
POINT OF VIEW

Data science for the scientific
life cycle
Abstract Data science can be incorporated into every stage of a scientific study. Here we describe

how data science can be used to generate hypotheses, to design experiments, to perform

experiments, and to analyse data. We also present our vision for how data science techniques will be

an integral part of the laboratory of the future.
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Introduction

A
key tenet of the scientific method is

that we learn from previous work. In

principle we observe something about

the world and generate a hypothesis. We then

design an experiment to test that hypothesis,

set up the experiment, collect the data and ana-

lyse the results. And when we report our results

and interpretation of them in a paper, we make

it possible for other researchers to build on our

work.

In practice, there are impediments at every

step of the process. In particular, our work

depends on published research that often does

not contain all the information required to repro-

duce what was reported. There are too many

possible experimental parameters to test under

our time and budget constraints, so we make

decisions that affect how we interpret the out-

comes of our experiments. As researchers, we

should not be complacent about these

obstacles: rather, we should always look towards

new technologies, such as data science, to help

us improve the quality and efficiency of scientific

research.

Data science could easily be dismissed as a

simple rebranding of "science" – after all, nearly

all scientists analyse data in some form. An alter-

native definition of a data scientist is someone

who develops new computational or statistical

analysis techniques that can easily be adapted

to a wide range of scenarios, or who can apply

these techniques to answer a specific scientific

question. While there is no clear dividing line

between data science and statistics, data science

generally involves larger datasets. Moreover,

data scientists often think in terms of training

predictive models that can be applied to other

datasets, rather than limiting the analysis to an

existing dataset.

Data science emerged as a discipline largely

because the internet led to the creation of

incredibly large datasets (such as ImageNet, a

database of 14 million annotated images;

Krizhevsky et al., 2012). The availability of

these datasets enabled researchers to apply a

variety of machine learning algorithms which, in

turn, led to the development of new techniques

for analysing large datasets. One area in which

progress has been rapid is the automated anno-

tation and interpretation of images and texts on

the internet, and these techniques are now

being applied to other data-rich domains,

including genetics and genomics (Libbrecht and

Noble, 2015) and the study of gravitational

waves (Abbott et al., 2016).

It is clear that data science can inform the

analysis of an experiment, either to test a spe-

cific hypothesis or to make sense of large data-

sets that have been collected without a specific

hypothesis in mind. What is less obvious, albeit

equally important, is how these techniques can

improve other aspects of the scientific method,

such as the generation of hypotheses and the

design of experiments.

Data science is an inherently interdisciplinary

approach to science. New experimental techni-

ques have revolutionised biology over the years,
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from DNA sequencing and microarrays in the

past to CRISPR and cryo-EM more recently. Data

science differs in that it is not a single technique,

but rather a framework for solving a whole range

of problems. The potential for data science to

answer questions in a range of different disci-

plines is what excites so many researchers. That

said, however, there are social challenges that

cannot be fixed with a technical solution, and it

is all too easy for expertise to be "lost in transla-

tion" when people from different academic

backgrounds come together.

In October 2018, we brought together statis-

ticians, experimental researchers, and social sci-

entists who study the behaviour of academics in

the lab (and in the wild) at a workshop at the

Alan Turing Institute in London to discuss how

we can harness the power of data science to

make each stage of the scientific life cycle more

efficient and effective. Here we summarise the

key points that emerged from the workshop,

and propose a framework for integrating data

science techniques into every part of the

research process (Figure 1). Statistical methods

can optimise the power of an experiment by

selecting which observations should be col-

lected. Robotics and software pipelines can

automate data collection and analysis, and incor-

porate machine learning analyses to adaptively

update the experimental design based on

incoming data. And the traditional output of

research, a static PDF manuscript, can be

enhanced to include analysis code and well-

documented datasets to make the next iteration

of the cycle faster and more efficient. We also

highlight several of the challenges, both techni-

cal and social, that must be overcome to
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Figure 1. Integrating data science into the scientific life cycle. Data science can be used to generate new

hypotheses, optimally design which observations should be collected, automate and provide iterative feedback on

this design as data are being observed, reproducibly analyse the information, and share all research outputs in a

way that is findable, accessible, interoperable and reusable (FAIR).We propose a virtuous cycle through which

experiments can effectively and efficiently "stand on the shoulders" of previous work in order to generate new

scientific insights.
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translate theory into practice, and share our

vision for the laboratory of the future.

