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Deep neural networks have achieved state of the art accuracy at clas-
sifying molecules with respect to whether they bind to specific pro-
tein targets. A key breakthrough would occur if these models could
reveal the fragment pharmacophores that are causally involved in
binding. Extracting chemical details of binding from the networks
could enable scientific discoveries about the mechanisms of drug
actions. But doing so requires shining light into the black box that
is the trained neural network model, a task that has proved difficult
across many domains. Here we show how the binding mechanism
learned by deep neural network models can be interrogated, using
a recently described attribution method. We first work with carefully
constructed synthetic datasets, in which the molecular features re-
sponsible for ’binding’ are fully known. We find that networks that
achieve perfect accuracy on held out test datasets still learn spu-
rious correlations, and we are able to exploit this non-robustness
to construct adversarial examples that fool the model. This makes
these models unreliable for accurately revealing information about
the mechanisms of protein-ligand binding. In light of our findings,
we prescribe a test that checks whether a hypothsized mechanism
can be learned. If the test fails, it indicates that either the model must
be simplified or regularized and/or that the training dataset requires
augmentation.
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A major stumbling block to modern drug discovery is to1

discover small molecules that bind selectively to a given2

protein target, while avoiding off-target interactions that are3

detrimental or toxic. The size of the small molecule search4

space is enormous, making it impossible to sort through all5

the possibilities, either experimentally or computationally (1).6

The promise of in silico screening is tantalizing, as it would7

allow compounds to be screened at greatly reduced cost (2).8

However, despite decades of computational effort to develop9

hixgh resolution simulations and other approaches, we are still10

not able to rely solely upon virtual screening to explore the11

vast space of possible protein-ligand binding interactions (3).12

The development of high throughput methods for empiri-13

cally screening large libraries of small molecules against pro-14

teins has opened up an approach where machine learning15

methods correlate the binding activity of small molecules with16

their molecular structure (4). Among machine learning ap-17

proaches, neural networks have demonstrated consistent gains18

relative to baseline models such as random forest and logistic19

regression (5–9). In addition to protein-ligand binding, such20

models have been trained to predict physical properties that21

are calculated using density functional theory, such as polar-22

izability and electron density (10–12). The ultimate promise23

of data-driven methods is to guide molecular design: models24

learned from ligands that bind to particular proteins will eluci-25

date mechanism and generate new hypotheses of ligands that 26

bind the required target in addition to improved understanding 27

of the non-covalent interactions responsible. 28

The motivating question for this work is: Why do virtual 29

screening models make the predictions they do? Despite their 30

high accuracy, the major weakness of such data-driven ap- 31

proaches is the lack of causal understanding. While the model 32

might correctly predict that a given molecule binds to a partic- 33

ular protein, it typically gives no indication of which molecular 34

features were used to make this decision. Without this, it is 35

not clear if the model learns the mechanism of binding, or 36

spurious molecular features that correlate with binding in the 37

dataset being studied (13–15). Such model weaknesses are 38

not captured by traditional evaluations that measure model 39

accuracy on held out test sets because these held out sets suffer 40

from experimental selection bias and do not contain random 41

samples drawn at uniform from the space of all molecules. 42

The key issue is to assess whether state-of-the-art neural 43

network models trained on protein-ligand binding data learn 44

the correct binding mechanisms, despite the presence of dataset 45

bias. To unravel this, we define a synthetic "binding logic" as a 46

combination of molecular fragments that must be present (or 47

absent) for binding to occur, e.g. "naphthalene and no primary 48

amine". We construct 16 binding logics and use each to label 49

molecules from the Zinc12 database (16). We randomly split 50

the dataset for each logic into test and train splits, and train 51

models. Model attribution is used to assess whether each 52

trained model has learned the correct binding logic. 53

To measure model performance on heldout sets we report 54

the Area Under the Curve ("AUC") of the Receiver Operating 55

Characteristic ("ROC") curve (17), and refer to this as the 56

Significance Statement

Advances in machine learning have led to neural networks for
virtual screening, which sift through trillions of small molecules
to find those that are pharmacologically important. Such meth-
ods have the potential to make chemical discoveries, but only
if it is possible to untangle why models make the predictions
that they do. Here we use attribution methods to investigate
neural networks models for small molecule binding, and show
that while it is possible to identify pharmacophores, there is
also the real possibility that a model which seems to perform
perfectly instead learns spurious correlations in the underlying
dataset. We propose an attribution based test for determining
whether a model can learn a hypothesized binding mechanism.

