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Summary 

Title: Computational analyses of small molecules activity from 

phenotypic screens 

Author: Azedine Zoufir 

 

Drug discovery is no longer relying on the one gene-one disease paradigm nor on target-based 

screening alone to discover new drugs. Phenotypic-based screening is regaining momentum to 

discover new compounds since those assays provide an environment closer to the physiological 

state of the disease and allow to better anticipate off-target effects and other factors that can 

limit the efficacy of the drugs. However, uncovering the mechanism of action of the 

compounds active in those assays relies on in vitro techniques that are expensive and time-

consuming. In silico approaches are therefore beneficial to prioritise mechanism of action 

hypotheses to be tested in such systems.  

In this thesis, the use of machine learning algorithms for in silico ligand-target prediction for 

target deconvolution in phenotypic screening datasets was investigated. A computational 

workflow is presented in Chapter 2, that allows to improve the coverage of mechanism of action 

hypotheses obtained by combining two conceptually different target prediction algorithms.  

These models rely on the principle that two structurally similar compounds are likely to have 

the same target. In Chapter 3 of this thesis, it was shown that structural similarity and the 

similarity in phenotypic activity are correlated, and the fraction of phenotypically similar 

compounds that can be expected for an increase in structural similarity was subsequently 



quantified. Morgan fingerprints were also found to be less sensitive to the dataset employed in 

these analyses than two other commonly used molecular descriptors. 

In Chapter 4, the mechanism of action hypotheses obtained through target prediction was 

compared to those obtained by extracting experimental bioactivity data of compounds active 

in phenotypic assays. It was then showed that the mechanism of action hypotheses generated 

from these two types of approach agreed where a large number of compounds were active in 

the phenotypic assay. When there were fewer compounds active in the phenotypic assay, target 

prediction complemented the use of experimental bioactivity data and allowed to uncover 

alternative mechanisms of action for compounds active in these assays.  

Finally, the in silico target prediction workflow described in Chapter 2 was applied in Chapter 

5 to deconvolute the activity of compounds in a kidney cyst growth reduction assay, aimed at 

discovering novel therapeutic opportunities for polycystic kidney disease. A metric was 

developed to rank predicted targets according to the activity of the compounds driving their 

prediction. Gene expression data and occurrences in the literature were combined with the 

target predictions to further narrow down the most probable mechanisms of action of cyst 

growth reducing compounds in the screen. Two target predictions were proposed as a potential 

mechanism for the reduction of kidney cyst growth, one of which agreed with docking studies. 
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Chapter 1  Introduction 

 

 

 

A recent report by the World Health Organization (WHO) reported that 54% of the mortality 

observed in 2016 was due to 10 causes, 9 of which being diseases. These included various heart 

and respiratory diseases, Alzheimer’s disease, diabetes and tuberculosis.1 Furthermore, there 

are about 7000 orphan diseases for which only about 100 drugs exist, but affect more than 30 

million people in Europe and 25 million in North America.2–4 Therefore, there is no question 

regarding the societal impact and the strong need for the development of drugs that can either 

prevent or stop those disorders. 

Drug discovery involves interdisciplinary research aimed at discovering novel therapies. 

Chemistry combined with progress made in enzymology, biochemistry and pharmacology 

enabled the discovery and validation of protein targets related to diseases.5 These led to the 

development of the nowadays called target-based screening assays. 
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1.1 From target-based to phenotypic-based drug discovery 

 

1.1.1 Target-based screening and limitations 

 

The aim of target-based drug discovery is to either block a protein’s signalling activity that is 

responsible for the disease state or on the contrary to re-establish normal signalling activity in 

the cell.6 To discover compounds that can modulate these proteins, target-based screening 

assays were developed to measure the binding of compounds to a defined protein that has been 

obtained through recombinant technology and genetics.7 The pharmaceutical industry has been 

relying on these assays over the last 30 years to discover new drugs, and the majority of first-

in-class drugs have been discovered through target-based assays.8  

However, the number of drugs reaching the market has progressively decreased over the last 

two decades. While pre-clinical toxicology and solubility are the main reason of attrition rates 

at pre-clinical and phase I trials, efficacy remains the main reason for drugs failing in phase II.9 

Indeed, the percentage of drugs that failed in phase II increased from 43% to 66% between 

1990 and 2010, and those that failed in phase III increased from 20% to 30% over the same 

period of time.10 The lack of efficacy of the drug was the reason for failure in phase II in 51% 

of the trials between 2008 and 2010, and 59% of the trials between 2011 and 2012.11–13 In phase 

III trials, efficacy was the reason for failure in 66% of the trials between 2007 and 2010 and 

reduced to 52% between 2011 and 2012.11–13   

This lack of efficacy of drugs was attributed to downsides of target-based approaches.14 In a 

study of the reproducibility of published data in the drug target literature, only about 20% of 

the scientific literature was in line with in-house findings.15 Another article claimed that the 
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number of unreproducible findings in the literature is about 50%.16 Another reason for the lack 

of efficacy is the difficulties and the lack of resources in identifying the precise molecular 

binding mode of the drug to the target, a pre-requisite of the usage of confirmatory target-based 

assays.17 Therapeutic opportunities identified in target-based approaches may translate poorly 

to the desired effect in vivo, as they fail to capture complex disease biology in vivo and/or 

cannot account for polypharmacology (the desired effect may be exerted through binding of 

several targets).7  

 

1.1.2 Phenotypic-based screening compensates for the limitations of 

target-based screening 

 

In those cases where target-based approaches are not sufficient on their own, phenotypic-based 

screening assays have been developed that overcome the challenges of target-based assays. In 

these assays, rather than assessing whether a compound can modulate a specific protein target, 

a certain feature of a disease is exploited e.g. selective eliminating of a specific cell population 

or modulation of a specific pathway within a cell are instead measured.18 Measuring such 

readouts paints a more comprehensive picture of a compound’s effect on a native cellular 

environment or tissue since they use living cells in which a compound will modulate the 

enzymatic or signalling activity of several targets, change signalling cascades and affect 

various cellular processes.7,18 Under the current polypharmacology paradigm, drugs are more 

likely to exhibit the desired effect by affecting several targets at a time rather than modulating 

single targets, and the modulation of multiple targets is more likely to be assessed in phenotypic 

screens than in target-based assays.19 
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Phenotypic screens have had varying degrees of success and usage over the years. Between 

1999 and 2008, 37% of the first-in-class drugs were discovered using phenotypic-screening 

while target-based approaches led to the discovery of 27% of the first-in-class drugs over the 

same period.20 When increasing the timeframe of the analysis and including biological 

therapeutics (e.g. antibodies) in addition to small molecules, only 7% of the first-in-class drugs 

were discovered through phenotypic screens between 1999 and 2013, while 41% of the first-

in-class drugs were discovered through target-based assays.8 Rather than a way to discover new 

chemical entities that can serve as drugs, phenotypic screening is seen as an approach that can 

complement target-based approaches. Indeed, phenotypic screens can be used to discover new 

indications for an already marketed drug and combine them with target-based approaches to 

identify its mechanism of action (MoA).21  These assays are described in the next section. 

 

1.1.3 Assays used in phenotypic-based screening 

 

Mainly three types of assays can be found in phenotypic screening: cell viability assays, cell 

signalling pathway assays and disease-related assays.21  There are three types of cell viability 

and proliferation assays in phenotypic compound activity databases. One of the most common 

types of assays in this category is colourimetric assays measuring tetrazolium dyes22–24  in 

which living cells are detected by how they metabolise these substances using mitochondrial 

enzymes. Another frequently encountered cell viability assay is using Sulforhodamine B 

(SRB), an aminoxanthene dye which binds intracellular proteins, indicating the protein content 

present in a cell culture, which in turn is correlated to cell mass.25 One of the most popular cell 

viability assay, the Alamar Blue assay, employs a resazurin dye changing colour with the 

oxidation/reduction potential observed in the cell media as cells proliferate.26  
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Cell signalling pathway assays detect the modulation of a pathway by a chemical. For example, 

certain assays label a protein effector and member of the target pathway with Green Fluorescent 

Protein (GFP) and measuring the nuclear translocation of this protein to the nucleus upon a 

compound’s binding to the target receptor of this pathway.21 Another example includes assays 

where compounds are screened for their effects modulating the Wnt pathway by measuring 

alkaline phosphatase activity which is expressed downstream of this pathway.27,28    

The last type of phenotypic assay measures disease-specific endpoints. Typical assays from 

this category include those found in the Biologically Multiplexed Activity Profiling (BioMAP) 

systems which use human primary cells to mimic a broad range of physiological responses to 

compounds such as inflammation, angiogenesis or microtubule function among others by 

measuring biomarkers (protein readouts) from 8 different cell systems29,30. High-content 

screening (HCS) is also very popular in the phenotypic screening literature, where cells are 

grown to mimic their 3D arrangement, similarly to their arrangement in biological tissues. This 

would, therefore, maintain their physiological properties as opposed to what would be observed 

within Petri dish cultures,31 and would allow developing assays which are more relevant to the 

in vivo disease state.   

 

1.1.4 In vitro deconvolution in phenotypic screens and limitations 

 

Once a compound has been successfully screened for its modulation of the phenotype of 

interest, several methods are available to deconvolute the activity of the compound in the 

phenotypic assay (Table 1), i.e. to identify the MoA of the compound responsible for the 

phenotypic readout in the assay.32,33 Affinity chromatography is one of the oldest 



6 

 

deconvolution methods and probes an ensemble of proteins using beads followed by 

identification of the bound targets with Western blots or mass spectrometry.34 However, this 

method is time-consuming and expensive, and therefore impractical if a relatively large number 

of compound signals need to be deconvoluted (Table 1). 

Other techniques utilise gene expression for target identification. The three-hybrid system 

involves the isolation of cells associated with the expression of a reporter gene activated by the 

interaction of the compound with the target expressed in those cells (Table 1).35 A similar 

concept uses the amplification of phage colonies specifically displaying the protein targets that 

interact with the compound.36  The challenges with this type of assays are that post-translational 

modifications are often lost and that it is not possible to screen for protein complexes (Table 

1).32 

Protein microarrays allow probing for binding to nearly all targets in the proteome of a species. 

37  Each protein is immobilised in each well of a plate, and therefore each protein has a known 

position on the plate. The compound can then be engineered to react to a fluorescent or 

radioactive conjugate enabling the detection of the compound-protein complexes upon binding. 

Even though this approach seems more efficient than the other approaches, the issue of 

detecting compound-target interactions as observed in vivo remains problematic, since post-

translational modifications, location and complexes may not be amenable to this type of assay 

(Table 1).32 All these techniques are time-consuming and costly. It is, therefore, necessary to 

shortlist and prioritize compounds that are to be used in these in vitro deconvolution 

experiments. In silico deconvolution can help in making such decisions. These approaches rely 

on the molecular and biological similarity concepts which are introduced in the following 

section.   
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1.2 Molecular and biological similarity  

 

This section focuses on the processing of chemical information and how it relates to the 

bioactivity data observed in target-based and phenotypic assays. This starts by finding an 

appropriate representation for the compounds in the dataset. This representation is then used to 

calculate the structural similarity of a query compound to other compounds of known 

properties. 

   

1.2.1 Representation of chemicals 

 

The starting point of computational approaches aimed at understanding the behaviour of 

compounds in in vitro assays is to find an effective representation of the chemicals.  In its most 

simple form, a molecule may be represented as a graph, that is to say, a set of atoms (nodes) 

linked by bonds (edges) with labels (simple, double, etc.) from which a more complex encoding 

of the compound can be derived.38 
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Method Description Advantages Limitations Reference 

Affinity 
chromatography 

Attaching beads to 
compounds; 
purify bound 

protein targets 
using microbeads; 

characterise 
protein 

Applicable to any 
small-molecule; 
targets maintain 

conformation and 
post-translational 

modification 

Long; 
impractical 
for high-

throughput 
screening; 

require high 
binding 
affinities 

27 

Three hybrid 
system 

Activation 
expression of 
reporter gene 

when compound 
binds target; 

Identification of 
cell expressing the 

reporter gene; 
purification and 

characterization of 
target 

Association of 
compound to target 
occurs in living cell 

and hence 
information about 

subcellular 
localisation and 
stability can be 

obtained 

False 
positives due 
to activation 
of reporter 
other than 

binding of the 
compound to 

the target 

28 

Phage display 

Selective 
amplification of 
phage displaying 

protein-target 
which binds the 

compound of 
target 

Identification of 
proteins with low 

abundance possible 
through 

amplification 

Post-
translational 

modifications 
and 

subcellular 
locations lost 

and may 
affect binding 

29 

Protein 
microarray 

One protein per 
well; bound 

protein fluoresces; 
fluorescence 
detected by 

imaging 

Detection against 
nearly all proteome 
of an organism; all 

proteins are exposed 
equally and allows 

identification of low 
abundance proteins 

Post-
translational 

modifications 
and 

subcellular 
locations lost 

and may 
affect binding 

30 

Table 1.  In vitro deconvolution methods discussed in this chapter. 
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One possible encoding may be numeric through the molecular properties of the compound such 

as solubility, partition coefficient, melting point, molecular weight and electronic properties.38–

40 Other types of molecular encodings are based on torsions and angles between the atoms of a 

molecule, which is found to perform consistently well, according to several performance 

metrics, for virtual screening approaches in which query compounds are compared to reference 

compounds with desirable properties or activity.41  Some representations are based on pairs or 

triplets of atoms and represent yet another possibility to represent compounds but are not often 

used in cheminformatics applications.38–40   

Alternative and more frequently encountered chemical representations employ a 2D molecular 

encoding called a fingerprint.  Fingerprints are binary vectors indicating either the presence or 

absence of a certain structural motif in a chemical or count vectors of the molecule’s 

substructures 38–40. Two types of 2D fingerprints are found in the literature: molecule-based 

fingerprints where each bit is computed from the structure of the compound through hashing 

algorithms, and the dictionary-based type where each element of the binary vector represents 

a pre-defined chemical substructure.42 

In the first category, the Morgan fingerprints or Extended-Connectivity Fingerprints (ECFP) 

can be found,43 which are by far the most used 2D fingerprint in the cheminformatics literature. 

Each bit in the vector represents hashed identifiers extracted from individual atom properties 

of the compound in the first iteration of the algorithm. The bit vector is then supplemented by 

combinations of the previous identifiers, which include up to 2 neighbouring (non-hydrogen) 

atoms (ECFP4) or up to 3 neighbours (ECFP6). The ECFPs outperformed most 2D fingerprints 

for virtual screening tasks41, which explains their popularity. The Daylight fingerprint is 

another type of fingerprint which is computed from linear substructures of the query 

compound. Each substructure is computed with a maximum pre-defined length, and identifiers 
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describing atom and bond properties are hashed to produce a binary fingerprint.44  

MOLPRINT2D is another type of molecule-based fingerprint in which strings are employed to 

describe atomic environments for each atom,45 instead of identifiers as in the ECFP algorithm. 

The rest of the MOLPRINT2D fingerprint generation is similar to that of the ECFP algorithm.  

In the second category of 2D fingerprints, the dictionary-based fingerprints, the MACCS MDL 

keys are found, which encode an ensemble of 166 keys corresponding to atom and bond types,46 

while PubChem fingerprints encode 881 and have additional atom counts, atomic 

neighbourhoods and substructures.47 The Unity fingerprint is a 988-bit vector which is a  hybrid 

between dictionary-based and molecule-based representation since pre-defined generic atom 

and bond types are encoded, but paths of specified lengths are generated in a similar fashion to 

the Daylight algorithm.48  

3D descriptors such as pharmacophores are derived from steric and electronic properties of a 

chemical, which are important for describing the interactions with the binding pocket of a 

specific target.38–40 Finally, another encoding uses projections of 3D structures into 2D circular 

planes, which are then used to derive potential pharmacophoric points (PPP), generating a 1D 

descriptor for which it becomes possible to apply bioinformatics algorithms designed to work 

with sequences of letters as input such as base-pair alignment.49   

 

1.2.2 Molecular similarity principle in virtual screening and 

neighbourhood property 

 

As mentioned previously, one of the main application of the fingerprints is virtual 

screening.50,51 In this approach, compounds which have desired properties or activity in a 



11 

 

target-based or in a phenotypic-based screening assay are employed as a reference. After 

converting compounds to a suitable representation, query compounds are “screened” against 

the reference by measuring the similarity of the representation of the query compounds to that 

of the reference. This leads to filtering of the query compounds to those with the desired 

activity.  This important property is based on the molecular similarity principle which states 

that structurally similar compounds should have similar properties and yield similar readouts 

in target-based and phenotypic-based assays.52,53 Even though virtual screening is discussed in 

this introduction, it is also acknowledged that the molecular similarity principle is useful for 

combinatorial chemists when designing new libraries of compounds based on existing 

libraries.54  

The Tanimoto coefficient (Tc) is a measure that assesses the number of bits in common 

between two binary vectors and is therefore usually well-suited to measure the structural 

similarity between two compound’s fingerprints.55 Otherwise, the Pearson correlation 

coefficient is used instead to measure the similarity of two non-binary fingerprints or 

bioactivity profiles. 

Several studies investigated the molecular similarity principle by comparing the chemical and 

biological similarity of pairs of compounds in a dataset. A study of the correlation between 

chemical similarity and activity in a monoamine oxidase inhibition assay in which Daylight 

fingerprints were employed. The authors found that a structural Tc similarity of 0.85 for two 

compounds corresponds to a 30% probability that two compounds are active in the monoamine 

oxidase inhibition assay used in the study.56 This observation was later repeated with 23 assays 

measuring the inhibition of various protein targets, mostly kinases and aminergic receptors.57 

With the use of both ECFP6 fingerprints and MACCS keys, it was shown that two chemical 

similarity definitions of ECFP6 Tc similarity >0.4 and MACCS key Tc similarity > 0.8 

correctly identified the target of one compound based on structural similarity to another 
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compound with 90% and 87% accuracy, respectively, although this was attributed to the 

composition of the WOMBAT dataset (congeneric chemical series) rather than the 

performance of the descriptors themselves.58  

It is evident from the above studies that different descriptors capture the molecular similarity 

principle differently. Aiming to quantitively compare these differences, Patterson et al. found 

that descriptors commonly used in virtual screening applications, such as 2D fingerprints, 

exhibit a “neighbourhood property”, meaning that they can be used to search for compounds 

that fall within activity regions of interest in those descriptor spaces (Figure 1).59 Fingerprints 

for which two compounds are highly similar should yield similar biological activity and have 

such neighbourhood property (Figure 1). In contrast, descriptors which yield structurally 

similar compound pairs with large differences in biological activity do not display such 

property and are undesirable for cheminformatics applications (Figure 1).  

However, the relationship between molecular similarity and activity is often more complex in 

reality, since small changes in chemical structure can lead to important modification of the 

activity against targets between two highly structurally similar analogues,53,60,61 and the 

“neighbourhood property” concept also allows for the evaluation of descriptors in terms of 

their sensitivity to such activity cliffs.59 Other studies attempted to capture and rationalize 

activity-cliffs in target-based bioactivity datasets by developing metrics such as the Structure-

Activity Relationship Index (SARI)62 and the Structure-Activity Landscape Index (SALI)63 

which have been shown to retrieve known activity-cliffs for classes of targets where these are 

predominant.  
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Figure 1. Illustration of the neighbourhood property principle. A descriptor for which 

compound pairs display no or very little differences in bioactivity when compounds are 

structurally similar i.e. compound pairs with low structural similarity. On the contrary, if 

compounds show high differences in bioactivity despite their structural similarity, then the 

descriptor doesn’t have the neighbourhood property. In the ideal scenario, differences in 

structural similarity and bioactivity are correlated.  
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1.3 In silico deconvolution methods of compound activity in 

phenotypic screens 

 

1.3.1 Data-driven deconvolution  

 

The development of various omics techniques and the public availability of historical 

bioactivity datasets gave rise to in silico deconvolution techniques exploiting these data.33 Gene 

expression databases such as the Library of Integrated Network-based Cellular Signatures 

(LINCS) can be used to query compounds active in phenotypic screens for their gene 

expression profiles, already narrowing down the number of candidate protein targets to explore 

using in vitro deconvolution methods.64  However, due to the higher cost and lower throughput 

of gene expression technologies, bioactivity databases usually contain more data. 

Hence, the wealth of bioactivity data can be exploited in cheminformatics analyses aimed at 

deconvoluting the signal of phenotypic screening campaigns. For example, bioactivity data 

from ChEMBL was extracted and corresponding targets were grouped by pathway annotations 

from the Gene Ontology (GO) framework. This grouping was used to deconvolute the activity 

of compounds in a screen measuring the inhibition of tumour necrosis factor alpha (TNF-α) 

production in leukemic cells.65 The authors found that the targets they identified for their 

compounds from ChEMBL were consistent with the literature on TNF-α production. In another 

study, enrichment analyses using Sanofi historical high-throughput screening allowed to 

explain the MoA of compounds active in DNA fragmentation and TNF-related apoptosis-

inducing ligand (TRAIL) assays: a large number of targets were identified for the TRAIL assay 
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including a range of cyclin-dependent kinases (CDKs), vascular endothelial growth factor 

receptors (VEGFRs) and other kinases; whereas fewer but very relevant targets were identified 

for the DNA fragmentation assay, including GSK3b, Tubulin, Aurora 2 and Eg5.66   

In addition to relying on the structural similarity of the compounds, the correlation of biological 

spectra can be used for the deconvolution. For example, the activity of a pyrimidine compound 

in an assay aimed at measuring the induction of senescence was attributed to targeting tubulin.67  

This was performed by computing the correlation of the biological profile of this compound to 

the profiles of other compounds in a proprietary bioactivity database as well as employing 

structural similarity.  

It is also possible to facilitate the deconvolution step by pre-selecting compounds with known 

bioactivity prior to their use in phenotypic screens. Indeed, a recent study employed a 

biologically annotated library of compounds, which was collected from publicly available 

databases and used in a phenotypic screening of compound combinations measuring the 

inhibition of serine palmitoyltransferase, a model for the necrosis of lung cancer. Since the 

compounds were already annotated from the public databases, this facilitated the identification 

of the putative MoA of cyclooxygenase 2 (COX-2) modulation behind the activities observed 

in the combination screen.68  
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1.3.2 Deconvolution methods based on in silico ligand-target predictions 

 

While current in silico deconvolution techniques employ pre-existing bioactivity data, other 

methods rely on the molecular similarity principle in bioactivity datasets to predict putative 

targets from the fingerprint of compounds (Figure 2). These methods are the emphasis of this 

section. 

 

1.3.2.1  Bioactivity datasets and limitations relevant to target prediction  

 

Target prediction methods were developed thanks to the increasing availability of large-scale 

chemical information publicly available.69 While many bioactivity databases exist, only the 

datasets which are mentioned or used in this thesis are discussed here (Table 2) and readers 

are referred to Gaulton et al.69 for a more comprehensive overview of such datasets.  

 

Database 
Number of 
compounds 

Number of Targets References 

Pubchem 2,570,179 10,857 70,71 
ChEMBL 1,735,442 11,538 72,73 

Drugmatrix 1,291 132 75,76 
WOMBAT 136,091 1,320 77,78 

Table 2. Bioactivity databases discussed in this chapter and statistics (as of 5/4/18) 
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Figure 2. Target prediction approach. A compound bioactivity database is employed to extract 

known active ligands for a large set of targets. These are converted into fingerprints which 

machine learning algorithms identify and “learn”. When the fingerprint of a query compound 

is presented to the algorithm, it is matched to those of known actives. If the matching is 

successful, then the target is predicted for the compound. Repeating this process against all the 

known active ligand datasets of other targets will generate a predicted target profile for the 

query compound from which novel MoA hypotheses can be drawn.  

 

 

The Molecular Libraries and Imaging program launched by the National Institutes of Health 

(NIH) gave rise to Pubchem47,70,71,74, one of the largest repository of high-throughput screening 

(HTS) data of both target-based screens and phenotypic screens. It comprises three related sub-

databases:  Substance, Compound and BioAssay. The latter contains bioactivity data (mostly 

IC50, EC50, Ki, Kd) for small molecules and RNAi, along with a suite of tools to query, 
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analyse and summarise the data. 70,71  In the latest versions, PubChem BioAssay contained 

more than 700,000 bioassays for more than 2,000,000 tested small molecules contributed by 

50 organisations (Table 2).71  

PubChem is the biggest repository and shares data with many other databases including 

ChEMBL, another comprehensive database developed by the EMBL-EBI containing 

bioactivity data extracted from more than 50,000 publications, and calculated molecular 

properties of chemicals, which yield data points for a total number of more than 1.3 million 

bioactive compounds in relation to more than 2,800 human targets (Table 2).72,73 Recent 

developments included information about the development stage of a chemical, new target 

annotation (e.g., binding site information), and the possibility to filter results based on the 

quality of the data via several additional fields identifying duplicates or data validity.73  While 

ChEMBL overlaps with PubChem, ChEMBL active compounds to inactive compounds ratio 

is very high, meaning that ChEMBL contains mainly potent compounds.  

ChEMBL is also large enough to overlap with other databases. In particular, the Drugmatrix is 

a comprehensive pharmacogenomics database. It comprises gene expression profiles of 

chemicals, on-target binding affinities and ADME assays results, along with pathology data 

such as haematology, histopathology and clinical readouts in relation to these chemicals. 75,76 

It has recently been in integrated with ChEMBL. It contains a complete bioactivity matrix for 

1,291 compounds and 130 in vitro assays, even though the inactivity data points are not 

quantified in the matrix (Table 2).  

PubChem also overlaps with WOMBAT, another bioactivity database which resulted from a 

collaboration of Astra Zeneca with the Romanian Academy Institute in Timisoara and contains 

307,700 activity points on 1320 targets, and covers 136,091 unique compounds (Table 2).77,78 
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However, these datasets are not without limitations. The sparse nature of this data is the main 

limitation and HTS is indeed still far from giving the full picture of drug-target interactions. In 

addition, certain compounds do not exhibit any activities in HTS (also called “dark matter 

compounds”), despite them being active in other types of screening such as gene expression 

experiments and antifungal assays.79 

While integrating data from different vendors helped in generating more complete datasets, 

inconsistencies were found between the different datasets.80 These inconsistencies were later 

attributed to errors in manual extraction and curation of bioactivity values from the literature.81 

It is therefore important to recognise those limitations when using ligand-target prediction 

models and to keep in mind that these could potentially affect the validity of the MoA 

uncovered with these models. It is noted however that the likelihood of invalid results is 

proportional to the errors rate encountered in the databases, which in databases such as 

ChEMBL or PubChem, is constantly reduced thanks to the ongoing curation efforts.71,73 

 

1.3.2.2  Current target prediction methods 

 

Many algorithms are currently employed for ligand-target predictions. Predicting targets from 

fingerprints using machine learning is one of the most used approaches in the literature (Table 

3). Nidhi et al. developed a multi-category Naïve Bayes (NB) model, a model which combines 

the probabilities of all the targets in  WOMBAT.82 The model retrieved the correct first target 

for 82% of the compounds and the correct first target class for 89% of the compounds in the 

test set. They employed this model for chemicals which were only associated with a therapeutic 

class, in order to generate a putative novel MoA for these chemicals. This model has been 

extended and successfully used in other MoA studies of potential therapeutics for tuberculosis83 
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or to improve hit list triaging in a Luciferase gene reporter assay.84 Target prediction models 

similar to the one developed by Nidhi et al. are so far the most frequently used and have been 

integrated with other types of data such as high-content screening,85 gene expression profiles,86 

or proteochemometric features87  in order to draw more interpretable MoA hypotheses.  

Even though Naïve Bayes models such as the one by Nidhi et al. are popular for target 

prediction, other machine learning approaches also exist (Table 3). Support Vector Machine 

(SVM) models were developed on the same database (WOMBAT) to generate more accurate 

target prediction (mean balanced accuracy of 0.912 ± 0.093), and which were used to profile 

drugs and hypothesise the MoA leading to liver-related adverse events.88 Self-organising maps 

(SOMs) were also successfully employed to predict the selectivity of glutamate receptor 

antagonists,89 or to predict human targets for de novo synthesised compounds.90  A more recent 

approach called DeepDTI employed deep neural networks to predict 10 novel drug-target 

interactions from drug target annotations in Drugbank which were in agreement with the 

literature, and the model outperformed some of the most frequently used machine learning 

algorithms used in target prediction, such as NB and Random Forest (RF).91  

However, machine learning is not the only mean for target prediction and approaches based on 

similarity are also frequently employed (Table 3). The earliest attempt to employ similarity-

based target prediction approach, called  “prediction of activity spectra for substances” or 

PASS, employs a scoring function that relates the number of compounds with a certain 

chemical descriptor to the number of compounds active against a target.92 The popular 

Similarity Ensemble Approach (SEA) approach employs the Tc to compute the chemical 

similarity to known ligands of targets to generate predictions and evaluates the statistical 

significance of the scores by employing an expected value similar to the e-value employed in 

NCBI’s BLAST for gene alignment, which measures the likelihood of a result being random.93  
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Nickel et al. developed a web-server for target prediction called SuperPred, which is based on 

normalised similarity to target known actives, which takes into account differences in ligand 

number for the targets, and which achieved 94% accuracy (when predictions are filtered by 

quality), but performed poorly for targets bound by structurally diverse compounds.94  The 

authors behind the Polypharmacology browser (PPB), another similarity-based target 

prediction tool, recognised that the choice of the fingerprint impacts the predictions, and 

therefore decided to use a consensus prediction based on 10 descriptors (6 fingerprints and 4 

combinations thereof).95 The choice of the Manhattan distance (called “city block” in the 

manuscript) used in this algorithm was based on computational speed but is questionable, as it 

was established that Tc similarity and similar methods outperform Manhattan distances among 

others for molecular similarity application.55  

Other similarity studies using similarity were based on other descriptors than 2D fingerprints 

(Table 3). Nigsch et al. investigated the use of gene expression profiles for target prediction 

based on profile correlation.96 They found that a minimal number of 128 genes achieved the 

highest accuracy of 0.3. The iRaise target prediction algorithm is based on structural 

information where triangle pharmacophores are computed from the Protein Data Bank (PDB) 

structures and which describe hydrogen bond acceptors, donors or hydrophobic interactions.97 

A similar approach is employed by the PharmMapper web server which employs 

pharmacophores that take into account additional properties such as positive and negative 

charges.98  The LT-scanner algorithm takes as input a ligand-protein complex and uses a 

scoring function to identify whether similar interactions can be found in other proteins across 

the genome.99 However, such structural information is not always available and can limit the 

number of targets this type of approach can find. Moreover, availability of gene expression 

profiles can be an issue for certain compounds, and protein structure database may not entirely 

cover certain protein families such as transmembrane proteins. Structure-based target 
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prediction is also more time-consuming and resource-intensive compared to approaches 

employing 2D fingerprints. 

A more recent approach combined the similarity methods with machine learning algorithms, 

and used the actual potency of compounds in the training set to weight the Tc similarity to 

known ligands of targets when making predictions (Table 3).100 Downsides of this approach is 

the reliance on older versions of ChEMBL (versions 19 and 20) for the training set, as well as 

the imbalanced training sets which were biased towards potent compounds, and contained 

fewer inactive compounds as a result.  

Network-based analyses are also employed to predict putative ligand-target pairs (Table 3). 

Yaminishi et al. extracted drug-target interaction network from the KEGG database and 

employed those in an attempt to predict novel drug-target interactions based on the proximity 

of both novel compounds and novel targets to already known drug-target interactions.101 The 

proximity of compounds was computed as the size of the common substructure set, while the 

proximity in target space was computed using amino acid sequence similarity. They then 

integrated these similarities using bi-partite graphs to predict new compound-target pairs, 

which is a form of network representation where edges can only be found between two sets of 

vertices but not within the sets themselves.  He et al. have also employed KEGG networks and 

used instead functional group composition and amino acid composition as feature vectors for 

compounds and targets, respectively.102 They combined a k-Nearest Neighbour (kNN) 

algorithm with two feature selection methods in order to achieve accuracies around 80% 

depending on the target family. A more recent approach called nAnnoLyze was developed 

based on the construction of several sub-networks linking query compounds to ligands co-

crystallised with protein targets, themselves linked to human protein targets 3D models through 

both sequence and structural similarity.103 This last step enhanced the number of predictable 
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targets. Additionally, compounds in a benchmark dataset compiled from Drugbank were 

associated with these 3D target models through Djikstra-like shortest path analyses from which 

scores were computed and combined in random forest classifiers. The prediction on the 

benchmark dataset yielded a precision of 73% and a recall of 66%. Finally, signalling and 

metabolic networks were also utilized for target prediction104. However, these two network 

approaches are at an early stage and lack evaluation on benchmarking datasets.   
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Type Input Model name Description References 

Machine 
learning 

ECFP6 fingerprints   Multiple-category Laplacian-
modified naïve Bayesian model 

82–85 

Tc similarity to reference compounds   Support Vector Machine 88 
 Pharmacophores   Self-organising maps 89 

Pharmacophores and physicochemical properties SPIDER Self-organising maps 90 
ECFP2, ECFP4, ECFP6 for compounds and 

amino acid, dipeptide and tripeptide composition DeepDTI Deep neural networks 91 

Similarity & 
Scoring 

Multilevel neighbourhood of atoms (second level) 
Prediction of activity 
spectra for substances 

(PASS) 

Scoring function taking into 
account the number of compounds 

active against the target and the 
number of compounds  

92 

Daylight fingerprints Similarity Ensemble 
Approach (SEA) 

Tc similarity and 
 conversion to Z-Score 

93 

FP24, MDL MACCS keys, ECFP4 fingerprints SuperPred Tc similarity and  
conversion to Z-Score 

94 

Apfp, Xfp, MQN, SMIfp, Sfp, ECFP4 
fingerprints and combinations  

Polypharmacology 
browser (PPB) Manhattan similarity  95 

Gene expression profiles  
Nearest Neighbours based on 

Pearson product-moment 
correlation coefficient 

96 

Pharmacophores iRaise 

Cascade of binding mode scoring 
based on spatial alignment to 
reference ligand and pocket 

coverage    

97 

Pharmacophores PharmMapper Pharmacophoric fit score and 
conversion to Z-Score  

98 

Ligand-protein complex LT-scanner 

Scoring function that identifies 
proteins with similar binding site 
interactions than the one observed 

in ligand-target complex   

99 
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Machine 
learning & 
Similarity 

ECFP4, FP2 fingerprints MOST 
Tc similarity to reference 

compound followed by p-value 
computation by machine learning 

100 

Network-
based 

prediction  

Functional groups for compounds and 
biochemical/physicochemical properties for 

targets 
 

Nearest Neighbours based on 
normalised dot products of drug 
and target with feature vectors 

102 

Maximum common substructure scores for 
compound similarities; Smith-Waterman score for 

target sequence similarity; Known drug-target 
interactions 

 
Bipartite graph learning and 

connecting new compound-target 
pairs via pre-existing compound-

target interactions  

101 

Structural and physicochemical similarity for 
ligand similarities; Structural alignments for 

protein similarities; Existing binding interaction 
in PDB for ligand-target edges 

nAnnoLyze 

Bipartite graph construction and 
Djikstra shortest path weighted 
sum of edges converted to Z-

Score and random forest classifier 

103 

 

Table 3. Target prediction algorithms discussed in this chapter. 
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Since the computation of fingerprints is possible for most compounds, they provide a more 

readily available feature space for compounds than gene expression profiles or 3D structures 

which are not always available. Machine learning models may be preferred over similarity-

based methods for target prediction since they achieve better accuracies on average, which 

may be due to the former better accounting for non-linearities in the bioactivity training data 

than the latter approach. Moreover, even though some of these similarity approaches were 

successful and some of their prediction validated,93 their predictive power is expected to be 

limited when it comes to novel pharmacological actions since this type of approach is based 

on achieving high similarity to already known ligands. Machine learning algorithms are more 

flexible, hence less affected by such biases. Indeed, applicability domain analyses generally 

circumvent those issues105 or a scoring mechanism that allows obtaining the confidence of 

such predictions through e.g. conformal predictions.106 Finally, target predictions based on 

machine learning models have been evaluated more thoroughly over the past decade than the 

more recent approaches based on networks, are more intuitive and are simpler to implement 

through the use of open-source and maintained programming libraries. 