Data science for planning
experiments
Hypothesis-driven research usually requires a sci-

entist to change an independent variable and

measure a dependent variable. However, there

are often too many parameters to take account

of. In plant science, for instance, these parame-

ters might include temperature, exposure to

light, access to water and nutrients, humidity

and so on, and the plant might respond to a

change in each of these in a context-dependent

way.

Data scientists interested in designing opti-

mal experiments must find ways of transforming

a scientific question into an optimisation prob-

lem. For instance, let us say that a scientist wants

to fit a regression model of how temperature

and light exposure influence wheat growth. Ini-

tially they might measure the height of the

wheat at a number of combinations of tempera-

ture and light exposure. Then, the scientist could

ask: what other combinations of temperature

and light exposure should I grow the wheat at in

order to improve my ability to predict wheat

growth, considering the cost and time con-

straints of the project?

At the workshop Stefanie Biedermann (Uni-

versity of Southampton) discussed how to trans-

form a wide range of experimental design

questions into optimisation problems. She and

her colleagues have applied these methods to

find optimal ways of selecting parameters for

studies of enzyme kinetics (Dette and Bieder-

mann, 2003) and medical applications

(Tompsett et al., 2018). Other researchers have

used data science to increase the production of

a drug while reducing unwanted by-products

(Overstall et al., 2018). The process iteratively

builds on small number of initial experiments

that are conducted with different choices of

experimental parameters (such as reagent con-

centrations, temperature or timing): new experi-

mental parameters are then suggested until the

optimal set are identified.

Optimal experimental design can also help

researchers fit parameters of dynamical models,

which can help them develop a mechanistic

understanding of biological systems. Ozgur

Akman (University of Exeter) focuses on dynamic

models that can explain how gene expression

changes over time and where the model param-

eters represent molecular properties, such as

the transcription rates or mRNA degradation

rates. As an example he explained how he had

used this approach to find the optimal parame-

ters for a mathematical model for the circadian

clock (Aitken and Akman, 2013). Akman also

described how it is possible to search for possi-

ble gene regulatory networks that can explain

existing experimental data (Doherty, 2017), and

then select new experiments to help distinguish

between these alternative hypotheses

(Sverchkov and Craven, 2017). For instance,

the algorithm might suggest performing a cer-

tain gene knockout experiment, followed by

RNA-seq, to gain more information about the

network structure.

A clear message from the workshop was that

statisticians need to be involved in the experi-

mental design process as early as possible,

rather than being asked to analyze the data at

the end of a project. Involving statisticians

before data collection makes it more likely the

scientist will be able to answer the research

questions they are interested in. Another clear

message was that the data, software, infrastruc-

ture and the protocols generated during a

research project were just as important as the

results and interpretations that constitute a sci-

entific paper.

Data science for performing
experiments
In order to effectively plan an experiment, it is

necessary to have some preliminary data as a

starting point. Moreover, ensuring that the data

collected during a particular experiment is used

to inform the planning process for future experi-

ments will make the whole process more effi-

cient. For standard molecular biology

experiments, this kind of feedback loop can be

achieved through laboratory automation.

Ross King (University of Manchester) and co-

workers have developed the first robot scientists

– laboratory robots that physically perform

experiments and use machine learning to gener-

ate hypothesis, plan experiments, and perform

deductive reasoning to come to scientific conclu-

sions. The first of these robots, Adam, success-

fully identified the yeast genes encoding orphan

enzymes (King et al., 2009), and the second,

Eve, intelligently screened drug targets for

neglected tropical diseases (Williams et al.,

2015). King is convinced that robot scientists

improves research productivity, and also helps

scientists to develop a better understanding of

science as a process (King et al., 2018). For
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instance, an important step towards building

these robotic scientists was the development of

a formal language for describing scientific dis-

coveries. Humans might enjoy reading about sci-

entific discoveries that are described in English

or some other human language, but such lan-

guages are subject to ambiguity and exaggera-

tion. However, translating the deductive logic of

research projects into the formal languages of

"robotic scientists" should lead to a more pre-

cise description of our scientific conclusions

(Sparkes et al., 2010).

