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Abstract

Investigation of the genetic components of maternal infanticide in Sus

scrofa

Julien Bauer

The aim of this thesis was to investigate the genetic components of maternal infanticide in the domestic

pig (Sus scrofa). The killing of piglets by sows by eating them soon after birth is a signi�cant issue

for the pig breeding industry because of the impact on animal welfare and the cost in lost revenues.

There is evidence that part of this behavior has a genetic basis and this work aims at �nding the genes

and genome regions linked to this trait. This study focuses on animals from four di�erent breed lines;

two have around a 5% incidence of infanticide and two have around a 10% incidence of infanticide.

The �rst half of this work used a genotyping approach using the pig 60K SNP array from Illumina.

Two di�erent tests were used to analyse the data: Family Based Association Test (FBAT) and Parent

of Origin (PO) test. The FBAT approach uses pedigree information to test for association in the

presence of linkage and the PO approach tests for preferential transmission of allele from one parent

(this study focused on maternal transmission).

The results from the tests, along with previous results generated by our group, were used to design

three sequence capture sets in order to study these regions in more detail. The sequencing work was

done on a selection of animals grouped in pools, for each line two pools of infanticide animals were

selected: animals with an history of infanticide in the pedigree and animals with multiple instances

of infanticide. Once sequencing was completed, variants were called on the region of interest, for each

pool and the di�erent capture sets, using the Genome Analysis Tool Kit. The variant allele frequencies

in the pool was compared between control pools and infanticide pools to select target variants. Some

of the variants identi�ed are interesting targets and identify genes of interests.
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1 Introduction

1.1 Maternal infanticide in Sus scrofa

In species that care for their young, early maternal behaviour is usually characterized by a phase

of bonding with the o�spring shortly after birth. In some cases the bonding will not occur and the

response of the mother to its litter can result in carelessness or abandonment. For some species this

can take a more extreme form, an aggressive response to the litter resulting in harm or death of the

o�spring. For commercial animal breeding, o�spring survival is an important economical factor. It is

reported in the US that 15% of piglets are lost before weaning, which resulted in an estimated loss of

revenue ranging from 130 to 330 million dollars in the year 2000 [1]. Although the proportion of losses

linked to infanticide is not well studied, the percentage of savaging dams generally varies between 5

and 15% [2, 3, 4, 5, 6], and death caused by infanticide according to some studies represent 11.2%

of pre-weaning death [6]. Therefore, the infanticide cost to the industry could be between 14 to 36

millions dollars a year for the US alone.

Maternal infanticide (also called savaging) is a behaviour a�ecting sows shortly after giving birth,

usually within twenty four hours after parturition (childbirth), resulting in the loss of one or more

piglets. The sow attacks the piglets by biting them to death. Infanticide is not speci�c to domestic

pigs and also a�ects wild boars raised in captivity [7].The etiology of this behaviour is complex and

investigations to identify its causes have concluded that several potential factors can contribute to

savaging. The main factors are environment, maternal experience and breed, the latter suggesting a

genetic component. Studies have found that di�erent breeds of domestic pigs have di�erent incidences

of aggressive behaviour [2]. Wild boar lines are also a�ected at di�erent levels as one line was shown to

be highly aggressive compared to others [7]. These di�erences in the levels of occurrence of infanticide

in animals with a di�erent genetic background support the possibility of a genetic component to this

behaviour.

The contribution of environmental factors to the aetiology of aggressiveness has been the subject of

a number of studies [6, 8, 9, 10, 11]. They show that the space and the richness of the environment

available to the pig has an impact on the occurrence of infanticide behaviour, with barren environments

tending toward more aggressive behaviour[12]. Larger pens and richer environments result in less

aggressive behaviour, which could be the result of more exploratory behaviour that could help to
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1 Introduction

alleviate stress. However some studies have shown that open pens have a higher incidence of infanticide

[8]. This could be due to the sow having more access to the litter than in a farrowing crate and therefore

more opportunity to attack its piglets.

Another environmental factor impacting infanticide is lighting of the pen. Constant lighting resulted

in lower level of savaging [6]: however this contradicts earlier �ndings [3]. According to the former

study, lighting could help the gilt (�rst time mothers) to be more aware of the piglets and therefore

respond more positively to them.

Behaviour toward humans in contact with the sow has been investigated as a potential early sign for

savaging behaviour [8]. This study looked at the impact of the behaviour of the sow towards its handler

as a predictor of infanticide, investigating the theory that sows that are more aggressive towards humans

might be more likely to kill their progeny. The conclusion was that aggressive behaviour toward the

human handler has little correlation on the level of aggression directed toward the piglets. However

�shy� behaviour of the dam toward humans can be a predictor of potential aggression. �Shy� gilts

are more likely to be aggressive toward their litter than �bold� gilts. However this type of behaviour

could also be the result of social hierarchy in pig groups, as �shy� guilts might be picking on weaker

individuals (the piglets) as they are bullied by the more dominant sows. There is some suggestion of

this behaviour in a study which used a resident intruder test [13], although not signi�cant, there were

observations that the smaller pigs were victim of aggression more often.

The posture and attitude of sows before parturition was also investigated as a potential early warning

sign for a savaging event. Infanticide sows tend also to be more restless before and after parturition

[5], which combined with the shy-bold trait suggests that infanticide is not triggered by parturition

but predetermined. Considering these observations, a lack of experience with litter and birth could be

a contributing factor as gilts are more likely to kill [14, 5]. It has also been con�rmed that pigs can

be conditioned in their behaviour by past experience [15, 11]. Although these factors contribute to

o�spring behaviour only for the few weeks after birth, they show that pigs can be conditioned to some

extent by their experience in a given environment. Not all environmental factors have an impact on

aggression, e.g. seasons and feeding have little impact [3].

Another potential cause of infanticide behaviour could be linked to endocrine levels, such as steroid

levels in the sow before and just after birth. A study in gilts [9] concluded that there is no clear

link between the infanticide behaviour and levels of hormones linked to birth, although the data

demonstrated a higher (but not signi�cant) level of oestradiol over progesterone a day before birth for

gilts that had to be sedated because of their behaviour after parturition. This suggests that there might

be an e�ect of the concentration ratio of hormones such as oestradiol and progesterone on infanticide.

The in�uence of inheritance in this behaviour has also been studied and it has been suggested that

aggressive behaviour towards other animals is a heritable trait, with an estimated heritability for

di�erent breeds of between 0.4 and 0.9, with a strong genetic component. [16, 4, 3]. It is likely that
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the selection of meat traits for some markets has contributed to the selection of more aggressive traits

resulting in a higher rate of infanticide in some breeds. In some Asian breeds there are almost no

occurrences of infanticides. The desired meat traits for the Asian market is very di�erent from the

European ones. Furthermore, the selection of dedicated sires lines resulted in a selection for speci�c

meat traits while dam lines are selected for litter and maternal trait. The statistics linked to maternal

infanticide are re�ective of this selection, in the study by Quilter et al [2], the two lines with a higher

rate of infanticide are the two sire lines (line D and H) while the other two are dam lines (line B and

C). In another study by Quilter et al [17], it was observed (unpublished) that the meat quantitative

trait loci were close to the quantitative trait loci that were found in the linkage study. This observation

suggest a strong genetic component to the infanticide trait.

Given that there is no good predictor of a sow's potential for infanticide other than some behaviours

being more prevalent in savaging sows, such as restlessness and �shy� behaviour observed during an

approach test. However there is evidence that the infanticide trait can be linked to heritability and

varies between di�erent pig breeds, therefore the genetic heritage and genomic composition has an

in�uence on this trait. In order to get a better prediction of predisposition to savaging, the present

study proposes to look more closely at the genome contribution to infanticide behaviour in the pig.

1.2 Method for the study of genetic markers.

1.2.1 Linkage analysis.

The study of genetic heritability started with Mendel's laws enacted from his work. These laws are

the law of segregation, the law of independent assortment and the law of dominance. The law of

segregation states that alleles will segregate during gamete formation and that each gamete will carry

only one allele for each gene. The law of independent assortment states that alleles are transmitted

independently from each other, and the law of dominance de�nes the nature of each allele in regards

to the phenotype, either dominant or recessive.

The law of independent assortment was proven not to hold for every locus shortly after Mendel's

work was completed. Further work on the heritability of traits by Morgan [18] and Punnet [19]

challenged the rules discovered by Mendel, especially the law of independent assortment. This led to

the discovery of genetic linkage, traits can be transferred together, as a single heritable unit, if they are

in close proximity on the same chromosome. These discoveries gave rise to genomic methods to map the

genome and eventually to the study of the genetic origins of diseases. One of the advantages of genomic

methods is that they can be applied for a range of phenotypes, they do not require a particular type

of disease to work other than having a genetic component and they can be applied to a wide variety

of species. These methods are based on the fact that during meiosis recombination events happen,

leading to cross over between homologous chromosomes. The frequency of recombination between loci
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is correlated, amongst other factors, to the distance between them; the greater the distance the more

likely a recombination will happen.

Linkage equilibrium happens when loci are transmitted independently during gamete formation

while Linkage Disequilibrium (LD) de�nes their joint transmission: the closer the loci the more likely

they will be transmitted together. While a formal de�nition of Linkage Disequilibrium was not made

until the 1960s [20], this principle lead to the discovery of genetic markers and was used to construct

genetic maps, also called linkage maps. The �rst map of markers was constructed in the 1980s using

Restriction Fragment Length Polymorphisms (RFLP) [21, 22] and later with microsatellites [23]. Once

the presence of polymorphic markers was discovered on the human genome, analysing and typing those

markers enabled the study of their transmission in order to identify the presence of a link between a

given marker and a gene or genomic location.

The study of the transmission of markers to the next generation is carried out using linkage data. It

usually consists of one or more families with marker data available from several generations (at least

two). Several key parameters are needed to study the linkage of traits. These are the penetrance of the

trait, dominance of the allele and its inheritance. These parameters are discussed in more detail below.

Using this information and parameters, linkage based methods �rst extract the inheritance patterns

from the pedigree and from this information determine causation between loci and the trait of interest.

1.2.1.1 Log Odds Ratio for single markers

The �rst methods developed to test for linkage are parametric methods and use the recombination

fraction as the parameter for the testing procedure. The recombination fraction is de�ned as θ, and

represents the probability of recombination between two loci. Two loci are in linkage equilibrium when

θ = 0.5 and are in linkage disequilibrium when 0 < θ < 0.5.

In 1955 Morton [24] de�ned a method to test for deviation from θ = 0.5 called the sequential test for

the detection of linkage. Given a set of observations of recombination y1, y2, y3....yn and a recombination

fraction θ for these loci, a random variable f(yi,θ) for i = 1, 2, 3, ...n is de�ned, which represents the

probability of obtaining the current data set given θ. The null hypothesis H0 is de�ned when θ = 0.5,

there is no linkage between the loci, the alternate hypothesis H1 is de�ned as θ = θ1, 0 < θ < 0.5.

Morton then de�nes his test parameter as:

z = log f(yi,θ1)
f(yi,0.5) (1.1)

The ratio z is called the Log Odds Ratio (LOD), where f(yi, θ1) represent the odds of obtaining

the current pedigree given the recombination fraction θ1, f(yi, 0.5) represent the odds of obtaining the

current pedigree under H0.

In simpler terms, it is the ratio of the probability of having the observed birth sequence if θ = θ1over
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the probability of having the observed birth sequence if θ = 0.5 (H0). In practice the value θ1 to test

is unknown, Morton suggested trying several values for θ1 (arbitrarily chosen) and the one scoring the

highest (Maximum Likelihood) on z is the best approximation of θ1.

In practice to compute the LOD for a single marker, representing a single typed genetic marker

linked to a disease loci, the probability of the recombination event given the recombination fraction

θ is de�ned as pr = (θ/2)r((1 − θ)/2)nr and the probability under the null as pnr = (0.5/2)N with r

the number of recombinant individuals, nr the number of non recombinant individuals, N the total

number of descendants in the generation studied (N = r + nr). The equation from Morton 1.1 can

be written as a log(pr/pnr). Morton suggested that a test value should be above 3, corresponding

to a likelihood of a 1000 to one that the marker is linked to the disease. It is considered as enough

evidence for signi�cant proof of linkage. This value is justi�able if the size and composition of the

human genome is taken into account. To be linked, two loci need to be on the same chromosome

and relatively close together, therefore this gives a prior odd of linkage between two random loci of

around 1:50. Considering that a likelihood ratio of 1000:1 is su�cient evidence for linkage, given a

prior of 1:50 this gives an odd of 20:1 in favour of the linkage being signi�cant. To identify candidates

a log(pr/pm)of 3 can be considered as signi�cant and enough to reject H0 and indicate linkage between

the trait and the marker [24].

An example of how the LOD is calculated is given in Table 1.1 for the pedigree in Figure 1.1. In

this case we can consider that chromosomal phasing is known as the grand parents are genotyped.

Chromosomal phasing or phase is de�ned as the transmission of alleles from the maternal or paternal

chromosome. Phase is known when it is possible to determine which alleles came from the father or

the mother. If the phase is unknown (grand parents not genotyped) the calculation must take into

account all the possible phases from the parental genotypes. This results in a loss of power for the test

as shown in Table 1.2. The example in Figure no. 1.1; is for a single family, in general a study will

include several families. The method for LOD calculation from multiple pedigrees is simply to sum

the individual LOD scores across all of the pedigrees. Therefore the more families present in a study,

the more likely it will result in a high LOD score if linkage is present. Adding more families therefore

increases the power of the test.
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Recombinant fraction pr pnr log(pr/pnr)

0.01 3.002E-04 9.766E-04 -0.512

0.05 1.273E-03 9.766E-04 0.115

0.1 2.050E-03 9.766E-04 0.322

0.2 2.560E-03 9.766E-04 0.419

0.25 2.472E-03 9.766E-04 0.403

0.3 2.251E-03 9.766E-04 0.363

0.4 1.620E-03 9.766E-04 0.220

0.5 9.766E-04 9.766E-04 0

Table 1.1: LOD calculations for the pedigree represented in Figure 1.1. pr and pnr are calculated with
r = 1 and nr = 4. The maximum is reached for θ = 0.2 which is close to the θ that
can be estimated from the data. One recombination over 5 individuals give us an empiric
recombination probability of 0.25. However the maximum LOD score is low for this simple
example, so H0would not be rejected in this case.

Phase 1(3:C, 2:B) Phase 2 (3:B, 2:C)

θ pr pnr log(pr/pnr) θ pr pnr log(pr/pnr)
LOD combined score

for both phase

0.01 3.002E-04 9.766E-04 -0.256 0.01 3.032E-06 9.766E-04 -1.254 -1.510

0.05 1.273E-03 9.766E-04 0.058 0.05 6.698E-05 9.766E-04 -0.582 -0.524

0.1 2.050E-03 9.766E-04 0.161 0.1 2.278E-04 9.766E-04 -0.316 -0.155

0.2 2.560E-03 9.766E-04 0.209 0.2 6.400E-04 9.766E-04 -0.092 0.118

0.25 2.472E-03 9.766E-04 0.202 0.25 8.240E-04 9.766E-04 -0.037 0.165

0.3 2.251E-03 9.766E-04 0.181 0.3 9.647E-04 9.766E-04 -0.003 0.179

0.4 1.620E-03 9.766E-04 0.110 0.4 1.080E-03 9.766E-04 0.022 0.132

0.5 9.766E-04 9.766E-04 0 0.5 9.766E-04 9.766E-04 0 0

Table 1.2: LOD calculation for the pedigree represented in Figure 1.1 when the grand parent data are
not available, therefore phase is unknown. In this case the 2 possible phases from the disease
parent need to be considered, e.g. 3:C/2:B or 3:B/2:C. Both have a probability of 1/2. In
the �rst case the calculations are the same as shown in Table 1.1; the �nal LOD score is
divided by 2 to take in account the probability of this phase. For the second phase, we have
2 recombinations in this case rather than one, the maximum LOD is again observed for to
be matching the estimated θ(2/5=0.4). The combined LOD score is lower, as not having
the phase further diminishes the power of the test.
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Figure 1.1: Linkage Example. Phase is known as the grand parents have been typed for all 3 markers.
Each marker, A, B and C has three di�erent alleles noted 1, 2 and 3. The generation a
individual belongs to is noted G1,G2 or G3 and each di�erent individual is denoted by a
number after the generation. Total penetrance is assumed and the allele for the disease is
dominant. In this simple model it is easy to work out that the disease is linked to allele
A3, given the one recombinant individual on the third generation.

1.2.1.2 Log Odds Ratio for multiple markers

For multiple markers analysis, the LOD is calculated for each marker locus and graphs are constructed

in order to report the LOD for each position of the marker map. Several algorithms have been developed

in order to facilitate the calculation of the LOD for large pedigrees and multiple loci.[22, 25]. The

algorithm developed by Lander and Green [22]allows the computation of LOD for a large number of

markers given small pedigrees while the Elston algorithm [25] allows the computation of LOD for large

pedigrees for a low number of markers by modelling the transmission of alleles down the generations

using transmission matrices.

The Elston algorithm calculates the probability of an individual genotype conditional on the probab-

ility of its parents, starting from the most recent generation of the pedigree and repeating the process

for each generation. The computational requirements increase linearly with the number of individuals,

however the process becomes very costly as when the number of markers increases, the computational
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requirements increase exponentially. The Lander and Green algorithm uses a Hidden Markov Model

in order to model the inheritance distribution by conditioning it on the observed genotypes, allowing

computation of the LOD for small pedigrees but a large number of markers. With this approach the

computational requirements are linear with the number of markers but augment exponentially with the

number of individuals in the pedigree. GENEHUNTER [26] is a popular implementation of the Lander

and Green algorithm, capable of multipoint linkage calculation with partial pedigree information.

The parametric methods of linkage analysis are however limited to good pedigrees and diseases with

high or complete penetrance; incomplete penetrance and missing information have a high impact on

the power of the sequential test. Penetrance is de�ned as the genetic value used to describe the impact

of the genetic component on the phenotype of interest; a higher penetrance for an allele results in a

higher risk of displaying the phenotype. If we de�ne genetic penetrance of a disease causing allele A as

γ (γ > 1); then for an additive model the risk of the disease is increased by a factor of γ fold with one

A allele and by a factor 2γ fold for two A alleles. For the recessive model, the risk is increased by γ fold

only for the AA genotype, but for a dominant disease the risk increases by γ fold in the presence of one

or two A alleles [27].The mode of inheritance can also have an impact on tests using the recombination

fraction. If the mode of transmission is not known or wrongly speci�ed, it will impact on the power

and the results of the test, although it might vary depending on the data [28].

1.2.1.3 Non parametric linkage test

To avoid the type of issue highlighted before, non parametric linkage tests were developed to evaluate

linkage without estimating the recombination fraction [26, 29]. Although non parametric tests are less

powerful than parametric tests, they are better suited when the inheritance mode of the disease is

unknown. The most e�cient methods for this type of analysis use alleles shared between individuals

in the pedigree inherited from a common ancestor; such alleles are said to be in Identity By Descent

(IBD). Other methods will use Identity By State (IBS), alleles that are shared between individuals in

the pedigree. It is obvious that an allele in IBD is also in IBS but not vice versa. Methods using IBD

are more powerful than methods using IBS as more information can be captured in order to determine

linkage. One of the �rst non parametric approaches was the A�ected Pedigree Member (APM)[30],

using IBS between pairs of a�ected members of the pedigree. To compute the test statistics, a score

is de�ned by counting the alleles shared in IBS between a pair of individuals. The score is calculated

by giving a 1 if an allele is identical between the pair (so is IBS at least) and 0 if not. The following

formula is de�ned for a pair of two a�ected individuals labeled i and j and with x and y representing

respectively the maternal and paternal alleles for each individual:
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Zij = 1/4δ(Gix, Gjx)f(pGix) + 1/4δ(Gix, Gjy)f(pGix)

+ 1/4δ(Giy, Gjx)f(pGiy) + 1/4δ(Giy, Gjy)f(pGiy) (1.2)

With δ(G1, G2) de�ning the Kronecker delta such as δ(G1, G2) = 1 if G1 is in IBS with G2 and 0

otherwise. f(pG) represents a function of the allele frequency of the allele studied in the population,

usually in the form 1/p or 1/
√
p, thus allowing us to weight the score of an allele according to its

frequency, p, in the population. For a given pedigree the score for an allele using the APM will be the

sum of all the Zij . This method is usually used to combine scores from several families in order to

generate a global statistic for an allele using several pedigrees, if Zm is Z for the mth pedigree, then

we have the test statistic:

T =
∑
m

wm[Zm − E(Zm)]√
wmV ar(Zm)

(1.3)

Where wm is a positive weight, usually derived from the number of a�ected individuals and E(Zm)

the expected value of Zm. Given the central limit theorem, T will follow a normal distribution and it

is therefore possible to derive a p-value from it.

This method is fairly restrictive as it only uses pairs of individuals and uses IBS information instead

of the more powerful IBD information that may be inferred from pedigrees. It also ignores data that

could be used to determine the status of the alleles, IBD or IBS [26]. Other methods of non parametric

testing have been developed, more appropriately for looking at large pedigrees or combining information

from several pedigrees [26, 29]. They use a scoring method by looking at allele sharing by IBD or at

all the permutations possible that could lead to allele sharing by IBD, usually by sampling alleles and

counting the number of times a founder allele is shared with subsequent generations. For example

Whittemore and Halpern [29] de�ne two di�erent metrics for scoring a con�guration of alleles in

IBD. First they de�ne a IBD con�guration, denoted φ, representing the con�guration of alleles in IBD

between individuals. If G = (G1x, G1y, ..., Gnx, Gny) are 2n integers representing the inheritance vector

for all the alleles, where x and y de�ne the maternal and paternal allele respectively, as seen before. The

sharing of IBD can then be assessed between siblings using the following method: given a locus with

alleles a, b, c, the allele con�guration between two individuals can be noted as (a, b, a, b), representing

the sharing of both paternal and maternal alleles, whereas (c, b, a, b) would equate sharing only the

paternal allele. If two sequences G and G′ only di�er by the order of their paternal and maternal alleles,

as in the example(a, b, a, b) and (a, b, b, a) we de�ne the IDB con�guration as φ = [abab] with (a, b, a, b)

and (a, b, b, a) as representative of φ. Generalizing φ we have φ = [G1xG1y...GnxGny] representing all

the possible IBD con�gurations between the 2n alleles of a pair of individuals. The scoring functions
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for this φ, τp is de�ned as

τp = Sp(φ) =
2

n(n− 1)

∑
1<i≤j<n

fij(φ)

fij(φ) = 1/4[δ(Gix, Gjx) + δ(Gix, Gjy) + δ(Gix, Gjy) + δ(Gix, Gjy)] (1.4)

for a pair of individuals, which is very similar to the de�nition of (1.2) without taking into account

the frequency of the alleles.

In order to use more than pairs of individuals to score IBD in the pedigree, de�ne u = (u1, u2, ..., un)

where ui is either Gix or Giy, for each φ there are 2n vectors u. Let h(u) be the number of non trivial

permutations of the ui in u that leave it unchanged. The more IBD is shared between individuals the

larger h(u) will become. The scoring function, τ is de�ned from h(u) as its average:

τ = Sall(φ) =
1

2n

∑
u

h(u) (1.5)

For two individuals the results of the two scores will be identical. For more than 2 individuals

(n > 2) the two functions will di�er, τ is more powerful when the disease is dominant while τp is more

powerful when the disease is recessive as the power calculation in [29] have shown. Those two scoring

methods have more power than the APM test as they use IBD while APM relies on IBS.

The two scoring functions from Whittemore and Halpern [29] were re�ned by Kruglyak et al. [26],

introducing a normalised score for both methods Z = [S(φ)− µ]/σ where S(φ) can be either Sp(φ) or

Sall(φ) and µ and σ are respectively the mean and standard deviation of the scoring function under a

uniform distribution Puniform, representing the uniform distribution over all the possible inheritance

con�gurations of the inheritance vector. The mean and standard deviation can be calculated by

enumerating all the possible inheritance vectors. Under H0, Z has a a mean of 0 and a standard

deviation of 1. To combine data from several pedigrees Kuglyak et al. de�nes Z for multiple pedigrees

as Z =
∑m

i δiZi with δi a weighting factor such as
∑
δ2
i = 1, so that under the null hypothesis, the

mean and standard deviation for Z are still 0 and 1. Taking δi = 1/
√
m is a good compromise as it

seems to perform well for both small and large pedigrees. This method has been implemented in the

software GENEHUNTER[26].

While linkage had a lot of success initially, it was employed as a method to identify genes and

markers linked to a simple disease from a genomic perspective, such as dominant or recessive traits

linked to a few locations and with good penetrance. It had good success identifying the susceptibility

of developing breast cancer linked to the BRCA family [31, 32], the link between lipoprotein-cholesterol

and chromosome 9 and was also used to identify loci linked to early onset Alzheimer's disease [33, 34] .

The successful linkage studies focused on those diseases with a strong correlation between the genetic

component and the phenotypic data. Linkage proved to be a very powerful approach to investigate
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Mendelian disease with a single genetic component. However the method is a lot less powerful when

investigating a more complex disease [35] and for several reasons [36]. This is particularly true for

diseases caused by high frequency, low e�ect size polymorphisms. The fact that most methods rely on

allele sharing is a problem when the penetrance is limited, since an individual might carry the allele

but if the risk associated is low, its contribution to the phenotype may not be detected. This individual

will be classi�ed as una�ected while still carrying risk alleles, and will be removed from the analysis.

The removal of these individuals will results in a loss of power for the test. The high frequency of such

alleles is also an issue as it will make it more di�cult to e�ectively follow its inheritance pattern if it is

common in the population; these high frequency allele can enter the pedigree via multiple founders. To

detect common markers that are linked to the disease, it is possible to mitigate the impact of the latter

problem by typing more families and increasing the size of the study but this is not always practical.

Linkage test are powerful to study high penetrance and low frequency disease, also called Mendelian

disease. However in the case of more common diseases, caused by high frequency low penetrance

alleles, the inheritance pattern of the alleles is harder to link back to the disease as the individual

makers contribute less to the phenotype. A group of several markers is more likely to signi�cantly

contribute to the phenotype of interest. Therefore, to study the more common genetic diseases that

are more frequent in a population, a new approach was needed.

1.2.2 Genome Wide Association Studies (GWAS)

While linkage studies identify loci using heritability and recombinations within a pedigree, an alternat-

ive is to study linkage disequilibrium at the population level, using unrelated individuals to identify loci

associated with a particular phenotype. LD is stronger for loci close together in the genome but is also

in�uenced by the nucleotide composition and position of the markers on the chromosome; therefore

it is heterogeneous along the genome. By mapping LD and selecting markers it is possible to study

the association between markers (and therefore of the region/genes they represent) and a particular

phenotype at the population level. This method is called Genome Wide Association Study or GWAS.

Linkage studies started to show limitations in their power to identify markers when a disease had

reduced penetrance, resulting in di�culty for the recruitment of a su�cient number of samples to

achieve good power [37]. This is especially true for complex and common diseases where several loci

in the genome can contribute to the genotype of the disease. By comparing allele frequencies between

control and case (a�ected) populations it is possible to test for loci associated with the phenotype

of interest. However this approach can have some drawbacks depending on the disease studied. For

example A disease such aS Beta-thalassemia can be challenging to study using GWAS due to genetic

heterogeneity [38]. The phenotype of this disease can be the result of more than 200 disease causing

mutations. Individuals classi�ed as a�ected might have di�erent genetic loci involved which are all

resulting in the same phenotype. Furthermore, the di�erent genetic causal loci might be mixed within
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a population or segregating in di�erent populations. If di�erent loci are causing the phenotype within

the same population, it will considerably reduce the power of a GWAS on this population. If this

happens between di�erent populations, di�erent loci might be identi�ed in each population despite

them sharing a common phenotype .

1.2.2.1 Transmission Disequilibrium Test

The �rst method to study association is still very close to linkage and is the Transmission Disequilibrium

Test or TDT proposed by Spielman et al. [37]. It tests for linkage in the presence of association in

parent-a�ected child trios by looking at which combinations of alleles are transmitted to the a�ected

child and which are not. Previous approaches were focusing on the transmission of individual alleles

instead of the combination of alleles. Suppose that we have a disease allele D1 and normal allele D2

and a marker locus with co-dominant alleles M1 and M2. Consider the Table 1.3 of transmitted and

non transmitted alleles. It was shown in [39] that the probability associated with each value in Table

1.3 is as shown as in Table 1.4 with m the frequency of the M1 allele, p the frequency of D1, θ the

recombination fraction and δ the coe�cient of LD. As the TDT is testing for linkage (θ = 1/2) the

only two terms of interest from Table 1.3 are b and c as they are the only ones for which the probability

function contains θ. For this test only heterozygous parents typed in the pedigree are informative. If

H0 is true (θ = 1/2, no recombination) then it is trivial that E(b) = E(c) using the expression of

probability in Table 1.4 and this is independent of the values of m, δ and p. We can then de�ne a

χ2 to reject H0. Any χ2 test to be valid is in the form of χ2 = (u − v)2/V ar(u − v). As in most

statistical tests, the true variance is impossible to calculate, therefore the test for b and c can be written

χ2 = (b− c)2/estimate(V ar(b− c)). If θ = 1/2 then the contributions of the heterozygous parent are

independent. In this case, the test is the 'McNemars test' and the statistic for the TDT is

χ2 =
(b− c)2

(b+ c)

Non Transmitted allele

Transmitted allele M1 M2 Total

M1 a b a+ b

M2 c d c+ d

Total a+ c b+ d 2n

Table 1.3: Combination of Transmitted and Non Transmitted Marker Allele M1 and M2 among 2n
Parents of n A�ected Children [37]. a, b, c and d represent the number of parents in each
categories, e.g. b is the number of heterozygous parentsM1M2 that transmitted alleleM1and
not allele M2 .

12



1 Introduction

Non Transmitted allele

Transmitted allele M1 M2 Total

M1 m2 + (mδ/p) m(1−m) + [(1− θ −m)δ/p] m+ [(1− θ)δ/p
M2 m(1−m) + [(θ −m)δ/p] (1−m)2 − [(1−m)δ/p] 1−m− [(1− θ)δ/p]
Total m+ (θδ/p) 1−m− (θδ/p) 1

Table 1.4: Probability of Combinations of Transmitted and Non Transmitted Marker Allele M1 and
M2among 2n Parents of A�ected Children

Another alternative to the de�nition of χ2 is to consider the test as the following. The parents

transmission of their alleles can be described as a series of 2n multinomial trials with four possible

outcomes as described in [40]. The outcomes have probability x, y, y and z with x+ 2y+ z = 1, which

correspond to our case of θ = 1/2 as E(b) = E(c) = 2ny. If a, b, c and d are the number of possible

outcomes in the four categories then we have V ar(b) = V ar(c) = 2ny(1− y) and Cov(b, c) = −2ny2.

Then V ar(b− c) = V ar(b) + V ar(c)− 2Cov(b, c) = 4ny. Therefore the best estimate of the variance

is b+ c so the TDT statistic is χ2 = (b−c)2
(b+c) . The TDT procedure described here will work on a parent-

a�ected child trio but can be extended easily to bigger families [37]. The TDT is more sensitive than

allele sharing methods traditionally used for linkage and can make good use of family trios and families

with multiple a�ected siblings. The only drawback to the TDT is the need for association between the

marker at the population level in order to be able to assert linkage, it is however resilient to population

strati�cation and can be used as an (secondary) independent test to con�rm GWAS results.

1.2.2.2 Parent of Origin test: application of the TDT test.

The TDT to test can be used for preferential transmission of alleles from the father or the mother of

the a�ected o�spring. The test procedure is the same as the standard TDT but only the heterozygous

mother's or father's alleles are considered in order to test for preferential transmission of some markers.

In this study the test was used because it had been shown that a dam to daughter e�ect is present [3].

This test was used to identify any preferential transmission from the dam to her daughter that might

be linked to infanticide.

1.2.2.3 Population admixture

Real associations studies, performed to investigate association between loci and a phenotype, are

performed on unrelated individuals and not on family data and therefore do not look for the presence

of linkage with the disease allele. The tests are performed between two populations of unrelated

individuals, one of control and one of a�ected individuals also referred to as 'cases'. The selection of

both populations is important as the results of the analysis can be biased by spurious associations

if there is a sub-structure in the population such as common ancestry or a particular ethnic group

forming part of one of the populations [27]. This is called populations strati�cation, often the result
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of groups of di�erent genetic origin forming the population. Another type of bias can be caused by

admixture in the population, usually due to genetic mixing with populations of di�erent genetic origin

in recent history, introducing new alleles and shifting the allele frequencies of the original population.

Population strati�cation and admixture can be assessed using Principal Component analysis (PCA)

which decomposes the variance by maximizing it and minimizing the error using Eigenvectors. Sub

populations are usually seen as clear outliers when plotting the largest components of a PCA.

Another important test to consider when looking at association is the Hardy Weinberg Equilibrium

(HWE). If the frequency of the allele a in the population is p and the frequency of the disease allele

A is q then the frequency of the genotypes in the population should be: p2 for aa q2 for AA and

2pq for the aA genotype. Any signi�cant deviations from those proportions is indicative of admixture

and/or strati�cation in the population. Testing for HWE can be done using a χ2 test on a contingency

table. Testing for HWE is performed on the control population generally as the case population

can have markers in disequilibrium due to the genetic component of the disease [41]. In general the

study of association focuses on common variants (markers) with a Minor Allele Frequency (MAF) in

the population greater than 5% or 10% because of the sample size and disease penetrance needed to

achieve power at lower allele frequency [42]. If an allele is associated with a causal loci, but its frequency

in the population is low, it will not be well represented in the case population. It is unlikely that the

association test will successfully identify this allele as associated with the disease, its contribution at

the population level being too low. In order to use rarer alleles in association studies, more individuals

need to be typed in order to have enough observations of this allele to �nd the association with the

disease.

1.2.2.4 Association test

Testing for association can be done with a simple test on a contingency table of the genotype count.

This can be done with a χ2 test, Fisher Exact test [43] or Cochran-Armitage trend test [44, 45] to

test for statistical signi�cance for each marker tested. The Fisher exact test is more appropriate for

data with a low sample counts while the Cochran-Armitage test is better suited to handle data when

the dominance of the disease is not known [27]. The contingency table can be based on allele counts,

Table 1.5, or on genotype counts, Table 1.6. The Fisher exact test on the allele counts table will be

written as

χ2 =
[ (x11+x12)!
x11!x12! ] ∗ [ (x21+x22)!

x21!x22! ]

(2n!/(x11 + x21)!(2n− x11 − x21)!
=

(x11 + x12)!(x21 + x22)!(x12 + x22)!

(2n!x11!x21!x12!x22!)

the formula can be extended to test on the genotype count table.

The Cochran-Armitage trend test of association between disease and marker is calculated on the
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genotype counts table in the form of:

T 2 =
[
∑3

i=1wi(Sn1i −Rn2i)]
2

[RS/n] ∗ [
∑3

i=1w
2
iNi(n−N1)− 2

∑2
1=1

∑3
j=i+1wiwjNiNj ]

where the denominator is the decomposed variance of the numerator. This trend test can account for

the various possible models of penetrance for the disease using the term wi as a weight for the impact

of the genotype on the phenotype. Following the penetrance model (if known) it is easy to choose the

w factor for the trend test: for a recessive model the w can be set as w = (0, 0, 1), for a dominant

model it can be set as w = (0, 1, 1) and for an additive model w = (0, 1, 2).

Allele a A Total

Case x11 x12 x11 + x12

Control x21 x22 x21 + x22

Total x11 + x21 x12 + x22 2n

Table 1.5: Allele count table. Two alleles are present: 'A' and 'a', the alleles are counted for each
population, case and control. x11represents the total allele count of allele 'a' in the case
population, x21the count of that allele in the control population.x12and x22 are the same
but for the 'A' allele.

Genotypes a/a a/A A/A total

Case n11 n12 n13 n11 + n12 + n13 = S

Controls n21 n22 n23 n21 + n22 + n23 = R

Total n11 + n21 = N1 n12 + n22 = N2 n13 + n23 = N3 n

Table 1.6: Genotypes count table, the genotypes are counted for each population, given three values for
each population for a given loci, n11is the number of a/a genotypes in the case population,
n21the same in the control population, n12is the number of a/A genotypes in the case
population and n22for the controls, n13is the number of A/A genotypes in the case population
and n23in the control population. Summing each line we obtain S the number of genotypes
for the case population and R for the control population. N1, N2and N3 represent the
number of genotypes for a/a, a/A and A/A respectively for both populations.

1.2.2.5 Multiple testing correction and signi�cance level

Usually the tests are carried out on thousands of markers at the same time, which results in a high

probability for false positive or type I error. This is because each test is supposed to be independent but

markers can a�ect each other so this assumption is violated. To avoid or reduce type I error, multiple

testing corrections are usually applied. The simplest method is the Bonferroni correction which takes

the chosen threshold p-values and divide them by the number n of tests carried out (the number of

markers used in the study). This method however is very stringent and often too conservative, so an

alternative was proposed by Benjamini and Hochberg [46]. The p-values are ranked from the lowest to

the highest, multiplied by the number of tests carried out and then divided by their rank. The last step

is to make sure that the rank of the p-value is conserved. This is a more moderate correction as the
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rank of the p-value is used as a weight. It is widely used; however for GWAS analysis, permutations

based methods are more popular and give better results [27]. Bootstrapping methods are the most

popular and work by randomly distributing the label of �control� and �case� across the samples in the

study. The association test is then performed and the p-value obtained. The process is repeated a

number of times (usually a few hundred to a few thousand times) and a distribution of the p-values

can be built against which the empirical p-value from the true population can be compared to assess

for true signi�cance. These approaches have the drawback of only working for the subset of markers

studied and are only truly valid if a set of genome wide markers is available. The choice of the level

of signi�cance in human studies has been subject to some debate [47], the �rst consensus is to use

5 × 10−8 which is signi�cant if all the SNPs discovered by HapMap [48] (~106) are tested and the

level of signi�cance is set at 0.05. The level of signi�cance is subject to the population tested, the

strength of association and the marker used for the analysis. Other work [47] suggests that SNP at

10−7 are worth investigating and that the 5 × 10−8might be too stringent. While a lot of work has

been done to work out the level of genome wide signi�cance in humans, no guidelines are available for

livestock; however one can assume that the level of signi�cance should be similar as the genomes are

fairly similar in size and number of markers. Most studies in the human use a large number of markers

or markers that have been identi�ed to speci�cally type a particular area of interest. A higher density

of markers will help better type the genome as it will allow the analysis of smaller LD blocks, a more

sparse spacing of the markers might results in smaller LD blocks not being typed adequately. This is

an issue for this study as the array used as it does not have a large number of markers, see section

about the microarray technology 1.5 and discussion about the array 3.1.3.

1.2.2.6 Genotypic Risk Ratio and Odds Ratio

Once association is established, it is interesting to look at the strength of the association; this can be

done by two means. The Genotypic Risk Ratio (GRR) or Odds Ratio (OR). If we take πAA, πAa, πaa

as the disease penetrance for the AA, Aa, aa genotypes respectively, then the relative risk in relation

to the AA genotype would be θAA = πAA/πaa and the relative risk for the Aa genotype would be

θAa = πAa/πaa. The GRR is rarely used as it requires a population to be selected prior to developing

the disease in order to provide an estimate of the penetrance in the general population. Using a case-

control study will negate the possibility of assessing the penetrance as the ratio of cases to controls is

controlled by the investigator. A more common way of assessing the strength of association is to look

at the allelelic or genotypic odds ratio. For the allelic odds ratio, the ratio is ORAllele = [x12/x11]
[x22/x21] =

x12x21
x22x11

using the value from Table 1.5. This ratio represent the odds of being a�ected when carrying

the allele linked to the phenotype of interest. For the odds ratio in relation to the genotype it is

important to separate the homozygote from the heterozygote genotype. Using the notation in Table

1.6 ORAA = [n13/n11]
[n23/n21] = n13n21

n11n23
while ORaA = [n12/n11]

[n22/n21] = n12n21
n11n22

. The �rst ratio ORAA represents the
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odds of being a�ected when carrying the AA genotype compare to the aa genotype. The second ratio

ORaA represents the odds for a heterozygote carrier.

1.3 Family based association test

The methods described above for association and linkage test are usually used when a complete data

set is available, unrelated individuals for the association test and pedigree data for the linkage test.