  

1.3.2.3  Applications to deconvolution of compounds active in phenotypic screens 

 

Several publications illustrate the use of ligand-target prediction for the deconvolution of the 

activity of compounds in phenotypic screens. Such target prediction models were employed 

to rationalise the effects of compounds in high-content cell screens aimed at identifying 

compounds that modulate the cell cycle.107 They found that while most clusters putatively 

targeted tubulin, the group of kinase inhibitors was associated with CDK1 and CDK2 

predictions, which indeed play a role in cell cycle regulation. Similar approaches were used 
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to understand the difference of MoA between cytostatic and cytotoxic compounds, where 

cytostatic compounds were linked to DNA damage reversal, metabolism and processes 

regulating the cytoskeleton.108  The same type of approach was used in rationalising the MoA 

for compounds present in plant extracts used in Traditional Chinese Medicine (TCM), where 

the phenotypic effect of the active ingredients is usually known, but not the molecular 

targets.109 Compounds with the cold nature affected targets involved in detoxification and 

sedation processes, while compounds with hot nature were linked to targets that affect fertility 

and cardioprotection. These target prediction methods can be combined with decision trees, 

such as in Liggi et al., to identify the MoA of compounds inducing different phenotypes in 

Xenopus Laevis.110  Compounds affecting pigmentation were predicted to bind Carbonic 

anhydrase II which is in accordance with the literature on pigmentation biology. They also 

found that compounds affecting melanophore function targeted alpha-2a adrenergic receptor, 

delta-type opioid receptor metabotropic glutamate receptor 1 and tyrosine-protein kinase Fyn. 

A similar approach was used to rationalise the MoA of compounds that have sedative effects 

and were subsequently used to predict sedative and/or hypnotic function in Drugbank 

compounds.111 The predicted target profile implicated in the sedative-hypnotic effect was 

comprised of a variety of aminergic G-protein-coupled receptors (GPCRs) such as Dopamine 

receptors D1B, D2, D4, muscarinic receptors M1 and M4, histamine receptors H1 and 

adrenergic receptor alpha among others.  

Methods involving similarity networks of compounds can also be used as powerful 

deconvoluting tools. Indeed, using a large-scale network of compound-compound similarities 

(named CSNAP) compounds active in a microtubule polymerization assay were grouped into 

five distinct target profiles, which were subsequently validated in vitro.112   
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1.4 Conclusions and aims of the thesis  

 

Many studies have used the molecular similarity principle to generate target predictions to 

identify the MoA of compounds active in phenotypic screens. While the molecular similarity 

principle has been well-characterised in bioactivity datasets generated by target-based 

screening, it is not entirely clear how well the molecular similarity principle holds in datasets 

generated from phenotypic-based screening. In this thesis, the molecular representations 

described in Chapter 2 were employed to evaluate and quantify the molecular similarity 

principle in two datasets generated by phenotypic screening assays in Chapter 3. 

The molecular similarity principle is implicitly applied in a target prediction workflow 

described in Chapter 2. This workflow is based on two conceptually different target prediction 

algorithms and it is shown how this workflow allowed to augment the coverage of MoA 

hypotheses.  

Furthermore, while target prediction algorithms relying on this molecular similarity principle 

have been successfully employed in the literature to deconvolute signals in phenotypic 

screens, there was not any study, which assessed how the MoAs uncovered by these 

algorithms compare to the MoAs obtained using publicly available experimental bioactivity 

data of the compounds active in phenotypic screens. This is the focus of Chapter 4 where the 

target prediction workflow described in Chapter 2 was used to predict targets for compounds 

active in a phenotypic screening dataset. The MoA generated through this target prediction 

workflow were then compared to MoA hypotheses obtained through experimental bioactivity 

data of compounds active in similar phenotypic endpoints. This comparison will allow 

generating more insights into why these in silico methods are appropriate for the 
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deconvolution of compounds in phenotypic screens and evaluating their contribution in 

generating novel MoA hypotheses. 

Finally, based on the insights gained from Chapter 4, the target prediction workflow was 

applied to generate MoA hypotheses for compounds active in a kidney cyst screening dataset 

in Chapter 5. It will be shown how these predictions can be improved by additional metrics 

to rank the predicted targets according to their relevance to the phenotypic endpoint measured 

in the assay.  These MoA hypotheses will be further prioritised through their integration with 

gene expression profiles and occurrence counts in the literature. Structural bioinformatics 

studies of the shortlisted MoA hypotheses were also performed to strengthen their confidence. 

Therefore, this chapter shows how target prediction can be integrated with additional data 

domains to narrow down relevant MoA hypotheses for compounds active in a phenotypic 

screening assay.  
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Chapter 2  Computational methods  

 

This chapter introduces the target prediction workflow employed in this thesis. This chapter 

introduces molecular descriptors and similarity scoring metrics used mainly in Chapter 3. One 

of the descriptors, namely ECFP4, is then used as input for the target prediction workflow 

employed in Chapter 4 and 5, and details about these algorithms are also given in this chapter. 

 

2.1 Workflow overview 

The target prediction workflow is depicted on Figure 3. The input is a query compound 

structure in SMILES format. The structure is first standardized as recommended by Fourches 

et al.113 The ChemAxon standardizer114 (version 15.1.19.0) was used with the options 

“Remove Fragment” (keep largest), “Neutralize”, “RemoveExplicitH”, “Clean2d”, 

“Mesomerize”, and “Tautomerize”. Then a fingerprint is generated from the compound 

structure. For target prediction, compounds are converted to ECFP4 fingerprints and this 

process is described in the next section (Figure 3). 

Generated ECFP4 fingerprints are then used as input for two machine learning models that 

will output binding probabilities for a large number of protein targets. These will be combined 

and Z-scaled to filter predictions that may be obtained randomly and/or predictions that are 

outside the applicability domain represented by molecules active against the corresponding 

targets (Figure 3). More details about all of these steps are given in this chapter.  
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Figure 3. Target prediction workflow employed in this thesis. 
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2.2 Molecular fingerprints 

 

2.2.1 ECFP4 fingerprints 

 

The generation of ECFP4 fingerprints was performed using the cheminformatics 

programming libraries rdkit and scikit-chem.115,116 ECFP4 fingerprints correspond to a binary 

vector of various bit length, in general, either 1024 or 2048 bits. Each bit represents an atom, 

substructure or any atomic environment of a certain radius i.e. a certain number of bonds away 

from a given atom of the query molecule. The radius has a maximum of 2 bonds for ECFP4 

fingerprints. The algorithm implemented in the cheminformatics libraries follows four steps 

(Figure 4).43  

In the first step, each atom (except for hydrogen atoms) are associated with a unique integer 

identifier (Figure 4). The generation of the identifier is based on seven atomic properties. 

These are the number of neighbouring atoms which are not hydrogen atoms, the valence 

minus the number of hydrogen atoms, the atomic number, the atomic mass, the atomic charge, 

the number of neighbouring hydrogen atoms, and whether the atom is contained in a ring or 

not. These values are then hashed together into a single integer which constitutes the initial 

identifier for this atom.   

Once all heavy atoms in the molecule have an identifier, an iterative process starts in which 

each atom identifier is updated based on its identifier and its neighbours’ identifiers (Figure 

4). A hash function maps the identifier and neighbours’ identifier into a new single identifier. 

Once all atoms have been updated the next iteration starts and the same procedure is repeated 
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with an increased radius. Hence, at each iteration, more neighbouring atoms are considered 

than in the previous iteration (Figure 4). Note that the previous identifiers, including the 

initial identifiers, are kept for the next phase of the algorithm. 

The third step involves the removal of duplicated identifiers and structures. The final stage 

involves the use of a hash function to map these identifiers into the final binary vector, with 

a length defined by the user in general either 1024 or 2048 bits (Figure 4). While it has been 

shown that a small amount of information is lost during this step, two different identifiers can 

be mapped to the same bit in the final vector and can render the interpretation of the 

corresponding bit somewhat difficult.43 Nonetheless, ECFP4 fingerprints, and more generally 

circular fingerprints, are among the highest performing fingerprints for virtual screening 

applications such as scaffold retrieval and similarity searching,117,118 and this motivated their 

use in this thesis and for the machine learning algorithms described in the next sections. 
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Figure 4. ECFP4 generation algorithm.  The first step consists of generating an identifier for 

each non-hydrogen atom (A). Then for every single atom, the identifiers in the neighbourhood 

of the atom and the identifier of the atom are hashed into one single identifier. First, only 

immediate neighbours are considered (B) but then eventually the neighbourhood radius 

increases (C). In the end, a binary vector is created out of all identifiers from all steps, and 

this vector is generally hashed into a smaller bit vector of either 1024 or 2048 bits. 
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2.2.2 MACCS keys and PubChem fingerprints 

 

MACCS keys fingerprints comprise a set of 166 keys representing various structural aspects 

of the molecules.46  These encode single atom-based properties and bond types (Appendix 

A). The resulting fingerprint is then a binary vector encoding the presence or absence of each 

of the 166 keys in the query molecule.  

Similarly, to the MACCS keys, the PubChem fingerprint is based on a set of 881 structural 

keys (Appendix B) and the resulting fingerprint is a binary vector representing the presence 

or absence of each key in the query molecule. The keys encode atomic counts, ring types, 

atom pairs, atom environments and specific SMARTS patterns.  

 

2.3 Similarity scoring 

 

2.3.1 Structural similarity scoring  

 

Once a representation of compounds has been selected, the assessment of similarity requires 

computation of similarity metrics. The Tc is usually employed for the similarity of compounds 

using binary fingerprints and is computed as: 

 #$ =
$

& + ( − $ (1) 
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where c is the number of structural features in common between the two fingerprints, and a 

and b are the number of features in the first and second molecules respectively. It has been 

compared to various comparable similarity scoring and performs equally well despite its 

simplicity.55,119 

 

2.3.2 Biological similarity scoring 

 

The similarity of compounds can also be assessed via the biological activity profile of the 

compounds. In this case, since the profiles are usually made of continuous data (e.g. pIC50s, 

GI50s etc.), the Pearson correlation coefficient is used.120 However, the Pearson correlation 

coefficient tends to be affected by the amount of missing data in the dataset and it is better 

suited to estimate linear correlations, which is often not the case with two bioactivity profiles. 

The Spearman correlation coefficient is an alternative that does not assume a linear 

relationship between the two profiles which is what motivated its use in Chapter 3.  

Another biological similarity metric is the Assay Related Target Similarity (ARTS)121 in 

which two compounds are similar if both compounds have a similar bioactivity profile and if 

their bioactivities are higher than that of other compound pairs. In other words, similar 

activities are weighted by their observed activity and ARTS tends to rank lower similar 

compound pairs with low bioactivities: 

 *+#,-. = 	
,01-.

2,01--,01..
		=

∑ (5 + 67 + 872 )²<=(->=.>)²?@A
7BC

D∑ (5 + 67)E
?@
7BC ∑ (5 + 87)E

?A
7BC

 (2) 
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where ,01-. represents the calculated similarity between compounds x and y,	,01--	and 

,01.. represent the calculated similarity of compound x with itself and y with itself 

respectively, F-, F. and F-. represent the number of elements for profiles x, y and both 

respectively, and k is a constant set to the minimal bioactivity observed in the dataset. ARTS 

has also been showed to display less variability with the amount of missing data compared to 

Pearson correlation.121 

The Tc is used throughout this thesis and the Spearman correlation coefficient and ARTS 

were used in Chapter 3. 

 

 

2.4 Ligand-target prediction models 

 

The target prediction approach used in this thesis combined two different target prediction 

algorithms. The first algorithm initially developed by Nidhi et al.82 was implemented as part 

of the ChEMBL database and is based on a multinomial NB (MNB) model.83 The second 

target prediction model, named PIDGIN, was developed by Mervin et al., which uses a 

separate RF model per target.105,122,123 This section is divided into two subsections, one for 

each model. In each subsection, the machine learning algorithm employed in the target 

prediction workflow are described, as well as technical details about the algorithm itself. Then 

additional output processing steps performed in this thesis are described. Finally, the rationale 

behind combining these two target prediction models is explained.   
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2.4.1 ChEMBL target prediction model 

 

2.4.1.1 Laplacian-corrected multinomial Naïve Bayes machine learning model 

 

The probability G(*	|	I0) of a compound to be active against a target A (event *) given the 

presence of a certain chemical feature I0 (event I0) in the ECFP fingerprint of the query 

compound is estimated by the proportion of active compounds with feature I0 in the dataset: 

 G(*	|I0) =
*J7
KJ7

 (3) 

 

where *J7 is the number of times I0 is found in actives and KJ7 is the number of times I0 is 

found in all the compounds in the training set. However, since the presence of a certain feature 

in the ECFP fingerprint can be quite rare, this probability tends to be overestimated, which is 

why the Laplacian correction is used.  

 

 

The Laplacian correction is based on the observation that the overestimation bias can be 

overcome by sampling this feature L times which modifies the probability accordingly: 

 
*J7 + ML
KJ7 + L

 (4) 
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where M is the proportion of active compounds in the training set, which is also an estimate 

for G(*) in this model. The Laplacian correction substitutes L by 	1/P(*) = 1/M in equation 

(4) to yield:  

 
*J7 + 1
KJ7 + 1/M

= 	
(*J7 + 1)M
KJ7M + 1

 (5) 

 

The relative estimate of the activity probability given feature I0 is: 

 GQRS(*	|I0) = 	
G(*	|I0)
G(*) = 	

(*J7 + 1)
KJ7M + 1

 (6) 

 

Similarly, relative estimates of the inactivity probability (event *̅	) can be computed as: 

 GQRS(*̅|I0) = 	
(*̅J7 + 1)

KJ7(1 − M) + 1
 (7) 

where *̅J7 is the number of times feature I0 is found in inactive compounds in the training set 

for target A. 

The weights U0 that will be used in the prediction score for query compounds, are computed 

as the ratio of the relative estimate of activity and inactivity given feature I0.  

 U0 = 	
GQRS(*	|I0)
GQRS(*̅|I0)

		 (8) 

Log-probabilities were used instead in order to avoid numerical issues with small weights. 

The final prediction score for activity against target A of a query compound is derived by 
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summing the products of the individual bits from the ECFP4 fingerprint of the query 

compound (IV,7) and the log weights estimated from the training set:  

 

,$XY<Z,V = [ log	(U0)IV,7	
7

 

=[ log(
GQRS(*	|I0)
GQRS(*̅|I0)

)IV,7
7

	 

=[ (log GQRS(*	|I0) − log GQRS(*̅|I0)
7

)	IV,7 

(9) 

The same procedure is then repeated for all targets covered by the model to yield a vector of 

prediction scores for the query compounds. The most likely targets for the query compounds 

can be found by ranking the targets by the corresponding prediction score. Alternatively, those 

probabilities can be processed further to ascertain the statistical significance of the prediction. 

This is described in the next section. 

 

 

2.4.1.2 Multinomial Naïve Bayes target prediction model and training data  

 

The target prediction model provided in ChEMBL used the MNB approach described above. 

The model was downloaded from the ChEMBL ftp services 

(ftp://ftp.ebi.ac.uk/pub/databases/chembl/target_predictions/).  Compounds in the training set 

were converted to ECFP4 fingerprints with 2048 bits in the ChEMBL model.  The 10 µM 

version of the model was used. In this version, active compounds (actives) in the training set 
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(for each target) were all ChEMBL compounds with a potency of 10 µM (or lower), and the 

inactive compounds were the remainder.  

 

In total the classifier has 1,290 classes i.e. 1,290 targets.  The model corresponding to 

ChEMBL release 22 was used and was implemented using the Python library scikit-learn 

(version 0.18)124 using the OneVsRestClassifier() function with parameter 

estimator=MultinomialNB() and n_jobs=1. The parameter used in the MNB model were 

alpha=1, class_prior=None and fit_prior=True.  

 

 

 

 

2.4.2 PIDGIN target prediction models 

 

2.4.2.1 Random Forest machine learning model 

 

The RF model developed by Leo Breiman builds on the idea of exploiting the predictive 

power of many decision trees.125 Decision trees are partitions of the instances of a dataset 

based on one variable at a time.  The higher the number of such partitions is performed, the 

deeper the tree is. The resulting groups of instances after all the successive partitions are the 

most homogenous sets of instances that is possible to obtain. In RF, each individual tree is 

grown according to the CART methodology,125,126 in which at each iteration, all candidate 

variables are evaluated in terms of the purity of their partition, i.e. to determine which variable 
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yields the partition with the most homogenous groups of instances. This is done by calculating 

the Gini impurity metric for each sub-nodes or resulting groups of instances after the partition 

using that variable: 

 

 `0F0 = 	[
F7
K (1 − (G7E + (1 − G7)E))

E

7

 (10) 

 

where F7 represents the number of instances in partition 0, N is the number of instances that 

are currently partitioned, and G7 represents the fraction of instances that belong to the class of 

interest in the resulting partition 0. The variable with the highest Gini value is selected for the 

partition. Then the same procedure is applied to the remaining partitions with the other 

variables until no variable remains or until all instances belong to homogeneous partitions. 

 The RF uses this principle to train multiple decision trees based on various random samples 

of the instances in the training set (sampling made with replacement). In addition, when the 

decision trees are trained, a small number of randomly selected variables are considered at 

each split, and those variables will be different in each decision tree.  

Predictions are obtained by performing a “vote by the majority” in the forest. Hence, in the 

context of the PIDGIN model, a compound will be classified as active if most of the individual 

trees classified this compound as active. The probability score is, therefore, the proportion of 

decision trees in the forest that classified the compound as active.  
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2.4.2.2 Target prediction model based on Random Forest and Training data 

 

Unlike the ChEMBL target prediction MNB models described above, PIDGIN is an ensemble 

of single RF machine learning models, each developed to predict a specific target. The models 

corresponding to the second version of PIDGIN were downloaded from 

https://github.com/lhm30/PIDGINv2/. These were implemented with scikit-learn (version 

0.17) with number of trees equal to 100, class weight set to ‘balanced’, and sample weight to 

the ratio of inactive to active.  In the PIDGIN models, the training set data consisted of a 

combination of  2,089,404 ChEMBL (release 21) active compounds (i.e. compounds with 

PCHEMBL = 5) and  11,829,475 PubChem70,71 inactive compounds (mined on 21/06/16). 

The compounds in the training set were represented as ECFP4 fingerprints with 2048 bits. 

3,394 RF models are available (one per target). 

The output RF probabilities were already calibrated using Platt scaling.127 This is performed 

because the probabilities obtained as output from the RF model do not reflect the confidence 

that the model gives in this prediction. Indeed, it has been previously reported that RF models 

rarely assign probabilities close to 0 and 1, and this is due to the unlikelihood to have all of 

the individual trees classifying the query compound has inactive or as active respectively 

(some noise is always involved in the data which will prevent such ‘perfect predictions’).128 

The Platt scaling algorithm employs a logistic transformation of the scores from a classifier, 

which will convert these scores into probabilities. Even though the scores in RF are already 

probabilities, this transformation effectively corrects the aforementioned behaviour. RF 

probabilities corrected in this way, therefore, represent the true fraction of actives in the 

training set. In PIDGIN, this was performed with scikit-learn using the 
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calibrate_classification_cv with a number of folds set to 3, number of calibration also set to 

3, and using the ‘sigmoid’ method. 

 

2.5 Additional output processing performed in this thesis 

 

Output probabilities from each model were converted to two Z-Scores: one z-score to assess 

the randomness of the prediction, and the other to assess the similarity to known actives 

against a target. Hence, output probabilities of the query compounds were compared to the 

overall probability distribution in the query dataset for a certain target. In addition, known 

actives of all human targets in ChEMBL22 were extracted for PCHEMBL_VALUE >= 6 with 

STANDARD_TYPE being one of ‘EC50’, ‘IC50’ or ‘Ki’, and CONFIDENCE_SCORE > 5. 

The target prediction models were then applied to these known actives to obtain probability 

distributions for the known actives of each target. Then the output probabilities of the query 

compounds were also compared to the probability distribution obtained for known actives.  

Z-Scores corresponding to these two comparisons were computed as: 

 

 a,$XY<7b =
G7b − cb
db

																																							a,$XY<Zefghij7b =
G7b − cZefghijb
dZefghijb

 (11) 

 

where G7b represents the likelihood of compound 0 to be active against target k, c and d 

represent the average and standard deviation of the probability distribution obtained for target 

k for all compounds in the query library, cZefghijb and dZefghijb represent the average and 
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standard deviation of the probability distribution obtained for known actives in the training 

set of target k. Therefore a,$XY<7b measures how far from random the score computed for 

compound 0 on target k is, while a,$XY<Zefghij7b quantifies how the score computed for 

compound 0 on target k is far from the average score computed for known actives on the same 

target.  

a,$XY<7b is largely dataset-dependant and can be adjusted depending on the query dataset and 

aims of the analysis, whereas the a,$XY<Zefghij7b depends on the training set and is not 

adjusted depending on the analysis or query dataset.  

A correct prediction should have a score that is as far away from the mean of the prediction 

score as the average score obtained for the query compound library (a,$XY<7b >1 or 2), but 

needs to fall within the distribution obtained for the actives, and preferably as close to the 

mean of the known actives distribution as possible (-1 < a,$XY<Zefghij7b < 1). The choice of 

the cutoff value for a,$XY<7b will be discussed specifically in each chapter in which the target 

prediction workflow is used (Chapter 4 and 5).  

 

2.6 Combination of the predictions from both algorithms 

 

The predictions from these two models were combined by taking the union of all the target 

binary predictions. Combining these algorithms also allowed to predict more targets than 

the use of either of the algorithms alone. Indeed, in the NCATS dataset (which is introduced 

in detail in Chapter 4), although both algorithms predicted 494 targets in common, they also 

predict targets which are not found by the other algorithm i.e. out of the 761 targets predicted 
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by Pidgin, 267 are only predicted by Pidgin, and out of the 510 targets predicted by the 

ChEMBL model, 16 are predicted only by this model and not by Pidgin (Figure 5). In 

addition, the frequency to which they predict certain targets is different by the two algorithms 

(Figure 5). Indeed, 25 targets were predicted for more than 100 compounds by the ChEMBL 

target prediction models and less than 20 times for Pidgin. Conversely, Pidgin predicted 54 

targets more than 100 times, whereas the ChEMBL target prediction models predicted those 

less than 20 times. In this way, predictions which are not accessible by the use of one 

algorithm is complemented by the use of the other. This can be used to probe the space of 

possible MoAs more effectively than with the use of one algorithm alone.  



47 

 

 

Figure 5. Comparison of compound counts in the NCATS library per predicted target for 

PIDGIN (y-axis) and CHEMBL (x-axis). Each point represents a target and the coordinates 

represent the number of times the target is predicted in the corresponding models (x-axis: 

ChEMBL models, y-axis: PIDGIN). It is clear from this figure that the models prioritise 

different target predictions.  
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Chapter 3   Quantifying the molecular 

similarity principle in phenotypic 

screening datasets 

 

 

3.1 Introduction 

 

The molecular similarity principle, which states that two structurally similar compounds may 

have the same activity in an assay (i.e they both bind or modulate the target in the same way), 

is central to all cheminformatics applications for drug discovery including target prediction. 

Further, target prediction algorithms assume that query compounds being similar to the 

known actives of a target is enough to hypothesise the activity of the query compound against 

this target as well. While the molecular similarity principle is well characterised in target-

based screening datasets, there is still a lack of clear evidence that this molecular similarity 

principle is valid in phenotypic screening datasets, where the cytotoxic activity of compounds 

against cell-lines or modulation of pathways of interest is studied. Moreover, the molecular 

similarity principle is more difficult to study in phenotypic screens as a change in the structure 

of a compound can affect the binding of the compound to different targets and hence multiple 
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cellular processes can change. This structural change may hence result in a bigger change of 

activity in the phenotypic assay compared to the change of activity it might yield in a target-

binding assay. Because the molecular similarity principle is an implicit assumption of ligand-

target prediction models used to deconvolute signals in phenotypic screens, it is therefore 

important that the molecular similarity principle is studied and quantified with phenotypic 

screening datasets as well. 

Previous attempts to study the molecular similarity principle in phenotypic screening datasets 

used integrative analyses of structural data and gene expression of cancer cell lines. Chen et 

al. for example, found that there is a 20% chance for highly structural compounds with Tc > 

0.85 to share the same gene expression profile.129  Another study looked at the 

chemical/phenotypical similarity relationship while considering cytological features of HeLa 

cells as their phenotypic profiles, and the authors defined ways to measure and represent 

correlations between chemical similarity and phenotypic similarity, which could then be used 

to predict and validate compounds that triggered specific cellular events such as microtubule 

depolymerization and mitotic arrest.85 It was found that 96% compound pairs have a 

concordant structure-activity relationship meaning that they have a Tc > 0.3 and have very 

similar effects on the cytology of the cells. Finally, Tiikkainen et al. also studied the 

correlation between chemical similarity and cytotoxic activity against a panel of 60 cancer 

cell lines and found that the fraction of chemically similar compounds increases for larger 

values of cytotoxicity profile similarity for Pearson correlation of 0.5 or more.130 These studies 

were based on cancer cell lines but few studies considered the relationship between chemical 

similarity and activity similarity in a phenotypic assay using primary cell lines instead of 

cancer cell-lines which are not reflecting the biology of cells in normal tissues. This limitation 

was addressed in Shah et al, where biological similarity of compounds was based on  

biological profiles that combined both target-based and phenotypic-based assays from the 
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ToxCast dataset. They found that compound pairs that shared both a chemical similarity 

measured by Tc > 0.6 and a biological profile correlation > 0.6 had similar known on-target 

effects (e.g caffeine and theophylline were among such pairs). Unfortunately, only a low 

number of chemical pairs with such properties were found, which might be attributed to the 

very sparse nature of the ToxCast bioactivity matrix, as well as the poor correlation between 

pharmaceuticals and pesticides.131   

This chapter is concerned with studying the relationship between chemical and phenotypic 

similarity while addressing the issues encountered in the previous publications. It is important 

to study and quantify the molecular similarity principle across cells from different tissues and 

organs, to show that this is applicable for as many phenotypic assays as possible. Otherwise, 

the molecular similarity principle is only applicable to those cells that are currently studied, 

which are mostly cancer cells. In addition, this work also quantifies the molecular similarity 

principle, and this is the novel aspect of this work compared to previous research on the 

subject. It is investigated how phenotypic similarity develops as a function of Tc chemical 

similarity based on three widely used fingerprints in cheminformatics namely, ECFP4, 

MACCS keys, and PubChem fingerprints, which were discussed in Chapter 2. Employing 

Bayesian regression models, the increase in phenotypically similar compounds with 

increasing chemical similarity bins is estimated. Eventually, the neighbourhood behaviour of 

the fingerprints is analysed to explain the differences in trends observed between the 

fingerprints, and it is showed that ECFP4 is less sensitive to the choice of the dataset used in 

the analysis, compared to the other two fingerprints. 
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3.2 Materials and methods 

 

3.2.1 Phenotypic profile data collection and preparation 

 

3.2.1.1 BioMAP dataset  

 

Dataset background and extraction  

 

The BioMAP dataset is a collection of phenotypic screening assays in which compounds are 

assessed in term of their effects on various human cells by measuring protein biomarkers 

characterising the state of the cells. The activity readouts in this dataset are therefore protein 

expression levels of the markers of interests. More specifically, BioMAP assays report the 

logarithm of the expression level of the protein biomarker measured after treatment, divided 

by the expression levels of the biomarker in the control samples (DMSO). This dataset is used 

in this analysis as they are representative of the disease-based category of phenotypic assays 

but also because they represent non-cancerous human cell lines. Regarding details on the 

generation of BioMAP profiles, readers are referred to previous publications for more 

information on the experimental details on reagents used, cell culture details and enzyme-

linked immunosorbent assay (ELISA) measurements.29,132 In total, 8 cell lines were used in 

this analysis. The ELISA readouts in each cell line consisted of protein expression levels 

which were converted into a log ratio of expression of the protein in the treated sample, as 
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compared to the protein level in control samples (DMSO). 1,120 compounds along with their 

structural information were obtained from the ToxCast website.133 

 

Compound filtering 

 

Overtly cytotoxic compounds were first identified by cytotoxicity against Peripheral blood 

mononuclear cells (PBMC) and also in an SRB assay (the amount of protein-bound dye in the 

assay approximates cell mass) of various cell lines leading to the removal of 284 compounds 

out of 1,120. Assays and corresponding cut-offs employed are summarised in Table 4. 

 

CELL SYSTEM ASSAY NAME ACTIVITY CUTOFF 

3C SRB -.24 

4H SRB -.16 

SAg SRB -.14 

SAg PBMC Cytotoxicity -.14 

LPS SRB -.14 

BE3C SRB -.08 

KF3CT SRB -.08 

HDF3CGF SRB -.2 

CASM3C SRB -.2 

Table 4. Assays and cut-offs employed to filter out cytotoxic compounds in the BioMAP 

dataset. 

 

For a given compound in the BioMAP dataset, the ensemble of all 84 protein level readouts 

constituted the phenotypic profile of this compound. 95% significance envelopes of activity 

values created from historical controls29 were used in this study to discard false positive 
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readouts from a compound profile (activity readout falling inside the 95% envelope) i.e. these 

activity points were set to 0.  

 

Creation of the BioMAP profiles 

 

The ensemble of all the assays for a compound constituted the profile for a compound. 

Moreover, positive readouts were separated from negative readouts in order to obtain profiles 

with one unique direction. For example, if a compound was measured with a protein 

expression of -0.5 for “AID = 114”, this activity was transformed as 0.5 under a new readout 

“AID = 114_dn” in this compound profile. Similarly, a protein expression of 0.5 for the same 

variable “AID = 114”, would be transformed as “AID = 114_up”. This provides the same 

effect as taking the absolute value without losing the directionality of the activity. 

 

Clustering and reduction of the missing data 

 

The resulting matrix was clustered to obtain a dataset that is as complete as possible. Hence 

both dimensions of the matrix were sorted by the number of activity points yielding a dataset 

of 365 compounds that consisted of protein levels in 168 assay descriptors (84 readouts with 

bidirectional profiles) which is 59% complete. 
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3.2.1.2 ChEMBL compound dataset  

 

Dataset background and extraction 

 

 To study the molecular similarity principle for a type of phenotypic readout different than 

the biomarker-based BioMAP dataset, an additional dataset was extracted from 

ChEMBL2172,73  This dataset is comprised of cell viability against cancerous cell lines and 

this makes the analysis conducted in this chapter more comprehensive than the previous 

research: combined with the BioMAP dataset, both primary human cells and cancer cells are 

used.  

An initial bioactivity matrix was created by extracting all the bioactivity data i.e. 

pCHEMBL values (-log10 IC50/EC50) of compounds against any human cell line assay 

reported in ChEMBL21, yielding a dataset of 14,743 bioactivity data points. 21 data points 

corresponding to assays in which the protective effect of compounds was sought (rather than 

the inhibition/cytotoxicity) were removed from the dataset for consistency.  

 

Clustering and reduction of the missing data 

 

Next, this matrix was clustered to get a dataset that is as complete as possible, while also 

retaining a number of compounds and assays comparable to that of the BioMAP dataset. The 

top 400 compounds were kept and 87 cell lines resulting in a cytotoxicity matrix which is 

21% complete. The structures corresponding to the 400 compounds in SMILES format were 

also extracted from ChEMBL21. This dataset contained mostly cancer cell lines. In a similar 
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way to the BioMAP dataset, the phenotypic profiles of the compounds were created by 

creating a vector of all pChEMBL values available for that compound. Missing data are kept 

as is, as they will not be used in the latter part of the analysis (as explained in the following). 

 

 

3.2.2 Standardisation, fingerprint generation and chemical similarity 

 

Compounds were standardized as recommended by Fourches et al.113 The ChemAxon 

standardizer114 (version 15.1.19.0) was used with the options “Remove Fragment” (keep 

largest), “Neutralize”, “RemoveExplicitH”, “Clean2d”, “Mesomerize”, and “Tautomerize”.  

 

ECFP4 fingerprints (2,048 bits),43 MACCS keys (166 keys)46  were generated using scikit-

chem.116  Additionally, PubChem fingerprints (881 bits) were extracted from the PubChem 

database70,74 using the python API pubchempy.134 Tcs were then computed for all pairs of 

compounds for all three fingerprints, hence yielding three chemical similarity matrices. 

Chemical and structural similarity are used interchangeably in the following.  
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3.2.3 Phenotypic similarity coefficients 

 

Computations in this section were performed using R (version 3.2.4).135,136 Spearman 

correlation coefficients were computed as a metric to assess the phenotypic similarity of the 

compounds in both datasets. Because missing data were present in the compound profiles, the 

correlation was calculated only on the readouts that are in common between the two 

compound profiles. 

The phenotypic similarity of compounds was also assessed based on the ARTS metric. Since 

the datasets used in this study are sparse and quantifying similarity requires robust metrics, 

the ARTS metric was selected since it has previously been shown to assign meaningful 

biological similarity values between assay readouts also in case of a large fraction of missing 

data.121  

 Because the ARTS metric was originally developed to compare pIC50 profiles, the BioMAP 

profiles were first converted to pIC50 range prior to the use of ARTS using the following 

transformation: 

 

 8l = 	 logCm(8) + c	 (12) 

 

where y’ is the transformed BioMAP readout, y is the original BioMAP readout and c=(4 −

min	(logCm(8))). ARTS was applied in a similar way to the Spearman coefficient, i.e. only 

on readouts that are in common between the two profiles.  
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3.2.4 Modelling of the relationship between the fraction of phenotypically 

similar compounds with increasing chemical similarity using 

Bayesian regression models  

 

To quantify how phenotypic similarity varies on average with increasing values of chemical 

similarity, compounds were binned into 20 chemical similarity bins, ranging from Tc = 0 to 

Tc = 1 and each bin spanning Tc = 0.05. Then for each combination of the three fingerprints 

and the two biological similarity measures described above, 9 thresholds of phenotypic 

similarity were explored i.e. every 0.1 unit in Spearman correlation and ARTS metric. For 

each phenotypic similarity threshold in combination with one of the two phenotypic similarity 

measures and one of the three fingerprints, the fraction of compounds was computed in each 

chemical similarity bin that was above this threshold. Therefore, there was one such curve per 

combination of threshold, phenotypic similarity metric and fingerprint.  

Curves for which the threshold yielded less than 1% of the compound pairs below or above 

the threshold were removed since this yielded constant lines around either 0% or 100% 

phenotypically similar pairs respectively. These included thresholds between 0.1 and 0.6 

ARTS or above 0.9 on the BioMAP dataset, and above 0.9 Spearman correlation also on the 

BioMAP dataset. No such curves were found and removed on the ChEMBL dataset. 

The remaining curves corresponding to all the thresholds were averaged, and the curves were 

grouped by phenotypic similarity metric, fingerprint and dataset. There were, therefore, 

twelve averaged curves (six per dataset). 

Bayesian regression models were employed to these averaged curves using the rstanarm R 

package (v. 2.17.2)137 to model and quantify the increase in phenotypically similar pairs with 

increasing chemical similarity. The reason for employing the Bayesian framework instead of 
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the traditional least squares regression is that the model assumptions about normality and 

linearity of the residuals were not always obtained for some combinations of fingerprints, 

phenotypic similarity metric and thresholds. 

Using Bayesian regression models allowed for the estimation of the slopes of the above curves 

and fit different models to determine the trend of the relationship between chemical similarity 

and phenotypic similarity. When the model is a simple linear regression model, the slope 

represents the increase in the fraction of phenotypically similar compounds per 0.05 or 5% 

increase in Tc chemical similarity.  

