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ABSTRACT

Single image super-resolution (SISR) is of great importance as a
low-level computer vision task. The fast development of Genera-
tive Adversarial Network (GAN) based deep learning architectures
realises an efficient and effective SISR to boost the spatial resolution
of natural images captured by digital cameras. However, the SISR
for medical images is still a very challenging problem. This is due
to (1) compared to natural images, in general, medical images have
lower signal to noise ratios, (2) GAN based models pre-trained on
natural images may synthesise unrealistic patterns in medical images
which could affect the clinical interpretation and diagnosis, and (3)
the vanilla GAN architecture may suffer from unstable training and
collapse mode that can also affect the SISR results. In this paper, we
propose a novel lesion focused SR (LFSR) method, which incorpo-
rates GAN to achieve perceptually realistic SISR results for brain tu-
mour MRI images. More importantly, we test and make comparison
using recently developed GAN variations, e.g., Wasserstein GAN
(WGAN) and WGAN with Gradient Penalty (WGAN-GP), and pro-
pose a novel multi-scale GAN (MS-GAN), to achieve a more sta-
bilised and efficient training and improved perceptual quality of the
super-resolved results. Based on both quantitative evaluations and
our designed mean opinion score, the proposed LFSR coupled with
MS-GAN has performed better in terms of both perceptual quality
and efficiency.

Index Terms— Generative Adversarial Network, Super-Resolution,
Medical Image Analysis, Lesion Detection, Image Processing

1. INTRODUCTION

Images with high resolution (HR) are greatly in demand for many
real applications, e.g., medical images for clinical tasks, geographic
information systems, security video surveillance and others [1].
However, the resolution and quality of the images are normally lim-
ited by the imaging hardware [2], effectiveness and costs. Medical
images are strongly desirable with HR, because they provide crucial
details of the anatomical, physiological, functional and metabolic
information of patients. In addition to the potential restrictions of the
imaging hardware aforementioned, medical images are more suscep-
tible by the health limitations (e.g., ionising radiation dose of using
X-ray) and acquisition time limitations (e.g., Specific Absorption
Rate limits of using MRI). Moreover, movements due to patients’
fatigue and organs pulsation further degrade image qualities and
result in lower signal-to-noise ratio (SNR) images. Low resolution
(LR) medical images with limited field of view and degraded image
quality could reduce the visibility of vital pathological details and
compromise the diagnostic accuracy and prognosis [3, 4].

Research studies have shown that instead of optimising hard-
ware settings and imaging sequences, image super-resolution (SR)
provides an alternative and relatively cheaper solution for spatial res-
olution enhancement. Compared to conventional interpolation meth-
ods, these SR methods tend to provide better SR outputs with higher
SNR and less blurry effects due to the information from multiple LR
images or LR-HR image pairs. Reconstruction based SR algorithms
have been proven their effectiveness by recovering the HR output
with fusing multiple LR images [5]. However, this type of methods
is time-consuming, and the required multi-view LR images are not
always available in medical image applications [6]. Learning based
SR methods attract more and more attention now due to their bet-
ter performance. Simply speaking, this type of SR methods learn
a mapping function between LR-HR training pairs (whole images
and patches), and apply this mapping to a single testing image to
achieve the SR results, namely single image super-resolution (SISR)
[1, 7, 8]. .

Recently, deep learning based SISR methods [9, 10, 11, 12, 13,
14] have boosted the performance of the super-resolved HR images
mainly owe to the development of the computing power and the
available big data. For example, SRGAN [14], which is developed
based on a Generative Adversarial Network (GAN), has demon-
strated perceptually better results compared to other deep residual
network [15] based SISR methods [12, 9, 10]. More recently, Deng
[13] proposed an multi-channel method for SISR which enhanced
the objective and perceptual qualities separately. Lai et al. [16] in-
corporated a Laplacian pyramid SR network to progressively super-
resolve the sub-band residuals of HR images at multiple pyramid
levels. Although these GAN based methods works well on natural
images, they are limited for medical images. These pre-trained mod-
els using natural images may synthesise unrealistic patterns which
could affect the clinical interpretation and diagnosis. Moreover, in-
put LR medical images with lower SNR can intrinsically undermine
the performance of the GAN based methods. Thus, SISR for medical
images is still an open and challenging problem [17, 18].