aTo whom correspondence should be addressed. E-mail: {mccloskey,ataly,lcolwell}@google.com

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | April 23, 2019 | vol. XXX | no. XX | 1–7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/201000126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

Model AUC. We then use a recently developed attribution57

method (18) to verify if each model learns its corresponding58

binding logic correctly. The method assigns an attribution59

score to each atom that reports how important the atom is to60

the model’s ultimate prediction. We develop a novel metric61

called the Attribution AUC that measures how well the per-62

atom attribution scores reflect the ground truth binding logic.63

The atoms within each molecule are ranked by their attribution64

scores, and these rankings compared with the ground truth65

binary label for each atom indicating whether that atom is66

part of the binding logic.67

The synthetic labels perfectly obey each binding logic, re-68

moving issues of experimental noise, so it is perhaps not sur-69

prising that neural network models obtain Model AUC ≈ 1.070

in all cases on heldout sets filtered from Zinc. Nonetheless,71

the Attribution AUC is often much lower than 1.0, likely due72

to biases in the original dataset. Zinc12 does not contain all73

possible molecules, so there are molecular fragments that cor-74

relate with the binding logic but are not themselves involved in75

binding. This dataset bias implies that there exist “adversarial76

molecules” that do not satisfy the defined binding logic, for77

which the model makes incorrect predictions. Indeed, exam-78

ining the model attributions allows us to identify adversarial79

molecules. Hence, even in this controlled setting, the network80

fails to learn the binding logic. Real-world protein-binding81

tasks are even more complex, due to noise in the binding assay,82

as well as underlying binding logics that are potentially more83

complex.84

To illustrate the practical utility of this approach, we apply85

this framework to ligands from the DUD-E dataset (19) that86

bind ADRB2. We create a hypothesized logic for the binding87

mechanism, and create synthetic labels for the DUD-E dataset88

based on this logic. Although a graph convolutional neural89

network makes perfect predictions on a held out dataset, biases90

in the dataset lead us to discover molecules which the model91

predicts bind to ADRB2, despite not satisfying the logic. The92

pattern used by the model to decide binding is different from93

the logic we imposed. Thus, despite its seemingly perfect94

performance, the model is fundamentally not able to predict95

that molecules bind for the right reason.96

Analysis Framework97

To generate data with ground truth knowledge of the bind-98

ing mechanism, we construct 16 synthetic binary label sets99

in which binding is defined to correspond to the presence100

and/or absence of particular logical combinations of molecular101

fragments. For example, ligands could be labeled positive102

(i.e. bind to the target protein) if they obey the binding logic103

"carbonyl and no phenyl." Each binding logic is used to filter104

the Zinc database of molecules to yield sets of positive and105

negative labeled molecules. In our implementation we specify106

molecular fragments using the SMARTS format (20) and we107

use RDKit (21) to match them against candidate molecules,108

with a custom implementation of the logical operators and,109

or, and not. The 16 logics used in this paper are made up110

of elements sampled from 10 functional groups (Table S1),111

with up to four elements per logic joined by randomly selected112

operators (Tables 1, S2).113

Dataset bias in chemistry is a well known issue that has114

previously been described (13). Essentially molecules that115

have been used in protein-ligand binding assays are not drawn116

Fig. 1. An example of per-atom model attributions visualized for a molecule. Each
atom is colored on scale from red to blue in proportion to its attribution score with red
being the most positive and blue being the most negative.