Let us imagine that a research team observe

that plants with a gene knockout are shorter

than wild type plants. Their written report of the

experiment will state that this gene knockout

results in shorter plants. They are likely to leave

unsaid the caveat that this result was only

observed under their experimental set-up and,

therefore, that this may not be the case under

all possible experimental parameters. The

mutant might be taller than a wild type plant

under certain lighting conditions or tempera-

tures that were not tested in the original study.

In the future, researchers may be able to write

their research outcomes in an unambiguous way

so that it is clear that the evidence came from a

very specific experimental set-up. The work

done to communicate these conditions in a com-

puter-readable format will benefit the human

scientists who extend and replicate the original

work.

Even though laboratory automation technol-

ogy has existed for a number of years, it has yet

to be widely incorporated into academic

research environments. Laboratory automation is

full of complex hardware that is difficult to use,

but a few start-ups are beginning to build tools

to help researchers communicate with their labo-

ratory robots more effectively. Vishal Sanchania

(Synthace) discussed how their software tool

Antha enables scientists to easily develop work-

flows for controlling laboratory automation. Fur-

thermore, these workflows can be iterative: that

is, data collected by the laboratory robots can

be used within the workflow to plan the next

experimental procedure (Fell et al., 2018).

One benefit of having robotic platforms per-

form experiments as a service is that researchers

are able to publish their experimental protocols

as executable code, which any other researcher,

from anywhere around the world, can run on

another automated laboratory system, improv-

ing the reproducibility of experiments.

Data science for reproducible data
analysis
As the robot scientists (and their creators) real-

ised, there is a lot more information that must

be captured and shared for another researcher

to reproduce an experiment. It is important that

data collection and its analysis are reproducible.

All too often, there is no way to verify the results

in published papers because the reader does

not have access to the data, nor to the informa-

tion needed to repeat the same, often complex,

analyses (Ioannidis et al., 2014). At our work-

shop Rachael Ainsworth (University of Manches-

ter) highlighted Peng’s description of the

reproducibility spectrum, which ranges from

“publication only” to "full replication" with

linked and executable code and data

(Peng, 2011). Software engineering tools and

techniques that are commonly applied in data

science projects can nudge researchers towards

the full replication end of the spectrum. These

tools include interactive notebooks (Jupyter,

Rmarkdown), version control and collaboration

tools (git, GitHub, GitLab), package managers

and containers to capture computational envi-

ronments (Conda, Docker), and workflows to

test and continuously integrate updates to the

project (Travis CI). See Beaulieu-Jones and

Greene, 2017 for an overview of how to repur-

pose these tools for scientific analyses.

Imaging has always been a critical technology

for cell and developmental biology (Burel et al.,

2015), ever since scientists looked at samples

through a microscope and made drawings of

what they saw. Photography came next, fol-

lowed by digital image capture and analysis.

Sébastien Besson (University of Dundee) pre-

sented a candidate for the next technology in

this series, a set of open-source software and

format standards called the Open Microscopy

Environment (OME). This technology has already

supported projects as diverse as the develop-

ment a deep learning classifier to identify

patients with clinical heart failure (Nirschl et al.,

2018), to the generation of ultra-large high reso-

lution electron microscopy maps in human,

mouse and zebrafish tissue (Faas et al., 2012).

The OME project also subscribes to the phi-

losophy that data must be FAIR: findable, acces-

sible, interoperable and reusable

(Wilkinson et al., 2016). It does this as follows:

i) data are made findable by hosting them online

and providing links to the papers the data have

been used in; ii) data are made accessible

through an open API (application programming
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interface) and the availability of highly curated

metadata; iii) data are made interoperable via

the Bio-Formats software, which allows more

than 150 proprietary imaging file formats to be

converted into a variety of open formats using a

common vocabulary (Linkert et al., 2010); iv)

data, software and other outputs are made reus-

able under permissive open licences or through

"copyleft" licences which require the user to

release anything they derive from the resource

under the same open licence. (Alternatively,

companies can pay for private access through

Glencoe Software which provides a commercially

licenced version of the OME suite of tools.).