The regression models were obtained through the stan_glm function with parameters 

family=gaussian(link=’identity’) for linear regression, and chains=3 for faster convergence. 

The initial values of the Markov chains were constrained to be sampled from [-0.5 and 0.5] 

through the use of the init_r parameter since this improved the convergence of the models. 

The weakly informative default priors were used for the estimation of the intercept, slope and 

all the other coefficients (discussed in the following), which in the case of the regression are 

modelled by Gaussian distribution with μ=0 and σ=5 for the intercept, or μ=0 and σ=10 for 

the other coefficients of the regression. For the auxiliary i.e. the error or residuals of the model 

(ε7), the default prior was used for the error standard deviation of the response variable 

(fraction of phenotypically similar compounds) which was modelled by an exponential model 

with rate=1.  
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Four models were evaluated per averaged curves. The first one modelled a constant linear 

relationship between the fraction of phenotypically similar compounds and chemical 

similarity: 

 M7,Js,tu = v	 +	ε7 (13) 

where M7,Js,tu  is the fraction of compounds with phenotypic similarity metric wx (wx = 

Spearman correlation or ARTS) in chemical similarity bin 0, and v is the intercept of the line. 

When the relationship between the fraction of phenotypically similar compounds with 

increasing chemical similarity bin was not constant, the following model was applied: 

 M7,Js,tu = 	v + 	y67,Js +	ε7 (14) 

where 67,Js is the ith chemical similarity bin using fingerprint IP, while v, y and  ε7 are the 

intercept, slope and residuals of the model respectively. Sometimes, the trend was not linear 

but had a parabolic shape, in which case the following model provided a better fit:  

 M7,Js,tu = 	v +	yC67,Js + yE67,JsE 	+	ε7 (15) 

where yC is the slope for the first chemical bin (0<Tc<0.5), and yE indicates the direction of 

the curvature and represents the variation of the slope from one chemical similarity bin to the 

next. In the last case, the trend was a combination of two regression lines which was modelled 

according to the following piecewise linear model:  

 M7,Js,tu = 	v +	y′C67,Js + y′E[67,Js − (tu,Js]} +	ε7 (16) 

where y′C is the slope of the first regression line and y′E is the difference in slopes between 

the first and the second regression line. ( is the breakpoint i.e. the chemical similarity bin 

defining the end of the first regression line, and the start of the second line. ( was estimated 

independently to this model using the r package segmented138 (v.0.5.3.0) for each combination 
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of phenotypic similarity metric wx, phenotypic similarity threshold ~ and fingerprint IP. 

[67,Js − (tu,Js]} represents a hinge function, for which only the positive values of the 

expression within the brackets are retained, so that the second slope is estimated for chemical 

similarity bin ( and above. 

 

3.2.5 Model selection and estimation of slopes and breakpoint 

 

After fitting these four models to the averaged curves, the R package loo139 (v. 1.1.0) was 

utilised to compute the expected log pointwise predictive density (elpd) for each model. This 

measure estimated the quality of the fit. The higher the elpd, the better the model fits the data. 

Hence, for each averaged curve corresponding to one of the 12 combinations of biosimilarity 

metric, fingerprint and dataset, the model with the highest elpd was selected. 

Since the aim of this paper is the quantification of how phenotypic similarity varies with 

increasing values of chemical similarity, the coefficients representing the slope (or equivalent 

depending on the models) were estimated by taking the median of the posterior probability 

distribution. A 95% confidence interval was also directly calculated by obtaining the quantiles 

2.5% and 97.5% of the posterior distribution.  

Since some of the trends were parabolic or bi-linear, estimates for the breakpoint were 

calculated i.e. an estimate of the chemical similarity bins at which the second slope or 

increasing trend starts. For the quadratic models, these can be obtained by computing the x-

axis of the point corresponding to the vertex of the parabola (= −	yC 2yE⁄ ).	 For the piecewise 

linear models, the estimates of the breakpoint were computed using the R package segmented 

as mentioned in the previous section.  
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3.2.6 Neighbourhood Enhancement 

 

Since the variation of phenotypic similarity with increasing chemical similarity behaved 

differently depending on the fingerprints, it was hypothesized that fingerprints had different 

neighbourhood enhancements also in the context of phenotypic screening. This concept has 

previously been established by Patterson et al.59 by plotting the distance in biological readout 

space over the distance in chemical descriptor space. An ‘ideal’ descriptor would lead to high 

biological readout similarity for the large majority of chemically similar compounds, with 

only a minority of compounds showing different biological response for similar compounds, 

what is today called ‘activity cliffs’.61,140  

The enhancement ratio59 is the score Patterson et al. developed to quantify how many such 

activity-cliffs points are present on any plot comparing chemical and biological similarity. In 

this analysis, enhancement ratios were calculated per fingerprint, per assay, and per dataset. 

The maximal enhancement ratio that can be computed is 2. Hence the closer to 2 the 

enhancement ratio gets, the better the descriptor was to predict neighbourhood regions and 

hence yield less activity-cliffs. In addition, as recommended by Paterson et al., a Chi-squared 

test (p < 0.01, one degree of freedom) was utilised to assess whether the point density in 

neighbourhood regions was higher than expected under a uniform distribution.  
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3.3 Results and discussion 

 

3.3.1 Phenotypic similarity increases with structural similarity  

 

Using activities from phenotypic datasets that are different in nature, i.e. a protein biomarker 

expression dataset (BioMAP) and a cytotoxicity dataset (ChEMBL), the relationship between 

phenotypic similarity and chemical similarity was evaluated.  

To this aim, phenotypic profiles for each compound were created, and the Spearman 

correlation and ARTS correlation quantified the pairwise phenotypic similarity of those 

phenotypic profiles. Similarly, chemical representations for each compound were obtained 

using ECFP4, MACCS and PubChem fingerprints, and the pairwise chemical similarity was 

obtained using Tc similarity. Compounds were binned into several chemical similarity 

intervals, and the fraction of phenotypically similar compounds was calculated for various 

thresholds of phenotypic similarity. 

In the BioMAP dataset, the fraction of phenotypically similar compounds increased linearly 

only for certain thresholds of ARTS and Spearman correlation coefficients (Figure 6). The 

fraction of phenotypically similar compounds remained constant for thresholds of ARTS 

between 0.1 and 0.7 and an increasing trend was observed only for thresholds of ARTS 

between 0.8 and 0.9. This was due to the fact that less than 1% of compounds had an ARTS 

score below 0.7. For the Spearman correlation coefficient, the fraction of phenotypically 

similar compounds increased with chemical similarity for Spearman correlation thresholds 

between 0.4 and 0.7. Those values were in accordance with the study by Shah et al. who used 

BioMAP readouts (among others in the ToxCast dataset) where compounds that had a 
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biological similarity correlation of >0.6 coincided with compounds that were structurally 

similar.131 Hence the molecular similarity principle is observed in the BioMAP dataset 

regardless of the fingerprint used, which may suggest that the molecular similarity principle 

is also applicable for biomarker-based phenotypic screening assays similar to the BioMAP 

assays. 

In the ChEMBL dataset, the fraction of phenotypically similar compounds increased with 

chemical similarity for all thresholds (i.e. all subpanels of phenotypic similarity thresholds) 

of ARTS in a piecewise linear manner i.e., where the fraction of phenotypically similar 

compounds increased only after a certain chemical similarity has been reached (Figure 7). 

This is in accordance with the study by Young et al. which showed that the molecular 

similarity principle holds in so-called “structure-phenotype concordance regions” defined by 

Tc > 0.3.85  

When the Spearman correlation coefficient was used, the fraction of phenotypically similar 

compounds increased mainly for ECFP4 and only up to a Spearman correlation threshold of 

0.5, after which the fraction of phenotypically similar compounds remained constant. For the 

other two fingerprints, the fraction of phenotypically similar pairs decreased until reaching a 

certain chemical similarity and increased again slightly for most thresholds. These results 

suggested that the Spearman correlation metric is not appropriate for molecular similarity 

principle studies on cell viability readouts comparable to those of the ChEMBL dataset.  

Nonetheless, the fraction of phenotypically similar compounds increased with chemical 

similarity for most thresholds of Spearman and ARTS metrics in both datasets. These results 

also agreed with the current literature since the molecular similarity principle was observed 

only for a certain range of Tc values. In the following, the molecular similarity principle is 

quantified along with the Tc values after which the increase in phenotypic similarity with 

increasing chemical similarity is observed.
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  Figure 6. Evaluation of the relationship between the fraction of 

phenotypically similar compound pairs and chemical similarity in 

the BioMAP dataset for various thresholds of Spearman or ARTS. 

Each panel represents a combination of phenotypic similarity 

measure (column) and the corresponding threshold (row). Then in 

each panel, the fraction of compound pairs with phenotypic 

similarity above the threshold is depicted as function of increasing 

chemical similarity divided into 20 bins. For ARTS, the fraction of 

phenotypically similar compounds increased with chemical 

similarity only for ARTS thresholds of 0.8 or higher. For the 

Spearman correlation coefficient, the fraction of phenotypically 

similar compounds increased with chemical similarity for 

Spearman correlation thresholds between 0.4 and 0.7. For other 

thresholds, the fraction of phenotypically similar compounds did 

not seem to vary with increasing chemical similarity. ECFP4 

fingerprints started to increase for lower chemical similarity values 

compared to the other two fingerprints.   
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Figure 7.   Evaluation of the relationship between the fraction of 

phenotypically similar compound pairs and chemical similarity in 

the ChEMBL dataset for various thresholds of Spearman 

correlation or ARTS. Each panel represents a combination of 

phenotypic similarity measure (column) and the corresponding 

threshold (row). Then in each panel, the fraction of compound 

pairs with phenotypic similarity above the threshold is depicted as 

a function of increasing chemical similarity divided into 20 bins. 

With ARTS, the fraction of phenotypically similar compounds 

increased with chemical similarity. With Spearman the fraction of 

phenotypically similar pairs decreased up to a certain Tc after 

which it increases slightly again. Again, ECFP4 fingerprints 

started to increase for lower Tc values compared to the other two 

fingerprints. 
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3.3.2 Quantification of the molecular similarity principle through 

Bayesian regression models 

 

To quantify the average increase in the fraction of phenotypically similar compounds per a 

small increase in chemical similarity, curves corresponding to all combinations of phenotypic 

similarity metrics and fingerprints were averaged. Then four Bayesian regression models were 

applied to these twelve averaged curves (six per dataset) and the model which best fitted the 

curves were selected. One model, the constant linear model, was employed to test for a flat 

relationship of the phenotypic similarity with chemical similarity. In other words, if this 

constant model better fitted those curves compared to the other three models, the slope would 

be null and the molecular principle would therefore not be observed. 

In the BioMAP dataset, the averaged variation of the fraction of phenotypically similar pairs 

increased moderately with increasing chemical similarity (Figure 8). Even though this 

increase was slight, the fact that the constant model did not have the best fit compared to the 

other three models, in all cases, indicated that the observed increase in phenotypic similarity 

with increasing chemical similarity was statistically above 0. When ECFP4 was used, the 

linear regression model fitted best, and the slope was estimated as a 0.9% increase in the 

fraction of phenotypically similar compound pairs per 5% increase in Tc chemical similarity 

(Table 5). When the MACCS was utilised, either the quadratic model or the piecewise linear 

model fitted best depending on the phenotypic similarity metric employed (Figure 8).  For 

the PubChem fingerprint, the piecewise linear model had the best fits compared to the other 

models for both phenotypic similarity metrics (Figure 8).   
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Figure 8. Curve averaging and Bayesian regression modelling for the BioMAP dataset. Each 

panel represents a combination of fingerprint and phenotypic similarity metric. In each panel, 

the grey curves represent the fraction of phenotypically similar pairs with similarity above a 

specific threshold (Figure 6) for increasing chemical similarity. The red curve is the point-by-

point average of those curves in each panel. The Bayesian model with the best fit to the 

average curve is also overlaid. 
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The molecular similarity principle is observed for the whole chemical similarity scale for 

ECFP4 whereas, for the other two fingerprints, the molecular similarity principle was only 

observed after a certain Tc threshold. This Tc threshold will be referred to as breakpoint in 

the following. This observation of a breakpoint is in agreement with most of the studies which 

also examined the relationship between phenotypic similarity and chemical similarity in a 

similar way.129,130 

For the MACCS and PubChem fingerprint, since the molecular similarity principle was only 

observed after the breakpoint, an estimate for this value must first be calculated. Since the 

trend was parabolic for MACCS with the ARTS metric, the breakpoint corresponded to the 

x-coordinate of the vertex of the parabolic trend, which was estimated as Tc = (0.3,0.35] 

(Table 5). Using MACCS in combination with the Spearman correlation metric, a piecewise 

linear trend was obtained which meant that the breakpoint was estimated as the Tc which 

marks the beginning of the second slope. Remarkably, this was also estimated as Tc = 

(0.3,0.35] (Table 5).   

For PubChem, the trend was piecewise linear for both ARTS and Spearman correlation 

metrics but the breakpoint was estimated as Tc = (0.6;0.65] for the former and Tc = (0.4,0.45] 

for the latter (Table 5). MACCS displayed earlier breakpoint than PubChem, meaning that 

the molecular similarity principle was observed for a higher range of chemical similarities for 

MACCS compared to PubChem. 

Once the breakpoints were estimated, this value was used to limit the portion of the curves 

for the estimation of the increase in phenotypic similarity for increasing chemical similarity 

i.e. provide an estimate of the molecular similarity principle.  

For MACCS, when using ARTS to quantify the phenotypic similarity, since the curve was 

parabolic, this estimate corresponded to the average slope observed from the breakpoint to 

the maximal Tc bin ([0.95, 1]) which was estimated as 1.2% increase in the fraction of 
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phenotypically similar compounds per 5% increase in Tc chemical similarity. For MACCS 

using the Spearman correlation to quantify the phenotypic similarity, the second slope 

provided an estimate of the molecular similarity principle and this was estimated as a 0.9% 

increase in the fraction of phenotypically similar compounds per 5% increase in chemical 

similarity (Table 5).  

Since the PubChem trend was piecewise linear for both phenotypic similarity metrics, the 

second slope provided the molecular similarity principle in both cases. For ARTS, this was 

estimated as 1.6% increase in the fraction of phenotypically similar compounds pairs per 5% 

increase in chemical similarity (Table 5). In the case of the Spearman correlation, this was 

estimated as a 0.7% increase in the fraction of phenotypically similar compounds pairs per 

5% increase in chemical similarity (Table 5). 

For the ChEMBL dataset, the constant model did not win over the other three models for any 

combination of fingerprint and phenotypic similarity metric. This once again showed that the 

observed increase in phenotypic similarity with increasing chemical similarity was 

significantly different than 0. In this dataset, the piecewise linear model predominated in most 

combinations of fingerprints and phenotypic similarity metrics (Figure 9).  

When ECFP4 and ARTS were used, the fit consisted of two slightly differing increasing 

slopes. For the remaining of the combinations where the piecewise linear model was the best 

fit, the first slope was negative or almost null and only the second slope was positive (Figure 

9).  The latter behaviour reinforces the current knowledge that biological similarity increases 

only after a Tc breakpoint,129,130 suggesting that phenotypic similarity behaved in the same 

manner as well. When the Spearman coefficient was used, the quadratic model had a better 

fit over the other models for MACCS and PubChem fingerprint but not for ECFP4 (Figure 

9).  
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 ARTS SPEARMAN 
 selected model   estimate   95% confidence 

interval  selected model   estimate   95% confidence 
interval  

ECFP4 linear β = 0.009 [0.005, 0.013] linear β = 0.007 [0.002, 0.011] 

MACCS quadratic 

vertex = (0.3,0.35]   

piecewise linear 

b = (0.3,0.35] (0.2,0.4] 
β1 = -0.013  [-0.02, -0.005] β'1 = -0.009 [-0.014, -0.005] 
β2 = 0.0009 [0.0005, 0.0012] β'2 = 0.018 [0.012,0.023] 

  β'1 + β'2 = 0.009   

PUBCHEM piecewise 
linear 

b = (0.6;0.65] (0.55;0.75] 

piecewise linear 

b = (0.4,0.45] (0.25,0.6] 
β'1 = -0.004 [-0.006, -0.002] β'1 = -0.005 [-0.009, -0.001] 
β'2 = 0.02 [0.014,0.026] β'2 = 0.012 [0.005,0.019] 

β'1 + β'2 = 0.016   β'1 + β'2 = 0.007   

 

Table 5. Key estimates and associated 95% confidence interval for the models fitted on the averaged curves for the BioMAP dataset (displayed in 

Figure 8). Only estimates related to the increase of phenotypic similarity with increasing chemical similarity are reported. If the selected model 

(i.e. the model with the best fit to the average curve) is the linear model, then the slope (β) is reported.  If the selected model is quadratic, then the 

initial slope (β1) is reported as well as the increase in slope for each 5% increase in chemical similarity (β2). The x-coordinate of the vertex (i.e. the 

breakpoint where the curve changes direction) is also reported. Finally, if the model is piecewise linear, then the estimate of the breakpoint (b), 

the estimate of the first slope (β'1), the estimate of the difference in two slopes (β'2) and the estimate of the second slope (β'1 + β'2) are reported.
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Figure 9. Curve averaging and Bayesian modelling for the ChEMBL dataset. Each panel 

represents a combination of fingerprint and phenotypic similarity metric. In each panel, the 

grey curves represent the fraction of phenotypically similar pairs with similarity above a 

specific threshold (Figure 7) for increasing chemical similarity. The red curve is the point-

by-point average of those curves in each panel. The Bayesian model with the best fit to the 

average curve is also overlaid. 
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When the quadratic model was selected, very slight increases of phenotypic similarity with 

chemical similarity can be observed after the breakpoint is reached, especially in the case of 

PubChem (Figure 9). This suggested that the Pearson correlation coefficient is an inadequate 

metric to model phenotypic similarity for cytotoxicity readouts such as those present in the 

ChEMBL dataset.  

When estimating the breakpoints, ECFP4 had lower Tc values than the other fingerprints. As 

a matter of fact, the breakpoint was observed for Tc = (0.25,0.3] with the ARTS metric, and 

Tc = (0.35,0.4] with the Spearman correlation coefficient (Table 6). Conversely, the 

breakpoints estimated with the MACCS fingerprint was Tc = (0.5,0.55] for both the ARTS 

and Spearman correlation coefficient (Table 6). For PubChem, the breakpoint was Tc = 

(0.5,0.55] for ARTS and Tc = (0.6,0.65] for the Spearman correlation coefficient (Table 6). 

This indicated that ECFP4 allowed to observe the molecular similarity principle for a higher 

range of chemical similarity than the other two fingerprints employed in the analysis. 

However, the fact that the breakpoint was observed for a higher Tc, around 0.5, agreed not 

only with Tiikkainen et al. who employed cytotoxicity readouts,130 but also with Shah et al. 

who used readouts similar to those used in this study.131 Hence ECFP4 displayed an atypical 

behaviour compared to the literature in which phenotypic screening datasets were used. 

The estimate for the molecular similarity principle, when the phenotypic similarity was 

measured with the ARTS metric was always modelled by a piecewise linear model for all 

three fingerprints and is hence estimated using the second slope of those fits. For ECFP4, this 

was estimated as a 2.5% increase of the fraction of phenotypically similar compounds per 5% 

increase in chemical similarity (Table 6). For MACCS keys and PubChem, this was estimated 

as 4.8% and 3.9% respectively per 5% increase in chemical similarity (Table 6).  

If the Spearman correlation coefficient was used, different trends were obtained. For ECFP4, 

the piecewise linear model had the best fit, and the molecular similarity principle was 2.1% 
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increase in the fraction of phenotypically similar compounds per 5% increase in chemical 

similarity (Table 6). For MACCS and PubChem, since the model was quadratic, the 

molecular similarity principle was estimated as the average slope from the breakpoint to the 

maximal chemical similarity bin. These estimates were respectively 1.6% and 0.6% increase 

in the fraction of phenotypically similar compounds per 5% increase in chemical similarity. 

Overall, the fraction of phenotypically similar compounds increased by approximately 1% 

per 5% increase in chemical similarity in the BioMAP dataset, whereas it increased by 

approximately 3% per 5% increase in chemical similarity in the ChEMBL dataset. Despite 

these small values, the fact that both estimates are positive showed that the molecular 

similarity principle is valid in phenotypic screening datasets since this means that more 

phenotypically similar compounds can be expected with higher structural similarity. This also 

shows how much phenotypically similar pairs can be expected for a given Tc value depending 

on the fingerprint. This is of importance for analyses such as virtual screening and quantitative 

structure-activity relationship (QSAR) studies, which rely on thresholds of structural 

similarities to obtain sets of compounds with desired properties.  

In addition, this study showed that mostly linear or piecewise linear trends were obtained 

when ECFP4 was used (Figure 8 and Figure 9).  Combined with the lower estimated 

breakpoints when ECFP4 was used, suggested that this fingerprint was more appropriate for 

molecular similarity principle studies in phenotypic screens compared to the other two 

fingerprints, since the molecular similarity principle can then be observed for a larger 

chemical similarity range.  
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Table 6. Key estimates and associated 95% confidence interval for the models fitted on the averaged curves for the ChEMBL dataset (displayed in Figure 

9). Only estimates related to the increase of phenotypic similarity with increasing chemical similarity are reported. If the selected model (i.e. the model 

with the best fit to the average curve) is the linear model, then the slope (β) is reported.  If the selected model is quadratic, then the initial slope (β1) is 

reported as well as the increase in slope for each 5% increase in chemical similarity (β2). The x-coordinate of the vertex (i.e. the breakpoint where the 

curve changes direction) is also reported. Finally, if the model is piecewise linear, then the estimate of the breakpoint (b), the estimate of the first slope 

(β'1), the estimate of the difference in two slopes (β'2) and the estimate of the second slope (β'1 + β'2) are reported.

 ARTS SPEARMAN 
 selected 

model 
  estimate  

 95% confidence 
interval  

selected 
model 

  estimate  
 95% confidence 

interval  

ECFP4 piecewise 
linear 

b = (0.25,0.3] (0,0.55] 

piecewise 
linear 

b = (0.35,0.4] (0.2,0.55] 
β'1 = 0.046 [0.025,0.064] β1 = -0.013 [-0.023, -0.001] 

β'2 = -0.021 [-0.044,0.004] β'2 = 0.034 [0.017,0.05] 

β'1+β'2 = 0.025   β'1+β'2 = 0.021   

MACCS piecewise 
linear 

b = (0.5,0.55] (0.45,0.55] 

quadratic 

Vertex = (0.5,0.55]   
β1 = -0.008 [-0.013, -0.003] β1 = -0.036 [-0.048, -0.022] 

β'2 = 0.056 [0.048,0.065] β2 = 0.0016 [0.0009,0.0021] 

β'1+β'2 = 0.048       

PUBCHEM piecewise 
linear 

b = (0.5,0.55] (0.4,0.7] 

quadratic 

Vertex = (0.6,0.65]    
β'1 = -0.001 [-0.01,0.009] β1 = -0.015 [-0.022, -0.007] 

β'2 = 0.04 [0.022, 0.058] β2 = 0.0006 [0.0003, 0.001] 

β'1+β'2 = 0.039       
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3.3.3 Neighbourhood enhancement indicated that ECFP4 are better 

descriptors for similarity analyses involving phenotypic screening 

data 

 

In order to explain these differences observed with ECFP4 compared to the other two 

descriptors, the concept of neighbourhood behaviour defined in Patterson et al.59 was 

employed. This concept implies that molecular descriptors differ in how small structural 

changes impact the change in biological activity, and this is quantified with the enhancement 

ratio. The enhancement ratio quantified the number of compound pairs which have a correlated 

biological and chemical similarity, compared to the number of pairs with anticorrelated values. 

Therefore, ideal descriptors would have a high enhancement ratio close to 2, which would then 

translate into a predictable structure-activity relationship. Enhancement ratio were calculated 

per assay and per fingerprint. They were then averaged per fingerprint. 

In the BioMAP dataset, the neighbourhood enhancements were overall very high with an 

averaged enhancement ratio of 1.97 for ECFP4, 1.94 for MACCS keys and 1.91 for PubChem 

fingerprints (Figure 10). This showed that all three descriptors were appropriate to capture 

structural similarity to phenotype similarity relationships in the context of the BioMAP dataset. 

With the ChEMBL dataset, however, only ECFP4 achieved a high averaged neighbourhood 

enhancement of 1.93, while MACCS keys and PubChem fingerprints had averaged 

neighbourhood enhancement values of 1.64 and 1.66, respectively (Figure 10).  
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Figure 10. Neighbourhood enhancement ratio distributions for each combination of fingerprint 

and dataset. The distributions were derived from neighbourhood enhancement ratios calculated 

over all assays and grouped by fingerprint and dataset. Neighbourhood enhancement ratios 

calculated with ECFP4 are always higher on average than for the other two fingerprints. Also, 

neighbourhood enhancement ratios were generally lower in the case of the ChEMBL dataset. 

The difference in ratios between the descriptors implied not only that the neighbourhood 

behaviour observed with ECFP4 fingerprints was consistent across datasets, but also that 
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ECFP4 is able to capture bioactivity differences better than the other two descriptors in 

chemical similarity space since the neighbourhood enhancement ratio was higher in both 

datasets. Compared to the neighbourhood enhancement values in Patterson et al.,59  the values 

obtained in this analysis were much higher. This implied that the fingerprints used in this thesis 

are now more advanced in terms of their neighbourhood behaviour compared to the ones they 

used. It may also imply that it is easier to obtain neighbourhood behaviour with the current 

phenotypic datasets compared to the datasets used in their study. 

In the ChEMBL dataset, even though the neighbourhood enhancement ratios of the fingerprints 

were high for most cell lines, the fingerprints did not exhibit the neighbourhood behaviour for 

certain cell lines in the ChEMBL dataset. In the following, it is explained why the 

neighbourhood behaviour cannot be obtained for these specific cell lines. The cell lines CEM-

SS, HaCaT, and SK-N-SH in the CHEMBL datasets, displayed neighbourhood enhancements 

that were not statistically better than random for all three descriptors, and those had very few 

data points compared to the other cell lines (3, 9 and 63 compound pairs respectively) and this 

impacted the statistical significance of the enhancement ratio computations. On the other hand, 

the enhancement ratio was not significantly higher than random for the cell line Bel-7402 only 

in the case of the PubChem dataset. This prompted the examination of scatterplots comparing 

pairwise phenotypic and chemical similarities for this cell line in order to gain insights into 

how the neighbourhood enhancement ratio varied with the choice of descriptor. 

Hence, a comparison of the scatter plots for Bel-7402 revealed further differences between the 

three descriptors, regarding compound pairs with higher structural similarity (Figure 11). 

Indeed, with ECFP4, very few compound pairs had a high structural similarity, and those 

stretched between 0.3 < Tc < 1 and generally had low pairwise phenotypic differences in the 

Bel-7402 assay, whereas in the case of MACCS and PubChem, a second group of highly 

structurally similar compound pairs was formed, some with relatively high pairwise phenotypic 
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differences. In the case of PubChem, there was an even higher density of such high structurally 

similar pairs, which reduced the density of points in the lower left part of the plot. Because the 

density became lower in this area of the plot, the Chi-squared test employed to assess the 

statistical plausibility of the enhancement ratio failed. For five cell-lines, the neighbourhood 

enhancement was statistically significant for ECFP4 alone: BGC-823, HEp-2, KB3-1, MT4 

and MX1. Comparably to Bel-7402, much higher densities in highly structurally similar 

compound pairs were observed in the case of MACCS and PubChem than for ECFP4 with 

these cell lines (data not shown).  

Hence the neighbourhood enhancement ratios were useful at quantifying how well fingerprints 

capture the relationship between phenotypic similarity and chemical similarity. ECFP4 had a 

consistently higher neighbourhood enhancement ratio compared to MACCS keys and 

PubChem fingerprints across all readouts/cell lines in both datasets. The reason behind this 

observation is that they yielded less stringent Tc similarity scores compared to ECFP4 

descriptors resulting in higher densities of points in the upper right end of the chemical 

similarity/phenotypic similarity plot. This is perhaps due to the higher resolution of ECFP4 

fingerprints, which yield longer binary vectors than the other two fingerprints.  

Hence ECFP4 fingerprints was a better descriptor for cheminformatics analyses involving 

chemical similarity in the context of phenotypic screens such as virtual screening. This is 

consistent with previous studies in which ECFP4 outperformed MACCS keys in virtual 

screening applications41,117 and in drug-target interaction prediction studies.141 
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Figure 11. Pairwise differences between compound activities in the Bel-7402 assay compared 

to chemical similarity with all three fingerprints. A higher density of points was observed for 

low chemical similarity in ECFP4 whereas the density is more spread out for the other 

fingerprints. This explained why ECFP4 exhibited the neighbourhood property compared to 

the other two fingerprints. 
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3.4 Conclusion  

This study investigated the correlation between chemical similarity and similarity of 

phenotypic profiles comprising about 80 diverse cytotoxicity and biomarker readouts. The 

molecular similarity principle was found to be valid when using phenotypic readouts and this 

study quantified the correlation between chemical similarity and phenotypic similarity. Indeed, 

the fraction of compounds that are phenotypically similar increased by an average of 1% and 

3% per 5% increase in Tc chemical similarity in the BioMAP and ChEMBL datasets 

respectively. In the BioMAP dataset, the fraction of phenotypically similar compounds 

increased linearly with chemical similarity when ECFP4 was employed, whereas the trend was 

parabolic or piecewise linear for MACCS and PubChem fingerprints. In the ChEMBL dataset, 

the piecewise linear model predominated. When the trend was quadratic or piecewise linear, 

the breakpoint was estimated to happen for a Tc between 0.4 and 0.6 on average, but the 

breakpoint was on average lower for ECFP4, as this happened for a Tc around 0.3.  

This led to comparing fingerprints as to their effects on differentiating the phenotypic profiles 

of compounds based on structural similarity, and it was found that ECFP4 consistently yielded 

higher averaged neighbourhood enhancement ratios across readouts and datasets (1.97 and 1.93 

for the BioMAP and ChEMBL dataset respectively). MACCS and PubChem produced 

relatively high enhancement ratios in the BioMAP dataset (1.94 and 1.91 respectively) but 

yieleded lower enhancement ratios in the cytotoxicity-based ChEMBL dataset (1.64 and 1.66 

respectively). This showed that ECFP4 performed better in tasks involving chemical similarity 

with application to phenotypic screens. In conclusion, the findings of these studies showed that 

the molecular similarity principle used in target-based screens is also relevant to phenotypic 

screening datasets. 
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Chapter 4  Comparative study of the 

mechanism of action hypotheses 

obtained in the NCATS dataset using 

experimental bioactivity versus in 

silico bioactivity 

 

4.1 Introduction 

 

Phenotypic assays are coming back as a screening method to discover new chemical entities. 

However, the MoA of compounds active in this type of assays, i.e. the actual protein target(s) 

by which the compounds elicit their activity in the screening assay remain to be uncovered. 

Deconvolution methods involve assays aimed at identifying candidate protein targets for these 

active compounds.  But difficulties in deconvoluting the MoA of active compounds 

experimentally hinder the discovery of new compounds through phenotypic screening since in 

vitro deconvolution methods are time-consuming and expensive. Therefore, MoA hypotheses 
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that need to be confirmed experimentally must be prioritised with the help of computational 

methods.  

As a result, computational analyses using the wealth of experimental data in gene expression 

databases64 or bioactivity databases33,65,112 were employed to prioritise such hypotheses to be 

tested experimentally. Other methods employ machine learning models applied to a 2D 

representation of the compounds to predict the MoA based on large bioactivity training 

sets.83,108,110  So far, in silico deconvolution studies either used experimental target activity 

datasets or in silico predictions thereof to deconvolute the effects of compounds in phenotypic 

screens. To our knowledge, no studies compared the effect of using one or the other data type 

on target deconvolution.  Consequently, it is presently not known whether the MoA hypotheses 

generated from predicted bioactivity can replace or even complement experimental 

bioactivities when deconvoluting compound activity in phenotypic screening datasets. 

The aim of the present chapter is therefore to compare MoA hypotheses obtained from 

experimental bioactivity datasets against MoA hypotheses obtained from purely in silico target 

predictions (Figure 12). Compounds from the National Centre for Advancing Translational 

Sciences (NCATS) pharmaceutical collection (NPC)28 were employed, and experimental data 

for those compounds were extracted from Drugmatrix. In parallel, targets were predicted via 

the target prediction workflow described in Chapter 2 (Figure 12). MoA hypotheses obtained 

from experimental bioactivities were then compared to MoA hypotheses obtained from 

predictions. Additional steps were taken to ensure that the comparison between those two 

datasets was unbiased i.e. the compounds in the target prediction dataset were not part of the 

experimental/Drugmatrix dataset or in ChEMBL which is a larger repository of drug-like 

compounds.  
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Supervised SOMs (sSOM) were employed to narrow the number of MoA hypotheses generated 

by the two approaches described above. Even though SOMs were successfully employed to 

generate target predictions,89,142 in this chapter, the use of sSOM was motivated by two 

different reasons: 1. Since the bioactivity datasets are sparse, sSOMs have been shown to yield 

good clustering performance where training sets are sparse such as the Drugmatrix and target 

prediction dataset;143 2. sSOM also allowed to remove noisy target-phenotypic associations 

and to reduce the number of MoA hypotheses being made per phenotypic activity, by analysing 

the weights of each target associated to certain clusters of compounds with a specific 

phenotypic activity cluster (Figure 12). Indeed, it is often the case that compounds are active 

in different phenotypic assays, and the relationship between these assays is complex. sSOM 

allows modelling these relationships and to isolate phenotypic activities based on the most 

relevant targets. Targets in the compound clusters obtained from the experimental bioactivity 

dataset were then compared to those associated with the target prediction clusters both 

quantitatively using the GO framework144, and qualitatively with literature analysis of the 

individually selected targets (Figure 12). 
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Figure 12. Overview of the workflow employed in this chapter to separate phenotypic activity 

clusters based on relevant targets. This effectively reduces the target space to relevant targets 

for each phenotypic space.  Ultimately selected targets obtained from target prediction and the 

use of experimental bioactivity data alone are compared with functional similarity and also 

with literature analysis.  
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4.2 Materials and methods 

 

4.2.1 NCATS phenotypic compound (NPC) library and generation of the 

phenotypic outcomes matrix 

 

The dataset originated from a collaboration of the Open Innovation Drug Discovery (OIDD) 

between the NCATS and Eli Lilly, which was aimed at exploring the effects of a large 

collection of drugs in cell-based and various in vitro disease models. The compound and assay 

metadata CSV files, along with the assay experiment results CSV file, were downloaded from 

https://ncats.nih.gov/expertise/preclinical/pd2. The library (as of 21/11/2017) comprised 2,511 

drugs which were measured at 4 doses (0.2, 2, 10 and 20 μM depending on the type of assay 

i.e. screening, preliminary or confirmatory) in 47 assays spanning across the 5 phenotypic 

annotations described in Table 7.28 Compounds were also screened in an additional 5 assays 

for their effect on the G2/M cell-cycle phases. Compounds exhibiting an effect on both cell-

cycle and on one of the endpoints measured by the OIDD (e.g. anti-angiogenesis) may only 

have a secondary effect on this endpoint. Since the aim was to generate a phenotypic readout 

matrix, 5 assays measuring on-target activities as measured by the kinase panels were not 

considered in the analysis.  
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Phenotypic 
annotation Model Description 

Anti-
angiogenesis 

Inhibition of 
angiogenesis in 

oncology 

Assays measuring endothelial tube formation (presence of 
CD31/PECAM-1 marker) and cell nuclei number by imaging 
of co-cultures of human clonal endothelial colony forming 
cells (ECFCs) and adipose-derived stem cells (ADSCs) 
treated with vascular endothelial growth factor (VEGF). 
Compounds are labelled as active if the decrease in tube area 
is > 40% at either 2 μM or 10 μM. 