uniformly at random from chemical space, but instead their se- 117

lection for inclusion in a binding assay reflects the knowledge of 118

expert chemists. These biases mean that large neural network 119

models are at risk of overfitting to the training data. To reduce 120

this risk, we carefully construct each dataset to be balanced, 121

by sampling equally from all combinations of negations of the 122

functional groups that make up each logic. In the case of just 123

one functional group (A), this means that dataset contains 124

equal numbers of molecules that match "A" and "~A". When 125

there are two functional groups, say A and B, we have equal 126

numbers matching "A&B", "A&~B", "~A&B", and "~A&~B". 127

Similarly, all combinations are considered for logics with 3 and 128

4 functional groups. Each negation combination is represented 129

by 1200 molecules in the dataset, with approximately 10% of 130

each reserved for held out model evaluation. 131

Model Training. We use two models: the molecular graph 132

convolution (GC) model from Kearnes et al (22) and the 133

message passing neural network (MPNN) from Gilmer et al 134

(10). Both featurize each molecule using atoms and pairs of 135

atoms. We use the same hyperparameters reported, with the 136

exception of a minibatch size of 99 and training each to 10,000 137

steps, taking ≈ 1 hour on one GPU for each dataset. The 138

model returns a binding probability for each molecule in the 139

heldout test set, which is used to rank the molecules. Each 140

molecule has a binary label indicating whether it binds. The 141

ROC curve is generated by plotting the true positive rate 142

against the false positive rate for ranking score thresholds 143

in [0, 1]. The AUC is the area under the ROC curve: 1.0 144

is a perfect classifier with 100% true positives and 0% false 145

positives, while a random classifier would receive 0.5. 146

Attribution Technique: Integrated Gradients. We 147

next seek to determine whether these models have learned the 148

binding logic used to generate the synthetic labels. Given a 149

trained model and an input, an attribution method assigns 150

scores to each input feature that reflect the contribution of 151

that feature to the model prediction. Inspecting or visualizing 152

the attribution scores reveals what features, in our case atoms 153

and atom-pairs, were most relevant to the model’s decision; 154

see Figure 1. Formally, suppose a function F : Rn → [0, 1] 155

represents a deep network. 156

Definition 1 The attribution at input x = (x1, . . . , xn) ∈ 157

Rn is a vector AF (x) = (a1, . . . , an) ∈ Rn where ai is the 158

contribution of xi to the prediction F (x). 159

In our case, the input x is a molecule featurized into atoms 160

and atom pairs, and F (x) denotes the probability of binding 161
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to a protein target. To compute attributions to individual162

