to a small number of
older Convolutional Neural Networks (CNNs) used for image
classification. It is an open question as to whether they exist
more broadly. This paper aims to determine whether these
properties persist in: (1) more recent and thus more accurate
and better performing image classification networks, (2) models
for image applications other than classification such as image
segmentation and low-level computational imaging, (3) Long-
Short-Term-Memory (LSTM) models for non-image applications
such as those for natural language processing, and (4) quantized
image classification models. We demonstrate that such properties
persist and discuss the implications and opportunities for future
accelerator designs.

Index Terms—Deep Learning Acceleration, Ineffectual Work,
Precision, Sparsity

I. INTRODUCTION

Neural networks typically require billions of operations to
perform a forward pass for just one input. Graphics processors
are well suited for this high, yet regular, computation demand,
as it also exhibits high data-parallelism. However, as Dennard-
scaling has ceased [10] and Deep Learning applications
proliferate, interest in specialized hardware accelerators for
neural networks has been rapidly increasing [11] [12].

Early accelerators were able to obtain significant gains
from specialized functional units, exploiting data-flows to
maximize data reuse, and employing hardwired control. Follow
up work targets additional properties of neural networks that
lead to ineffectual computations. Table I shows some of
the popular hardware designs that exploit three significant
properties: (1) numerical precision requirements, (2) activation
and weight sparsity, and (3) bit-level sparsity. Typically these
accelerators and the associated optimizations are demonstrated
for Convolutional Neural Networks (CNNs) performing image
classification.

TABLE I: Hardware accelerators and sources of inefficiencies
exploited. Act and Wgt are for activations and weights.

Accelerator Properties Target Granularity
Cnvlutin [6] Value Sparsity Act
Cambricon-X [13] Value Sparsity Wgt
SCNN [5] Value Sparsity Wgt+Act
EIE [14] Value Sparsity Wgt+Act
Eyeriss [12] Value Sparsity Act
Minerva [15] Value Sparsity Wgt+Act
Stripes [1] Precision Act Layer
Dynamic Stripes [16] Precision Act Group
Dpred [7] Precision Act Group
TPU V1 [17] Precision Wgt+Act Layer
BitFusion [2] Precision Wgt+Act Layer
Loom [18] Precision Wgt+Act Layer
Bit Pragmatic [8] Bit Sparsity Wgt+Act
Laconic [19] Bit Sparsity Wgt+Act

Bit Tactical [9] Precision, Bit &
Value Sparsity Wgt+Act Group

While a broad range of optimizations based on the properties
of weights and activations have led to promising results, Deep
Learning is evolving rapidly with innovations in model architec-
ture, techniques and applications. Accordingly, it is uncertain
whether these gains will persist for more recent models that
are generally more accurate and less overprovisioned than
older models. Taking for example image classification models,
while AlexNet had less than 10 layers and 3 fairly large
fully-connected layers, more recent models have several tens
of layers and fewer, much smaller, fully-connected layers.
Accordingly, a question relevant to hardware accelerator design
is whether the aforementioned three properties still hold and
to what degree for more recent models and different input
datasets. Beyond image classification there are many other
applications and other network types that are equally important
and demanding. For example, while image classification models
that are widely used in the evaluation of hardware accelerators
have been designed to work with the relatively low resolution
ImageNet [20] dataset (image resolution is about 230×230),
other convolutional neural networks such as those performing
computational imaging (e.g., in-painting, de-noising and super-
resolution) operate on much higher resolutions. In addition,
natural language processing tasks tend to use recurrent or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/201000161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LSTM models. Accordingly, another relevant question for
hardware designers is whether these models exhibit any of
these properties.

The goals of this work are: (1) to study whether sparsity,
variable precision requirements, and bit-sparsity are exhibited
and to what degree for inference of a broader set of neural
network models, and (2) to investigate, where possible, how
they evolved over time. The latter is made possible when
there are models targeting the same application but which
were developed at different points in time. As Table II shows,
we study more recent CNNs for image classification, CNNs
for other applications such as segmentation, object detection,
computational imaging operating on higher resolution images,
and models other than CNNs for natural language processing.
Some models are optimized for computational efficiency, e.g.,
MobileNet, while others for best-of-class accuracy. e.g., ResNet.
We also consider the effects of quantization on a subset of
these models.

In summary, we find that the aforementioned properties
persist, albeit to a different degree across all models studied.
This serves as motivation for further developing hardware
accelerators that exploit them. In addition, we identify several
challenges that such accelerators will face depending on the
model or application domain. For example, certain models
generally require higher precision than the prevailing 16b or
8b fixed-point representations used in many CNN accelerators.
The key observations made are:

• Reduced precision, value sparsity and bit sparsity are exhib-
ited by all models: CNNs, LSTMs and quantized models.

• The precision required varies per layer and dynamically at
finer granularity for all models.

• Newer models tend to require higher precision.
• All convolution and fully-connected layers require less than

16b of precision even when this is detected via profiling
at the layer granularity. The number of bits needed varies
significantly between 2 and 13.

• All but one of the networks can maintain accuracy when
the maximum supported precision is 16b. For one LSTM
network, 23b are required for one of its LSTM layers.

• In all layers studied, there are few values that greatly skew
the precision needed per layer. The precision needed for
most values is much shorter.

• For most networks, reducing the maximum precision to 8b
does not preserve accuracy necessitating further effort, such
as retraining or re-architecting the model to recover the
accuracy loss.

• Reducing precision amplifies all sparsity properties. The
number of non-zero values and bits is reduced by truncating
a suffix of least significant bits, essentially containing noise,
without affecting accuracy.

• LSTM layers exhibit much less activation sparsity with only
marginal weight sparsity compared to other layers. Both
properties are only modestly affected by reducing precision.