Insulin 
secretion Diabetes 

Immunoassay to quantify insulin secretion from the INS-1E 
cell line using AlphaLISA kit145 (immunoassay similar to 
ELISA). Compounds yielding a 20% increase in insulin 
secretion at either 2 μM or 10 μM were considered active. 

GLP-
Secretion Diabetes 

Quantification of Glucagon-Like Peptide 1 (GLP-1) in 
supernatants using AlphaLISA kit145 in media containing 
NCI-H716 cells and STC-1 cells. Compounds yielding a 20% 
increase in insulin secretion at either 2 μM or 10 μM were 
considered active. 

Kras/Wnt 
SL 

Selective 
cytotoxicity of 

colorectal cancer 

Selective cytotoxicity to 7 colon cancer cell lines bearing 
combinations of mutations in KRAS APC, PI3K and BRAF 
genes against wild-type under conditions that mimic tumour 
metastasis using non-adherent and non-proliferating cells; 
one assay tests for the modulation of the Wnt pathway. 
Compounds were screened in the cytotoxicity assays at 0.2, 
2 and 20 μM yielding dose-response curves. Compounds 
were considered active with an IC50 < 2 μM.  

Wnt 
pathway Osteoporosis 

β-catenin translocation and alkaline phosphatase (ALP) 
activity using fluorescence in multilineage potential C2C12 
cell line. Compounds are labelled as active if they yield an 
increased nuclear β-catenin > 40% at either 2 μM or 10 μM 

Cell cycle 
G2/M Cell-cycle arrest 

Fluorescence assays aimed at determining DNA content and 
condensation as well as levels of Cyclin B within HeLa cells; 
this assay is used to discriminate compounds which arrest 
cell-cycle e.g. compounds active in both this assay and in an 
anti-angiogenesis assay is a weak potentiator of anti-
angiogenesis since its effect may be due to cytostaticity or 
cytotoxicity. Compounds with IC50 < 20 μM in this assay 
was deemed cytotoxic.  

Table 7. Phenotypic annotations in the NCATS dataset28, their target biological endpoint, a 

description of experimental measurements and the number of assays measuring them. 
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A binary readout matrix was created based on the <OUTCOME> variable of the "assay 

experiment results" CSV file. More specifically, a compound was considered active in an assay 

if it was active at any of the concentrations measured for this assay. For each assay, Table 7 

specifies what constitutes activity and the threshold at which the <OUTCOME> variable is 

annotated with “active” (“inactive” by default).  This yielded a matrix of 2,511 compounds by 

27 assays. Assays were then grouped by their respective project which meant that if a 

compound is active in at least one of the assay, then it will be active for one of the 6 readouts 

in the dataset (Table 7). Hence the final matrix comprised 2,511 compounds by 6 readouts. 

 

4.2.2 Drugmatrix and generation of the on-target activity matrix 

 

The pharmacology assay dataset can be downloaded from 

https://www.niehs.nih.gov/results/dbsearch/index.html. This dataset comprises 1,291 

compounds with IC50 measured across 132 targets. Even though only 69% of the assays in this 

dataset are based on the expression of human targets (the remainder originated from rat, mouse, 

guinea-pig, rabbit, bovine, and bacteria), this dataset was selected because it is complete and 

such a characteristic is rare for pharmaceutical datasets.146   Inactive values (denoted by NA in 

the dataset) were replaced by the highest IC50 observed i.e. the lowest potency (140 μM in this 

case).  

In order to match the compounds in the Drugmatrix dataset to those in the NCATS dataset, the 

InChIKeys of the compounds in both datasets were extracted through the PubChem idexchange 

service (https://pubchem.ncbi.nlm.nih.gov/idexchange/). For the Drugmatrix compounds, this 
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was performed using the chemical names as input and extracting the InChIKeys with Operator 

Type set to "Same CID". For the NCATS compounds, the PubChem CIDs were already 

provided and were directly used as input to extract the InChIKeys via the same setting. Then 

the compounds in the Drugmatrix dataset were matched to the compounds in the NCATS 

phenotypic outcome matrix through inchikey matching.  In total 363 Drugmatrix compounds 

were found in the NCATS dataset.  

 

4.2.3 Target prediction matrix 

 

The target prediction workflow described in Chapter 2 was used to predict the targets for the 

NCATS compounds using !"#$%& > 1, since the aim of this analysis was exploratory and 

therefore stringent predictions were not required. This generated a matrix of 2,511 compounds 

by 777 putative human targets.  

Since the aim of this chapter was to compare target profiles from clustering results based on 

experimental against predicted activity values, steps were taken to ensure that the comparison 

was not biased. Therefore, the target prediction compound dataset was created with the 

condition that none of the compounds in this dataset was in the Drugmatrix dataset. Moreover, 

the target prediction algorithms described in Chapter 2 are based on data from the ChEMBL 

database. The Drugmatrix compounds are comprised of drugs mainly and this dataset is now a 

subset of ChEMBL. As a matter of fact, an overlap of 875 compounds was calculated between 
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the ChEMBL and Drugmatrix i.e. 68% of the Drugmatrix compounds are found in 

ChEMBL22.  

Therefore, a subset of NCATS compounds that were not in ChEMBL was used for the 

comparison of clustering with Drugmatrix and found 157 such compounds. Hence in this 

chapter, a subset of the target prediction matrix was created and which contained 157 

compounds by 777 targets.  

 

4.2.4 Supervised clustering with supervised self-organising maps  

 

A supervised clustering approach was used to reduce the target space leading to the generation 

of a fewer, more specific MoA hypotheses behind the phenotypic annotations of the 

compounds in the NCATS dataset. sSOMs147–149 were implemented with the R package 

Kohonen (v. 3.0.4).150  sSOMs are a type of neural networks, and as such, are very suited to 

the clustering of sparse data.143 However, the subset of the target prediction matrix comprised 

of the 157 NCATS compounds which did not overlap with ChEMBL was used for reasons 

mentioned in the previous section. 

In the sSOM algorithm, individual instances in the data (compounds in this case) are assigned 

to a node on a map of a pre-defined size, and each node can be regarded as a cluster of instances. 

sSOMs rely on the principle that nodes that are neighbours are likely to be close in input space 

as well (bioactivity in this case). The algorithm to build the sSOMs starts by initialising the 

nodes with random weights. Then, at each iteration, a random data point is considered and the 
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closest node in Euclidean distance in the sSOM is chosen to be the best matching unit (BMU). 

The BMU and all the nodes within a radius ' of the BMU are then updated with the difference 

between the current weights of the nodes and the variable values of the data point. In other 

words, the weight () of a node * is updated by: 

 () = () + ℎ(/01, *)	56(7 − ()) + (1 − 6)(: − ()); (17) 

where 7 and : represent the independent and dependant set of variables of the data point 

respectively (i.e. the values of that point on the target and phenotypic space respectively), 6 

weights the influence 7 has on the update of  () compared to :, and ℎ(/01, *) is the Gaussian 

neighbourhood kernel that defines the distance between node i and the BMU and is defined by: 

 ℎ(/01, *) = exp	 ?−
‖ABCD − A)	‖E

2'
G (18) 

where ABCD and A) are the location on the sSOM for the BMU and node i respectively.  

Both 6 and the radius of the neighbourhood ' are linearly decreased at each iteration. The 

effect of decreasing 6 reduces the influence of the target space on the update of the nodes, and 

at the last iterations, both the target and phenotypic space have the same importance on the 

update of the nodes. On the other hand, the effect of reducing ' will lead to nodes that are more 

and more specialised at the later iterations of the algorithm, since less nodes will be updated 

around the BMU after each iteration. The linear decay of those two parameters ensure the 

convergence of the algorithm.  
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sSOMs were constructed in this work using the xyf() function of the Kohonen package to cluster 

the bioactivity space (7) in relation to the phenotypic annotations of the compounds (:). The 

input parameters were selected based on a qualitative assessment of the phenotypic annotation 

map, i.e. values which yielded the most specialised clusters possible (containing one or at most 

two phenotypic annotations). The resulting parameters were: 1.  The biggest map was used for 

each dataset (i.e. 19x19 nodes for the Drugmatrix dataset and 11x11 nodes for the target 

prediction dataset), 2. rlen=10,000 iterations and 3. alpha=c(1 to 0.01). The alpha parameter 

represents a vector of initial 6 and ending 6, which the sSOM algorithm will explore and which 

is decreased at each iteration as mentioned above. The bioactivity data was scaled prior to 

applying the sSOM algorithm to give equal weights to all targets.   

The output of the algorithm consisted in a set of different weight mappings of the nodes in the 

sSOM, each representing either a target (or predicted target in the case of the target prediction 

dataset) or a phenotypic annotation. Each target mapping can be represented using a gradient 

of colour on top of the nodes of the sSOM. Because the individual node intensities of certain 

maps were much higher than those of the other maps, each map was normalised separately to 

have intensities between 0 and 1. Since there are only 6 phenotypic annotations, these were 

represented as individual pie charts for each node, showing the relative weights of each 

phenotypic endpoint for each node.  

Group of nodes were selected on the phenotypic annotation map, for which the majority of 

nodes within these groups corresponded to one phenotypic annotation. For each of these 

groups, targets were deemed associated with the phenotypic annotation of the group if at least 

one node in the group had a value higher than the quantile 95% of the distribution of the 

intensities measured on all maps.  
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4.2.5 Quantitative comparison of targets associated with experimental 

clusters vs in silico clusters using Gene Ontology-based functional 

similarity 

 

To quantitatively assess the difference of the clustering obtained by the experimental and 

predicted bioactivity matrices, comparable identifiers were obtained for the protein targets 

identified in the two datasets. Drugmatrix target names were matched to their corresponding 

UniProt accession Identifiers. For the protein complexes in the Drugmatrix dataset, the protein 

complexes were matched to the UniProt accession of all their subunits instead. UniProt 

Identifiers of the predicted targets were already available. Then, the UniProt Identifiers of both 

datasets were mapped to their corresponding Entrez gene identifiers.  

The R package GOSim (v. 1.16.0)151 was utilised to compare the gene identifiers associated 

with the experimental bioactivity sSOM clusters, with the gene identifiers associated with the 

predicted target sSOM clusters via the functional annotation of the genes. More specifically, 

the getGeneSim()  function was employed with parameters similarity=’max’ and 

similarityTerm=’Resnik’. The first parameter defines how the functional similarity between 

any two genes is computed. Indeed, since some of the pairwise comparisons were large, the 

maximum Go Term similarity observed between two genes (instead of more computationally 

expensive techniques) was used to quantify their functional similarity. 

 The other parameter relates to the way the similarity between the GO Term themselves is 

computed. In this case, the Resnik distance was used, which was also the most straightforward 
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to interpret and is based on the information content of all the lowest common ancestors 

common to the two GO Terms in the GO hierarchy: 

 H*I(JK1, JK2) = IL7MN	O	PQR(STUMN) (19) 

where JK1	and JK2 are the two Go Terms for which the similarity is computed,  V#L is the 

set of all lowest common ancestors of JK1	and JK2,  STUMN is the normalised information 

content of GO Term JK. The lowest common ancestors for two GO-Terms JK1	and JK2, are 

the lowest GO-Terms in the tree that has both JK1 and JK2 as descendants. 

The normalised information content (STU) is defined as: 

 STUMN = 	
TUMN

	IL7MW	O	XRYY(TUMW)
	= 	

−log	(]MN)
	IL7MW	O	XRYY(−log	(]MW))

 (20) 

where TUMN is the information content of GO Term JK i.e. the negative logarithm of the 

probability ]MN of observing functional annotation JK across the human genome, and ^LAA is 

the set of all GO Terms in the GO hierarchy. All the information content values were already 

pre-computed in the GOSim package. 

At this stage, a pairwise similarity matrix for the genes in the two lists was generated, with the 

Drugmatrix cluster genes in the rows and the genes from the target prediction clusters in 

columns and each cell representing a STU. To assess the strength of the functional similarity of 

gene pairs based on the STU value, the STU was represented as a function of the probability of 

occurrence of any GO Term ] . It was found that the nIC decreased with the frequency of the 
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GO-Term for which it is computed (Figure 13) and hence, the higher the nIC the rarest the 

GO-Term. In fact, a value of STU ≥ 0.4 corresponded with frequencies close to 0 and therefore 

represented rare GO Terms with high information content.  

Since the functional similarity of two genes is computed as the maximal STU observed for the 

GO Term of the lowest common ancestors of the GO Terms of these genes, gene pairs with  

STU ≥ 0.4  share rare functional annotations with high information content, reflecting specific 

functions. Therefore, gene pairs with a similarity of  ≥ 0.4  were deemed very similar in this 

analysis. 
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Figure 13. Normalised information content (STU) in function of the frequency of a GO Term 

(]).  Values of STU ≥ 0.4 corresponded with frequencies close to 0. 
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4.3 Results and discussion 

 

4.3.1 Analysis of the relationship between the phenotypic annotations 

and selection of phenotypic neighbourhoods 

 

A supervised clustering approach with sSOMs was employed to eliminate noisy target-

phenotypic endpoints associations and find groups of compounds based on relevant MoA for 

the phenotypic endpoints in the NCATS dataset. Two sSOMs were employed: one based on 

experimental bioactivity data from the Drugmatrix dataset (Figure 14) and one based on in 

silico generated bioactivity data (Figure 15). 

Interestingly, sSOMs allowed to analyse the relationship between the various phenotypic 

annotations of the compounds in the NCATS library. In the sSOM of the Drugmatrix dataset 

(Figure 14), nodes with anti-angiogenesis clustered close to the nodes annotated with 

Glucagon-like peptide 1 (GLP-1) secretion, which agreed with the literature since GLP-1 

promotes angiogenesis in vitro,152 and therefore compounds modulating the secretion of GLP-

1 might also promote anti-angiogenesis. On the right side of the map (and to a lesser extent; 

the bottom left side as well), nodes with dual phenotypic annotations, namely compounds 

active on both the Kras/Wnt module and the anti-angiogenesis module. These may be 

comprised of anti-carcinogenic compounds that specifically target anti-angiogenesis in cancer, 

a major area of research in oncology.153,154 Compounds in this group included Floxuridine, an 

anti-carcinogenic agent used in the treatment of colorectal cancer,155 and angiogenic 



97 

 

modulators Enalapril156 and alpha-lipoic acids.157 This suggested that the modulation of 

angiogenesis may be a plausible MoA by which Floxuridine exerted its effect on colon cancer 

cells. Three nodes were located at the bottom-left corner of the map and were annotated with 

the combination of anti-angiogenesis, GLP-1 secretion, and Kras/Wnt modulation, which 

reflect anti-carcinogenic compounds, that induce anti-angiogenic effects by modulation of 

GLP-1 secretion. Compounds in this cluster comprised aminergic GPCRs inhibitors 

Levosulpiride and Domperidone. Aminergic GPCRs are not only associated with colorectal 

cancer but are also known to regulate pancreatic islet function and insulin secretion.158  

Dopaminergic receptors, in particular, subtype D2 which is a target of both Levosulpiride and 

Domperidone,  are linked to anti-angiogenic effects in tumour mice models.159 

On the other hand, nodes annotated with insulin-secretion were located closer to compounds 

annotated with Kras/Wnt synthetic lethality (Figure 14). This is also in agreement with the 

literature, where it was shown that Wnt signalling potentially influences insulin sensitivity and 

mediate glucose homeostasis,160 and therefore compounds mediating Wnt signalling may also 

modulate insulin secretion.  
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Figure 14. Supervised self-organising maps for the Drugmatrix dataset. Five groups with 

single phenotypic annotations (one colour predominates in a node) could be detected: 2 for the 

Kras/Wnt module (yellow nodes middle and middle-bottom of the map), 1 for the angiogenesis 

module (red nodes at the top of the map in the middle), 1 for the GLP-1 secretion (light green 

nodes at the top of the map) module and 1 for the insulin secretion module (dark green nodes 

at bottom-right of the map). Nodes annotated with Wnt pathway (purple nodes) and nodes 

affecting the cell-cycle (black nodes at the upper-left corner of the map) are annotated with 

many different phenotypic annotations.  
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Interestingly, the top-left corner of the map is mostly comprised of nodes with multiple 

phenotypic annotations. These included nodes with compounds affecting the cell-cycle or the 

Wnt pathway. These nodes might, therefore, be comprised of compounds whose modulation 

of those endpoints is mainly through cell-cycle arrest, which suggested that anti-angiogenic 

effects or the modulation of the GLP-1 secretion were a side-effect rather than the primary 

activity for the compounds in these clusters. This shows the practical utility of using sSOMs, 

as this allowed to study the MoA of compounds with one or multiple phenotypic annotations, 

separately from those compounds which effect can be attributed to unspecific action via cell-

cycle arrest. 

The sSOM on the target prediction dataset was smaller and had overall fewer nodes with single 

annotations (Figure 15). This is a result of the size of the target prediction dataset which was 

built so that there is no overlap in terms of compounds with either ChEMBL or Drugmatrix. 

This stringent condition led to a target prediction dataset of only 157 compounds. Despite the 

smaller size of the sSOM, many associations observed in the Durgmatrix sSOM were also 

retrieved in this sSOM as well. There was a large group of nodes with the single Kras/Wnt 

annotation, and many of the nodes displayed the dual annotation anti-angiogenesis and 

Kras/Wnt which was previously discussed (top-right corner of the sSOM, Figure 15).  

As observed on the Drugmatrix sSOM, nodes annotated with the cell-cycle were also 

associated with other annotations but never on their own on the target prediction sSOM (nodes 

with black colours, Figure 15), which reflected modulators of the cell cycle which modulate 

other endpoints as a side effect. However, there was no node annotated with the Wnt pathway, 

since this annotation was not present in the target prediction dataset.  
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Figure 15. Supervised self-organising map for the target prediction dataset. Groups of nodes 

with dual annotations were also found on this map as well, including the group of anti-

angiogenesis and Kras/Wnt nodes (red and yellow nodes at the top-right corner of the map), 

and the group of GLP-1 secretion and Kras/Wnt nodes (light green and yellow nodes on the 

right side of the map). Again, nodes affecting the cell-cycle (black nodes at the top of the map) 

are also associated with other phenotypic annotations. 
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4.3.2 Analysis of the functional similarity of targets associated with 

phenotypic neighbourhoods in both sSOMs  

 

Next, node neighbourhoods where only one phenotypic annotation dominated were identified 

and target weights associated with these neighbourhoods were calculated to yield MoA 

hypotheses for both sSOMs/datasets. This step effectively filters the most relevant MoA 

hypotheses for each phenotypic endpoint (see material and methods for more details) and for 

each sSOM/dataset. 

The functional similarity of the genes encoding the targets was used to compare targets 

obtained by the two sSOMs, for each phenotypic endpoint. This was performed using the 

maximal normalised information content (STU) value which quantifies the rarity of the GO-

Term annotations of all the lowest common ancestors of two GO Terms (see Materials and 

methods section and Figure 13). The higher the STU, the rarer and more specific the GO-Term 

annotation, and therefore the highest the similarity between the genes encoding the targets of 

interest.   

The functional similarity distribution of 	STU	values were calculated for Anti-angiogenesis, 

Insulin and GLP-1 secretion forming the Diabetes module, and the Kras/Wnt synthetic lethal 

phenotypic annotations. The target prediction dataset did not have compounds annotated with 

the Wnt pathway, and the Cell-cycle G2/M annotation was always associated with several other 

phenotypic annotations on both sSOM and hence a target deconvolution of this effect would 

be difficult. Therefore, the focus of the chapter will be on Anti-angiogenesis, Diabetes 
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(comprising both GLP-1 and Insulin secretion nodes), and Kras/Wnt synthetic lethal 

phenotypic annotations. 

 The  STU  distribution (or GO term similarity) for the Anti-angiogenesis, Diabetes and 

Kras/Wnt annotations were distributed around an average of 0.37, 0.41 and 0.47 respectively 

(Figure 16). This suggested that targets identified in the Drugmatrix sSOM shared high 

functional similarities with the proteins from the target prediction sSOM, since a STU ≥ 0.4 

indicated common functional annotations with high information content, as previously 

mentioned (see Methods section and Figure 13).  

 The distributions for the Anti-angiogenesis and Diabetes modules were approximately 

normally distributed with a small skew towards higher STU values (Figure 16). This indicated 

that the targets associated with these phenotypic annotations in the Drugmatrix sSOM shared 

very high functional similarities with targets associated with the corresponding phenotypic 

annotations in the target prediction sSOM. On the other hand, the distribution for the Kras/Wnt 

synthetic lethal module displayed many target pairs with no functional similarity (Figure 16). 

This is a result of the large number of nodes associated with Kras/Wnt compared to other 

annotations. The higher the number of nodes, the higher the number of compounds and 

therefore the higher the number of targets associated with the annotation. Furthermore, 

Kras/Wnt assays are less specialised than the other endpoints, since it measures selective 

cytotoxicity of colorectal cancer for which multiple MoAs exist. Nonetheless, the Kras/Wnt 

also displayed the largest STU average of 0.47, which implied that targets associated with the 

Kras/Wnt neighbourhoods in the Drugmatrix sSOM shared high functional similarities to the 

corresponding targets in the Kras/Wnt. 
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Figure 16. Distribution of pairwise gene functional similarity (STU) between the genes of the 

Drugmatrix-based sSOM and the genes of the target prediction sSOM for a) Anti-angiogenesis 

node neighbourhoods b) Diabetes which combine both GLP-1 secretion and insulin secretion 

neighbourhoods c) Kras/Wnt neighbourhoods. The functional similarity distribution being 

clustered around  STU averages of 0.4, it can be concluded that targets in both datasets shared 

high functional similarities for all three endpoints.  
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4.3.3 Comparison of targets associated with Anti-angiogenesis 

neighbourhoods  

 

The target weights behind the six nodes which only had the Anti-angiogenesis annotation in 

the Drugmatrix sSOM were extracted. Only two targets were associated with this cluster of 

nodes (Table 8). These two targets were strongly linked to angiogenesis and regulation of 

vascular networks, namely the Acetylcholinesterase and the GABAA complex. Indeed, 

Acetylcholinesterase inhibitors were shown to reduce angiogenesis in mice161 and GABAA 

signalling activates cell-proliferation and angiogenesis in mice models as well.162  

The 19 proteins identified by the target prediction sSOM for Anti-angiogenesis were different 

than the ones identified in the Drugmatrix sSOM. However, most of these targets belonged to 

three protein families that are strongly linked to angiogenesis in the literature namely adenosine 

receptors, histone deacetylases (HDACs) and the protein kinase C (PKC) family (Table 8). 

Adenosine intervenes through adenosine receptors under hypoxic conditions to form new blood 

vessels and therefore these receptors are studied to develop anti-angiogenic inhibitors.163 

HDACs have been shown to be overexpressed in hypoxic conditions and their inhibition have 

been shown to reduce anti-angiogenesis in vivo.164 Inhibition of members of the PKC family, 

in particular, PKC-α, promoted angiogenesis by re-establishing platelet-derived growth factor 

C (PDGFC) signalling.165 

The next five predicted targets could not be grouped in any protein family but were also 

strongly linked to angiogenesis (Table 8). Fatty acid synthase inhibitor Orlistat has been shown 

to have antiangiogenic activity in an ex-vivo model of human angiogenesis.166 A systems 
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biology analysis of angiogenesis uncovered six proteins central to this process, including the 

meningioma expressed antigen 5 (MGEA5).167 As for the nuclear receptor corepressor 2 

(NCOR2), this protein has been shown to interact with HDAC1 to repress apoptosis of 

endothelial cells and its displacement from Peroxisome proliferator-activated receptor gamma 

(PPAR-γ) have been shown to promote apoptosis of endothelial cells and subsequent inhibition 

of angiogenesis.168 The activation of pregnane X receptor (PXR) by Rifaximin led to inhibition 

of pro-angiogenic factors such as Hypoxia-inducible factor-1 alpha (HIF-1α) in an intestinal 

cell-line in vitro.169 Finally, P-selectin overexpression correlated with ischemia-induced 

angiogenesis and this suggested that this target plays an important role in inflammatory 

processes that precede ischemia-induced angiogenesis.170 

The remaining four targets had a weaker link to anti-angiogenesis in the literature (Table 8). 

The Emopamil binding protein (EBP) has been shown to be up-regulated in endothelial cells 

treated with a combination of vascular endothelial growth factor (VEGF) and Hepatocyte 

growth factor (HGF),171 suggesting a connection between VEGF angiogenic activity and EBP. 

Glucosylceramides have been shown to inhibit angiogenesis through reduction of  VEGF and 

HIF-1α in a mouse xenograft model of cancer cells,172 which might suggest an involvement of 

glucosylceramidase beta in the observed anti-angiogenic effect. The melanocortin-3 receptor 

(MC3R) was not directly implicated with angiogenesis, but another member of this protein 

family melanocortin-4 receptor (MC4R) has been linked to angiogenic balance in rat models 

of obesity.173 The solute carrier family 5 member 1 (A1) was down-regulated in Vhl tumour 

suppressor gene-depleted mice, where this deletion caused angiogenesis.174   
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In summary, even though both sSOMs identified different targets, these targets were equally 

relevant to angiogenesis and this shows the complementarity target prediction offers to 

experimental bioactivity datasets in deconvoluting phenotypic screening signals. 

 

sSOM Target 
group 

Gene 
Symbol Target Reference 

Drugmatrix 
 ACHE acetylcholinesterase 161 
 --- GABAA 162 

Target 
prediction 

Adenosine 
receptors 

ADORA1 adenosine A1 receptor 163 
ADORA2A adenosine A2a receptor 163 
ADORA3 adenosine A3 receptor 163 

Histone 
deacetylases 

HDAC10 histone deacetylase 10 164 
HDAC4 histone deacetylase 4 164 
HDAC5 histone deacetylase 5 164 
HDAC7 histone deacetylase 7 164 
HDAC9 histone deacetylase 9 164 

Protein 
kinase C 

PRKCB protein kinase C beta 165 
PRKCG protein kinase C gamma 165 

 FASN fatty acid synthase 166 
 MGEA5 meningioma expressed antigen 5 167 
 NCOR2 nuclear receptor corepressor 2 168 
 NR1I2 pregnane X receptor 169 
 SELP selectin P 170 
 EBP emopamil binding protein 171 
 GBA glucosylceramidase beta 172 
 MC3R melanocortin 3 receptor 173 
 SLC5A1 solute carrier family 5 member 1 174 

Table 8. Targets associated with anti-angiogenesis neighbourhoods in each sSOM along with 

the number of nodes for which the target is associated. The reference for each target refers to 

any link this target has with angiogenesis or anti-angiogenesis in the literature. 
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4.3.4 Comparison of targets associated with Diabetes neighbourhoods 

using GLP-1 secretion and Insulin secretion nodes 

 

The nodes annotated with GLP-1 or insulin secretion in the Drugmatrix sSOM were associated 

with 19 targets, mainly aminergic GPCRs and the transporters of their ligands (Table 9). Their 

role in insulin secretion was already discussed above (see section Comparison of the 

phenotypic annotations and selection of phenotypic neighbourhoods).158 The calcium channel 

type L, potassium and sodium channels were also associated with the insulin secretion nodes 

(Table 9), which is in agreement with the literature. Voltage-gated channels, principally 

calcium and sodium channels are required for exocytosis and glucose-induced insulin 

secretion.175 Two targets were not related to insulin secretion or diabetes, namely CYP450 

subtype 2D6 (CYP2D6) and the Sigma-1 receptor.   

In the target prediction sSOM, 58 targets were associated with either GLP-1 and/or Insulin 

secretion. Among these targets, 9 targets belonged to the renin-angiotensin pathway176 which 

if inhibited, had been shown to reduce the incidence of type 2 diabetes (Table 10).177,178 Another 

24 targets were relevant to diabetes and/or glucose homeostasis (Table 10). The remaining 

targets did not show a clear link to diabetes.  



108 

 

Target 
family 

Gene 
Symbol Target Reference 

Amingergic 
GPCRs & 

transporters 

ADRA2A adrenoreceptor alpha 2A 158 
ADRB1 adrenoreceptor beta 1 158 
ADRB2 adrenoreceptor beta 2 158 
ADRB3 adrenoreceptor beta3 158 
SLC6A2 adrenergic norepinephrine transporter 158 
DRD2 dopamine receptor D2L 158, 159 
DRD3 dopamine receptor D3 158 

SLC6A3 dopamine transporter 158 
HRH1 histamine receptor H1 158 
HTR1A serotonin receptor 1A 158 
HTR2A serotonin receptor 2A 158 
HTR2B serotonin receptor 2B 158 
HTR2C serotonin receptor 2C 175 

Ion channels 

(complex) calcium channel type L (benzothiazepine site) 175 

(complex) calcium channel type L (phenylalkylamine 
site) 

175 

(complex) ATP-sensitive potassium channel 175 
(complex) sodium channel (site 2) 175 

 
Table 9. Targets associated with Insulin secretion and/or GLP-1 secretion neighbourhoods in 

the Drugmatrix sSOM. The reference for each target refers to any link this target has with 

diabetes and its complications in the literature. CYP2D6 and the Sigma-1 receptor were also 

found by this analysis but not reported in this table. 

 

The target prediction dataset found very relevant targets for the compounds annotated with the 

Diabetes endpoints in the NCATS dataset, which were not redundant and instead 

complemented those obtained with the Drugmatrix dataset. Thus, this shows once again, how 

target prediction complements experimental bioactivities in the deconvolution of the signals in 

the phenotypic assays testing for modulation of factors relevant to diabetes. 
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Target 
group Gene Symbol Target Reference 

Renin-
angiotensin 

pathway 

ACE angiotensin I converting enzyme 176–178 
ACE2 angiotensin I converting enzyme 2 176–178 

ANPEP alanyl aminopeptidase, membrane 176–178 
CMA1 chymase 1 176–178 
CTSG cathepsin G 176–178 
CTSB* cathepsin B* 176–178 
KLK1 kallikrein 1 176–178 

KLKB1* kallikrein B1* 176–178 
MME membrane metalloendopeptidase 176–178 

Targets 
involved in 

other 
aspects of 
glucose 

homeostasis 
or diabetes 

ACVRL1 activin A receptor-like type 1 179 
CALCA calcitonin related polypeptide alpha 180 

CAMK1D calcium/calmodulin dependent protein kinase ID 181 
CAMK2A calcium/calmodulin dependent protein kinase IIA  181 
CCKBR cholecystokinin B receptor 182 
ECE1 endothelin converting enzyme 1 183 
F11 coagulation factor XI 184 

GRK5 G protein-coupled receptor kinase 5 185 
GRM1 glutamate metabotropic receptor 1 186 

HSP90AA1 heat shock protein 90 alpha family class A member 1 187 
ITGA4 integrin subunit alpha 4 188 
ITGA5 integrin subunit alpha 5 188 
ITGB1 integrin subunit beta 1 188 
ITGB5 integrin subunit beta 5 188 
ITGB7 integrin subunit beta 7 188 
MC1R melanocortin 1 receptor 189 
MC3R melanocortin 3 receptor 189 
MC4R melanocortin 4 receptor 189 
MC5R melanocortin 5 receptor 189, 190 
PIN1 Rotamase Pin1 191 

PRKCB protein kinase C beta 192 
PTGER2 prostaglandin E receptor 2 193 
PTGES prostaglandin E synthase 194 
XIAP X-linked inhibitor of apoptosis 195 

Table 10. Targets associated with Insulin secretion and/or GLP-1 secretion neighbourhoods 

in the target prediction sSOM. Here only 33 out of the 58 targets associated with these nodes 

were reported in this table and relevant to diabetes according to the literature. Gene symbols 

marked with a star do not belong to the pathway but are closely associated to one of the 

members of the pathway. 
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4.3.5 Comparison of targets associated with Kras/Wnt synthetic lethal 

neighbourhoods 

 

The Kras/Wnt module of the NCATS dataset measures the selective cytotoxicity against colon 

cancer cell lines bearing different mutations of Kras and other genes. Mutations in Kras and 

these other genes activate the Mitogen-Activated Protein Kinase (MAPK) pathway.196,197 Since 

the Kras/Wnt phenotypic activity was predominant in the NCATS dataset, many targets were 

associated with this phenotypic annotation in both the Drugmatrix and target prediction sSOM 

(Table 11). In total 118 targets were associated with the Kras/Wnt nodes in the target prediction 

sSOM, and 56 such targets were extracted from the Drugmatrix sSOM. Although only 8 targets 

were in common between the two sSOMs, many target families in the Drugmatrix sSOM 

overlapped with those of the target prediction sSOM. 

The majority of these targets were the aminergic GPCRs and the transporters for their ligand 

which have long been investigated in colon cancer.198–211 Despite the fact that 6 aminergic 

GPCR receptors (including all members of the muscarinic receptor sub-family) were found by 

both the Drugmatrix and the target prediction sSOM, each sSOM uncovered additional 

members of the various GPCR receptors subfamilies (Table 11).  