molecular features we use the Integrated Gradients method(18).163

This method is justified by an axiomatic result showing that164

it is essentially the unique method satisfying certain desirable165

properties of an attribution method. Formal definitions, re-166

sults, and comparisons to alternate attribution methods are167

available in (18).168

In this approach, attributions are defined relative to a169

baseline input, which serves as the counterfactual in assessing170

the importance of each feature. Such counterfactuals are171

fundamental to causal explanations (23). For attribution on172

images, the baseline is typically an image made of all black173

pixels. Here, we use an input where all atom and atom-pair174

features are set to zero (details in Supplementary Information).175

The Integrated Gradient is defined as the path integral176

of the gradient along the linear path from the baseline x′ to177

the input x. The intuition is as follows. As we interpolate178

between the baseline and the input, the prediction moves179

along a trajectory, from uncertainty to certainty (the final180

probability). At each point on this trajectory, the gradient181

of the function F with respect to the input can be used to182

attribute the change in probability back to the input variables.183

A path integral is used to aggregate the gradient along this184

trajectory.185

Definition 2 Given an input x and baseline x′, the integrated186

gradient along the ith dimension is defined as follows.187

ai ::= (xi − x′i)×
∫ 1

α=0

∂F (x′+α×(x−x′))
∂xi

dα [1]188

where ∂F (x)
∂xi

is the gradient of F along the ith dimension at x.189

Attribution scores are assigned to both atom and atom-pair190

features. To simplify the analysis, we distribute the atom191

pair scores evenly between the atoms present in each pair. If192

vi ∈ AF is the attribution for atom i, and eij ∈ AF is the193

attribution for atom pair i, j, then our aggregated attribution194

vector (indexed over k atoms) ÃF = (ã1, ..., ãk) ∈ Rk where:195

ãi = vi +
∑

(i,j)∈Ei

eij
2 [2]196

and Ei is the set of all featurized pairs that include atom i.197

Henceforth we study these aggregated per-atom attributions198

for each molecule.199

Attribution AUC. Ideally, we would like the attribution200

scores to isolate the synthetic binding logic used to label the201

dataset, since this would translate to the ability to identify202

pharmacaphores in real data. Attribution scores are typically203

studied by visualization using heatmaps; figure 1 provides a204

visualization of the per-atom attribution scores for a molecule.205

If a model learns the correct binding logic, we would expect206

the attribution scores to be larger in magnitude for atoms207

involved in the binding logic and small elsewhere.208

Figure 2 illustrates the attributions calculated for a209

molecule using the model trained on logic 1, which requires210

a phenyl group. A positive attribution score (red) indicates211

that this atom increases "protein binding" ability, according to212

the trained model, whereas a negative attribution score (blue)213

indicates that the model thinks that this atom hurts binding.214

Our goal is to evaluate how faithfully these scores reflect215

the binding logic used to label the dataset. To that end216

Atom index
Attribution scores ranked
in decreasing order

Involved in ground
truth binding logic

1 0.29 1
5 0.29 1
0 0.28 1
2 0.09 1
4 0.09 1
3 0.07 1
9 0.03 0
11 0.02 0
... ... ...

Fig. 2. Top, visualization of Integrated Gradients on a "binding" molecule for Logic 1
(must contain a phenyl group). Bottom, the top 8 atoms ranked by attribution score in
descending order. This molecule would receive an Attribution AUC of 1.0 for these
attributions, because all atoms involved the binding logic (indicated by 1 in the second
column) have larger scores than all other atoms (marked 0 in second column).

we develop a novel metric called the Attribution AUC that 217

measures how well the per-atom attribution scores reflect the 218

ground truth binding logic. We handle fragments required to 219

present for binding to occur separately from those required 220

to be absent. If a binding logic contains fragments required 221

to be present, we assign each fragment atom the label 1, and 222

all other atoms the label 0. We then use these labels and the 223

attribution scores to compute the Present-Attribution-AUC. 224

If a logic contains fragments required to be absent, the process 225

is analogous, except that we first multiply all attribution 226

scores by -1.0 to reverse their ranking before calculating the 227

Absent-Attribution-AUC. The final Attribution AUC for the 228

molecule is simply the average of its Present-Attribution-AUC 229

and its Absent-Attribution-AUC. This same process is applied 230

regardless of which synthetic "binding" label the molecule 231

carries. We report the average Attribution AUC across all 232

molecules in the heldout set for each dataset. The Attribution 233

AUC is entirely distinct from the Model AUC, which measures 234

model performance on heldout data. 235

For some molecules and binding logics, there is more than 236

one correct set of ground truth labels. Consider disjunctive 237

binding logics (that contain an "or" operator), e.g. "phenyl or 238

alkyne or alcohol." The model can satisfy the binding logic by 239

detecting phenyl alone or alkyne alone, or alcohol alone, or any 240

pair of the fragments, or all three together. Each case results 241

in different sets of ground truth labels. A similar multiplicity 242

of possible ground truth labels arises when a molecule exhibits 243

multiple occurrences of a fragment in the binding logic (e.g. 244

if a molecule has two phenyl groups). Because all these label 245

sets are correct, we enumerate them and report the maximum 246

Attribution AUC found among them. Formally, for a set S of 247

molecular fragments in a disjunctive binding logic or present 248

multiple times in the molecule, we enumerate the set of all 249

k-combinations
(
S
k

)
(1 ≤ k ≤ |S|) of molecular fragments.250

McCloskey et al. PNAS | April 23, 2019 | vol. XXX | no. XX | 3
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Each k-combination has a ground truth labeling where atoms251