• More recent networks offer less potential gains than older
ones, however, the potential remains significant.

• Value sparsity for weights and activations varies considerably
across networks. Generally, the image classification networks
exhibit both. For some computational imaging networks there
is not as much sparsity.

• Bit-level sparsity extends beyond image classification net-
works and is consistently high for all networks and thus
remains a potential target for accelerators.

• There are no general trends that can be observed that link the
various properties to the relative position of the layer within
the network. In some networks, later layers tend to require
less precision and exhibit higher sparsity and bit-sparsity,
but this trend is reversed or non-existent in other models.

• Activation functions impact sparsity. However, the property
may exist even for networks that do not use the ReLU
activation function especially after reducing precision.

• The choice of the weight pruning method, where applicable,
greatly affects all aforementioned properties.

• Compared to per-layer profiled networks, 8b quantization
reduces the potential for activation and dynamic precision.
However, bit-sparsity remains abundant.

• Extreme 2b quantized networks exhibit less potential for
value- and bit- level activation sparsity. While the dynamic
precision is reduced to around 1.5 bits, the gain is relatively
smaller compared to per-layer profiled networks. However,
value- and bit-sparsity remain high.

II. NETWORK PROPERTIES AND BENEFITS

All accelerators exploit the embarrassingly parallel
and predictable computation schedule of neural networks,
e.g., [11] [17] [12]. In order to further increase performance
and energy efficiency, more recent accelerators also exploit
properties which have only been demonstrated for image
classification CNNs [1] [5] [16] [6] [4] [45] (the exception
is forced weight sparsity which is induced via pruning [4]).
These properties allow for benefits beyond those gained through
parallelization, memory access reuse, or scaling. The properties
can be inherent to the general structure, forced during training
or through choice of the network architecture. Additionally,
these can be profiled statically for a potentially simpler design,
or dynamically for greater benefits. A survey of common
properties and their effect follows.

A. Value Data-Type/Precision

A common approach in hardware accelerators is to use
16b fixed-point arithmetic and some recent accelerators also
support shorter data-types such as 8b, or even 4b, fixed point
or 16b floating point. This is contrary to the 32b floating-
point arithmetic used in older graphics processors. 16b fixed-
point arithmetic has been shown to be more than adequate for
inference with CNNs and the conversion of most networks
trained using 32b floating-point arithmetic to 16b fixed point
is generally considered straightforward. Further reduction in
precision has been possible via profiling without, or if desired
with controlled, loss of accuracy. Accordingly, the number of
bits used for activations or weights may vary per network, per
layer, or even per selected group of values. Quantization can



TABLE II: Networks profiled with their application, dataset and number of inputs profiled for precision and all other properties

Network Task Dataset Precision
profile

Properties
profile Remarks

CaffeNet [21] Classification ImageNet [20] 5000 1000 Baseline
GoogleNet [22] Classification ImageNet [20] 5000 1000 Baseline
ResNet18 [23] Classification ImageNet [20] 5000 1000 Baseline
SK Caffenet [22] Classification ImageNet [20] 5000 1000 Pruned by SkimCaffe
SK GoogleNet [22] Classification ImageNet [20] 5000 1000 Pruned by SkimCaffe
SK Resnet [22] Classification ImageNet [20] 5000 1000 Pruned by SkimCaffe
ES Alexnet [24] Classification ImageNet [20] 5000 1000 Pruned by Eyeriss
ES Googlenet [24] Classification ImageNet [20] 5000 1000 Pruned by Eyeriss
SqueezeNet [25] Classification ImageNet [20] 5000 1000 Newer and Mobile
MobileNet-V1 [26] Classification ImageNet [20] 5000 1000 Newer and Mobile
Q AlexNet [27] Classification ImageNet [20] 256 Quantized
Q MobileNet-V1 [27] Classification ImageNet [20] 256 Quantized
HWGQ AlexNet [28] Classification ImageNet [20] 256 Quantized
HWGQ ResNet18 [28] Classification ImageNet [20] 256 Quantized
HWGQ VGG [28] Classification ImageNet [20] 256 Quantized
SegNet [29] Segmentation CamVid [30] 500 100 Computational Imaging
YOLO V2 [31] Detection Pascal VOC [32] 1000 200 Leaky ReLU
Berkeley FCN8 [33] Segmentation Pascal VOC [32] 100 50 Computational Imaging

VDSR [34] Super Resolution CBSD68 [35]+LIVE1 [36]
+Set5 [37]+Set14 [38] 114 10 Computational Imaging

IRCNN 25 [39] Image De-noising CBSD68 [35]
+Set5 [37]+Set14 [38] 108 50 Computational Imaging

Seq2Seq [40] Translation WMT14 FR-EN 5000 500 LSTM
LRCN [41] Captioning COCO [42] 5000 1000 LSTM
Bi-dir. LSTM [43] Captioning Flickr8k [44] 5000 1000 LSTM

also reduce precision with 8b generally being demonstrated for
state-of-the-art image classification networks. In some cases
even 4b is sufficient [46]. However, quantization generally
requires retraining and possibly re-architecting the network.
Because of this additional development effort, quantized models
of neural networks are not as broadly available. For the purposes
of this work, our approach is to investigate precision reduction
at finer levels targeting flexible accelerators with as little of
extra work as possible for the network designer. However, since
sparsity and bit-sparsity can in principle be prevalent even on
heavily quantized models, we also present an analysis of some
of the properties for a smaller set of quantized models that was
available to us. Finally, there are other floating-point inspired
formats that may be used. While providing higher dynamic
range, such formats generally incur some overhead compared
to fixed-point formats. We leave the analysis of the targeted
properties for models using floating-point representations for
future work noting that such models are not as widely available
as fixed-point ones and that whether and how to exploit some
of the properties studied here with such representations has
yet to be demonstrated.