In this study, a novel lesion focused SISR method (LFSR) is de-
veloped to generate perceptually more realistic SR results and also
avoid introducing non-existing features into the lesion area. Be-
cause the vanilla GAN architecture may suffer from unstable train-
ing and collapse mode problems, newly proposed Wasserstein GAN
(WGAN) and WGAN with Gradient Penalty (WGAN-GP) are also
tested and compared. Based on our findings, we proposed an ad-
vanced multi-scale GAN (MS-GAN) with LFSR to achieve a more
stabilised and efficient training procedure and improved perceptual
quality of super-resolved results. The validation has been done on
MRI images acquired for brain tumour patients using both quantita-
tive metrics and a designed mean opinion score (MOS).
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Fig. 1: Our proposed lesion focused multi-scale super-resolution neural networks. LD is a pre-trained lesion detection neural network. Two
architectures of generators (SRResNet and MS-GAN) are tested. Adversarial loss, MSE loss and perceptual loss are also displayed.

2. METHODS

2.1. Generative Adversarial Network (GAN)

The originally proposed vanilla GAN [19] contains a generator G
and a discriminator D to be trained synchronously via competing
with each other. In this work, G aims to generate as realistic as pos-
sible SR images to fool D and D aims to distinguish the SR images
from real HR images that can be described as:

Ĝ, D̂ = min
G

max
D

EIHR [logD(IHR)] + EILR [1− logD(G(ILR))].

(1)
where ILR and IHR are full size LR and HR images, and E is the ex-
pectation of the D’s positive outputs (i.e. input is HR ground truth).

However, the vanilla GAN suffers from unstable training, col-
lapsed mode and difficulties in hyper-parameters tuning. Thus,
Wasserstein GAN (WGAN) [20] has proposed to replace the non-
continuous divergence in LD with the Wasserstein-1 distance:

Ĝ, D̂ = min
G

max
D∈D

EIHR [D(IHR)]− EILR [D(G(ILR))] (2)

In order to enforce the constraint of 1-Lipschitz functions D,
weights clipping is also introduced to ensure all the weights of the
D in a compact range [−c, c]. WGAN has shown the advantages to
ease the training, increase generative diversity, and promote model
flexibility. However, the weights clipping was also found problem-
atic in real applications. Thus, Gradient Penalty [21] was proposed
and added into the LD, i.e., WGAN-GP.

2.2. Single Image Super-Resolution (SISR)

The SISR aims to find a transformation to map the distribution of
the LR images PLR into the distribution of the HR images PHR.
A dataset of LR-HR pairs is given as samples of PLR and PHR to
derive the unknown transformation in a supervised learning manner.
In this work, we use deep neural networks to estimate a generated SR
distribution PSR, which has the same dimension as PHR, and make
PSR ≈ PHR according to the chosen metrics. However, in practice,
it is challenging to achieve this goal when PSR and PHR are in a
high-dimensional space, because it has very low possibility for them
to be overlapped. Thus, we propose two strategies to tackle this
problem: lesion focused SISR (LFSR) and multi-scale GAN based
SISR (MS-GAN) (Fig.1).

2.2.1. Lesion Focused SISR (LFSR)

Firstly, We propose LFSR, which contains a lesion detection neu-
ral network LD and a deep residual super-resolution neural network
SRResNet [14]. LD aims to detect a region of interest (ROI) of

the lesions or abnormalities, e.g., brain tumours in our current study,
denoted as Ilr and Ihr from the full size LR and HR images ILR and
IHR before we applying the SRResNet, i.e., Ilr,hr = LD(ILR,HR).