in its molecular fragment(s) receive a 1 label while others are252

labelled 0. We report the maximum Attribution AUC found.253

Zinc+2 test set. We also report the Model AUC for a254

"Zinc+2" holdout set, generated from the Zinc holdout set255

by iterating through molecules and adding or removing an256

atom or bond to each in nearly every valence-valid way as257

in (24). This process is then repeated, resulting in a set of258

molecules each a molecular graph edit distance ≤ 2 from the259

Zinc holdout set, and about 5000 times larger, for each logic.260

Results261

Table 1 lists the results obtained for networks trained using262

data with synthetic labels that reflect the binding logics listed.263

The Zinc Model AUC is near perfect (1.0) for each of the264

binding logics indicating that the trained models can correctly265

classify the molecules in the held-out test sets. Furthermore266

the Attribution AUC is significantly lower than 1.0 for several267

logics. For instance, for binding logic 9 the GC Attribution268

AUC is only 0.7 while the Zinc Model AUC is 0.995. We note269

that the Attribution AUC declines as the logics become more270

complicated and include larger numbers of functional groups.271

The MPNN models exhibit a similar pattern. We now discuss272

further implications of these findings.273

Attacks guided by attributions. The combination of near-274

perfect model performance and low Attribution AUCs indi-275

cates either: (1) a weakness of the attribution technique, or276

(2) failure of the model to learn the ground truth binding277

logics. We distinguish these cases by investigating individual278

molecules that were correctly classified but have low Attri-279

bution AUCs. Guided by patterns across multiple molecules280

where the attributions were misplaced with respect to the281

ground truth binding logic, we discovered small perturbations282

of each molecule which caused the class predicted by the model283

to be incorrect. By manually inspecting a few perturbations284

for a few mis-attributed molecules, we found at least one285

perturbation attack for every logic that did not have a high286

Attribution AUC, leading us to conclude that the model did287

not learn the correct binding logic. These results clarify that288

the Zinc heldout sets are still under-representative, despite289

their careful balancing, discussed above.290

Here, we describe a few of the perturbation attacks that291

we found. Binding logic 9 requires the presence of "a primary292

amine and an ether and a phenyl." One example from Zinc293

that satisfies this logic is shown in Figure 3A. This molecule294

is correctly classified as positive (i.e. binding) by the model295

with a probability of 0.97, however as seen in the figure it has296

misplaced attributions on several atoms in the ring structures297

on the left. We perturb those atoms and separate the primary298

amine from them with an additional carbon, resulting in the299

molecule shown in Figure 3B. The model gives this perturbed300

molecule a predicted score of 0.20, a negative class prediction,301

despite the fact that the molecule still fully satisfies the same302

binding logic that the model was trained against.303

Binding logic 12 requires that a molecule satisfy the "ab-304

sence of an alcohol or presence of a primary amine, along with305

an unbranching alkane and a fluoride group." One example306

from Zinc that satisfies this logic is shown in Figure 3C. It is307

correctly classified as positive by the model with a prediction308

of 0.97, however it has misplaced attributions on the carbon 309

atom in the carbonyl group on the left. Guided by these 310

attributions we perturb that carbonyl, converting it to a single 311

bond, resulting in the molecule in Figure 3D. The model gives 312

this perturbed molecule a predicted score of 0.018, a negative 313

class prediction, despite the fact that the molecule still satisfies 314

the ground truth binding logic. 315

Zinc+2 holdout set. To further probe the ability of the 316

model to generalize, and the role played by dataset bias we also 317

report Model AUCs for each logic measured on the "Zinc+2" 318

holdout sets described above. These sets are a factor of 5000 319