Moreover, many members from the MAPK pathway were found from the target prediction 

sSOM whereas the Drugmatrix sSOM selected two central members of this pathway namely, 

MAPK1 and EGFR (Table 11). As mentioned previously, MAPK is activated as a result of 

mutated KRAS in colon cancer cells,196,197 and therefore targeting members of this pathway 

constitutes a plausible MoA for the compounds active in the Kras/Wnt module. The fact that 

target prediction uncovered different but equally important members of the MAPK pathway, 
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further stresses the complementarity that target prediction hypotheses offer to hypotheses 

generated from experimental data from Drugmatrix, in order to deconvolute compound activity 

in the NCATS phenotypic assays. Among the other targets which were found in both the 

Drugmatrix and target prediction, ion channels correlated with Kras/Wnt annotated nodes 

(Table 11). Both the calcium and human Ether-à-go-go-Related Gene (hERG) channels were 

directly linked to colon cancer.212–214 However, the sodium channel encoded by the SCN9A 

gene only shared an indirect link to colorectal cancer, since another member of the sodium 

channel SCN5A was found to regulate the expression of genes involved in the invasiveness of 

colorectal cancer.215 In addition, members of the Cytochrome P (CYP) family were found for 

which polymorphisms216,217 and differential expression was observed in colorectal cancer 

patients.218 

 In essence, the intersection of the sSOMs of both Drugmatrix and target prediction of the 

Kras/Wnt nodes in the sSOM was mainly comprised of aminergic GPCR receptors and 

members of the MAPK signalling pathway. Both datasets agreed as to the importance of these 

two families for colorectal cancer cytotoxicity, as well as targeting CYPs and ion channels 

(Table 11) Since nodes with compounds active in the cell cycle assay were excluded from the 

analysis, the MoA hypotheses generated for the Kras/Wnt module are representative of 

cytotoxicity against colorectal cancer cells that do not rely on cell-cycle arrest.  However, since 

the aforementioned target families are part of major signalling pathways, a careful selection of 

these MoA hypotheses is required to avoid adverse events.
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Target group sSOM Gene  
Symbol Target References 

Aminergic 
GPCRs and 
transporters 

Both 

ADRA2C adrenoceptor alpha 2C 198 
CHRM1 cholinergic receptor muscarinic 1 199,204 
CHRM2 cholinergic receptor muscarinic 2 199,204 
CHRM3 cholinergic receptor muscarinic 3 199,204,205 
CHRM4 cholinergic receptor muscarinic 4 199,204 
CHRM5 cholinergic receptor muscarinic 5 199,204 

Drugmatrix 

ADRA1B adrenoceptor alpha 1B 206 
ADRA2A adrenoceptor alpha 2A 207 
ADRA2B adrenoceptor alpha 2B 208 
ADRB2 adrenoreceptor beta 2 209 
ADRB3 adrenoreceptor beta 3 210 
DRD3 dopamine receptor D3  

HTR2A serotonin receptor 2A 211 
HTR2B serotonin receptor 2B 200 
HTR2C serotonin receptor 2C  

HTR6 serotonin receptor 6 201 
HRH2 histamine receptor H2 202 

OPRD1 opioid receptor delta 1  

OPRK1 opioid receptor kappa 1  

OPRM1 opioid receptor mu 1 203 
SLC6A2 adrenergic norepinephrine transporter  
SLC6A3 dopamine transporter  
SLC6A4 serotonin transporter  

Target 
prediction 

HTR1B serotonin receptor 1B 219 
HTR1D serotonin receptor 1D 220 
HTR3A serotonin receptor 3A  

HTR5A serotonin receptor 5A  

CHRNA3 cholinergic receptor nicotinic  221 
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alpha 3 subunit 

CHRNA7 cholinergic receptor nicotinic 
 alpha 7 subunit 

221 

SSTR3 somatostatin receptor 3  

SSTR4 somatostatin receptor 4 222 

MAPK 
signaling 

Drugmatrix 
EGFR EGF receptor 223 

MAPK1 mitogen-activated protein kinase 1 224,225 

Target 
prediction 

FER FER tyrosine kinase 226 

PTPN1 protein tyrosine phosphatase,  
non-receptor type 1 

227 

ROS1 ROS proto-oncogene 1, 
 receptor tyrosine kinase 

228 

MAP2K1 mitogen-activated protein  
kinase kinase 1 

196,197 

MAP2K2 mitogen-activated protein  
kinase kinase 2 

196,197 

MAP3K5 mitogen-activated protein kinase 
 kinase kinase 5 

196,197 

MAPK12 mitogen-activated protein kinase 12 196,197 
MAPK3 mitogen-activated protein kinase 3 196,197 

MAPKAPK5 mitogen-activated protein kinase-activated protein kinase 5 196,197 

CAMK1D calcium/calmodulin-dependent 
 protein kinase ID 

 

CAMK2A calcium/calmodulin dependent  
protein kinase II alpha 

229 

CAMK2G calcium/calmodulin dependent  
protein kinase II gamma 

229 

FYN FYN proto-oncogene, 
 Src family tyrosine kinase 

226,230,231 

FGFR1 fibroblast growth factor receptor 1  

FGFR2 fibroblast growth factor receptor 2 232 
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FGFR3 fibroblast growth factor receptor 3  

GRIA3 glutamate ionotropic receptor AMPA type subunit 3 233 

GRIN1 glutamate ionotropic receptor NMDA  
type subunit 1 

 

GRIN2A glutamate ionotropic receptor NMDA 
 type subunit 2A 

234 

GRIN2B glutamate ionotropic receptor NMDA  
type subunit 2B 

234 

MARK2 microtubule affinity-regulating kinase 2 235 
MARK3 microtubule affinity-regulating kinase 3  

RET RET proto-oncogene 236 

Ion channels 

Both SCN9A sodium voltage-gated channel alpha subunit 9 215 

Drugmatrix 

(complex) calcium channel type l  
(benzothiazepine site) 

212,213 

(complex) calcium channel type l  
(dihydropyridine site) 

212,213 

(complex) calcium channel type l  
(phenylalkylamine site) 

212,213 

Target 
Prediction 

KCNH2 potassium voltage-gated channel 
 subfamily H member 2 

214 

Cytochrome 
P450 

Both  CYP1A2 cytochrome P450 1A2 218 

Drugmatrix 

CYP2C9 cytochrome P450 2C9 217 

CYP2D6 cytochrome P450 family 2  
subfamily D member 6 

216 

CYP2C19 cytochrome P450 2C19  

Table 11. Target families associated with the Kras/Wnt module in both sSOM. The reference for each target refers to any link this target shares 

with colorectal cancer in the literature.  
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4.4 Conclusion 

 

In this work, sSOMs were used on experimental and predicted bioactivity datasets, for the 

deconvolution of the MoA of compounds with a certain phenotypic annotation, based on 

supervised clustering analyses on the bioactivity space of these compounds. This was 

performed to narrow down MoA hypotheses to the most relevant targets associated with the 

phenotypic activities in the NCATS dataset.  

This not only allowed to retrieve compound clusters for 4 out of the 5 phenotypic endpoints in 

the NCATS dataset but also allowed the analysis of the relationship between phenotypic 

endpoints themselves where it was confirmed that Anti-angiogenesis, GLP-1 secretion and 

Kras/Wnt synthetic lethal annotations are closely related, in agreement with the literature.  

The functional annotations of the targets obtained with experimental data were compared to 

the annotations of the targets obtained through prediction. Functional similarity values between 

the two sSOMs reflected high functional similarities with averages of 0.37, 0.41 and 0.47 for 

Anti-angiogenesis, Diabetes and Kras/Wnt modules respectively. For Anti-angiogenesis and 

the phenotypic annotations associated with Diabetes (insulin and GLP-1 secretion), it was 

found that even though the targets obtained from the two sSOMs did not overlap individually, 

the targets were still very relevant to these endpoints and complemented each other well. For 

the Kras/Wnt endpoint, targets belonging to similar protein families (namely aminergic 

GPCRs, Cytochrome P450s, and ion channels) or to the MAPK pathway overlapped between 

the two sSOMs. The target prediction retrieved different members of the MAPK pathway than 
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the ones identified with the Drugmatrix sSOMs confirming that in silico predictions can 

complement the MoA obtained with the Drugmatrix experimental bioactivity dataset. 

The analysis presented in this chapter, therefore, demonstrated that target prediction can 

uncover alternative MoA hypotheses that were not detected using experimental data as was the 

case with the comparison performed with the Anti-angiogenesis and Diabetes modules. In 

conclusion, both approaches allowed to retrieve different but relevant MoA hypotheses 

according to the extensive literature search conducted in this chapter. Hence, it is here 

suggested that in silico bioactivity predictions should be used to complement historical 

bioactivity datasets for target deconvolution tasks in phenotypic screens. 
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Chapter 5  Computational studies of 

the mechanism-of-action of kidney cyst 

growth reducing compounds 

 

 

5.1 Introduction 

 

PKD is a hereditary disease in which kidneys are enlarged due to the presence of many small 

fluid-filled sacs called cysts, leading in some cases to hypertension and kidney failure.237,238 In 

fact, PKD is responsible for approximately 10% of the patients with kidney failure, ranking 

PKD as the fourth most common disease leading to such stage.239 Autosomal dominant PKD 

(ADPKD) is caused by mutations in PKD1 (in 85% of the cases) and PKD2 genes (the 

remaining 15%).237,240 Polycystin-1 (PC1) and polycystin-2 (PC2), the resulting proteins of 

these genes in the healthy phenotype, may interact to form a protein complex which is not only 

able to control intracellular calcium concentration, but also to regulate tubular cell proliferation 

and apoptosis via the interaction with key proteins in several pathways including the Wnt and 

the mammalian target of Rapamycin (mTOR) signaling pathways.237,240 In the disease state, this 

complex is not formed and as a result, this disturbs the signalling of many genes. These 

molecular changes translate to the cellular level as a perturbation of the arrangement of the 
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tubular cells constituting the nephrons, and a transformation of the cell function from ion-

absorbing to ion-excreting cells. This ultimately leads to the perturbation of intracellular ion 

concentration and water osmosis towards the forming cyst, eventually resulting in an increase 

in cyst fluid volume.240 As with many diseases, PKD is accompanied not only by local 

ischemia241–243 but also inflammation and fibrosis.244 

A number of therapeutic options to reduce cyst growth have been investigated. Since PKD is 

frequently associated with hypertension,238 enabling blood regulation control seemed like an 

interesting MoA to investigate. Unfortunately, angiotensin-converting enzyme (ACE) 

inhibitors such as Enalapril did not show any improvement in renal function.245 Instead, many 

compounds targeting pathways involved in the control of the cell cycle and cellular 

proliferation have been explored. Glycosphingolipids are molecules which are involved in cell 

proliferation control, and blocking their intracellular accumulation through the inhibition of the 

glucosylceramide synthase led to inhibition of cystogenesis in mouse models.246 PPAR-! 

agonists such as pioglitazone and rosiglitazone also showed significant renal cyst inhibition in 

mice models.247,248 The MoA of PPAR-! inhibitors may also inhibit the cystic fibrosis 

transmembrane conductance regulator (CFTR) expression,247,249 which has been linked to 

reducing kidney cyst progression in vivo.250 Concomitant inhibition of the phosphorylation of 

two important targets in cell proliferation, mTOR and Akt, have been successful in reducing 

cyst growth in rodent models.251 Cyclin-dependant kinase (CDK) inhibitor, Roscovitine, was 

also found to be effective in inhibiting disease progression in mice.252 The regulation of cell 

proliferation through the retrieval of intracellular Ca2+ levels control is also a MoA commonly 

investigated in the area. For example, it has been shown that triptolide was able to release Ca2+ 

levels conditionally to the expression of PC2 and limit the proliferation of the disease in Pkd1−/− 

mice.253 To date, only Tolvaptan (also called Jinarc), a vasopressin receptor antagonist,254,255 
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has been authorized for the treatment of ADPKD in the EU and the UK markets.256,257 Despite 

slowing down the progression of the disease, this drug does not completely prevent cyst growth 

and is associated with strong diuresis and thirst.255,258 

Since most of the currently MoA hypotheses are associated with potential adverse events or 

have not shown efficacy in clinical studies yet, more suitable drugs need to be discovered 

through the generation of novel therapeutic opportunities in PKD drug discovery. This study 

is concerned with using target prediction models to find under-studied MoA of compounds 

able to modulate cyst growth. A kidney cyst screening generated by collaborators from the 

University of Leiden was employed as a starting point of the target prediction models. While 

previous analyses performed by this group tried to identify blockers of cyst growth using a 

library of kinase inhibitors,259 the analysis described in this chapter employs a more 

comprehensive dataset containing a collection of diverse compounds through the use of the 

SPECTRUM screening library.260 Target predictions were integrated with gene expression data 

as well as literature occurrence to shortlist two MoAs. Furthermore, docking algorithms were 

employed to further assess the plausibility of two shortlisted target predictions. To the best of 

our knowledge, this constitutes the first study in which target prediction algorithms are 

combined with structural bioinformatics approaches to hypothesize the MoA of cyst growth 

reducing (CGR) compounds in an in vitro kidney cyst screening platform. 
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5.2 Material and Methods 

 

5.2.1 Spectrum library and screening for kidney cyst growth reduction 

 

The experimental procedures described in this section were all performed by Tijmen Booij 

from the University of Leiden. 2,320 compounds from the Spectrum collection260 were 

screened for kidney cyst growth reduction following the procedure described in Booij et al.259 

Mouse inner medullary connecting duct cells (mIMCD3, ATCCCRL-2123) with down-

regulated Pkd1 expression were generated by shRNA mediated knockdown. This was achieved 

by Lentivirus transfection expressing shRNA which specifically target the Pkd1 gene in those 

cells. Reduced Pkd1 expression was confirmed by quantitative polymerase chain reaction. The 

cells were then cryopreserved in a 2D culture for 72 hours to allow their recovery. 

Prior to transfer in 3D culture and screening of the compounds, the mIMCD3 cells were 

defrosted in a 37°C water bath and cultured in a medium with 5% CO2 for another 72 hours. 

Cells were next washed with PBS and trypsinised. These were then grown on 384 well plates 

filled with a hydrogel. The gel-cell mix had a final density of 2,175 cells per well. After gel 

polymerisation and the addition of a cell medium, combinations of Forskolin and the 

compounds of the Spectrum library were then added at 1 and 10 μM for 3 days. The Forskolin 

allowed the formation of multicellular cysts, and the compounds of the library were tested for 

their ability to reduce the growth of these cysts. Cultures were then fixated with formaldehyde 

and stained with Hoechst 33,258 and Rhodamine-Phalloidin (actin).  
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The cyst area in each well was measured using a BD Pathway 855 imager. These cyst area 

measurements were normalised to control: 

 

 "#$%&'()*+	-.)/	&$*&0 = 	
100	 × (	%*+(&6(-.)/	&$*&	-#6$#'7) − -.)/	&$*&0	)

%*+(&6(-.)/	&$*&	-#6$#'7) − 	%*+(&6(-.)/	&$*&	-#6$#':)
 (21) 

 

where -.)/	&$*&	-#6$#'7 represents all replicates of cyst area measurements obtained for the 

positive control i.e. wells treated with DMSO and normalise to 0% stimulation, and  

-.)/	&$*&	-#6$#': correspond to all the replicates of cyst area measurements obtained for the 

negative control i.e. Forskolin-exposed wells without library compounds, which induce large 

cysts and would hence normalize to 100% stimulation. -.)/	&$*&0 is the raw cyst area 

measured for compound (. 

Hence, for a particular concentration (either 1 or 10 μM), the closer a normalised cyst area 

measurement gets to 0%, the smaller the cysts get, and the more effective a compound becomes 

at inhibiting cyst growth (although this can also be due to toxicity, which will be addressed in 

the next section). Compounds reaching approximately 0% or lower for any concentration were 

therefore labelled as having a CGR effect. Out of the 2,320 compounds in the Spectrum library, 

81 such compounds had a notable CGR effect.  
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5.2.2 Compound dataset pre-processing and filtering 

 

Compounds containing metal groups and with a molecular weight of more than 900 g/mol were 

removed using Schrodinger canvas.261 Those filters combined with duplicate compounds 

removal yielded a final dataset of 2,279 compounds with 50 compounds having a CGR effect. 

Salts and fragments were removed from the structures.  

Additionally, compounds which CGR effect might potentially be attributed to general 

cytotoxicity rather than by the result of a specific on-target effect were separated from the 

remainder of the CGR compounds. For this purpose, conformal machine learning models were 

used to predict cytotoxicity of kidney cancer cells.106 More specifically, the HEK293 model 

(embryonic kidney cells) was used and predictions were made with a confidence of 94%. This 

threshold was selected as a compromise for keeping the largest amount of CGR compounds 

while removing most of the known antineoplastic compounds from the dataset. Out of the 16 

models available, this model was the only one coming from kidney tissues, and this motivated 

its use in this analysis.106 Any compounds with single label predictions for cytotoxicity were 

considered cytotoxic. All the other cases were considered non-cytotoxic predictions (there was 

no single label prediction for non-cytotoxicity). In total, 1,240 compounds were not labelled as 

cytotoxic by the model, and among the 50 CGR compounds, 17 were not labelled as cytotoxic.  
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5.2.3 Target prediction and statistical association with effect on cyst 

growth 

 

The workflow previously described in Chapter 2 was employed to predict the targets of the 50 

standardised CGR compounds, as well as the 17 CGR compounds which were not labelled as 

cytotoxic per the cytotoxicity model. Since the purpose of this work is to narrow down a small 

number of MoA hypotheses to be experimentally tested, the threshold ;)-#$* > 2 was 

implemented to binarize the compound-target predictions.  

A metric called Cyst Area Deviation (CAD) was developed in this thesis to rank targets based 

on the CGR effect of their compounds. This metric prioritized predicted targets which are 

associated with CGR compounds having the biggest effect on cyst growth compared to the 

other compounds. It is therefore based on the cyst area variations induced by the compounds 

driving the prediction.  

To compute the CAD, an offset equal to the minimal induced cyst area observed in the dataset 

was applied to shift the normalised cyst area distribution to positive values, so that the smallest 

area measurement is at 0. Then, for each predicted target, the normalised cyst area distribution 

obtained for CGR compounds driving the prediction was compared to the distribution of 

compounds with no effect on cyst growth and that are driving the prediction of the same target. 

The difference in medians between the two cyst area distributions was subtracted to yield a 

CAD for each target: 

 <=>0 = ?*+(&6@A	BCCBDE(<.)/	=$*&)0	−	?*+(&6DFG(<.)/	=$*&)0 (22) 
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where i is the iIJ target, ?*+(&6@A	BCCBDE(<.)/	=$*&)0 the median of the cyst area distribution 

for the compounds driving the prediction for the target and had no effect on cyst growth in the 

screen, and 	?*+(&6DFG(<.)/	=$*&)0 is the median of the cyst area distribution for the CGR 

compounds driving the prediction for the ith target. 

To assess the validity of this metrics, the CAD was compared to the “Literature score” from 

Open Targets262 where targets corresponding to “polycystic kidney diseases” were extracted, 

and 26 overlapped with the predicted targets obtained at the previous step of this analysis  

 

5.2.4 Target shortlisting based on CAD values, literature occurrence, 

and gene expression studies 

 

CAD scores were converted to Z-Score scale and targets with CAD Z-Score above 1 were 

retained in the analysis. Because the focus of this study was to select less researched MoAs, 

targets that had at most 2 PubMed referenced associations to PKD were retained in the analysis. 

This filter was performed using the Comparative Toxicogenomics Database (CTD)263,264 in 

which gene-disease associations are ranked by the number of PubMed references in which both 

the gene and disease co-localised in the abstract, or if a compound that is known to modulate 

the disease co-localised with the target, or if a compound known to modulate the target co-

localised with the disease. These associations were manually collected from PubMed articles 

by expert curators. Finally, targets were selected if their corresponding genes were present in 

a list of differentially expressed genes in PKD mice models curated and contributed by Malas 

et al. (Appendix C).265  
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5.2.5 Docking  

 

Docking algorithms were employed to evaluate the shortlisted predicted associations. Hence 

crystal structures of the targets shortlisted from the previous step were extracted from the 

Protein Data Bank (PDB) with resolution <2.2Å. For Proteinase-Activated Receptor 1 (PAR-

1) and Kallikrein 1 (KLK1), only one such structure could be found (PDB ids: 3VW7 and 1SPJ 

respectively).   

Protein structures were imported into Maestro (release 2015-3) 266 where the protein 

preparation wizard was used to remove all water molecules,  correct the orientation of the 

amino-acid side-chains, optimise protonation states of residues for PH=7 (using the PROPKA 

option) and run a restrained minimization with the “convergence of heavy atoms” parameter 

set to a RMSD of 0.3Å (this allows for the relaxation of the hydrogen bonding network within 

the protein and with the co-crystallized ligand). Since KLK1 did not have a co-crystallised 

ligand, the binding sites were inferred via Sitemap 3.6 267  and the paper accompanying the 

structure confirmed the approximate location of the active site that was used for docking. 

Ligands accompanying the structure (Vorapaxar for 3VW7) and the compounds driving the 

prediction of the protein to be docked (Podophyllin acetate, Picropodophyllin acetate for PAR-

1 and Anthotecol for KLK1)  were imported into Maestro’s Ligprep 3.5 wizard for which all 

states corresponding to PH = 7 ± 2 were generated using Epik 3.3 268 with the default 

OPLS_2005 force field. Specified chiralities were retained when available where other chiral 

centres were left free to vary. Only one low energy ring conformation was retained per ligand.  

The grid generation and docking of the ligands and compounds of interest were performed with 

Glide 6.8269,270 with extra-precision scoring271 and expanded pose sampling was enabled. 
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Additionally, docking poses were superimposed to the co-crystallised inhibitor in order to 

check whether the compound poses occupied the same area as the co-crystallised inhibitor.  

 

5.3 Results and discussion 

 

5.3.1 Cyst Area Deviation ranked targets that are known to be involved 

in PKD higher than other targets 

 

Targets were predicted for the compounds of the Spectrum dataset using the target prediction 

workflow described in Chapter 2. For the 33 CGR compounds that were labelled as potential 

cytotoxic compounds, predictions were obtained for 277 targets, resulting in 642 compound-

predicted target pairs. For the reduced set of 17 CGR compounds which were not labelled as 

cytotoxic, 178 unique targets were predicted with 287 CGR compound-target predicted pairs.  

 To assess the relevance of the target predictions to PKD, a metric was developed in this thesis 

to prioritise predicted targets that were associated with compounds having the biggest CGR 

effect (Cyst Area Deviation, or CAD). No differences were found when comparing the 

distributions of CAD between the two target prediction models (Figure 17, left) which 

indicated that none of the models predicted targets that were more relevant to PKD than the 

other. 

To assess if the CAD ranked targets according to their relevance to the disease, these rankings 

were compared to associations scores extracted from Open Targets262. For a specific disease of 
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interest, this database ranks genes according to their association to this disease using several 

criteria such as the presence of mutations in the gene, known drugs for the targets of those 

genes and the maximum phase they reached in their development, and the strength of the 

evidence from animal models.  The literature score, which ranks genes according to the number 

of evidence found in the literature that links them to PKD, was selected because it provided the 

highest coverage with the predicted targets obtained with this analysis. 

In total, 26 predicted targets matched one of the genes in the “Autosomal dominant polycystic 

kidney disease” gene set from Open Targets literature score. The CAD metric was compared 

with the literature score from Open Targets (Figure 17, right). A correlation of 0.31 was 

obtained between the CAD and the literature score from Open Targets, meaning that a higher 

ranking per this metric also provided a higher literature score. There was one clear target outlier 

which had a high literature score in Open Targets but a low rank per the CAD metric employed 

in this analysis (Figure 17, right) and which corresponded to the Nitric oxide synthase 3 

(NOS3). The NOS3 was ranked very poorly with the CAD but is currently being investigated 

in PKD since certain polymorphisms of this gene coding for this target was linked to chronic 

kidney disease progression in PKD272, and also for its effect on hypertension aspects of the 

disease273. Since the CAD is based on the compounds that were tested in the screen, it is 

therefore limited towards ranking proteins which are likely to be targeted by these compounds. 
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Figure 17. Characteristics of the Cyst Area Deviation (CAD) distribution measuring the 

strength of association of a target to cyst growth reduction and validation against Open Targets 

metrics. (Left) The distribution of targets predicted with the ChEMBL target prediction model 

is in red, whilst the distribution for those predicted with PIDGIN is depicted in blue. The CAD 

distribution is comparable for the two models. (Right) Each point represents a target, and the 

plot shows how the CAD correlated with the literature score. For most targets, an increase in 

CAD reflected a higher association with PKD, as reported by the higher literature score in Open 

Targets. 

 

Despite this limitation, this analysis demonstrated that with a higher CAD, the rankings from 

Open Targets also increased, meaning that the CAD ranked targets in accordance with the 

current knowledge in the field of PKD drug discovery. It is hence proposed to be employed to 

identify targets which are less researched in the context of PKD drug discovery. However, none 

of the targets had both a high score per this metric and a low Open Targets Literature score 
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(Figure 17, right). Instead, gene-disease literature rankings from the CTD were used as a proxy 

for less researched targets in PKD.  

 

5.3.2 Integration of gene expression studies and target occurrences in 

literature with the list of targets scoring high for CAD  

 

Gene-disease associations from the CTD database were employed in order to get a sense of 

which targets are currently researched in PKD and, focus the analysis towards those that are 

comparatively less researched. 249 predicted targets had such an information in the CTD 

database (Figure 18a), 147 of which are predicted for non-cytotoxic CGR compounds (Figure 

18b). This set of targets was then intersected with targets that had a higher CAD metric which 

narrowed the number of targets to 64 for all predicted targets in the CGR compound group 

(Figure 18a) and 26 for the set of non-cytotoxic CGR compounds (Figure 18b).  

 

Additionally, Malas et al. compiled gene expression studies using PKD samples to extract 

differentially expressed genes in the disease, and also conducted their own gene expression 

analysis (Appendix C).265 It was recently suggested that expression of the relevant targets in 

the disease-tissue of interest is of value when generating novel MoA analysis,274 and for this 

reason, the 64 targets discussed above were intersected with the list of dysregulated genes in 

PKD which ultimately narrowed the focus of the study to 10 targets (Figure 18a and Table 

12).  
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Figure 18. Venn diagram representing how targets were shortlisted for novelty, their effect in 

the kidney cyst screen and/or their enrichment in the CGR set of compounds, and their 

agreement with gene expression studies. (a) Counts for all the targets predicted by CGR 

compounds. (b) Counts for all the targets predicted for non-cytotoxic CGR compounds for 

which three targets passed all the filters and were shortlisted for structure-based studies. 

 

Three targets were associated with renal processes observed in PKD (Table 12). Casein kinase 

II is investigated for its inhibition of survival and DNA repair in cancer cells through inhibition 

of Caspase.275 This is also of interest in PKD since caspase-mediated apoptosis has been 

observed in PKD rat models.276 Proteinase-activated receptor 1 (PAR-1) is downregulated in 

PKD and is involved in signalling that leads to fibrosis in the kidneys277,278. It is hence very 

relevant to PKD since interstitial fibrosis is associated with cystogenesis.244,279 Serotonin 

receptor HT-2b is expressed in the kidneys280 and serotonin itself may play a role in renal 

fibrogenesis through serotonin receptors.281 
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 The next three targets were instead associated with other renal disorders (Table 12). Markedly, 

CYP2D6 was down-regulated in end-stage renal failure patients.282 Mutations in 11 beta-

hydroxysteroid dehydrogenase type II (HSD11B2) was also found with patients in end-stage 

renal failure.283 Single nucleotide polymorphisms were observed in the gene encoding for 

mitochondrial aldehyde dehydrogenase (ALDH2) in a cohort comprising patients with chronic 

kidney disease.284 

Even though Carbonic Anhydrase XIV (CA14) is not directly involved in PKD or any other 

renal disease (Table 12), it is expressed in the nephrons and may play a role in the acidification 

of urine taking place in the kidneys.285 The remainder of the targets namely, the 2-acylglycerol 

O-acyltransferase 2, the microtubule-associated protein tau and the mitochondrial aldehyde 

dehydrogenase were not linked to PKD in the literature (Table 12). 

If cytotoxic compounds predicted per the cytotoxicity model were removed, the list of 

shortlisted targets decreases to two targets (Figure 18b and Table 13). These two targets are 

discussed in the next section. 
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Gene 
ID Target Gene 

Symbol 
Gene 

Regulation 

CTD 
PubMed 

associations 

1457 Casein kinase II subunit alpha CSNK2A1 DOWN 0 

2149 Proteinase-activated receptor 1 F2R UP 0 

3357 Serotonin HT-2b receptor HTR2B UP 0 

3248 Prostaglandin dehydrogenase 1 HPGD DOWN 2 

1565 Cytochrome P450 2D6 CYP2D6 DOWN 1 

3291 11-beta-hydroxysteroid dehydrogenase 2 HSD11B2 DOWN 2 

23632 Carbonic anhydrase XIV CA14 DOWN 0 

80168 2-acylglycerol O-acyltransferase 2 MOGAT2 DOWN 0 

4137 Microtubule-associated protein tau MAPT DOWN 1 

217 Aldehyde dehydrogenase, mitochondrial ALDH2 DOWN 1 

 

Table 12. Targets selected as a result of the intersection between the three filters namely, 

differential expression filter, association to PKD filter and occurrence in the literature filter. 

The direction of gene expression dysregulation is also given for each target, along with the 

number of association to PKD in CTD.  
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Predicted Target Gene Protein 
family 

Compound(s) 
driving the 
prediction 

PDB Structure 
used for 
docking 

Docking 

Kallikrein 1 KLK1 Protease Anthothecol 1SPJ Inconclusive 

Protease-activated 
receptor 1 F2R GPCR 

Podophyllin 
acetate; 

Picropodophyllin 
acetate 

3VW7 Yes 

 

Table 13. Shortlisted predicted targets when cytotoxicity filter was included and outcome of 

structure-based studies.  

 

5.3.3 Docking analyses agreed with 1 out of 2 shortlisted target 

predictions 

 

In order to give more weight to the shortlisted predictions reported in Table 13, docking studies 

were performed. This involved docking the compound driving the prediction to its 

corresponding target (see Material and Methods). The first shortlisted compound-target 

prediction was comprised of the CGR compound Anthotecol and the Kallikrein 1 (KLK1) 

protein (Table 13). KLK1 has been linked to recessive polycystic kidneys in cpk mice 

models286 and also to end-stage renal disease (to which PKD develops into).287 Unfortunately, 

the only PDB structure available for KLK1 did not have a co-crystallised inhibitor or ligand in 

the binding site (PDB ID: 1SPJ). Hence, the site reported in the article accompanying the 

structure, along with predictions of the binding site were performed (see Material and 

Methods). A docking score of -4.417 was obtained with Glide. Since acceptable Glide docking 
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scores fall below -6, it cannot be considered that this docking was indicative of a potential 

binding of Anthotecol to KLK1.  

The second shortlisted target was PAR-1 (Table 13), which is involved in signalling that leads 

to renal fibrosis 277,278. This prediction was driven by two CGR stereoisomers, podophyllin 

acetate (PA) and picropodophyllin acetate (PPA). The Glide docking score obtained for both 

compounds was optimal as it fell below -8 for both compounds, even though Vorapaxar, the 

co-crystallized inhibitor of the PAR-1 structure, had a much lower docking score, and hence 

docked better than PA and PPA (Table 14).  

 

Compound Docking score 
Podophyllin acetate -8.549 

Picropodophyllin acetate -8.132 
Vorapaxar (co-crystallised inhibitor, PDB: 3VW7) -15.144 

 

Table 14. Glide docking scores of podophyllin acetate, picropodophyllin acetate and the co-

crystallized inhibitor Vorapaxar for the PAR-1 structure (PDB: 3VW7). Acceptable Glide 

docking scores fall below -6 and optimal Glide docking scores fall below -8.  

 

A superimposition of the docking pose obtained for PA to that of Vorapaxar showed that PA 

occupied a very similar conformation in the binding site (Figure 19, top). PPA also occupied 

the same area with some minor variations compared to PA (Figure 19, bottom). The interaction 

diagram of Vorapaxar showed that it made hydrogen bounds with TYR337 and LEU258 

(Figure 20), and these interactions were also found in the diagrams of PA and PPA (Figure 

21). Those results showed that PA and PPA may bind to the PAR-1 receptor. This suggested 
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that PA and PPA exerted their effect on cyst growth through the binding of PAR-1, potentially 

by reducing fibrosis in the polycystic kidney tissues. 

 

5.4 Conclusion 

 

The target prediction workflow developed in this thesis was applied to rationalise the MoA of 

compounds active in a phenotypic assay aimed at identifying modulators of Forskolin-induced 

kidney cyst growth. The CAD was developed to rank predicted targets according to their 

relevance to PKD. It was found that the CAD agreed with the literature association score from 

Open Targets. As a result, 2 targets were identified for which little research was done in the 

context of PKD drug discovery and which were differentially expressed in mice models of 

PKD and had a high CAD: these were KLK1 and PAR-1. For the latter target, it was shown 

that the compounds driving the prediction occupied the same area of the co-crystallised 

inhibitors in the binding site, and shared the same interactions to those seen for the inhibitor as 

well. This chapter presented a workflow in which cheminformatics analyses of phenotypic 

screens were integrated with gene expression studies and structure-based approaches to 

generate MoA hypotheses for the identification of therapeutic opportunities in PKD research.  
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Figure 19. Superimposition of Podophyllin (left) and Picropodophyllin (right) with Vorapaxar (co-crystallised ligand, coloured in cyan) in the 

binding site of protease-activated receptor 1 (PAR-1). Podophyllin adopted a very similar binding pose to the one of Vorapaxar in the binding site. 

The pose of Picropodophyllin aligned with that of Vorapaxar with slightly more variations. 

  



137 

 

 

Figure 20. Interaction diagram for Vorapaxar (co-crystallised) inhibitor in the binding site of PAR-1. Notable interactions such as the hydrogen 

bonds with TYR337 and LEU258 were also found for Podphylin acetate and Picropodophyllin acetate.  
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Figure 21. Interaction diagram of Podophyllin acetate (left) and Picropodophyllin acetate (right) with the amino acids in the binding site of PAR-

1. Comparable interactions to the one Vorapaxar make in the binding site can be found, namely, the hydrogen bonds to TYR337 and LEU258
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Conclusion 

 

 

Drug discovery is currently hampered by major drug attrition rates. This is due to the focus of 

drug development efforts on target-based screening approaches since those do not provide the 

full picture behind the MoA of the lead compounds with regard to efficacy and safety. 

Phenotypic-based screening approaches, in combination with target-based approaches, are 

regarded by researchers in the field, as a way to solve these problems, but the identification of 

the MoA responsible for the activity of the compounds observed in those screens is a strenuous 

task, as it involves the use of expensive and time-consuming biochemical assays. In silico 

approaches that make use of databases of gene expression profiles of compounds or 

experimental bioactivity can identify potentially efficacious candidate compounds and pinpoint 

unsafe ones.  Another in silico approach uses the molecular similarity principle to make 

compound-target predictions and both these concepts have been the focus of this thesis. The 

aim of the thesis has been to 1. assess and quantify whether the molecular similarity principle 

also applies to phenotypic screening datasets, 2. investigate how similar or different the MoA 

predicted by those algorithms are compared to those that can be generated from experimental 

bioactivity, and 3. combine the output of these models with other information to propose 

disease-relevant MoA for compounds active in phenotypic screens. 

While the molecular similarity principle has been extensively studied for target-based 

screening data, the literature analysis conducted in this thesis highlighted that this was less the 

case for phenotypic-based screening datasets. In addition, the molecular similarity principle 
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has so far, not been quantified for phenotypic-based screening datasets such as those employed 

in this thesis. In Chapter 3, the Bayesian framework was employed to estimate the variation of 

phenotypically similar pairs that can be expected for an increasing chemical similarity in the 

BioMAP and ChEMBL phenotypic datasets, using three of the most employed fingerprints in 

the cheminformatics literature. The fraction of phenotypically similar compounds was 

estimated to increase by 1% in the ELISA based readout dataset and 3% in the cell-viability 

dataset, for an increase in 5% Tc similarity. In this way, it was shown that the molecular 

similarity principle is valid in phenotypic screens. Despite that a limited number of datasets 

was used, a framework was provided to be applied to other types of phenotypic screening data, 

in order to compute estimates for the molecular similarity principle in phenotypic screens. In 

addition, the variation of the fraction of phenotypically similar pairs was not always linear and 

followed different trends for each of the three fingerprints. When the trend was piecewise-

linear or quadratic, it was shown that ECFP4 detected the molecular similarity principle for 

lower values of Tc compared to the other two fingerprints used in chapter 3. The neighbourhood 

enhancement ratio was employed to demonstrate that ECFP4 were less sensitive to activity-

cliffs in the ChEMBL dataset compared to MACCS keys and PubChem fingerprints. This 

showed that ECFP4 is a reasonable fingerprint choice for any cheminformatics applications 

such as target prediction analyses or QSAR analyses involving phenotypic screening datasets 

such as those employed in this thesis. 

Since the molecular similarity principle was found to be valid in phenotypic screening datasets 

and knowing that ECFP4 is a recommended choice for these datasets, the target prediction 

workflow described in Chapter 2 was applied to the compounds in the NCATS phenotypic 

dataset. The aim of that work, which was described in Chapter 4, was to assess how the MoA 

hypotheses obtained through the target prediction workflow described in Chapter 2 compared 

to the MoA hypotheses obtained through the use of experimental data in the Drugmatrix 
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dataset. Indeed, this type of comparison has not been performed and highlighted the practicality 

of target prediction algorithms for the deconvolution of activity signals in phenotypic screens. 

Indeed, there was a high agreement between the MoA obtained through prediction and 

experimental data. While the individual target mostly differed between the predicted MoA and 

the experimental MoA for all the phenotypic assays in the NCATS dataset, the predicted and 

experimental target genes were highly functionally similar. This highlighted that while some 

functional agreement was seen between prediction and experimental data, the target prediction 

workflow developed in this thesis obtained targets that were still different from those which 

were observed experimentally but still very relevant to the phenotypic assay. This suggested 

that target prediction algorithms can complement the use of experimental bioactivity data 

available publicly to generate relevant MoA hypotheses for the deconvolution of compound 

activity in phenotypic screens. 

In Chapter 5, the target prediction workflow was applied to deconvolute the activity of 

compounds in a kidney cyst growth assay. A metric was developed to rank targets by their 

relevance to PKD. Predicted targets with a high ranking per the above metric were intersected 

with differentially expressed genes whilst ensuring that the targets were not highly investigated 

in drug development for PKD. This analysis shortlisted two candidate targets. Where structural 

information was available, it was shown that the plausible docking of candidate compounds 

active in the kidney cyst screening assay to their predicted targets. This application chapter 

showed how target prediction can be integrated with various information and other approaches 

to improve target deconvolution.  