Each group who upload data to be shared

through OME’s Image Data Resource can

choose their own license for sharing their data,

although they are strongly encouraged to use

the most open of the creative commons licenses

(CC-BY or CC0). When shared in this way, these

resources open up new avenues for replication

and verification studies, methods development,

and exploratory work that leads to the genera-

tion of new hypotheses.

Data science for hypothesis
generation
A hypothesis is essentially an "educated guess"

by a researcher about what they think will hap-

pen when they do an experiment. A new

hypothesis usually comes from theoretical mod-

els or from a desire to extend previously pub-

lished experimental research. However, the

traditional process of hypothesis generation is

limited by the amount knowledge an individual

researcher can hold in their head and the num-

ber of papers they can read each year, and it is

also susceptible to their personal biases

(van Helden, 2013).

In contrast, machine learning techniques such

as text mining of published abstracts or elec-

tronic health records (Oquendo et al., 2012), or

exploratory meta-analyses of datasets pooled

from laboratories around the world, can be used

for automated, reproducible and transparent

hypothesis generation. For example, teams at

IBM Research have mined 100,000 academic

papers to identify new protein kinases that inter-

act with a protein tumour suppressor (Span-

gler, 2014) and predicted hospital re-

admissions from the electronic health records of

5,000 patients (Xiao et al., 2018). However, the

availability of datasets, ideally datasets that are

FAIR, is a prerequisite for automated hypothesis

generation (Hall and Pesenti, 2017).

The challenges of translating
theory into practice
When we use data science techniques to design

and analyse experiments, we need to ensure

that the techniques we use are transparent and

interpretable. And when we use robot scientists

to design, perform and analyse experiments, we

need to ensure that science continues to explore

a broad range of scientific questions. Other chal-

lenges include avoiding positive feedback loops

and algorithmic bias, equipping scientists with

the skills they need to thrive in this new multidis-

ciplinary environment, and ensuring that scien-

tists in the global south are not left behind. We

discuss all these points in more detail below.

Interpreting experimental outcomes

When data science is used to make decisions

about how to perform an experiment, we need

to ensure that scientists calibrate their level of

trust appropriately. On one hand, biologists will

need to relinquish some level of control and to

trust the computer program to make important

decisions for them. On the other hand, we must

make sure that scientists do not trust the algo-

rithms so much that they stop thinking critically

about the outcomes of their experiments and

end up misinterpreting their results. We also

want to ensure that scientists remain creative

and open to serendipitous discoveries.

We discussed above the importance of hav-

ing a formal (machine-readable) language that

can be used to describe both scientific ideas and

experimental protocols to robots. However, it is

equally important that the results and conclu-

sions of these experiments are expressed in a

human-understandable format. Ultimately, the

goal of science is not just to be able to predict

natural phenomenon, but also to give humans a

deeper insight into the mechanisms driving the

observed processes. Some machine learning

methods, such as deep learning, while excellent

for predicting an outcome, suffer from a lack of

interpretability (Angermueller et al., 2016).

How to balance predictability and interpretabil-

ity for the human reader is an open question in

machine learning.

Positive feedback loops and algorithmic
bias

As with all applications of data science to new

disciplines, there are risks related to algorithmic

bias (Hajian et al., 2016). Recently there have

been some concerns over algorithmic bias

related to face-recognition of criminals – the
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face-recognition software was more likely to

report a false-positive of a black face than a

white face due to biases in the dataset that the

software was trained on (Snow, 2017;

Buolamwini and Gebru, 2018). Societal param-

eters shape the input data that is fed into

machine learning models, and if actions are

taken on the basis of their output, these societal

biases will only be amplified.

There are parallel issues with data science for

experimental biology – for instance there are

certain research questions that are popular

within a community through accidents of history.

Many people study model organisms such as

roundworms and fruit flies because early genet-

ics researchers studied them, and now there are

more experimental tools that have been tried

and tested on them – a positive feedback loop

(Stoeger et al., 2018).

We need to be careful to ensure that any

attempt to design experiments has the correct

balance between exploring new research ideas

and exploiting the existing data and experimen-

tal tools available in well-established sub-

disciplines.