Reducing the number of bits used by activations and weights
can yield two main benefits:

1) Traffic and Storage Reduction: Using fewer bits per value,
especially if applied to large groups like layers, provides a
simple and effective compression. Many accelerators store
convolution kernels on-chip for reuse. With smaller size of
weights, more can fit in on-chip memory reducing expensive
off chip accesses. A similar approach can reduce activation
footprint and communication needs.

2) Speedup: Accelerators using bit serial computation have
shown that with enough parallelism it is possible to achieve

speedup inversely proportional to the size of the operands. This
can be applied to activations or weights.

There are two secondary considerations related to reducing
the data-type size:

3) Granularity: The granularity of precision groups has
major effects on the benefits from reduced precision. Finer
groups provide larger performance potential since it is expected
that few activations and weights will be of high magnitude [7],
[16]. However, finer grain precision adaptivity requires more
capable hardware, incurs higher metadata overhead (precision
needs to be specified per group) and produces more imbalance
across groups.

4) Dynamic vs. Static: The weights are known in advance
and the best precision can be chosen statically. Conversely,
the activations are computed on the fly and ideal precision
requirements will vary depending on the inputs. Profiling the
networks and setting the precisions statically is simpler, but
must support the worst case and thus overemphasizes the
few high magnitude activations. Dynamic precision selection
according to the input provides better potential gains at the
cost of additional hardware support.

B. Value Sparsity

Another property exploited by accelerators is sparsity in
weights and activations, which is the fraction of those values
that are exactly zero. Whenever at least one of the operands
is zero, the multiplication result will be zero and the whole
calculation can be skipped. In the simple case multipliers
can be turned off to save energy [12] [15], or with some
extra hardware these multipliers can be used to execute
some other useful operations. Furthermore, if the number of
zeros is large enough, there is a substantial opportunity for
compression [12] [15] [14]. Specialized accelerators have been



designed to exploit sparsity in weights, activations or both
with varying hardware complexities. There are two sources of
sparsity:

1) Weights: Weight sparsity is usually induced artificially
through pruning. It has been shown that pruning can sometimes
reduce the number of non-zeros weights down to 10-20% with
small loss of accuracy [47]. Furthermore, pruning can work as
a form of regularization, reducing over-fitting and improving
the test accuracy [48]. Even though pruning has been most
commonly used with CNNs, the same approach can be used
for other network structures as well. More recent work on
weight pruning has yielded lower levels of sparsity [22] [24].

2) Activations: Activation sparsity is most commonly in-
duced by the choice of the activation function. The most
common activation function used in CNNs has been the
Rectified Linear Unit (ReLU) function. ReLU zeros out
all negative activations and leaves positive ones unchanged.
Additionally, small activation values can often be zeroed out
without noticeable loss in accuracy. Unfortunately, ReLU is
common only in CNNs and some recent works suggest that
training speed improves with other activation functions that
attenuate but not do zero-out negative values [49].

C. Bit Sparsity

One of the less explored value properties is bit sparsity. The
core computation used by neural networks is the multiplication
A×W of an activation A and a weight W . This operation can
be decomposed into ∑i j W ×Ai where Ai the ith bit of A. The
computations where Ai is zero are ineffectual. With the right
choice of representations, image classification CNN models
have been shown to have activations where less than 10%
of their bits are “1” [8]. Using bit-serial multiplication units
with the ability to skip zero bits boosts speedup and energy
savings [8]. This approach can also be applied to weights [19].

D. Term Sparsity

Booth encoding can further reduce the number of bits that
ought to be processed per activation or weight. In this case, a
number is represented as a series of signed powers of two, or
terms. Provided enough parallelism exists, accelerators have
been designed to speedup calculation inversely proportional to
the number of terms using term-serial multiplication [8]. Due
to space constraints, we do not report measurements on term
sparsity. However, we show that all networks exhibit high bit
sparsity, and thus high term sparsity; term sparsity is at least
as high as bit sparsity.

III. METHODOLOGY

The Caffe deep learning framework was used for the analysis
of all networks [21]. Table II details the networks, datasets and
input counts evaluated. The networks were obtained as out-of-
the-box pre-trained models as released by the original author(s)
except for the LSTM networks. These networks were trained
using the source code and the hyper-parameters provided by
the original author(s) as pre-trained models are not provided.

All models were originally trained to operate on 32b floating-
point values. However, where possible, we first convert the
models to use a 16b fixed-point representation. The rest of
this section explains how we collected our measurements per
studied property.
Value Data-Type/Precision: Static per-layer reduced preci-
sions were determined first and then reduced-precision values
were used to study all other properties. The precisions were
selected only by profiling without any retraining. We chose to
first study profile-based precisions as this would impact some
of the other properties. For example, a 16b non-zero value may
end up being zero when truncated and represented with fewer
bits. Thus, reducing precision is expected to amplify the other
various forms of value sparsity.
Static Precision Selection: The per-layer precisions are
calculated for each network in 3 steps. In the first step each layer
is profiled individually, for weights and activations separately,
to maintain the TOP-1 accuracy with the smallest number
of bits while all other layers are unrestricted and set to 32b
floating point. From this point on, we consider the network with
all precisions set, for both weights and activations, according
to step 1. When all layers are combined with the precisions
selected in step 1, TOP-1 accuracy suffers considerably. In
step 2, we gradually increase per-layer precisions to recover
accuracy. Specifically, we probe each layer with an extra bit of
precision and select the layer that leads to the highest gain in
accuracy. We repeat this until we recover the target accuracy.
Finally, we probe each layer, remove one bit of precision, and
select the layer that leads to the lowest loss of accuracy. We
repeat this procedure until no more bits can be removed while
maintaining the target accuracy. Although this appraoch does
not necessarily arrive at an optimal precision profile, it is a
reasonable greedy technique that avoids exhaustive search. In
this paper the target accuracy is set to be within 1% (relative) of
the original TOP-1 accuracy on a subset of the original dataset.
This profiling technique allows us to determine precisions per
layer unlike quantization methods that target using a specific
precision for all layers.
Dynamic Precision Adjustment: The precision selected via
profiling is generally pessimistic. The precision has to accom-
modate any possible input and all possible values across a layer.
Generally, the distribution of values within each layer is not
expected to be uniform. Most values tend to be near zero and
only a few exhibit a large magnitude. A profile-based precision
has to accommodate all and hence overemphasizes the few
high magnitude ones [7]. An alternative is to adjust precision
on the fly as values are processed. This dynamic precision is
calculated as the number of bits required to represent each
value. For example, the value +1 requires 2 bits, while the
value −7 needs 4 bits. In the interest of generality, we measure
dynamic precision requirements on an individual value basis.
However, a practical design will have to adapt precision at a
coarser granularity of a group of n values with n > 1 [7], [16].
The decision on which group size is appropriate depends on
the specific design.
Value Sparsity: Value sparsity is calculated as the ratio of zero-