In conclusion, this work reinforces the recommendation of in silico target prediction algorithms 

in the deconvolution of phenotypic screens. They indeed rely on the molecular similarity 

principle which was not only valid but also quantifiable in phenotypic screening datasets and 
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used in combination with experimental data, can lead to alternative MoA. This work showed 

that predictions can easily be integrated to other types of “evidence” such as gene expression 

profiles of compounds and structural bioinformatics and this will contribute to not only 

alleviate some of the shortcomings associated with the training set of these models regarding 

data quality and quantity but also to build confidence in these predictions.  
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Appendices  

 

Appendix A.  Structural features corresponding to the 166 keys of the MACCS MDL keys.46 

Atom symbols are the following: A: Any valid periodic table element symbol; Q: Heteroatoms; 

any non-C or non-H atom; X: Halogens; F, Cl, Br, I; Z: Others; other than H, C, N, O, Si, P, S, 

F, Cl, Br, I 

 

KEY STRUCTURAL FEATURE 

1 ISOTOPE 

2 103 < ATOMIC NO. < 256 

3 GROUP IVA, VA, VIA 
PERIODS 4-6 (Ge...) 

4 ACTINIDE 

5 GROUP IIIB, IVB (Sc...) 

6 LANTHANIDE 

7 GROUP VB, VIB, VIIB (V...) 

8 QAAA@1 

9 GROUP VIII (Fe...) 

10 GROUP IIA (ALKALINE 
EARTH) 

11 4M RING 

12 GROUP IB, IIB (Cu...) 

13 ON(C)C 

14 S-S 

15 OC(O)O 

16 QAA@1 

17 CTC 

18 GROUP IIIA (B...) 

19 7M RING 

20 SI 

21 C=C(Q)Q 

22 3M RING 

23 NC(O)O 

24 N-O 

25 NC(N)N 

26 C$=C($A)$A 

27 I 

28 QCH2Q 

29 P 

30 CQ(C)(C)A 

31 QX 

32 CSN 

33 NS 

34 CH2=A 

35 GROUP IA (ALKALI 
METAL) 
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36 S HETEROCYCLE 

37 NC(O)N 

38 NC(C)N 

39 OS(O)O 

40 S-O 

41 CTN 

42 F 

43 QHAQH 

44 OTHER 

45 C=CN 

46 BR 

47 SAN 

48 OQ(O)O 

49 CHARGE 

50 C=C(C)C 

51 CSO 

52 NN 

53 QHAAAQH 

54 QHAAQH 

55 OSO 

56 ON(O)C 

57 O HETEROCYCLE 

58 QSQ 

59 Snot%A%A 

60 S=O 

61 AS(A)A 

62 A$A!A$A 

63 N=O 

64 A$A!S 

65 C%N 

66 CC(C)(C)A 

67 QS 

68 QHQH (&...) 

69 QQH 

70 QNQ 

71 NO 

72 OAAO 

73 S=A 

74 CH3ACH3 

75 A!N$A 

76 C=C(A)A 

77 NAN 

78 C=N 

79 NAAN 

80 NAAAN 

81 SA(A)A 

82 ACH2QH 

83 QAAAA@1 

84 NH2 

85 CN(C)C 

86 CH2QCH2 

87 X!A$A 

88 S 

89 OAAAO 

90 QHAACH2A 

91 QHAAACH2A 

92 OC(N)C 

93 QCH3 

94 QN 

95 NAAO 
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96 5M RING 

97 NAAAO 

98 QAAAAA@1 

99 C=C 

100 ACH2N 

101 8M RING 

102 QO 

103 CL 

104 QHACH2A 

105 A$A($A)$A 

106 QA(Q)Q 

107 XA(A)A 

108 CH3AAACH2A 

109 ACH2O 

110 NCO 

111 NACH2A 

112 AA(A)(A)A 

113 Onot%A%A 

114 CH3CH2A 

115 CH3ACH2A 

116 CH3AACH2A 

117 NAO 

118 ACH2CH2A > 1 

119 N=A 

120 HETEROCYCLIC ATOM > 1 
(&...) 

121 N HETEROCYCLE 

122 AN(A)A 

123 OCO 

124 QQ 

125 AROMATIC RING > 1 

126 A!O!A 

127 A$A!O > 1 (&...) 

128 ACH2AAACH2A 

129 ACH2AACH2A 

130 QQ > 1 (&...) 

131 QH > 1 

132 OACH2A 

133 A$A!N 

134 X (HALOGEN) 

135 Nnot%A%A 

136 O=A > 1 

137 HETEROCYCLE 

138 QCH2A > 1 (&...) 

139 OH 

140 O > 3 (&...) 

141 CH3 > 2 (&...) 

142 N > 1 

143 A$A!O 

144 Anot%A%Anot%A 

145 6M RING > 1 

146 O > 2 

147 ACH2CH2A 

148 AQ(A)A 

149 CH3 > 1 

150 A!A$A!A 

151 NH 

152 OC(C)C 

153 QCH2A 

154 C=O 

155 A!CH2!A 
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156 NA(A)A 

157 C-O 

158 C-N 

159 O > 1 

160 CH3 

161 N 

162 AROMATIC 

163 6M RING 

164 O 

165 RING 

166 FRAGMENTS 
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Appendix B. Structural features corresponding to the 881 keys of the PubChem fingerprints.74 

  

KEY FEATURE 

0 >= 4 H 

1 >= 8 H 

2 >= 16 H 

3 >= 32 H 

4 >= 1 Li 

5 >= 2 Li 

6 >= 1 B 

7 >= 2 B 

8 >= 4 B 

9 >= 2 C 

10 >= 4 C 

11 >= 8 C 

12 >= 16 C 

13 >= 32 C 

14 >= 1 N 

15 >= 2 N 

16 >= 4 N 

17 >= 8 N 

18 >= 1 O 

19 >= 2 O 

20 >= 4 O 

21 >= 8 O 

22 >= 16 O 

23 >= 1 F 

24 >= 2 F 

25 >= 4 F 

26 >= 1 Na 

27 >= 2 Na 

28 >= 1 Si 

29 >= 2 Si 

30 >= 1 P 

31 >= 2 P 

32 >= 4 P 

33 >= 1 S 

34 >= 2 S 

35 >= 4 S 

36 >= 8 S 

37 >= 1 Cl 

38 >= 2 Cl 

39 >= 4 Cl 

40 >= 8 Cl 

41 >= 1 K 

42 >= 2 K 

43 >= 1 Br 

44 >= 2 Br 

45 >= 4 Br 

46 >= 1 I 

47 >= 2 I 

48 >= 4 I 

49 >= 1 Be 

50 >= 1 Mg 

51 >= 1 Al 

52 >= 1 Ca 
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53 >= 1 Sc 

54 >= 1 Ti 

55 >= 1 V 

56 >= 1 Cr 

57 >= 1 Mn 

58 >= 1 Fe 

59 >= 1 Co 

60 >= 1 Ni 

61 >= 1 Cu 

62 >= 1 Zn 

63 >= 1 Ga 

64 >= 1 Ge 

65 >= 1 As 

66 >= 1 Se 

67 >= 1 Kr 

68 >= 1 Rb 

69 >= 1 Sr 

70 >= 1 Y 

71 >= 1 Zr 

72 >= 1 Nb 

73 >= 1 Mo 

74 >= 1 Ru 

75 >= 1 Rh 

76 >= 1 Pd 

77 >= 1 Ag 

78 >= 1 Cd 

79 >= 1 In 

80 >= 1 Sn 

81 >= 1 Sb 

82 >= 1 Te 

83 >= 1 Xe 

84 >= 1 Cs 

85 >= 1 Ba 

86 >= 1 Lu 

87 >= 1 Hf 

88 >= 1 Ta 

89 >= 1 W 

90 >= 1 Re 

91 >= 1 Os 

92 >= 1 Ir 

93 >= 1 Pt 

94 >= 1 Au 

95 >= 1 Hg 

96 >= 1 Tl 

97 >= 1 Pb 

98 >= 1 Bi 

99 >= 1 La 

100 >= 1 Ce 

101 >= 1 Pr 

102 >= 1 Nd 

103 >= 1 Pm 

104 >= 1 Sm 

105 >= 1 Eu 

106 >= 1 Gd 

107 >= 1 Tb 

108 >= 1 Dy 

109 >= 1 Ho 

110 >= 1 Er 

111 >= 1 Tm 

112 >= 1 Yb 
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113 >= 1 Tc 

114 >= 1 U 

115 >= 1 any ring size 3 

116 >= 1 saturated or aromatic 
carbon-only ring size 3 

117 >= 1 saturated or aromatic 
nitrogen-containing ring size 3 

118 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
3 

119 >= 1 unsaturated non-aromatic 
carbon-only ring size 3 

120 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 3 

121 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
3 

122 >= 2 any ring size 3 

123 >= 2 saturated or aromatic 
carbon-only ring size 3 

124 >= 2 saturated or aromatic 
nitrogen-containing ring size 3 

125 
>= 2 saturated or aromatic 
heteroatom-containing ring size 
3 

126 >= 2 unsaturated non-aromatic 
carbon-only ring size 3 

127 >= 2 unsaturated non-aromatic 
nitrogen-containing ring size 3 

128 
>= 2 unsaturated non-aromatic 
heteroatom-containing ring size 
3 

129 >= 1 any ring size 4 

130 >= 1 saturated or aromatic 
carbon-only ring size 4 

131 >= 1 saturated or aromatic 
nitrogen-containing ring size 4 

132 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
4 

133 >= 1 unsaturated non-aromatic 
carbon-only ring size 4 

134 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 4 

135 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
4 

136 >= 2 any ring size 4 

137 >= 2 saturated or aromatic 
carbon-only ring size 4 

138 >= 2 saturated or aromatic 
nitrogen-containing ring size 4 

139 
>= 2 saturated or aromatic 
heteroatom-containing ring size 
4 

140 >= 2 unsaturated non-aromatic 
carbon-only ring size 4 

141 >= 2 unsaturated non-aromatic 
nitrogen-containing ring size 4 

142 
>= 2 unsaturated non-aromatic 
heteroatom-containing ring size 
4 

143 >= 1 any ring size 5 

144 >= 1 saturated or aromatic 
carbon-only ring size 5 

145 >= 1 saturated or aromatic 
nitrogen-containing ring size 5 

146 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
5 

147 >= 1 unsaturated non-aromatic 
carbon-only ring size 5 

148 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 5 
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149 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
5 

150 >= 2 any ring size 5 

151 >= 2 saturated or aromatic 
carbon-only ring size 5 

152 >= 2 saturated or aromatic 
nitrogen-containing ring size 5 

153 
>= 2 saturated or aromatic 
heteroatom-containing ring size 
5 

154 >= 2 unsaturated non-aromatic 
carbon-only ring size 5 

155 >= 2 unsaturated non-aromatic 
nitrogen-containing ring size 5 

156 
>= 2 unsaturated non-aromatic 
heteroatom-containing ring size 
5 

157 >= 3 any ring size 5 

158 >= 3 saturated or aromatic 
carbon-only ring size 5 

159 >= 3 saturated or aromatic 
nitrogen-containing ring size 5 

160 
>= 3 saturated or aromatic 
heteroatom-containing ring size 
5 

161 >= 3 unsaturated non-aromatic 
carbon-only ring size 5 

162 >= 3 unsaturated non-aromatic 
nitrogen-containing ring size 5 

163 
>= 3 unsaturated non-aromatic 
heteroatom-containing ring size 
5 

164 >= 4 any ring size 5 

165 >= 4 saturated or aromatic 
carbon-only ring size 5 

166 >= 4 saturated or aromatic 
nitrogen-containing ring size 5 

167 
>= 4 saturated or aromatic 
heteroatom-containing ring size 
5 

168 >= 4 unsaturated non-aromatic 
carbon-only ring size 5 

169 >= 4 unsaturated non-aromatic 
nitrogen-containing ring size 5 

170 
>= 4 unsaturated non-aromatic 
heteroatom-containing ring size 
5 

171 >= 5 any ring size 5 

172 >= 5 saturated or aromatic 
carbon-only ring size 5 

173 >= 5 saturated or aromatic 
nitrogen-containing ring size 5 

174 
>= 5 saturated or aromatic 
heteroatom-containing ring size 
5 

175 >= 5 unsaturated non-aromatic 
carbon-only ring size 5 

176 >= 5 unsaturated non-aromatic 
nitrogen-containing ring size 5 

177 
>= 5 unsaturated non-aromatic 
heteroatom-containing ring size 
5 

178 >= 1 any ring size 6 

179 >= 1 saturated or aromatic 
carbon-only ring size 6 

180 >= 1 saturated or aromatic 
nitrogen-containing ring size 6 

181 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
6 

182 >= 1 unsaturated non-aromatic 
carbon-only ring size 6 

183 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 6 
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184 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
6 

185 >= 2 any ring size 6 

186 >= 2 saturated or aromatic 
carbon-only ring size 6 

187 >= 2 saturated or aromatic 
nitrogen-containing ring size 6 

188 
>= 2 saturated or aromatic 
heteroatom-containing ring size 
6 

189 >= 2 unsaturated non-aromatic 
carbon-only ring size 6 

190 >= 2 unsaturated non-aromatic 
nitrogen-containing ring size 6 

191 
>= 2 unsaturated non-aromatic 
heteroatom-containing ring size 
6 

192 >= 3 any ring size 6 

193 >= 3 saturated or aromatic 
carbon-only ring size 6 

194 >= 3 saturated or aromatic 
nitrogen-containing ring size 6 

195 
>= 3 saturated or aromatic 
heteroatom-containing ring size 
6 

196 >= 3 unsaturated non-aromatic 
carbon-only ring size 6 

197 >= 3 unsaturated non-aromatic 
nitrogen-containing ring size 6 

198 
>= 3 unsaturated non-aromatic 
heteroatom-containing ring size 
6 

199 >= 4 any ring size 6 

200 >= 4 saturated or aromatic 
carbon-only ring size 6 

201 >= 4 saturated or aromatic 
nitrogen-containing ring size 6 

202 
>= 4 saturated or aromatic 
heteroatom-containing ring size 
6 

203 >= 4 unsaturated non-aromatic 
carbon-only ring size 6 

204 >= 4 unsaturated non-aromatic 
nitrogen-containing ring size 6 

205 
>= 4 unsaturated non-aromatic 
heteroatom-containing ring size 
6 

206 >= 5 any ring size 6 

207 >= 5 saturated or aromatic 
carbon-only ring size 6 

208 >= 5 saturated or aromatic 
nitrogen-containing ring size 6 

209 
>= 5 saturated or aromatic 
heteroatom-containing ring size 
6 

210 >= 5 unsaturated non-aromatic 
carbon-only ring size 6 

211 >= 5 unsaturated non-aromatic 
nitrogen-containing ring size 6 

212 
>= 5 unsaturated non-aromatic 
heteroatom-containing ring size 
6 

213 >= 1 any ring size 7 

214 >= 1 saturated or aromatic 
carbon-only ring size 7 

215 >= 1 saturated or aromatic 
nitrogen-containing ring size 7 

216 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
7 

217 >= 1 unsaturated non-aromatic 
carbon-only ring size 7 

218 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 7 
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219 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
7 

220 >= 2 any ring size 7 

221 >= 2 saturated or aromatic 
carbon-only ring size 7 

222 >= 2 saturated or aromatic 
nitrogen-containing ring size 7 

223 
>= 2 saturated or aromatic 
heteroatom-containing ring size 
7 

224 >= 2 unsaturated non-aromatic 
carbon-only ring size 7 

225 >= 2 unsaturated non-aromatic 
nitrogen-containing ring size 7 

226 
>= 2 unsaturated non-aromatic 
heteroatom-containing ring size 
7 

227 >= 1 any ring size 8 

228 >= 1 saturated or aromatic 
carbon-only ring size 8 

229 >= 1 saturated or aromatic 
nitrogen-containing ring size 8 

230 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
8 

231 >= 1 unsaturated non-aromatic 
carbon-only ring size 8 

232 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 8 

233 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
8 

234 >= 2 any ring size 8 

235 >= 2 saturated or aromatic 
carbon-only ring size 8 

236 >= 2 saturated or aromatic 
nitrogen-containing ring size 8 

237 
>= 2 saturated or aromatic 
heteroatom-containing ring size 
8 

238 >= 2 unsaturated non-aromatic 
carbon-only ring size 8 

239 >= 2 unsaturated non-aromatic 
nitrogen-containing ring size 8 

240 
>= 2 unsaturated non-aromatic 
heteroatom-containing ring size 
8 

241 >= 1 any ring size 9 

242 >= 1 saturated or aromatic 
carbon-only ring size 9 

243 >= 1 saturated or aromatic 
nitrogen-containing ring size 9 

244 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
9 

245 >= 1 unsaturated non-aromatic 
carbon-only ring size 9 

246 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 9 

247 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
9 

248 >= 1 any ring size 10 

249 >= 1 saturated or aromatic 
carbon-only ring size 10 

250 >= 1 saturated or aromatic 
nitrogen-containing ring size 10 

251 
>= 1 saturated or aromatic 
heteroatom-containing ring size 
10 

252 >= 1 unsaturated non-aromatic 
carbon-only ring size 10 

253 >= 1 unsaturated non-aromatic 
nitrogen-containing ring size 10 



180 

 

254 
>= 1 unsaturated non-aromatic 
heteroatom-containing ring size 
10 

255 >= 1 aromatic ring 

256 >= 1 hetero-aromatic ring 

257 >= 2 aromatic rings 

258 >= 2 hetero-aromatic rings 

259 >= 3 aromatic rings 

260 >= 3 hetero-aromatic rings 

261 >= 4 aromatic rings 

262 >= 4 hetero-aromatic rings 

263 Li-H 

264 Li-Li 

265 Li-B 

266 Li-C 

267 Li-O 

268 Li-F 

269 Li-P 

270 Li-S 

271 Li-Cl 

272 B-H 

273 B-B 

274 B-C 

275 B-N 

276 B-O 

277 B-F 

278 B-Si 

279 B-P 

280 B-S 

281 B-Cl 

282 B-Br 

283 C-H 

284 C-C 

285 C-N 

286 C-O 

287 C-F 

288 C-Na 

289 C-Mg 

290 C-Al 

291 C-Si 

292 C-P 

293 C-S 

294 C-Cl 

295 C-As 

296 C-Se 

297 C-Br 

298 C-I 

299 N-H 

300 N-N 

301 N-O 

302 N-F 

303 N-Si 

304 N-P 

305 N-S 

306 N-Cl 

307 N-Br 

308 O-H 

309 O-O 

310 O-Mg 

311 O-Na 

312 O-Al 
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313 O-Si 

314 O-P 

315 O-K 

316 F-P 

317 F-S 

318 Al-H 

319 Al-Cl 

320 Si-H 

321 Si-Si 

322 Si-Cl 

323 P-H 

324 P-P 

325 As-H 

326 As-As 

327 C(~Br)(~C) 

328 C(~Br)(~C)(~C) 

329 C(~Br)(~H) 

330 C(~Br)(:C) 

331 C(~Br)(:N) 

332 C(~C)(~C) 

333 C(~C)(~C)(~C) 

334 C(~C)(~C)(~C)(~C) 

335 C(~C)(~C)(~C)(~H) 

336 C(~C)(~C)(~C)(~N) 

337 C(~C)(~C)(~C)(~O) 

338 C(~C)(~C)(~H)(~N) 

339 C(~C)(~C)(~H)(~O) 

340 C(~C)(~C)(~N) 

341 C(~C)(~C)(~O) 

342 C(~C)(~Cl) 

343 C(~C)(~Cl)(~H) 

344 C(~C)(~H) 

345 C(~C)(~H)(~N) 

346 C(~C)(~H)(~O) 

347 C(~C)(~H)(~O)(~O) 

348 C(~C)(~H)(~P) 

349 C(~C)(~H)(~S) 

350 C(~C)(~I) 

351 C(~C)(~N) 

352 C(~C)(~O) 

353 C(~C)(~S) 

354 C(~C)(~Si) 

355 C(~C)(:C) 

356 C(~C)(:C)(:C) 

357 C(~C)(:C)(:N) 

358 C(~C)(:N) 

359 C(~C)(:N)(:N) 

360 C(~Cl)(~Cl) 

361 C(~Cl)(~H) 

362 C(~Cl)(:C) 

363 C(~F)(~F) 

364 C(~F)(:C) 

365 C(~H)(~N) 

366 C(~H)(~O) 

367 C(~H)(~O)(~O) 

368 C(~H)(~S) 

369 C(~H)(~Si) 

370 C(~H)(:C) 

371 C(~H)(:C)(:C) 

372 C(~H)(:C)(:N) 
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373 C(~H)(:N) 

374 C(~H)(~H)(~H) 

375 C(~N)(~N) 

376 C(~N)(:C) 

377 C(~N)(:C)(:C) 

378 C(~N)(:C)(:N) 

379 C(~N)(:N) 

380 C(~O)(~O) 

381 C(~O)(:C) 

382 C(~O)(:C)(:C) 

383 C(~S)(:C) 

384 C(:C)(:C) 

385 C(:C)(:C)(:C) 

386 C(:C)(:C)(:N) 

387 C(:C)(:N) 

388 C(:C)(:N)(:N) 

389 C(:N)(:N) 

390 N(~C)(~C) 

391 N(~C)(~C)(~C) 

392 N(~C)(~C)(~H) 

393 N(~C)(~H) 

394 N(~C)(~H)(~N) 

395 N(~C)(~O) 

396 N(~C)(:C) 

397 N(~C)(:C)(:C) 

398 N(~H)(~N) 

399 N(~H)(:C) 

400 N(~H)(:C)(:C) 

401 N(~O)(~O) 

402 N(~O)(:O) 

403 N(:C)(:C) 

404 N(:C)(:C)(:C) 

405 O(~C)(~C) 

406 O(~C)(~H) 

407 O(~C)(~P) 

408 O(~H)(~S) 

409 O(:C)(:C) 

410 P(~C)(~C) 

411 P(~O)(~O) 

412 S(~C)(~C) 

413 S(~C)(~H) 

414 S(~C)(~O) 

415 Si(~C)(~C) 

416 C=C 

417 C#C 

418 C=N 

419 C#N 

420 C=O 

421 C=S 

422 N=N 

423 N=O 

424 N=P 

425 P=O 

426 P=P 

427 C(#C)(-C) 

428 C(#C)(-H) 

429 C(#N)(-C) 

430 C(-C)(-C)(=C) 

431 C(-C)(-C)(=N) 

432 C(-C)(-C)(=O) 
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433 C(-C)(-Cl)(=O) 

434 C(-C)(-H)(=C) 

435 C(-C)(-H)(=N) 

436 C(-C)(-H)(=O) 

437 C(-C)(-N)(=C) 

438 C(-C)(-N)(=N) 

439 C(-C)(-N)(=O) 

440 C(-C)(-O)(=O) 

441 C(-C)(=C) 

442 C(-C)(=N) 

443 C(-C)(=O) 

444 C(-Cl)(=O) 

445 C(-H)(-N)(=C) 

446 C(-H)(=C) 

447 C(-H)(=N) 

448 C(-H)(=O) 

449 C(-N)(=C) 

450 C(-N)(=N) 

451 C(-N)(=O) 

452 C(-O)(=O) 

453 N(-C)(=C) 

454 N(-C)(=O) 

455 N(-O)(=O) 

456 P(-O)(=O) 

457 S(-C)(=O) 

458 S(-O)(=O) 

459 S(=O)(=O) 

460 C-C-C#C 

461 O-C-C=N 

462 O-C-C=O 

463 N:C-S-[#1] 

464 N-C-C=C 

465 O=S-C-C 

466 N#C-C=C 

467 C=N-N-C 

468 O=S-C-N 

469 S-S-C:C 

470 C:C-C=C 

471 S:C:C:C 

472 C:N:C-C 

473 S-C:N:C 

474 S:C:C:N 

475 S-C=N-C 

476 C-O-C=C 

477 N-N-C:C 

478 S-C=N-[#1] 

479 S-C-S-C 

480 C:S:C-C 

481 O-S-C:C 

482 C:N-C:C 

483 N-S-C:C 

484 N-C:N:C 

485 N:C:C:N 

486 N-C:N:N 

487 N-C=N-C 

488 N-C=N-[#1] 

489 N-C-S-C 

490 C-C-C=C 

491 C-N:C-[#1] 

492 N-C:O:C 
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493 O=C-C:C 

494 O=C-C:N 

495 C-N-C:C 

496 N:N-C-[#1] 

497 O-C:C:N 

498 O-C=C-C 

499 N-C:C:N 

500 C-S-C:C 

501 Cl-C:C-C 

502 N-C=C-[#1] 

503 Cl-C:C-[#1] 

504 N:C:N-C 

505 Cl-C:C-O 

506 C-C:N:C 

507 C-C-S-C 

508 S=C-N-C 

509 Br-C:C-C 

510 [#1]-N-N-[#1] 

511 S=C-N-[#1] 

512 C-[As]-O-[#1] 

513 S:C:C-[#1] 

514 O-N-C-C 

515 N-N-C-C 

516 [#1]-C=C-[#1] 

517 N-N-C-N 

518 O=C-N-N 

519 N=C-N-C 

520 C=C-C:C 

521 C:N-C-[#1] 

522 C-N-N-[#1] 

523 N:C:C-C 

524 C-C=C-C 

525 [As]-C:C-[#1] 

526 Cl-C:C-Cl 

527 C:C:N-[#1] 

528 [#1]-N-C-[#1] 

529 Cl-C-C-Cl 

530 N:C-C:C 

531 S-C:C-C 

532 S-C:C-[#1] 

533 S-C:C-N 

534 S-C:C-O 

535 O=C-C-C 

536 O=C-C-N 

537 O=C-C-O 

538 N=C-C-C 

539 N=C-C-[#1] 

540 C-N-C-[#1] 

541 O-C:C-C 

542 O-C:C-[#1] 

543 O-C:C-N 

544 O-C:C-O 

545 N-C:C-C 

546 N-C:C-[#1] 

547 N-C:C-N 

548 O-C-C:C 

549 N-C-C:C 

550 Cl-C-C-C 

551 Cl-C-C-O 

552 C:C-C:C 
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553 O=C-C=C 

554 Br-C-C-C 

555 N=C-C=C 

556 C=C-C-C 

557 N:C-O-[#1] 

558 O=N-C:C 

559 O-C-N-[#1] 

560 N-C-N-C 

561 Cl-C-C=O 

562 Br-C-C=O 

563 O-C-O-C 

564 C=C-C=C 

565 C:C-O-C 

566 O-C-C-N 

567 O-C-C-O 

568 N#C-C-C 

569 N-C-C-N 

570 C:C-C-C 

571 [#1]-C-O-[#1] 

572 N:C:N:C 

573 O-C-C=C 

574 O-C-C:C-C 

575 O-C-C:C-O 

576 N=C-C:C-[#1] 

577 C:C-N-C:C 

578 C-C:C-C:C 

579 O=C-C-C-C 

580 O=C-C-C-N 

581 O=C-C-C-O 

582 C-C-C-C-C 

583 Cl-C:C-O-C 

584 C:C-C=C-C 

585 C-C:C-N-C 

586 C-S-C-C-C 

587 N-C:C-O-[#1] 

588 O=C-C-C=O 

589 C-C:C-O-C 

590 C-C:C-O-[#1] 

591 Cl-C-C-C-C 

592 N-C-C-C-C 

593 N-C-C-C-N 

594 C-O-C-C=C 

595 C:C-C-C-C 

596 N=C-N-C-C 

597 O=C-C-C:C 

598 Cl-C:C:C-C 

599 [#1]-C-C=C-[#1] 

600 N-C:C:C-C 

601 N-C:C:C-N 

602 O=C-C-N-C 

603 C-C:C:C-C 

604 C-O-C-C:C 

605 O=C-C-O-C 

606 O-C:C-C-C 

607 N-C-C-C:C 

608 C-C-C-C:C 

609 Cl-C-C-N-C 

610 C-O-C-O-C 

611 N-C-C-N-C 

612 N-C-O-C-C 
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613 C-N-C-C-C 

614 C-C-O-C-C 

615 N-C-C-O-C 

616 C:C:N:N:C 

617 C-C-C-O-[#1] 

618 C:C-C-C:C 

619 O-C-C=C-C 

620 C:C-O-C-C 

621 N-C:C:C:N 

622 O=C-O-C:C 

623 O=C-C:C-C 

624 O=C-C:C-N 

625 O=C-C:C-O 

626 C-O-C:C-C 

627 O=[As]-C:C:C 

628 C-N-C-C:C 

629 S-C:C:C-N 

630 O-C:C-O-C 

631 O-C:C-O-[#1] 

632 C-C-O-C:C 

633 N-C-C:C-C 

634 C-C-C:C-C 

635 N-N-C-N-[#1] 

636 C-N-C-N-C 

637 O-C-C-C-C 

638 O-C-C-C-N 

639 O-C-C-C-O 

640 C=C-C-C-C 

641 O-C-C-C=C 

642 O-C-C-C=O 

643 [#1]-C-C-N-[#1] 

644 C-C=N-N-C 

645 O=C-N-C-C 

646 O=C-N-C-[#1] 

647 O=C-N-C-N 

648 O=N-C:C-N 

649 O=N-C:C-O 

650 O=C-N-C=O 

651 O-C:C:C-C 

652 O-C:C:C-N 

653 O-C:C:C-O 

654 N-C-N-C-C 

655 O-C-C-C:C 

656 C-C-N-C-C 

657 C-N-C:C-C 

658 C-C-S-C-C 

659 O-C-C-N-C 

660 C-C=C-C-C 

661 O-C-O-C-C 

662 O-C-C-O-C 

663 O-C-C-O-[#1] 

664 C-C=C-C=C 

665 N-C:C-C-C 

666 C=C-C-O-C 

667 C=C-C-O-[#1] 

668 C-C:C-C-C 

669 Cl-C:C-C=O 

670 Br-C:C:C-C 

671 O=C-C=C-C 

672 O=C-C=C-[#1] 



187 

 

673 O=C-C=C-N 

674 N-C-N-C:C 

675 Br-C-C-C:C 

676 N#C-C-C-C 

677 C-C=C-C:C 

678 C-C-C=C-C 

679 C-C-C-C-C-C 

680 O-C-C-C-C-C 

681 O-C-C-C-C-O 

682 O-C-C-C-C-N 

683 N-C-C-C-C-C 

684 O=C-C-C-C-C 

685 O=C-C-C-C-N 

686 O=C-C-C-C-O 

687 O=C-C-C-C=O 

688 C-C-C-C-C-C-C 

689 O-C-C-C-C-C-C 

690 O-C-C-C-C-C-O 

691 O-C-C-C-C-C-N 

692 O=C-C-C-C-C-C 

693 O=C-C-C-C-C-O 

694 O=C-C-C-C-C=O 

695 O=C-C-C-C-C-N 

696 C-C-C-C-C-C-C-C 

697 C-C-C-C-C-C(C)-C 

698 O-C-C-C-C-C-C-C 

699 O-C-C-C-C-C(C)-C 

700 O-C-C-C-C-C-O-C 

701 O-C-C-C-C-C(O)-C 

702 O-C-C-C-C-C-N-C 

703 O-C-C-C-C-C(N)-C 

704 O=C-C-C-C-C-C-C 

705 O=C-C-C-C-C(O)-C 

706 O=C-C-C-C-C(=O)-C 

707 O=C-C-C-C-C(N)-C 

708 C-C(C)-C-C 

709 C-C(C)-C-C-C 

710 C-C-C(C)-C-C 

711 C-C(C)(C)-C-C 

712 C-C(C)-C(C)-C 

713 Cc1ccc(C)cc1 

714 Cc1ccc(O)cc1 

715 Cc1ccc(S)cc1 

716 Cc1ccc(N)cc1 

717 Cc1ccc(Cl)cc1 

718 Cc1ccc(Br)cc1 

719 Oc1ccc(O)cc1 

720 Oc1ccc(S)cc1 

721 Oc1ccc(N)cc1 

722 Oc1ccc(Cl)cc1 

723 Oc1ccc(Br)cc1 

724 Sc1ccc(S)cc1 

725 Sc1ccc(N)cc1 

726 Sc1ccc(Cl)cc1 

727 Sc1ccc(Br)cc1 

728 Nc1ccc(N)cc1 

729 Nc1ccc(Cl)cc1 

730 Nc1ccc(Br)cc1 

731 Clc1ccc(Cl)cc1 

732 Clc1ccc(Br)cc1 
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733 Brc1ccc(Br)cc1 

734 Cc1cc(C)ccc1 

735 Cc1cc(O)ccc1 

736 Cc1cc(S)ccc1 

737 Cc1cc(N)ccc1 

738 Cc1cc(Cl)ccc1 

739 Cc1cc(Br)ccc1 

740 Oc1cc(O)ccc1 

741 Oc1cc(S)ccc1 

742 Oc1cc(N)ccc1 

743 Oc1cc(Cl)ccc1 

744 Oc1cc(Br)ccc1 

745 Sc1cc(S)ccc1 

746 Sc1cc(N)ccc1 

747 Sc1cc(Cl)ccc1 

748 Sc1cc(Br)ccc1 

749 Nc1cc(N)ccc1 

750 Nc1cc(Cl)ccc1 

751 Nc1cc(Br)ccc1 

752 Clc1cc(Cl)ccc1 

753 Clc1cc(Br)ccc1 

754 Brc1cc(Br)ccc1 

755 Cc1c(C)cccc1 

756 Cc1c(O)cccc1 

757 Cc1c(S)cccc1 

758 Cc1c(N)cccc1 

759 Cc1c(Cl)cccc1 

760 Cc1c(Br)cccc1 

761 Oc1c(O)cccc1 

762 Oc1c(S)cccc1 

763 Oc1c(N)cccc1 

764 Oc1c(Cl)cccc1 

765 Oc1c(Br)cccc1 

766 Sc1c(S)cccc1 

767 Sc1c(N)cccc1 

768 Sc1c(Cl)cccc1 

769 Sc1c(Br)cccc1 

770 Nc1c(N)cccc1 

771 Nc1c(Cl)cccc1 

772 Nc1c(Br)cccc1 

773 Clc1c(Cl)cccc1 

774 Clc1c(Br)cccc1 

775 Brc1c(Br)cccc1 

776 CC1CCC(C)CC1 

777 CC1CCC(O)CC1 

778 CC1CCC(S)CC1 

779 CC1CCC(N)CC1 

780 CC1CCC(Cl)CC1 

781 CC1CCC(Br)CC1 

782 OC1CCC(O)CC1 

783 OC1CCC(S)CC1 

784 OC1CCC(N)CC1 

785 OC1CCC(Cl)CC1 

786 OC1CCC(Br)CC1 

787 SC1CCC(S)CC1 

788 SC1CCC(N)CC1 

789 SC1CCC(Cl)CC1 

790 SC1CCC(Br)CC1 

791 NC1CCC(N)CC1 

792 NC1CCC(Cl)CC1 



189 

 

793 NC1CCC(Br)CC1 

794 ClC1CCC(Cl)CC1 

795 ClC1CCC(Br)CC1 

796 BrC1CCC(Br)CC1 

797 CC1CC(C)CCC1 

798 CC1CC(O)CCC1 

799 CC1CC(S)CCC1 

800 CC1CC(N)CCC1 

801 CC1CC(Cl)CCC1 

802 CC1CC(Br)CCC1 

803 OC1CC(O)CCC1 

804 OC1CC(S)CCC1 

805 OC1CC(N)CCC1 

806 OC1CC(Cl)CCC1 

807 OC1CC(Br)CCC1 

808 SC1CC(S)CCC1 

809 SC1CC(N)CCC1 

810 SC1CC(Cl)CCC1 

811 SC1CC(Br)CCC1 

812 NC1CC(N)CCC1 

813 NC1CC(Cl)CCC1 

814 NC1CC(Br)CCC1 

815 ClC1CC(Cl)CCC1 

816 ClC1CC(Br)CCC1 

817 BrC1CC(Br)CCC1 

818 CC1C(C)CCCC1 

819 CC1C(O)CCCC1 

820 CC1C(S)CCCC1 

821 CC1C(N)CCCC1 

822 CC1C(Cl)CCCC1 

823 CC1C(Br)CCCC1 

824 OC1C(O)CCCC1 

825 OC1C(S)CCCC1 

826 OC1C(N)CCCC1 

827 OC1C(Cl)CCCC1 

828 OC1C(Br)CCCC1 

829 SC1C(S)CCCC1 

830 SC1C(N)CCCC1 

831 SC1C(Cl)CCCC1 

832 SC1C(Br)CCCC1 

833 NC1C(N)CCCC1 

834 NC1C(Cl)CCCC1 

835 NC1C(Br)CCCC1 

836 ClC1C(Cl)CCCC1 

837 ClC1C(Br)CCCC1 

838 BrC1C(Br)CCCC1 

839 CC1CC(C)CC1 

840 CC1CC(O)CC1 

841 CC1CC(S)CC1 

842 CC1CC(N)CC1 

843 CC1CC(Cl)CC1 

844 CC1CC(Br)CC1 

845 OC1CC(O)CC1 

846 OC1CC(S)CC1 

847 OC1CC(N)CC1 

848 OC1CC(Cl)CC1 

849 OC1CC(Br)CC1 

850 SC1CC(S)CC1 

851 SC1CC(N)CC1 

852 SC1CC(Cl)CC1 
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853 SC1CC(Br)CC1 

854 NC1CC(N)CC1 

855 NC1CC(Cl)CC1 

856 NC1CC(Br)CC1 

857 ClC1CC(Cl)CC1 

858 ClC1CC(Br)CC1 

859 BrC1CC(Br)CC1 

860 CC1C(C)CCC1 

861 CC1C(O)CCC1 

862 CC1C(S)CCC1 

863 CC1C(N)CCC1 

864 CC1C(Cl)CCC1 

865 CC1C(Br)CCC1 

866 OC1C(O)CCC1 

867 OC1C(S)CCC1 

868 OC1C(N)CCC1 

869 OC1C(Cl)CCC1 

870 OC1C(Br)CCC1 

871 SC1C(S)CCC1 

872 SC1C(N)CCC1 

873 SC1C(Cl)CCC1 

874 SC1C(Br)CCC1 

875 NC1C(N)CCC1 

876 NC1C(Cl)CC1 

877 NC1C(Br)CCC1 

878 ClC1C(Cl)CCC1 

879 ClC1C(Br)CCC1 

880 BrC1C(Br)CCC1 
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Appendix C. Up- and down-regulated genes in PKD used in Chapter 5 and compiled by Malas et al.265 These genes were intersected with the 

predicted targets of the compounds in the SPECTRUM library, and the compounds with a low number of references associating them with PKD.  