The TDT test relies on information from heterozygotes parents and cannot be used when one of the

parents is missing. However it is often the case that not all the individuals in a pedigree can be

typed for various reasons, e.g. lack of consent, individual is deceased (late onset disease) or was not

typed during the study. In these cases in order to maximize the use of the data it is necessary to �nd

information outside the traditional parent-infant trio.

Several methods have been proposed to solve this issue by using siblings in order to test for association

in the presence of linkage [49], which compares the allele frequencies between a�ected and una�ected

siblings. This test uses siblings in order to complete the data set if the parents are not available for

typing. If linkage is not present then the allele frequency will be similar between non a�ected and

a�ected siblings, only in the presence of linkage will it be possible to detect association between the

marker and disease. By using a permutation procedure such as the Monte-Carlo permutation within

families it is possible to test for a signi�cant di�erence in allele frequencies between the two categories.

A permutation approach is needed as the assumption of independence of sampling is not respected

when siblings are tested. While this method is useful if siblings are available, it is not always possible

to have data for the non a�ected sibling.

Another method makes it possible to infer the missing parental data from the a�ected o�spring data

or from any available parent data. The approach proposed by Rabinowitz and Laird [50] can test for

association in the presence of linkage without the need to be adjusted for population admixture or the

genetic model and can be used for pedigrees with missing marker allele information. The method uses

a statistical principle called �conditioning on su�cient statistic for the null hypothesis�. It revolves

around de�ning models that share the same conditional distributions given the statistics. This means

that the computation for the p-value for all the models given the minimum statistics are the same. For

this approach it is only required to compute the conditional distribution for the data given the minimal

su�cient statistics for the null hypothesis, which will reduce considerably the computational burden.

In the case of a nuclear family where the parents plus a�ected child trio are typed and their traits

are known, the minimum statistics are de�ned as the trait and the parental genotypes. Under Hardy

Weinberg equilibrium it is easy to calculate the conditional distribution for the markers. However the

data might not always be complete, one or both parents could be missing. To be able to calculate

the conditional distribution for the marker it is necessary for the trait status to be known for some

individuals in the pedigree and in a similar fashion that some marker data are available for some

members of the pedigree. It is not required that trait status and marker data are known for the same
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individual. In order to compute the conditional probability to test for linkage in pedigrees the following

steps are proposed in [50]:

1. Find all the possible patterns of founder alleles that are compatible with the allele in the typed

marker, this involves inferring missing genotypes in founders if needed.

2. Construct the pattern of typed marker alleles compatible with the set of founder alleles de�ned

in step 1. Find the subset of patterns that are compatible with the observed typed marker in

the available typed markers

3. For every pattern found in the �rst step and in the second steps, compute the ratio between:

a) the conditional probability of the typed marker allele given the pattern for the founders

marker allele, so in general the conditional probability for any potential pattern in the

pedigree given the possible founder pattern, not restricted by the observed data.

b) the conditional probability of the observed marker alleles given the pattern for the founder

marker alleles.

4. For some subset compatible with the observed data found at step2, the ratio found at step 3

will all be the same for all the possible founders marker allele found in step 1, this is the set of

outcome with positive conditional probability.

5. The conditional distribution is found by arbitrarily choosing any of the compatible pattern of

founder makers found in step1 and computing the conditional probability for the marker allele

typed given the founders pattern chosen and given that set is part of the positive conditional

probability set described in step 4.

It is possible using this method to test for linkage following these steps. In order to test for association

in the presence of linkage the procedure needs to be slightly altered. The presence of linkage implies

that identity by descent will not be independent from the pattern of traits present in a pedigree because

of the presence of linkage. Given that association is not assumed to be present, if founder genotypes

are observed and IBD is available, the minimum statistic in this case is conditioned by the founder

genotype and the IBD relationship within the pedigree. The patterns of founders described in the

steps for the linkage test must now also take into account IBD, in a similar fashion for step 3, and

the conditional probability needs to take into account the compatible marker and compatible IBD

relationship. Any step referring to the pattern of founder alleles needs to incorporate relationship by

IBD. Various examples of what the conditional distributions would be for linkage and association are

given in [50].

The strength of this method is that it allows a test for association in the presence of linkage in a

large number of families and for a large number of markers, therefore making it possible to use a data

set with related information to �nd association.
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1.4 Previous studies on pig infanticide

The link between the genome and the savaging trait has already been the subject of several studies using

di�erent approaches. These works include using a linkage approach, to identify regions of interest. The

in�uence of gene expression was also investigated, comparing gene expression level in savaging sows

against non savaging. Finally an association study comparing populations of infanticide sows against

non infanticide was also carried out. In this part these studies will be summarised to give an overview

of the current knowledge of the link between the genome and the maternal infanticide phenotype.

1.4.1 Pig as a model for puerperal psychosis

One interesting hypothesis investigated in one of these studies by Quilter et al [17] is that pig maternal

infanticide could be a good model for human puerperal psychosis. This psychological disorder is an

extreme form of baby blues that a�ects 1 in 1000 births. The symptoms include depression, suicidal

thoughts, loss of appetite and poor bonding with the baby. It is usually linked to feelings of guilt, self

worthlessness or hopelessness. Some extreme cases have unfortunately resulted in infanticide. Mothers

with a history of bipolar disorder are more likely to develop puerperal psychosis after birth and it has

been linked to other psychiatric disorders. Due to the similarity in the phenotype of the disease with

maternal infanticide, genes implicated in maternal infanticide in the pig could be interesting targets

to investigate the origin of puerperal psychosis in humans.

1.4.2 Linkage study

Several studies have already been done to assess the genetic origin of maternal infanticide in the pig.

The �rst study by Quilter et al [17] used a microsatellite study to identify potential Quantitative Trait

Loci (QTL) that might be linked to maternal infanticide. QTL are part of the genome which are

associated with a phenotype, usually containing a gene. They de�ned large regions of the genome

that can be further investigated. This particular study used 80 microsatellite markers and used a non

parametric linkage analysis [51] on a hundred and nineteen animals from 11 di�erent lines. Another

linkage study was done on the pig by Chen et al [14], using a similar approach to investigate maternal

infanticide. The animals for this study came from a White Duroc intercross with a Erhualian breed.

The study investigated F2 sows across three successive rounds of farrowing, totalling 288 sows. The

Erhualian breed is an excellent breeder with an average of 16 piglets per litter and has very good

maternal behaviour. The percentage of reported infanticide dropped from litter to litter, with 12.8%

for the �rst litter, 7,5% for the second and 4.5% for the third. Similarly to Quilter et al, a non

parametric linkage analysis was used.

Both studies identi�ed QTLs in common on chromosome X and chromosome 2. Quilter et al found

an additional QTL on chromosome 10 while Chen et al found additional QTLs on chromosome 6, 14
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and 15. Because of the lack of annotation for the pig genome at the time of these studies, both used

synteny with the human genome in order to identify potential genes of interest.

Several QTL were found by both studies on chromosome X, SSCX, both on the short arm and the long

arm of the chromosome. On the short arm, both studies identi�ed a QTL located in a pseudo-autosomal

region which includes the gene Steroid Sulfatase (STS ) that codes for an enzyme processing sulfated

steroids hormone precursors to oestrogen during the pregnancy. In human a de�cit in STS is associated

with an elevated risk attention de�cit hyperactivity disorder, autism and social communication de�cits

[52]. In the mouse, aggressive behaviour has been linked to this region [53, 54]. STS concentration

in the mouse liver was also linked to aggressive behaviour and was shown to modulate the behaviour

[55, 54]. Chen et al proposed another candidate on the short arm, Glycine Receptor Alpha2 subunit

(GLRA2 ) . GLRA2 is an inhibitory neurotransmitter in the central nervous system. It is regulated

by a speci�c glycine receptor which has been linked to the pathogenesis of schizophrenia and other

psychiatric diseases [56].

On the long arm both studies identi�ed a locus in the Xq2.2 region, Progesterone Receptor Membrane

Component 1 (PGRMC1 ), which can bind several steroids including progesterone [57]. Progesterone

blockade during late pregnancy leads to abhorrent maternal behaviour including infanticide [58]. Fur-

thermore, increases in levels of progesterone and oestrogen have been linked to increased levels of

aggression in the pig [9]. Another gene located in the syntenic region in human is 5HTR2C, a stimu-

lating phospholipase C and that has been linked to several abnormal behaviours. Serotonin regulates

the release of dopamine via this receptor. Decreases in its level have been shown to alleviate depres-

sion by release of dopamine [59].This receptor has been linked to suicide [60], alcoholism [61], anorexia

[62, 63] and the behavioural aberrations observed in Prader Willi patients (a genetic condition causing

behaviour disorder and mental retardation) [64]. Others members of its family are associated with

mood disorder and schizophrenia [65], making it a very interesting target.

For chromosome 2 of the pig, both studies identi�ed QTLs at di�erent locations, highlighting di�erent

genes. The study by Quilter et al identi�ed a gene called COX7C (cytochrome subunit VIIc), which is

located on the human syntenic region 15q14. It could be an interesting candidate as cytochrome is the

terminal component of the mitochondrial respiratory chain and mitochondrial dysfunction has been

associated with bipolar disorder and schizophrenia [66, 67]. This gene is also regulated by YY1 [68],

which has been shown to be a target for stress regulated pathway in neural degeneration [69]. The

QTL identi�ed by Chen et al is syntenic to the region of the Glucocorticoid Receptor (GR), located

on chromosome 5q31.3 in human. This gene mediates the e�ect of glucocorticoid release in response

to stress and the regulation of the hypothalamic-pituitary adrenocortical system using a negative

feeedback mechanism. GR expression is deregulated in schizophrenia, depression and bipolar disorder

[70, 71]. The syntenic region in human on chromosome 4 has also been linked to panic disorder and

agoraphobia [72].
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The QTLs on the other chromosomes also identify interesting genes, the QTL found on chromosome

6 by Chen et al has Albumin D-site-binding protein (DPB) as a candidate gene. Decreased expression

of this gene in the mouse leads to increase susceptibility to generalized spontaneous and audiogenic

epilepsies [73]. The QTL on chromosome 10 identi�ed by Quilter et al has PTPRC (protein tyrosine

phospatase, receptor type, C), also known has CD45 has a candidate gene. It is a candidate for

neuroin�amation which may exacerbate neurodegeneration and is found in conditions such as Alzheimer

disease (AD) and Down's syndrome [74, 75]. For the QTL on chromosome 14 identi�ed by Chen et al,

the candidate gene in the corresponding human region is Alpah-2A adrenergic receptor (ADRA2A).

It plays a criticial role in the regulation of neurotransmitter release from sympathetic nerves and

adrenergic neurones in the central nervous system and has been linked to schizophrenia [76, 77]. For

SSC15 a potential candidate close to the peak of linkage is the gene for the sodium channel voltage gated

type II alpha which is involved in pain perception [78]. Another potential candidate for this region

is glycoprotein M6A (GPM6A) which might be involved in stress induced hyppocampal alterations in

psychiatric disorders such as schizophrenia [79].

1.4.3 Gene expression study

A follow up study on the linkage study done by Quilter et al [17] was done by Quilter et al [80] looking at

the gene expression in the pig hypothalamus. The hypothalamus is an important part of the brain where

parturition and maternal behaviours are regulated by neuroendocrine systems that originate from, and

are coordinated by, the hypothalamic nuclei. The areas involved in this are the medial preoptic area,

paraventricular nucleus and the supraoptic nucleus. These brain areas are responsive to stimuli such

as sex steroids, oxytocin, prostaglandin F2α and prolactin (PRL) which have been characterised in pig

and implicated in maternal behaviour. The study compared samples from infanticide individuals and

samples from non aggressive individuals to test for di�erentially expressed genes, using two methods

to test for over and under expression in the infanticide samples.

Several interesting candidates genes were identi�ed as signi�cantly regulated between the two groups.

One of these genes was prolactin (PRL), which was found to be up-regulated in infanticide animals.

PRL plays a central role for several behaviours such as feeding, stress, fertility and aggression. High

level of PRL have been linked to aggressive and hostile behaviour [81]. PRL stimulates the release

of dopamine which in return inhibits its release via negative feedback [82]. It is also linked to other

important genes related to maternal aggression such as oxytocin and POU1F1 (POU domain class 1,

transcription factor 1). Low level of oxytocin have been linked to aggressive behaviour [83]. POU1F1

regulates PRL expression and was found regulated in this study. Another interesting gene linked to

PRL found to be regulated in this study is PRLR (prolactin receptor). It regulates the oestrogen re-

ceptor Esr1 and Esr2 via the Jak2-Stat5 pathway [84] and was found to be down regulated in infanticide

samples. Another gene directly related to PRL is DRD2 (dopamine receptor 2) which negatively regu-
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lates the expression of PRL which in turn decreases dopamine levels. It was found to be down-regulated

in this study and has been linked to a number of neuropsychiatric disorders such as schizophrenia, post-

traumatic stress disorders and migraine [85]. It is also involved in the protection of oligodendrocytes

against oxidative glutamate toxicity and oxygen-glucose depravation injury. Such injuries can trigger

abnormalities in oligodendrocytes and have been linked to schizophrenia and mood disorder [86, 87].

Other genes have been linked to dopamine levels, such as POMC (pro-opiomelanocortin) and OPRM1

(micro-opioid receptor 1). The �rst one is down-regulated for the infanticide group and the second one

is up regulated. Interestingly both genes are closely linked, endorphin hormones are produced from the

precursor POMC and bind to OPRM1, up-regulation of OPRM1 could be in response to the lack of

endorphins but if the expression of OPRM1 is reduced it would result in a reduction in the secretion

of dopamine [88]. Another gene found to be up-regulated in the infanticide group is 5HTR2C and was

found in to be in a QTL region in the study by Quilter et al [17]. As discussed in a previous section

1.4.2, it is linked to the regulation of dopamine levels, serotine regulates dopamine via this receptor and

decreases in its expression have been linked to a reduction of the symptoms of depression [89]. There-

fore the up-regulation of this gene could lead to a decrease in dopamine levels and the development

of depression. Furthermore it is also linked to the activation of POMC and variation in the 5HTR2C

has been linked to bipolar a�ective puerperal psychosis [90]. The expression of 5HTR2C has also been

linked to other psychological disease [60, 61, 62, 63, 64, 65]. Another gene found to be regulated is

POU3F3, interestingly, it is also located near a SNP that has been linked to bipolar disorder [91]. A

lot of genes are linked to dopamine expression, and dopamine receptors are known to modulate NMDA

(N-methyl-D-aspartate) glutamate receptor mediated function. GRIN1, the receptor for glutamate is

the major excitatory neurotransmitter and showed di�erential expression in the porcine arrays. It is

involved in learning, memory and some aspect of behaviour and schizophrenia and psychiatric disorder

[92, 93]. The study also investigated G proteins and MAP Kinase signalling pathway. The central

serotonergic, noradrenergic and dopaminergic system are all acting via protein G (Gi, Gs and Gg)

and dysfunction in this system has been linked to depression in human [94]. The Adenylase cyclase

inhibiting G alpha protein (GNAI1 or Gi) gene was found to be di�erentially expressed in this study.

It is involved in the MAPK signalling pathway which has been shown to be involved in Alzheimer's

Disease [95].

Another pathway that could be involved in maternal infanticide is the Oestrogen pathway. Trans-

thyretin (TTR) was found to be di�erentially expressed, it is a transporter of thyroid hormones and

Vitamin A. Its levels are altered in cerebral spinal �uid of psychiatric patients and KO mice have shown

reduced depression [96]. Therefore the increase in expression seen in three of the individuals suggests

an increase risk of depression. Overexpression of TTR correlates with increased levels of oestrogen,

which has been linked to increased aggression towards o�spring [9].

Several other interesting genes linked to the mitochondrial pathway are di�erentially regulated in
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this study. ATP6, ATP8 COX1, ND2, 16S, ND4 and ATP5A1 are found to be di�erentially expressed

in this study on at least one of the various analysis. As the brain has a high aerobic activity and

therefore requires a high mitochondrial content and activity, it is therefore more likely to su�er from

mitochodrial defect and diseases. Such issues have been shown to play a role in a wide range of brain

disorders such as schizophrenia, bipolar disorder, Alzheimer's Disease, epilepsy and Parkinson's disease

[97].

1.4.4 Association Study

More recently, porcine infanticide was investigated using association testing in [2]. The study was

performed on four di�erent lines of pig: B,C,D and H, consisting of pure breed Landrace LR (B), pure

Large White LW (C) and crosses with Duroc (Duroc x LR for D, Duroc x LW for H).

The study used the pig SNP60k array from Illumina [98]. In total 225 animals were investigated

in this study and after QC, 210 animals were left with around 50 animals for each line. Di�erent

approaches were used to investigate the data, a test of association was performed, a haplotype test

using sliding windows was also performed and a haplotype based analysis. Two lines (D and H) had also

enough related samples to perform a sib pair analysis. Using various criteria for �ltering the results,

see [2], several regions of the genome were identi�ed by the di�erent type of tests performed. Using the

synteny with the human genome, Quilter et al were able to select regions that have interesting genes,

with function related to maternal infanticide or brain function. Some of the regions also contain some

of the genes identi�ed in the gene expression study discussed in section 1.4.3 and described in [80],

notably POU1F1 and GRIN1. Furthermore some regions identi�ed match regions of the QTL found

on chromosome 2, 10a and 10b by [17, 14] and discussed in section 1.4.2.

The most interesting region identi�ed by this study is a large region on SSC3 which is consistent

across all the analyses. Two di�erent peaks are presents in this region, one at 23.4MB and one at

31.9MB. The �rst peak is the top SNP for the single SNP analysis and mapped to a region between

GPR139 and IQCK. Interestingly within 1MB of this peak, the corresponding region in human has

been found to be involved in bipolar disorder, with half of the female patients in these studies exhibiting

post-partum symptoms [99, 100]. There are several potential candidate genes in this region, such as

the regions from XYLT2 to ABCC1, SYT17 to XYLT1, PARN to MLK2, ERCC4 to SHISA9, which

have all have be connected to some psychological pathology such as attention de�cit hyperactivity

disorder (ADHD), alcoholism, Autism, Alzheimer's Disease, conduct disorder and schizophrenia [101,

102, 103, 104, 105]. GPR139 is an interesting gene, it is a G-protein coupled receptor, important in

signal transduction. In the mouse it is expressed in the putamen, medulla and caudate nucleus and also

in the thalamus, amygdala and spinal cord but at lower levels [106]. Those areas of the central nervous

system are involved in mood, behaviour and locomotion activities. On an evolutionary perspective,

GPR139 has been placed in the same group as somatostatin receptors [107]. Somatostatin plays an
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important role in the regulation of hormone release, as parturition is an event leading to an important

change in the hormonal balance of the mother, meaning this gene could contribute to post-natal

behaviour changes.

The second peak at 31.9MB is in a region between RBFOX1 and UBN1. This region is syntenic with

a region on the human chromosome 16p13 which has been linked to puerperal psychosis [108] and it is

within 2MB of a region linked to bipolar disorder [109]. RFBOX1 binds to the C-terminus of ataxin-2

and may contribute to the restricted pathology of spinocerebellar ataxia type 2 (SCA2 ). Ataxin-2 is

the product of the SCA2 gene and causes familial neurodegenerative disease [110]. RFBOX1 is also

involved in movement related adverse psychotic e�ect for conduct disorder [111] and autism [112] and

was a potential candidate for ADHD [113]. The syntenic region in human to RFBOX1 has SNPs that

are associated with bipolar disorder, autism, Alzheimer's disease, ADHD and hyperactivity conduct

disorder [114, 115]. It is also linked to GRIN1 as it is a modulator of neurally expressed genes.

As discussed before, see section 1.4.3, GRIN1 was found to be di�erentially regulated in [80] and is

implicated in a number of psychiatric disorders and diseases [93, 92]. The second gene in this region,

UBN1, is in a region that has been investigated for its potential involvement in autism in human [116].

Those two regions are not in LD and therefore form two di�erent blocks.

Another interesting region identi�ed is on SSC4 which is syntenic for a human region on chromosome

16 which has been linked to puerperal psychosis [108]. Some segments on SSC4 reached genome wide

signi�cance, the region extends from FAM135B to KHDRBS3 and SNPs in the intergenic region have

been associated with Parkinson's disease, neurotic disorders and cognition in human [117, 118, 119].

PTK2 is in this region and is associated with autism in human [120]. KCNK9 is also in this region

and a member of the superfamily of potassium channel proteins containing pore forming P domains.

It is highly expressed in the cerebellum and is imprinted in human and mouse fetal brain. It has

preferential expression from the maternal allele. It is mutated in a maternally transmitted genomic

imprinting syndrome of mental retardation [121], which makes it an interesting candidate as it has

been show that the heritability of maternal infanticide is higher from dam to daughter than sire to

daughter [4, 3].

A region on SSC9 was identi�ed as being of potential interest after the permutation analysis. It

matches by synteny a region on human chromosome 1 containing METTL13. This gene has been

found to be linked to increased susceptibility to postpartum mood symptoms [122]. HMCN1 has also

been involved with those symptoms and is just outside the region identi�ed.

A region identi�ed on SSC15 reached genome wide signi�cance and has a few interesting candidates.

PAX3 is found in this region and is a critical gene in fetal development, more speci�cally in neural

development as mutations in this gene lead to spina bi�da and exencephaly [123]. Mutation of PAX3

in human are also linked to the central nervous system, they have been associated with the craniofacial-

deafness-hand syndrome [124]. Another interesting gene is EPH4, a member of the epharin receptor
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family which is involved in mediating developmental events in the nervous system [125]. It seems also

to contribute to Alzeihmer's Disease, it has been associated with density, volume and cortical thickness

of the hippocampus [126].

1.4.5 Table summary

Table 1.7 summarises the various genes and the pathology or functions in relation to maternal aggres-

sion found in the studies discussed in section 1.4.2, 1.4.3 and 1.4.4.

1.5 Microarray technology

In general for an association study to be successful it must have a large number of markers and

participants compared to linkage studies. The discovery of frequent Single Nucleotide Polymorphisms

(SNP) during the sequencing of the human genome in the early 2000s unlocked the possibility of

performing this type of analysis on cohorts of individuals [127]. This was combined with the advance

in technology for typing DNA and the invention of the DNA microarray [128] which allows GWAS

data to be collected at a reasonable cost. The DNA microarray technology is a signi�cant advance in

increasing the throughput of genomic studies and can be used for a wide range of applications: gene

expression, methylation, copy number variation (array Comparative Genomic Hybridisation or array

CGH), chromatin modi�cation (Chromatin Immuno Precipitation or ChIP) and genotyping pro�ling

being the major ones. The principle of microarrays is simple, a probe �xed on the array (a solid

support) hybridises in solution with a target with usually one dye (�uorochrome) attached to it. The

dimer formed between the target and the probe will emit a signal that is used to quantify or perform a

�present/absent� call on the dimer. In order to type a sample, the DNA (or RNA) has to be fragmented,

ampli�ed by Polymerase Chain Reaction (PCR), which converts the sample to cDNA in the case of

RNA, and then is hybridised to the probe attached to the surface of the array. Those probe sequences

can be tailored to the speci�c application, using sequences complementary to a given gene for gene

expression, having two or more probes to type speci�c SNPs or the methylation status of a base.

Once hybridised the array is washed to remove any non bound DNA and then the array is treated to

add or enhance the �uorescent signal. The array is then scanned using confocal lasers to excite the

�uorochrome and a high resolution camera to image them.

Microarrays can use a single �uorochrome (single channel microarrays) or two di�erent �uorochromes

(dual channel microarrays). The latter uses �uorochromes that when excited will emit light at well

separated wave length. These arrays are used for competitive hybridisation in order to investigate

di�erential expression analysis or perform array CGH. Dual channel microarrays were the preferred

choice when the technology was progressing as it helps to reduce the potential bias coming from the

use of multiple arrays to process many samples. Usually the design had to include dye swapping in
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1 Introduction

order to counter the bias due to the di�erence of signal strength coming from a speci�c dye [129]. The

technology is prone to a number of technical biases coming from the production of the array (print tip

variations for example), the extraction of the RNA/DNA and the preparation of the arrays. In order

to correct these biases, normalisation methods were developed [130]. These methods were designed

to remove technical biases from the data generated by microarrays. Technical biases are de�ned as

systematic variation in signal, the origin of which comes from the technology used. The data obtained

from the scanner is called �raw data� and needs to be processed in order to produce �normalised

data�, which should be free of technical biases. Various normalisation methods were used at �rst, as

the technical biases were important, nowadays the data are transformed on a log2scale (to compress

its scale) and normalised using a quantile normalisation. The resulting data will all share the same

distribution of signal which will allow better statistical analysis. The evolution of the normalisations

methods followed the improvement of the methods used to produce arrays.

At �rst, most groups were producing their own microarrays or had access to a dedicated facility to

do so. There were a substantial number of methods used to produce the microarrays[129]. One of

the most widely produced microarrays in laboratories were spotted arrays, where the probes were laid

onto a slide using inkjet or contact printing technology[131]. Other more sophisticated methods use

in-situ synthesis of oligomucleotide probes. As the technology improved, the production moved from

laboratory to commercial companies, which developed more robust methods, thus improving reliability

[132, 133]. While the �rst microarrays had a few hundred to a few thousands of probes on them,

this quickly increased with the advance in technology triggered by the involvement of biotechnology

companies. These improvements resulted in more robust, reproducible and cheaper arrays while also

leading to an increase in the number of probes present on the arrays and in parallel with an increase

in the number of samples being processed. This represented a major breakthrough for GWAS as the

sample sizes and number of markers needed for successful studies are large. The sample size needed to

achieve good power for GWAS is linked to the number of markers studied. The larger the sets of SNPs,

the more samples are needed in order to achieve good power [42]. The markers are chosen in order to

represent LD blocks as de�ned below and thanks to the advances in technology, typing thousands of

SNPs on large cohorts became more viable, transforming GWAS into the major approach in the study

of genetically linked diseases [134].

In order to design good genotyping microarrays for GWAS, the selection of appropriate markers is

crucial. Ideally the markers should be selected to represent the genome as �nely as possible in order to

identify any association between genotype and phenotype. The selection of markers is done using LD

to select 'tag' SNPs. As discussed before LD is characterised by the joint transmission of alleles, and

can be measured in various ways [135]. One measure is DAB = pAB − pApB which is the frequency

of the heterozygote allele minus the product of the frequency of both individual alleles. If the loci are

in linkage equilibrium then pAB = pApB and D = 0. This measure is not the most useful measure
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to compare between pairs of markers as it is tied to their allele frequencies. D can be normalised by

de�ning Dmax as the smaller value between pA(1 − pB) and pB(1 − pA) when DAB > 0, and the less

negative value between pApB and (1−pA)(1−pB) if DAB < 0 be then we can de�ne D′AB = DAB/Dmax

as suggested in [20]. The normalised DAB can be used to compare pairs of markers. Another measure

for LD is r2 = D2

pA(1−pA)pB(1−pB) which is the Pearson correlation coe�cient between the markers. The

various ways of measuring the LD can be used to de�ne LD for regions of the genome using known

markers. It can be used to de�ne blocks of LD or haplotype blocks of markers (markers transmitted

together). De�ning those blocks allows the selection of 'tag' SNPs for the construction of microarrays

to test for association of markers to disease contributing loci using case/control studies [136]. Tag SNPs

are choosen to represent regions of the genome, they allow us to indirectly type other markers in the LD

block they belong to as those markers are transmitted together because of the linkage disequilibrium.

It is therefore possible to infer the allele of other SNPs in this region using the tag SNPs.

The array used for this study is the porcine SNP 60k array by Illumina, the design process is

described in details in [98]. Brie�y, libraries of pool of animal from �ve di�erent pig breeds (Duroc,

Pietrain, Landrace, Large White and Wild boar) were sequenced using short read (36bp) and longer

read on the Roche 454 platform. The reads obtained were aligned against the pre-release version 7 of

the pig genome for SNP discovery. After pruning and selection, the �nal number of SNPs selected for

the array was 64,232.

1.6 Deep Sequencing technology

Once regions of interest have been identi�ed by using tag SNPs or microsatellites, they can be studied in

more detail using deep sequencing. This methodology is used to sequence the full or part of the genome

in order to get more information about the surrounding region of the signi�cant SNPs. Following up

on a GWAS to study the regions discovered with a deep sequencing approach has proven useful to

identify causal variants for several diseases [137, 138, 139, 140]. Deep sequencing allows a detailed

investigation of the sequence of the genome and therefore re�ne any leads given by the GWAS.

1.6.1 Deep sequencing methodology

Over the last 50 years the methods used to sequence DNA have greatly advanced, especially since the

completion of the �rst draft of the human genome. Several methods have been developed in order to

perform deep sequencing of the DNA [141, 142]. One method was originally developed by a company

called Solexa and then bought by Illumina and became the most widely used sequencing technology

[142]. This technology performs sequencing by reversible terminator chemistry [143]. The principle

starts by �rst shearing the DNA in small fragments. The fragments are ligated with adaptor sequences

speci�c to the Illumina platform. Each end of the fragment has a speci�c adaptor which also contains
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the sequencing primer. The fragment can also be labelled with speci�c indices sequences (also called

barcode), which can be used to track the samples they originated from. Fragments from di�erent

samples can then be pooled together, usually to save on the cost of sequencing . The fragments once

ready to be sequenced (pooled or not) are called a sequencing library. The library is then loaded on the

instrument. The DNA fragments will hybridise at one of their ends with the adaptors present on the

�ow cell used for the sequencing. The �ow cell consists of a glass slide with one or more channel (also

called lanes) that have complementary sequences to the adaptors used during the library preparation.

Once hybridized the fragments will undergo an ampli�cation step also called �bridge PCR�, see �gures

1.2, 1.3, 1.4. The free end of the fragment will bind to a nearby free adaptor sequence �xed on the

surface of the �ow cell and form a �bridge�. This �bridge� is then used to perform an ampli�cation step

resulting in the clonal copy of the original fragment: the complementary sequence is removed after

the ampli�cation step. The ampli�cation step is repeated several time to generate a �cluster� of clonal

copies of the same fragment. The number of clusters being sequenced will depend on the sequencer

used. Once the ampli�cation step completed, the clusters will be sequenced by reversible terminator

technology, �gure 1.5. The technology works by using the primer sequence present on the adaptor

sequence to start a polymerase reaction. Primers are �ushed on the �ow cell to start the reaction.

Then the sequencing is started and consists of several cycles. A cycle starts with the four nucleotides

being �ushed onto the �ow cell. The nucleotides are labelled with �uorochromes and have a blocking

group (3'-OH) that will result in the addition of only one base during each cycle. Once the reaction

is completed for that cycle, the remaining nucleotides in solution are washed away and the instrument

will image the �ow cell surface, taking a picture of the cluster colour for each cycle. As all the fragment

forming a cluster are of the same composition, the �uorescent signal emitted will be the same for all

the fragments forming a cluster. After the scanning step the blocking group is removed so that a new

cycle can start. Once the sequencing is completed, the sequence generated for a cluster of the �ow cell

is called a read. The length of the read will be based on the number of cycles performed, which will

be determined by the user prior to sequencing. At the present the maximum sequencing length (also

called read length) for one end of the fragment is 250 nucleotide for the MiSeq platform. Sequencing

can be done from one end of the fragment, called single end sequencing, or from both end, called paired

end sequencing, which is done by paired end �turn around� chemistry. The strands are �ipped on the

�ow cell by performing several cycles of bridge ampli�cation, therefore allowing sequencing of the other

end of the fragment.
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Figure 1.2: Bridge PCR ampli�cation �rst phase, reverse strand synthesis
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Figure 1.3: Bridge PCR ampli�cation second phase, bridge PCR
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Figure 1.4: Brige PCR ampli�cation third phase, mon-clonal ampli�cation

32



1 Introduction

Figure 1.5: Sequencing by synthesis, strand sequencing using reverse terminator.
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1.6.2 Targeted sequencing

While a full genome sequencing approach will give the largest amount of information, it is not always

the most cost e�ective way to identify variants in a region of interest as a large portion of the sequencing

data will not hold any useful information. New approaches have been developed in order to sequence

only part of the genome, called targeted sequencing, sequence enrichment or sequence capture. Man-

ufacturers have designed pre made panels for various applications but most of those are available for

human genomes only. For non model organisms, once the regions of interest have been identi�ed it is

possible to design a custom capture kit to target the regions of interest that have been identi�ed using

an association or linkage approach. Several companies are o�ering the design of custom capture pan-

els, Roche Nimblegen (SeqCap), Agilent (SureSelect) and Illumina (Nextera Rapid Capture). Agilent

SureSelect uses long, 120-mer, biotinylated cRNA baits to capture regions of interest in order to enrich

them from a genomic fragment library. The processe is described in �gure 1.6: it starts by the shearing

of the genomic DNA (gDNA) and standard library preparation. Then the sample library is hybridised

with the baits and the hybridisation product is pulled down using magnetic streptavidin coated beads.

The selected library is then ampli�ed and put on the sequencer. Nimblegen SeqCap uses the same

principle as the SureSelect method, as seen in �gure 1.7. Illumina Nextera Rapid capture also follow

a similar protocol but instead of using traditional library preparation methods, it uses the Nextera

library preparation protocol which take less time than traditional methods as it uses transposons to

cut and add the sequencing adaptors to the gDNA which make the process a lot faster. Once this

step is completed the sequence capture is carried out in the same fashion as the other method, using

biotinylated probes and streptavidin coated beads.
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Figure 1.6: Agilent SureSelect sequence capture. Source: Agilent website (www.genomics.agilent.com)
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Figure 1.7: Nimblegen SeqCap sequence capture. Source: SeqCap Brochure 2015

1.6.3 Sequencing mapping

Once the library has been sequenced, the data generated are mapped to the reference genome and

analysed using an algorithm designed to call the variant. The variant identi�ed can be evaluated

for potential impact on the gene expression or product of critical genes. Because the DNA consists

of only four letters, it is easy to index the reference and query sequence in order to perform fast

alignments and �nd a match between the read sequence and the reference. The software used to align

the reads sequenced is called Burrows Wheeler Aligner (BWA) [144] which uses Burrows Wheeler

Transform (BWT). BWT is useful to speed up the search for a match between the reads and the

reference sequence. The reference is transformed using the Burrow Wheeler transform as illustrated

in �gure 1.8. This step is also called: the indexing of the genome. The reference will be broken up

into thousands of BWT words during the indexing. The transformed reference, called the �indexed

reference�, is used to speed up the search of patterns (queries) in it, in this case the reads.

The BWT has two important properties. First, by sorting the BWT of the word by lexicographical
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order we can retrieve the �rst column of the BWT matrix as explain in �gure 1.9. This creates an

incomplete Burrows Wheeler matrix that can be used instead of the full matrix for pattern searching.

Second, another property of the BWT is that the �rst occurrence of character 'X' in the last column

is the same character as the �rst occurrence of 'X' in the �rst column. This is easy to see this when

looking at the Burrows Wheeler matrix in �gure 1.8. With those two properties it is possible to search

a pattern without the full matrix, using only the �rst and last columns1.9, it is possible to search

for patterns. Take the pattern 'ANA' which occurs twice in the world BANANA. The search can be

performed with the following simple manual steps:

1. Look for the occurrence of the �rst letter 'A' in the last column, there are 3 such occurrences, in

position 1, 6 and 7

2. Because of the cyclical permutation used to generate the BWT, the letter after 'A' in the original

word will be in the �rst column of the BWT matrix

3. Thanks to the property of the BWT we can �nd the �rst column from the BWT word by sorting

it by lexicographical order.

4. In order to identify the correct occurrence of 'A' in the �rst column, we use the property previously

described, the ith occurrence of a letter in the last column is the same as the ith occurrence of

the same letter in the �rst column. Therefore we know that the �rst occurrence of it will be

followed by '$' which does not match 'N', the next two occurrences do match our pattern. The

pattern 'N' in the �rst columna and 'A' in the last matches row 6 and 7 of the BWT matrix.

5. The second letter for our search is N, which corresponds to 2 of the 3 occurrences of 'A' identi�ed

in the previous steps.

6. By checking the 'N' in the last column and looking at the �rst column we know that both

are followed by 'A' so our search is over, but if we were to continue we would apply the same

principles.

7. The matching rows of the BWT matrix are the second and third occurrences of A in the �rst

column, so line 3 and 4.

However in order to use this method more e�ciently, a few mathematical transformations allow the

automation of the search for large scale pattern mapping.

The method using a Last to Front (LF) mapping table can be used to perform a search for matching

characters:

1. Calculate the C array for the BWT of the word to reconstitute, C(i) corresponding to the number

of characters lexicographically smaller in the BWT word, for example for B there are '$' and 3

times 'A', so C(B)=4. See table 1.8
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2. Perform the LF mapping, using the following formula LF (ij) = C(i) + ni with ij being the jth

occurrence of the character i and ni being the number of occurrence of the characteri up to and

including ij . See table 1.9.

3. Then get the �rst column of the BWT matrix by sorting the BWT by lexicographical order :

$AAABNN

4. Seaching for 'ANA' we start again by the last character 'A'

5. The As have as LF value 2, 3 and 4 in the table 1.10 when checking the top row (BWT).

6. Checking the column 2, 3 and 4 of the �rst row for the next letter 'N', there are two matches for

column 2 and 3 with LF numbers of 6 and 7.

7. Checking column 6 and 7 for the next letter 'A', both match, therefore the word 'ANA' is found

twice.

8. The LF to front value is 3 and 4, which indicate that the pattern start on the �rst column of the

BWT matrix at row 3 and 4.

This method is also useful to exclude mismatch or partial match data, looking for ABA in BANANA:

1. Starting by the last letter 'A', the LF value are 2, 3 and 4.

2. The next letter is 'B', checking column 2, 3 and 4, B is present in column 4 with a LF value of 5.

3. The next letter is 'A', however the letter in column 5 is '$' which does not match therefore the

pattern 'ABA' is not present in our word.

The next question when one or several matches are found is to know where the match is located in

the original word. Going back to the pattern 'ANA' which had 2 occurrences in our our word, using

a �walk back� approach and counting the number of steps (or o�sets) we can get the position of the

match in the original word:

1. As determined before the 2 rows which start with the 'ANA' pattern are rows 3 and 4.

2. Starting with row 3, the letter for the last column is N with a LF of 7.

3. The 'N' at row 7 has a 'A' in the last column with a LF value of 4, the o�set is set to 1.

4. The 'A' on the 4th row of the matrix as a 'B ' in the last column with a LF value of 5, o�set is

set to 2.

5. The 'B' on the 5th column of the matrix has an LF value of 1 with the character '$' in the last

column, o�sets is set to 3.
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6. As '$' is the top of the matrix we have completed or walk back to get the position of the pattern

in our original word

7. Therefore the �rst 'ANA' pattern start 3 character after the �rst in BANANA (so the 'A' which

is the 4th letter in the word is the starting position)

8. For the second pattern we start at row 4, which as a 'B' in the last column with a value of 5.

9. The 'B' on the 5th column of the matrix has an LF value of 1 with the character '$' in the last

column, o�sets is set to 1.

10. As '$' is the top of the matrix we have completed or walk back to get the position of the pattern

in our original word

11. Therefore the second 'ANA' found starts 1 character after the �rst in BANANA.

When working with millions of reads and longer words and patterns, this method is too slow. One

alternative is to store the o�set value for each line into a su�x array of the BWT matrix along with

the BWT, but this is also ine�ective as the size of the o�set matrix will be very big, 12G for the

human genome [144], however new methods allow the size of the su�x array to be reduced to more

manageable and e�cient sizes [145].

The BWT word can also be reversed to the original word using the following method:

1. We start by the last letter of the word. Because we added '$' to the end word of the word, and

that the BWT is sorted, we know that the last letter is �rst one in the BWT (�rst column to

last column of the BW matrix). In this case the last letter is A and has a LF of 2.

2. Using the LF value as a reference for the column to get the next letter: the second column of

our table 1.10 and has the BWT value, 'N'. The second to last letter is N, so the word �nished

by 'NA'.

3. Again using the LF value as reference, in the second column the value is 6, the 6th column in the

table has a BWT value of A and a LF value of 3. Our word �nishes with 'ANA'.

4. The third column has a BWT of N and a LF value of 7. Our word �nishes by 'NANA'.

5. The seventh column has a BWT of A and a LF value of 4, our word is now 'ANANA'

6. The fourth column has a BWT value of B and a LF value of 5, our word is now 'BANANA'

7. The �fth column matches the special character '$', therefore the word from our previous step is

the original word.
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The examples above are simple and real data might only have partial matches to the reference genome,

sequencing technology is not a hundred percent accurate at the moment, therefore it is likely that

some reads will have erroneous bases. In case of inexact matching, the algorithm can introduce a

random letter and try to continue the matching protocol in order to �nd the closest match possible.