valued weights or activations. Some of the small values in 32b
floating point will become zero when converted into the selected
fixed point format. Sparsity is measured for the 16b baseline and
for the profiled static precision. Since pruning generally boosts
sparsity, we also include pruned models. However, pruning
often requires re-training which represents a considerable time
overhead.
Bit Sparsity: Bit sparsity is calculated as the ratio of the
number of “0” bits to the total number of bits for the 16b
baseline and the profiled static precision.
Property Weighing: Depending on the goal, the aforemen-
tioned per-value properties need to be scaled accordingly to
reflect their potential contribution. When considering memory
footprint, the properties are weighted according to the number
of values in each activation or weight matrix. This also serves
as a proxy for memory traffic. The actual memory traffic
depends on the dataflow and the memory hierarchy used and
hence is best studied given a specific hardware design and
computation schedule. When considering execution time, the
properties are weighted according to the number of runtime
calculations involved in each layer.

IV. RESULTS AND DISCUSSION

We present measurements for the aforementioned properties
in the order described in the previous section. For each property,
we first present aggregate results for the convolution, fully-
connected, and LSTM layers alone and then the aggregate
results for the whole network. Finally, we also show per layer
results. In all cases we present two sets of results weighted
according to memory footprint or computation usage. Once we
cover all aforementioned properties, we measure the potential
for work reduction for these properties.

A. Value Data-Type/Precision

We report the number of bits required for convolution, fully-
connected, LSTM layers and the full network in Figure 1. The
figure reports the precision range for all layers, as well as
weighted averages for estimating performance and memory
footprint. The figure shows dynamic per-value requirements as
well. The ideal performance improvement is estimated as b/n,
where b and n are the baseline and required number of bits
respectively. The ideal memory footprint per value is estimated
to be the calculated average required number of bits.

1) Static Per-Layer Precision: Considering the profile-
derived per layer precisions we observe: (1) All but one
of the layers require less than 16b. (2) The number of bits
when using static precisions vary significantly between 2
and 13 justifying the need for a variable, and potentially
fine grain selection of precision bits. (3) Without retraining,
an 8b representation is not sufficient to maintain accuracy.
(4) Newer networks generally require higher precisions. This
observation is highlighted in Figure 3 showing representatives
of different years and their precision requirements for weights
and activations. As an example, for ResNet18 and MobileNet,
representatives from 2015 and 2017, the number of bits required
increased by roughly 2 and 4 bits for weights and activations,

respectively. (5) On average, reducing precision can reduce
the memory footprint of weights and activations to 6.1 and
6.6 bits per value, respectively. (6) Assuming that execution
time is proportional to the number of bits, the potential for
performance improvement is 2.25× and 2.43×, respectively
for weights and activations. (7) Since there appears to be no
inherent rule whether activations or weights will require less
bits, a more flexible, potentially low overhead, approach which
dynamically chooses whether to serially execute weights or
activations can further increase the performance gain to 2.56×.

Figure 2 shows the number of bits required to represent
weights and activations per layer for a subset of networks. Even
though there is a weak downward trend in number of required
bits in the latter layers, there appears to be no general rule. This
trend is more pronounced in shallower networks like CaffeNet.
LRCN shows the opposite, with requirements increasing in
the latter layers. Some are constant like ES GoogleNet while
others like SK ResNet fluctuate around a constant mean.

Figure 4 considers pruning and compares the precision of
CaffeNet, Alexnet and GoogleNet for pruned (SK and ES) and
baseline models. CaffeNet is nearly identical to Alexnet in
terms of architecture with the only difference being that the
order of two of the layers is switched. Pruning has a noticeable
effect on precision, however there is no general rule whether
pruning increases or reduces the precision needed. Comparing
SK and ES networks illustrates that the pruning algorithm can
greatly affect precision.

Figure 1 shows that some of the fully-connected layers
require noticeably higher precisions compared to the preceding
convolution layers (e.g., SK ResNet). However, in general
there is no clear trend suggesting that the information capacity
needed by each layer varies in network-specific ways that are
hard to discern and generalize. When there are multiple fully-
connected layers, generally, the last one tends to have higher
precision requirements (e.g., LRCN).

One LSTM layer of Seq2Seq requires 23b weights to main-
tain accuracy. Using 16b values reduces Seq2Seq’s accuracy
by more than a third. We only evaluated a common fixed point
format for all weight matrices in a layer. A finer approach
for each matrix, or a floating-point representation might be
more suitable for these layers. Future accelerators that wish to
exploit precision for Seq2Seq type of networks may opt instead
to support extended precisions by implementing composable
data representations where a higher precision calculation is
decomposed into a number of lower precision ones. Whether
and how this can be done is an open question. Bit Fusion
supports 16b values using 8b processing elements [2].