larger than the Zinc holdout sets, and contain many of the 320

perturbations that led to adversarial attacks. The Zinc+2 321

Model AUCs are almost uniformly lower than the Zinc Model 322

AUCs, reflecting the more stringent nature of this test. In 323

some logics (e.g. number 13) the Zinc+2 Model AUC is 324

substantially lower, indicating dataset bias in the Zinc holdout 325

for these models. In most logics, the Zinc+2 Model AUC 326

is slightly lower, and we interpret this as evidence for some 327

degree of bias in the Zinc datasets. We conclude that even 328

when adversarial examples are rare, finding them is easy by 329

following mis-attributions. Furthermore, if only the Model 330

AUC on the Zinc holdout set is considered - as in common 331

practice - the MPNN and GC models perform similarly on 15 332

of the 16 datasets. However, our Zinc+2 sets reveal that they 333

do not generalize with the same fidelity. 334

A pharmacological hypothesis. These results indicate 335

that the attribution can be more trustworthy than the model: 336

even if the model achieves a high Model AUC, a low Attribution 337

AUC appears to indicate that there exist molecules that do 338

not satisfy the binding logic but are predicted to bind by the 339

model. This occurs because of biases in the underlying dataset 340

learned by the model. 341

The same concern applies to real protein binding datasets. 342

Our results suggest a simple test that can be performed to 343

test an existing hypothesis about the pharmacophore(s) that 344

control binding. First, the hypothesis is codified as a “binding 345

logic”, which is used to create a set of synthetic labels. Next, 346

these synthetic labels are used to train a neural network and 347

analyze its attributions and Attribution AUC. A good Attri- 348

bution AUC, with attribution to the correct functional groups 349

suggests that the combination of dataset and trained neural 350

network is able to generalize. However, a poor Attribution 351

AUC or consistent unexpected attribution artifacts would sug- 352

gest a need for model simplification and regularization, and/or 353

dataset augmentation. 354

We follow this protocol using data for binding to the protein 355

ADRB2 from the DUD-E dataset (19). One hypothesis for 356

a pharmacaphore is a benzene ring with a two-carbon chain 357

connected to an ionized secondary amine. This results in a 358

dataset with 934 positives and 14290 negatives, of which ~10% 359

are reserved as a heldout set by ID hash. We trained a graph 360

convolution model (see details in SI text), and achieved a 361

Model AUC on the heldout set of 1.0. However its Attribution 362

AUC is extremely low, at only 0.11. Visualizations of the 363

attributions show the attribution only consistently highlights 364

the NH2+ group. This means that attacks (e.g. Figure 4) are 365

easily discovered using this insight. 366
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Logic
number

Synthetic binding logic GC Zinc
AUC

GC Zinc+2
AUC

GC
Attribution

AUC

MPNN Zinc
AUC

MPNN
Zinc+2
AUC

MPNN
Attribution

AUC

1. 1.000 0.987 0.980 0.990 0.981 0.990

2. 0.995 0.997 0.980 1.000 1.000 0.990

3. 1.000 0.998 1.000 1.000 0.998 1.000
4. no 1.000 0.995 0.970 1.000 0.944 1.000

5. or
(

no
)

0.992 0.974 0.910 1.000 0.997 0.900

6. and
(

no
)

0.999 0.993 0.890 1.000 0.978 0.770

7. and 1.000 0.995 0.770 1.000 0.999 0.610

8. and 1.000 0.994 0.790 1.000 0.921 0.830

9. and and
(

no
)

1.000 0.983 0.930 0.990 0.975 0.900

10. and and 0.995 0.992 0.700 0.990 0.915 0.600

11.
(

or no
)

and
(

no
)

0.999 0.994 0.860 1.000 0.972 0.830

12. and
(

no
)

and
(

no
)

1.000 0.994 0.880 1.000 0.999 0.850

13. and and
(

or no
)

0.999 0.947 0.670 0.940 0.869 0.660

14.
(

and no
)

or
(

and no
)

1.000 0.981 0.700 1.000 0.995 0.670

15.
(

or no
)

and and
(

no
)

1.000 0.991 0.750 1.000 0.982 0.710

16. and
(

no
)

and and 0.996 0.975 0.760 0.980 0.812 0.620

Table 1. This table shows the Attribution AUC and the Model AUCs for two heldout sets for Graph Convolution networks and MPNNs trained
against synthetic data labels generated according to the binding logics listed in column 1. See the Supplementary Information for more
details on the binding logics and their component molecular fragments.