The advantage of the BWT is that the C array and the LF mapping table can be calculated on the �y,

only the BWT of the original reference needs to be stored. Therefore prior to mapping the reads, the

reference genome needs to be converted using the Burrows Wheeler Transformation. A su�x array is

also generated and will be used to get the position of the matches in the reference. The generation of

both �les will only be performed once and can be used anytime new data needs to be mapped to the

reference.

This is the basis for Burrows Wheeler Aligners, more recent implementation of the aligners added

some improvement and heuristics enhancements in order to speed the search of patterns but the base

principle use for the mapping stays the same. For this study, deep sequencing technology were used

on intervals of interest identi�ed using the family based association test and parent of origin test. In

addition the interval already identi�ed from a previous study [2] were used to design a capture panel.

In total three capture panels were used in order to study the allele frequency of pools of control and

aggressive animals to look for markers that could be used to identify susceptibility to infanticide in

animals.

Character i $ A B N

C(i) 0 1 4 5

Table 1.8: C array for the BWT transform ANNB$AA . C(i) corresponds to the number of character
lexicographically smaller in the BWT word, for example for B there are '$' and 3 times 'A',
C(B)=4.

Character i A N N B $ A A

C(i) 1 5 5 4 0 1 1

index nj 1 1 2 1 1 2 3

LF (i) 2 6 7 5 1 3 4

Table 1.9: LF mapping for ANNB$AA

BWT A N N B $ A A

First column of BWT matrix $ A A A B N N

LF (i) 2 6 7 5 1 3 4

Table 1.10: Table of the BWT, LF values, used to reconstruct the original word
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Figure 1.8: Burrow Wheeler transform
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Figure 1.9: Partial reconstruction of the BWT matrix for pattern searching

1.6.4 Sequence variant calling: uni�ed genotype caller

Once the data have been mapped the next step is to �nd which bases are di�erent between the reference

genome and our capture set in order to identify variants that might be linked to our phenotype of

interest. Due to the nature of the sequencing data, looking for base variation is not a simple task,

di�erences can come from a biological source but might also be caused by technical issues arising from

the sequencing technology. The error rate for sequencing is not constant and will depend on several

technical aspects of the sequencing technology. For Illumina technology the main contributor is the

density of cluster on the �ow cell. The typical sequencing quality of Illumina generated sequences is

expected to have at least 75% of bases above a Phred score of 30 (Q30), which means less than 1 in 1000

error, resulting in a base call accuracy of 99.9%. While this is a very reasonable error rate, it has to be

put in perspective with the high amount of data generated by the sequencer. The NextSeq can output

between 25 to 120 Gigabases in one run. Furthermore the quality of the sequencing is not even across

the length of the read, in general the bases at the beginning of the reads are of high quality and the

quality will degrade as the sequencing progress, with the end of the read being of lower quality [146].

This is caused by the degradation of the chemistry as the sequencing progress. The Illumina reported

error rate is also not always accurate and the real error rate is often higher [146, 147]. Inaccurate error
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rate leading to higher than reported rate are problematic as they will result in a higher number of false

positives, erroneous bases called as true variants because of misleading error rate. Other factors are

also important such as sequencing depth or coverage to ensure that a high enough number of reads are

used in order to call a variant. This can also be in�uenced by sequencing technology: GC content has

an e�ect on read coverage [146], higher GC content resulting in higher coverage.

In light of these issues with sequencing technology, a simple alignment and mismatch approach is not

appropriate to call variants as there is a possibility that we might mistakenly take a sequencing error

as a true variant. Therefore a more elaborate approach is required. Several approaches are available,

one of the most widely used is the Genome Analysis Toolkit (GATK) developed by the Broad Institute

[148]. It is a complex pipeline which has several steps to process the data before calling variants and

�ltering them once they have been called. A set of clear guidelines [149] is given to the user to make

sure that the data are processed correctly and produce a robust set of variants. Notably it recalibrates

the base mapping score in order to give a better variant call, resulting in a more robust set of variants.

The various steps involved in the GATK pipeline are explained in more detail in the material and

methods section 2.10.

The crucial step of this algorithm is calling the variants. This is done using the uni�ed genotype

caller, a Bayesian algorithm. The algorithm can call variants on several samples at the same time or

sample with multi ploidy (ploidy is the number of chromosome present). The likelihood of the genotype

AA, AB and BB are calculated using the following equations [149]:

� P{D|GTi} =
∏
P{Di,j |GTi}

� P{Di|GTi = AB} = (P{Di,j |A}+ P{Di,j |B})/2

� P{Di,j |B} = εi,j ∗ P{B is true|Di,j, ismiscalled}, Di,,j = B, otherwise.

where P{Di,j |GTi} is the probability of observingDi,,junder the hypothesized genotypeGTi. P{Di,j |A}

and P{Di,j |B} are the probabilities of observing base Di,jgiven that the true genotype is either A or

B. εi,j is the probability of miscalling the base of interest and depends on the quality score of the base.

Finally P{B is true|Di,j, ismiscalled} is the probability of B being the true chromosomal base given

that Di,j is a miscall.

If qi is de�ned as qi = {0, 1, 2}and is the number of alternative B alleles carried by the single

individual i and that q =
∑N

i qi is the number of chromosomes carrying the B allele among all the

individuals studied or all the members of a pool. Then P (q = X) can be estimated by:

� P{q = X|D} = P{q=X}P{D|q=X}∑
Y P{D|q=Y }

� P{q = X} = 1− θ
∑2N

i=1 1/i X > 0 otherwise.

� P{D|q = X} =
∑

GTεΓ

∏N
i P{Di|GT}i
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� Γ = {GT where
∑

i qi = X}

With Γis the set of all genotype assignments for the N individuals that contain exactly q = X B alleles.

P{q = X}is the in�nite-site neutral expectation to observe X alternative alleles in 2N chromosomes

with an heterozygosity rate of θand GTiand Di are the �ith� individuals' genotype and sequencing read

respectively.

Once the variants have been called the next step is to identify di�erences between our two phenotypes

and to look at them in their genomic context in order to identify the potential e�ect they can have

on the data. Several annotation resources and data handling pipelines are used in order to accurately

annotate the variants.

1.7 Pig genome release 10.2

The version of the genome used for this project is Sus scrofa release 10.2, by Swine Genome Sequencing

Consortium (SGSC) [150]. It was released in August 2011 and used a Duroc as the reference pig. A

Bacterial Arti�cial Chromosome (BAC) library was used for the sequencing of the genome. BAC

libraries [151] are a collection of bacteria each with an insert of foreign DNA of up to 200,000bp than

can be sequenced. BAC are used to construct a physical map of the genome by �ngerprinting each

clone with an enzyme, allowing the identi�cation of overlapping features and order the BACs. The next

step is to sequence the BACs using short reads which will help the assembly as the order of the BACs

is already known. The genome was produced from the BAC libraries using short read sequences from

the Illumina Genome Analyser II and produced 9906 sca�olds, resulting in 20 assembled chromosomes

and 4,562 unplaced sca�olds.

Sca�olds are made of contigs and gaps. Contigs are continuous sequences assembled from short reads

and the gaps are usually of know length as they are de�ned by pair of reads or mate pairs, as shown

on �gure 1.10. The sequence of the gaps is unknown.
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Figure 1.10: Sca�old and contigs. The reads (known sequence in red) form the 2 contigs for this region,
the gap is covered by a pair of reads and as the insert size is known a sca�old can be built
including the 2 contigs and 1 gap.

The total number of base pairs in the genome is 3,024,658,544 with a golden path size of 2,808,525,991

base pairs. The golden path represents the size of the assembled sca�olds in a continuous sequence,

ignoring redundant regions such as pseudo autosomal region and repeat regions (for example in immune

genes). Unplaced sca�olds are not counted in the golden path. The sca�olds N50 is 576,008 base pairs

and the L50 is 1,303 sca�olds. N50 is the smallest size sca�old producing 50% of the genome in the

assembly. In other word 50% of the assembly is comprised of sca�olds at least as big as the N50

value or larger. The L50 is the smallest number of sca�old that can produce the N50 value. The

N50 value is small for this assembly, it represents less than 1% (0.2%) of the golden path and the

L50 is relatively large, meaning that the assembly is composed of a large number of relatively small

sca�olds. If compared to the human genome release at the same time (HG38), the N50 for sca�olds

was 59,364,414bp with a L50 of 17 sca�olds. The N50 for the human genome is 1.8% of its total size

(3.2 GB).

In terms of the contigs, for the pig a total of 243,021 contigs form the sca�old, the N50 of the contigs

is 69,503bp and the L50 is 8,632 contigs. Again the number for the N50 is small and the L50 is large,

therefore the sca�olds are formed by a large number of small contigs. In comparisons for the human,

the contigs N50 is close to the sca�old N50 at 56,413,054bp and the contigs L50 is 19 contigs.

In light of these numbers, compared to human genome, the pig genome assembly is still very patchy

and not to the same standard. The main issue is the size of number of pieces (sca�olds and contigs)

making the genome, which is a consequence of the technology used for the sequencing: short reads

are more di�cult to use for accurate assembly. It is likely that the assembly is not highly accurate,

therefore the positioning and annotation of features based on it is not going to be truly representative of

the real genome. Furthermore the breed chosen is a Duroc and our data includes Landrace and Large

45



1 Introduction

White which will have a di�erent genetic make up compared to Duroc. Despite these drawbacks,

having a reference genome, even if inaccurate, is highly preferable to having to use de novo approaches

which take a large amount of time and are more costly to analyse.

The annotation of the genome was performed using the Ensembl automatic gene annotation system

[152], which incorporates some of the RNAseq data generated by the SGSC and data from other

sources, mainly public databases. The process is divided into three di�erent stages, a raw compute

stage, a targeted stage and a similarity stage. The raw compute stage starts with masking repeats

using RepeatMasker [153]and Dust [154], in total 48.2% of the genome was masked. After masking

several tools are used to identify transcription start sites and then Genescan [155] is used to identify

genes structures. To check the accuracy of the prediction, the results of Genescan are aligned against

several databases: UniProt [156], Unigene and Vertebrate RNA. For the targeted stage, sequences of

known pig proteins are obtained from several sources (UniProt, SwissProt and Genbank [157]) and

used to predict coding models using Genewise. Exonerate [158] is used on cDNA, EST and ENSSSCP

models to re�ne the results. The similarity stage uses the protein data from UniProt Protein Existence

classi�cation of level 1 and 2, corresponding to protein with experimental evidence at the protein

level (1) and at the transcript level (2). Taxonomy is also used to divided the protein models found

into di�erent groups: mammalian, non-mammalian vertebrate and invertebrates. Only protein models

corresponding to mammalian and non-mammalian vertebrates proteins are kept. Models matching

invertebrate proteins are discarded. All of those three steps and some additional evidence generated

using pig cDNA, EST (Expressed Sequence Tag) and RNA sequencing data produced by the SGSC

were used to �nalise the annotation of the genomes. The combined result of this approach de�nes

21,630 coding genes, 3,124 non coding genes, 568 pseudogenes and a total of 30,585 gene transcripts.

1.8 Objectives and aim

The aim of this study is to get an understanding and identify the genetic factors that contribute to

maternal infanticide in pigs. Previous work done on this trait has established that there is a genetic

and heritable component to it. The work done by Quilter et al ,[17, 80, 2] and Chen et al [14]

have highlighted genes and regions of the genome that might in�uence maternal infanticide in pigs.

These studies used a range of methods: linkage using microsatellite, gene expression and genome wide

association study using microarrays. The evolution in the technology available allows us to further

complete some of the work done by using more advanced methods and increase the resolution at which

we look at the regions they identi�ed as shown in �gure 1.11. Using some of the previous work as

a starting point, notably Quilter et al [2], this study will use new data and combine it with existing

data from Quilter et al [2] to identify regions of interest using more powerful methods to investigate

families. Once regions of interest are de�ned, sequence capture will be used to sequence and call
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sequence variants in these regions. For the sequencing, animals will need to be selected in order to

constitute pool of infanticide and control animals. The variant allele frequency between the two groups

will be compared in order to identify variants of interest. Once identi�ed the variants will be annotated

and their potential impact on the region or genes assessed. An overview of the study is shown on �gure

1.12.

The following objectives can be de�ned from the works and methods covered in the introduction:

� Add new animals to the previous data generated by Quilter et al [2] in order to generate pedigree

to use parent of origin and family base association test

� Identify new regions of interest from the family based association and parent of origin test

� Design capture sets to target the regions of interest

� Select infanticide and control animals for sequencing

� Sequence the regions of interest

� Process the sequenced data to call variants

� Compare allele frequencies between infanticide and control animals to identify variants of interest

� Use resources from pig and human databases to get the most accurate annotation for the variants

of interest

� Analyse the variant to identify speci�c genes or precise locations of the genome linked to maternal

infanticide

� Assess the potential impact of variants in genes of interest

Combining di�erent approaches of genotyping and sequencing will help narrow down the regions and

genes involved in the genetic make up of maternal infanticide. Methods used in the previous study

such as microsatellite markers have helped identify regions of the genome but with the advances in

methodology such as microarray and sequencing, it is possible to investigate in greater details the

genome and identi�ed regions a few kilobases large instead of larger scale in centimorgan. The access

to better methods to analyse the data set available will also help increase the power of the analysis to

pick good candidate regions for variant analysis. If successful this study will identify key genes and

causal variants that are signi�cantly contributing to maternal infanticide in pigs.
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Figure 1.11: Overview of the di�erent methods to identify causal loci on the genome. The resolution
of the methods improve greatly from microsatellite (scale in centimorgans), to association
study (scale in mega bases) to variant analysis (scale in kilobases or less).

48



1 Introduction

Figure 1.12: Overview of the study. The number of �*� highlight the various contributions: * Julien
Bauer, ** Claire Quilter, *** Kerry Harvey, **** Multiple contributions, see [2].
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2 Material and Methods

2.1 Animals for the family based association and parent of origin tests

All DNA samples used in this study were extracted from animals selected from herds maintained and

catalogued by Genus PLC. Detailed pedigree information was provided by Genus where available. The

di�erent lines are as follow: line B is a Landrace line, C is a Large White line, D is a cross between

Landrace and Duroc and H is a cross between Large White and Duroc. Line A and B are dam lines,

selected for their good maternal instincts and litter sizes. Line D and H are both sire lines, selected

for their meat quality traits. The incidence of infanticide events for these lines is 4.8% for line B, 5.9%

for line C, 10.8% for line D and 10.3% for line H. In total 1429 animals were typed in Cambridge,

309 for line B, 219 for line C, 423 for line D and 478 for line H, more information is available in table

3.1. Genus provided data for a further 208 animals for line B, 189 for line C and 150 for line H, more

details about the animals are available in table 3.2. The number of families available for the family

based association is 76 for line B, 50 for line C, 56 for line D, 96 for line H. Details about the animals

in those families is given in table 3.5.

2.2 Summary of bioinformatics tools used for the analysis

2.2.1 Genotyping

� PLINK [159] was used for the quality control of the genotyping data and running the parent of

origin analysis (see below)

� FBAT [50] was used to perform the family based association test

� GenomeStudio (Illumina proprietary software) was used to load the data generated from the

array and generate PLINK formatted output for the analysis

� Python scripts were used to merge the data provided by Genus to the data generated and already

available in Cambridge.

2.2.2 Sequencing data processing

� FastQC [160] was used to generate quality metrics from the sequencing run.
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� The R [161] software and more speci�cally the TEQC [162] and ggplot2 [163] packages were used

to generate graphs and quality metrics for the sequencing data and assess the e�ciency of the

capture sets.

� BWA [144] was used to align the data to the reference genome obtained from Ensembl [152], the

version of the pig genome used was version 10.2 at the time of the work. �BWA mem� was used,

it is the most recent implementation of the BWA algorithm.

� Samtools [164] was used to manipulate the alignment �les (bam) after the alignment in order

to sort the �le by chromosomal order, generate index �le for further processing or for general

investigation of any issues or queries related to them.

� PicardTools [165]was used for the speci�c preparation of the data for processing in the Genome

Analysis Tool Kit (GATK), this includes generating a dictionary for the reference �le, marking

duplicates reads, adding annotation to the alignment �les. It was also used to extract some

quality metrics from the aligned �les.

� GATK [148] was used to perform the variant calling. Several steps are involved in the process

and are described in more detail in section 2.10. This tool is often used in conjunction with

PicardTools.

� Python scripts were used to compared the variant calling �les from the di�erent pools.

2.2.3 Annotation of the comparisons

� NCBI e-utilities, speci�cally the Python API library, was used to retrieve the six hundred base

pairs of sequence around each pig variant identi�ed by the comparisons (300 base pairs either

side of the SNP), see section 2.11 for more details on the comparisons.

� Blast [166]was used to increase the accuracy of the synteny mapping with the human using the

sequences retrieved. More details about this in section 2.11.3.

� Blastp [167] was used to compare the protein sequence of genes around amino acid substitution.

� The NCBI Python API was also used to parse the blast results and extract the positions of the

matches (of the blast) against the human

� R and the biomaRt [168, 169] module was used to retrieve annotations from the data, using the

SNP databases for human and pig, and updating data for the pig genome from SS 10.2 to SS 11.

� The Ensembl Perl compara API was also used to get syntenic regions: using the pig coordinates

to retrieve the corresponding syntenic blocks in the human.
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2.2.4 Data manipulation

� Python [170] scripts were used for data manipulation such as merging �les, extracting data,

adding data and sorting �les.

� The R package dplyr [171] was used to merge data in R, more speci�cally for merging genomic

intervals or tables with a large number of entries.

2.2.5 Genomic and pedigree plotting

� The R package Gviz [172] was used to plot genomic regions for the pig and human.

� The pedigree software used to draw the pedigree in order to select the animals is Madeline 2.0

[173]

� ggplot2 [174] was used to generate some of the QC plots

� TEQC [162] was used to generate plots for the sequencing capture QC

� QQman [175] was used to plot the Manhattan and QQ plots for the results of the FBAT study

2.3 Generation of the microarray data

This part of the work was performed by Claire Quilter and Kerry Harvey.

Each DNA sample was extracted and processed according to the manufacturer's instructions (Il-

lumina Inc, San Diego CA) for hybridisation on the microarray. The set of samples processed at

Cambridge were hybridised on the Porcine SNP60k version1 array by Illumina. The later set of data

generated at Cambridge was hybridised on the SNP60K version 2 by Illumina. This updated version

of the array contains a pool of common probes with the previous version of the array. It is possible to

combine both types by reducing the set analysed to the part common between both arrays.

The processing of both arrays versions followed a similar protocol: the extracted DNA is whole

genome ampli�ed, then fragmented and hybridised overnight to the array. The hybridised product

goes through a one base extension for each probe to type the SNP of interest. Each SNP will be

represented by two di�erent probes on the array, one for each allele. Once the extension step is

completed the arrays are stained using two �uorochromes, then scanned on the iScan Illumina scanner.

The scanned data are loaded into GenomeStudio for technical quality control. The data were then

exported and version 1 and version 2 data were merged together, resulting in a set of 1522 samples: of

these 54 were duplicate animals. In addition to this, the data provided by Genus added 547 animals

to the study for a total of 1976 animals. The Genus set was merged with the Cambridge set to provide

the data set used for the FBAT and PO tests.
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2.4 PLINK data format

The �le format used for the PO and FBAT analysis, see section 2.6 and 2.7, is the PLINK format. The

PLINK format for the analysis consists in two �les, the PED �le and MAP �le. The PED �le consists

of the meta data columns followed by the SNP data. The meta data columns in the �le are:

1. Family identi�er

2. Individual identi�er

3. Paternal identi�er

4. Maternal identi�er

5. Sex (1 = male, 2 = female, other = unknown)

6. Phenotype of interest

After the meta data columns, each genotype has two columns for each SNP, one for each allele present

in the individual.

The MAP �le contains the coordinate of the SNP present in the PED �le, the order of the rows in

the MAP �le should match the order of the SNP in the PED �le.

The MAP �le columns for the SNP coordinates are:

1. Chromosome

2. SNP identi�er

3. Genetics distances (morgans)

4. Base-pair position (bp units)

For each of the lines studied (see section 2.1), a speci�c PED �le was generated in order to test each

line apart from the other. The MAP �le was common for all of the lines. Note that the FBAT software

need the MAP �le to start with the SNP identi�er.

2.5 Data quality control

The quality control for the merged data sets was performed in PLINK [159], the arguments used were:

geno 0.05, hwe 0.0001, mind 0.1. The �rst argument set the genotype missing rate, it is used to remove

any SNPs which were not called in 5% or more of the samples. The second is the threshold for the

Hardy Weinberg equilibrium test. It is used to test the distribution of the markers in the population

as it should follow the equation: p2 + 2pq+ q2 = 1 with p the frequency of the A allele, q the frequency

of the B allele for a AB genotype. Any marker deviating from this might be a�ected by population
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strati�cation or admixture and should be �ltered out. The third parameter is the missing rate for

individual samples. If a given sample has more than 10% of the SNPs not called it will be excluded

from the analysis. This QC was run for each line on the combined set of data set, combining the data

generated in Cambridge and provided by Genus PLC.

2.6 Parent of Origin analysis

The parent of origin analysis was performed in PLINK [159] using the �ltered data set as described

above, see section 2.3, using the following options in PLINK: poo, and tdt in order to use the trans-

mission disequilibrium test. The parent of origin analysis is similar to a normal transmission disequi-

librium test but considers the transmission from a heterozygous mother and father separately in order

to identify preferential transmission from one of the parents.

2.7 Family Based Association study

The family based association study was performed using the software FBAT based on the work in [50].

The input data is in the PLINK format, see section 2.4. Once the data loaded into the software, the

comparisons were performed using the 'fbat' command, setting the minimum number of informative

families to 10. The results were saved to a text �le that was used for interpretation.

2.8 Selection of region of interest

The selection of the regions of interest and the design of the three sequence capture panels was done

by Claire Quilter based on the results from the previous study [2] and results from the work presented

here, the Family Based Association Test (see sections 2.7 and 3.1.5) and the Parent of Origin test (see

sections 2.6 and 3.1.6).

From the previous study [2], the top haplotype regions, with a −log10(pvalue) above 4, were se-

lected to design a capture set, called Capture 1. The regions selected are on chromosome 1 (65MB

and 74MB), chromosome 3 (26-27MB, 29-30MB, 36-37MB, 100MB and 131MB), chromosome 4 (1.9-

2.1MB, 5-5.2MB and 121MB), chromosome 6 (21MB), chromosome 10 (10MB), chromosome 12 (34MB,

62MB), chromosome 13 (22-23MB), chromosome 14 (24MB), chromosome 15 (17MB, 130MB, 137MB),

chromosome 18 (11MB and 18MB) . One of the regions for chromosome 3 was extended to included the

GP2/GPR139 region as it is a candidate region for puerperal psychosis. Figure 2.1 shows the number

of probes per chromosome, �gure 2.2a and 2.2b the size of the probes across each chromosome. In total

the combined size of the targetted regions is 7,466,508 bases using Sus scrofa genome version 10.2 and

7,244,762 bases for Sus scrofa genome version 11.1 (via coordinates lift-over).
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Figure 2.1: Capture set 1: number of probes per chromosome. A probe is de�ned as a sequencing
interval being captured by the panel
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(a) Overall boxplot, size in bp

(b) Zoomed boxplot, size in bp

Figure 2.2: Capture set 1: boxplots of the probes size per chromosome. 2.2a: overall boxplot, 2.2b:
zoomed, excluding probes bigger than 3000 base pairs.

The second capture set, Capture 2, was selected using the results from the family based association

test, it includes all the regions that returned a −log10(pvalue) above 4. It also includes regions that

were identi�ed in a RNA sequencing pilot experiment [176] from on going work in the group. The

genes selected were the top 30 genes in the RNA sequencing comparison. The regions selected are on

chromosome 1 (13MB, 106MB, 121MB. 129MB, 135MB, 150MB, 191-192MB, 228MB, 244MB, 247MB

and 294-295MB), chromosome 2 (27MB, 36MB, 42MB, 82MB), chromosome 3 (22MB, 45MB, 75MB),
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chromosome 4 (4MB, 16MB, 83MB, 97MB, 113MB), chromosome 5 (3MB), chromosome 6 (21MB,

83MB, 90MB, 108MB, 112MB, 123MB, 157MB), chromosome 7 (3MB, 7MB, 9MB, 18MB, 23MB,

34MB, 59MB, 79-80MB, 89MB, 95MB, 106MB, 132MB), chromosome 8 ( 118-120MB), chromosome

9 (5MB, 9MB), chromosome 10 (16MB, 24MB, 43MB, 50MB), chromosome 11 (8MB, 21MB, 24MB),

chromosome 12 (10MB, 23MB, 54MB), chromosome 13 (11MB, 22MB, 45MB, 60MB, 149Mb, 190MB,

194MB, 202MB, 208MB, 213MB, 215MB), chromosome 14 (3MB, 15MB, 52MB, 66MB, 70MB, 126MB,

130MB, 134MB, 138MB, 150-151MB), chromosome 15 ( 11MB, 12MB, 22MB, 45MB, 132MB, 147MB),

chromosome 16 (21MB, 41MB, 44MB, 47MB, 53MB, 55MB, 85MB), chromosome 17 (37MB), chromo-

some 18 (14MB, 26MB, 41MB, 43MB, 50MB), chromosome X (113MB). Figure 2.3 show the number

of probes per chromosome; �gure 2.4a and 2.4b the size of the probes across each chromosome. In

total the combined size of the targetted regions is 10,351,334 bases using Sus scrofa genome version

10.2 and 9,792,664 bases for Sus scrofa genome version 11.1 (via coordinates lift-over).

Figure 2.3: Capture set 2: number of probes per chromosome. A probe is de�ned as a sequencing
interval being captured by the panel
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(a) Overall boxplot, size in bp.

(b) Zoomed boxplot size in bp

Figure 2.4: Boxplots of the probe size per chromosome for capture set 2, 2.4a: overall boxplot, 2.4b:
excluding probes bigger than 3000 base pairs.

The third and �nal capture set, Capture 3, was designed from the results of the Parent of Origin
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(PO) results. The regions were selected by �ltering the results using a maternal chi square p-value

below 0.003, with the exception of 4 gene regions, 3 from chromosome 3 and one from chromosome

2. These region were over the selection threshold but not signi�cantly and contained gene of in-

terest. The regions captured are, chromosome 1 (29MB, 45MB, 65MB, 76MB, 92MB, 96MB, 102MB,

139MB, 181MB, 191MB, 193MB, 200MB, 250MB, 284MB), chromosome 2 (6MB, 12MB, 14MB, 27MB,

86MB, 112MB, 121MB, 125MB, 138MB), chromosome 3 (7MB, 14MB, 17-18MB, 19MB, 30MB, 31MB,

32MB, 45MB, 75MB, 106MB, 137MB), chromosome 4 (2MB, 10MB, 21MB, 33MB, 38MB, 77MB,

80MB, 83MB, 105MB, 119-120MB), chromosome 5 (1MB, 7MB, 66MB, 67MB, 99MB), chromosome

6 (14MB, 23MB, 38MB, 112MB, 157MB), chromosome 7 (63MB, 75MB, 95MB), chromosome 8 (15-

16MB, 89MB, 94MB, 117MB, 138MB), chromosome 9 (26MB, 33MB, 73MB, 102MB, 116MB, 120MB,

121MB, 128MB, 139-140MB, 149MB) chromosome 10 ( 36MB, 52MB, 55MB), chromosome 11 (22MB,

66MB), chromosome 12 (16MB, 41MB, 52MB), chromosome 13 (1MB, 7MB, 26MB, 38MB, 76MB,

77MB, 189-190MB, 202MB), chromosome 14 (17MB, 18MB, 34-35MB, 62MB, 79MB, 101MB, 113MB,

129MB), chromosome 15 (19MB, 46MB, 52MB, 143MB), chromosome 16 (32MB, 72MB, 74-75MB),

chromosome 17 (19MB, 23MB, 46MB, 53MB), chromosome 18 (1MB, 2MB, 8MB, 24MB, 49-50MB).

Figure 2.3 shows the number of probes per chromosome, �gure 2.4a and 2.4b the size of the probes

across each chromosome. In total the combined size of the targetted regions is 13,347,528 bases using

Sus scrofa genome version 10.2 and 13,876,030 bases for Sus scrofa genome version 11.1 (via coordinates

lift-over).
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Figure 2.5: Capture set 3: number of probes per chromosome. A probe is de�ned as an sequencing
interval being captured by the pane
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(a) Overall boxplot

(b) Zoomed boxplot

Figure 2.6: Boxplot of the probe size per chromosome for capture set 2, 2.6aoverall boxplot, 2.6b
boxplot removing probe longer than 3000 base pairs
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2.9 Sequencing of the regions of interest

2.9.1 Selection of the animals

Selection of the animals for sequencing was done using the pedigree information available. The animals

were segregated in individual families, the family tree was drawn using the software Madeline 2.0 [173].

In addition to having had at least one instance of infanticide, two di�erent criteria were applied to

select individuals:

1. Having an history of infanticide in the family. At least one of the female ancestors or descendants

of the selected animals need to have an incidence of infanticide.

2. Having several instances of infanticide. At least two episodes of infanticide are necessary to be

considered in this category.

For the �rst criterion the animals were selected by generating pedigree trees for each of the families in

the study. An example of a relatively simple pedigree is shown in �gure 2.7 while �gure 2.8 shows a

more complex one. The rest of the pedigrees used are available in the supplementary �gures.

In the example on �gure 2.7, both selected animals have an history of aggression, they are cousins

and one of their dams (52832350) was also aggressive.

For the second criteria, we used the phenotypic information available to select animals which had

killed piglets in at least two litters.

Unfortunately not all the selected animals had enough DNA left to be used for sequence capture.

The number of animals available to build the pools for each line is summarized in table 2.1. For line

B and C the pools are as follow: pool one is composed of animals with an history of infanticide in their

family, pool two of animals that are serial o�enders and pools three and four are the controls. For line

D and H the animals with an history of infanticide were run in three di�erent pools. For line D pool

one, two and three were comprised of 24, 16 and 16 animals, pool four is for serial o�enders and �ve

and six the controls. For line H the �rst 3 pools were also comprised of individuals with an history of

infanticide, pool one, two and three comprised 10, 13 and 9 individuals, pool four is the serial o�ender

pool, and �ve and six the controls. The animals have to be divided into pools due to the technical

limits of the sequencer and in order to achieve su�cient coverage.
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Figure 2.7: Example of pedigree generated using Madeline 2.0. Family 700 for line B. The two selected
samples are denoted by a *. Each individual has three possible di�erent sources of pheno-
typic data, represented by a pie chart. A large version of the pie chart is displayed below
the pedigree for clarity. The �A�ected� number comes the �rst data set phenotypic data
and is sometime incomplete, 0 is for non infanticide, 1 for infanticide. The �a�ected agg2�
number follows the same convention and comes from the second set of annotations, that
was generally more complete. The �A�ected_parity� gives us the number of parities the
sow had, regardless of any infanticide event. The main di�erence between those phenotypic
data is that the information about the history of the samples typed was sometimes not
provided or accurate in the �rst set of phenotypic data.
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Figure 2.8: Example of a more complex pedigree/family. For line H, this pedigree displays an example
of sharing of sires for this line.

Control pool 1 Control pool 2 Serial infanticide History of infanticide in the pedigree

Line B 25 25 6 4

Line C 25 25 4 12

Line D 22 22 14 46

Line H 25 25 4 32

Table 2.1: Animals pools

2.9.2 Library preparation and sequencing

The library preparation was done by Kerry Harvey and the sequencing done by the team of Cambridge

Genomic Services at the Department of Pathology.

The libraries were prepared according to the Agilent Sure Select protocol. Brie�y the DNA is sheared

and sequencing adapters are added to the DNA fragments, then the fragments are hybridised to DNA

baits which are biotinylated. The hybridised DNA is then puri�ed using streptavidin coated magnetic

beads. Once the fragments are isolated the DNA baits are digested and the remaining DNA fragments

are ampli�ed and ready to be sequenced. The libraries are sequenced using a paired end approach,

sequencing a 100 base pairs (bp) section from each end, resulting in two 100 bp reads per fragment.

Two raw sequence �les are generated for each sample corresponding to read one and read two. For each

of the three capture sets, the pools were sequenced in two runs on the Illumina NextSeq® sequencer.

A total of 8 sequencing runs were performed. Once the sequencing was completed, the reads generated

were passed on for processing and variant calling.

2.10 Read processing and variant analysis using the Genome Analysis

Tool Kit (GATK)

Once the sequencing run completed, the read data were converted from the Illumina 'bcl' property

format to FastQ format using the bcl2fastq software (proprietary software from Illumina). The reads
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were processed via the pipeline described in �gure 2.9. Starting with raw reads, the data were �rst

put through the preprocessing and mapping step. This was followed by post processing to format the

data for variant calling in GATK [148]. The mapping was performed using the BWA mapping software

[144] and various checks were done on the data pre and post mapping. Post processing was done using

Picard tools [165] and GATK. Once the data were correctly formatted the variants could be called

using the Uni�ed Genotype caller of the GATK suite. After calling, the variants were �ltered using

a set of �lters in order to remove poor quality variants. The variant frequencies from the di�erent

pools were compared in order to identify markers that are behaving di�erently between infanticide and

normal pools of individuals.

Figure 2.9: Pipeline for sequencing data processing.

2.10.1 Read preprocessing and mapping

The read pre-processing consists of checking the quality of the reads prior to mapping. This is done

using FastQC, which generates various graphs and tables in order to assess the quality of the reads.
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A usual step to most sequencing data analysis is the trimming of the reads but for variant calling

this step is not bene�cial (see section 4.2.2 of the discussion), therefore it was skipped. After the raw

read quality control, the reads are mapped against the reference genome using the Burrows-Wheeler

Aligner (BWA) [144]. The reference genome used for this thesis was Sus scrofa 10.2, obtained from

the Ensembl website. The genome was download in FASTA format and indexed for use with BWA

(�bwa index �). The BWA algorithm used for the mapping is �bwa-mem�. The output format after

mapping was Sequence Alignment Map, or SAM, format and was immediately converted to Binary

Alignment Map, or BAM, a compressed version of SAM, in order to save space. The SAM format is a

tab delimited �le consisting of an optional header section and of an alignment section. Header lines are

de�ned by a �@� at the beginning of the line. The alignment lines consists of 11 mandatory columns:

1. QNAME: the query template name

2. FLAG: the bitwise �ag, de�ning the mapping status of the segment

3. RNAME: the reference sequence name

4. POS: the 1 based leftmost mapping position

5. MAPQ: the mapping quality score

6. CIGAR: the CIGAR string, de�ning the alignment status for each base in the segment

7. RNEXT: reference name of the mate read

8. PNEXT: Position of the mate read

9. TLEN: observed template length

10. SEQ: segment sequence

11. QUAL: Phred-scaled base quality score

Once mapping is completed, post mapping quality control steps are performed in order to determine

how well the sequence capture performed and how well the regions captured are covered. The R

package Target Enrichment Quality Control (TEQC) [162] was used to generate graphs to evaluate

the e�ciency of the three capture sets and the quality of the sequencing coverage.

2.10.2 Post mapping processing

Once the mapping steps complete the mapped reads were processed in order to call variants with the

GATK suite. The �rst step in this process is to sort and index the bam �les for further processing,

this step is performed using samtools. The next step is to mark duplicated reads using PicardTools.

Marking duplicate reads is important in order to get a good estimate of allele frequencies for the
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variants. Duplicated reads are de�ned as two pairs of reads that have the same start point for both

read one and read two. In other words; they represent the same fragment sequenced two times or more,

which will bias the variant calling and allele frequency estimation. The next step is to add read group

information. This step is required by GATK but is not essential. It consists on adding information

to the read �les, to include the sample id, instrument used, library and pool. This step is critical for

consortium or large studies as the �nal data set might come from several core labs. An important

step performed next is the read realignment. This step is performed in order to correct the alignment

of reads around indels and is essential when using the Uni�edGenotype caller for variant calling. It

will identify intervals of the genome where indels are present (from a reference �le) and realign those

regions with a local realignment algorithm that will correct any misalignments due to the presence of

indels in the read. This step was performed using IndelRealigner and the reference database used for

the indels was Sus scrofa dbSNP 145.

Once the reads have been realigned the next step is to perform the base quality score recalibration, or

BSQR, using BaseRecalibrator. This process is necessary because variant calling relies on the quality

scores attributed to the base by the sequencing instrument. However the instrument does not always

attribute the right scores to a base call due to the various sources of technical bias present in the

algorithms they use. This recalibration is important as the variant calling algorithm relies heavily

on the quality score to identify potential variants. BSQR uses an empirical approach and machine

learning in order to adjust the base quality score, which improves the quality of the variant called.

This is done in two steps: �rst the model of covariation is built based on the data and known variants

if available, Sus scrofa dbSNP 145 was used as the reference, then the base quality scores are adjusted

according to the model generated.

Note that for all the post mapping processing and the variant calling, the parameter �-L� for the

GATK tool suite was used. This parameter takes as argument a bed �le, a �le containing the coordinate

of target regions in tab delimited format. For each capture set the �le used for this argument is the

capture set bed �le, which contains the coordinates of the probes used for the capture.
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Figure 2.10: Post mapping processing

2.10.3 Variant calling and �ltering

The �nal steps of the GATK pipeline are to perform the variant calling, �lter the variants and generate

lists. The variant calling was done with the Uni�edGenotype caller, the reasons for this choice are

discussed in section 4.3.2.1. This algorithm calls the variant for each sample and can use a reference �le

to help guide the variant calling. For this thesis the variant reference was the pig SNP database 145.

The ploidy of each of the pools was provided and the additional options used were: stand_call_conf

of 50.0 and stand_emit_conf of 10. The �rst parameter is the minimum phred-scaller con�dence

threshold for the variant calling which will �ag any SNP below that phred score as ��ltered�. Any

variant with a phred score lower than stand_emit_conf of 10 will not be considered and is excluded

from the output.

After the variants are called the next step is to remove low quality and potential false positives from

the set. The �ltering was done using the VariantFiltration command and the following parameters:

� QD below 2; Quality by Depth, which is the variant con�dence score divided by the un�ltered
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depth of the non homozygote reference samples, using variant matching the alternate allele. It is

used to normalised the variant quality in order to avoid bias due to deep coverage. Any variant

with a score below 2 is deemed to have a score too low compared to the depth of coverage based

on empirical evidence.

� FS above 60. FS represents the Fisher Strand which is used to asses the potential strand bias in

the variant. FS represent the phred-scaled probability of having strand bias at the variant locus,

that is the probability of observing a variant more or less often on the forward or reverse strand.

A locus with no strand bias will have a FS value close to 0. However most loci tend to have some

strand bias and based on empirical evidence the default value is set at 60.

� MQ below 40; MQ is the root mean square of the mapping quality over all the reads at the

given variant position. Instead of being a simple mean measurement, it includes the standard

deviation, which is useful to asses the level of variability within the reads for that locus. Low

standard deviation means that most of the data are close to the mean of the phred scaled quality

score. The typical value for MQ is around 60: the �lter is therefore set at rejecting any variant

below 40.

� MQRankSum below -12.5; MQRankSum is the mapping quality rank sum test for mapping

quality. It compares the mapping quality of the reads supporting the reference allele against

the read supporting the alternate allele. A positive value shows that the reads supporting the

alternate allele have higher quality than the ones supporting the reference allele. A negative

value is the opposite, higher quality for the reference allele reads. If the quality scores for the

reads supporting both alleles are identical the value will be 0. The default value recommended

by the Broad Institute based on empirical observation is -12.5.

� ReadPosRankSum below -8.0; the read position rank sum compares the position in the reads of

the reference against the position of the variant allele. This measurement is meant to check for

a bias of the variant calling due to position of the alternate base in the reads. If a variant is

identi�ed by bases mainly located towards the end of the reads, there are more chances that it is

due to sequencing errors as the quality of sequencing deteriorate. This deterioration of sequence

quality means that bases called at the end of the read are of lower quality than bases called at

the beginning of the read. If the value is negative it means that the alternate allele is found

more often at the end of the read compared to the reference allele. The recommended default

threshold by the Broad Institute is -8.
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2.11 Variant comparison and annotation

After the variants are called and �ltered the next step is to compare their frequency between the

aggressive and non aggressive pools. Once a list of potential targets has been identi�ed the variants

are annotated using the most reliable source of information.