All other LSTM layers need considerably fewer bits, compa-
rable to convolution layers. As a result, using variable precision
will have the greatest impact, especially if the baseline is
changed to 24 or 32 bits in order to support the outlier
layer. It is worth noting that the number of bits required for
Seq2Seq activations and weights vary wildly. On the other
hand, LRCN and Bi-directional LSTM networks appear to
have a near constant number of required bits for weights and
activations — the precision needed across layers varies by at



Fig. 1: Precision: Number of bits required to represent weights and activations.

Fig. 2: Per Layer Precisions of Selected Networks: Layers
are in topological order. ◦: Convolution layers, 2: fully-
connected layers, :: LSTM layers.

Fig. 3: Required Precision over time: Precision requirements
of example networks from different years.

Fig. 4: Required Precision for different pruning algorithms:
Weighted average number of bits for baseline and pruned
versions of GoogleNet and CaffeNet.

most 1b. However, overall, we still observe that the precision
requirements vary.

2) Dynamic Per-Value Precision: Average dynamic preci-
sion requirements for most networks are between 2 and 9
bits. This confirms that selecting per layer precision using
profiling greatly overestimates precision needs and undermines
the potential benefits. For example, if the precision can be set
on-the-fly bit-serial computation over activation or weights has
the potential to improve performance by 4.30× and 3.36×,
respectively. If it is possible to choose on the fly whether
to process the activations or the weights bit-serially then the
performance potential is 5.15×. Storing values with dynamic
precision can also potentially reduce the memory footprint
to 3.84 and 5.14 bits per activation and weight, respectively.
Similarly to static per-layer profiles, a weak trend toward higher
precision for newer networks can be seen. Finally, as with
static precision, pruning and the algorithm used for pruning
also influence dynamic precision requirements.

B. Value Sparsity

As with precision, we present value sparsity measurements
per layer type and for the whole network in Figure 5. We



Fig. 5: Value Sparsity: Weighted average of number of zero values in convolution layers for activations and weights.

Fig. 6: Per Layer Value Sparsity of Selected Networks:
Layers are in topological order, ◦: Convolution layers, 2: fully-
connected layers.

Fig. 7: Sparsity: Increase in sparsity after reducing precision.

report sparsity when values are represented using the original
16b precision (full) and after truncating to the profiled per
layer precision described above. We estimate the ideal memory
footprint as mem = b× (1− s), and performance potential as
per f = 1/(1− s), where b is the baseline precision and s is
ratio of zero values.

1) Full 16 bit precision: Most models exhibit significant
activation sparsity suggesting that this is not only a property
of image classification CNNs. Activation sparsity is very
common across all layers proceeded by a ReLU activation
function since ReLU zeros out all negative values. The outlier

is IRCNN which performs denoising. The activation values for
this network closely follow the original pixel values throughout.
Activation sparsity is negligible for YOLO which uses the leaky
ReLU function which only scales down negative numbers.
The potential performance gain of skipping zero activations,
excluding YOLO, in full precision networks is 1.75× whereas
the average memory footprint can be reduced to 9.81 bits.

Unlike convolution and fully-connected layers LSTMs do
not use ReLU. The most common activation functions in
LSTMs are sigmoid and hyperbolic tangent functions. However,
Figure 5 still shows a noticeable percentage of activations that
are zero even when represented in the full 16b precision.

Weight sparsity doesn’t appear naturally in most networks.
As a result non-pruned networks have negligible potential
performance gain of 1.03×, while pruned ones go up to 3.32×.
Memory footprint of pruned weights can be reduced to 4.56
bits per value. The choice of the pruning algorithm does impact
weight sparsity as well.

Figure 6 shows sparsity per layer for a subset of networks
for the 16 bit precision. The figure shows that there is no trend
on weight sparsity depending on layer position, while some
networks show increased activation sparsity in latter layers.

2) Profiled reduced precision: With the reduced precision,
however, many more activations and weights become zero for
most networks, even for YOLO. Figure 7 shows how sparsity
in networks can by amplified by reducing precision. This effect
is caused by zeroing out smaller values below the threshold
of the lowest precision available. For weights, this approach
works only for non pruned layers, since all small zeros are
already zeroed out in pruned versions. Still, sparsity varies
considerably even within each network. The performance gains
are then increased to 1.26× and 3.71× by reducing precision,
for non pruned and pruned networks, respectively. Finally, the
average memory footprint can be reduced to 0.75× and 0.26×
with reduced precision.

On the activation side performance can be increased by
1.31× and 2.04×, for YOLO and other networks respectively.



C. Bit Sparsity

For this subsection we assume that the values are stored as
sign bit + absolute value, and we only consider the absolute
value. Figure 8 shows bit sparsity for each layer type and
over whole networks. Additionally, Figure 9 shows bit sparsity
per layer of each network. Bit sparsity is inherently linked to
value sparsity and follows the same trends, while providing
significantly more potential uncovering opportunities even when
there is insufficient value sparsity.

Activation and weight bit sparsity are reported in Figure 8 for
full and reduced precision. Even when values are represented
in the full 16b precision, bit sparsity occurs naturally across
all networks. It is especially pronounced in high sparsity
layers, in weights of pruned networks and in activations of
networks with ReLU activation. Bit-sparsity for weight yields
a performance potential for 9.48× and 2.98× for pruned and
dense networks, respectively. Activation bit-sparsity yields a
performance potential of 2.86× and 4.74× for YOLO and the
other networks respectively.