 

Gene ID Gene Symbol Gene name Number 
of studies 

Direction of 
Regulation 

9563 H6PD hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase) 4 UP 

57016 AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) 3 UP 

11167 FSTL1 follistatin-like 1 3 UP 

23612 PHLDA3 pleckstrin homology-like domain, family A, member 3 3 UP 

3835 KIF22 kinesin family member 22 3 UP 

6281 S100A10 S100 calcium binding protein A10 3 UP 

59 ACTA2 actin, alpha 2, smooth muscle, aorta 3 UP 

27122 DKK3 dickkopf WNT signaling pathway inhibitor 3 3 UP 

79039 DDX54 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 3 UP 

1956 EGFR epidermal growth factor receptor 3 UP 

5493 PPL periplakin 3 UP 

8507 ENC1 ectodermal-neural cortex 1 (with BTB domain) 3 UP 

12 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 
3 3 UP 
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688 KLF5 Kruppel-like factor 5 (intestinal) 3 UP 

1026 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 3 UP 

3106 HLA-B major histocompatibility complex, class I, B 3 UP 

130814 PQLC3 PQ loop repeat containing 3 3 UP 

23589 CARHSP1 calcium regulated heat stable protein 1, 24kDa 3 UP 

6277 S100A6 S100 calcium binding protein A6 3 UP 

1843 DUSP1 dual specificity phosphatase 1 3 UP 

710 SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 3 UP 

3119 HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 3 UP 

1465 CSRP1 cysteine and glycine-rich protein 1 3 UP 

4239 MFAP4 microfibrillar-associated protein 4 3 UP 

80301 PLEKHO2 pleckstrin homology domain containing, family O member 2 3 UP 

7739 ZNF185 zinc finger protein 185 (LIM domain) 3 UP 

308 ANXA5 annexin A5 3 UP 

3958 LGALS3 lectin, galactoside-binding, soluble, 3 3 UP 

51421 AMOTL2 angiomotin like 2 3 UP 

7414 VCL vinculin 3 UP 

8714 ABCC3 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 3 UP 

64393 ZMAT3 zinc finger, matrin-type 3 3 UP 

2487 FRZB frizzled-related protein 3 UP 
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64094 SMOC2 SPARC related modular calcium binding 2 3 UP 

5099 PCDH7 protocadherin 7 3 UP 

5328 PLAU plasminogen activator, urokinase 3 UP 

26585 GREM1 gremlin 1, DAN family BMP antagonist 3 UP 

4016 LOXL1 lysyl oxidase-like 1 3 UP 

84662 GLIS2 GLIS family zinc finger 2 3 UP 

1634 DCN decorin 3 UP 

55343 SLC35C1 solute carrier family 35 (GDP-fucose transporter), member C1 2 UP 

115908 CTHRC1 collagen triple helix repeat containing 1 2 UP 

27286 SRPX2 sushi-repeat containing protein, X-linked 2 2 UP 

3992 FADS1 fatty acid desaturase 1 2 UP 

10964 IFI44L interferon-induced protein 44-like 2 UP 

2316 FLNA filamin A, alpha 2 UP 

586 BCAT1 branched chain amino-acid transaminase 1, cytosolic 2 UP 

824 CAPN2 calpain 2, (m/II) large subunit 2 UP 

161291 TMEM30B transmembrane protein 30B 2 UP 

81620 CDT1 chromatin licensing and DNA replication factor 1 2 UP 

2266 FGG fibrinogen gamma chain 2 UP 

387923 SERP2 stress-associated endoplasmic reticulum protein family member 2 2 UP 

2145 EZH1 enhancer of zeste 1 polycomb repressive complex 2 subunit 2 UP 
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3691 ITGB4 integrin, beta 4 2 UP 

26022 TMEM98 transmembrane protein 98 2 UP 

26020 LRP10 low density lipoprotein receptor-related protein 10 2 UP 

10417 SPON2 spondin 2, extracellular matrix protein 2 UP 

3693 ITGB5 integrin, beta 5 2 UP 

5292 PIM1 Pim-1 proto-oncogene, serine/threonine kinase 2 UP 

10568 SLC34A2 solute carrier family 34 (type II sodium/phosphate cotransporter), member 2 2 UP 

1999 ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-specific ) 2 UP 

29968 PSAT1 phosphoserine aminotransferase 1 2 UP 

7076 TIMP1 TIMP metallopeptidase inhibitor 1 2 UP 

1281 COL3A1 collagen, type III, alpha 1 2 UP 

57045 TWSG1 twisted gastrulation BMP signaling modulator 1 2 UP 

6574 SLC20A1 solute carrier family 20 (phosphate transporter), member 1 2 UP 

55118 CRTAC1 cartilage acidic protein 1 2 UP 

406 ARNTL aryl hydrocarbon receptor nuclear translocator-like 2 UP 

2033 EP300 E1A binding protein p300 2 UP 

261734 NPHP4 nephronophthisis 4 2 UP 

51006 SLC35C2 solute carrier family 35 (GDP-fucose transporter), member C2 2 UP 

5990 RFX2 regulatory factor X, 2 (influences HLA class II expression) 2 UP 

253430 IPMK inositol polyphosphate multikinase 2 UP 
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2319 FLOT2 flotillin 2 2 UP 

55023 PHIP pleckstrin homology domain interacting protein 2 UP 

2305 FOXM1 forkhead box M1 2 UP 

170506 DHX36 DEAH (Asp-Glu-Ala-His) box polypeptide 36 2 UP 

4628 MYH10 myosin, heavy chain 10, non-muscle 2 UP 

81615 TMEM163 transmembrane protein 163 2 UP 

259266 ASPM asp (abnormal spindle) homolog, microcephaly associated (Drosophila) 2 UP 

51100 SH3GLB1 SH3-domain GRB2-like endophilin B1 2 UP 

9246 UBE2L6 ubiquitin-conjugating enzyme E2L 6 2 UP 

3694 ITGB6 integrin, beta 6 2 UP 

7980 TFPI2 tissue factor pathway inhibitor 2 2 UP 

9332 CD163 CD163 molecule 2 UP 

22801 ITGA11 integrin, alpha 11 2 UP 

63874 ABHD4 abhydrolase domain containing 4 2 UP 

2697 GJA1 gap junction protein, alpha 1, 43kDa 2 UP 

6819 SULT1C2 sulfotransferase family, cytosolic, 1C, member 2 2 UP 

10572 SIVA1 SIVA1, apoptosis-inducing factor 2 UP 

5196 PF4 platelet factor 4 2 UP 

83461 CDCA3 cell division cycle associated 3 2 UP 

3357 HTR2B 5-hydroxytryptamine (serotonin) receptor 2B, G protein-coupled 2 UP 
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1545 CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1 2 UP 

694 BTG1 B-cell translocation gene 1, anti-proliferative 2 UP 

79709 COLGALT1 collagen beta(1-O)galactosyltransferase 1 2 UP 

79705 LRRK1 leucine-rich repeat kinase 1 2 UP 

79701 OGFOD3 2-oxoglutarate and iron-dependent oxygenase domain containing 3 2 UP 

23603 CORO1C coronin, actin binding protein, 1C 2 UP 

6566 SLC16A1 solute carrier family 16 (monocarboxylate transporter), member 1 2 UP 

6560 SLC12A4 solute carrier family 12 (potassium/chloride transporter), member 4 2 UP 

55329 MNS1 meiosis-specific nuclear structural 1 2 UP 

55320 MIS18BP1 MIS18 binding protein 1 2 UP 

4281 MID1 midline 1 2 UP 

3588 IL10RB interleukin 10 receptor, beta 2 UP 

55742 PARVA parvin, alpha 2 UP 

347733 TUBB2B tubulin, beta 2B class IIb 2 UP 

7058 THBS2 thrombospondin 2 2 UP 

64857 PLEKHG2 pleckstrin homology domain containing, family G (with RhoGef domain) 
member 2 2 UP 

60485 SAV1 salvador family WW domain containing protein 1 2 UP 

2192 FBLN1 fibulin 1 2 UP 

2200 FBN1 fibrillin 1 2 UP 
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54751 FBLIM1 filamin binding LIM protein 1 2 UP 

9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 motif, 4 2 UP 

165 AEBP1 AE binding protein 1 2 UP 

3689 ITGB2 integrin, beta 2 (complement component 3 receptor 3 and 4 subunit) 2 UP 

3688 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes 
MDF2, MSK12) 2 UP 

23344 ESYT1 extended synaptotagmin-like protein 1 2 UP 

4837 NNMT nicotinamide N-methyltransferase 2 UP 

9619 ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1 2 UP 

9411 ARHGAP29 Rho GTPase activating protein 29 2 UP 

10769 PLK2 polo-like kinase 2 2 UP 

80003 PCNXL2 pecanex-like 2 (Drosophila) 2 UP 

54407 SLC38A2 solute carrier family 38, member 2 2 UP 

84294 UTP23 UTP23, small subunit (SSU) processome component, homolog (yeast) 2 UP 

285313 IGSF10 immunoglobulin superfamily, member 10 2 UP 

1600 DAB1 Dab, reelin signal transducer, homolog 1 (Drosophila) 2 UP 

56548 CHST7 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 2 UP 

1604 CD55 CD55 molecule, decay accelerating factor for complement (Cromer blood group) 2 UP 

83452 RAB33B RAB33B, member RAS oncogene family 2 UP 

79026 AHNAK AHNAK nucleoprotein 2 UP 
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7050 TGIF1 TGFB-induced factor homeobox 1 2 UP 

114990 VASN vasorin 2 UP 

5515 PPP2CA protein phosphatase 2, catalytic subunit, alpha isozyme 2 UP 

2995 GYPC glycophorin C (Gerbich blood group) 2 UP 

3290 HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 2 UP 

286133 SCARA5 scavenger receptor class A, member 5 2 UP 

114898 C1QTNF2 C1q and tumor necrosis factor related protein 2 2 UP 

23254 KAZN kazrin, periplakin interacting protein 2 UP 

50509 COL5A3 collagen, type V, alpha 3 2 UP 

81566 CSRNP2 cysteine-serine-rich nuclear protein 2 2 UP 

10992 SF3B2 splicing factor 3b, subunit 2, 145kDa 2 UP 

55315 SLC29A3 solute carrier family 29 (equilibrative nucleoside transporter), member 3 2 UP 

4609 MYC v-myc avian myelocytomatosis viral oncogene homolog 2 UP 

220 ALDH1A3 aldehyde dehydrogenase 1 family, member A3 2 UP 

57333 RCN3 reticulocalbin 3, EF-hand calcium binding domain 2 UP 

22822 PHLDA1 pleckstrin homology-like domain, family A, member 1 2 UP 

10370 CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal 
domain, 2 2 UP 

25960 GPR124 G protein-coupled receptor 124 2 UP 

1809 DPYSL3 dihydropyrimidinase-like 3 2 UP 
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6237 RRAS related RAS viral (r-ras) oncogene homolog 2 UP 

83442 SH3BGRL3 SH3 domain binding glutamate-rich protein like 3 2 UP 

9021 SOCS3 suppressor of cytokine signaling 3 2 UP 

255738 PCSK9 proprotein convertase subtilisin/kexin type 9 2 UP 

1397 CRIP2 cysteine-rich protein 2 2 UP 

7043 TGFB3 transforming growth factor, beta 3 2 UP 

10193 RNF41 ring finger protein 41, E3 ubiquitin protein ligase 2 UP 

54033 RBM11 RNA binding motif protein 11 2 UP 

1014 CDH16 cadherin 16, KSP-cadherin 2 UP 

83716 CRISPLD2 cysteine-rich secretory protein LCCL domain containing 2 2 UP 

1012 CDH13 cadherin 13 2 UP 

8510 MMP23B matrix metallopeptidase 23B 2 UP 

388135 C15orf59 chromosome 15 open reading frame 59 2 UP 

4192 MDK midkine (neurite growth-promoting factor 2) 2 UP 

6507 SLC1A3 solute carrier family 1 (glial high affinity glutamate transporter), member 3 2 UP 

4905 NSF N-ethylmaleimide-sensitive factor 2 UP 

23480 SEC61G Sec61 gamma subunit 2 UP 

11340 EXOSC8 exosome component 8 2 UP 

55014 STX17 syntaxin 17 2 UP 

55789 DEPDC1B DEP domain containing 1B 2 UP 
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4174 MCM5 minichromosome maintenance complex component 5 2 UP 

4175 MCM6 minichromosome maintenance complex component 6 2 UP 

4176 MCM7 minichromosome maintenance complex component 7 2 UP 

4170 MCL1 myeloid cell leukemia 1 2 UP 

4171 MCM2 minichromosome maintenance complex component 2 2 UP 

9948 WDR1 WD repeat domain 1 2 UP 

56477 CCL28 chemokine (C-C motif) ligand 28 2 UP 

51330 TNFRSF12A tumor necrosis factor receptor superfamily, member 12A 2 UP 

56475 RPRM reprimo, TP53 dependent G2 arrest mediator candidate 2 UP 

219902 TMEM136 transmembrane protein 136 2 UP 

348932 SLC6A18 solute carrier family 6 (neutral amino acid transporter), member 18 2 UP 

4507 MTAP methylthioadenosine phosphorylase 2 UP 

85477 SCIN scinderin 2 UP 

64943 NT5DC2 5'-nucleotidase domain containing 2 2 UP 

57326 PBXIP1 pre-B-cell leukemia homeobox interacting protein 1 2 UP 

8985 PLOD3 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 2 UP 

10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 2 UP 

1958 EGR1 early growth response 1 2 UP 

827 CAPN6 calpain 6 2 UP 

9019 MPZL1 myelin protein zero-like 1 2 UP 
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6259 RYK receptor-like tyrosine kinase 2 UP 

83892 KCTD10 potassium channel tetramerization domain containing 10 2 UP 

2149 F2R coagulation factor II (thrombin) receptor 2 UP 

6764 ST5 suppression of tumorigenicity 5 2 UP 

6539 SLC6A12 solute carrier family 6 (neurotransmitter transporter), member 12 2 UP 

5784 PTPN14 protein tyrosine phosphatase, non-receptor type 14 2 UP 

25983 NGDN neuroguidin, EIF4E binding protein 2 UP 

11168 PSIP1 PC4 and SFRS1 interacting protein 1 2 UP 

23345 SYNE1 spectrin repeat containing, nuclear envelope 1 2 UP 

929 CD14 CD14 molecule 2 UP 

11245 GPR176 G protein-coupled receptor 176 2 UP 

51148 CERCAM cerebral endothelial cell adhesion molecule 2 UP 

7187 TRAF3 TNF receptor-associated factor 3 2 UP 

3491 CYR61 cysteine-rich, angiogenic inducer, 61 2 UP 

85480 TSLP thymic stromal lymphopoietin 2 UP 

4886 NPY1R neuropeptide Y receptor Y1 2 UP 

2147 F2 coagulation factor II (thrombin) 2 UP 

387758 FIBIN fin bud initiation factor homolog (zebrafish) 2 UP 

10537 UBD ubiquitin D 2 UP 

3275 PRMT2 protein arginine methyltransferase 2 2 UP 
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83959 SLC4A11 solute carrier family 4, sodium borate transporter, member 11 2 UP 

837 CASP4 caspase 4, apoptosis-related cysteine peptidase 2 UP 

2934 GSN gelsolin 2 UP 

9839 ZEB2 zinc finger E-box binding homeobox 2 2 UP 

3316 HSPB2 heat shock 27kDa protein 2 2 UP 

7791 ZYX zyxin 2 UP 

5589 PRKCSH protein kinase C substrate 80K-H 2 UP 

79188 TMEM43 transmembrane protein 43 2 UP 

1030 CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 2 UP 

1031 CDKN2C cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 2 UP 

1036 CDO1 cysteine dioxygenase type 1 2 UP 

114899 C1QTNF3 C1q and tumor necrosis factor related protein 3 2 UP 

4245 MGAT1 mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase 2 UP 

23645 PPP1R15A protein phosphatase 1, regulatory subunit 15A 2 UP 

5654 HTRA1 HtrA serine peptidase 1 2 UP 

11065 UBE2C ubiquitin-conjugating enzyme E2C 2 UP 

11067 C10orf10 chromosome 10 open reading frame 10 2 UP 

11325 DDX42 DEAD (Asp-Glu-Ala-Asp) box helicase 42 2 UP 

3913 LAMB2 laminin, beta 2 (laminin S) 2 UP 

3918 LAMC2 laminin, gamma 2 2 UP 
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8313 AXIN2 axin 2 2 UP 

4794 NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 
epsilon 2 UP 

683 BST1 bone marrow stromal cell antigen 1 2 UP 

81552 VOPP1 vesicular, overexpressed in cancer, prosurvival protein 1 2 UP 

55573 CDV3 CDV3 homolog (mouse) 2 UP 

216 ALDH1A1 aldehyde dehydrogenase 1 family, member A1 2 UP 

51170 HSD17B11 hydroxysteroid (17-beta) dehydrogenase 11 2 UP 

5900 RALGDS ral guanine nucleotide dissociation stimulator 2 UP 

3488 IGFBP5 insulin-like growth factor binding protein 5 2 UP 

60 ACTB actin, beta 2 UP 

6397 SEC14L1 SEC14-like 1 (S. cerevisiae) 2 UP 

116496 FAM129A family with sequence similarity 129, member A 2 UP 

64145 RBSN rabenosyn, RAB effector 2 UP 

4899 NRF1 nuclear respiratory factor 1 2 UP 

7975 MAFK v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog K 2 UP 

5167 ENPP1 ectonucleotide pyrophosphatase/phosphodiesterase 1 2 UP 

10468 FST follistatin 2 UP 

55089 SLC38A4 solute carrier family 38, member 4 2 UP 

5125 PCSK5 proprotein convertase subtilisin/kexin type 5 2 UP 
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22980 TCF25 transcription factor 25 (basic helix-loop-helix) 2 UP 

116039 OSR2 odd-skipped related transciption factor 2 2 UP 

54825 CDHR2 cadherin-related family member 2 2 UP 

54820 NDE1 nudE neurodevelopment protein 1 2 UP 

80863 PRRT1 proline-rich transmembrane protein 1 2 UP 

4087 SMAD2 SMAD family member 2 2 UP 

768211 RELL1 RELT-like 1 2 UP 

2956 MSH6 mutS homolog 6 2 UP 

2952 GSTT1 glutathione S-transferase theta 1 2 UP 

7162 TPBG trophoblast glycoprotein 2 UP 

4360 MRC1 mannose receptor, C type 1 2 UP 

8076 MFAP5 microfibrillar associated protein 5 2 UP 

6632 SNRPD1 small nuclear ribonucleoprotein D1 polypeptide 16kDa 2 UP 

8676 STX11 syntaxin 11 2 UP 

126374 WTIP Wilms tumor 1 interacting protein 2 UP 

9805 SCRN1 secernin 1 2 UP 

26471 NUPR1 nuclear protein, transcriptional regulator, 1 2 UP 

4783 NFIL3 nuclear factor, interleukin 3 regulated 2 UP 

8099 CDK2AP1 cyclin-dependent kinase 2 associated protein 1 2 UP 

5918 RARRES1 retinoic acid receptor responder (tazarotene induced) 1 2 UP 
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5914 RARA retinoic acid receptor, alpha 2 UP 

3664 IRF6 interferon regulatory factor 6 2 UP 

196463 PLBD2 phospholipase B domain containing 2 2 UP 

3675 ITGA3 integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor) 2 UP 

254228 FAM26E family with sequence similarity 26, member E 2 UP 

2762 GMDS GDP-mannose 4,6-dehydratase 2 UP 

2760 GM2A GM2 ganglioside activator 2 UP 

1848 DUSP6 dual specificity phosphatase 6 2 UP 

4958 OMD osteomodulin 2 UP 

9962 SLC23A2 solute carrier family 23 (ascorbic acid transporter), member 2 2 UP 

9735 KNTC1 kinetochore associated 1 2 UP 

1902 LPAR1 lysophosphatidic acid receptor 1 2 UP 

26872 STEAP1 six transmembrane epithelial antigen of the prostate 1 2 UP 

64332 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 2 UP 

22881 ANKRD6 ankyrin repeat domain 6 2 UP 

5886 RAD23A RAD23 homolog A (S. cerevisiae) 2 UP 

79098 C1orf116 chromosome 1 open reading frame 116 2 UP 

132884 EVC2 Ellis van Creveld syndrome 2 2 UP 

11183 MAP4K5 mitogen-activated protein kinase kinase kinase kinase 5 2 UP 

7175 TPR translocated promoter region, nuclear basket protein 2 UP 
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6892 TAPBP TAP binding protein (tapasin) 2 UP 

5355 PLP2 proteolipid protein 2 (colonic epithelium-enriched) 2 UP 

1058 CENPA centromere protein A 2 UP 

716 C1S complement component 1, s subcomponent 2 UP 

8796 SCEL sciellin 2 UP 

7045 TGFBI transforming growth factor, beta-induced, 68kDa 2 UP 

6415 SEPW1 selenoprotein W, 1 2 UP 

1476 CSTB cystatin B (stefin B) 2 UP 

7041 TGFB1I1 transforming growth factor beta 1 induced transcript 1 2 UP 

66004 LYNX1 Ly6/neurotoxin 1 2 UP 

4224 MEP1A meprin A, alpha (PABA peptide hydrolase) 2 UP 

3597 IL13RA1 interleukin 13 receptor, alpha 1 2 UP 

25820 ARIH1 ariadne RBR E3 ubiquitin protein ligase 1 2 UP 

3934 LCN2 lipocalin 2 2 UP 

9532 BAG2 BCL2-associated athanogene 2 2 UP 

11270 NRM nurim (nuclear envelope membrane protein) 2 UP 

146760 RTN4RL1 reticulon 4 receptor-like 1 2 UP 

22795 NID2 nidogen 2 (osteonidogen) 2 UP 

131177 FAM3D family with sequence similarity 3, member D 2 UP 

4542 MYO1F myosin IF 2 UP 
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6731 SRP72 signal recognition particle 72kDa 2 UP 

9124 PDLIM1 PDZ and LIM domain 1 2 UP 

375790 AGRN agrin 2 UP 

6282 S100A11 S100 calcium binding protein A11 2 UP 

153830 RNF145 ring finger protein 145 2 UP 

182 JAG1 jagged 1 2 UP 

26136 TES testin LIM domain protein 2 UP 

54836 BSPRY B-box and SPRY domain containing 2 UP 

861 RUNX1 runt-related transcription factor 1 2 UP 

84186 ZCCHC7 zinc finger, CCHC domain containing 7 2 UP 

9055 PRC1 protein regulator of cytokinesis 1 2 UP 

9057 SLC7A6 solute carrier family 7 (amino acid transporter light chain, y+L system), member 
6 2 UP 

72 ACTG2 actin, gamma 2, smooth muscle, enteric 2 UP 

57819 LSM2 LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae) 2 UP 

666 BOK BCL2-related ovarian killer 2 UP 

663 BNIP2 BCL2/adenovirus E1B 19kDa interacting protein 2 2 UP 

1265 CNN2 calponin 2 2 UP 

22809 ATF5 activating transcription factor 5 2 UP 

3123 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 2 UP 
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1462 VCAN versican 2 UP 

1316 KLF6 Kruppel-like factor 6 2 UP 

23764 MAFF v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F 2 UP 

23564 DDAH2 dimethylarginine dimethylaminohydrolase 2 2 UP 

23166 STAB1 stabilin 1 2 UP 

6709 SPTAN1 spectrin, alpha, non-erythrocytic 1 2 UP 

8321 FZD1 frizzled class receptor 1 2 UP 

9912 ARHGAP44 Rho GTPase activating protein 44 2 UP 

51365 PLA1A phospholipase A1 member A 2 UP 

7431 VIM vimentin 2 UP 

6515 SLC2A3 solute carrier family 2 (facilitated glucose transporter), member 3 2 UP 

51186 WBP5 WW domain binding protein 5 2 UP 

4059 BCAM basal cell adhesion molecule (Lutheran blood group) 2 UP 

50618 ITSN2 intersectin 2 2 UP 

90417 KNSTRN kinetochore-localized astrin/SPAG5 binding protein 2 UP 

57007 ACKR3 atypical chemokine receptor 3 2 UP 

3725 JUN jun proto-oncogene 2 UP 

3726 JUNB jun B proto-oncogene 2 UP 

3727 JUND jun D proto-oncogene 2 UP 

960 CD44 CD44 molecule (Indian blood group) 2 UP 
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57486 NLN neurolysin (metallopeptidase M3 family) 2 UP 

5118 PCOLCE procollagen C-endopeptidase enhancer 2 UP 

124540 MSI2 musashi RNA-binding protein 2 2 UP 

9590 AKAP12 A kinase (PRKA) anchor protein 12 2 UP 

203068 TUBB tubulin, beta class I 2 UP 

10267 RAMP1 receptor (G protein-coupled) activity modifying protein 1 2 UP 

1783 DYNC1LI2 dynein, cytoplasmic 1, light intermediate chain 2 2 UP 

1786 DNMT1 DNA (cytosine-5-)-methyltransferase 1 2 UP 

6876 TAGLN transgelin 2 UP 

84552 PARD6G par-6 family cell polarity regulator gamma 2 UP 

3134 HLA-F major histocompatibility complex, class I, F 2 UP 

3133 HLA-E major histocompatibility complex, class I, E 2 UP 

1522 CTSZ cathepsin Z 2 UP 

50807 ASAP1 ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 2 UP 

84886 C1orf198 chromosome 1 open reading frame 198 2 UP 

301 ANXA1 annexin A1 2 UP 

302 ANXA2 annexin A2 2 UP 

55723 ASF1B anti-silencing function 1B histone chaperone 2 UP 

11332 ACOT7 acyl-CoA thioesterase 7 2 UP 

25903 OLFML2B olfactomedin-like 2B 2 UP 
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6118 RPA2 replication protein A2, 32kDa 2 UP 

6117 RPA1 replication protein A1, 70kDa 2 UP 

4692 NDN necdin, melanoma antigen (MAGE) family member 2 UP 

2131 EXT1 exostosin glycosyltransferase 1 2 UP 

4928 NUP98 nucleoporin 98kDa 2 UP 

93986 FOXP2 forkhead box P2 2 UP 

9214 FAIM3 Fas apoptotic inhibitory molecule 3 2 UP 

4854 NOTCH3 notch 3 2 UP 

9076 CLDN1 claudin 1 2 UP 

388341 LRRC75A leucine rich repeat containing 75A 2 UP 

10457 GPNMB glycoprotein (transmembrane) nmb 2 UP 

10581 IFITM2 interferon induced transmembrane protein 2 2 UP 

714 C1QC complement component 1, q subcomponent, C chain 2 UP 

713 C1QB complement component 1, q subcomponent, B chain 2 UP 

283149 BCL9L B-cell CLL/lymphoma 9-like 2 UP 

1066 CES1 carboxylesterase 1 2 UP 

10628 TXNIP thioredoxin interacting protein 2 UP 

5579 PRKCB protein kinase C, beta 2 UP 

6422 SFRP1 secreted frizzled-related protein 1 2 UP 

3267 AGFG1 ArfGAP with FG repeats 1 2 UP 
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330 BIRC3 baculoviral IAP repeat containing 3 2 UP 

23328 SASH1 SAM and SH3 domain containing 1 2 UP 

51435 SCARA3 scavenger receptor class A, member 3 2 UP 

25907 TMEM158 transmembrane protein 158 (gene/pseudogene) 2 UP 

23433 RHOQ ras homolog family member Q 2 UP 

51230 PHF20 PHD finger protein 20 2 UP 

4071 TM4SF1 transmembrane 4 L six family member 1 2 UP 

4070 TACSTD2 tumor-associated calcium signal transducer 2 2 UP 

5176 SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium 
derived factor), member 1 2 UP 

9208 LRRFIP1 leucine rich repeat (in FLII) interacting protein 1 2 UP 

10493 VAT1 vesicle amine transport 1 2 UP 

4862 NPAS2 neuronal PAS domain protein 2 2 UP 

2017 CTTN cortactin 2 UP 

6850 SYK spleen tyrosine kinase 2 UP 

706 TSPO translocator protein (18kDa) 2 UP 

7132 TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 2 UP 

9111 NMI N-myc (and STAT) interactor 2 UP 

30846 EHD2 EH-domain containing 2 2 UP 

11082 ESM1 endothelial cell-specific molecule 1 2 UP 



212 

 

1435 CSF1 colony stimulating factor 1 (macrophage) 2 UP 

79050 NOC4L nucleolar complex associated 4 homolog (S. cerevisiae) 2 UP 

6923 TCEB2 transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B) 2 UP 

79586 CHPF chondroitin polymerizing factor 2 UP 

5549 PRELP proline/arginine-rich end leucine-rich repeat protein 2 UP 

23158 TBC1D9 TBC1 domain family, member 9 (with GRAM domain) 2 UP 

1992 SERPINB1 serpin peptidase inhibitor, clade B (ovalbumin), member 1 2 UP 

3880 KRT19 keratin 19, type I 2 UP 

7405 UVRAG UV radiation resistance associated 2 UP 

4650 MYO9B myosin IXB 2 UP 

257364 SNX33 sorting nexin 33 2 UP 

6627 SNRPA1 small nuclear ribonucleoprotein polypeptide A' 2 UP 

84935 MEDAG mesenteric estrogen-dependent adipogenesis 2 UP 

55700 MAP7D1 MAP7 domain containing 1 2 UP 

55701 ARHGEF40 Rho guanine nucleotide exchange factor (GEF) 40 2 UP 

3625 INHBB inhibin, beta B 2 UP 

60370 AVPI1 arginine vasopressin-induced 1 2 UP 

2335 FN1 fibronectin 1 2 UP 

3071 NCKAP1L NCK-associated protein 1-like 2 UP 

6004 RGS16 regulator of G-protein signaling 16 2 UP 
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200185 KRTCAP2 keratinocyte associated protein 2 2 UP 

4673 NAP1L1 nucleosome assembly protein 1-like 1 2 UP 

4670 HNRNPM heterogeneous nuclear ribonucleoprotein M 2 UP 

7169 TPM2 tropomyosin 2 (beta) 2 UP 

10699 CORIN corin, serine peptidase 2 UP 

80139 ZNF703 zinc finger protein 703 2 UP 

64388 GREM2 gremlin 2, DAN family BMP antagonist 2 UP 

9659 PDE4DIP phosphodiesterase 4D interacting protein 2 UP 

10435 CDC42EP2 CDC42 effector protein (Rho GTPase binding) 2 2 UP 

3572 IL6ST interleukin 6 signal transducer 2 UP 

9785 DHX38 DEAH (Asp-Glu-Ala-His) box polypeptide 38 2 UP 

9787 DLGAP5 discs, large (Drosophila) homolog-associated protein 5 2 UP 

5321 PLA2G4A phospholipase A2, group IVA (cytosolic, calcium-dependent) 2 UP 

10659 CELF2 CUGBP, Elav-like family member 2 2 UP 

1356 CP ceruloplasmin (ferroxidase) 2 UP 

283209 PGM2L1 phosphoglucomutase 2-like 1 2 UP 

6774 STAT3 signal transducer and activator of transcription 3 (acute-phase response factor) 2 UP 

131583 FAM43A family with sequence similarity 43, member A 2 UP 

8560 DEGS1 delta(4)-desaturase, sphingolipid 1 2 UP 

5888 RAD51 RAD51 recombinase 2 UP 
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55603 FAM46A family with sequence similarity 46, member A 2 UP 

6633 SNRPD2 small nuclear ribonucleoprotein D2 polypeptide 16.5kDa 2 UP 

4015 LOX lysyl oxidase 2 UP 

64343 AZI2 5-azacytidine induced 2 2 UP 

983 CDK1 cyclin-dependent kinase 1 2 UP 

79801 SHCBP1 SHC SH2-domain binding protein 1 2 UP 

10130 PDIA6 protein disulfide isomerase family A, member 6 2 UP 

8971 H1FX H1 histone family, member X 2 UP 

24137 KIF4A kinesin family member 4A 2 UP 

10556 RPP30 ribonuclease P/MRP 30kDa subunit 2 UP 

1633 DCK deoxycytidine kinase 2 UP 

2817 GPC1 glypican 1 2 UP 

7089 TLE2 transducin-like enhancer of split 2 2 UP 

5426 POLE polymerase (DNA directed), epsilon, catalytic subunit 2 UP 

3371 TNC tenascin C 2 UP 

726 CAPN5 calpain 5 2 UP 

727 C5 complement component 5 2 UP 

55040 EPN3 epsin 3 2 UP 

8000 PSCA prostate stem cell antigen 2 UP 

23621 BACE1 beta-site APP-cleaving enzyme 1 2 UP 
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6541 SLC7A1 solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 2 UP 