2.11.1 Comparing variants between pools

For each line and each capture the variants were compared after �ltering using the following approach:

First the variant data were split into three categories:

1. Category A compared both the serial aggressors and the individuals with a family history of

infanticide against the two control pools

2. Category B compared the serial aggressors against the two control pools

3. Category C compared the individuals with a family history of aggression against the two control

pools

The �ltered variant call �les were �rst merged for the di�erent pools into a unique �le, and then the

average frequency of each variant computed. To ensure that the means are not misrepresenting the

data, a threshold of a maximum di�erence of 30% between the allele of pools of the same phenotypic

origin was set. This threshold was chosen based on the observation of the distribution of the di�erences

in allele frequencies between the pool, see section 2.11.4 of the results and 4.3.3 of the discussion. The

�rst set of analysis was done using a hard threshold with the di�erences between the average of the

pool allele frequencies for the di�erent phenotype set to be at least 30% for category A and 50% for

Category B and C. These thresholds were chosen empirically, using the number of variants passing

�lter as a guide to �nd a middle ground in the number of variant selected.

Using the hard threshold selected a number of variants but another method to de�ne the threshold

was devised, using the distribution of the di�erence in allele frequencies for all the variants for each of

the comparisons. First the set of variants were compared to generate the di�erence in allele frequency,

using the threshold of 30% as a cut-o� for the maximum di�erence in allele frequency between pools

belonging to the same category. This threshold was chosen based on the variability present between

control pools, the majority of variants having a di�erence in frequency below 30% between the two

control sets (see Figure 3.37 in section 3.3.2). They also needed to pass the variant call �ltering in

at least one of the pools to be selected as a candidate. No thresholds were set for di�erence between

the control and infanticide pool. Instead, once generated for each category, for each line and for each

capture set, the �les were merged per capture set and category, giving a total of nine �les, three per

capture set, one per category and per capture set. The mean and standard deviation statistics of the

distribution of the allele frequency di�erence for all variants were calculated for each �le. A threshold
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based on the speci�c distribution of the allele frequency di�erences was chosen: mean plus three

standard deviations. This should select the variants showing the highest di�erence in allele frequencies

based on the overall allele distribution for each capture set and each category (capture 1 category A,

capture 1 category B...). For more details about the choice of these thresholds, see the discussion in

section 4.3.3 . Any variant that passed these criteria was classi�ed as a candidate variant.

2.11.2 Annotation and functional analysis of the variant

This method was devised to analyse the variants using the 10.2 version of the pig genome.

Once the candidate variants were categorised, the next step was to annotate them in order to �nd any

functional impact they could have. Due to the state of the annotation of the pig genome, comparisons

with the human genome were performed in order to get a better understanding of their potential

impact. The pipeline for the annotation of the variants was as follow:

1. Using the location of the pig variant, the DNA sequence around the variant was retrieved. The

300bp upstream and downstream of the variant location were taken, which produced a 600bp

interval

2. The sequences were aligned against the human genome using BLAST [166] in order to identify

the matching region in the human. The following parameters were used, changed from default

in order to improve the search, looking for less similar sequence (between species):

a) Match/Mismatch sequence scoring changed from 2/-3 to 1/-1. Therefore a match scored

one instead of two and a mismatch is a penalty of minus one instead of minus three, making

match less important and being more lenient with mismatches.

b) Gap cost is changed: existence from 5 to 2 and extension from 2 to 1. This makes opening

a gap and extending it is less costly.

c) Searching for �somewhat similar sequences� (blastn), as pig sequences are compared to

human sequences.

d) Database used is 'Human Genomic plus Transcripts (G+T)'

3. Results were parsed to �lter out weak matches, �ltering criteria were:

a) match length of 100bp between the query (pig SNP sequence) and the subject (human

genomic sequence)

b) expected value below 0.01, meaning we expect less that 1% chance of encountering a match

against this database per chance.

4. Biopython was then used to annotate the parsed blast results to determine if the sequence

matched in the human is in a gene, and if so, if it matches exonic or intronic sequences. The
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BLAST matches were separated in 3 �les:

a) Exonic sequences

b) Intronic sequences

c) Not in a gene

5. For the exonic sequence, using the human coordinates and the R package biomaRt [168], the

ENSEMBL biomart database of genes (human and pig) and SNPs (human) were used to annotate

the data with:

a) pig gene using the pig SNP position

b) human syntenic gene using the pig SNP position

c) Human SNP(s) at a position +/- 10 base pairs of the position of pig SNP in the BLAST

alignment against the human.

d) Any functional consequences linked to the human SNP(s).

6. For the intronic variants and those not in genes, biomaRt was also used but this time we looked

for regulatory features using the regulatory features database to get the type of feature present

(if any) and identify any genes linked to the feature. The procedure was the following:

a) annotate the data using biomaRt to get the regulatory feature ID linked to the human

region in synteny with the pig genome

b) get all the genes linked to that regulatory feature using GeneCard (www.genecards.org

[177, 178])

c) Using DAVID (https://david.ncifcrf.gov/ [179]), the genes linked to the feature are curated

for any interesting traits or functions.

2.11.3 Updating coordinates to Sus scrofa genome release 11

During the later part of this work a new assembly of the Sus scrofa genome (SS 11) was released (see

discussion 4.2.5). The genomic positions of variants and capture set probes needed to be updated to

the new build coordinates. It is important to check each candidate variant genomic position against

the new build in order to look at potential new consequences for the region around it. The capture

probe coordinates were checked to make sure the target region was still the same as its original design.

A pipeline was designed to process the capture set data and the candidate variant using the biomaRt

package [169, 168], the Ensembl compara PERL API [152] and various python scripts to handle the

data. The Ensembl compara API was used to retrieve the human genomic coordinates from the pig

genomic coordinate, allowing pig genomic coordinates to be mapped to human ones.
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This pipeline was applied to the �rst set of variant selected, using hard thresholds. Given the

relatively small number of variants selected using this data, it was necessary to try to annotate most

of them. For the variants selected using the threshold based on the distribution of allele frequency

di�erences, a simpler version of this pipeline was used (see next section 2.11.4).

The pipeline to update the candidate variant positions is as follows, in total 9 tables were put through

the pipeline, 3 for each capture set corresponding to each category (A, B or C):

1. The variants were processed using biomaRt to update their coordinates to SS 11 and �nd any

human homologues:

a) The RefSNP or RS id was queried against biomart to get the updated position in SS 11 if

it is available

b) If no position was returned to the genomic coordinates of the variant are used to query for

an updated RS id and the coordinate in SS 11

c) If there was still no match the variant is �agged for follow up with another method (see

below)

d) If new coordinates were found, they were used to query for any human homologous gene at

the SS 11 position.

2. Variants that did not update to SS 11 were submitted to the NCBI remap tool [180] in order to

update the coordinates

a) When several possible locations were obtained, the most likely location was curated manu-

ally by looking at the chromosome it mapped to, how similar in size was the mapped interval

to the size of the region targetted

b) Once a multiple locations entry had been resolved, the �agged candidate variant followed

the same step as the other variants.

3. Using the pig variant coordinates the Ensembl compara perl API was used to get the correspond-

ing human syntenic blocks. Any variant that did not return any human coordinates still went

through the next steps but was run separately from variants with human coordinates.

4. For candidate variants updated with the compara API, the synteny coordinates were used to

query biomart using biomaRt to get any human gene mapping to that location

5. The SSC11 coordinates were used to get any pig genes mapping to that location.

6. The R package dplyr was used to merge the variants that had to be updated separately with the

other variants, creating an updated version of the input �le.
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The pipeline to update the capture coordinates was very similar to what had been done to the candidate

variants. However there were some notable di�erences because the data were genomic intervals rather

than a single genomic location.

1. The �les provided by Agilent gave coordinates for the probes covering a targetted region. Using

R dplyr the coordinates were grouped according to the region targetted, taking the minimum

and maximum coordinates of the probes for that region.

2. Contrary to the variant data, the capture region could not be updated e�ciently using biomart,

so the NCBI remap tool was used to update the coordinate to SSC11:

a) When several possible locations were obtained, the most likely location was curated manu-

ally. This was done by looking at the chromosome it mapped to, and how close was the

mapped interval in relation to the size of the region targetted.

b) Once multiple locations entry had been resolved, the capture regions followed the same steps

as the rest of the capture regions.

3. Using the updated region coordinates, the Ensembl compara perl API was used to get the cor-

responding human syntenic blocks. Any region that did not return any human coordinates will

still go through the next steps

4. Given the size of the target regions, the API returned multiple blocks for each region submitted:

a) The data were �rst sorted by genomic location and a cluster id was added to each line. If

the chromosomes were the same as the previous line and the di�erence between the end of

the previous block and the current one is less than 10000 bases, they were attributed the

same cluster id, otherwise a new id was generated.

b) The lines with the same cluster id were merged using dplyr and taking the minimum and

maximum coordinates for each entry with the same cluster id.

5. For candidate regions updated with the compara API, the synteny coordinates were used to

query biomart using biomaRt to get any human genes mapping to that location

6. For regions that have been updated to SSC11, the updated coordinates were use to get any pig

genes mapping to that location.

7. To check if the coordinates had changed dramatically the Gviz package was used to generate a

genomic region plot of:

a) The targeted region on SSC10.2 (original capture coordinates)

b) The targeted region on SSC11 (updated coordinates)

c) The targeted region corresponding to the syntenic region on the human genome.
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8. Comment is added to the �le once the region has been checked against the genomic region plot

Finally the variant data was checked against the updated capture set to check if any candidate variants

were no longer within the targetted region.

2.11.4 Curation of SNPs and regions of interest

After the design of a new �ltering method (see section 2.11.1), a shorter version of the pipeline above

was used to simply update the SNPs to SSC11 using biomaRt and at the same time get the SIFT

prediction for the impact of the SNPs [181]. SIFT is an algorithm designed to identify potential

deleterious change in the amino acid (AA) chain of the protein, caused by a SNP allele. The individual

SNPs selected were SNP classed as missense SNP, causing a potential change in AA at this location.

SIFT can predict if the e�ect might be deleterious but the prediction has a level of uncertainty. As

only a few SNPs were selected as missense, a more in depth analysis was required. In order to check if

there is a potential e�ect on the protein structure and function, the following pipeline was applied to

candidate SNP.

1. SNP was queried using the Ensembl website

2. The alignment against other species (phylogenetic context) was used to check the consensus

sequences for the same gene for other species. The phylogenetic context displayed the alignment

of the SNP and the region around it against other species.

3. If the gene was unknown, the region comparison tool was used with the Human and Mouse

genomes in order to see if a known gene is present at the corresponding location in these genomes

4. To better estimate the impact of the of the amino acid change, the protein sequence around the

target amino acid was blasted against the protein database using the NCBI website, using the

default setting for blasting protein against protein.

5. The blast results were used to assess if the region of the protein is highly conserved or not.

6. The impact of the amino acid change was also evaluated by looking at their properties, notably

their charge, polarity and hydrophobic or hydrophilic nature.

For the regions where a large number of SNPs were identi�ed, the following pipeline was used:

1. The regions and SNPs were plotted using the version 11 of the genome in order to identify genes

in their vicinity.

2. If no genes are presents, the region was queried in Ensembl for region comparisons with the

Human and the mouse.
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3. Any gene covered by the SNPs were queried in GeneCards [177] to look for any interesting

disorder or function,

4. The gene was also queried in the NCBI gene database, for both human and mouse to learn more

about their function
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3.1 Genotyping microarray results

3.1.1 Summary of the data available

Two sets of data were available for this study, one was generated in Cambridge and the other one

provided by Genus PLC. Tables 3.1 and 3.2 show the data available for each set. The sets were merged

to form one unique dataset that was then �ltered in order to perform the FBAT and PO tests.

Lines Control samples (females) Infanticide samples No status (female) Male samples Female samples Total

Line B 178 122 1 8 301 309

Line C 110 101 1 7 212 219

Line D 210 159 3 51 372 423

Line H 282 189 1 6 472 478

Table 3.1: Samples typed in Cambridge for the four lines, not status females are female with no entry
for the infanticide status.

Lines Control samples (females) Infanticide samples No status (female) Male samples Female samples Total

Line B 104 17 3 84 124 208

Line C 72 20 1 96 93 189

Line D - - - - - -

Line H 0 0 0 150 0 150

Table 3.2: Sample typed by Genus for the four lines, no status females are female with no entry for
the infanticide status.

3.1.2 Quality control

Using the pedigree information the data were �ltered to leave only the families with at least two

individuals, one of which must be an infanticide sow. The QC was then run on the data using the

parameters described in section 2.5 using PLINK. The summary of this QC is given in table 3.3.

Another QC step performed was to look at the Minor Allele Frequency (MAF). Table 3.4 summarises

the low MAF SNPs in the dataset, displaying the percentage of 0% MAF (homozygous SNP) and below

5% MAF (low frequency variant), up to a quarter of the SNP typed have low MAF (below 5%), making

them low frequency variants for these lines. After QC the data were loaded in FBAT and PLINK for

the PO analysis. FBAT returned some errors after the heritability checks within each family. Some

families had to be removed from the analysis as the number of errors proved too important, suggesting
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that the individual in these family might not be related. This can be caused by cross fostering, when a

piglet has moved to another dam before it could be recorded properly. Between 2 and 4 families were

removed from each line, the details of the families analysed in FBAT are given in table 3.5.

Lines Markers Samples Call rate HWE �lter
Genotype Missing individual

Passed QC markers
missing (95%) �lter (90%)

Line B 61062 206 96.80% 22 4473 0 56567

Line C 61062 158 95.71% 31 4251 0 56780

Line D 61062 188 95.83% 28 3915 0 57119

Line H 61062 297 95.80% 36 4342 3 56684

Table 3.3: Markers information for Family Based Association and Parent of Origin: HWE �lters stands
for Hardy Weinberg �lter which tests for the Hardy Weinberg equilibrium, The genotype
missing is the threshold for removing markers for which not all the individuals have a call
(5% of individual missing), the missing individual �lter is to remove individuals for which
the overall call rate is below the threshold (10% or more missing).

Line Total Markers 0% MAF Below 5% MAF Percentage 0% Percentage 5%

B 56567 6325 14743 11.18 26.06

C 56780 9375 14628 16.51 25.76

D 57119 6779 12329 11.87 21.58

H 56684 6825 13085 12.04 23.08

Table 3.4: Table summarising low Minor Allele Frequency (MAF, the lowest allele frequency from each
SNP), number of SNPs with 0% MAF (homozygous SNPs) and less the 5% MAF.

Lines Total samples Families
Families with at least Families Infanticide Control

Males
Females with no

3 members removed females females phenotypic status

Line B 206 76 45 4 83 76 47 0

Line C 158 50 32 2 73 44 40 1

Line D 188 56 33 3 85 62 41 0

Line H 294 97 63 3 122 104 68 0

Table 3.5: Samples for family based association. Total number of samples represents the number of
samples belonging to a family. Families represent the total number of families in the set.
Families with at least 3 members represent families when more individuals have been typed
than the minimum of 2 (one parents can be missing). Family removed: the number of family
excluded due to heritability errors. Infanticide/Control female, the number of Infanticide
and Control females present in the families tested. Male: number of sires present in the set.
Females with no phenotypic status: females for which the aggressive status was unknown.

The QC of the genotyping data is good (see table 3.3) as the average sample call rate is above 95%

and only a few samples failed to meet our �ltering threshold of 95% call rate. Between 3% and 8%

of the samples were �ltered out at this stage. The Hardy-Weinberg test removed a small proportion

of the markers (less than one percent for all the samples). However the �missing genotypes� �ltering

removed around 7% of the markers for each line as they were typed in less than 5% of the samples.

This �gure is consistent across the di�erent lines studied, therefore it is unlikely to be line speci�c, it

is more likely to re�ect the quality of the markers present on the array. There is a strong possibility

that the markers removed did not get typed successfully because the design was based on a less re�ned
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version of the genome. Therefore the target sequences might not be accurate, resulting in systemic

failure when typing these markers. After �ltering we were left with more than 92% of the markers for

the analysis.

For the FBAT and PO analysis the individual maximum percentage of missing SNP was set to 10%:

i.e, any individual with more than 10% of the SNP calls missing was excluded. This threshold was

chosen in order to not be too stringent, and retain some individuals with some SNP missing. The aim

was to have the highest possible number of individuals per families for analysis. Furthermore because

of the nature of the genome used to design the array (Sus scrofa 7) and the breeds selected for its

design; there is a chance that some of our lines will not match the reference breed. In our analyses we

have a mixture of pig breeds and lines (Duroc, Large White and Landrace), which could cause some

mismatch with the array. Only line H has lost individuals due to this �lter (table 3.3). The failure of

these 3 samples is most likely due to the DNA sample quality.

Using biomart it is possible to check how many markers are still valid with the latest build of the

genome (table 3.6). For each line more than 87% of the SNPs are still found using Sus scrofa genome

build 11 (SS 11). Some of the SNP missing from the cross-referencing might because the SNP identi�er

has changed and is not being recognised as valid. Some SNPs might also have been invalidated. In

any case, around 50,000 SNPs are left to test in this data set for each of our lines.

Input SNP Valid in Biomart Percentage total

All array 61565 53855 87.5%

Line B 56567 49609 87.7%

Line C 56780 49789 87.7%

Line D 57119 50086 87.7%

Line H 56780 49789 87.7%

Table 3.6: SNP left after QC, used as a Biomart query and still present using version 11 of the pig
genome.

3.1.3 Pig array 60k from Illumina

For this study the genotyping data comes from 2 sources: the porcine 60k version 1 array from Illumina

(Genus PLC data and �rst run of data from Cambridge) and the version 2 of the porcine 60k from

Illumina (second run of Cambridge data). The data from both sets were merged using the common

SNPs between the two arrays in order to generate the data set used for both set of analysis. The SNPs

remaining were therefore mostly those designed for version 1 of the array. The 60k version 1 array was

constructed in 2009 and the state of the pig genome at this point (version 7) was very fragmented.

While the design of the array described in [98] used the best technology available at the time, there are

several potential problems with the approaches taken, due to the limitations of the technology available

at the time. The reads used for the design were generated from �ve di�erent pools of animals, using

very short sequencing length (36bp) and low quality thresholds to identify polymorphic sites . Reads
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with a quality score above 10 were considered good enough to be used, whereas nowadays a minimum

quality score of 20 is recommended. Furthermore, the reference genome used for the alignments was

only sequenced at an average depth of 4 reads per bases, there is no mention of the depth of coverage

used for the selection of SNPs. Despite these drawbacks, the candidate SNPs were curated and passed

through several rounds of selection, which should improve their quality. Some issues are still left after

selection and visible when looking at the minor allele frequency (MAF) of the SNPs on the array for the

di�erent lines. As shown on table 3.4, there are between 11 and 16% of the SNPs that are homozygous

on the array. Furthermore, around a quarter of the SNPs have a MAF below 5%. This means the

minor allele frequency is very low for these SNPs in the lines studied, raising questions about their

usefulness to represent LD blocks. This will likely lower the numbers of LD blocks analysed with this

array for this thesis. It is expected that large gaps between SNPs will be present and some regions

of the genome will not be well covered. This can result in some of the LD blocks not being typed

properly, or missed entirely, although one mitigating factor is that in some of the breeds studied the

LD blocks appeared to be conserved over large intervals [182].

While the array has many potential drawbacks, it was still at the time of this study the best method

to perform a large scale investigation of the genetic causes of maternal infanticide. There was no

alternative other than typing each SNP individually, a much more expensive option.

3.1.4 FBAT and PO test and signi�cance thresholds.

Both tests were chosen due to the addition of data provided by Genus PLC. This additional data

completed families and pedigrees already available in the previous dataset from Quilter et al [2]. The

FBAT test is more appropriate for our dataset than a traditional association test as our data is

composed partially of families. The approach using unrelated individuals for a association test was

already done in Quilter et al [2]. Using another approach to query the data is a good way of con�rming

some of the results already found. Given that we had a good number of families, using tests designed

for this type of data was a logical step. Using the relationships present, it was expected that we would

have more power for the analysis. Another approach that we wanted to test on this type of data is

the preferential transmission of allele from mother to daughter. It was shown that this might be a

factor in the heritability of the infanticide trait [3]. In order to investigate this we used the PO test

and concentrated on the dam to daughter preferential transmission of alleles.

The number of families and samples selected for the FBAT and PO analysis are given in table 3.5 of

section 3.1.2. The number of families available for each line is between 50 and 97: two lines (line C and

D) have around 50 families while line B has 76 and line H has 96. When performing the test, FBAT

returns the number of families for which the association in the presence of linkage is found. For the

PO test, the ratio of transmitted allele (transmitted over un-transmitted allele) is also given. This can

be used to assess the likelihood of the results being of interest, if a large number of families supports
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the evidence for association, or, if the ratio of the transmitted over the un-transmitted allele is either

large or very small.

The aim of both of these tests is to identify or con�rm regions of the genome linked to maternal

infanticide, in order to use sequence capture to investigate these regions in more details and narrow

down variants. The variants identi�ed will be used to re�ne genes or regions of interest that might

play a key role in the maternal infanticide phenotype. There are several reasons why it would be

detrimental to be too stringent when �ltering the results of the FBAT and PO tests. To begin with,

the phenotype of interest exerts little selection pressure on the animals a�ected, these animals come

from lines generated for their high breeding values and quality traits (e.g. meat and reproductive

trait). Such high value animals are unlikely to be culled unless they are extreme cases. Furthermore it

is also known from previous studies [2, 17, 80, 14], that several regions of the genome are a�ected and

multiple variants in the genome might be linked to this phenotype. It is unlikely that the penetrance

of any of these variants or regions linked to this phenotype will be high, our trait of interest appears to

�t the classic, multiple components phenotype. Therefore being too stringent while �ltering the results

could remove regions of interest. The FBAT and PO tests are therefore used primarily as a screening

tool.

The threshold chosen for the FBAT analysis is −log10(pvalue) > 4 which corresponds to a p-value of

1.10−4. There is no permutation or adjustment p-value available for the FBAT test unless the pedigree

approach is used. This threshold >4 is below the genome wide signi�cance level usually used in GWAS

and genome wide studies, which is 5.10−8or a −log10(p− value) > 7.3. For the PO test the threshold

was set at 0.03, which will result in a ratio of untransmitted over transmitted or transmitted over

untransmitted of at least 3/1. This will again identi�es a variety of regions that were targetted for the

sequence capture.

3.1.5 Family Based Association

The Family Based Association Test (FBAT) was used in order to test for association in the presence of

linkage using families present in the data set. Using the family structure present in the dataset made it

a di�erent and complementary approach from the previous study which looked at non related samples.

The results of the family based association study are as follow:

� For line B, 15 SNPs reached a signi�cance of 10−5(−log10(p − value) > 5), on 9 di�erent chro-

mosomes: chromosome 1, 2, 3, 5, 7, 10, 14, 15 and 17, see table 3.7.

� For line C, 8 SNPs reached a signi�cance of 10−5(−log10(p− value) > 5), on 5 di�erent chromo-

somes: chromosome 2, 7, 10, 15 and 18, see table 3.8.

� For line D, 29 SNPs reached a signi�cance of 10−5(−log10(p − value) > 5), on 12 di�erent

chromosomes: chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 15, 17, see table 3.9.
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� For line H, 41 SNPs reached a signi�cance of 10−5(−log10(p − value) > 5), on 14 di�erent

chromosomes, chromosome 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, see table 3.10.

Figures 3.1, 3.3, 3.5 and 3.7 shows the Manhattan plots for each of the lines (B, C, D and H). Figures

3.2, 3.4, 3.6 and 3.8 are the QQ plot for the FBAT p-value for each line. Table 3.11 displays the lambda

value for the QQ plot for the FBAT results. The lamda values are relatively close to one expected for

line H, for which some strati�cation might be present as the value is above 1.1.

Marker RS Identity Chromosome
Position Number of s

p-value −log10(p− value)
SS 11 informative families

ASGA0005756 rs80837832 1 219,114,187 43 5.60E-11 10.25

ALGA0102837 rs81329722 2 39,427,398 43 5.60E-11 10.25

MARC0009481 rs81257081 3 72,010,079 26 2.60E-06 5.59

M1GA0007286 rs81383309 5 5,672,567 41 1.55E-10 9.8

MARC0055096 rs80880714 7 9,057,028 36 2.02E-09 8.69

ALGA0039425 rs80873322 7 21,554,498 20 4.22E-06 5.37

BGIS0000098 - 7 NA 37 5.35E-09 8.27

ALGA0118632 rs81325586 10 14,208,472 25 5.73E-07 6.24

H3GA0033419 rs81439383 12 9,767,814 31 9.55E-06 5.01

ASGA0066525 rs80813041 14 123,010,045 36 2.02E-09 8.69

ALGA0085872 rs81453527 15 75,057,741 42 1.49E-10 9.83

ALGA0086085 rs80921770 15 79,583,768 37 1.21E-09 8.92

H3GA0044934 rs80926252 15 119,410,395 36 2.02E-09 8.69

MARC0083113 rs81266760 18 37,977,138 42 9.32E-11 10.03

ASGA0089892 rs81308090 18 39,430,154 43 5.60E-11 10.25

Table 3.7: FBAT line B results table. The Marker column show the Pig consortium ID used by Illumina
in their annotation �le. The RS identity is the dbsnp id for the marker. Chromosome and
position SS11 give the pig chromosome and the position after remapping the position in
Sus Scrofa 10.2 to Sus Scrofa 11. The number of informative families shows the number of
families that contributed to the test for that marker. Finally the last two columns show the
p-value and −log10(p− value) for the FBAT test.

Marker RS Identity Chromosome
Position Number of

p-value −log10(p− value)
SS 11 informative families

ALGA0102837 rs81329722 2 39,427,398 36 5.59E-11 10.25

H3GA0022731 rs80910844 7 100,110,224 30 2.43E-08 7.61

ALGA0118632 rs81325586 10 14,208,472 30 1.21E-09 8.91

ALGA0100690 rs81477669 10 45,783,989 27 6.03E-06 5.21

H3GA0044934 rs80926252 15 119,410,395 36 5.59E-11 10.25

MARC0083113 rs81266760 18 37,977,138 36 5.59E-11 10.25

ASGA0089892 rs81308090 18 39,430,154 36 5.59E-11 10.25

BGIS0000098 - 7 30 9.76E − 6 5

Table 3.8: FBAT line C results table. The Marker column show the Pig consortium ID used by Illumina
in their annotation �le. The RS identity is the dbsnp id for the marker. Chromosome and
position SS11 give the pig chromosome and the position after remapping the position in
Sus Scrofa 10.2 to Sus Scrofa 11. The number of informative families shows the number of
families that contributed to the test for that marker. Finally the last two columns show the
p-value and −log10(p− value) for the FBAT test.
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Marker RS Identity Chromosome
Position Number of

p-value −log10(p− value)
SS 11 informative families

ASGA0001011 rs80870251 1 10,968,552 27 5.73E-07 6.24

ASGA0004231 rs80794948 1 110,239,011 15 2.73E-06 5.56

ALGA0005867 rs80914010 1 125,222,441 34 2.05E-12 11.69

ALGA0114601 rs81343604 1 NA 16 7.10E-06 5.15

ASGA0005756 rs80837832 1 219,114,187 40 3.35E-11 10.47

DRGA0002016 rs80904152 1 223,861,733 22 1.50E-06 5.82

INRA0007489 rs319558321 1 262,121,588 19 1.50E-06 5.82

H3GA0006383 rs81356441 2 25,215,306 31 1.77E-09 8.75

ALGA0102837 rs81329722 2 39,427,398 40 3.35E-11 10.47

ALGA0018634 rs80784123 3 44,000,093 29 2.93E-09 8.53

M1GA0007286 rs81383309 5 5,672,567 40 3.35E-11 10.47

MARC0009578 rs81258152 6 120,053,311 16 4.22E-06 5.37

H3GA0018823 rs81391651 6 133,185,154 19 5.74E-06 5.24

H3GA0022731 rs80910844 7 100,110,224 34 2.96E-07 6.53

MARC0032237 rs80785162 8 111,171,988 26 2.28E-09 8.64

ALGA0054131 rs81414030 9 86,593,109 13 7.74E-06 5.11

ALGA0118632 rs81325586 10 14,208,472 40 3.35E-11 10.47

ALGA0100690 rs81477669 10 45,783,989 36 2.26E-12 11.65

MARC0016782 rs80799328 14 14,414,380 24 9.63E-07 6.02

ASGA0066525 rs80813041 14 123,010,045 40 3.35E-11 10.47

MARC0101508 rs81278062 15 10,585,538 25 1.14E-07 6.94

ALGA0085872 rs81453527 15 75,057,741 35 2.38E-06 5.62

ALGA0086085 rs80921770 15 79,583,768 40 3.35E-11 10.47

H3GA0044934 rs80926252 15 119,410,395 40 3.35E-11 10.47

MARC0039970 rs81233198 18 25,273,873 15 1.60E-06 5.79

MARC0083113 rs81266760 18 37,977,138 40 3.35E-11 10.47

ASGA0089892 rs81308090 18 39,430,154 40 3.35E-11 10.47

M1GA0023271 rs81470243 18 45,399,121 18 2.52E-06 5.6

H3GA0047065 rs81461972 - NA 35 7.55E-13 12.12

Table 3.9: FBAT line D results table. The Marker column show the Pig consortium ID used by Illumina
in their annotation �le. The RS identity is the dbsnp id for the marker. Chromosome and
position SS11 give the pig chromosome and the position after remapping the position in
Sus Scrofa 10.2 to Sus Scrofa 11. The number of informative families shows the number of
families that contributed to the test for that marker. Finally the last two columns show the
p-value and −log10(p− value) for the FBAT test.
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Marker RS Identity Chromosome
Position Number of

p-value −log10(p− value)
SS 11 informative families

ASGA0001011 rs80870251 1 10968552 24 4.46E-07 6.35

ALGA0005867 rs80914010 1 125222441 52 7.52E-06 5.12

ALGA0114601 rs81343604 1 NA 33 7.24E-10 9.14

DRGA0002016 rs80904152 1 223861733 20 2.73E-06 5.56

INRA0007489 rs319558321 1 262121588 24 7.24E-08 7.14

ALGA0102837 rs81329722 2 39427398 71 4.76E-18 17.32

ALGA0018634 rs80784123 3 44000093 39 5.62E-08 7.25

DIAS0000481 rs343661863 4 15671825 28 1.24E-06 5.91

ALGA0027584 rs81380005 4 103968409 22 3.41E-07 6.47

H3GA0052806 rs81334603 6 170305876 19 7.74E-06 5.11

H3GA0019527 rs80949107 7 3676156 37 4.33E-10 9.36

ALGA0038342 rs80872016 7 7273490 21 7.10E-06 5.15

ALGA0039425 rs80873322 7 21554498 23 5.73E-07 6.24

MARC0049081 rs80824189 7 73999704 27 9.46E-09 8.02

BGIS0000098 - 7 58 8.70E-06 5.06

M1GA0010553 rs80833324 7 88763190 39 1.52E-06 5.82

H3GA0022731 rs80910844 7 100110224 57 2.34E-10 9.63

DIAS0001763 - 8 NA 32 5.57E-06 5.25

ALGA0054131 rs81414030 9 86593109 18 1.62E-06 5.79

ALGA0118632 rs81325586 10 14208472 45 4.34E-12 11.36

H3GA0029984 rs81423899 10 38596942 38 3.02E-10 9.52

ALGA0100690 rs81477669 10 45783989 56 1.42E-21 20.85

DRGA0011972 rs80797698 13 9952427 60 3.78E-07 6.42

ALGA0069762 rs80911538 13 41069431 21 2.03E-07 6.69

ALGA0073309 rs81441892 13 185104190 24 3.38E-09 8.47

MARC0066830 rs81255192 13 192073106 20 4.59E-06 5.34

ALGA0074022 rs81443003 13 204827712 25 2.03E-07 6.69

MARC0031872 rs80919390 14 2704204 22 5.74E-06 5.24

ALGA0078467 rs80855882 14 65655137 56 2.98E-06 5.53

H3GA0042218 rs80915578 14 119983231 24 2.11E-08 7.68

MARC0101508 rs81278062 15 10585538 27 3.19E-07 6.5

ASGA0068898 rs81451733 15 19720520 30 3.38E-09 8.47

MARC0046889 rs81238797 15 39419144 20 2.73E-06 5.56

H3GA0044934 rs80926252 15 119410395 69 1.31E-17 16.88

ALGA0090556 rs81459227 16 44602169 31 1.41E-06 5.85

MARC0039970 rs81233198 18 25273873 34 1.21E-09 8.92

MARC0083113 rs81266760 18 37977138 71 4.76E-18 17.32

ASGA0089892 rs81308090 18 39430154 69 1.31E-17 16.88

MARC0002018 rs80830421 - 233795145 35 1.45E-07 6.84

MARC0026936 rs81293197 - NA 31 1.50E-08 7.82

H3GA0047065 rs81461972 - NA 20 2.10E-06 5.68

Table 3.10: FBAT line H results table. The Marker column show the Pig consortium ID used by Illu-
mina in their annotation �le. The RS identity is the dbsnp id for the marker. Chromosome
and position SS11 give the pig chromosome and the position after remapping the position
in Sus Scrofa 10.2 to Sus Scrofa 11. The number of informative families shows the number
of families that contributed to the test for that marker. Finally the last two columns show
the p-value and −log10(p− value) for the FBAT test.
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Figure 3.1: Manhattan plot of the FBAT results for line B. The blue line shows the chosen threshold,
the red line is genome wide signi�cance.

Figure 3.2: QQ plot for the p-value of the FBAT test, for line B. Expected −log10(pvalue) against
observed −log10(pvalue). The lambda value for the p-value distribution is 1.034.
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Figure 3.3: Manhattan plot of the FBAT results for line C. The blue line shows the chosen threshold,
the red line is genome wide signi�cance.

Figure 3.4: QQ for the p-value of the FBAT test, plot for line C. Expected −log10(pvalue) against
observed −log10(pvalue). The lambda value for the p-value distribution is 1.099.
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Figure 3.5: Manhattan plot of the FBAT results for line D. The blue line shows the chosen threshold,
the red line is genome wide signi�cance.

Figure 3.6: QQ plot for the p-value of the FBAT test, line D. Expected −log10(pvalue) against observed
−log10(pvalue). The lambda value for the p-value distribution is 1.034.
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Figure 3.7: Manhattan plot of the FBAT results for line H. The blue line shows the chosen threshold,
the red line is genome wide signi�cance.

Figure 3.8: QQ plot for the p-value of the FBAT test, for line H. Expected −log10(pvalue) against
observed −log10(pvalue). The lambda value for the p-value distribution is 1.121.
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Line Lambda value

B 1.034

C 1.099

D 1.034

H 1.121

Table 3.11: Lambda value for the p-value distribution of the FBAT results for all the lines.

Using the threshold discussed in section 3.1.4, a small number of SNPs were identi�ed as signi�cant

on a number of chromosomes. For lines B and C only a few SNPs, 15 and 8, were signi�cant, while

a larger number of SNPs were signi�cant for lines D and H, 29 and 41 respectively. These results �t

well with the incidence of maternal infanticide in the lines studied, lines B and C having the lowest

incidence of maternal infanticide with around 5%, (4.8% and 5.9% for line B and C respectively) while

lines D and H have a higher incidence of maternal infanticide with 10.8% and 10.3% respectively. These

results do not correlate with the number of families present in each lines (see table 3.5 in section 3.1.2).

Lines B and H have the largest number of families present with 76 and 97 families respectively. Lines

C and D have a lower number of families with 50 and 56 respectively. There might be an impact from

the number of families with at least 3 members, as line H has the highest number of families with more

than three members: 63. However FBAT can infer missing genotypes if one of the parents is absent,

using heterozygote SNPs in the o�spring, which can mitigate some of the missing data for some of the

markers. The numbers of informative families for the signi�cant SNPs are fairly similar for lines B and

C (table 3.7 and 3.8), varying between 20 and 40. For line D, the numbers of informative families is

between 13 and 40 per signi�cant intervals (see table 3.9). Finally for line H the number of informative

families is between 71 and 19 (see table 3.10). There is no obvious corelation between these numbers

and the number of signi�cant results.

For all lines there are SNPs that reach genome wide signi�cance: 11 for line B, 6 line C, 15 for line

D and 17 for line H. These make up almost half of the total number of signi�cant SNPs passing our

threshold. Again the numbers are correlated with the incidence of maternal infanticide in the lines.

The �Manhattan plots� are used in genome wide genetics studies to show the regions of each chromo-

some where signi�cant SNPs are grouped, creating a peak of signi�cant SNPs. The �Manhattan plots�

for the FBAT results are displayed in section 2.7, �gure 3.1, 3.3, 3.5 and 3.7. There was no group of

signi�cant SNPs per chromosome, as might be expected from a GWAS analysis. Only single SNPs

were reaching our threshold or genome wide signi�cance, which might be caused by several factors.

First, our phenotype of interest is probably linked to several genes across the genome which will likely

results in low penetrance of the variants in each region of interest. It can also be due to the array used

for this study (as discussed in section 3.1.3) as the design of the array means that LD blocks might

not always be typed properly or by several SNPs, which might explain why we did not see groups of

peaking in the Manhattan plots.
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3.1.6 Parent of Origin test

The parent of origin test was performed in order to identify markers and regions of the genome that

might be preferentially transmitted from mother to daughter.

The parent of origin test returned signi�cant results for almost all the chromosomes in the the pig

genome. Our signi�cance threshold for this test was set at p− value <= 0.003.

� For line B, 26 SNPs reached signi�cance on chromosome 1, 2, 3, 4, 6, 7, 8, 10, 11, 13, 14, 15 and

17, see table 3.12 for more details.

� For line C, 21 SNPs reached signi�cance on chromosomes 1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 16, 17

and 18, see table 3.13 for more details.

� For line D, 22 SNPs reached signi�cance on chromosomes 1, 2, 3,4, 5, 6, 7, 9, 13, 15, 16 and 18

see table 3.9 for more details.

� For line H, 56 SNPs reached signi�cance on chromosomes 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16,

17 and 18 see table 3.14 for more details.

Figures 3.1, 3.12, 3.14 and 3.16 are the Manhattan plots for the parent of origin test for line B, C, D

and H respectively. Figures 3.11, 3.13, 3.15 and 3.17 show the QQ plot for the p-value of the parent

of origin test for each line. Table 3.15 show the lambda value linked to the QQ plot for the parent

of origin test. The lambda value suggest that restricting the set to heterozygous parents increase the

level of strati�cation present in the data given that all of the lambda values are below 0.9.
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SNP ID Chromosome Position P-value maternal transmission Maternal transmitted : untransmitted counts

ASGA0001721 1 29,115,029 0.0007962 2.5:17.5

CASI0003440 1 250,635,066 0.0009111 0.5:11.5

ASGA0003663 1 92,026,588 0.001496 00:11

ALGA0113319 2 121,389,974 0.0007962 2.5:17.5

DIAS0004469 2 6,275,661 0.0009674 02:16

MARC0059849 2 125,760,041 0.002282 01:12

ALGA0018346 3 30,860,487 0.000685 1.5:15.5

MARC0009481 3 75,394,519 0.002282 01:12

ALGA0025931 4 80,915,079 0.0002896 2.5:19.5

ALGA0023973 4 21,978,564 0.001154 1.5:14.5

ALGA0035224 6 38,548,262 0.002282 01:12

INRA0026430 7 75,430,748 0.0009674 02:16

MARC0033269 8 138,870,354 0.001616 02:15

MARC0036135 10 55,403,526 0.0009674 02:16

ASGA0051058 11 66,142,455 0.0009111 02:15

ALGA0061364 11 22,730,003 0.001616 00:11

ALGA0074022 13 215,030,086 0.000532 17:02

ALGA0067709 13 7,175,532 0.0005791 02:15

H3GA0036785 13 77,651,252 0.001616 00:12

ASGA0062605 14 34,991,538 0.0009111 4.5:20.5

INRA0047046 14 129,849,565 0.001374 02:14

ALGA0075730 14 18,958,926 0.0027 00:11

ASGA0065780 14 113,376,632 0.0027 02:14

ALGA0101465 15 149,489,663 0.001496 0.5:11.5

MARC0045894 15 52,614,585 0.001616 02:15

ALGA0093735 17 23,923,753 0.001374 4.5:20.5

Table 3.12: Parent of origin results table for line B. The p-value is calculated for preferential maternal
transmission against paternal transmission. The transmitted: untransmitted count are for
the reference allele against the alternative allele. The 0.5 values are assigned when the
parents of an individual are both heterozygotes.