Similarly to value sparsity, reduced precision amplifies bit
sparsity. With reduced precision, the performance potential is
35.76× for pruned networks and 10.16× for dense networks.
With reduced precision there are no outliers anymore and all
networks exhibit bit-sparsity well above 60%. The performance
potential for activations is 17.86×. The image classification
networks exhibit activation bit sparsity that approach or exceed
90% which corroborates past work [8] and suggests that the
phenomenon persists even for newer networks. Bit sparsity
varies for other networks, but overall remains high.

The results for the fully-connected layers, the LSTM layers,
and the whole networks exhibit similar trends. Overall, bit-
sparsity appears to be prevalent across all networks and all
layers including the LSTMs. Reducing precisions first further
boosts bit sparsity, however, in relative terms the improvement
is lower compared to the other properties since bit sparsity
is naturally high to start with. Furthermore, as expected it is
considerably higher than value sparsity and thus has the highest
potential among the properties we studied. As we noted earlier,
Booth encoding the values would have resulted in higher term
sparsity.

D. Effects of Quantization

In this section we consider the interaction of quantization,
precision, and value- and bit-sparsity. While quantization
has been receiving significant attention with advances being
reported regularly, quantized models are usually not as broadly
available. In view of these challenges we opted to consider
two different quantization schemes, one that targets 8b [27]
values which is representative of what is often considered today
sufficient for neural models processing images and another that
targets extreme quantization to 2b and 1b values [28]. All
models studied are CNNs for image classification. Since the
input is usually not quantized, in this section we do not study
the first convolution layer.

1) 8b Quantization: First, we consider networks that were
quantized to 8 bits [27]. Table III shows the average precision
requirements, value, and bit sparsity levels for quantized
AlexNet and MobileNet (‘Q’ rows). The table also reports
the same characteristics for the profiled, per layer reduced
precision 16b versions of these networks (‘P’ rows).

Even with 8b quantization the precisions required per value
are much lower. Compared to the 16b models, the per value
precisions with the 8b models are generally longer. In part
this is an artifact of our methodology: we were not able to
first adjust the precisions per layer through profiling since the
quantized models are not presently compatible with our Caffe-
based infrastructure. Adjusting precisions per layer removes
some of the least significant bits that contain noise. Regardless
the results show that sufficient potential for exploiting precision
requirements exists even in the 8b models.

Sparsity is present also in the quantized models. Activation
sparsity is marginally higher for the quantized models but it is
lower for weights in MobileNet. The latter can be explained
in part as an artifact of the lack of per layer precisions.

Finally, the 8b networks exhibit similar levels of bit sparsity
as the profiled networks even though we were not able to
take advantage of a per layer precision selection step first.
Table III shows that activation bit sparsity is within 2% of
the corresponding profiled models. On the weight side, the 8b
quantized AlexNet exhibits 4% more bit sparsity compared to
its 16b counterpart. For MobileNet bit sparsity drops by 11%
with 8b quantization.

2) Binarized / 2b Quantization: Secondly, we consider
networks that were quantized to 1b weights and 2b activa-
tions [28]. Since the weights are positive and negative values
of the same magnitude, they always require 1b, and exhibit
0% value- and bit- sparsity. Consequently, we present only
activation measurements. Note that this low precision scheme
does come at a cost of roughly 10% relative loss in accuracy.
Table IV shows the average precision requirements, value- and
bit- sparsity levels for 1b/2b quantized AlexNet, ResNet18 and
VGG, as well as equivalent 16b AlexNet and ResNet18 with
profiled per-layer reduced precisions.

The quantized activations show very low dynamic precision
requirements, almost at the minimal 1b threshold. Naturally,
the relative gain over static precisions is lower compared to the
profiled networks since the activations are already quantized
down to 2b.

While value- and bit-sparsity are noticeably lower compared
to the 16b models — bit-sparsity is rougly 20% less — they
are still surprisingly high.

Finally, the three models exhibit very similar levels of each of
the three properties. For example, all three exhibit bit-sparsity
in the 71% to 74% range.

3) Quantization Summary: This brief analysis confirms that
the properties observed in CNNs apply to quantized networks as
well with similar results. It also shows that there are diminishing
returns as more extreme quanization scheme is selected.



Fig. 8: Bit Sparsity: Weighted average of the number of zero bits for activations and weights.

TABLE III: Comparison of averaged properties in quantized and profiled precision networks. P: Profiled per layer precision
16b non-quantized models, Q: 8b quantized models

Type Network
Weight

Precision per
Layer/Value

Activation
Precision per
Layer/Value

Weight
Value

Sparsity

Activation
Value

Sparsity

Weight
Bit

Sparsity

Activation
Bit

Sparsity
Q AlexNet 8.00 / 4.08 8.00 / 3.60 0.28 0.57 0.89 0.88
P 8.30 / 3.54 5.10 / 2.86 0.17 0.68 0.85 0.90
Q MobileNet-V1 8.00 / 5.43 8.00 / 4.47 0.11 0.37 0.77 0.79
P 8.80 / 3.55 10.5 / 5.45 0.30 0.40 0.88 0.81

Fig. 9: Bit sparsity per layer of selected networks: Layers are
in topological order. ◦: Convolution layers, 2: fully-connected
layers.

TABLE IV: Comparison of averaged properties in HWGQ
quantized and profiled precision networks. P: Profiled per
layer precision 16b non-quantized models, HWGQ: HWGQ
bit quantized models. The HWGQ networks do not achieve
the full 32b float accuracy.

Type Network
Activation

Precision per
Layer/Value

Activation
Value

Sparsity

Activation
Bit

Sparsity
HWGQ AlexNet 2.00/1.46 0.54 0.72
P 5.10/2.86 0.68 0.90
HWGQ ResNet18 2.00/1.46 0.52 0.71
P 6.33/2.98 0.6 0.90
HWGQ VGG 2.00/1.45 0.56 0.74

E. Work Reduction Potential

Finally, we report the work reduction potential depending
on the type of ineffectual computations targeted in Figure 10.
We consider the following work elimination policies: A: zero
activations, W: zero weights, Ap: Activation static precision,
Wp: Weight per layer Precision, Ad: dynamic precision for
activations, Wd: per value weight precisions, Ab: bit sparsity
for activations, and Wb: bit sparsity for weights. We do not
report the potential for combinations of these properties due to
space limitations. However, the presented measurements suffice
to demonstrate that the potential for improvements is strong
for all models considered.