By using LD, the LR-HR image distributions PLR and PHR are
down-scaled as Plr and Phr in a lower dimensional space. Since only
these ROIs are interested in clinical studies, the dimension reduction
retains most of the meaningful information from the original full size
images. This benefits the training of generative SR models in three
aspects: (1) it significantly reduces the training cost of the GAN for
the SR task, with a huge reduction of parameters need to be trained;
(2) it results in SR images with better perceptual qualities via replac-
ing the estimation of transformation from PLR to PSR with a much
simpler one from Plr to Psr; and (3) the excluded regions will not
enter the training process and less artefacts will be synthesised.

2.2.2. Multi-Scale GAN Based SR (MS-GAN)

The original SRResNet generates SR images by solving:

Ĝ = min
G

LSR(G(Ilr), Ihr) (3)

where LSR can be any predefined loss function. In this paper, we
use pixel-wise mean-square-error (MSE) and the VGG [22] based
perceptual loss:

LMSE(Isr, Ihr) =
1

W ×H

∑
i,j∈W,H

(Isr[i, j]− Ihr[i, j])
2 (4)

LV GG(Isr, Ihr) = LMSE(Vl(Isr), Vl(Ihr)) (5)
where W and H are the width and height of Isr and Ihr , and Vl is
the lth layer feature maps of the pre-trained VGG.

Since the original SRResNet generates only one scale SR im-
ages, it is hard to stabilise the optimisation process of SR tasks with
higher magnifying factors (e.g. X4 magnification). Thus, we pro-
pose a MS-GAN architecture to decompose this difficult problem
into a series of simpler sub-problems. Our MS-GAN (Fig. 1) can
generate multi-scale SR images, and the higher dimensional images
are achieved from the lower dimensional ones. For the X4 SR task,
both X2 and X4 SR images are sequentially generated. Since the im-
age quality of X4 outputs is based on the performance of X2 ones,
the training procedure becomes:

Ĝ = min
G

(LX2
SR (G(Ilr, X2), Idr) + LX4

SR (G(Ilr, X4), Ihr)) (6)

where Idr is the X2 down-sampled version of the Ihr. In this work,
we choose LX2

SR = LMSE , and LX4
SR = LMSE + LV GG, to avoid

introducing non-realistic textures in the early stage. In addition with
the adversarial loss of GAN LX4

G = −E[D(G(ILR))], the overall
loss function of our generator can be denoted as:

LSR = LX2
MSE + LX4

MSE + LX4
V GG + LX4

G (7)



Fig. 2: The detected ROI and the predicted SR images, PSNR/SSIM are also displayed.

Fig. 3: The generated SR images of LFSR with GAN variations and MS-GAN. PSNR/SSIM are also displayed.

2.3. Data Pre-processing and Experiment Settings

The experiments have been done using the open access BraTS 2018
datasets, which contains MRI images acquired from brain tumour
patients. In total, 163 patient datasets were included in our study and
they were randomly divided into training (9559 slices) and indepen-
dent validation (2368 slices) groups. All the images were normalised
to zero-mean-unit-variance and the LR images were simulated by
downsampling the HR ground truth images.

All the implementation was using Python 3.5, with TensorFlow
[23] and TensorLayer, which is now widely used in solving various
medical image analysis problems [24, 25, 26]. All the experiments
were performed on a Linux workstation with one NVIDIA TITAN X
Pascal GPU and Intel(R) Xeon(R) CPU E5-2630 v4 2.20GHz CPUs.
All neural networks were trained and tested on the GPU, and the
CPUs were only used for data loading and saving.