SNP ID Chromosome Position P-value maternal transmission Maternal transmitted : untransmitted counts

ASGA0003310 1 76,114,707 0.00225 17.5:3.5

ASGA0009211 2 12,927,978 0.002282 01:12

ASGA0010625 2 86,139,077 0.00286 16:03

ASGA0094535 3 7,784,004 0.002282 01:12

ALGA0017723 3 14,332,984 0.0009111 11:00

H3GA0011907 4 10,423,196 0.002282 01:12

INRA0015059 4 83,749,465 0.002838 04:18

ASGA0096127 6 14,598,312 0.002183 15.5:2.5

ALGA0049156 8 117,824,360 0.00286 03:16

ALGA0056155 9 73,923,049 0.00286 03:16

MARC0082453 9 102,552,703 0.0009111 11:00

ASGA0044289 9 121,182,071 0.00286 03:16

H3GA0030271 10 52,456,152 0.00225 17.5:3.5

ALGA0070825 13 76,614,616 0.002282 01:12

MARC0066830 13 202,381,472 0.0009111 00:11

DRGA0014290 14 101,566,065 0.00225 17.5:3.5

DRGA0016061 16 32,726,222 0.001616 02:15

DRGA0016602 17 19,801,781 0.002282 01:12

ALGA0095454 17 53,299,192 0.0027 00:09

DRGA0016933 18 24,930,075 0.00225 17.5:3.5

M1GA0023271 18 50,032,308 0.0003115 00:13

Table 3.13: Parent of origin results for line C. The p-value is calculated for preferential maternal trans-
mission. The transmitted: untransmitted count are for the reference allele against the
alternative allele. The 0.5 values are assigned when the parents of an individual are both
heterozygotes.
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SNP ID Chromosome Position P-value maternal transmission Maternal transmitted : untransmitted counts

ALGA0002856 1 45,648,377 0.001063 18:03

ALGA0114601 1 181,402,872 0.0009111 00:11

DIAS0004495 1 245,008,421 0.0004653 01:15

H3GA0006383 2 27,576,958 4.23E-06 01:24

ASGA0104575 2 138,422,188 0.000685 15.5:1.5

ASGA0082103 3 19,116,155 0.001063 18:03

ALGA0018634 3 45,593,990 1.08E-05 1.5:23.5

ASGA0021239 4 105,898,886 0.000685 15.5:1.5

ASGA0021997 4 119,974,157 0.0027 02:14

H3GA0015082 5 1,087,963 0.0027 02:14

ASGA0026863 5 99,716,210 0.0027 02:14

MARC0009578 6 112,552,637 0.002569 0.5:10.5

H3GA0019527 7 3,813,663 0.001496 0.5:11.5

ASGA0092371 9 120,274,192 0.001616 02:15

DRGA0013265 13 190,391,508 0.0027 14:02

MARC0066830 13 202,381,472 0.000512 0.5:13.5

ALGA0074022 13 215,030,086 0.0027 00:09

MARC0101508 15 11,904,651 6.33E-05 00:16

ALGA0085056 15 46,315,392 0.0027 02:14

ASGA0073960 16 72,751,299 0.0027 02:14

ASGA0074106 16 75,024,639 0.001616 15:02

MARC0039970 18 26,878,437 0.0009111 00:11

Figure 3.9: Parent of origin results for line D. The p-value is calculated for preferential maternal trans-
mission. The transmitted: untransmitted count are for the reference allele against the
alternative allele. The 0.5 values are assigned when the parents of an individual are both
heterozygotes.
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SNP ID Chromosome Position P-value maternal transmission Maternal transmitted : untransmitted counts

DRGA0000439 1 33,957,887 0.002263 07:24

DRGA0000977 1 65,306,294 0.001946 1.5:13.5

ALGA0005867 1 139,478,386 5.36E-07 06:40

ALGA0114601 1 181,402,872 5.51E-09 00:34

INRA0005278 1 191,640,018 0.001154 1.5:14.5

INRA0005299 1 193,664,917 0.001154 1.5:14.5

INRA0005383 1 200,443,140 0.002497 06:22

DRGA0002016 1 250,323,029 2.73E-06 00:22

ALGA0009384 1 284,399,778 0.001946 1.5:13.5

ALGA0009414 1 284,478,293 0.001154 1.5:14.5

ALGA0017693 3 14,134,797 0.001565 10:00

H3GA0008948 3 17,859,317 0.001069 22:05

ALGA0018634 3 45,593,990 5.31E-05 03:24

MARC0053170 3 77,889,376 0.001015 06:24

DRGA0004106 3 106,777,915 0.00286 03:16

ALGA0021723 3 137,881,512 0.001154 1.5:14.5

ASGA0017039 4 2,225,565 0.00286 03:16

INRA0013709 4 38,857,169 0.001225 6.5:24.5

ALGA0025762 4 77,502,926 0.001595 06:23

ASGA0020726 4 96,803,099 0.002263 24:07

INRA0018313 5 7,507,469 0.001069 05:22

ASGA0025833 5 66,355,133 0.0027 09:00

ASGA0025896 5 67,510,148 0.0027 09:27

ALGA0034926 6 23,679,290 0.000532 00:12

H3GA0052806 6 157,353,343 4.59E-06 00:21

ASGA0034277 7 63,617,428 0.001911 6.5:23.5

M1GA0010553 7 95,143,760 2.21E-06 3.5:31.5

ASGA0037929 8 15,992,070 0.001946 1.5:13.5

ASGA0090387 8 89,832,296 0.002967 6.5:22.5

ALGA0113503 8 94,427,398 0.001946 1.5:13.5

MARC0002586 9 26,578,970 0.001225 6.5:24.5

ALGA0113506 9 33,331,814 0.001946 1.5:13.5

MARC0091645 9 128,963,159 0.001946 1.5:13.5

DRGA0009874 9 140,003,794 0.0027 09:00

ALGA0106214 9 149,004,810 0.0003182 3.5:21.5

ASGA0047525 10 36,537,382 0.001154 1.5:14.5

ASGA0047527 10 36,556,089 0.001154 1.5:14.5

H3GA0029984 10 43,738,907 2.31E-06 1.5:26.5

H3GA0033690 12 16,816,869 0.001911 6.5:23.5

H3GA0056180 12 41,548,842 0.001341 01:13

H3GA0034644 12 52,042,303 0.001069 05:22

DRGA0011849 13 978,869 0.001911 6.5:23.5

ALGA0068980 13 26,957,024 0.0007829 6.5:25.5

ALGA0069602 13 38,756,938 0.001154 1.5:14.5

MARC0020205 13 189,818,417 0.0008561 4.5:21.5

MARC0066830 13 202,381,472 7.74E-06 00:20

H3GA0040445 14 62,339,756 0.001565 10:00

ALGA0078822 14 79,562,216 0.0027 09:27

MARC0101508 15 11,904,651 5.75E-06 02:26

ALGA0084124 15 19,520,226 0.00112 7.5:26.5

ASGA0092912 15 143,902,435 0.0027 05:20

H3GA0054837 16 75,201,733 0.001946 1.5:13.5

H3GA0048171 17 29,170,040 0.001154 1.5:14.5

ALGA0095137 17 46,692,167 0.0022 4.5:19.5

ALGA0124479 18 2,082,165 0.002967 6.5:22.5

ASGA0078760 18 8,770,985 0.002282 12:01

Table 3.14: Parent of origin results for line H. The p-value is calculated for preferential maternal
transmission. The transmitted: untransmitted count are for the reference allele against
the alternative allele. The 0.5 values are assigned when the parents of an individual are
both heterozygotes.
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3 Results

Figure 3.10: Manhattan plot for line B, parents of origin test, the blue line shows the threshold chosen
to select target SNPs. The genome wide signi�cance threshold is not displayed as it o�
the chart

Figure 3.11: QQ plot for the p-value of the parent of origin test, for line B. Expected −log10(pvalue)
against observed −log10(pvalue). The lambda value for the p-value distribution is 0.879.
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Figure 3.12: Manhattan plot for line C, parent of origin test, the blue line shows the threshold chosen
to select target SNPs. The genome wide signi�cance threshold is not displayed as it o�
the chart.

Figure 3.13: QQ plot for the p-value of the parent of origin test, for line C. Expected −log10(pvalue)
against observed −log10(pvalue). The lambda value for the p-value distribution is 0.879.
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Figure 3.14: Manhattan plot for line D, parent of origin, the blue line shows the threshold chosen to
select target SNPs. The genome wide signi�cance threshold is not displayed as it o� the
chart.

Figure 3.15: QQ plot for the p-value of the parent of origin test, for line D. Expected −log10(pvalue)
against observed −log10(pvalue). The lambda value for the p-value distribution is 0.8242.
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Figure 3.16: Manhattan plot for line H, parent of origin test, the blue line shows the threshold chosen
to select target SNPs, the red line is genome wide signi�cance.

Figure 3.17: QQ plot for the p-value of the parent of origin test, for line H. Expected −log10(pvalue)
against observed −log10(pvalue). The lambda value for the p-value distribution is 0.799.

Line lambda

B 0.879

C 0.879

D 0.824

H 0.799

Table 3.15: Lambda value for the p-value distribution of the parent of origin test, all lines.

Selecting SNPs according to the thresholds de�ned earlier in this section and discussed in section

3.1.4, a similar number of SNPs were selected for lines B, C and D with around 20 SNPs for each.
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Line H stands out with 56 SNPs selected. This might be the consequence of the higher number of

families available, or rather mother-daughter pairs that were studied, as line H has the largest number

of families among the lines, with 96. Our signi�cance threshold is fairly lax: however some of the SNPs

identi�ed are common with the FBAT analysis. Similarly to the FBAT analysis, the PO analysis was

designed in order to identify regions of interest for the sequence capture. The ratio of preferential

transmission from mother to daughter for one allele compared to the other varies between 34:1 to 3:1.

The Manhattan plots are similar to the the FBAT ones with no clear peaks of several consecutive

SNPs. As the threshold for signi�cance is lower, the SNPs selected are closer to the background noise of

non signi�cant SNPs. Again this might be due to the low penetrance of SNPs linked to our phenotype

of interest or the nature of the array. Furthermore, we were being quite lenient for the �ltering of this

results as the regions and genes identi�ed will be used for the design of the capture set which will allow

us to con�rm or exclude the candidate regions previously identi�ed.

3.2 Sequencing data QC

3.2.1 Run and mapping metrics

As discussed in material and methods, the animals were divided between di�erent pools. For line B

and C the �rst pool is composed of animals with a history of infanticide sows in their family, pool 2 for

sows who have several infanticide episodes and pool 3 and 4 for control samples. Lines D and H have

3 pools for animals with a history of infanticide (pool 1, 2 and 3), pool 4 is for the serial infanticidle

and pool 5 and 6 for controls.

3.2.1.1 Read quality

The mean read quality scores for the pool in each of the capture sets are displayed in �gure 3.18. The

quality is generally above a Qscore of 30 for all the samples. A Qscore of 30 represents a 1 in a 1000

chance of having a wrong base call. The capture 1 set has slightly lower quality reading than the other

two capture sets. The per base sequence quality score is given in �gures 3.19a and 3.19b for capture

set 1line B, the rest of the plots are available in the supplementary material. All of the samples share

a similar pattern for these plots.
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(a) Read quality score for capture 1, for read 1 and read2.

(b) Read quality score for capture 2, read 1 and read2.

(c) Read quality score for capture 3, read 1 and read 2.

Figure 3.18: Read quality score for the capture set. Figure 3.18a for capture 1, Figure 3.18b for capture
2 and Figure 3.18c for capture 3
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(a) Read 1 quality score per based, capture set 1 line B

(b) Read 2 quality score per base, capture set 1 line B

Figure 3.19: Read quality score per base, read 1 and read 2 of capture set 1 line B

3.2.1.2 Mapping QC

The number of reads for each of the capture and pool is summarized in �gures 3.20, 3.21 and 3.22 for

capture set 1, 2 and 3 respectively. The pools are the same as presented before. The same �gures for

read 1 and read 2 individually are available in the supplementary material. The capture set 1 is the

one showing the largest amount of variation for the number of reads mapped to the genome. It varies

between 30 million to 150 million per samples.
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Figure 3.20: Number of reads mapped from both ends (Read 1 and Read 2) for Capture set 1; pools
1, 2, 3 and lines B, C, D and H. Two sets of data are displayed for read passing �lter
(PF, passing Illumina chastity �lter, see section 4.2.3.1). In red are all the reads PF that
aligned and in blue are the high quality (HQ) reads PF that aligned. High quality is
de�ned by a mapped quality score of 20 (Q20) or above . This represents 1/100 or smaller
chance of the alignment being wrong.
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Figure 3.21: Number of reads mapped from both ends (Read 1 and Read 2) for Capture set 2; pools
1, 2, 3 and lines B, C, D and H. Two sets of data are displayed for read passing �lter
(PF, passing Illumina chastity �lter, see section 4.2.3.1). In red are all the reads PF that
aligned and in blue are the high quality (HQ) reads PF that aligned. High quality is
de�ned by a mapped quality score of 20 (Q20) or above . This represents 1/100 or smaller
chance of the alignment being wrong.
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Figure 3.22: Number of reads mapped from both ends (Read 1 and Read 2) for Capture set 3; pools
1, 2 and 3 and lines B, C, D and H. Two sets of data are displayed for read passing �lter
(PF, passing Illumina chastity �lter, see section 4.2.3.1). In red are all the reads PF that
aligned and in blue are the high quality (HQ) reads PF that aligned. High quality is
de�ned by a mapped quality score of 20 (Q20) or above . This represents 1/100 or smaller
chance of the alignment being wrong.

Tables 3.16, 3.17 and 3.18 give the summary of the number of reads mapped for each capture set,

combining read 1 and read 2. Passing �lter high quality aligned reads are reads aligning with an quality

score (Qscore) above 20.

� Capture set 1, average number of reads passing �lter mapped: 81,681,252, minimum 42,266,915

reads and maximum 152,667,192. Average percentage read aligned is 97% . For high quality

read the average number of aligned reads is 68,890,382 reads, minimum 35,786,637 reads and

maximum 127,159,614 reads.

� Capture set 2, average number of reads passing �lter mapped is 72,457,794, the minimum number

of reads mapped is 55,729,390 and the maximum 108,435,627. The average percentage of aligned

read is 98%. High quality reads the average number of aligned reads is 57,168,410 with a minimum

103



3 Results

of 43,923,060 and a maximum of 85,187,732 reads.

� Capture set 3, average numbe of reads passing �lger mapped is 64,030,227, the minimum number

of reads mappis is 35,543,830 and the maximum 91,433,220. The average percentatage of read

aligned is 98.1%. High quality reads the average number of aligned reads is 57,664,615 with a

minimum of 32,054,462 and a maximum of 82,476,830 reads.

Lines TOTAL_READS
PF_READS PCT_PF_READS PF_HQ_READS PF

aligned aligned aligned MISMATCH_RATE

Line H-pool1-capture1 75,088,750 73,327,924 0.9766 62,997,796 0.0101

Line H-pool2-capture1 83,379,614 81,383,067 0.9761 69,429,083 0.0103

Line H-pool3-capture1 67,990,646 66,452,833 0.9774 55,922,274 0.0106

Line H-pool4-capture1 56,327,248 55,023,992 0.9769 46,530,743 0.0105

Line H-pool5-capture1 57,058,626 55,578,500 0.9741 47,240,597 0.0113

Line H-pool6-capture1 71,676,552 69,898,000 0.9752 59,427,771 0.0104

Line B-pool1-capture1 137,314,694 133,121,532 0.9695 112,316,531 0.0127

Line B-pool2-capture1 110,235,764 106,933,563 0.97 89,472,228 0.0128

Line B-pool3-capture1 94,566,318 91,792,575 0.9707 76,896,859 0.0128

Line B-pool4-capture1 138,370,378 134,476,470 0.9719 113,246,554 0.0126

Line C-pool1-capture1 157,301,982 152,667,192 0.9705 127,159,614 0.013

Line C-pool2-capture1 84,948,514 82,485,978 0.971 69,202,084 0.0126

Line C-pool3-capture1 88,607,772 86,006,584 0.9706 71,825,218 0.0141

Line C-pool4-capture1 103,359,932 100,497,895 0.9723 84,713,674 0.0125

Line D-pool1-capture1 43,378,990 42,266,915 0.9744 35,786,637 0.0107

Line D-pool2-capture1 54,861,480 53,609,029 0.9772 45,524,947 0.0109

Line D-pool3-capture1 59,594,480 58,121,745 0.9753 49,595,063 0.0119

Line D-pool4-capture1 67,319,302 65,585,312 0.9742 55,673,911 0.0108

Line D-pool5-capture1 70,140,066 68,279,765 0.9735 57,156,781 0.0113

Line D-pool6-capture1 57,437,276 56,116,171 0.977 47,689,276 0.0107

Table 3.16: Capture 1, read 1 and read 2 combined, mapping statistics. TOTAL_READS is the total
number of reads generated passing �lter. PF_READS aligned the number of reads passing
�lter aligned. PCT_PF_READ aligned is the percentage of reads passing �lter aligned.
PF_HQ_READS aligned is the number of reads passing �lter aligned and considered to
be of high quality. PF MISMATCH_RATE is the percentage of mismatches in the reads
passing �lter.

104



3 Results

Lines TOTAL_READS
PF_READS PCT_PF_READS PF_HQ_READS PF

aligned aligned aligned MISMATCH_RATE

Line H-pool1-capture2 93,025,096 91,594,335 0.9846 72,378,498 0.0061

Line H-pool2-capture2 68,337,872 67,095,960 0.9818 53,439,245 0.0062

Line H-pool3-capture2 68,414,060 67,236,953 0.9828 52,651,322 0.0065

Line H-pool4-capture2 56,878,630 55,729,390 0.9798 43,923,060 0.0065

Line H-pool5-capture2 63,228,748 62,122,086 0.9825 48,495,196 0.0065

Line H-pool6-capture2 64,582,542 63,649,267 0.9855 50,525,936 0.0060

Line B-pool1-capture2 74,177,346 72,740,408 0.9806 57,747,087 0.0065

Line B-pool2-capture2 66,656,046 65,357,046 0.9805 51,877,093 0.0065

Line B-pool3-capture2 61,852,196 60,692,535 0.9813 48,225,325 0.0064

Line B-pool4-capture2 76,755,578 75,456,834 0.9831 60,347,383 0.0063

Line C-pool1-capture2 73,501,254 71,824,670 0.9772 56,412,312 0.0073

Line C-pool2-capture2 77,280,472 75,858,941 0.9816 59,401,054 0.0070

Line C-pool3-capture2 69,341,074 68,140,278 0.9827 53,200,939 0.0069

Line C-pool4-capture2 72,893,000 71,596,541 0.9822 56,590,495 0.0067

Line D-pool1-capture2 73,722,136 71,966,577 0.9762 56,578,548 0.0068

Line D-pool2-capture2 83,885,058 82,091,472 0.9786 64,885,960 0.0065

Line D-pool3-capture2 74,011,940 72,651,369 0.9816 57,164,190 0.0064

Line D-pool4-capture2 110,664,764 108,435,627 0.9799 85,187,732 0.0065

Line D-pool5-capture2 74,257,008 72,271,579 0.9733 56,995,236 0.0067

Line D-pool6-capture2 73,238,120 71,838,954 0.9809 56,661,413 0.0063

Table 3.17: Capture 2, read 1 and 2 combined, mapping statistics. TOTAL_READS is the total
number of reads generated passing �lter. PF_READS aligned the number of reads passing
�lter aligned. PCT_PF_READ aligned is the percentage of reads passing �lter aligned.
PF_HQ_READS aligned is the number of reads passing �lter aligned and considered to
be of high quality. PF MISMATCH_RATE is the percentage of mismatches in the reads
passing �lter.

Lines TOTAL_READS
PF_READS PCT_PF_READS PF_HQ_READS PF

aligned aligned aligned MISMATCH_RATE

Line H-pool1-capture3 74,867,550 73,104,287 0.9764 65,732,765 0.0085

Line H-pool2-capture3 53,778,638 52,656,091 0.9791 47,746,163 0.0083

Line H-pool3-capture3 65,054,464 63,736,784 0.9797 57,489,322 0.0084

Line H-pool4-capture3 49,278,188 48,259,756 0.9793 43,451,734 0.0084

Line H-pool5-capture3 67,599,424 66,019,235 0.9766 59,321,419 0.0088

Line H-pool6-capture3 60,046,120 58,845,062 0.9800 53,420,134 0.0083

Line B-pool1-capture3 55,924,538 55,096,376 0.9852 49,785,634 0.0063

Line B-pool2-capture3 89,544,320 88,146,755 0.9844 79,035,370 0.0065

Line B-pool3-capture3 36,073,302 35,543,830 0.9853 32,054,462 0.0064

Line B-pool4-capture3 57,614,252 56,832,081 0.9864 51,406,889 0.0063

Line C-pool1-capture3 93,458,664 91,433,220 0.9783 82,476,830 0.0090

Line C-pool2-capture3 61,589,512 60,327,979 0.9795 54,284,495 0.0089

Line C-pool3-capture3 81,305,174 79,342,297 0.9759 70,643,145 0.0092

Line C-pool4-capture3 65,680,586 64,362,304 0.9799 58,239,392 0.0087

Line D-pool1-capture3 88,065,810 86,746,177 0.9850 78,063,598 0.0059

Line D-pool2-capture3 64,940,980 63,913,754 0.9842 57,643,778 0.0060

Line D-pool3-capture3 55,108,940 54,210,065 0.9837 48,966,302 0.0060

Line D-pool4-capture3 58,824,874 57,916,962 0.9846 51,847,229 0.0060

Line D-pool5-capture3 71,074,430 69,803,072 0.9821 62,796,187 0.0063

Line D-pool6-capture3 55,273,464 54,308,452 0.9825 48,887,455 0.0062

Table 3.18: Capture 3, read 1 and 2 combined mapping statistics. TOTAL_READS is the total num-
ber of reads generated passing �lter. PF_READS aligned the number of reads passing
�lter aligned. PCT_PF_READ aligned is the percentage of reads passing �lter aligned.
PF_HQ_READS aligned is the number of reads passing �lter aligned and considered to
be of high quality. PF MISMATCH_RATE is the percentage of mismatches in the reads
passing �lter.
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3.2.1.3 Sequence duplication levels.

The level of duplication for the 3 capture sets is plotted in �gures 3.23, 3.24 and 3.25 for capture sets

1, 2 and 3 respectively. The levels of duplications are fairly similar between samples, with a peak for

�ve to ten percent of the reads being duplicated between 10 and 50x. Tables 3.19, 3.20, 3.21 show the

percentage of reads left after deduplication, the total number of reads and the estimated number of

read after deduplication. This estimate is based on a sample of 100,000 reads. The percentage of reads

left is between 40% and 75% and the spread of reads in the pools after demultiplexing is estimated at

between 11 millions to 48 millions reads.

Line and pool Read Percentage left after deduplication Total number of read Read left after deduplication

line-B-pool1 R1 58.79 68,657,347 40,363,654

line-B-pool1 R2 60.46 68,657,347 41,510,232

line-B-pool2 R1 62.46 55,117,882 34,426,629

line-B-pool2 R2 63.68 55,117,882 35,099,067

line-B-pool3 R1 64.64 47,283,159 30,563,834

line-B-pool3 R2 65.69 47,283,159 31,060,307

line-B-pool4 R1 61.5 69,185,189 42,548,891

line-B-pool4 R2 62.71 69,185,189 43,386,032

line-C-pool1 R1 59.85 78,650,991 47,072,618

line-C-pool1 R2 61.69 78,650,991 48,519,796

line-C-pool2 R1 66.7 42,474,257 28,330,329

line-C-pool2 R2 67.49 42,474,257 28,665,876

line-C-pool3 R1 68.13 44,303,886 30,184,238

line-C-pool3 R2 69.96 44,303,886 30,994,999

line-C-pool4 R1 64.69 51,679,966 33,431,770

line-C-pool4 R2 65.83 51,679,966 34,020,922

line-D-pool1 R1 73.18 21,689,495 15,872,372

line-D-pool1 R2 73.36 21,689,495 15,911,414

line-D-pool2 R1 69.99 27,430,740 19,198,775

line-D-pool2 R2 70.31 27,430,740 19,286,553

line-D-pool3 R1 69.45 29,797,240 20,694,183

line-D-pool3 R2 69.87 29,797,240 20,819,332

line-D-pool4 R1 66.85 33,659,651 22,501,477

line-D-pool4 R2 66.97 33,659,651 22,541,868

line-D-pool5 R1 67.48 35,070,033 23,665,258

line-D-pool5 R2 67.9 35,070,033 23,812,552

line-D-pool6 R1 68.67 28,718,638 19,721,089

line-D-pool6 R2 68.63 28,718,638 19,709,601

line-H-pool1 R1 62.96 37,544,375 23,637,939

line-H-pool1 R2 62.96 37,544,375 23,637,939

line-H-pool2 R1 63.36 41,689,807 26,414,662

line-H-pool2 R2 63.48 41,689,807 26,464,689

line-H-pool3 R1 67.61 33,995,323 22,984,238

line-H-pool3 R2 67.93 33,995,323 23,093,023

line-H-pool4 R1 69.24 28,163,624 19,500,493

line-H-pool4 R2 69.07 28,163,624 19,452,615

line-H-pool5 R1 68.04 28,529,313 19,411,345

line-H-pool5 R2 68.35 28,529,313 19,499,785

line-H-pool6 R1 67.02 35,838,276 24,018,813

line-H-pool6 R2 67.39 35,838,276 24,151,414

Table 3.19: Capture 1 duplication estimation table. The value are calculated based on a subset of a
100,000 reads by fastQC
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Line and pool Read Percentage left after deduplication Total number of read Read left after deduplication

Line_B-pool1 R1 45.91 37,088,673 17,027,410

Line_B-pool1 R2 49.49 37,088,673 18,355,184

Line_B-pool2 R1 48.72 33,328,023 16,237,413

Line_B-pool2 R2 51.92 33,328,023 17,303,910

Line_B-pool3 R1 48.89 30,926,098 15,119,769

Line_B-pool3 R2 52.21 30,926,098 16,146,516

Line_B-pool4 R1 44.18 38,377,789 16,955,307

Line_B-pool4 R2 47.59 38,377,789 18,263,990

Line_C-pool1 R1 53.97 36,750,627 19,834,313

Line_C-pool1 R2 57.8 36,750,627 21,241,862

Line_C-pool2 R1 48.1 38,640,236 18,585,954

Line_C-pool2 R2 52.33 38,640,236 20,220,435

Line_C-pool3 R1 48.25 34,670,537 16,728,534

Line_C-pool3 R2 52.15 34,670,537 18,080,685

Line_C-pool4 R1 49.2 36,446,500 17,931,678

Line_C-pool4 R2 52.95 36,446,500 19,298,422

Line_D-pool1 R1 49.2 36,861,068 18,135,645

Line_D-pool1 R2 52.94 36,861,068 19,514,249

Line_D-pool2 R1 44.67 41,942,529 18,735,728

Line_D-pool2 R2 48.3 41,942,529 20,258,242

Line_D-pool3 R1 44.8 37,005,970 16,578,675

Line_D-pool3 R2 48.6 37,005,970 17,984,901

Line_D-pool4 R1 37.93 55,332,382 20,987,572

Line_D-pool4 R2 42.39 55,332,382 23,455,397

Line_D-pool5 R1 47.32 37,128,504 17,569,208

Line_D-pool5 R2 51.5 37,128,504 19,121,180

Line_D-pool6 R1 43.2 36,619,060 15,819,434

Line_D-pool6 R2 47.31 36,619,060 17,324,477

Line_H-pool1 R1 42.38 46,512,548 19,712,018

Line_H-pool1 R2 46.49 46,512,548 21,623,684

Line_H-pool2 R1 51.76 34,168,936 17,685,841

Line_H-pool2 R2 55.47 34,168,936 18,953,509

Line_H-pool3 R1 48.4 34,207,030 16,556,203

Line_H-pool3 R2 52.5 34,207,030 17,958,691

Line_H-pool4 R1 57 28,439,315 16,210,410

Line_H-pool4 R2 60.07 28,439,315 17,083,497

Line_H-pool5 R1 50.37 31,614,374 15,924,160

Line_H-pool5 R2 54.22 31,614,374 17,141,314

Line_H-pool6 R1 48.59 32,291,271 15,690,329

Line_H-pool6 R2 52.33 32,291,271 16,898,022

Table 3.20: Capture 2 duplication table. The value are calculated based on a subset of a 100,000 reads
by fastQC
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Line and pool Read Percentage left after deduplication Total number of read Read left after deduplication

Line_B-pool1 R1 56.33 27,962,269 15,751,146

Line_B-pool1 R2 58.83 27,962,269 16,450,203

Line_B-pool2 R1 48.49 44,772,160 21,710,020

Line_B-pool2 R2 51.85 44,772,160 23,214,365

Line_B-pool3 R1 65.95 18,036,651 11,895,171

Line_B-pool3 R2 68.01 18,036,651 12,266,726

Line_B-pool4 R1 55.51 28,807,126 15,990,836

Line_B-pool4 R2 58.1 28,807,126 16,736,940

Line_C-pool1 R1 50.96 46,729,332 23,813,268

Line_C-pool1 R2 53.81 46,729,332 25,145,054

Line_C-pool2 R1 57.51 30,794,756 17,710,064

Line_C-pool2 R2 60.2 30,794,756 18,538,443

Line_C-pool3 R1 54.62 40,652,587 22,204,443

Line_C-pool3 R2 58.03 40,652,587 23,590,696

Line_C-pool4 R1 57.47 32,840,293 18,873,316

Line_C-pool4 R2 59.8 32,840,293 19,638,495

Line_D-pool1 R1 47.54 44,032,905 20,933,243

Line_D-pool1 R2 50.75 44,032,905 22,346,699

Line_D-pool2 R1 54.4 32,470,490 17,663,947

Line_D-pool2 R2 57.2 32,470,490 18,573,120

Line_D-pool3 R1 57.91 27,554,470 15,956,794

Line_D-pool3 R2 60.5 27,554,470 16,670,454

Line_D-pool4 R1 54.79 29,412,437 16,115,074

Line_D-pool4 R2 57.71 29,412,437 16,973,917

Line_D-pool5 R1 52.94 35,537,215 18,813,402

Line_D-pool5 R2 56.26 35,537,215 19,993,237

Line_D-pool6 R1 57.43 27,636,732 15,871,775

Line_D-pool6 R2 60.56 27,636,732 16,736,805

Line_H-pool1 R1 55.05 37,433,775 20,607,293

Line_H-pool1 R2 57.54 37,433,775 21,539,394

Line_H-pool2 R1 60.11 26,889,319 16,163,170

Line_H-pool2 R2 62.23 26,889,319 16,733,223

Line_H-pool3 R1 56.45 32,527,232 18,361,622

Line_H-pool3 R2 59.19 32,527,232 19,252,869

Line_H-pool4 R1 61.49 24,639,094 15,150,579

Line_H-pool4 R2 63.71 24,639,094 15,697,567

Line_H-pool5 R1 56.72 33,799,712 19,171,197

Line_H-pool5 R2 59.61 33,799,712 20,148,008

Line_H-pool6 R1 57.61 30,023,060 17,296,285

Line_H-pool6 R2 59.78 30,023,060 17,947,785

Table 3.21: Capture 3 duplication table. The value are calculated based on a subset of a 100,000 reads
by fastQC

3.2.2 Capture quality control

Summary metrics for the each capture set after deduplication are displayed in tables 3.22, 3.23, 3.24

for the di�erent pools of sequenced animals in capture sets 1, 2 and 3. The metrics in the table are

fr, ft, enrichment, average coverage, sd coverage and the 25th, 50th, 75th and 100th percentile. fr

represent the fraction of reads mapping to the targetted area (capture set target). For the �rst capture

set the average is 0.5 so around 50% of the reads map to the capture area, it increases to 64% (0.64)

of reads for capture 2 and 66% (0.66) for capture set 3. For �o� the shelf� capture kits, it is expected

to get between 60% to 80% capture e�ciency [183], however our sequence capture is a custom design
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and based on a fragmented genome build as described in section 1.7, the o� target e�ect might be

greater. For a more detailed discussion about this, see section 4.2.4. ft represents the fraction of reads

mapping to the rest of the genome. This is really small, less than one percent for all capture sets but it

is expected due to the capture strategy used. The enrichment value is calculated as the ratio between

fr/ft. The enrichment values are on average 368, 387 and 365 for the pools in capture set 1, 2 and 3

respectively. The next value is the average coverage for the targeted bases in each pool. The average

coverage for the pools for each capture set are 900, 874 and 748 for set 1, 2 and 3. The corresponding

standard deviation averages are 457, 394 and 266. The percentile data can be used to identify any

skew in the data. For all the capture sets the median (50th percentile) is relatively close to the average

coverage. The 100th percentile shows the maximum coverage for the pool and some of the values are

very high compared to the mean (around 10 times more). The �gure suggests that the capture set

performed relatively well, at least half of the reads mapping to targetted region. The coverage of the

the targeted region is very high with at least 748 reads on average covering the targetted region. The

25thpercentile is still relatively high, with an average of 584, 595 and 539, suggesting that the lower

range of the coverage is still high.

Sample Name fr ft enrichment average coverage sd coverage 25% 50% 75% 100%

Line H-pool1-capture1 0.5792 0.0014 429 953 461 629 945 1257 10934

Line H-pool2-capture1 0.5390 0.0014 399 983 494 633 966 1300 10251

Line H-pool3-capture1 0.4785 0.0014 354 715 361 465 699 938 11762

Line H-pool4-capture1 0.4990 0.0014 370 616 305 409 607 804 11237

Line H-pool5-capture1 0.5458 0.0014 404 682 353 440 662 892 9052

Line H-pool6-capture1 0.5134 0.0014 380 803 381 534 799 1057 9734

Line B-pool1-capture1 0.5059 0.0014 375 1511 786 972 1477 1984 21226

Line B-pool2-capture1 0.4722 0.0014 350 1138 609 728 1109 1490 19988

Line B-pool3-capture1 0.4583 0.0014 339 945 478 619 929 1237 20574

Line B-pool4-capture1 0.4790 0.0014 355 1446 717 952 1434 1904 25132

Line C-pool1-capture1 0.4488 0.0014 332 1544 804 993 1517 2035 26313

Line C-pool2-capture1 0.4555 0.0014 337 845 427 546 832 1116 14437

Line C-pool3-capture1 0.4383 0.0014 325 849 436 550 830 1112 14579

Line C-pool4-capture1 0.4615 0.0014 342 1040 511 681 1030 1371 15217

Line D-pool1-capture1 0.5083 0.0014 377 482 249 314 470 630 8623

Line D-pool2-capture1 0.5092 0.0014 377 613 321 397 600 803 10640

Line D-pool3-capture1 0.5452 0.0014 404 711 355 467 699 932 11520

Line D-pool4-capture1 0.5233 0.0014 388 772 405 495 745 1011 13326

Line D-pool5-capture1 0.4513 0.0014 334 694 378 437 667 908 14922

Line D-pool6-capture1 0.5150 0.0014 381 649 311 437 643 848 11001

Table 3.22: Summary of capture statistics for capture set 1 and the di�erent pools for each line. The
statistics reported are fr: fraction of reads covering the target and ft fraction of reads
covering the genome. Enrichiment is the ratio: fr/ft. Coverage metrics are: average cov-
erage: average coverage for the target bases and sd coverage: coverage standard deviation.
The last 4 columns display the 25th, 50th (median) , 75th and 100th percentile for coverage.
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Sample Name fr ft enrichment average coverage sd coverage 25% 50% 75% 100%

Line H-pool1-capture2 0.6665 0.0017 403 1147 603 774 1144 1511 84120

Line H-pool2-capture2 0.6310 0.0017 381 794 365 526 790 1054 6945

Line H-pool3-capture2 0.6287 0.0017 380 795 336 557 795 1027 5605

Line H-pool4-capture2 0.5906 0.0017 357 620 268 432 616 800 11011

Line H-pool5-capture2 0.6380 0.0017 385 746 330 520 740 959 13053

Line H-pool6-capture2 0.6873 0.0017 415 821 394 535 811 1092 19751

Line B-pool1-capture2 0.6643 0.0017 401 909 432 595 898 1210 6319

Line B-pool2-capture2 0.6715 0.0017 406 826 373 558 822 1088 5199

Line B-pool3-capture2 0.6826 0.0017 412 780 343 537 777 1017 4986

Line B-pool4-capture2 0.7065 0.0017 427 1000 474 650 984 1332 6934

Line C-pool1-capture2 0.5488 0.0017 331 742 329 515 745 967 18073

Line C-pool2-capture2 0.5997 0.0017 362 855 379 588 859 1121 10325

Line C-pool3-capture2 0.6308 0.0017 381 807 353 564 808 1043 13608

Line C-pool4-capture2 0.6183 0.0017 373 831 377 557 828 1097 7709

Line D-pool1-capture2 0.6135 0.0017 370 833 357 579 828 1080 4380

Line D-pool2-capture2 0.6414 0.0017 387 991 420 690 988 1291 6173

Line D-pool3-capture2 0.6530 0.0017 394 897 386 622 891 1164 5379

Line D-pool4-capture2 0.6482 0.0017 391 1325 590 912 1304 1705 19930

Line D-pool5-capture2 0.6360 0.0017 384 864 375 598 856 1117 5537

Line D-pool6-capture2 0.6648 0.0017 402 900 403 610 890 1176 13525

Table 3.23: Summary of capture statistic for capture set 2 and the di�erent pools for each line. The
statistics reported are fr: fraction of reads covering the target and ft fraction of reads
covering the genome. Enrichiment is the ratio: fr/ft. Coverage metrics are: average cov-
erage: average coverage for the target bases and sd coverage: coverage standard deviation.
The last 4 columns display the 25th, 50th (median) , 75th and 100th percentile for coverage.

Sample Name fr ft enrichment average coverage sd_coverage 25% 50% 75% 100%

Line H-pool1-capture3 0.6938 0.0019 358 839 486 596 828 1038 12441

Line H-pool2-capture3 0.7297 0.0019 377 636 377 446 626 788 9688

Line H-pool3-capture3 0.7130 0.0019 368 753 438 531 739 934 12048

Line H-pool4-capture3 0.7083 0.0019 366 566 345 405 555 692 9254

Line H-pool5-capture3 0.7004 0.0019 362 766 435 543 749 945 12445

Line H-pool6-capture3 0.7328 0.0019 379 714 380 501 706 893 9312

Line B-pool1-capture3 0.7142 0.0019 369 651 250 474 661 828 3351

Line B-pool2-capture3 0.6974 0.0019 360 1019 381 755 1034 1286 4912

Line B-pool3-capture3 0.7187 0.0019 371 423 159 312 428 535 2135

Line B-pool4-capture3 0.7232 0.0019 374 679 262 491 690 867 3392

Line C-pool1-capture3 0.7161 0.0019 370 1084 433 795 1093 1362 7288

Line C-pool2-capture3 0.7007 0.0019 362 700 285 502 705 889 3987

Line C-pool3-capture3 0.6615 0.0019 342 870 347 629 873 1103 4277

Line C-pool4-capture3 0.7210 0.0019 373 768 306 553 776 976 3978

Line D-pool1-capture3 0.7083 0.0019 366 1018 457 740 1014 1269 9618

Line D-pool2-capture3 0.7088 0.0019 366 751 360 548 750 932 8439

Line D-pool3-capture3 0.7082 0.0019 366 637 293 463 637 794 6568

Line D-pool4-capture3 0.6961 0.0019 360 669 377 480 656 822 9851

Line D-pool5-capture3 0.6907 0.0019 357 797 563 575 780 963 15583

Line D-pool6-capture3 0.6979 0.0019 361 628 375 454 620 769 10076

Table 3.24: Summary of capture statistic for capture set 3 and the di�erent pools for each line. The
statistics reported are fr: fraction of reads covering the target and ft fraction of reads
covering the genome. Enrichiment is the ratio: fr/ft. Coverage metrics are: average cov-
erage: average coverage for the target bases and sd coverage: coverage standard deviation.
The last 4 columns display the 25th, 50th (median) , 75th and 100th percentile for coverage.

Chromosome coverage bar plot for the reads mapped and the targeted regions are represented in

�gures 3.29, 3.30, 3.31 for one sample (line B pool1) for the 3 capture sets. The same plot for the
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other samples are provided in supplementary data. The plots show the fraction of total reads mapping

to each chromosome and the fraction of reads mapping to the targetted region for each chromosome.