Discussion367

There is growing concern about the non-robustness of machine368

learning models, and much recent research has been devoted369

to finding ways to assess and improve model robustness (13–370

15, 25–30). A common source of non-robustness is bias in the371

training dataset (13, 25, 27, 30). An approach to identifying372

such bias is to examine attributions of the model’s predictions,373

and determine if too much attribution falls on non-causal374

features or too little falls on causal features (25); both are375

undesirable and indicate bias in the training dataset that the376

model erroneously learned.377

The central challenge in applying this approach to virtual378

screening models is that a priori, we know neither the internal379

logic of the model, nor the logic of protein binding. Thus we380

have no reference for assessing the attributions. To resolve this,381

we introduce the idea of evaluating hypotheses for binding382

logics by setting up a synthetic machine learning task. We use383

the hypothesized logic to relabel molecules used in the original384

study, and train a model to predict these labels. If attributions385

fail to isolate the hypothesized logic on this synthetic problem,386

it signals that there exist biases in the training data set that387

fool the model into learning the wrong logic. Such bias would388

also likely affect the model’s behavior on the original task.389

To quantitatively assess attributions, we introduce the At-390

tribution AUC metric, measuring how well the attributions391

isolate a given binding logic. It is not a measure of the “cor-392

rectness” of the attributions. The mandate for an attribution393

method is to be faithful to the model’s behavior, and not the394

behavior expected by the human analyst (18). In this work, 395

we take the faithfulness of the attributions obtained using 396

Integrated Gradients as a given. For our synthetic task, we 397

find the attributions to be very useful in identifying biases in 398

the model’s behavior, and we were able to successfully trans- 399

late such biases into perturbation attacks against the model. 400

These attacks perturb those bonds and atoms with unexpected 401

attributions, and their success confirms the faithfulness of the 402

attributions. The attacks expose flaws in the model’s behavior 403

despite the model having perfect accuracy on a held out test 404

set. This reiterates the risk of solely relying on held out test 405

sets to assess model behavior. 406

Finally, we acknowledge that attributions as a tool offer a 407

very reductive view of the internal logic of the model. They 408

are analogous to a first-order approximation of a complex non- 409

linear function. They fail to capture higher order effects such 410

as how various input features interact during the computation 411

of the model’s prediction. Such interactions between atom 412

and bond features are certainly at play in virtual screening 413

models. Further research must be carried out to reveal such 414

feature interactions. 415

Thoughts for practitioners. The recent machine learn- 416

ing revolution has led to great excitement regarding the use 417

of neural networks in chemistry. Given a large dataset of 418

molecules and quantitative measurements of their properties, 419

a neural network can learn/regress the relationship between 420

features of the molecules and their measured properties. The 421

resulting model can have the power to predict properties of 422
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D 

Fig. 3. Visualizations of attribution scores, calculated using Integrated Gradients.
A) Attribution scores for a molecule from the logic 9 heldout set that obeys the
binding logic. B) A minor perturbation of the above molecule, guided by errors in the
attributions shown in (A), which gets misclassified by the model. C) Attribution scores
for a molecules from the logic 12 heldout set that obeys the binding logic. D) A minor
perturbation of the above molecule which still obeys the logic, but is misclassified by
the model. Dotted boxes are added around the fragments whose presence defines
the molecules as members of the positive class.

Fig. 4. Visualizations of Integrated Gradients attributions. Top, on an example "binder"
from the synthetic ADRB2 dataset, correctly predicted as a positive with prediction
0.999. Bottom, a minor perturbation of the above molecule which should be a negative
but gets misclassified as still a positive with prediction 0.995.

molecules in a held out test set, and indeed can be used to find 423

other molecules with these properties. Despite this promise, 424

an abundance of caution is warranted: it is dangerous to trust 425

a model whose predictions one does not understand. A serious 426

issue with neural networks is that although a held out test set 427

may suggest that the model has learned to predict perfectly, 428

there is no guarantee that the predictions are made for the 429

right reason. Biases in the training set can easily cause errors 430

in the model’s logic. The solution to this conundrum is to 431

take the model seriously: analyze it, ask it why it makes the 432

predictions that it does, and avoid relying solely on aggregate 433

accuracy metrics. The attribution-guided approach described 434

in this paper for evaluating learning of hypothesized binding 435

logics may provide a useful starting point. 436
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