We find that all policies demonstrate significant potential
for all networks studied, an encouraging result suggesting that
hardware designers have several options on which properties
to exploit to best deliver the desired performance, area, and
energy efficiency characteristics for their target application.
While a practical accelerator design is unlikely to achieve the
full potential of any of these approaches, understanding their
relative potential is useful in informing future acceleration
efforts. Overall, as expected, we find that bit sparsity has the
greatest potential for work reduction.

V. LIMITATIONS

This was a broad survey of neural network properties
intended to identify general trends from some of the popular
neural networks. Many other network architectures exist, and
are yet to be developed. However, this work presents a valuable
analysis of important value properties as they stand today. Even



Fig. 10: Per Property Work Reduction Potential. Log scale.

though a fixed point format is commonly used in hardware
accelerators, floating point is still commonly used, and there
might be other formats that are more suitable in general, or for
specific architectures. The potential performance and memory
savings assume ideal execution and will most likely not be
obtainable in practice. Some of the properties can be amplified
by techniques not explored here. For instance, retraining
networks with reduced precisions can usually regain the lost
accuracy and further reduce the required precisions. Retraining
is thus, most likely to amplify the evaluated opportunities.
Another technique that may influence the properties studied
is quantization. We showed that studied properties persist in a
subset of 8b and low precision quantized networks. However
further investigation is needed to confirm this for different
applications, especially LSTMs. Extreme quantization such
as using binary or ternary activations and/or weights often
requires re-architecting the network to match baseline accuracy.
For this reason quantized models are not as readily available.
Despite the aforementioned limitations this is an important
study that can inform future acceleration design efforts as it
demonstrated that the studied properties persisted over time
and apply on a broader set of neural network models.

VI. CONCLUSION

We have investigated whether certain value related properties
that have previously have been demonstrated for image classi-
fication CNNs persist in a broader class of networks. We have
shown that indeed they persist for newer image classification
networks, quantized networks and for several other types of
networks such as LSTMs, and for a broader set of applications.
The results of this study can inform future acceleration studies
as they demonstrate that the studied properties remain valuable
for a broader set of networks.

We have shown that the required precisions vary considerably.
This result suggests that accelerators that support fine-grain
selection of precision may be desirable. Moreover, we have

shown that the precisions needed are on the average much
smaller than those needed when considering whole layers.
Accordingly, this motivates designs which can take advantage
of precision variability at a much finer granularity than the
layer and those that can detect precisions on the fly. However,
for one LSTM layer using 16b of precision is insufficient.
The straightforward solution would be to adjust the baseline
precision to the necessary 24b. However, it may be possible to
achieve a better area, performance and energy-efficiency trade-
off if future designs target composable units or arithmetic where
the rarely needed high precision computations are decomposed
into several lower precision ones.

We have observed that value sparsity does not naturally
appear in all applications and models. Reducing precision first
helps but in some cases activation and/or weight sparsity remain
marginal. Pruning may be able to boost weight sparsity but
this does not guarantee a boost in activation sparsity.

Bit sparsity appears to be an inherent property of all the
models studied here. Note that bit sparsity does not imply a
small value range. This suggests that exploring accelerators
that exploit bit sparsity is worthwhile for most applications.

Overall, the results of this study are positive in that they
show that precision and sparsity properties of neural networks
seem to persist and remain available for exploitation by future
accelerator designs.

ACKNOWLEDGMENTS

This work was supported in part by the NSERC COHESA
Research Network, an NSERC/DND Discovery Supplement,
an NSERC Discovery Grant, an NSERC Strategic Partnership
Grant, and by the Samsung Advanced Institute of Technology.

REFERENCES

[1] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, and A. Moshovos,
“Stripes: Bit-serial Deep Neural Network Computing ,” in Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture, ser. MICRO-49, 2016.



[2] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra,
and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically composable
architecture for accelerating deep neural networks,” CoRR, vol.
abs/1712.01507, 2017. [Online]. Available: http://arxiv.org/abs/1712.
01507

[3] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” in IEEE International Solid-State
Circuits Conference, ISSCC 2016, Digest of Technical Papers, 2016,
pp. 262–263.

[4] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2016, Taipei, Taiwan, October 15-19, 2016, 2016, pp. 1–12.
[Online]. Available: https://doi.org/10.1109/MICRO.2016.7783723

[5] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp.
27–40. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080254

[6] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. Enright Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in 2016 IEEE/ACM International Conference on Computer
Architecture (ISCA), 2016.

[7] A. D. Lascorz, S. Sharify, P. Judd, K. Siu, M. Nikolic, and A. Moshovos,
“Dpred: Making typical activation values matter in deep learning
computing,” CoRR, vol. abs/1804.06732, 2017. [Online]. Available:
http://arxiv.org/abs/1804.06732

[8] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-pragmatic deep neural network computing,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-50 ’17, 2017, pp. 382–394.

[9] A. Delmas, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, and A. Moshovos, “Bit-tactical: Exploiting
ineffectual computations in convolutional neural networks: Which,
why, and how,” CoRR, vol. abs/1803.03688, 2018. [Online]. Available:
http://arxiv.org/abs/1803.03688

[10] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proceedings
of the 38th Annual International Symposium on Computer Architecture,
ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 365–376.

[11] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A machine-learning
supercomputer,” in Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on, Dec 2014, pp. 609–622.