The fraction of reads on target and reads mapped to chromosome are not always the same but are

closely correlated. Some chromosomes have reads mapping to them while there are no targetted reads

on them, suggesting some o� target e�ects. There are also reads mapping to regions that were not on

the capture list. This is expected given the fraction of reads on target shown in the summary tables,

depending on the capture set a large fraction of reads might be o� target, see section 4.2.4 for the

discussion about capture sets.

Figure 3.26: Capture 1 chromosome bar plot for line B pool . The green bars represent the reads
fraction mapped to each chromosome and in yellow are the read fraction mapped to
targetted regions.
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Figure 3.27: Capture 2 chromosome bar plot for line B pool1. The green bars represent the fraction of
reads mapped and in yellow are the fraction of targetted regions.
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Figure 3.28: Capture 3 chromosome bar plot for line B pool1, The green bars represent the reads
mapped and in yellow are the targetted regions.

Coverage distributions for reads on target for pool 1, line B are shown in �gures 3.29,3.30,3.31 for

capture set 1, 2 and 3. For the other pools and lines the plots are in supplemental material. The

threshold for good coverage was set at 20x (20 bases depth for a given location). All of the capture

sets achieve this for a large fraction of the target base coverage. Coverage was generally very high as

seen in tables 3.22, 3.23 and 3.24. Capture set 1 had the highest coverage of all of the capture sets

and capture set 3 the lowest. According to �gure 3.29, capture 1 had more than 50% of target based

covered at more than 1500x, only a very small fraction of the regions, around one percent, are covered

at less than 20X. The highest coverage for a fraction of the regions reached more than 3500X. For

capture set 2, 50% or more of the target regions were covered by at least 500X, again only a small

fraction of the regions, around one percent, was covered by less than 20X. The highest coverage was

above 2000X. Finally for capture 3 the coverage was not as deep but remained very high. Half of

the targetted regions are covered by more than 600X, while the upper end of the coverage is lower

compared to the other two capture sets, it reached 1300x. At the lower end of the coverage, a slightly

larger proportion of the target regions were covered with less than 20X, but it remains a very small

proportion, around two to three percent.
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Figure 3.29: Coverage distribution for capture 1 line B pool1. The blue histogram shows the distri-
bution of coverage, the y-axis for this being on the left side. The yellow line shows the
coverage relative to the cumulative fraction of target bases, the y axis being on the right
side. The dotted line shows the target 20x coverage.

Figure 3.30: Coverage distribution for capture 2 line B pool1. The blue histogram shows the distri-
bution of coverage, the y-axis for this being on the left side. The yellow line shows the
coverage relative to the cumulative fraction of target bases, the y axis being on the right
side. The dotted line shows the target 20x coverage.
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Figure 3.31: Coverage distribution for capture 3 line B pool 1. The blue histogram shows the distri-
bution of coverage, the y-axis for this being on the left side. The yellow line shows the
coverage relative to the cumulative fraction of target bases, the y axis being on the right
side. The dotted line shows the target 20x coverage.

Normalised coverage plots for pool 1 line B are shown for all capture sets on �gures 3.32, 3.33 and

3.34. The normalised coverage is calculated by taking the per base coverage and dividing it by the

average coverage for all targetted bases. As it is not dependent on the number of reads, it makes it

easier to compare data between samples. The graphs show that the coverage is uniform and behaves

similarly for all the capture sets. More than 80 percent of the data is covered by at least half of the

average coverage value for all of the capture sets.
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Figure 3.32: Normalised coverage plot for capture set 1, pool 1 line B.The y axis represents the fraction
of target base covered and the x axis the normalised coverage. The normalised coverage is
calculated by dividing the coverage of a given base by the average coverage of the whole
sample. At 0.5 the fraction of bases covered will be covered by at least half of the average
while at 1 it will be covered by at least the average.
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Figure 3.33: Normalised coverage plot for capture set 2, pool1 line B. The y axis represents the fraction
of target base covered and the x axis the normalised coverage. The normalised coverage is
calculated by dividing the coverage of a given base by the average coverage of the whole
sample. At 0.5 the fraction of bases covered will be covered by at least half of the average
while at 1 it will be covered by at least the average.
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Figure 3.34: Normalised coverage plot for capture set 3, pool1 line B. The y axis represents the fraction
of target base covered and the x axis the normalised coverage. The normalised coverage is
calculated by dividing the coverage of a given base by the average coverage of the whole
sample. At 0.5 the fraction of bases covered will be covered by at least half of the average
while at 1 it will be covered by at least the average.

3.3 Mapped reads processing and variants analysis.

The GATK part of the analysis pipeline produced variants �les for each sequencing pool that was

processed. The GATK pipeline is described in details in section 2.10.

3.3.1 Quality score recalibration

The graph below shows the results of applying the quality score recalibration on pool1 of line B for

capture 1: the other �les for the other capture sets are available in supplementary data. The accuracy

plot shows the di�erence between the empirical value and the reported quality score, negative values

meaning that the the reported score is higher than the empirical one. Figure 3.35 shows that the

quality score before correction is higher than the one after correction.. In �gure 3.36 almost all of the

graphs show that the quality score before recalibration was higher than the one after recalibration.

The spread of the scores was also smaller before adjustment. Only when looking at the mean quality
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score can we see that in some contexts the quality score before recalibration was lower.

Figure 3.35: Quality score before and after recalibration. Each column of the graph represent a poten-
tial deviation from the reference sequence. In order: base substitution, base insertion and
base deletion. The �rst row displays the graph for the empirical score (calculated using
machine learning) against reported quality score. The second row displays the quality
score accuracy according to the cycle of the reads, the positive values on the X axis being
the �rst read and the negative values being the second read. The Y axis represents the
accuracy score calculated by subtracting the reported (observed) quality score from the
empirical score, a negative value representing over con�dent quality score. The last row
display the quality score accuracy according to the context covariate which are the 3 bases
before it. All of the of the data suggest that the reported quality score is higher than it
should be.
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Figure 3.36: Quality scores before and after recalibration. Each column relates to a particular event,
in order: base substitution, base insertion and base deletion. The �rst row shows the
distribution of the quality score before and after recalibration. The second row, the mean
quality score before and after in relation to the read cycle, positive values on the X axis
representing the �rst read, negative values the second read. The third row shows the mean
quality score in relation to the 3 bases preceding the base of interest.

3.3.2 Variant calling

The number of variants called for each capture set and each pool before and after �ltering is given in

table 3.25. The numbers in this table were computed after the variant discovery was completed.

Table 3.27 contains the number of variants after grouping per category as described in the material

and methods, see section 2.9.1. The numbers are calculated from the updated table with variant

remapped to build 11 of the genome, see section 2.11.3 for more details about updating the coordinates

to build 11. A unique variant corresponds to a variant with a unique position in the genome: variants

sharing the same location are removed from the counting.

Figures 3.37, show the density distribution of the di�erence in allele frequencies between the control

pools and between the control pools and infanticide pools. The �gure (a) displays the di�erence in

allele frequencies between the control for each capture set, grouping all the variants from all the lines.

The �gure (b) plots the di�erence in allele frequencies for each of the capture sets and each category

within that set. For both �gures the vertical lines show mean plus 3 standard deviations, for each

capture set for the �rst �gure and for each capture set and category for the second one.

Figures 3.38, 3.39, 3.40, 3.41, 3.42 and 3.43 display the histogram of the repartition of the di�erence

in allele frequency between the control pool for each capture set and each line.
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Table 3.26 shows the results of a mock selection of the variant based on the control pools.

Tables 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36 show the percentage of selected variants

using the �ltering criteria to identify variants with di�erence in allele frequencies between control and

infanticide pools. The percentage is calculated after the variant coordinates have been updated to the

version 11 of the genome. The numbers are similar for the same category between the capture sets.

All the variant �les used to generate these graphs and tables are available in the supplementary

material attached to this thesis.

Figure 3.38: Histogram of within control pools allele frequency di�erence for line B and C capture set
one. X axis displays the di�erence in allele frequency between the control pools. Y axis:
�count� refer to the number of SNPs.
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3 Results

Figure 3.39: Histogram of within control pools allele frequency di�erence for line D and H capture set
one. X axis displays the di�erence in allele frequency between the control pools. Y axis:
�count� refer to the number of SNPs.
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3 Results

Figure 3.40: Histogram of within control pools allele frequency di�erence for line B and C capture set
2. X axis displays the di�erence in allele frequency between the control pools. Y axis:
�count� refer to the number of SNPs.
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3 Results

Figure 3.41: Histogram of within control pools allele frequency di�erence for line D and H capture set
2. X axis displays the di�erence in allele frequency between the control pools. Y axis:
�count� refers to the number of SNPs.

129



3 Results

Figure 3.42: Histogram of within control pools allele frequency di�erence for line B and C capture set
3. X axis displays the di�erence in allele frequency between the control pools. Y axis:
�count� refer to the number of SNPs.
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3 Results

Figure 3.43: Histogram of within control pools allele frequency di�erence for line D and H capture set
3. X axis displays the di�erence in allele frequency between the control pools. Y axis:
�count� refer to the number of SNPs.
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3 Results

Capture set Total unique variants
Selected Percentage

(mean + 3sd) selected from total

Capture 1 30660 867 2.8%

Capture 2 26231 828 3.1%

Capture 3 48441 1932 4%

Table 3.26: Results of the mock selection of the variants on the control pools for each capture set. The
total number of variant can include variant duplicates found in several lines. Selection is
done using the mean of the allele di�erence for all the line in the capture set and adding 3
standard deviation of the allele di�erence.

Pools Unique variants
Threshold

Number of target SNPs Percentage of total
Mean + 3 sd

Capture set 1 category A 27714 0.2617 1067 3.8

Capture set 1 category B 28738 0.3692 1041 3.6

Capture set 1 category C 28046 0.3455 1175 5

Capture set 2 category A 22872 0.2773 782 3.4

Capture set 2 category B 23343 0.3564 966 4.1

Capture set 2 category C 23172 0.3760 1511 6.5

Capture set 3 category A 42855 0.2645 1307 3

Capture set 3 category B 44175 0.3878 1894 4.3

Capture set 3 category C 43327 0.3576 2068 4.7

Table 3.27: Variants after grouping into categories and target identi�ed for each category.

Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 1049 0 0

3 13771 160 1.16

4 2828 171 6.05

6 416 19 4.57

10 149 5 3.36

12 2482 198 7.98

13 894 4 0.45

14 890 246 27.64

15 1648 105 6.37

18 1617 58 3.59

Table 3.28: Target capture overlap summary, Capture set 1 category A. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variant in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 1087 1 0.09

3 15496 423 2.73

4 2981 284 9.53

6 467 2 0.43

10 149 0 0

12 2911 96 3.3

13 958 3 0.31

14 899 69 7.68

15 1710 49 2.87

18 1630 15 0.92

Table 3.29: Target capture overlap summary, Capture set 1 category B. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variant on the chromosome.

Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 1062 0 0

3 14239 334 2.35

4 2939 49 1.67

6 431 236 54.76

10 148 1 0.68

12 2824 20 0.71

13 952 311 32.67

14 920 153 16.63

15 1679 49 2.92

18 1631 8 0.49

Table 3.30: Target capture overlap summary, Capture set 1 category C. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 5203 11 0.21

2 1079 4 0.37

3 769 0 0

4 1645 0 0

5 1244 6 0.48

6 1050 0 0

7 3553 69 1.94

8 465 57 12.26

9 1554 1 0.06

10 912 18 1.97

11 1121 28 2.5

12 792 16 2.02

13 3364 44 1.31

14 3128 9 0.29

15 1661 2 0.12

16 1141 74 6.49

17 42 0 0

18 1049 6 0.57

Table 3.31: Target capture overlap summary, Capture set 2 category A. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 3706 280 7.56

2 1164 6 0.52

3 821 113 13.76

4 860 1 0.12

5 1349 63 4.67

6 888 7 0.79

7 3975 15 0.38

8 474 4 0.84

9 13 0 0

10 969 69 7.12

11 1505 6 0.4

12 638 50 7.84

13 2483 170 6.85

14 2060 65 3.16

15 676 40 5.92

16 502 3 0.6

17 54 1 1.85

18 953 1 0.1

Table 3.32: Target capture overlap summary, Capture set 2 category B. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 3679 126 3.42

2 1160 0 0

3 818 2 0.24

4 863 0 0

5 1391 3 0.22

6 884 139 15.72

7 3870 80 2.07

8 475 22 4.63

9 12 1 8.33

10 964 51 5.29

11 1529 645 42.18

12 658 43 6.53

13 2405 300 12.47

14 1962 4 0.2

15 631 23 3.65

16 490 11 2.24

17 48 0 0

18 925 16 1.73

Table 3.33: Target capture overlap summary, Capture set 2 category C. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 4285 63 1.47

2 3851 221 5.74

3 3538 46 1.3

4 2809 156 5.55

5 1304 2 0.15

6 987 18 1.82

7 202 0 0

8 2783 121 4.35

9 5298 68 1.28

10 1763 168 9.53

11 804 59 7.34

12 908 27 2.97

13 2751 40 1.45

14 2220 5 0.23

15 2081 8 0.38

16 1327 98 7.39

17 911 53 5.82

18 1991 72 3.62

Table 3.34: Target capture overlap summary, Capture set 3 category A. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 4495 212 4.72

2 4003 165 4.12

3 3906 32 0.82

4 3057 488 15.96

5 1403 34 2.42

6 1041 1 0.1

7 219 0 0

8 2847 51 1.79

9 6325 222 3.51

10 1833 151 8.24

11 832 4 0.48

12 1063 2 0.19

13 2873 190 6.61

14 2415 9 0.37

15 2322 10 0.43

16 1419 56 3.95

17 1123 34 3.03

18 2122 157 7.4

Table 3.35: Target capture overlap summary, Capture set 3 category B. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.
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Target chromosome
Overlap capture set Overlap capture set Percentage overlap

and variants selected variant target to all variants

1 4319 41 0.95

2 4036 356 8.82

3 3697 209 5.65

4 2807 1 0.04

5 1193 0 0

6 988 4 0.4

7 200 0 0

8 2584 0 0

9 4944 2 0.04

10 1801 734 40.76

11 825 5 0.61

12 957 58 6.06

13 2857 157 5.5

14 2346 198 8.44

15 2153 13 0.6

16 1416 29 2.05

17 954 20 2.1

18 2128 129 6.06

Table 3.36: Target capture overlap summary, Capture set 3 category C. For each chromosome the
table shows: the number of variants identi�ed within the capture intervals, the number of
selected variants in the capture intervals, and lastly the percentage of selected variants to
all variants on the chromosome.

3.3.3 SNP of interest

Tables 3.37 and 3.38 display the SNPs identi�ed using the variable threshold that were identi�ed as

missense according to the SIFT prediction. The large majority of this SNP are found on line B and

C, the two dam lines. The number of SNP identi�ed in each capture set goes from 8 for capture set

1 to 12 and 15 for capture set 2 and 3 respectively. Two SNPs (rs332900783 and rs 81209170) were

found in common between two capture sets, capture set 2 and three for category A. The highest allele

frequency di�erent between the pools for these SNPs is 58.7% and the lowest 26.6%. To assess the

potential impact of the SNPs, they were checked using a manual approach (see section 2.11.4).

3.3.4 Capture set 1 examples of regions of interest.

The region of interest were selected for capture set 1 as region with a large number of SNPs present

and covering gene or region of interest. Figures 3.44 and 3.45 show two examples of regions of interest

selected for capture set 1 category B and C. The rest of the selected region are discussed in section

4.3.6 and the genomic plots provided in supplementary material.
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3 Results

3.3.5 Capture 2 examples of regions of interest.

Region of interests for capture set 2 were selected in a similar fashion as for capture set 1. Figures 3.46

and 3.47 show two examples of regions of interest selected for capture set 2 category B and C. The rest

of the selected region are discussed in section 4.3.6 and the genomic plots provided in supplementary

material.

3.3.6 Capture set 3 regions of interest

Region of interests for capture set 3 were selected in a similar fashion as for capture set 1. Figures 3.48

and 3.49 show two examples of regions of interest selected for capture set 3 category B and C. The rest

of the selected region are discussed in section 4.3.6 and the genomic plots provided in supplementary

material.
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4 Discussion

The discussion focuses on the results of the di�erent approaches that were used for this study. The �rst

part of the discussion investigates the genotyping results from the two tests, Family Based Association

Test (FBAT) and Parent of Origin (PoO), for potential targets of interest linked to the phenotype of

maternal infanticide. The second part of the discussion focuses on the sequence capture sets designed

using the genotyping results. The approach used to get the variants and annotate them is scrutinised

and the regions of interest identi�ed are investigated for biological functions potentially linked to the

phenotype of interest.

4.1 Genotyping study

4.1.1 Genes of interest from the FBAT approach

In order to interpret the results of the FBAT analysis, SNPs showing signi�cance in several lines were

investigated for genes of interest in their vicinity. To investigate the function of the gene related to the

SNP, various resources were used. First, the SNPs was called up in Ensembl [152] [184] to see if it was

within a gene of interest or close to one. If no genes were found or genes of unknown functions were

present, the genomic comparison tool available was used to investigate whether there was a known

gene at the corresponding location in the human or mouse genome. If so, it is likely that the region

in the pig covers the same gene. Once the gene was identi�ed, the gene symbol was used to query

gene cards [177, 178] and the NCBI gene database [185] in order to learn more about its function. The

most interesting regions are summarised in table 4.1. Note that all SNPs that were above our �ltering

threshold (see section 3.1.5), were used to design the sequence capture panel.

Some of the SNPs identi�ed by the FBAT test did reach genome wide signi�cance and are in regions

with genes linked to brain function. Some of these SNPs reach genome wide signi�cance in several

lines, such as SNPs on chromosome 2, 3, 10 and 18.

On chromosome 2, one SNP, rs81329722, reached genome wide signi�cance in all the lines. It is an

intron variant of the gene NAV2 (neuron navigator 2). This gene plays a role in cellular growth and mi-

gration. It is also expressed in the brain in human and mouse, has been linked to age onset Alzheimer's

disease in human [186], cranial nerve development in mouse [187] and in the cerebellar development

and neurological disease called ataxia [188]. Ataxia is characterised by a lack of coordination in muscle
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movement.

The SNP on chromosome 3, rs80784123, reached genome wide signi�cance on both lines D and H.

It is intronic to the gene TTL which stands for tubulin tyrosine ligase. It is expressed in the brain

in both human and mouse and has been linked to several psychological disorders in human, such as

conduct disorder, suicide and alcohol dependency [189].

On chromosome 10, the SNP of interest, rs81325586, reached genome wide signi�cance in all lines.

It is an intronic SNP located in the PARP1 gene. This gene codes for a chromatin associated enzyme

which modi�es nuclear protein by poly-ADP-ribosylation. It is involved in cell proliferation, cell

di�erentiation and the repair of damaged DNA. It is expressed in the brain of the human and mouse.

Interestingly in the mouse it has been linked to neuron healing [190], long term memory [191]. It is

also involved in human in neurodegeneration, Alzheimer's and Parkinson's diseases [192, 193]. This

gene has a key role in the function of neurons and their health.

The last two SNPs to reach genome wide signi�cance in all of the lines are located on chromosome

18, rs81266760 and rs81308090. The �rst SNP is not located in a gene but is downstream of SEPT7,

septin 7. There is not a clear function for the protein produced but it contains a GTP binding motif. It

is expressed in the brain in both human and mouse. This gene has been linked to the CDC42 signalling

pathway which is involved in the pathology of schizophrenia and Alzheimer's disease. [194, 195]. The

second SNP to reach genome wide signi�cance on chromosome 18 is located in an intron of the gene

BMPER, which stands for BMP binding endothelial regulator. Again the gene is expressed in the brain

in mouse and human. A GWAS in human has linked this gene to Alzheimer's disease [196].

Two other chromosomes have results linked to interesting genes, chromosomes 1 and 15. Although

the SNPs did not reach genome wide signi�cance, they passed our �ltering threshold in more than one

line.

For chromosome 1, two SNPs are signi�cant in two lines, lines D and H. The �rst SNP, rs80904152,

is an intronic variant in the gene TRPM3 which is expressed in the brain in human and mouse. The

protein produced by this gene is a transient receptor potential channel which is cation-selective and

functions to mediate calcium entry into the cells. Interestingly it is regulated by progesterone [197],

which might indicate a role in pregnancy and potentially during labour and birth. As discussed in the

previous studies section 1.4.2, progesterone blockade during late pregnancy leads to abhorrent maternal

behaviours, including infanticide [58]. Furthermore, increases in levels of progesterone and oestrogen

have been linked to increased levels of aggression in the pig [9]. The second SNP, rs319558321, is also

signi�cant for both lines D and H: it reaches genome wide signi�cance for line H. This SNP is in the

TTLL11 gene (tubulin tyrosine ligase like 11). It is expressed in the brain and codes for an enzyme.

Variants in this gene have been reported to in�uence intelligence and cognition [198, 199].

On chromosome 15, the SNP of interest, rs81278062, is an upstream variant near the gene LRP1B

and passes our threshold for lines D and H. It codes for a low density lypoprotein receptor, which
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is expressed in the brain in human and mouse. This gene has been shown to be associated with

Alzheimer's disease in Caribbean Hispanic individuals [200] and is also involved in cognitive decline in

ageing [201].

Interestingly most of the SNPs that are found in only two lines are found in lines D and H, the lines

that have the highest incidence of infanticide of the four studied.

Unfortunately none of the variants listed has any coding consequence on the gene in which they are

located in or close to. While this is disappointing, it is important to keep in mind that the genome

annotation of the pig is not as good as the human and mouse. These annotations are the results

of an automated annotation pipeline (see section 1.7 and 4.2.5). Often the pig genome has an un-

characterised gene at a SNP location, but when comparing the region with the human and mouse

genome, it becomes clear what that gene might be. As long as the pig genome is not well curated

it will be di�cult to assess the impact variants will have on it. It can be expected that the SNP

consequences might also be inaccurately predicted due to the state of the gene annotations on the pig

genome. Furthermore, the selection of SNPs for the construction of the array was not done to select

SNPs that are in genes but markers that will help type LD blocks, also called �tag� SNPs. As such

it is expected that a lot of markers will not map in genes. The sequence capture set was designed to

target gene regions close to our candidate SNPs.

Finally, caution is required when drawing conclusions from this set of results as our threshold for

selection is below the accepted genome wide signi�cance. Despite this, there is a subset of SNPs

reaching genome wide signi�cance in several lines, and some of these genes have interesting functions

and have been associated with pathology in the brain. This results were investigated further using

another technology, sequence capture. The selection of the regions and the sequencing process is

detailed in sections 2.8, 2.9.1 and 2.10.

4.1.2 Parent of origin genes and region of interest

The annotation method for these results is the same as used for the FBAT results (see section 4.1.1).

A summary of some of the SNPs and regions of interest is given in table 4.2. Some of the SNPs

are common to the ones found in the FBAT analysis, including those that reached genome wide

signi�cance in the FBAT study. The SNP on chromosome 3, intronic to the gene TTL reached genome

wide signi�cance for the FBAT test. For the PO test, it was found to pass our threshold on the

same tow lines: D and H. As discussed in section 4.1.1, this gene is involved in several psychological

pathologies such as conduct disorder, suicide and alcohol dependency [189]. Two more SNPs also

reached genome wide signi�cance in the FBAT analysis and passed our threshold in the PO analysis.

They map to chromosome 7 and chromosome 18. The �rst SNP, rs80949107, is an intergenic variant

located downstream of the NRN1 gene (neuritin 1). It encodes a member of the neuritin family which

is expressed in di�erentiating neurons during the development of the central nervous system. It is
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expressed in the brain in human and mouse. GWAS studies have identi�ed various variants in this

gene relating to schizophrenia, cognitive function [202, 203] and bipolar disorder [204]. The second

SNP on chromosome 18, rs81233198, is also intergenic. It is located upstream of the gene PTPRZ1,

which is exclusively expressed in the brain and encodes a member of the receptor protein tyrosine

phosphatase family. It might be involved in the regulation of speci�c developmental processes in the

central nervous system. Interestingly this gene has been linked to schizophrenia in human [205].

Some other SNPs are in common with the FBAT results but did not reach genome wide signi�cance.

There is one SNP, rs80904152, in common on chromosome 1 and mapping in the gene TRPM3. Another

SNP, rs343881480, is in the same region and passed our threshold, but was not signi�cant in the FBAT

analysis. This SNP is intergenic according to its position in the pig genome but comparisons with

the human and mouse genomes put it in the TRPM3 gene, as well. As discussed before (see section

4.1.1), TRPM3 is not well characterised but it is regulated by progesterone which means it could be

involved in pregnancy and birth [197] and progesterone levels and has been linked to infanticide [58]

and aggression in the pig [9]. Another SNP that is signi�cant in the FBAT results and passed our

threshold for the PO, rs81278062, is located on chromosome 15 and in the LRP1B gene. As discussed

in the section about the FBAT results (4.1.1), this gene has been shown to be linked to Alzheimer

Disease and cognitive decline in ageing [200, 201].

Other SNPs are speci�c to the PO analysis and map onto or are close to interesting genes. Two

SNPs on chromosome 3, rs81373475 and rs81374014, are very close to each other and are intron variants

of the gene AUTS2. This gene has been linked to neurodevelopment and is expressed in the brain in

human and mouse. It has been linked by association to schizophrenia [206], and exonic deletions in this

gene resulted in developmental delay and intellectual disability in Chinese patients [207]. In the mouse,

it has correlated with impaired emotional control and cognitive memory [208], and has been shown to

be expressed in regions of the brain involved in autism [209]. Another interesting SNP, rs81334603, is

found on chromosome 6 also passed our threshold for the FBAT analysis, but did not reach genome

wide signi�cance. It is an intergenic variant close to the KCNQ4 gene, which encodes for a potassium

channel which plays a critical role in neuronal excitability. It is expressed in the brain in human and

mouse and has been linked to depression like behaviour in mice [210]. A �nal SNP, rs80833324, is

returned in both the FBAT and PO analyses is located on chromosome 7 and is an upstream variant

of the gene PLEKHG3. This gene is not well characterised but it is expressed in the brain in both

human and mouse, it also a candidate gene for autism risk [211]. Two other interesting SNPs that

passed the threshold only for the PO analysis are found on chromosome 16 and are relatively close

to each other, rs81461904 and rs81306856. The �rst one is an intron variant of the MFAP3 gene,

which is expressed in the brain but very little is known about its function. The second SNP is also an

intron variant but of the gene GRIA1, which encodes for a glutamate receptor. These receptors are

the predominant excitatory neurotransmitter receptors in the mammalian brain. It is expressed in the
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brain for both human and mouse. Several studies have linked this gene to depression and schizophrenia.

One study in a Korean population [212] has found that this gene was associated with a susceptibility to

schizophrenia. Another study [213] looked at the linkage of this gene in families with patients su�ering

from bipolar disorder. Several SNPs were linked in these families to GRA1 suggesting a potential

in�uence of this gene on the disease.

Overall the PO analysis did con�rm �ve of our candidates discovered with the FBAT analysis. Six

other interesting SNPs were also identi�ed, which is not surprising given that the analysis method is

di�erent from the FBAT approach. However given the relatively lax threshold, these results need to be

con�rmed. This will be done by sequencing of the region of interest using sequence capture as detailed

in sections 2.8, 2.9.1 and 2.10.

SNP id CHR SSC10 Map Coordinate T.U_MAT CHISQ_MAT P_MAT line SNP type Gene

rs80904152 1 250,323,029 00:22 22 2.73E-06 H Intron variant TRPM3

rs343881480 1 250,635,066 00:11 11 0.0009111 B Intergenic variant TRPM3

rs81373475 3 14,134,797 10:00 10 0.001565 H Intron variant AUTS2

rs81374014 3 14,332,984 11:00 11 0.0009111 C Intron variant AUTS2

rs80784123 3 45,593,990 1.5:23.5 19.36 1.08E-05 D Intron variant TTL

rs80784123 3 45,593,990 03:24 16.33 5.31E-05 H Intron variant TTL

rs81334603 6 157,353,343 00:21 21 4.59E-06 H Intergenic variant KCQN4

rs80949107 7 3,813,663 1.5:12.5 10.08 0.001496 D Intergenic variant NRN1

rs80833324 7 95,143,760 3.5:31.5 22.4 2.21E-06 H Upstream gene variant PLEKHG3

rs81278062 15 11,904,651 00:16 16 6.33E-05 D Upstream gene variant LRP1B

rs81278062 15 11,904,651 02:26 20.57 5.75E-06 H Upstream gene variant LRP1B

rs81461904 16 75,024,639 15:02 9.941 0.001616 D Intron variant MFAP3

rs81306856 16 75,201,733 1.5:13.5 9.6 0.001946 H Intron variant GRIA1

rs81233198 18 26,878,437 00:11 11 0.0009111 D Intergenic variant PTPRZ1

Table 4.2: Parent of origin regions of interest. CHR is the pig chromosome for the SNP, T.U_MAT
is transmitted over untransmitted allele, CHISQ_MAT is the Chi squared score for the
transmission of this allele and P_MAT is the associated p-value.

4.2 Sequence capture data

In this section, the quality and quantity of the sequencing data generated will be scrutinized and

discussed. The e�ciency of the capture set will be assessed and the latest release of the pig genome

will be discussed within the context of this study.

4.2.1 Selection of the animals

The animal selection proved to be challenging for several reasons. First, the large number of animals

available for selection in each line meant that manual selection using the information from the pedigree

�les would be very long and di�cult. The initial approach was to write a script in order to select

families with certain criteria but the lack of visualisation proved problematic. It was di�cult to see the

relationship between animals due to the complexity of some of the pedigrees. What was needed was a

way of plotting the various pedigrees. Most pedigree software are relatively simple and will not allow

plotting of more than a single parameter linked to individual family members. Another problem was

154



4 Discussion

due to the fact that some sires were shared between families, which posed di�culties for some of the

software packages. After some research Madeline 2.0 [173] was identi�ed as it could plot the families in

the way needed. It allowed plotting of several parameters for each animal. Once plotted, each family

had to be curated manually for individuals matching our selection criteria, see section 2.9.1. This was

a lengthy process but made easier as all the information was present on the pedigree plots.

4.2.2 Read quality and pre-mapping trimming

For all three capture sets the quality of the reads is very high (�gure 3.18), most reads having an

average quality score above Q30 on both sequenced reads. The quality for read two can often be lower

than the read quality for read one, but for this data set it is very similar: read two quality is slightly

lower but the di�erence is marginal (see �gure 3.19). Furthermore the sequencing length does not

appear to have an impact on the read quality. Despite using a longer sequencing length of 100 base

pairs (bp), compared to the standard 75bp, the extra 25bp do not have a large impact on the data

quality.

An usual, pre-processing, the step prior to read mapping is to perform read trimming, which removes

any remaining adapter sequences and will trim low quality bases from the ends of the reads. This step

is usually necessary to avoid adapter sequences interfering with the mapping, or low quality bases

compromising the mapping of the reads to the reference genome. The biggest impact of non trimmed

reads is on the mapping e�ciency which tends to drop due to the presence of adapter sequences

and/or low quality bases in the read. However there is also a risk of trimming bases that are partially

matching the adapters. By default most trimming software will remove a single matching base from

the end of the read. Therefore a potential loss of information is possible. Quality trimming can be

bene�cial for the mapping, especially when the quality score drops towards the end the read, which

can cause mismatches when erroneous bases are called. Our data is of very good quality, only a small

proportion of reads have their quality score dropping below Q20 towards the end of the reads, and this

holds for both read 1 and read 2 (See �gure 3.19). The small drop in quality is not high enough to

justify trimming. This avoids the removal of accurate bases that have been called with a lower quality

score. Given the depth of reads obtained and the relatively small regions targetted, the coverage (see

section 4.2.4) is high enough to compensate for the slight drop in quality towards the end of the reads.

Furthermore, low quality score alignments are assessed when variants are called. Poor quality mapping

should not result in miss-called variants in the set. Another potential issue caused by low quality bases

is a drop in read complexity which might result in reads mapping to multiple locations in the genome.

Read complexity represents the diversity of the bases making up the read, a longer read being more

diverse than a smaller one. By trimming the low quality bases, a read can become small enough to

map to multiple sites in the genome. Erroneous base calls can have a similar e�ect depending on the

mapping quality. The read length (also called sequencing length) of 100bp should help alleviate some
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of these issues as the reads will be inherently more complex than 75bp reads. Therefore it should be

easier to avoid the multiple mapping issue. Finally, the user guide for picard tools, which is used to

prepare the aligned reads for GATK, advises not to trim reads because low quality bases are useful to

the base quality score recalibration. It was decided to skip the trimming step prior to the mapping of

the read on the reference genome for this project.

4.2.3 Sequence mapping

The mapping of the read sequences to the reference genome was the longest computing step of the

whole analysis, a total of 60 pools needed to be mapped using a single node. It took several weeks to

map all the samples as only three or four samples (pools) could be mapped in parallel.

4.2.3.1 Mapping e�ciency

The mapping e�ciency is high. For reads passing the Illumina �lter (also known as a chastity �lter),

we have a 97 to 98% average of aligned reads. The chastity of a cluster is de�ned by the ratio between

the brightest base and the sum of the brightest and the second brightest bases intensity. Clusters pass

the �lter if this ratio is not below 0.6 for more than 1 base during the �rst 25 cycles [214]. Reads

(clusters) removed by this �lter are usually ambiguous. This might be caused by two clusters merging

together, and therefore emitting mixed signals as two fragments or more are sequenced at the same

time. Overall the percentage of reads aligned is higher than we would have obtained from a whole

genome approach, for which the mapping e�ciency is typically around 70 to 80% [215]. The e�ciency

for whole genome mapping is lower because more ambiguous reads are present: regions with repeats

or low complexity regions result in reads being discarded because they map at several locations. Due

to the short size of reads it is not possible to resolve their placement within repeated regions. Whole

genome mapping uses a masked genome to avoid regions with repeat sequences. Therefore, reads from

these regions will be ignored and fall into the category of �unmapped� reads. If the unmasked genome

is used, the reads originating from repeat regions will map to several locations in the genome, or if

the repeat structure is unknown, stack in a speci�c location. In either case, the reads cannot be used.

In the former case the reads are discarded, in the later case the majority of them will be �ltered out

during deduplication. One of the bene�ts of using sequence capture is its selective nature and the way

the capture sets are designed (repeats are usually masked for the design). The sequences captured are

usually speci�c to the regions they target and therefore result in a better mapping e�ciency.

4.2.3.2 Read numbers

Another important aspect is the number of reads obtained which will impact on the depth of coverage

of the target regions. The number of reads obtained for each of the pools and each of the capture

sets is high and should result in high coverage given the size of the regions targetted. The minimum
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number of reads passing the �lter and were mapped for all capture sets and all pools is for capture set

3, line D, pool 3 with 35.7 million reads. The highest number of reads mapped is for capture 1, line

C pool 1 with 152.6 million reads. The average number of mapped reads is 81.6 million for capture

set 1, 72.4 million for capture set 2 and 64 million for capture set 3. The range of values for the

number of mapped reads is large, from 35 million to 152 million, and correlate with the number of raw

reads. This repartition is the consequence of the pooling of the libraries. Each of the sample (pool)

libraries was prepared individually and pooled together before sequencing. To get a good balance of

the individual libraries in the �nal pool, each library needs to be accurately quanti�ed. Unfortunately

most methods have a degree of uncertainty, therefore the pool of libraries is never perfectly balanced.

If several sequencing runs of the same library are planned, the pooling can be adjusted between the

runs, but this was not the case for our set of libraries. A lower number of reads mapped will result

in a lower coverage of the regions targetted. However despite some of the pools having signi�cantly

fewer reads mapped, the coverage remains high because the regions targetted are small in relation to

the number of bases covering them (see discussion in section 4.2.4).

4.2.3.3 Duplication levels

Duplication can be a problem when calling variants as it leads to biases in allele representation or

the calling of erroneous variants. If a read with a replication error from a PCR duplication gets

over-represented during the sequencing and this is not addressed, it could pass as a genuine variant.

Duplicate reads can also bias the allele frequency estimation, so it is necessary to remove them. Du-

plicate reads are reads for which the starting mapping coordinates are identical, therefore they are

believed to come from the same library fragment. The duplication levels in our data set are large:

between 30% to 60% of reads are duplicate reads. This amounts to a large loss of information and

could be problematic. However these high levels of duplication are caused by two combined factors.

The �rst one is that the capture targets only cover a very small part of the genome: the combined

size of the sequences captured for each capture set is quite small, between 7.5MB and 13MB. The

second factor is that the number of reads obtained for each pool is large, as discussed in the previous

section. Combining these two factors, it is expected that a large number of reads will be covering the

same fragment several times. However, it is still expected that a high coverage will be achieved after

deduplication. Even for the pool with the smallest number of reads, Capture set 3, line D, pool 3

at 35.7 millions reads, with only 60% of reads left after deduplication, more than 21.4 million unique

reads remain to cover a capture size of 13MB. Given that the reads are paired end 100bp, this amounts

to a total of almost 4.3GB to cover 13MB, giving around 330 folds (X) coverage for the bases in the

region. Thus, the depth of coverage can be expected to be very high for the captured region, which

will improve con�dence in the variants detected.
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4.2.4 Sequence capture set: capture e�ciency and coverage

Our sequence capture sets were design using three di�erent sources, the �rst capture set, capture set

1, was designed using candidates region found by Quilter et al [2]. The second capture set, capture

set 2, was designed using the FBAT results presented in this work. Finally, the last capture set,

capture set 3, was constructed using the PO results also presented in this work. The number of

probes per chromosome will vary widely between the di�erent capture sets due to the total number

of regions of interest identi�ed .Capture set 1 has a large number of probes on chromosome 3, one

of the target regions is important as it is syntenic to a region on the human chromosome 16, which

has been shown to be related to puerperal psychosis [90]. Of the 11426 probes in this capture set,

7094 are targetting regions on chromosome 3, representing 62% of the total number of probes. The

probes on chromosome 3 are divided across several regions, the biggest targetting the region between

26MB to 30MB, a region in which a lot of potential target genes were identi�ed in [2]. Further along

chromosome 3, a smaller region is targetted at around 35MB. It covers RBFOX1. Two more regions

further down the chromosome are located at 100Mb and 131MB. Chromosome 1 is the second largest

target, represented by 1226 probes covering intervals at 17MB, 65MB, 74MB. The other chromosomes

selected (4, 6, 10, 12, 13, 14, 15 and 18) have a much lower number of probes and regions targetted,

varying from 31 to 713 probes with an average of 388 per chromosomes. For capture set 2 a total of

8456 probes target the regions of interest. The largest number of probes was found on chromosome

1 and chromosome 7 with 2166 and 1476 probes representing 26% and 17.4% of the total number

of probes, the other chromosomes (2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,X) have between 3 and 832

probes with an average of 283 probes per chromosome. The last capture set, capture set 3, is probably

the most balanced in regards to the number of probes per chromosome with a total of 6636 probes.

Two chromosomes are more represented that the others, they are chromosomes 1 and 9 with 981 and

935 probes each, representing 15% and 14% of the total number of probes. The other chromosomes

vary between 677 and 81 probes with an average of 295 probes.

The total number of probes decreases with each capture set from 11426 to 6636. Despite the decrease

in the number of probes, the size of the targetted regions increased with each capture set. For capture

set 1, the size of the probes varies between 200-300bp to up to 2000-3000bp with the interquartile range

covering 200 to 600bp (�gure 2.2). For capture set 2 (�gure 2.4) the range of sizes covered is similar but

the interquartile range is shifted upwards, toward 700bp. For capture set 3 the trend continues with

the the interquartile range spreading from 300bp to 1000bp. Therefore despite having signi�cantly less

probes than capture set 1, capture set 2 and 3 can select larger intervals of the genome.

Interestingly capture set 1 also has the lowest e�ciency of capture compare to the other two sets.

The fraction of reads covering the targetted regions (table 3.22) is between 43% and 58%, while for

capture set 2 the values range between is 55% and 69% (table 3.23). Finally, capture set 3 (table 3.24)
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is the best performer, as the fraction of reads covering targets ranges between 69% and 72%. This

is a much narrower range than the other capture sets. One possible explanation is that the protocol

became more familiar for the operator, and therefore the e�ciency increased. All the capture library

work was carried out by the same person, Kerry Harvey. However the fact that the probes are longer

for capture sets 2 and 3, along with the increase in capture e�ciency points towards a better probe

design, resulting in a better e�ciency of capture. As the design of the di�erent capture sets were

separated by signi�cant amounts of time, typically several months, it is likely that the technology

provider improved their pipeline for probe design and e�ciency.