For a comparison study, we implemented and tested 6 GAN
based variations. Firstly, the SRResNet [14] based LFSR with the
vanilla GAN [19] was tested with a pre-training of the SRResNet
to stabilise the following training of GAN (i.e., 1. GAN+Pre train).
Then, we tested the same LFSR coupled with WGAN [20], with and
without the pre-training of the SRResNet (i.e., 2. WGAN+Pre train
and 3. WGAN). Furthermore, the same LFSR with WGAN-GP [21]
was trained with and without LX2

MSE as an extra term of loss func-
tion (4. WGAN-GP and 5. WGAN-GP LX2

MSE). Finally, we tested
our proposed LFSR coupled with MS-GAN method (6. MS-GAN).
All experiments used the same initial learning rate of 10−4, which
decayed to 10−5 at the midpoint of the training. Although WGAN
and WGAN-GP based methods might converge faster than others,
all tested methods were trained for 300 epochs to establish a fair
comparison. In addition, we also tested the bilinear interpolation,
SRResNet and SRGAN[14] for a comprehensive study.

2.4. Evaluation Metrics

Conventional Peak SNR (PSNR) and Structural SIMilarity (SSIM)
index were used to measure the pixel-wise various and image-wise
similarity between generated SR results and ground truth HR im-
ages. We also designed and performed a mean opinion score (MOS)
based evaluation to quantify the perceptual reality of generated SR

images. In this study, 100 validation slices were randomly selected
for MOS evaluation. For each slice, there were 1 HR ground truth
and 6 SR results corresponding to the 6 GAN based variations we
tested. Then, we randomly shuffled these 700 images (including 100
HR ground truths). An MR physicist (>6 years experience on brain
tumour MRI images) performed blinded scoring for these shuffled
images based on a Likert-type scale—0 (non-diagnostic), 1 (poor),
2 (fair), 3 (good), and 4 (great)—depending on the image qualities
[27, 28]: over-smooth (S); motion and other kind of artefacts (A);
unrealistic textures (U); and too noisy or low SNR (N). The MOS
was then derived by calculating the mean and standard deviation for
each method.

3. RESULTS AND DISCUSSIONS

We have tested our proposed LFSR with 6 GAN variations (includ-
ing the proposed MS-GAN) and different SR image generators for
the X4 SR task. It is of note that in order to demonstrate the effec-
tiveness of our MS-GAN, we showed the results of a more challeng-
ing X4 SR task, but our proposed methods can also work well with
lower magnifying factors (results not shown). Table 1 tabulates the
quantitative results of using LFSR coupled with different GAN mod-
els. Except the vanilla GAN produced relatively poor PSNR/SSIM,
other GAN variations resulted in similar high PSNR/SSIM. Our MS-
GAN method obtained the highest MOS. Figs.2 and 3 show the qual-
itative visualisation of an example slice. Our MS-GAN achieved
high PSNR/SSIM with lesion edge and textural information pre-
served well. Clearly, compared to the ground truth, vanilla GAN
produced noisier SR results. All WGAN based models achieved
similar results, but slightly smoother than the results produced by our
MS-GAN. Compared to our MS-GAN, although SRResNet yielded
higher PSNR/SSIM, perceptually the results were more blurry. SR-
GAN achieved lower PSNR/SSIM mainly due to the synthesised
stripy artefacts in the SR results with less SNR. It is of note that both
SRResNet and SRGAN were applied on the whole slice but only the
ROIs were evaluated (Fig. 2). All the learning based SR methods
showed significant improvement over the bilinear interpolation.

We also evaluated the training and inference efficiency of all
methods. The generators influenced on both training and inference



Table 1: Quantification comparison using PSNR, SSIM and MOS (the best performance in bold)
MOS Poor Fair Good Great S A U N PSNR SSIM

GAN+Pre train 1.80±0.529 25 71 3 1 2 5 92 91 25.2±1.88 0.715±0.0670
WGAN+Pre train 3.15±0.669 1 13 56 30 19 0 4 3 27.0±1.94 0.804±0.0498
WGAN 3.09±0.694 1 17 54 28 18 3 7 3 27.2±1.96 0.806±0.0499
WGAN-GP 3.10±0.686 2 13 58 27 3 0 14 14 26.7±1.96 0.788±0.0558
WGAN-GP+LX2