790 CAD carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and 
dihydroorotase 2 UP 

1364 CLDN4 claudin 4 2 UP 

55586 MIOX myo-inositol oxygenase 3 DN 

275 AMT aminomethyltransferase 3 DN 

64849 SLC13A3 solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3 3 DN 

2053 EPHX2 epoxide hydrolase 2, cytoplasmic 3 DN 

54988 ACSM5 acyl-CoA synthetase medium-chain family member 5 3 DN 

5502 PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A 3 DN 

5618 PRLR prolactin receptor 3 DN 

64902 AGXT2 alanine--glyoxylate aminotransferase 2 3 DN 

10166 SLC25A15 solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 3 DN 

80168 MOGAT2 monoacylglycerol O-acyltransferase 2 3 DN 

1800 DPEP1 dipeptidase 1 (renal) 3 DN 

6505 SLC1A1 solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, 
system Xag), member 1 3 DN 

9365 KL klotho 3 DN 

56898 BDH2 3-hydroxybutyrate dehydrogenase, type 2 3 DN 

1950 EGF epidermal growth factor 3 DN 
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18 ABAT 4-aminobutyrate aminotransferase 3 DN 

7021 TFAP2B transcription factor AP-2 beta (activating enhancer binding protein 2 beta) 3 DN 

6521 SLC4A1 solute carrier family 4 (anion exchanger), member 1 (Diego blood group) 3 DN 

7809 BSND barttin CLCNK-type chloride channel accessory beta subunit 3 DN 

3483 IGFALS insulin-like growth factor binding protein, acid labile subunit 3 DN 

1852 DUSP9 dual specificity phosphatase 9 3 DN 

152404 IGSF11 immunoglobulin superfamily, member 11 3 DN 

6887 TAL2 T-cell acute lymphocytic leukemia 2 3 DN 

79774 GRTP1 growth hormone regulated TBC protein 1 3 DN 

3291 HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 3 DN 

5037 PEBP1 phosphatidylethanolamine binding protein 1 3 DN 

83697 SLC4A9 solute carrier family 4, sodium bicarbonate cotransporter, member 9 3 DN 

9056 SLC7A7 solute carrier family 7 (amino acid transporter light chain, y+L system), member 
7 3 DN 

123264 SLC51B solute carrier family 51, beta subunit 3 DN 

670 BPHL biphenyl hydrolase-like (serine hydrolase) 3 DN 

127124 ATP6V1G3 ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G3 3 DN 

94081 SFXN1 sideroflexin 1 3 DN 

7284 TUFM Tu translation elongation factor, mitochondrial 3 DN 

171586 ABHD3 abhydrolase domain containing 3 3 DN 
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36 ACADSB acyl-CoA dehydrogenase, short/branched chain 3 DN 

6611 SMS spermine synthase 3 DN 

57715 SEMA4G sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 4G 3 DN 

90507 SCRN2 secernin 2 3 DN 

64081 PBLD phenazine biosynthesis-like protein domain containing 3 DN 

5172 SLC26A4 solute carrier family 26 (anion exchanger), member 4 3 DN 

3712 IVD isovaleryl-CoA dehydrogenase 3 DN 

22928 SEPHS2 selenophosphate synthetase 2 3 DN 

143941 TTC36 tetratricopeptide repeat domain 36 3 DN 

1429 CRYZ crystallin, zeta (quinone reductase) 3 DN 

6557 SLC12A1 solute carrier family 12 (sodium/potassium/chloride transporter), member 1 3 DN 

6559 SLC12A3 solute carrier family 12 (sodium/chloride transporter), member 3 3 DN 

58510 PRODH2 proline dehydrogenase (oxidase) 2 3 DN 

92840 REEP6 receptor accessory protein 6 3 DN 

55825 PECR peroxisomal trans-2-enoyl-CoA reductase 3 DN 

793 CALB1 calbindin 1, 28kDa 3 DN 

84912 SLC35B4 solute carrier family 35 (UDP-xylose/UDP-N-acetylglucosamine transporter), 
member B4 2 DN 

23443 SLC35A3 solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter), 
member A3 2 DN 
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55296 TBC1D19 TBC1 domain family, member 19 2 DN 

115817 DHRS1 dehydrogenase/reductase (SDR family) member 1 2 DN 

7512 XPNPEP2 X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound 2 DN 

119467 CLRN3 clarin 3 2 DN 

55902 ACSS2 acyl-CoA synthetase short-chain family member 2 2 DN 

10966 RAB40B RAB40B, member RAS oncogene family 2 DN 

292 SLC25A5 solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), 
member 5 2 DN 

100506658 OCLN occludin 2 DN 

51115 RMDN1 regulator of microtubule dynamics 1 2 DN 

51110 LACTB2 lactamase, beta 2 2 DN 

2261 FGFR3 fibroblast growth factor receptor 3 2 DN 

51300 TIMMDC1 translocase of inner mitochondrial membrane domain containing 1 2 DN 

2103 ESRRB estrogen-related receptor beta 2 DN 

22981 NINL ninein-like 2 DN 

116238 TLCD1 TLC domain containing 1 2 DN 

51268 PIPOX pipecolic acid oxidase 2 DN 

254295 PHYHD1 phytanoyl-CoA dioxygenase domain containing 1 2 DN 

10380 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 2 DN 

9325 TRIP4 thyroid hormone receptor interactor 4 2 DN 
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8942 KYNU kynureninase 2 DN 

7263 TST thiosulfate sulfurtransferase (rhodanese) 2 DN 

552 AVPR1A arginine vasopressin receptor 1A 2 DN 

5052 PRDX1 peroxiredoxin 1 2 DN 

133522 PPARGC1B peroxisome proliferator-activated receptor gamma, coactivator 1 beta 2 DN 

23504 RIMBP2 RIMS binding protein 2 2 DN 

5789 PTPRD protein tyrosine phosphatase, receptor type, D 2 DN 

11162 NUDT6 nudix (nucleoside diphosphate linked moiety X)-type motif 6 2 DN 

8763 CD164 CD164 molecule, sialomucin 2 DN 

29100 TMEM208 transmembrane protein 208 2 DN 

686 BTD biotinidase 2 DN 

29104 N6AMT1 N-6 adenine-specific DNA methyltransferase 1 (putative) 2 DN 

51471 NAT8B N-acetyltransferase 8B (GCN5-related, putative, gene/pseudogene) 2 DN 

258010 SVIP small VCP/p97-interacting protein 2 DN 

5629 PROX1 prospero homeobox 1 2 DN 

5624 PROC protein C (inactivator of coagulation factors Va and VIIIa) 2 DN 

80727 TTYH3 tweety family member 3 2 DN 

23475 QPRT quinolinate phosphoribosyltransferase 2 DN 

131474 CHCHD4 coiled-coil-helix-coiled-coil-helix domain containing 4 2 DN 

51074 APIP APAF1 interacting protein 2 DN 
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65266 WNK4 WNK lysine deficient protein kinase 4 2 DN 

8110 DPF3 D4, zinc and double PHD fingers, family 3 2 DN 

6780 STAU1 staufen double-stranded RNA binding protein 1 2 DN 

4720 NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q 
reductase) 2 DN 

117247 SLC16A10 solute carrier family 16 (aromatic amino acid transporter), member 10 2 DN 

249 ALPL alkaline phosphatase, liver/bone/kidney 2 DN 

2271 FH fumarate hydratase 2 DN 

122970 ACOT4 acyl-CoA thioesterase 4 2 DN 

57406 ABHD6 abhydrolase domain containing 6 2 DN 

79828 METTL8 methyltransferase like 8 2 DN 

3698 ITIH2 inter-alpha-trypsin inhibitor heavy chain 2 2 DN 

54566 EPB41L4B erythrocyte membrane protein band 4.1 like 4B 2 DN 

57085 AGTRAP angiotensin II receptor-associated protein 2 DN 

83594 NUDT12 nudix (nucleoside diphosphate linked moiety X)-type motif 12 2 DN 

24146 CLDN15 claudin 15 2 DN 

7326 UBE2G1 ubiquitin-conjugating enzyme E2G 1 2 DN 

3234 HOXD8 homeobox D8 2 DN 

1962 EHHADH enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase 2 DN 

10083 USH1C Usher syndrome 1C (autosomal recessive, severe) 2 DN 
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79017 GGCT gamma-glutamylcyclotransferase 2 DN 

7069 THRSP thyroid hormone responsive 2 DN 

5447 POR P450 (cytochrome) oxidoreductase 2 DN 

284541 CYP4A22 cytochrome P450, family 4, subfamily A, polypeptide 22 2 DN 

2965 GTF2H1 general transcription factor IIH, polypeptide 1, 62kDa 2 DN 

11112 HIBADH 3-hydroxyisobutyrate dehydrogenase 2 DN 

29118 DDX25 DEAD (Asp-Glu-Ala-Asp) box helicase 25 2 DN 

119032 C10orf32 chromosome 10 open reading frame 32 2 DN 

3827 KNG1 kininogen 1 2 DN 

23464 GCAT glycine C-acetyltransferase 2 DN 

4285 MIPEP mitochondrial intermediate peptidase 2 DN 

55745 AP5M1 adaptor-related protein complex 5, mu 1 subunit 2 DN 

360 AQP3 aquaporin 3 (Gill blood group) 2 DN 

3816 KLK1 kallikrein 1 2 DN 

55258 THNSL2 threonine synthase-like 2 (S. cerevisiae) 2 DN 

10171 RCL1 RNA terminal phosphate cyclase-like 1 2 DN 

3758 KCNJ1 potassium channel, inwardly rectifying subfamily J, member 1 2 DN 

60488 MRPS35 mitochondrial ribosomal protein S35 2 DN 

124935 SLC43A2 solute carrier family 43 (amino acid system L transporter), member 2 2 DN 

159371 SLC35G1 solute carrier family 35, member G1 2 DN 
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51138 COPS4 COP9 signalosome subunit 4 2 DN 

63917 GALNT11 polypeptide N-acetylgalactosaminyltransferase 11 2 DN 

363 AQP6 aquaporin 6, kidney specific 2 DN 

6745 SSR1 signal sequence receptor, alpha 2 DN 

2731 GLDC glycine dehydrogenase (decarboxylating) 2 DN 

134147 CMBL carboxymethylenebutenolidase homolog (Pseudomonas) 2 DN 

10165 SLC25A13 solute carrier family 25 (aspartate/glutamate carrier), member 13 2 DN 

1810 DR1 down-regulator of transcription 1, TBP-binding (negative cofactor 2) 2 DN 

84650 EBPL emopamil binding protein-like 2 DN 

9761 MLEC malectin 2 DN 

132321 C4orf33 chromosome 4 open reading frame 33 2 DN 

27109 ATP5S ATP synthase, H+ transporting, mitochondrial Fo complex, subunit s (factor B) 2 DN 

10213 PSMD14 proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 2 DN 

3329 HSPD1 heat shock 60kDa protein 1 (chaperonin) 2 DN 

112840 WDR89 WD repeat domain 89 2 DN 

1773 DNASE1 deoxyribonuclease I 2 DN 

157724 SLC7A13 solute carrier family 7 (anionic amino acid transporter), member 13 2 DN 

23078 VWA8 von Willebrand factor A domain containing 8 2 DN 

51 ACOX1 acyl-CoA oxidase 1, palmitoyl 2 DN 

3033 HADH hydroxyacyl-CoA dehydrogenase 2 DN 
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1559 CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 2 DN 

51458 RHCG Rh family, C glycoprotein 2 DN 

9990 SLC12A6 solute carrier family 12 (potassium/chloride transporter), member 6 2 DN 

6518 SLC2A5 solute carrier family 2 (facilitated glucose/fructose transporter), member 5 2 DN 

59307 SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) domain 2 DN 

23498 HAAO 3-hydroxyanthranilate 3,4-dioxygenase 2 DN 

23382 AHCYL2 adenosylhomocysteinase-like 2 2 DN 

50507 NOX4 NADPH oxidase 4 2 DN 

55268 ECHDC2 enoyl CoA hydratase domain containing 2 2 DN 

55640 FLVCR2 feline leukemia virus subgroup C cellular receptor family, member 2 2 DN 

2181 ACSL3 acyl-CoA synthetase long-chain family member 3 2 DN 

2180 ACSL1 acyl-CoA synthetase long-chain family member 1 2 DN 

55862 ECHDC1 ethylmalonyl-CoA decarboxylase 1 2 DN 

51126 NAA20 N(alpha)-acetyltransferase 20, NatB catalytic subunit 2 DN 

6341 SCO1 SCO1 cytochrome c oxidase assembly protein 2 DN 

6342 SCP2 sterol carrier protein 2 2 DN 

5608 MAP2K6 mitogen-activated protein kinase kinase 6 2 DN 

81706 PPP1R14C protein phosphatase 1, regulatory (inhibitor) subunit 14C 2 DN 

9351 SLC9A3R2 solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), member 
3 regulator 2 2 DN 
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5284 PIGR polymeric immunoglobulin receptor 2 DN 

1807 DPYS dihydropyrimidinase 2 DN 

8864 PER2 period circadian clock 2 2 DN 

8863 PER3 period circadian clock 3 2 DN 

10247 HRSP12 heat-responsive protein 12 2 DN 

54502 RBM47 RNA binding motif protein 47 2 DN 

388595 TMEM82 transmembrane protein 82 2 DN 

5265 SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 
1 2 DN 

149483 CCDC17 coiled-coil domain containing 17 2 DN 

10099 TSPAN3 tetraspanin 3 2 DN 

1628 DBP D site of albumin promoter (albumin D-box) binding protein 2 DN 

11136 SLC7A9 solute carrier family 7 (amino acid transporter light chain, bo,+ system), member 
9 2 DN 

171425 CLYBL citrate lyase beta like 2 DN 

2981 GUCA2B guanylate cyclase activator 2B (uroguanylin) 2 DN 

525 ATP6V1B1 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B1 2 DN 

526 ATP6V1B2 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2 2 DN 

29911 HOOK2 hook microtubule-tethering protein 2 2 DN 

523 ATP6V1A ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A 2 DN 
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85301 COL27A1 collagen, type XXVII, alpha 1 2 DN 

117177 RAB3IP RAB3A interacting protein 2 DN 

4190 MDH1 malate dehydrogenase 1, NAD (soluble) 2 DN 

131669 UROC1 urocanate hydratase 1 2 DN 

11212 PROSC proline synthetase co-transcribed homolog (bacterial) 2 DN 

11001 SLC27A2 solute carrier family 27 (fatty acid transporter), member 2 2 DN 

435 ASL argininosuccinate lyase 2 DN 

23704 KCNE4 potassium channel, voltage gated subfamily E regulatory beta subunit 4 2 DN 

145482 PTGR2 prostaglandin reductase 2 2 DN 

23710 GABARAPL1 GABA(A) receptor-associated protein like 1 2 DN 

8195 MKKS McKusick-Kaufman syndrome 2 DN 

57224 NHSL1 NHS-like 1 2 DN 

55277 FGGY FGGY carbohydrate kinase domain containing 2 DN 

93100 NAPRT nicotinate phosphoribosyltransferase 2 DN 

9942 XYLB xylulokinase homolog (H. influenzae) 2 DN 

5816 PVALB parvalbumin 2 DN 

130752 MDH1B malate dehydrogenase 1B, NAD (soluble) 2 DN 

9375 TM9SF2 transmembrane 9 superfamily member 2 2 DN 

132 ADK adenosine kinase 2 DN 

7827 NPHS2 nephrosis 2, idiopathic, steroid-resistant (podocin) 2 DN 
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286676 ILDR1 immunoglobulin-like domain containing receptor 1 2 DN 

80157 CWH43 cell wall biogenesis 43 C-terminal homolog (S. cerevisiae) 2 DN 

26268 FBXO9 F-box protein 9 2 DN 

56894 AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3 2 DN 

3795 KHK ketohexokinase (fructokinase) 2 DN 

9562 MINPP1 multiple inositol-polyphosphate phosphatase 1 2 DN 

134548 SOWAHA sosondowah ankyrin repeat domain family member A 2 DN 

192668 CYS1 cystin 1 2 DN 

3249 HPN hepsin 2 DN 

3248 HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 2 DN 

1486 CTBS chitobiase, di-N-acetyl- 2 DN 

5257 PHKB phosphorylase kinase, beta 2 DN 

1719 DHFR dihydrofolate reductase 2 DN 

10618 TGOLN2 trans-golgi network protein 2 2 DN 

7780 SLC30A2 solute carrier family 30 (zinc transporter), member 2 2 DN 

114880 OSBPL6 oxysterol binding protein-like 6 2 DN 

8504 PEX3 peroxisomal biogenesis factor 3 2 DN 

6584 SLC22A5 solute carrier family 22 (organic cation/carnitine transporter), member 5 2 DN 

27034 ACAD8 acyl-CoA dehydrogenase family, member 8 2 DN 

205 AK4 adenylate kinase 4 2 DN 
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204 AK2 adenylate kinase 2 2 DN 

55840 EAF2 ELL associated factor 2 2 DN 

440503 PLIN5 perilipin 5 2 DN 

5091 PC pyruvate carboxylase 2 DN 

57132 CHMP1B charged multivesicular body protein 1B 2 DN 

26273 FBXO3 F-box protein 3 2 DN 

9376 SLC22A8 solute carrier family 22 (organic anion transporter), member 8 2 DN 

10682 EBP emopamil binding protein (sterol isomerase) 2 DN 

56889 TM9SF3 transmembrane 9 superfamily member 3 2 DN 

9570 GOSR2 golgi SNAP receptor complex member 2 2 DN 

9719 ADAMTSL2 ADAMTS-like 2 2 DN 

2936 GSR glutathione reductase 2 DN 

84735 CNDP1 carnosine dipeptidase 1 (metallopeptidase M20 family) 2 DN 

3313 HSPA9 heat shock 70kDa protein 9 (mortalin) 2 DN 

785 CACNB4 calcium channel, voltage-dependent, beta 4 subunit 2 DN 

9391 CIAO1 cytosolic iron-sulfur assembly component 1 2 DN 

9390 SLC22A13 solute carrier family 22 (organic anion/urate transporter), member 13 2 DN 

79746 ECHDC3 enoyl CoA hydratase domain containing 3 2 DN 

509 ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 
1 2 DN 
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638 BIK BCL2-interacting killer (apoptosis-inducing) 2 DN 

6520 SLC3A2 solute carrier family 3 (amino acid transporter heavy chain), member 2 2 DN 

6524 SLC5A2 solute carrier family 5 (sodium/glucose cotransporter), member 2 2 DN 

151531 UPP2 uridine phosphorylase 2 2 DN 

5723 PSPH phosphoserine phosphatase 2 DN 

5833 PCYT2 phosphate cytidylyltransferase 2, ethanolamine 2 DN 

217 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) 2 DN 

213 ALB albumin 2 DN 

51179 HAO2 hydroxyacid oxidase 2 (long chain) 2 DN 

5909 RAP1GAP RAP1 GTPase activating protein 2 DN 

56521 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 2 DN 

57127 RHBG Rh family, B glycoprotein (gene/pseudogene) 2 DN 

6392 SDHD succinate dehydrogenase complex, subunit D, integral membrane protein 2 DN 

26249 KLHL3 kelch-like family member 3 2 DN 

81029 WNT5B wingless-type MMTV integration site family, member 5B 2 DN 

9547 CXCL14 chemokine (C-X-C motif) ligand 14 2 DN 

3161 HMMR hyaluronan-mediated motility receptor (RHAMM) 2 DN 

5283 PIGH phosphatidylinositol glycan anchor biosynthesis, class H 2 DN 

51705 EMCN endomucin 2 DN 
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84725 PLEKHA8 pleckstrin homology domain containing, family A (phosphoinositide binding 
specific) member 8 2 DN 

1427 CRYGS crystallin, gamma S 2 DN 

53841 CDHR5 cadherin-related family member 5 2 DN 

9031 BAZ1B bromodomain adjacent to zinc finger domain, 1B 2 DN 

196740 VSTM4 V-set and transmembrane domain containing 4 2 DN 

1738 DLD dihydrolipoamide dehydrogenase 2 DN 

5230 PGK1 phosphoglycerate kinase 1 2 DN 

22948 CCT5 chaperonin containing TCP1, subunit 5 (epsilon) 2 DN 

1733 DIO1 deiodinase, iodothyronine, type I 2 DN 

1737 DLAT dihydrolipoamide S-acetyltransferase 2 DN 

1595 CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 2 DN 

5345 SERPINF2 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium 
derived factor), member 2 2 DN 

1020 CDK5 cyclin-dependent kinase 5 2 DN 

23216 TBC1D1 TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 2 DN 

23743 BHMT2 betaine--homocysteine S-methyltransferase 2 2 DN 

5733 PTGER3 prostaglandin E receptor 3 (subtype EP3) 2 DN 

11318 GPR182 G protein-coupled receptor 182 2 DN 

26503 SLC17A5 solute carrier family 17 (acidic sugar transporter), member 5 2 DN 
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482 ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide 2 DN 

51540 SCLY selenocysteine lyase 2 DN 

8301 PICALM phosphatidylinositol binding clathrin assembly protein 2 DN 

130589 GALM galactose mutarotase (aldose 1-epimerase) 2 DN 

200931 SLC51A solute carrier family 51, alpha subunit 2 DN 

27141 CIDEB cell death-inducing DFFA-like effector b 2 DN 

11264 PXMP4 peroxisomal membrane protein 4, 24kDa 2 DN 

51205 ACP6 acid phosphatase 6, lysophosphatidic 2 DN 

6097 RORC RAR-related orphan receptor C 2 DN 

6652 SORD sorbitol dehydrogenase 2 DN 

199 AIF1 allograft inflammatory factor 1 2 DN 

191 AHCY adenosylhomocysteinase 2 DN 

2542 SLC37A4 solute carrier family 37 (glucose-6-phosphate transporter), member 4 2 DN 

1457 CSNK2A1 casein kinase 2, alpha 1 polypeptide 2 DN 

10330 CNPY2 canopy FGF signaling regulator 2 2 DN 

908 CCT6A chaperonin containing TCP1, subunit 6A (zeta 1) 2 DN 

54499 TMCO1 transmembrane and coiled-coil domains 1 2 DN 

22977 AKR7A3 aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase) 2 DN 

54810 GIPC2 GIPC PDZ domain containing family, member 2 2 DN 

7009 TMBIM6 transmembrane BAX inhibitor motif containing 6 2 DN 
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7008 TEF thyrotrophic embryonic factor 2 DN 

2272 FHIT fragile histidine triad 2 DN 

90161 HS6ST2 heparan sulfate 6-O-sulfotransferase 2 2 DN 

79090 TRAPPC6A trafficking protein particle complex 6A 2 DN 

2940 GSTA3 glutathione S-transferase alpha 3 2 DN 

23632 CA14 carbonic anhydrase XIV 2 DN 

79783 SUGCT succinyl-CoA:glutarate-CoA transferase 2 DN 

4318 MMP9 matrix metallopeptidase 9 2 DN 

222389 BEND7 BEN domain containing 7 2 DN 

495 ATP4A ATPase, H+/K+ exchanging, alpha polypeptide 2 DN 

92815 HIST3H2A histone cluster 3, H2a 2 DN 

4137 MAPT microtubule-associated protein tau 2 DN 

4047 LSS lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase) 2 DN 

55233 MOB1A MOB kinase activator 1A 2 DN 

26228 STAP1 signal transducing adaptor family member 1 2 DN 

10901 DHRS4 dehydrogenase/reductase (SDR family) member 4 2 DN 

2593 GAMT guanidinoacetate N-methyltransferase 2 DN 

390916 NUDT19 nudix (nucleoside diphosphate linked moiety X)-type motif 19 2 DN 

183 AGT angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 2 DN 

2110 ETFDH electron-transferring-flavoprotein dehydrogenase 2 DN 
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6048 RNF5 ring finger protein 5, E3 ubiquitin protein ligase 2 DN 

2625 GATA3 GATA binding protein 3 2 DN 

133121 ENPP6 ectonucleotide pyrophosphatase/phosphodiesterase 6 2 DN 

54662 TBC1D13 TBC1 domain family, member 13 2 DN 

10471 PFDN6 prefoldin subunit 6 2 DN 

9054 NFS1 NFS1 cysteine desulfurase 2 DN 

7108 TM7SF2 transmembrane 7 superfamily member 2 2 DN 

79152 FA2H fatty acid 2-hydroxylase 2 DN 

79154 DHRS11 dehydrogenase/reductase (SDR family) member 11 2 DN 

669 BPGM 2,3-bisphosphoglycerate mutase 2 DN 

92558 CCDC64 coiled-coil domain containing 64 2 DN 

9829 DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 2 DN 

643236 TMEM72 transmembrane protein 72 2 DN 

81693 AMN amnion associated transmembrane protein 2 DN 

51185 CRBN cereblon 2 DN 

23788 MTCH2 mitochondrial carrier 2 2 DN 

27095 TRAPPC3 trafficking protein particle complex 3 2 DN 

2299 FOXI1 forkhead box I1 2 DN 

8125 ANP32A acidic (leucine-rich) nuclear phosphoprotein 32 family, member A 2 DN 

140735 DYNLL2 dynein, light chain, LC8-type 2 2 DN 
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5028 P2RY1 purinergic receptor P2Y, G-protein coupled, 1 2 DN 

5025 P2RX4 purinergic receptor P2X, ligand gated ion channel, 4 2 DN 

2108 ETFA electron-transfer-flavoprotein, alpha polypeptide 2 DN 

10005 ACOT8 acyl-CoA thioesterase 8 2 DN 

2639 GCDH glutaryl-CoA dehydrogenase 2 DN 

2638 GC group-specific component (vitamin D binding protein) 2 DN 

27072 VPS41 vacuolar protein sorting 41 homolog (S. cerevisiae) 2 DN 

170961 ANKRD24 ankyrin repeat domain 24 2 DN 

84925 DIRC2 disrupted in renal carcinoma 2 2 DN 

762 CA4 carbonic anhydrase IV 2 DN 

767 CA8 carbonic anhydrase VIII 2 DN 

148808 MFSD4 major facilitator superfamily domain containing 4 2 DN 

144110 TMEM86A transmembrane protein 86A 2 DN 

27069 GHITM growth hormone inducible transmembrane protein 2 DN 

6456 SH3GL2 SH3-domain GRB2-like 2 2 DN 

643008 SMIM5 small integral membrane protein 5 2 DN 

91614 DEPDC7 DEP domain containing 7 2 DN 

93611 FBXO44 F-box protein 44 2 DN 

7429 VIL1 villin 1 2 DN 

81689 ISCA1 iron-sulfur cluster assembly 1 2 DN 
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27242 TNFRSF21 tumor necrosis factor receptor superfamily, member 21 2 DN 

150209 AIFM3 apoptosis-inducing factor, mitochondrion-associated, 3 2 DN 

245973 ATP6V1C2 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C2 2 DN 

57017 COQ9 coenzyme Q9 2 DN 

9104 RGN regucalcin 2 DN 

57498 KIDINS220 kinase D-interacting substrate, 220kDa 2 DN 

957 ENTPD5 ectonucleoside triphosphate diphosphohydrolase 5 2 DN 

3029 HAGH hydroxyacylglutathione hydrolase 2 DN 

5164 PDK2 pyruvate dehydrogenase kinase, isozyme 2 2 DN 

22797 TFEC transcription factor EC 2 DN 

2642 GCGR glucagon receptor 2 DN 

2643 GCH1 GTP cyclohydrolase 1 2 DN 

3420 IDH3B isocitrate dehydrogenase 3 (NAD+) beta 2 DN 

9073 CLDN8 claudin 8 2 DN 

9071 CLDN10 claudin 10 2 DN 

54602 NDFIP2 Nedd4 family interacting protein 2 2 DN 

10103 TSPAN1 tetraspanin 1 2 DN 

11181 TREH trehalase (brush-border membrane glycoprotein) 2 DN 

125206 SLC5A10 solute carrier family 5 (sodium/sugar cotransporter), member 10 2 DN 

79135 APOO apolipoprotein O 2 DN 
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4329 ALDH6A1 aldehyde dehydrogenase 6 family, member A1 2 DN 

593 BCKDHA branched chain keto acid dehydrogenase E1, alpha polypeptide 2 DN 

594 BCKDHB branched chain keto acid dehydrogenase E1, beta polypeptide 2 DN 

493856 CISD2 CDGSH iron sulfur domain 2 2 DN 

445 ASS1 argininosuccinate synthase 1 2 DN 

8697 CDC23 cell division cycle 23 2 DN 

38 ACAT1 acetyl-CoA acetyltransferase 1 2 DN 

35 ACADS acyl-CoA dehydrogenase, C-2 to C-3 short chain 2 DN 

338094 FAM151A family with sequence similarity 151, member A 2 DN 

3898 LAD1 ladinin 1 2 DN 

7416 VDAC1 voltage-dependent anion channel 1 2 DN 

55157 DARS2 aspartyl-tRNA synthetase 2, mitochondrial 2 DN 

1468 SLC25A10 solute carrier family 25 (mitochondrial carrier; dicarboxylate transporter), 
member 10 2 DN 

846 CASR calcium-sensing receptor 2 DN 

223082 ZNRF2 zinc and ring finger 2, E3 ubiquitin protein ligase 2 DN 

127845 GOLT1A golgi transport 1A 2 DN 

1317 SLC31A1 solute carrier family 31 (copper transporter), member 1 2 DN 

2348 FOLR1 folate receptor 1 (adult) 2 DN 

27343 POLL polymerase (DNA directed), lambda 2 DN 
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57447 NDRG2 NDRG family member 2 2 DN 

9200 HACD1 3-hydroxyacyl-CoA dehydratase 1 2 DN 

134288 TMEM174 transmembrane protein 174 2 DN 

2651 GCNT2 glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group) 2 DN 

3417 IDH1 isocitrate dehydrogenase 1 (NADP+), soluble 2 DN 

116085 SLC22A12 solute carrier family 22 (organic anion/urate transporter), member 12 2 DN 

7385 UQCRC2 ubiquinol-cytochrome c reductase core protein II 2 DN 

56954 NIT2 nitrilase family, member 2 2 DN 

9685 CLINT1 clathrin interactor 1 2 DN 

84331 FAM195A family with sequence similarity 195, member A 2 DN 

4482 MSRA methionine sulfoxide reductase A 2 DN 

51156 SERPINA10 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 
10 2 DN 

8802 SUCLG1 succinate-CoA ligase, alpha subunit 2 DN 

283130 SLC25A45 solute carrier family 25, member 45 2 DN 

91749 KIAA1919 KIAA1919 2 DN 

83641 FAM107B family with sequence similarity 107, member B 2 DN 

2122 MECOM MDS1 and EVI1 complex locus 2 DN 

51409 HEMK1 HemK methyltransferase family member 1 2 DN 

55144 LRRC8D leucine rich repeat containing 8 family, member D 2 DN 
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23428 SLC7A8 solute carrier family 7 (amino acid transporter light chain, L system), member 8 2 DN 

51084 CRYL1 crystallin, lambda 1 2 DN 

327 APEH acylaminoacyl-peptide hydrolase 2 DN 

65125 WNK1 WNK lysine deficient protein kinase 1 2 DN 

4121 MAN1A1 mannosidase, alpha, class 1A, member 1 2 DN 

9476 NAPSA napsin A aspartic peptidase 2 DN 

124976 SPNS2 spinster homolog 2 (Drosophila) 2 DN 

134526 ACOT12 acyl-CoA thioesterase 12 2 DN 

3925 STMN1 stathmin 1 2 DN 

22921 MSRB2 methionine sulfoxide reductase B2 2 DN 

81889 FAHD1 fumarylacetoacetate hydrolase domain containing 1 2 DN 

60592 SCOC short coiled-coil protein 2 DN 

56922 MCCC1 methylcrotonoyl-CoA carboxylase 1 (alpha) 2 DN 

10615 SPAG5 sperm associated antigen 5 2 DN 

9099 USP2 ubiquitin specific peptidase 2 2 DN 

10434 LYPLA1 lysophospholipase I 2 DN 

10125 RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 2 DN 

5095 PCCA propionyl CoA carboxylase, alpha polypeptide 2 DN 

5096 PCCB propionyl CoA carboxylase, beta polypeptide 2 DN 

2665 GDI2 GDP dissociation inhibitor 2 2 DN 
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6821 SUOX sulfite oxidase 2 DN 

10542 LAMTOR5 late endosomal/lysosomal adaptor, MAPK and MTOR activator 5 2 DN 

1644 DDC dopa decarboxylase (aromatic L-amino acid decarboxylase) 2 DN 

84216 TMEM117 transmembrane protein 117 2 DN 

7010 TEK TEK tyrosine kinase, endothelial 2 DN 

342527 SMTNL2 smoothelin-like 2 2 DN 

2805 GOT1 glutamic-oxaloacetic transaminase 1, soluble 2 DN 

732 C8B complement component 8, beta polypeptide 2 DN 

9027 NAT8 N-acetyltransferase 8 (GCN5-related, putative) 2 DN 

131920 TMEM207 transmembrane protein 207 2 DN 

8564 KMO kynurenine 3-monooxygenase (kynurenine 3-hydroxylase) 2 DN 

23185 LARP4B La ribonucleoprotein domain family, member 4B 2 DN 

55353 LAPTM4B lysosomal protein transmembrane 4 beta 2 DN 

112817 HOGA1 4-hydroxy-2-oxoglutarate aldolase 1 2 DN 

51382 ATP6V1D ATPase, H+ transporting, lysosomal 34kDa, V1 subunit D 2 DN 

27293 SMPDL3B sphingomyelin phosphodiesterase, acid-like 3B 2 DN 

51090 PLLP plasmolipin 2 DN 

354 KLK3 kallikrein-related peptidase 3 2 DN 

359 AQP2 aquaporin 2 (collecting duct) 2 DN 

2326 FMO1 flavin containing monooxygenase 1 2 DN 
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2329 FMO4 flavin containing monooxygenase 4 2 DN 

4708 NDUFB2 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa 2 DN 

288 ANK3 ankyrin 3, node of Ranvier (ankyrin G) 2 DN 

287 ANK2 ankyrin 2, neuronal 2 DN 

3766 KCNJ10 potassium channel, inwardly rectifying subfamily J, member 10 2 DN 

166815 TIGD2 tigger transposable element derived 2 2 DN 

22849 CPEB3 cytoplasmic polyadenylation element binding protein 3 2 DN 

387338 NSUN4 NOP2/Sun domain family, member 4 2 DN 

1565 CYP2D6 cytochrome P450, family 2, subfamily D, polypeptide 6 2 DN 

5151 PDE8A phosphodiesterase 8A 2 DN 

10605 PAIP1 poly(A) binding protein interacting protein 1 2 DN 

4969 OGN osteoglycin 2 DN 

9317 PTER phosphotriesterase related 2 DN 

120939 TMEM52B transmembrane protein 52B 2 DN 

8417 STX7 syntaxin 7 2 DN 

202151 RANBP3L RAN binding protein 3-like 2 DN 

29958 DMGDH dimethylglycine dehydrogenase 2 DN 

84888 SPPL2A signal peptide peptidase like 2A 2 DN 

1188 CLCNKB chloride channel, voltage-sensitive Kb 2 DN 

1183 CLCN4 chloride channel, voltage-sensitive 4 2 DN 
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51015 ISOC1 isochorismatase domain containing 1 2 DN 

48 ACO1 aconitase 1, soluble 2 DN 

11179 ZNF277 zinc finger protein 277 2 DN 

56606 SLC2A9 solute carrier family 2 (facilitated glucose transporter), member 9 2 DN 

795 S100G S100 calcium binding protein G 2 DN 

27199 OXGR1 oxoglutarate (alpha-ketoglutarate) receptor 1 2 DN 

6546 SLC8A1 solute carrier family 8 (sodium/calcium exchanger), member 1 2 DN 

28976 ACAD9 acyl-CoA dehydrogenase family, member 9 2 DN 

479 ATP12A ATPase, H+/K+ transporting, nongastric, alpha polypeptide 2 DN 

 

 

 