The reads not covering the regions of interest were discarded for this analysis. Their origins could

be multiple. They could arise through some o� target selections. In e�ect the baits can capture a

sequence with a partial match that maps to another location of the genome. There is also a strong

possibility that contamination from genomic DNA, DNA from other regions could pass through the

selection step, and therefore be ampli�ed and sequenced, resulting in the observed o� target e�ects.

Finally some target regions have genes in them and the baits could be capturing sequences from loci

of families members present in di�erent locations on the genome.

The e�ciency of capture for capture set 1 could be problematic for downstream analysis as a large

number of reads are lost as they do not cover the target regions. However after checking the coverage

distribution for the fraction of reads covering the probes (see �gures 3.29, 3.30 and 3.31), capture set

1 has the best depth of coverage of all three sets with up to 3500X coverage and a peak at 1500X.

Capture 2 and 3 go up to maximum 2000X and 1400X coverage respectively, and have peaks occur at

a 100X and 700X. All three capture sets achieve at least 20X for almost all of the target bases. The

normalised coverage plots (�gures 3.32, 3.33 and 3.34) show that the coverage is uniform, and that

at least 80% of the data is covered by more that the average coverage value for each of the sets: i.e.

almost all of the targetted regions have very good coverage.

In conclusion, all of the capture sets perform well and achieve relatively good capture e�ciency.

Thanks to the small combined sizes of the regions targetted, very deep coverage of these regions is

achieved ,which makes variant calling more accurate. It will also help ensure that the alleles coming

from the animals in the di�erent pools will be well represented providing better estimates of the allele

frequency for the population the pool represents.

4.2.5 Sus scrofa genome release 11

During the course of this work a new version of the pig genome (11) was released by Swine Genome

Consortium [150]. This new assembly of the genome highly improved on the one used for the majority

of the work in this thesis. To produce this new assembly long reads were used. The sequencing was

done using the Paci�c Bioscience (PacBio) single-molecule real-time (SMRT) sequencing which allows

for very long reads (over 10 kilo bases (kb) on average with a maximum of 60kb and with a N50 of
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more than 20kb) but at the price of a higher error rate (11% to 15%), although this can be moderated

by several passes of the same molecule. [216].

The resulting genome is a much better assembly than the previous one (see section 1.7). With 65X

coverage, it consists of 20 chromosomes and 583 unplaced sca�olds whereas the previous assembly had

almost 8 times more unplaced sca�olds, 4562. The total number of base pairs and the golden path

length are both lower at 2,478,44,698bp and 2,501,912,388bp. Given the long reads the assembly should

produce a lower number of contigs and sca�olds, and both should be longer in size. The number of

sca�olds drops by more than ten fold from 9906 to 706. The sca�olds N50 is greatly improved from

576,008bp to 88,231,837bp. The L50 is reduced from 1,303 to 9 sca�olds. Therefore a smaller number

of sca�olds covers larger regions of the genome which improves the accuracy of the genome build. The

number of gaps between sca�olds is greatly reduced from 5323 to 93 and the total gap length is also

reduced. For 10.2 the gaps length was 289,373,899bp and for 11.1 it is 29,864,64bp, almost a 10 folds

di�erence. The release 11 of the pig genome is therefore less patchy, with fewer uncertain or uncovered

areas. Regarding contigs, their numbers between the two releases dropped immensely from 243,021

to 1,118, with the N50 increased from 69,503bp to 48,231,277bp and the L50 dropped from 8,632 to

15 contigs. The contigs forming the sca�olds are much larger and the statistics re�ect that. The use

of a technology with longer read produced more continuous sca�olds and contigs as re�ected by the

increase in the N50 and the decrease in the L50.

The number of annotated genes is also slightly higher in this build with 22,452 coding genes, 3,250 non

coding genes, 178 pseudo-genes and a total of 49,448 transcripts. The annotation pipeline is similar

to the one described in section 1.7 but with more sequences coming from various RNA sequencing

(RNASeq) data and additional long reads from the PacBio system. The increase in the number of

genes identi�ed is modest, less than a thousand, but the increase in the number of transcripts is large,

with almost twenty thousand more transcripts identi�ed.

This latest release of the pig genome is a great improvement on the previous build and is a much

more detailed and accurate representation. Two individuals were used to produce this build, the same

Duroc as for build 10.2 but also a Duroc/Landrace/Yorkshire cross. This is an improvement but we

can still expect some discrepancies when aligning other breeds to this genome, one of the lines used in

this thesis is a Large White. The variant annotations might also still not be accurate for other breeds.

The next release will hopefully incorporate more breed data, making work on animals from a di�erent

origin easier and providing a better reference for researchers.

Unfortunately for our study, the new release happened quite late in the project. Repeating the

alignment steps and variant calling at this stage would have taken months, time that was unfortunately

not available. Despite this drawback, the new release was still useful, as the variant locations and

annotations were updated to the latest build and used to look in more details at some of the regions

identi�ed. Given that most of the variants identi�ed by our sequencing studies are known variants,
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updating their coordinates will help re�ne the results and pinpoint the genes these variants might

in�uence.

The capture set probe coordinates were also updated to the latest version, in order to check the

impact of the new build on the regions targetted and the genes of interest. Genomic regions were

plotted for the targetted regions designed from the release 10.2 against the corresponding chromosome

segments from 11 and against the syntenic region from the human (details of the annotation pipeline

is given in section 2.11.3 of the material and methods). Figure 4.1 show an example of one region of

particular interest, the RBFOX1 region, on the three genomes used for annotation, Sus scrofa 10.2 (SS

10.2), Sus scrofa 11 (SS 11) and Human 38 (HG38). The coordinates of the regions between SS 10.2

and SS 11 are shifted by 1MB but on SS 11 we can see that the gene of interest (RBFOX1 ) is covered

partially while the locus registered on SS 10.2 is uncharacterised. This uncharacterised gene could be

RBFOX1 as a search for this gene in the 10.2 build does not return any hits, but the comparison with

the syntenic human genome region shows RBFOX1 in that region. This highlight another issue with

the annotation of the pig genome. Being mostly automated, with no manual curation, the annotation

might not always be accurate. For example in �gure 4.1 we can see that RBFOX1 is a large gene in

human HG38 whereas it is relatively small in SS 11. Given that the human and the pig genome are

very close genetically [217] and that the annotations used to highlight the corresponding human region

rely on synteny and alignment between the two genomes, it is likely that the gene structure will be

similar. In conclusion, the pig annotations might not be very accurate, but using the corresponding

human region might give us more insight about the structure of a gene of interest.

Ideally the best outcome would have been to remap all the samples to the new build of the genome.

This would be especially true for a di�erent sequencing approach than sequence capture. For a whole

genome approach it would have been essential to remap all the reads, as a lot of unmapped reads might

be aligned to the new build. For a targetted approach, remapping of all the reads is not a necessity.

If the reads mapped successfully based on the capture design of SS 10.2, it means that the design is

sound as the sequences were successfully captured and therefore the design would still be valid in SS

11. If a target probe or region has no reads mapping to it, the design based on SS 10.2 was probably

not accurate. Another round of design for these regions based on the new build might improve their

capture. In order to assess this in more detail, the coverage of individual probes was investigated for

all the capture sets and pools. Tables 4.3, 4.4, 4.5 and 4.6 display the fraction of probes for di�erent

percentages of probe length covered. The percentage of lengths covered are 0% , below 30%, below

50%, below 90% and above 90%. All of the capture sets have at least 98% of their probes where at least

90% of the probe length is covered by one read. In addition, the average coverage, median coverage

and minimum coverage for the probes covered for at least 90% of their length is also displayed. The

average and median coverage are very high for all capture sets. The minimum coverage can drop very

low (3 reads) but given the median values (always above a 1000 reads), it is safe to assume that the
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coverage of this set of probes is very high. Therefore it is not necessary to remap to version 11 of

the genome, most of our capture regions should be well covered. The only problematic issue is if the

annotation shifts signi�cantly, the captured region might not match close to our genes of interest any

more. In this case the only solution would be to redesign the capture set using the new version of the

genome.

Figure 4.1: Example of capture set probe region with position in three di�erent genomes from bottom
to top: Sus scrofa release 10.2, Sus scrofa release 11 and Human release 38. Note that the
gene is �ipped in the pig compared to the human (red arrow).
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Pools 0 coverage below 30% below 50% below 90% above 90%
average coverage median coverage min coverage

above 90% above 90% above 90%

Line B pool 1 capture 1 0.13 0.19 0.27 0.57 99.42 6064.49 2769 7

Line B pool 2 capture 1 0.11 0.18 0.25 0.65 99.35 4563.69 2086 7

Line B pool 3 capture 1 0.10 0.16 0.22 0.56 99.44 3794.39 1741 3

Line B pool 4 capture 1 0.11 0.17 0.23 0.59 99.38 5800.68 2646 14

Line B pool 1 capture 2 0.25 0.37 0.52 1.48 98.50 5813.97 3651 7

Line B pool 2 capture 2 0.21 0.35 0.46 1.18 98.81 5272.58 3306 8

Line B pool 3 capture 2 0.20 0.31 0.41 0.88 99.11 4959.85 3135 9

Line B pool 4 capture 2 0.19 0.30 0.38 0.86 99.14 6370.22 3959 7

Line B pool 1 capture 3 0.21 0.24 0.29 0.56 99.44 5982.64 3446 7

Line B pool 2 capture 3 0.18 0.21 0.26 0.45 99.53 9356.78 5380 20

Line B pool 3 capture 3 0.20 0.23 0.27 0.51 99.49 3883.66 2232 12

Line B pool 4 capture 3 0.18 0.21 0.26 0.50 99.49 6242.23 3517 11

Table 4.3: Line B probe coverage for all capture sets. Each column displays the percentage of coverage
of the probes, the percentage of the probe's sequence covered by at least one read. The
average, median and minimum coverage for probe at least 90% covered is also displayed.
For line B all the capture set have at least 98% of the probes covered at more than 90%

Pools 0 coverage below 30% below 50% below 90% above 90%
average coverage median coverage min coverage

above 90% above 90% above 90%

Line C pool 1 capture 1 0.11 0.18 0.26 0.66 99.34 6185.72 2826 9

Line C pool 2 capture 1 0.12 0.18 0.26 0.73 99.26 3388.50 1567 4

Line C pool 3 capture 1 0.10 0.17 0.25 0.67 99.32 3407.91 1551 5

Line C pool 4 capture 1 0.13 0.18 0.26 0.57 99.43 4180.06 1937 4

Line C pool 1 capture 2 0.22 0.34 0.45 1.17 98.82 4753.66 2953 7

Line C pool 2 capture 2 0.21 0.38 0.50 1.27 98.73 5480.80 3440 8

Line C pool 3 capture 2 0.26 0.35 0.48 1.15 98.85 5168.04 3196 4

Line C pool 4 capture 2 0.20 0.37 0.45 1.10 98.89 5316.06 3301 5

Line C pool 1 capture 3 0.18 0.21 0.24 0.47 99.52 9956.60 5659 21

Line C pool 2 capture 3 0.21 0.24 0.29 0.59 99.41 6436.54 3662 10

Line C pool 3 capture 3 0.20 0.21 0.24 0.44 99.55 7993.41 4592 12

Line C pool 4 capture 3 0.17 0.21 0.24 0.45 99.53 7056.89 4000 6

Table 4.4: Line C probe coverage for all capture sets. Each column displays the percentage of coverage
of the probes, the percentage of the probe's sequence covered by at least one read. The
average, median and minimum coverage for probe at least 90% covered is also displayed.
For line C all the capture set have at least 98% of the probes covered at more than 90%.

Pools 0 coverage below 30% below 50% below 90% above 90%
average coverage median coverage min coverage

above 90% above 90% above 90%

Line D pool 1 capture 1 0.13 0.20 0.27 0.60 99.39 1933.59 892 2

Line D pool 2 capture 1 0.14 0.18 0.27 0.60 99.40 2456.37 1111 3

Line D pool 3 capture 1 0.10 0.15 0.21 0.55 99.44 2849.38 1308 6

Line D pool 4 capture 1 0.11 0.14 0.23 0.56 99.44 3089.87 1419 3

Line D pool 5 capture 1 0.10 0.18 0.25 0.60 99.39 2776.64 1253 5

Line D pool 6 capture 1 0.10 0.16 0.23 0.55 99.44 2600.52 1198 5

Line D pool 1 capture 2 0.17 0.26 0.38 0.84 99.15 5298.53 3342 12

Line D pool 2 capture 2 0.21 0.30 0.37 0.89 99.11 6306.72 3997 12

Line D pool 3 capture 2 0.18 0.27 0.38 0.86 99.12 5701.80 3599 7

Line D pool 4 capture 2 0.20 0.30 0.38 0.91 99.08 8411.30 5217 9

Line D pool 5 capture 2 0.19 0.32 0.40 0.91 99.08 5502.87 3452 6

Line D pool 6 capture 2 0.20 0.28 0.35 0.85 99.12 5714.27 3631 10

Line D pool 1 capture 3 0.20 0.21 0.27 0.47 99.53 9346.25 5361 10

Line D pool 2 capture 3 0.20 0.24 0.29 0.53 99.46 6898.77 3964 23

Line D pool 3 capture 3 0.20 0.23 0.29 0.51 99.49 5852.13 3327 6

Line D pool 4 capture 3 0.20 0.23 0.27 0.50 99.50 6141.30 3545 2

Line D pool 5 capture 3 0.21 0.23 0.27 0.47 99.53 7335.80 4137 12

Line D pool 6 capture 3 0.18 0.23 0.29 0.51 99.49 5769.24 3239 8

Table 4.5: Line D probe coverage for all capture sets. Each column displays the percentage of coverage
of the probes, the percentage of the probe's sequence covered by at least one read. The
average, median and minimum coverage for probe at least 90% covered is also displayed.
For line D all the capture set have at least 98% of the probes covered at more than 90%.
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Pools 0 coverage below 30% below 50% below 90% above 90%
average coverage median coverage min coverage

above 90% above 90% above 90%

Line H pool 1 capture 1 0.10 0.17 0.24 0.52 99.48 3814.03 1750 6

Line H pool 2 capture 1 0.11 0.14 0.22 0.52 99.48 3938.69 1769 3

Line H pool 3 capture 1 0.11 0.15 0.23 0.55 99.45 2862.29 1315 5

Line H pool 4 capture 1 0.10 0.16 0.23 0.56 99.44 2471.97 1140 5

Line H pool 5 capture 1 0.11 0.18 0.25 0.60 99.40 2726.34 1250.5 4

Line H pool 6 capture 1 0.10 0.15 0.23 0.55 99.43 3226.56 1476 8

Line H pool 1 capture 2 0.22 0.33 0.43 1.05 98.94 7322.24 4552 16

Line H pool 2 capture 2 0.25 0.34 0.46 1.12 98.84 5086.74 3154.5 7

Line H pool 3 capture 2 0.20 0.35 0.43 1.03 98.95 5081.47 3189 5

Line H pool 4 capture 2 0.18 0.28 0.35 0.83 99.17 3943.07 2454.5 7

Line H pool 5 capture 2 0.22 0.33 0.44 0.98 98.99 4754.84 2962 8

Line H pool 6 capture 2 0.20 0.31 0.38 0.82 99.17 5232.68 3236.5 7

Line H pool 1 capture 3 0.21 0.24 0.29 0.54 99.46 7709.16 4360 19

Line H pool 2 capture 3 0.20 0.24 0.29 0.53 99.46 5843.64 3238.5 20

Line H pool 3 capture 3 0.21 0.24 0.30 0.51 99.47 6913.85 3917 9

Line H pool 4 capture 3 0.20 0.23 0.26 0.53 99.46 5196.68 2930.5 7

Line H pool 5 capture 3 0.21 0.23 0.27 0.47 99.53 7035.24 4003 10

Line H pool 6 capture 3 0.20 0.23 0.27 0.47 99.53 6551.80 3654 19

Table 4.6: Line H probe coverage for all capture sets. Each column displays the percentage of coverage
of the probes, the percentage of the probe's sequence covered by at least one read. The
average, median and minimum coverage for probe at least 90% covered is also displayed.
For line H all the capture set have at least 98% of the probes covered at more than 90%.

4.3 Genome Analysis Tool Kit (GATK) and variant processing

4.3.1 Post mapping read processing

Once read mapping is completed, the aligned reads have to be processed through the GATK pre-

processing steps in order to make sure that the input data used for the variant calling is of good

quality. The deduplication step removed a lot of reads, but large numbers are still left for each of our

pools, which should give us enough depth for accurate variant calling. The depth of sequencing must

be high enough to unsure that every animal in the pool is su�ciently represented to contribute in a

signi�cant manner to the estimation of the allele frequencies within the phenotypic group it represent.

As discussed previously (section 4.2.4) the coverage is very deep and therefore should not have a

negative in�uence on the variant calling.

Once duplicate reads are removed, the next step is to realign the reads around indels. This is an

important step as read mapping will be a�ected by the presence of structural variants (insertions and

deletions, also called indels) and some reads might be discarded, or get low quality scores, because

of the presence of indels. Correcting potential misalignments is done by the realignment step of the

GATK pipeline, using a reference �le of structural variants. Our reference �le for structural variants

for the pig is from dbSNP, version 145, which is based on the genome build SS 10.2. As discussed in

the introduction (see section 1.7), this reference has a large number of gaps and sca�olds not placed

on the genome yet. Therefore some of the structural variants will be uncharacterised or belong to

sca�olds that have not been placed. The consequence of the patchwork nature of this genome is that

uncharacterised indels present in our data will be una�ected by the remapping step, which might

reduce the mapping quality for these locations.
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The next important step is the read quality score recalibration. The mapping quality score is a phred

score. It uses the same scale as the read quality discussed previously and can be used in the same

way. A read quality of 30 has a one in a thousand chance of being wrong. Mapping quality consists

of di�erent source of mapping error, contamination, heuristic error (error caused by the alignment

method) and error caused by the repetitiveness of the reference (see main text and supplementary text

[218]). The �rst two components are di�cult to estimate, but the last can be estimated. The error for

bwa-mem is estimated by 10/log10∗ [log4∗(S1−S2)− log(nsub)] with S1 being the best alignment score

and S2the second best and nsubthe number of suboptimal alignments for a given read. According to

[144], bwa tends to overestimate slightly the quality score. While this is not a huge problem, according

to the GATK developers, the quality score is often overestimated around base deletions , insertions or

substitutions. Therefore, around known locations with this type of event, GATK will adjust the quality

score. For this adjustment the software needs a reference �le in order to know which loci have to be

adjusted. The reference used is Sus scrofa dbSNP 145. Similarly to the indel reference, this version

of dbSNP is based on SS 10.2, which will have the same drawbacks discussed for the read realignment

recalibration. Despite of these drawbacks it was still bene�cial to proceed with the recalibration for

bases covering known variants at the time this step was performed.

For both the realignment and base recalibration steps, the nature of the data helps alleviate some of

issues raised above. Given that we are not using a whole genome approach but a targetted approach,

it is less likely that our variants will fall into an unplaced sca�old or into a gap between sca�olds. If

a read maps to a target region, this region should not be a region of uncertainty. As discussed in the

section on release 11 of the pig genome (section 4.2.5), a very small proportion of the capture probes

have no, or a small proportion of, reads covering them. Most regions for the capture sets are well

covered. Therefore it is unlikely that targetted regions are problematic. If the probes targetting the

region were designed on erroneous sequences, the results would be that no reads are mapping to the

region. Therefore it can be assumed that targetted regions in this study are fairly well characterised

since the capture was successful and the mapping to these regions was good. Structural and sequence

variants should therefore be well characterised.

The quality scores before and after recalibration show that, as expected the aligner overestimated

the read mapping scores around structural and sequence variants (see �gures 3.35, 3.36) which is the

outcome that was expected.

4.3.2 Variant calling and pooled samples

4.3.2.1 Algorithm discussion

The GATK suite has several algorithms for variant calling, the most recent one is the HaplotypeCaller

[219]. Its strength comes from calling variants on several samples at the same time. HaplotypeCaller
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works in four steps. First it determines active regions using the aggregated data from the di�erent

samples. Active regions are regions with substantial variations compared to the reference, therefore

excluding regions of high similarity to speed up the process. Next it determines haplotypes by building

an assembly (DeBruijn graph) graph using the reference as a template. Nodes in the graph correspond

to mismatches with the reference, and HaplotypeCaller selects the most likely graph using the weight

of evidence, i.e. the number of reads supporting each graph. Once the graphs are built, the next step

is to evaluate each haplotype. In order to perform this evaluation the reads are aligned against each of

the possible haplotypes using PairHMM, HMM stands for Hidden Markov Models. These models use

available information to infer missing information. For example if indoors with no windows, one can

infer that it is raining outside if someone comes in with wet shoes. This might be wrong for several

reasons but it is a reasonable assumption under normal circumstances. The PairHMM uses the base

quality score for the HMM, it helps to infer if the variant is likely to be real or not. The last step

is to assign the genotype back to the individual samples, which is done using a Bayesian approach to

compute likelihood ratios. The strength of this approach is the combination of data from a cohort of

samples and using it to call variants. The whole process is broken down into several steps. First calling

the variants on individual samples and generating the variant �les for each sample to then consolidate

them together and do a joint cohort variant calling. This produces raw variants that can be �ltered

using several di�erent methods. The advantage of the HaplotypeCaller method compared to previous

algorithms such as the Uni�edGenotyper is that it is better at calling insertions and deletions, as they

are part of the Hidden Markov Models whereas the Uni�edGenotyper does not model insertions or

deletions.

Unfortunately for this study the use of HaplotypeCaller was not possible. The �rst step of the variant

calling, calling variants for individual samples proved too problematic for our samples. As our samples

are made from pools of several individuals, one of the parameters we had to change is the ploidy (the

number of chromosomes). The smallest pool had four animals and the largest had 46, which means

the ploidy varied between eight to 92 chromosomes. This resulted in problems using HaplotypeCaller

as our computing node was running out of resources. Our initial computing node had 125 GB of

RAM which was thought to be su�cient. However while running this step the node kept crashing

due to a lack of memory. Upon investigation it was noticed that the crash occurred at a particular

locus. The parameters of the step were modi�ed to skip this locus but this only shifted the problem

to another locus. After excluding several loci it was decided that this approach was unsustainable.

Another solution was to upgrade the available resources. The node was upgraded to double its memory

at 250GB. Unfortunately the software was still crashing due to a lack of memory. Another computing

node was found to run this step, with 500GB of RAM, but again the software was running out of

memory. At this point the GATK developers advised us to use an alternative and older algorithm

available that can cope with this high level polyploidy, the Uni�edGenotyper [149].
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The Uni�edGenotyper is a simpler variant caller compared to the HaplotypeCaller but it can handle

the very large ploidy present in our samples. It is a permissive caller and therefore will call large

amounts of variants, and some will be false positive. It can call variants in multiple samples at the

same time but for the animal pools that were used, and because of the large ploidy in some of them,

it was deemed preferable to call variants on individual pool. The Uni�edGenotyper performed well on

all the pools and no issues with memory usage were encountered while running it on our cluster node.

4.3.2.2 Variant �ltering

Because of the use of the Uni�edGenotyper, the choice of �ltering was limited to hard �lters. It was not

possible to use the most advanced �ltering tools based on machine learning as they require several sets

of high quality known variants to train the model. Typically, for human the sets come from dbSNPs,

the 1000 genomes project, genome in a bottle, etc... Unfortunately such sets are not available for

the pig yet, only dbSNP has been released and its content might not be the most accurate for all

of our lines, as it is based on the Duroc reference. Thus the use of hard �lters was the only choice

available. The values used for �ltering (see section 2.10.3) are the ones recommended by the GATK

team. They are standard values for �ltering and should give a good balance to �lter the variants called.

Using these �ltering parameters will avoid being too stringent which would miss potentially interesting

polymorphisms.

The number of raw variants ranges between 23,000 and 57,000 per pool across all capture set (see

table 3.25). Overall capture set 2 has the lowest number of raw variants called with 609,533 and

capture set 3 has the largest with 976,980. After �ltering, the lowest quantity of variants is still for

capture set 2 with 385,016 and the largest for capture set 3 with 655,310. The �ltering does remove

between 30% to 40% of the variants, but the precise fraction of variants found and �ltered between

samples varies. For capture sets 1 and 2 the number of variants found and �ltered is fairly similar. For

capture set 3 however it is higher by at least 10,000. This might be a consequence of the size of the

regions targetted. For capture set 1 the probes target 7MB, for capture set 2 10MB and capture set

3 13 MB. Surprisingly despite the di�erence in capture size between capture set 1 and 2, and 2 and

3, the number of variants found after �ltering is similar for capture set 1 and 2 but much larger for

capture set 3.

The number of variants found for each capture set generally correlates well with the number of

probes targetting a given chromosome. The only exception to this is from capture set 1, where the

number of variants found for chromosome 1 for the di�erent pools is lower than for other chromosomes.

Chromosomes 4, 12, 15 and 18 have a higher number of variants identi�ed compared to chromosome

1 despite having around half of the number probes targetting chromosome 1.
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4.3.3 Variant comparisons

As described in section 2.11.1, the variants were compared between pools in three categories. Cat-

egory A compared all the infanticide pools against the control pools, category B compared the serial

infanticide pools against the controls, and category C compared the pools with a family history of

infanticide to the controls pools. The �rst category helps to identify variants and regions that are

common between the serial infanticide animals and the animals with a family history of infanticide.

The category B and C prospects will identify variants and regions that are more speci�c to the strength

of the trait for the serial o�enders or linked to heritability for the family history pools. In order to

chose the thresholds for the comparisons, the control pools were used to checked the repartition of the

di�erence in allele frequency (see �gures 3.37, 3.38, 3.39, 3.40, 3.41, 3.42 and 3.43). The variations in

allele frequencies between the two control pools for the various capture sets are fairly similar following

their repartition. The number of variants with small di�erences in allele frequency is large and the

number of variants with large di�erences in allele frequency is small. Most of the di�erences in allele

frequencies are found to be below 30% (0.3).

Because most of the variability between the two control pools is segregated below 30%, the base

threshold for removing highly variable variants between pools of the same category is set at 30% for

both the control and the infanticide pools. Due to the lower number of individuals in some of the

infanticide pools, the allele frequency variations between infanticide pools of the same category are

more pronounced (see supplementary data).

To compare allele frequencies between controls and infanticide pools two approaches were taken.

The �rst approach used hard thresholds for the comparisons between infanticide and control pools.

The �rst threshold was set at 30%, the same as the within pool cut o�. The approach worked well for

category A (comparing control pools against infanticide pools) but returned a large number of variants

for categories B and C. Therefore the threshold was increased to 50% allele frequency di�erence between

the control and infanticide pools.

The second approach used a more variable threshold based on the distribution of the di�erences in

allele frequency of the variants (see section 2.11 for details). The distribution of the allele di�erences

between the control pools, for each capture set, and the distribution of the allele di�erences between

infanticide and control pools, for the di�erent capture set and category, reveal some interesting inform-

ation. The allelic di�erences between the control pools for each line already revealed that most of the

allele variation is found to be below 30%. Grouping the control pools per capture set con�rmed that

trend. The threshold of mean plus three standard deviation was just above the 30% allele frequency

di�erence (see �gure 3.37). When grouping the lines per capture set and category, and comparing

infanticide against controls (see �gure 3.37), a similar picture emerges but the allele di�erences are

more important. For the category A pools, the thresholds of mean plus three standard deviation for
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each capture set is similar to the one obtained when comparing the control pools. For category B and

C the thresholds are higher and the distributions have a longer tails. There are multiple potential

reasons for this. First, the pool number are not balanced between the lines and categories. While the

control pool have 25 animals in each of them, the infanticide pools have more variable numbers. The

serial infanticide pools have a low number of individuals with 4, 6, 14 and 4 animals for line B, C, D

and H respectively. The family history of infanticide pools have more animals with 4, 12, 36 and 32

animals for line B, C, D and H respectively. This imbalance in the number of animals in the pools will

results in more extreme allele frequency from pools with a small numbers of animals compare to pools

with a larger numbers of animals. Furthermore, for category A, we are comparing two pools against

two pools which might give a better estimate of the allele di�erences and reduce any outlier e�ect. For

categories B and C, the two control pools are in some case compared against a single infanticide pool.

Indeed for line B and C there are only a single infanticide pool in each category, while for lines D and

H, several infanticide pools are available for category C (family history of infanticide). The presence

of single pools in categories when comparing the allele frequencies will results in more extreme values.

Therefore the overall distribution will be in�uenced by these extreme values. It is also worth noting

that category A groups the two infanticide sets, serial infanticide and family history which could lessen

any speci�c e�ect caused by alleles linked solely to one of the two categories. The fact that the res-

ults of the selection of the variant in category C has a large proportion of variants selected on some

chromosomes (see tables 3.30, 3.33 and 3.36 ) when using the variable thresholds, seems to suggest

that these might be some category speci�c e�ects. This might not be visible for the hard threshold

approach as it might be too stringent for the e�ect to appear.

The control pools were also used for a mock comparison, to compare the proportion of selected

variants with the comparisons against the infanticide pools (see tables 3.26 and 3.27). The percentage

of selected variants in the mock comparison is lower by one to two percent for capture sets 1 and 2, but

are similar for capture set 3. The comparisons with the infanticide pools are selecting more variants

than the comparisons between two similar pools.

The thresholds based on the distribution of the allele frequency di�erences, using mean plus three

standard deviations, selected a much higher number of variants. The thresholds were usually lower

than the hard thresholds that were chosen before. It was decided to use this method of �ltering

to select variants and regions of interest. The percentage of selected variants is similar between the

di�erent capture sets and categories. Category A selecting between 3 to 3.8% of the total number

of variants, between 3.6 and 4.3% for category B and between 4.7 and 6.5% for category C. It is

interesting that the highest number of variants selected is for category C, which compares the control

pools with the ones for individuals with an history of infanticide. Some chromosomes in this category

have a very large number of variants selected. For capture 1 category C, the number of variants

selected on chromosome 6 represent 50% of the total number of variants present, furthermore 32% of
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the polymorphisms on chromosome 13 were selected for the same capture set and category. For capture

2 category C, 42% of the variants on chromosome 11 were selected. For capture 3 category C, again

we have 26% of the variants on chromosome 6 selected and 34% for chromosome 10. It is interesting

that this skew in selected variants proportions are happening only for category C and not for any of

the other categories. Therefore these regions might be of interest as they are clearly outliers when

compared to other chromosomes and other categories.

On the other hand, some target regions did not select any variants. This is expected, all of the

target regions identi�ed using the genotyping data might not be relevant. The genotyping tests were

used to identify potential regions of interest but not all were expected to be relevant after a more

in depth investigation. It was not expected that a large number of variants will be of interest, the

variants identi�ed will help re�ning the regions of interest and investigate them in more details. Using

annotation pipelines and updating the coordinate to the version 11 of the genome (see section 2.11.2

and 2.11.3), the variants selected can be investigated in more details to evaluate their consequences on

the genes present in the region.

4.3.4 Variant annotation

The variants annotation has proven to be one of the most challenging steps of this work. When the

�rst set of results was curated, only version 10.2 of the pig genome was available. The annotations

were poor and making sense of the results proved to be di�cult. It was decided to develop a pipeline

to compare the variants to the human genome in order to see if any gene or human variant of interest

was located in the corresponding region of the human genome. Thankfully, homology information and

alignments between the pig and human genomes were available for this task. This allowed correspond-

ences matching between pig and human, but sometime the alignments were poor. A more bespoke

annotation pipeline was needed and the pipeline detailed in section 2.11 was designed. This pipeline

was applied to the hard threshold results. It was a lengthy process, as for each gene identi�ed, its

function needed to be curated manually. While this part of the work was on going, the new version of

the pig genome was released and it was decided to change the annotation pipeline in order to use this

updated reference. The objective was to update the coordinates of the variants to the new version of

the genome and hopefully get better gene annotations. The �rst attempt to update the coordinates

worked relatively well but some SNPs were lost during the process. Because the data used were from

the hard thresholds initially applied, there were only a small number of SNPs selected, and losing

even a fraction of them could be problematic. The pipeline described in section 2.11.3 was designed

in order to try to update as many variants as possible. The pipeline is complex and applying it for

each capture set, line and category was a long process. Soon after completion of this step the protocol

was inspected for a less arbitrary �ltering method that could be applied to select the variants. The

thresholds based on the distribution of the data were implemented, and instead of trying to update
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all the SNPs, it was decided to simply update the coordinates to version 11 of the genome. This was

done by querying Ensembl biomart using the R package and the SNP identi�cation lists to get back

the coordinates in version 11 of the genome. Any SNP lost was probably not very interesting, if it

was not a valid SNPs in the latest version of the genome, its interpretation would have be di�cult.

Plotting the region where the SNPs were located also helped for the interpretation and identi�cation

of genes. The gene function was followed up manually, as described in section 2.11.4. This means that

a lot of the work that went into the interpretation and curation of the �rst set of variants, and the

more bespoke pipelines used to update the variants, have not been applied to the �nal set of results.

These processes can still be applied in future work or used to update variants in other species that

might not yet have bene�ted from an improved genome.

4.3.5 Missense SNPs and their targets

Reminder of the categories used: for category A all the infanticide pools were compared against the

control pools. For category B the infanticide pool containing serial infanticide animals was compared

to the controls and for capture C the pools with animals with a family history of infanticide were

compared to the control pools.

In this section, the impact of SNPs located in genes was investigated. Using the SIFT algorithm

[181], it was possible to highlight SNPs that could have a potential impact on the protein encoded by

the gene. The SNPs classi�ed as missense were investigated (see tables 3.37 and 3.38 for details about

them). The pipeline described in section 2.11.4 was used to evaluate their potential impact. They

have been divided into three sections. The �rst one detailed the most interesting SNPs and genes, the

second genes that might be good candidate but for which there was not enough evidence to link to our

phenotype of interest. Finally, the third section discussed SNPs and genes that were unlikely to be

of interest. Figure 4.2 and 4.3 gave an example of the alignments used to investigate the amino acid

change. Figure 4.2 showed an example of a conserved region while �gure 4.3 an example of a poorly

conserved region. Table 4.7 gave a summary of the SNP of interest and the target category they belong

to.
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Figure 4.2: Example of a conserved region, protein ASPM. Blastp results of the reference protein
against the non redundant database. The substitution is deleterious, the original AA is N
(asparagine, highlighted in red) and change to K (lysine). The AA and the region around
it are well conserved. The top ten hits are, in order: Sus scrofa (Pig), Physeter catadon
(sperm whale), Balaenoptera acutorostrata scammoni (minke whale), Heterocephalus glaber
(naked mole rat) ,Condylura cristata (star nose mole), Fukomys damarensis (Damara mole-
rat). Some are present twice: Physeter catadon: position 2 and 3, Heterocephalus glaber:
position 5 and 6, Condylura cristata: position 8 and 9.
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Figure 4.3: Example of a poorly conserved region, protein CLIC6. Blastp results of the reference protein
against the non redundant database. The substitution is from serine (highlighted in red)
to arginine, S to R. The AA substitution doesn't seem to be major as arginine can be seen
to be present in other species. The region around the substitution is not well conserved.
The top 10 hits are, in order: Ceratotherium simum simum (white rhino), Lipotes Vexilifer
(Chinese river dolphin), Mustela putorius furo (ferret), Desmondus rotundus (Common
vampire bat), Enhydra lutris kenyoni (sea otter), Propithecus coquereli (Coquerel's sifaka),
Leptonychotes weddelli (weddell seal), Ailuropoda (panda), Rhinolophus sinicus (horseshoe
bat). Propithecus coquereli is present twice (position 6 and 7).
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ID CHR POS Average di�erence Origin Line Gene Priority target

rs337246460 1 81,891,724.00 0.275(A), 0.4(B) Cap3 cat A, B C TSPYL4

rs321068974 1 81,892,394.00 0.43 Cap3 cat B C TSPYL4

rs80970369 1 81,892,966.00 0.41 Cap3 cat B C TSPYL4

rs327767403 1 81,908,800.00 0.39 Cap3 cat B C TSPYL1

rs325683130 4 109,665,261.00 0.425 Cap3 cat B C CYMP

rs339852659 4 109,671,858.00 0.455 Cap3 cat B C CYMP

rs342388220 4 111,042,820.00 0.525 Cap 1 cat B C WDR47 **

rs332510157 4 111,098,594.00 0.5 Cap 1 cat B C CLCC1 *

rs321660613 4 111,116,353.00 0.274(A), 0.42(B) Cap 1 cat A,B C GPSM2 **

rs342779307 5 5,742,422.00 0.292 Cap2 cat A D MCAT *

rs330946522 5 5,751,299.00 0.587 Cap2 cat B B MCAT *

rs340611738 6 15,036,652.00 0.4 Cap3 cat C B PMFBP1 *

rs333510524 6 15,036,654.00 0.4 Cap3 cat C B PMFBP1 *

rs333013901 9 67,604,156.00 0.2785 Cap3 cat A C Unknown (PCNP)

rs339509635 9 93,078,330.00 0.455 Cap3 cat C B ABCB1 **

rs332900783 9 117,216,372.00 0.29, 0.29 Cap2, 3 cat A C, B TNN

rs319385750 10 14,222,171.00 0.41 Cap2 cat C B PARP1 **

rs340769264 10 14,222,231.00 0.4 Cap2 cat C B PARP1 **

rs328408424 10 19,989,785.00 0.365 Cap2 cat B H ASPM **

rs340828634 10 19,997,880.00 0.365 Cap2 cat B H ASPM **

rs321307993 12 40,037,442.00 0.405 Cap3 cat C B NLE1

rs334711032 12 50,073,425.00 0.266, 0.408 Cap3 cat A, C B, C ZZEF1 *

rs81438217 12 59,139,527.00 0.285 Cap 1 cat A, B B TRPV2 **

rs325360794 12 59,371,738.00 0.3075 Cap 1 cat A,B C NCOR1 **

rs81438358 12 59,376,875.00 0.28 Cap 1 cat A C NCOR1 **

rs692365780 12 59,418,694.00 0.3935 Cap 1 cat C D TTC19 *

rs346399941 13 198,251,410.00 0.47 Cap2 cat B C CLIC6

rs337655527 13 203,339,714.00 0.37 Cap2 cat B C IGSF5 *

rs328154476 14 49,484,969.00 0.36 Cap2 cat B C ADORA2A **

rs81209170 16 69,125,456.00 0.306 Cap2 cat A C FAM114A2

rs81209170 16 69,125,456.00 0.306 Cap3 cat A B FAM114A2

rs694857226 17 32,583,104.00 0.39 Cap2 cat B C AVP **

rs324827243 17 41,286,600.00 0.46 Cap3 cat B C KIAA1755 *

Table 4.7: Summary table of the SNPs of interest. Average di�erence gives the allele frequency dif-
ference between control pools and infanticide pool(s). The origin column the capture set
for which the SNP was found, line the line in which it was found. Priority shows which
category it belongs to: ** is high priority target, * potential target and blank is for unlikely
candidates.

4.3.5.1 Priority candidate genes and SNPs

One of the most interesting regions highlighted by the missense SNPs is located in chromosome 4 and

covers four genes, CYMP, WDR47, CLC1 and GPSM2. Two of these genes are good candidates,

WDR47 and GPSM2. Both variants were selected for line C and capture set 1 category B, and also

category A for the variant within GPSM2.

The �rst SNP, rs342388220, is located inWDR47 (WD repeat domain 47) is an interesting candidate.

The reference allele is an adenine (A) while the alternative is a guanine (G). In other species a G is

present at this location. The allele frequencies in the infanticide animals is prevalently the alternative

allele (G) while the reference control has predominately the reference allele (A). The amino acid (AA)

substitution is from glutamate to lysine which is a major change from acidic (negatively charged) to

basic (positively charged) in the polypeptide chain. Furthermore, the reference AA is lysine for the
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pig, but the blastp alignments reveal that the most prevalent AA at that location is glutamate. The

region is also highly conserved. Given that the control pools have a higher frequency for the reference

allele, they will have lysine at this location while the infanticide pigs will have a glutamate. The

impact of this substitution is hard to predict but it could have consequences on the protein coded by

this gene. While this gene and its protein are poorly characterised, the gene is highly expressed in the

brain of the mouse at the embryonic stage and in adult mice. Mouse knockouts of this gene have been

reported to be hyperactive. WDR47 is also essential for brain development during the early stage of

embryogenesis[220]. It is possible that a modi�cation of the protein structure could have an impact on

the mature brain.