[12] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proceed-
ings of the 43rd International Symposium on Computer Architecture, ser.
ISCA ’16, 2016, pp. 367–379.

[13] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in 2016
IEEE/ACM International Conference on Computer Architecture (ISCA),
2016.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: Efficient inference engine on compressed
deep neural network,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 243–254. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.30

[15] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Proceedings
of the 43rd International Symposium on Computer Architecture. IEEE
Press, 2016, pp. 267–278.

[16] A. Delmas, P. Judd, S. Sharify, and A. Moshovos, “Dynamic stripes:
Exploiting the dynamic precision requirements of activation values in
neural networks,” CoRR, vol. abs/1706.00504, 2017. [Online]. Available:
http://arxiv.org/abs/1706.00504

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,

A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17, 2017,
pp. 1–12.

[18] S. Sharify, A. D. Lascorz, P. Judd, and A. Moshovos, “Loom: Exploiting
weight and activation precisions to accelerate convolutional neural
networks,” CoRR, vol. abs/1706.07853, 2017. [Online]. Available:
http://arxiv.org/abs/1706.07853

[19] S. Sharify, M. Mahmoud, A. D. Lascorz, M. Nikolic, and A. Moshovos,
“Laconic deep learning computing,” CoRR, vol. abs/1805.04513, 2018.
[Online]. Available: http://arxiv.org/abs/1805.04513

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” arXiv:1409.0575
[cs], Sep. 2014, arXiv: 1409.0575.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[22] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,
“Faster CNNs with Direct Sparse Convolutions and Guided Pruning,” in
5th International Conference on Learning Representations (ICLR), 2017.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[24] Yang, Tien-Ju and Chen, Yu-Hsin and Sze, Vivienne, “Designing Energy-
Efficient Convolutional Neural Networks using Energy-Aware Pruning,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[25] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[27] Y. Zhao, X. Gao, R. Mullins, and C. Xu, “Mayo: A framework for
auto-generating hardware friendly deep neural networks,” 2018.

[28] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning
with low precision by half-wave gaussian quantization,” CoRR, vol.
abs/1702.00953, 2017. [Online]. Available: http://arxiv.org/abs/1702.
00953

[29] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

[30] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recognition
Letters, vol. xx, no. x, pp. xx–xx, 2008.

[31] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016. [Online]. Available: http://arxiv.org/abs/1612.
08242

[32] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The pascal visual object classes challenge:
A retrospective,” International Journal of Computer Vision, vol. 111,
no. 1, pp. 98–136, Jan. 2015.

[33] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640–651, April 2017.

[34] D. Li and Z. Wang, “Video superresolution via motion compensation and
deep residual learning,” IEEE Transactions on Computational Imaging,
vol. 3, no. 4, pp. 749–762, Dec 2017.

[35] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, vol. 2,
2001, pp. 416–423 vol.2.

http://arxiv.org/abs/1712.01507
http://arxiv.org/abs/1712.01507
https://doi.org/10.1109/MICRO.2016.7783723
http://doi.acm.org/10.1145/3079856.3080254
http://arxiv.org/abs/1804.06732
http://arxiv.org/abs/1803.03688
https://doi.org/10.1109/ISCA.2016.30
http://arxiv.org/abs/1706.00504
http://arxiv.org/abs/1706.07853
http://arxiv.org/abs/1805.04513
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1702.00953
http://arxiv.org/abs/1702.00953
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242


[36] C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 576–584.

[37] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” 2012.

[38] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up us-
ing sparse-representations,” in Curves and Surfaces, J.-D. Boissonnat,
P. Chenin, A. Cohen, C. Gout, T. Lyche, M.-L. Mazure, and L. Schumaker,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 711–730.

[39] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning Deep CNN Denoiser
Prior for Image Restoration,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 3929–3938.

[40] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 3104–3112.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2969033.2969173

[41] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015.

[42] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online].
Available: http://arxiv.org/abs/1405.0312

[43] C. Wang, H. Yang, C. Bartz, and C. Meinel, “Image captioning with deep
bidirectional lstms,” in Proceedings of the 2016 ACM on Multimedia
Conference. ACM, 2016, pp. 988–997.

[44] C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier, “Collecting
image annotations using amazon’s mechanical turk,” in Proceedings of
the NAACL HLT 2010 Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk, ser. CSLDAMT ’10. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2010, pp. 139–147.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1866696.1866717

[45] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E.
Jerger, and A. Moshovos, “Proteus: Exploiting numerical precision
variability in deep neural networks,” in Proceedings of the 2016
International Conference on Supercomputing, ser. ICS ’16. New
York, NY, USA: ACM, 2016, pp. 23:1–23:12. [Online]. Available:
http://doi.acm.org/10.1145/2925426.2926294

[46] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: parameterized clipping activation for
quantized neural networks,” CoRR, vol. abs/1805.06085, 2018. [Online].
Available: http://arxiv.org/abs/1805.06085

[47] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” ArXiv e-prints, Oct. 2017.

[48] Y. L. Cun, J. S. Denker, and S. A. Solla, “Advances in neural
information processing systems 2,” D. S. Touretzky, Ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990,
ch. Optimal Brain Damage, pp. 598–605. [Online]. Available:
http://dl.acm.org/citation.cfm?id=109230.109298

[49] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” CoRR, vol.
abs/1511.07289, 2015. [Online]. Available: http://arxiv.org/abs/1511.
07289

http://dl.acm.org/citation.cfm?id=2969033.2969173
http://arxiv.org/abs/1405.0312
http://dl.acm.org/citation.cfm?id=1866696.1866717
http://doi.acm.org/10.1145/2925426.2926294
http://arxiv.org/abs/1805.06085
http://dl.acm.org/citation.cfm?id=109230.109298
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