MSE 3.15±0.698 1 15 52 32 3 0 17 17 26.2±2.00 0.786±0.0577
MS-GAN 3.26±0.626 1 7 57 35 5 1 11 8 26.7±1.97 0.789±0.0554
Ground Truth 3.28±0.838 3 16 31 50 1 20 14 9

Fig. 4: GAN based methods can remove the artefacts in poor image quality ground truth images. Furthermore, our method MS-GAN can
enhance the edges and textures of tumour regions. PSNR and SSIM of each result are also displayed.

costs, while the GAN variations only affected the training cost.
Our LFSR with SRResNet [14] and the vanilla GAN [19] costs
229.6s/epoch for training and 4.04s to generate SR images for the
whole validation dataset (2368 slices). According to additional
calculation of weight clipping and gradients in WGAN [20] and
WGAN-GP [21], the training time increased to 233.8s/epoch and
305.7s/epoch. Moreover, LX2

MSE also slowed down the training
process slightly (314.3s/epoch using WGAN-GP). Finally, because
our multi-scale SR generator has more layers, it increases both the
training (422.2s/epoch) and inference costs (7.75s for the whole
validation dataset). Although the SRResNet took the least cost for
each training epoch, it converged much slower than all the others.

Based on our comparative study, there are several interest-
ing findings of the GAN based models: (1) because WGAN and
WGAN-GP can stabilise the training better than the vanilla GAN,
the pre-training of the generator is no longer necessary; (2) both
WGAN and WGAN-GP can provide perceptually more realistic SR
than the vanilla GAN, and result in better PSNR/SSIM and signif-
icant improvement of the MOS; (3) our proposed LFSR coupled
with MS-GAN achieved the most realistic SR with the highest MOS
close to the MOS of the ground truth images.

Similar to [14], our study has also demonstrated the limitations
of using PSNR/SSIM as evaluation metrics for medical image SR
tasks. Although blurry images are not perceptually realistic enough,
they can still achieve relatively high PSNR/SSIM. Comparing all
the methods, SRResNet has achieved the highest PSNR/SSIM, but
it has also smoothed out the edge and textural information of the
lesion, which are useful and crucial for clinical diagnosis.

Interestingly, our proposed LFSR with MS-GAN method shows
image quality improvement and signal restoration along with the
SR. In Fig.4, we can observe that for these two example slices, the
ground truth images are with lower SNR and obvious aliasing arte-
facts (thus, relatively lower MOS). Our MS-GAN method can im-
prove the image quality by boosting the SNR and reducing the arte-

facts that has resulted in better lesion characteristics (cyan arrows
in Fig. 4). We can envisage the benefits of our proposed MS-GAN
based SISR method for the following clinical image analysis, seg-
mentation and biomarker extraction and characterisation tasks.

4. CONCLUSION

In this study, we propose a novel SISR method to achieve spatial
resolution enhancement for the brain tumour MRI images without
introducing unrealistic textures. The merits of our work are three-
fold: (1) a LFSR has been developed to constrain the deep network
to focus on the lesion ROIs, which does not only imitate the clini-
cians’ scrutinization procedure, e.g., enlarge the ROIs, but also dra-
matically reduce the possible synthesised artefacts from the organs
beyond the lesion areas; (2) a comparison study has been carried out
to test vanilla GAN with newly proposed WGAN and WGAN-GP
to seek possible better GAN based solutions for a more stabilised
and efficient training that can yield an improved perceptual quality
for the super-resolved results; (3) based on the promises of LFSR
and more advanced GAN architectures, a novel MS-GAN model has
been developed to tackle the challenges of SISR for medical images
especially for the more tricky cases with X4 magnification. In addi-
tion to the widely used quantitative metrics (PSNR/SSIM), we also
propose the MOS that incorporates experts’ domain knowledge for
the evaluation of the medical image SR results. Results have shown
that our proposed LFSR with MS-GAN can achieve efficient SISR
for brain tumour MRI images and we can envisage such models to
be successfully applied for a wider range of clinical applications.
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