The second candidate SNP on chromosome 4, rs321660613, is located within the GPSM2 gene (G

protein signaling modulator 2). For the pig the reference allele is a cytosine (C) and the alternative

is a G. In other species the base is a G. The AA substitution is from glycine to alanine which is a

change from hydrophilic to hydrophobic. Depending on where the AA is located after the folding of

the protein, it could have an impact on its function. The region where the substitution is located is

relatively well conserved between the species. Most animals have an alanine at this location rather

than a glycine. The protein is a G-protein signalling modulator which regulates the activation of G-

proteins. Other than being involved in non syndromic deafness and Chudley-McCullough syndrome, a

neurologic disorder characterized by early-onset sensorineural deafness, there is not much know about

it's function. However, as discussed in the previous study done on gene expression [80], other G-proteins

have been linked to depression so this could be a good candidate.

Both of these candidate SNPs on chromosome 4 are in a peak region that was identi�ed in the

Quilter et al study [2], supportive that this region is linked to the genetics of maternal infanticide.

These SNPs also display some of the largest changes in allele frequencies between between the control

and infanticide pools, between 42 to 52%. They are all from line C which is a Large White line. These

SNPs might be speci�c to the maternal infanticide trait in this line in particular.

The next variant, rs339509635, is located within an uncharacterised gene in the pig on chromosome

9. It has been selected for capture set 3 and category C, for line B. The reference allele is a C and the

alternative is a thymine (T), most species have a C at this location. The SNP has been classi�ed as

deleterious with a change from arginine to cysteine which is a change from positively charged to neutral.

The region of the protein where the AA is located is highly conserved between species. The gene at

this location is unknown in the pig, but comparisons with the human and mouse return ABCB1 (

ATP binding cassette subfamily B member 1 also known as MDR1). The protein encoded by this gene

is a member of the superfamily of ATP-binding cassette (ABC) transporters. Its role is to transport

various molecules across extra and intra cellular membranes. It is expressed in the brain in human and

a GWAS has linked a SNP located in this gene to schizophrenia in a population of Ashkenazi Jews,

although it did not reach genome wide signi�cance [221]. Two others studies linked this gene to drug
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resistant epilepsy in Polish adult populations and in children [222, 223]. Finally a meta analysis has

linked this gene to Alzheimer's Disease [224]. The fact that this gene has been associated to some

brain pathologies makes this variant a good candidate.

On chromosome 10, four SNPs are classi�ed as missense, covering two genes, PARP1 and ASPM.

For the two SNPs, rs319385750 and rs340769264, located in PARP1 (poly(ADP-ribose) polymerase

1), the substitution are both threonine to alanine, a change of polarity for the amino acid. The �rst

location is in a highly conserved region of the protein. The second one is in a relatively conserved region

but substitution in the protein at this location is observed in other species. The change in polarity

could have an impact on the protein function, depending on how the protein structure is a�ected.

Both SNPs were selected in capture set 2 category C and for line B. This is one of the dam lines, and

category C is for the pool with a family history of infanticide. The change in allele frequency is quite

high at 40%, and the infanticide pool has the alternative allele as the preferential allele in both cases.

Furthermore, this region was identi�ed in the FBAT analysis and the SNP in it reached genome wide

signi�cance. As discussed before, PARP1 encodes an enzyme which is associated with the chromatin.

It is a transferase that modi�es nuclear proteins by poly(ADP-ribosyl)ation. It is involved in important

cellular processes (di�erentiation, proliferation, recovery from DNA damage). It is also expressed in

the human brain and has been linked to several brain pathologies such as Alzheimer's and Parkinson's

disease [193, 192]. In the mouse it has been linked to contextual fear memory [191]. These two SNPs

con�rm PARP1 as a strong candidate.

The next two SNPs on chromosome 10, rs328408424 and rs340828634, are both in the ASPM (ab-

normal spindle microtubule assembly) gene. The �rst SNPs, rs328408424, will probably not have a

large impact on the protein, as the change it triggers does not change the polarity or charge at this

location. The change is from leucine to phenylalanine. The protein region it is located in is also very

variable in other species. The second SNP, rs340828634, is more interesting, it is classi�ed as deleter-

ious by SIFT. It triggers a change from a polar, hydrophilic and neutral amino acid (asparagine) to

an hydrophobic and charged (lysine) amino acid. The protein alignment shows that the asparagine is

conserved in most species. The gene ASPM is an ortholog of the Drosophila melanogaster �abnormal

spindle� gene (asp). It is involved in mitotic spindle regulation which has a role in regulating neuro-

genesis. Microcephaly is triggered by mutations in this gene [225, 226], a GWAS study also linked

it to communication disorders [227], making it a potentially interesting target. It is the only SNPs

with deleterious consequence identi�ed in line H, one of the sire lines, and both were identi�ed in the

comparison involving the serial infanticide animals. The preferential allele in the infanticide animal is

the alternative allele: infanticide animals are more likely to have a charged hydrophobic lysine at this

protein location.

On chromosome 12, three SNP are closely located and are within two genes, TRPV2 (transient

receptor potential cation channel subfamily V member 2 ) and NCOR1 (nuclear receptor corepressor
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1). The �rst SNP in this region, rs81438217, is in TRPV2. The variant has a reference allele G and

an alternative allele C In most species the DNA sequences have either a A or a G when compared by

phylogeny. The substitution of the AA triggers a change in the charge of the protein as it switches

from histidine (positively charged) to glutamine (neutral). The region is highly conserved and most

species have the neutral amino acid at this location instead of the histidine. Here the infanticide pool

has a higher frequency for the reference allele, therefore a charge will be present on the protein at

this location. The gene TRPV2 encodes an ion channel, activated at high temperature. It has been

linked to neural growth in developing neurons [228]. Not many functions of this gene are linked to

brain pathology so far. The next two SNPs are both located in the NCOR1 gene and have similar,

but reversed, impacts on the protein AA chain. The �rst SNP, rs325360794, triggers a change from

glycine to serine while the second, rs81438358, a change from serine to glycine. Glycine is non-polar

and hydrophobic while serine is polar and hydrophilic. Interestingly, alignment of the protein sequence

against other species shows that most species have the modi�ed AA at this position (so serine and

glycine respectively) in their proteins instead of the reference AA in the pig protein. Both SNPs comes

from capture set 1 category A (as well as B for the �rst one) and were selected for line C. Capture

1 was designed based on Quilter et al [2] and NCOR1 was one of the gene identi�ed in this study.

Unfortunately most of the known functions for this gene are linked to cancer, no studies have found

any linked between this gene and brain functions so far. However it is linked to our next target, the

gene ADORA2A, as a study [229] has found SNPs in both gene associated with gray matter volume

in the cuneus component. Thus there is a potential link between this two genes.

Only one candidate SNP is located on chromosome 14, it is located in the gene ADORA2A (adenosine

A2a receptor). The SNPs, rs328154476, triggers an AA change from glycine to glutamate which is non

polar, hydrophobic to polar, hydrophilic. The region where the AA change occurs is highly conserved.

The gene encodes for a member of the guanine nucleotide-binding protein (G-protein)-coupled receptor

(GPCR) superfamily. It interacts with the G(s) and G(olf) family of G proteins to increase intracellular

cAMP levels. It plays a role in many biological functions, including cerebral blood �ow control, pain

regulation and sleep. It is expressed in the brain and studies have linked it to anxiety disorder [230],

mild cognitive impairment and Alzheimer's Disease [231] and neurodegeneration [232]. As mentioned

previously, G proteins are of particular interest as their pathway was identi�ed as a target in the gene

expression study of Quilter et al [80] and we already have a good candidate with the SNP located in

GPSM2. This particular SNP could also be a good candidate, it was selected in capture set 2 category

B in line C.

The last candidate SNP in this priority category, rs694857226, is located on chromosome 17, within

the AVP gene. The gene, arginine vasopressin encodes a protein of the vasopressin and oxytocin family.

It is secreted in the hypothalamus and goes into the blood stream. Polymorphisms in this gene have

been linked to social behaviours and psychiatric traits [233], notably depression [234] and aggression
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in children [235]. It also plays a role in social memory in rat [236]. Oxytocin was a protein of interest

identi�ed by the gene expression study of Quilter et al [80]. The change in amino acid, however, is

valine to alanine which are both non polar and hydrophobic. The alignment of the protein show that

it is relatively conserved, but most species have an alanine at this location. The allele frequency in

the infanticide pool shows that only the reference allele is present, while it is less predominant in the

control pools. This variant was selected in capture set 2 category B for line C. It could be an interesting

candidate but it will be necessary to con�rm any impact it could have on the protein function.

4.3.5.2 Potential candidate SNPs and genes

As discussed in the previous section, four SNPs of interest are present on chromosome 4, two of which

are priority candidate. Another SNP in the gene CLCC1 (chloride channel CLIC like 1), rs332510157,

could be a potential candidate. It was found for line C in category B of capture set 1. In the pig the

reference allele is a T and the alternate allele is a G. For other species the base at this location is a G.

The AA substitution is leucine to arginine which changes the AA from neutral to positively charged.

This could have an impact on the protein structure, but the alignment suggests that the structure is

not well conserved for this region of the protein. Very little is known about this gene, other than it

is potentially coding for a chloride channel. The only interesting fact about it is that the loss of the

protein is linked to neurodegeneration [237]. As discussed in the previous section 4.3.5.1, it is in one

of the peak region of the GWAS study by Quilter et al [2].

The next two SNPs are located on chromosome 5, both within the same gene: MCAT (malonyl-

CoA-acyl carrier protein transacylase). They have been selected for capture set 2 for category A and

B and from line D and B. The �rst SNP, rs342779307, might not be a very good candidate, the AA

substitution is from alanine to valine and both are non polar, hydrophobic. Furthermore, the results

of the blastp revealed that this location is variable, with either alanine or valine present in di�erent

species. Unfortunately the results are similar for the second SNP, rs330946522. The AA substitution

is proline to leucine which are both non polar, hydrophobic. There is no good alignment when blasting

the AA sequence and very little is known about the function of the MCAT gene. However some

interesting facts are linking this gene to other candidates. The protein encoded by this gene is found

exclusively in the mitochondria. It is a transacylase, which is involved in the metabolism of fatty acids.

This could be an interesting target as some of or other target genes are linked to the mitochondria.

The fact that two SNP are located closely together in this gene is important, this SNP and other could

de�ne haplotypes.

The next two SNPs, rs340611738 and rs333510524, are located on chromosome 6 and both are within

the PMFBP1 (polyamine modulated factor 1 binding protein 1) gene, just two nucleotides apart. The

SNPs have an A and a T as reference and both have a G as their alternative allele. Both SNPs a�ect

the same amino acid, the �rst one trigger a change from serine to arginine which changes the charge
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from neutral to positive. The second is a change to glycine, from polar to non polar, so hydrophilic

to hydrophobic. If both SNPs have the alternative allele, the substitution is also serine to arginine.

The region where the nucleotides and amino acids are located is highly variable. The gene itself is

expressed in the brain in human at a low level but nothing is known about the function of the protein

it produces. As this region came up in the section looking at region with a high number of variants

above our threshold 4.3.6, it is a region that should be investigated in more detail.

The SNP on chromosome 12, rs334711032, is within the ZZEF1 (zinc �nger ZZ-type and EF-hand

domain containing 1) gene. The same SNP was selected on capture set 3, category A for line B,

and category C for line C. Both lines are the dam lines and capture set 3 is based on the PO study.

This might be a good candidate for dam to daughter preferential transmission. The allele frequency

di�erence between control and infanticide for line C is quite high at 40%. The SNP alleles trigger a

change from alanine to serine which is a change from non polar, hydrophobic to polar, hydrophilic.

The region where the substitution is located in the protein is highly conserved: the alanine is present in

most species. Not a lot is known about the gene function but it is highly expressed in the hippocampus

and has been linked to impaired memory in the mouse [238], making it a candidate.

Another potential candidate SNP, rs692365780, is located on chromosome 12, within the gene TTC19

(tetratricopeptide repeat domain 19). This gene is an interesting target because its function has

been linked to ataxia [239], a neurological disease characterised by a lack of coordination in muscle

movements. More importantly it is related to mitochondrial complex III de�ciency and neurological

impairment [240]. As we saw in the previous studies (section 1.4.2), mitochondrial dysfunction has

been associated with bipolar disorder and schizophrenia [66, 67]. While the gene is a good candidate,

unfortunately the SNP is not. The substitution it triggers switch an isoleucine for a valine, which are

both neutral and non polar. Furthermore the protein region is not very conserved . Despite of this, it

might be interesting to investigate the gene in more details, as other variants might be more impactful.

On chromosome 13, one of the potential candidate, rs337655527, is located within the gene IGSF5

(immunoglobulin superfamily, member 5). The SNP has been selected for capture set 2 and category

B (serial infanticide) on line C. This gene has been linked by GWAS with suicide attempts in mood

disorder patients [241]. The protein region is highly conserved but the change is valine to alanine: both

are polar, hydrophobic. The alignment returns a prevalent alanine in that location so the valine could

have an impact even if the polarity is similar. However this is di�cult to assess.

The last SNP in our list of potential candidates, rs324827243, is located within the KIAA1755 gene.

Not a lot is know about the gene but it is expressed in the brain. The change in AA is from alanine

to threonine which is change of polarity, from polar, hydrophilic to non polar, hydrophobic. The AA

is located in a highly conserved region and alanine is present at this location in all of the protein

alignments. It could be a good candidate due to di�erence in allele frequencies. It is found in capture

set 3, category B and in line C. The aggressive pool has only the reference nucleotide C while the
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control have a allele frequency for the reference allele of 56% for both. It is one of the largest change

in allele frequencies in the table. The function of the gene needs to be investigated to validate this

candidate.

4.3.5.3 Unlikely candidates.

The �rst group of SNPs, located on chromosome 1, are within two di�erent genes, TSPYL4 (testis-

speci�c Y-encoded-like protein 4 ) and TSPYL1 (testis-speci�c Y-encoded-like protein 1). There are

three SNPs with missense consequence in TSPYL4, rs337246460, rs321068974 and rs80970369. One

in TSPYL1, rs327767403. There several changes in the amino acid chain of the protein coded by

the gene TYSPL4. The three SNPs are causing a change of polarity at that location, with changes

from isoleucine to threonine (non polar to polar), threonin to alanine (polar to non polar) and �nally

from glutamine to proline (polar to non polar). The blastp of the protein sequences around the AA

subsitution shows that the protein is not very conserved between species at these locations. As the

region is not very conserved it is hard to predict if a change of polarity will a�ect the protein function.

Furthermore there is very little known about this gene. The change of polarity also happens for

TSPYL1, a change from proline to serine. For this protein the region is conserved and most species

have conserved the proline. This substitution could have an impact on the protein function but very

little is known about it. The TSPYL family is related to genes located on the Y chromosome and

involved in male fertility. However one member is known to linked to brain function TSPYL2. These

variants were found in line C, one of the dam lines, and were picked up by the capture set 3, category

B (serial infanticide), suggesting a potential dam to daughter transmission. In all cases the alternative

allele was more frequent in the infanticide pool than in the control pool. Therefore the substitution of

polarity in the protein happens more often in infanticide animals.

Of the candidates found on chromosome 4, two SNPs are less likely to be good candidate due to the

unknown nature of the gene they are in, they are rs325683130 and rs339852659. They were found for

capture set 3 category C (family history of infanticide) and one of them is classi�ed as deleterious by

SIFT. The gene at this location (109.6MB) is unknown in the pig but comparisons with the human

returns CYMP (chymosin pseudogene) as a potential match for this gene. The pig gene is classi�ed as

a pseudo gene and has to potential to produce a protein. The protein might have divergent functions to

CYMP. The �rst AA substitution is a like for like substitution as it is change from serine to asparagine,

both are neutral and polar. The second is deemed deleterious by the SIFT prediction however the

change is between two neutral and non polar AAs, leucine to proline. The blastp alignments gave little

information as there were no matches for the part of the protein where the AA substitution happens.

Unfortunately, there is very little known about the gene other than it is a peptidase, it is not well

characterised and the only indication of function is a GWAS study on depression [242] that identi�ed

one SNP, located in this gene. It almost reached genome wide signi�cance (5.10−7).
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The next variants in this category are located on chromosome 9. They cover an uncharacterised gene

and TNN (tenascin N). The �rst SNP, rs333013901, is classi�ed as deleterious by the SIFT prediction.

The di�erence in allele frequencies is modest, the infanticide pools being at 50% and 41.7% and the

controls at 22% and 14%, the average di�erence is 28% between the two categories of pools. This

SNP was also only identi�ed for capture set 3, category A in line C. It is probably below the �ltering

threshold for category B and C. However the change in the AA chain is interesting, it is a change from

threonine to arginine which modi�es the charge of the amino acid, from neutral to positively charged.

The position is also well conserved between species. However the gene in the pig is very short and not

characterised. Comparing it to the human and mouse genome suggest that it might be PCNP (PEST

proteolytic signal containing nuclear protein). Unfortunately the gene PCNP is poorly characterised

and not much is known about its function other than being involved in the cell cycle [243].

The other variant on chromosome 9, rs332900783, is in the gene TNN (tenascin N ). It has an A

as its reference allele and a G as its alternative allele. Other close species (cow, horse) have also a A

at this position but other have a G. The change in amino acids is isoleucine to valine which are both

neutrally charged and non polar. TNN itself is uncharacterised and has low expression in the mouse

and human brain, however tenascin proteins are involved in axon generation and the protein encoded

by this gene has been found in the hippocampus [244].

The SNP located in the gene NLE1 (notchless homolog 1) on chromosome 12, rs321307993, might

not be an interesting candidate. Nothing is known about this gene's function but it is expressed in

the brain. The change in AA triggered by the SNPs is likely to have little impact as the substitution

has the same polarity, polar and the same charge, positive. The position is however highly conserved

unfortunately, as little is known about this gene and its protein in other species, it makes it hard to

evaluate this SNPs.

One SNP located on chromosome 13, rs346399941, is located within the CLIC6 (chloride intracellular

channel 6) gene. The AA substitution triggers a change in charge in the protein, from serine to arginine,

from neutral to positively charged. Unfortunately the AA chain is not very conserved at this location

and nothing relevant to a role in the brain is known about this gene.

Another variant in this category, rs81209170, is located on chromosome 16 and within the FAM114A2

(family with sequence similarity 114 member A2) gene. Unfortunately despite begin found in two

di�erent capture sets (two and three, both for category A), it is not a high priority candidate. The

change is from lysine to arginine, both are hydrophilic and positively charged. The region is relatively

conserved, but both lysine and arginine are presents at that location in other species. Furthermore

little is known about the function of this gene product.
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Most of our candidate SNPs were found in line B and C, the two dam lines. This suggests that the

genetic component of maternal infanticide is more prevalent in the line B and C, which is interesting

as these two lines are the pure breed lines. One hypothesis could be that pure breed lines are more

susceptible to the in�uence of the genome compared to cross breed lines.

4.3.6 Regions of interest

Reminder of the categories used: for category A all the infanticide pools were compared against the

controls. For category B the infanticide pool containing serial infanticide animals were compared to the

controls and for capture C the pools with animals with a family history of infanticide were compared

to the controls.

In order to identify more regions of interest, the repartition of the SNPs passing the �lter threshold

were investigated using genomic plots. By visually inspecting the genomic plots generated for variants

passing the threshold and overlapping with target regions, it became clear that some regions are

covered by a large number of variants.Other regions only have a few variants covering them. Regions

with a large number of SNPs passing the threshold or with genes of interest were selected in order to

investigate the genes present in that region.

The category investigated are category B and C as A tend to select the regions in common between

the two, usually with a lower di�erence in allele frequencies, resulting in lower amount of SNPs selected.

One of the aim of this work is to try to �nd genes or region that are more likely linked to animals

classi�ed as serial infanticide or relating more to animals with a family history of infanticide. Therefore

the region was �rst investigated for category B and C before looking at its presence or not in category

A.

4.3.6.1 Capture set 1

The �rst region of interest is on chromosome 3 at 27MB, it is covering the gene XYLT1 (xylosyltrans-

ferase 1) for category A and B mainly and to a lesser extend on category C. In category B, 70 variants

cover this region, 52 are found in category A, but only 2 for category C. This region was one of the

target region in the GWAS study by Quilter et al [2]. The SNP observed were from line C mainly.

Unfortunately there are no known functions linking XYLT1 to our phenotype of interest so far, but it

is expressed in the brain.

The second region of interest is more interesting and is located on chromosome 3. It covers the gene

RBFOX1 (RNA binding fox-1 homolog 1) and its upstream region. It is found for all three category,

but mainly for line C again. For category A, SNPs in lines B and D are also found. The number of

variant passing threshold in this region is large, 321 for category B, and 310 for category C and only

70 for category A. This region was one of the major peaks identi�ed in the Quilter et al study [2]. It

is of particular interest because it is syntenic with an human locus on chromosome 16 that has been
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linked to puerperal psychosis [108] and bipolar disorders [109]. The gene is also almost exclusively and

highly expressed in the human brain. The region surrounding it has been recently linked to depression

by GWAS [245, 246]. It has also been implicated in other psychiatric and brain disorders such as

attention-de�cit hyperactivity disorder (ADHD) [113, 115, 114], autism [247, 112], generalised anxiety

disorder [248], and copy number variations in this region are linked to developmental coordination

disorder [249]. The protein produced by the gene is one of a Fox-1 family of RNA-binding proteins

that is evolutionary conserved. It is also linked to GRIN1 (glutamate ionotropic receptor NMDA type

subunit 1), a target of interest from previous studies. RBFOX1 modulates the expression of alternate

splice variants for neuronally expressed genes, including GRIN1 [250]. This region is a very strong

candidate due to the fact that it is found in all three categories. It is most strongly correlated to line

C (Large White), but the fact that some other lines were found in di�erent categories is encouraging.

As no missense SNPs were found in this gene, the variants are probably located in introns or in the

5' region of the genes. This suggest that any in�uence they have on the gene would come from splice

variants or regulatory features of the genes, thus regulating its expression rather than changing its

protein. A more detailed study of this region could be lead to some interesting results.

One of the region with a very large number of SNPs covers three of the candidate genes identi�ed

in the previous section, on chromosome 4 at 111MB, WDR47, CLCC1 and GPSM2. Once more most

of these SNPs are selected for line C, mainly category A and B, with only a small fraction found for

category C. For category B 309 variants are selected, 114 for category A but only 6 for category C.

Line C is the large white pure breed. As the SNPs are found in majority for the category B, it suggests

an in�uence on the fact that the animals will be those with serial infanticide trait. As discussed before,

all three genes in the interval are interesting candidates.

The next region is on chromosome 12 and is another region that con�rms some of our previous

results. It covers three of the genes identi�ed as potential candidates before, NCOR1, TRPV2 and

TTC19. This time, some SNPs above the threshold are found in line B, but in the majority are in

line C. The region is well covered with SNPs passing the threshold for categories A and B but has less

coverage for category C. The number of variants passing the threshold for category A is 249, 124 were

selected for category B and only 23 for category C. It does con�rm this region as a candidate region

for further investigation.

A region on chromosome 14 with a large number of SNPs above the thresholds. For category A

248 selected variants are present from line B and C. For category B only 70 are present, all from

line C. Finally, for category C 154 variants are selected from both line B and C. The intervals covers

four genes, POLE, GALNT9, P2RX2 and FBRSL1. Of these four, one of them is a more interesting

candidate, P2RX2. This gene is linked to the regulation of the release of vasopressin and oxytocin [251]

. One of the gene of interest selected by the missense SNPs analysis in the previous section was AVP,

which encodes for polypeptides of the vasopressin and oxytocin family. Low levels of oxytocin have
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been linked to aggressive behaviour [83] and, as described in the previous section, other psychiatric

disorders are linked to both vasopressin and oxytocin. The later hormone was also a protein of interest

in Quilter et al gene expression study [80], making this key target. The other genes in this region have

no function linked speci�cally to the brain or behavioural phenotypes but they are all expressed in the

brain. This region was also one of the top haplotype region found in Quilter et al [2].

The last region of interest for capture set 1 is located on chromosome 15 and cover the gene PAX3

(paired box 3). This region was selected for all three categories, but once more only found in line

C. The number of variants passing the threshold for category A is 99, 43 for category B and 49 for

category C. The 3' region of this gene and the gene itself are one of the regions that reached genome

wide signi�cance in the GWAS carried out by Quilter et al [2]. The gene is critical in foetal development

and more speci�cally neurological development. In mice mutations of this gene cause spina bi�da and

exencephaly [123]. In humans, mutations in this gene are linked to major developmental syndromes,

such as the Waardenburg syndrome [252] and the craniofacial-deafness-hand syndrome [124].

4.3.6.2 Capture set 2

For category B (serial infanticide) of capture set 2, several regions con�rm some of the results found

using the missense SNPs table. A large number of SNPs are found to cover the region of the MCAT

gene, on chromosome 5 at 5.5MB, for line B. For category A only 8 variant were selected, 71 were

present for category B and 3 for category C.

Another region covered by a high proportion of SNPs, from line H, covers the ASPM gene region, on

chromosome 10 at 20MB. Only 2 and 4variants were selected for category A and C respectively in line

B and D. For category B, 47 variants passed threshold for line H. Another interval is on chromosome

14 and covers the ADORA2A gene. Here the SNPs are all selected for line C. No variants were selected

for category A and B, 9 are selected for category B but the target interval is really small. Despite

the low number of variant this region should be investigated further. For category C animals (family

history of infanticide), a large number of SNPs (47) cover the gene PARP1, which was also one of our

targets from the missense SNPs, this time all the SNPs were selected from line B.

Other regions not found in the previous analysis but covered by a large number of SNPs are described

below. On chromosome 3 there is a region covering the gene TGFA (transforming growth factor alpha),

selected for category B and in line C, with 113 variants selected. Unfortunately there are no know

function for this gene linking the gene to our phenotype of interest to date. The next region of

interest found for category B with 132 selected variants covering the gene ARPP21 (cAMP regulated

phosphoprotein 21), on chromosome 13 at 21 MB. Most of the SNPs selected are found in line C.

The same region is also selected for category C with a larger proportion of SNPs above threshold,

almost all found in line B, but two in line C. This gene is a very promising candidate as it encodes

for cAMP-regulated phosphoprotein. It is highly expressed in the brain and enriched in the caudate
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nucleus. It is an area of the brain involved in memory, sleep and the reward system, which is linked

to dopomine secretion. In the mouse a similar protein regulates the e�ects of dopamine in the basal

ganglia. As discussed before, dopamine plays a important role in the prevention of depression and is

a target for several of the genes identi�ed in this study and previous ones. It is also a regulator of

calmodulin signalling and when a mouse knockout was generated, it resulted in anxiety like behaviours

[253]. Deletion of this gene could be a potential pathogenic factor for intellectual disability [254]. This

makes this region a priority candidate in line C.

The �nal region of interest for capture set 2 is located on chromosome 11 and covers the gene LRCH1

(leucine rich repeats and calponin homology domain containing 1), it was selected on line B for category

C with 626 variants present. This gene was found in a RNA sequencing experiment performed in our

lab and part of another thesis [176]. The gene is expressed in the brain but so far no interesting

function related to our phenotype has been found. However it is classi�ed as a negative regulator of

GTPase activity, which links it to G-proteins.

4.3.6.3 Capture set 3

The �rst region of interest for capture set 3 is found on chromosome 1 for categories A and B (serial

infanticide) in line C, and covers the genes TYSPL4 and TYSPL1. As discussed previously ( section

4.3.5.3) this region had several missense SNPs in it and could be a candidate for further investigation,

however the genes function is currently not well characterised. The number of selected variants for this

region for category A is 50, for category B it is 78 and for category C, there are only 3 variants.

The next region of interest is located on chromosome 2 at 84.5MB and covers two genes, COL4A3BP

(collagen type IV alpha 3 binding protein) and POLK (DNA polymerase kappa). It was selected for

category C (history of infanticide) and found in line B, 116 variants passing threshold are present.

Both genes are expressed in the brain and mutations in COL4A3BP have been linked to developmental

disorders in a large scale study [255]. It is also involved in the Goodpasture syndrome, an auto-immune

disorder. POLK functions are largely linked to cancer. This region could be interesting but there is

no clear link to our phenotype of interest.

Another region with a tight cluster of SNPs is located on chromosome 3 and was selected for category

C, on line B. A total of 180 selected variants are found in this region. Two genes are close to this

location, RNF144A (ring �nger protein 144A) and RSAD2 (radical S-adenosyl methionine domain

containing 2). Both are expressed in the brain but no functions are described that would overlap our

phenotype of interest.

The next region is on chromosome 4 and was selected for the three categories, A, B and C. Inter-

estingly both categories were selected on di�erent lines. For category A , 115 SNPs were found from

line C. For category B, 100 SNPs were selected and came for line C. For category C, 65 SNPs were

and they were selected for line B. The gene this region covers is ASAP1 (ArfGAP with SH3 domain,
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ankyrin repeat and PH domain 1). It is expressed in the brain and a human GWAS study has linked

it schizophrenia in the Ashkenazi Jews [221]. This could be interesting as the Ashkenazi Jews are a

population which had very little genetic mixing. Commercial breeds tend to also have poorer genetic

mixing, due to the selection for particular trait. This lack of genetic mixing will elevate the frequencies

of certain alleles in the population, some of which could have deleterious e�ects.

There are three other regions of interest on chromosome 4. The �rst two were selected for category

B for line C, the �rst one with 242 variants and covering NKAIN3 and the second with 116 selected

variants and covering KCNA2, KCNA10 and PROK1. The second region was also found for category

A, with 66 SNPs selected originating from line B and D. The last region was selected for category

C and line B, covering EXT1 with 124 variants. The �rst candidate NKAIN3 (sodium/potassium

transporting ATPase interacting 3) is highly expressed in the brain but little is known about its

function apart from one GWAS on Alzheimer's disease which found a genome wide signi�cant SNPs in

this gene [256]. For the second region, found in categories A and B, only KCNA2 (potassium voltage-

gated channel subfamily A member 2) might be an interesting candidate. It is expressed in the brain

and mutations in this gene have been linked to episodic ataxia and hereditary ataxia [257, 258]. Ataxia

is a neurological disorder that a�ects coordination, balance and speech in humans. The other genes in

this region (KCNA10 and PROK1 ) have no functions linked to the brain or any psychiatric disorders.

The �nal gene of interest on chromosome 4, EXT1 (exostosin glycosyltransferase 1) is expressed in the

brain. So far, most of its functions are linked to bone growth and related diseases. The allele frequency

di�erences in this region of EXT1 are very high. If this gene was to be linked to any psychological

disorder or brain functions, it could be a good candidate.

One of the gene identi�ed in the missense SNPs table and con�rmed in the region study is PMFBP1.

It is located on chromosome 6 and is covered by a cluster of SNPs with a relatively large allele di�erence

between control and infanticide pools (40 to 60%). A total of 100 SNPs were found in line B and were

selected for category C (family history of infanticide). A second region of interest on chromosome 6 is

just downstream of the gene CDH11 (cadherin 11). The SNPs, at total of a 172, are also from line B,

and were selected for category C. One GWAS found genome wide signi�cant association of this gene

with schizophrenia [210].

The next genomic interval is located on chromosome 9. It covers the region upstream and the gene

EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) itself. This region was selected for

categories A (35 SNPs), B (serial infanticide, 32 SNPs) and C (family history of infanticide, 213 SNPs),

but on di�erent lines: on line H for category B, line B for category C and line B and C for category

A. This gene has been linked to ataxia [259] and schizophrenia [260]. It is the only region which has

been selected for line H, one of the two lines with the highest incidence of maternal infanticide.

Two regions have been selected on chromosome 10. One is upstream and covering partially the

gene FRMD4A (FERM domain containing 4A), and the second one is within the GPR158 (G protein-

186



4 Discussion

coupled receptor 158) gene. For the gene FRMD4A, the region has a large cluster of SNPs for category

A (128 SNPs), B (44 SNPs) and C (255 SNPs) but for di�erent lines, in line C for category B and line

B for categories A and C. The gene itself has been associated to Alzheimer's disease by GWAS, and

the variant associated reached genome wide signi�cance [261]. The second gene, GPR158, also has a

large cluster of SNPs for both category B (84 SNPs) and C (353 SNPs), but again for di�erent lines,

C and B respectively. This gene is almost exclusively expressed in the brain and the protein it encodes

is a G protein-coupled receptor. One study found that it regulates stress induced depression in the

mouse and increased expression of this gene has been observed in the pre-frontal cortex in depressive

animals [262]. Once again, it is a gene linked to G-protein signalling, linking it with several of our

other target regions.

One interesting observation from this set of data is that line B and C are still the predominant lines

for which regions surpass our threshold. More speci�cally, the lines are segregating between category

B (line C) and category C (line B). This suggests that line B, a Landrace line, might have a more

strong genetic linkage for the pathology in category C, which is for the pools with a family history of

infanticide. For line C, a large white line, the predominant category is B, linked to the serial aggressor

individuals. It suggests that the genetic component for this line might be di�erent, and the breeds as

a more systematic occurrence of infanticide in individuals. Disappointingly there are very few results

for either line D or H. This is true for all capture sets. Di�erent genes might be involved for these

lines, or the regions we selected to study are not the best candidate regions for these two lines.
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This work provides a good example of how the genetic tools currently available can be used to invest-

igate the genetic components of a pathology. The staged screening process used in this work could be

applied to other diseases and other species. Using a combined approach of genotyping and sequencing

opens new possibilities to identify the genes and loci in the genome linked to maternal infanticide.

The results presented here suggest that the genetic component of this pathology is not restricted to

a single location of the genome, but that several loci are contributing to an increased risk of infant-

icide. Each of these regions will contribute modestly to the overall phenotype, but taken together,

they can increase the risk of incidence of infanticide events. Regions identi�ed might be shared by

di�erent lines, others are more speci�c to a single line, suggesting variability of the genetic component

in di�erent lines and breed. It is possible that pressure of selection due to commercial breeding has

the unwanted consequence of selecting di�erent susceptibility loci in di�erent lines and breeds. This

could be caused by the LD structure present in the genome. The desirable traits selected for breeding

might be linked by LD to less desirable trait. Thus these traits will �hitch-hike� with the selected trait

and become more prevalent in a population selected for breeding. It was also noted that some lines

had more candidates in one of our three categories. Line C, the Large White, has more candidates

found in the category including the serial infanticide sows. Line B, the Landrace, on the other hand,

has more candidates for the category involving the animals selected because of their family history

of infanticide. Line D and H returned very few regions of interest. It is di�cult to understand why,

one hypothesis could be that because they are cross breeds, their genomes are more heterogeneous

and therefore the penetrance of causal loci is lower than the pure bred lines. There are some common

trends between some of the genes that were identi�ed as targets by previous studies and this work.

Genes involved with G-protein pathway, the regulation of dopamine, vasopresine and oxytocin levels

were found in di�erent parts of this work. Another interesting trend the are genes involved with the

mitochondria and energy production, suggesting that alteration of the genome impacting on the way

the cells produce energy could have an behavioural impact.

While looking at individual gene function can lead to identifying interesting targets, genes tend to

work together in pathways and networks to regulate a biological functions or processes. Therefore,

the list of target genes obtained can be investigated as group of genes using tools such as DAVID

[179]. It uses an approach called gene set enrichment, comparing a list of genes of interest against
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the background of all the genes in the genome to identify functions that may be over-represented in

the candidate genes compared to all the genes. This analysis was performed using human genes as

they are better annotated. Unfortunately no signi�cant enriched clusters were found, only a few genes

grouped with related functions, such as ADORA2A and AVP involved in glutamate secretion and

NAV2, NRN1, PAX3 and RBFOX1 which are involved in the development of the nervous system.

Both type of functions are linked to the nervous system which is encouraging. However the lack of any

other interesting function linking our candidate genes together is disappointing. This could be due to

poor characterisation of a lot of our candidate genes, more work is needed to expand the knowledge of

the functions linked to these genes.

In order to con�rm some of this work and the region and genes identi�ed, restriction fragment length

polymorphism (RFLP) work has started. This will con�rm if the di�erence in allele frequencies found

a certain loci in the pools is valid for single individuals. Using this approach, genotype on individual

animals can be determined and used to determine the type of model they contribute to the trait, such

additive, dominant, etc... It can be done for a lot of animals at a low cost. This work will be carried

out on selected loci for which primers can be designed. Another possibility to validate some of our

variants is to investigate which allele is present in lines from the same breed where no or lower incidence

of maternal infanticide was reported.

If the RFLP approach validates some of the candidates found here, more experimental work will

be needed. Most of the variants selected are in non coding regions, to investigate their impact on

the function of genes, cell models or animal models will need to be designed. Without validation, the

�ndings of this thesis will remain theoretical.

The approach used in this study returns some interesting results but is not without �aws. For

example the array used has low coverage compared to other arrays available now. Furthermore, not

all the SNPs covered are of interest for all breeds. While the design used �ve di�erent breed to select

SNPs, the state of the reference was poor at the time of its conception and a lot of SNPs were of

poor quality. Given the improvement both in array technology and in the reference genome, it would

be possible to design a much better array. These advances can help increase the number of probes

on the array, to similar density used in human for example. Furthermore, with more sequencing data

becoming available every day, probes speci�c to breeds could be integrated to broaden the range of

lines and breeds that can be investigated using it. For this study, the array design used was based on

version 10.2 of the genome, redesigning it for version 11 of the genome might re�ne some of the regions.

This could lead to better typing of all the LD blocks present in the pig and get a better understanding

of their impact on this phenotype. Some studies have used this approach to look at heritability of

traits in families, by typing LD blocks using arrays in human [263].

This is also true for the sequence capture design; some of the probes are also targeting small areas

and this could result in missing some interesting target loci. Some genes might have been left out of
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the capture probe design because of the quality of the genome build 10.2. Now that a better genome

build is available, it would be worth checking if more genes could be included. Another approach to

resolve this issue is to design PCR primer targetting the genes of interest and produce amplicons for

sequencing. This is a low cost solution, allowing the sequencing of the target regions in a large number

of animals.

Pooling animals was a sensible approach because of the cost related to sequencing at the time, but

unfortunately most of the infanticide pools had a low number of animals in them, raising the question

of how representative they might be as a sample of the infanticide population. Obtaining good samples

is also di�cult, especially for some of the categories, such a serial infanticide. Breeders tend to kill

sows for economic reasons, as losing a litter is a signi�cant �nancial loss. If good samples can be

provided, the approach described here could be revisited using single animals instead of pools. This

is provided that sequencing becomes a�ordable enough, and a su�cient number of samples can be

collected. This would allow the use of more rigorous statistical methods to compare the infanticide

animals against the controls. Another approach that could follow from this work is to sequence all the

members of several families in order to conduct a linkage study based on variants called via sequencing.

Using single individuals instead of pools would also enable the calling of structural variants (or copy

number variant), which was not possible due to the algorithm used to call variants on the pools. These

approaches could be done on the whole genome if enough funding is available, or using sequence capture

to lower the costs. An hybrid approach could also be to sequence a few animals at genome wide level

to identify new regions of interest before designing a capture panel to interrogate these in more detail.

If a new array can be constructed, or if enough sequencing can be �nanced, combining family

and population analysis can be a powerful tool that has been used with success [264]. Furthermore,

combining a new array and a sequencing approach could prove to be a powerfull, especially for di�cult

diseases [265].

Finally, another avenue of investigation would be to look at the epigenetic change between control

and infanticide animals, for example comparing methylation levels of the DNA between the two groups.

Ideally the methylation change should be investigated in the brain, it might help to shade light on

some of our candidates for which no functions related to the brain or its pathologies were found. This

could be combined with a gene expression study to assess the impact of the methylation of the genome

on the expression of the genes.

While no de�nitive targets were found using our approach, several interesting regions have been

identi�ed for further work. With the advances in technology and re�nement of the pig genome, it will

be soon possible to con�rm and potentially �nd additional targets with greater certainty and at a lower

cost. The approach used here is not restricted to the pig and maternal infanticide, it could be applied

to other pathologies and animals.
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Contribution to work related to this thesis

An association and haplotype analysis of porcine maternal infanticide: A model for human

puerperal psychosis?

Quilter, C. , Sargent, C. , Bauer, J. , Bagga, M. R., Reiter, C. P., Hutchinson, E. L., Southwood, O.

I., Evans, G. , Mileham, A. , Gri�n, D. and A�ara, N. (2012),

Am. J. Med. Genet., 159B: 908-927. doi:10.1002/ajmg.b.32097
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