Implementation and training

According to Chris Mellingwood (University of

Edinburgh), some biologists are amphibious and

fluidly move between "wet" laboratories and

"dry" computing (Mellingwood, 2017). How-

ever, many biologists do not know how to code

or do not have the required mathematical back-

ground to be able to reframe their research

questions as data science problems, so it may

be difficult for biologists to find ways of using

these new tools to design experiments in their

own laboratories. They might not even realise

that there is a tool available to help them resolve

the experimental design problems that they

face. Researchers may need specialised training

in order to learn how to interact with data sci-

ence tools in a efficient and effective way.

Reproducible data analysis alone requires an

understanding of version control, at least one, if

not multiple, programming languages, techni-

ques such as testing, containerisation and con-

tinuous integration. Machine learning and

optimisation algorithms require detailed statisti-

cal knowledge along with the technical expertise

– sometimes including high performance com-

puting skills – to implement them. Requiring all

these skills along with the robotics engineering

expertise to build an automated lab is outside of

the capacity of most researchers trained by the

current system.

Infrastructure and accessibility

Even once a system is built, it needs to be con-

stantly adapted as science progresses. There is a

risk that by the time a platform is developed, it

might be out of date. Sarah Abel (University of

Iceland) discussed how university incentive sys-

tems do not always reward the types of activities

that would be required for incorporating data

science into a laboratory, such as interdisciplin-

ary collaborations or maintenance of long-term

infrastructure.

Furthermore, due to the burden of develop-

ing and maintaining the infrastructure needed

for this new approach to science, some research-

ers may be left behind. Louise Bezuidenhout

(University of Oxford) explained that even

though one of the goals of "data science for

experimental design" is to have open and

"accessible" data available around the world,

scientists in the global south might not have

access to computing resources needed for this

approach (Bezuidenhout et al., 2017). There-

fore, we need to consider how the benefits of

data science and laboratory automation techni-

ques are felt around the world.

Augmentation, not automation

As we discuss the role of data science in the

cycle of research, we need to be aware that

these technologies should be used to augment,

not replace, human researchers. These new tools

will release researchers from the tasks that a

machine can do well, giving them time and

space to work on the tasks that only humans can

do. Humans are able think "out-of-the-box",

while the behaviour of any algorithm will inher-

ently be restricted by its code.

Perhaps the last person you might imagine

supporting the integration of artificial and

human intelligence is Garry Kasparov, chess

grand master. Kasparov lost to the IBM super-

computer Deep Blue in 1997 but more than 20

years later he is optimistic about the potential

for machines to provide insights into how

humans see the world (Kasparov, 2017). An

example that is closer to the life sciences is the

citizen science game BrainDr, in which partici-

pants quickly assess the quality of brain imaging

scans by swiping left or right (Keshavan et al.,

2018). Over time, there were enough ratings to

train an algorithm to automatically assess the

quality of the images. The tool saves researchers

thousands of hours, permits the quality assess-

ment of very large datasets, improves the reli-

ability of the results, and is really fun!
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So where does this leave the biologist of the

future? Experimentalists can continue to do cre-

ative research by, for example, designing new

protocols that enable them to study new phe-

nomena and measure new variables. There are

also many experimental protocols that are per-

formed so rarely that it would be inefficient to

automate them. However, humans will not need

to carry out standard protocols, using as purify-

ing DNA, but they might still need to know how

to perform various specialised tasks, such as dis-

secting specimens. They will also need to con-

stantly update the robotic platform to

incorporate new experimental protocols.

Finally and most crucially, the biologist of the

future will need to provide feedback into the

cycle of research – providing insight into what

hypotheses are interesting to the community,

thinking deeply about how experimental results

fit into the theories proposed by the broader

Box 1. What can you do now?

Planning an experiment

In the lab of the future, we envision that experimental parameters will be chosen in a theoreti-

cally sound way, rather than through ad hoc human decision making. There are already plenty

of tools to help researchers plan their experiments, including tools for selecting optimal time

points for conducting an experiment (Kleyman et al., 2017; Ezer and Keir, 2018), a collection

of R packages that enable optimisation of experimental design (CRAN) and the acebayes pack-

age, which takes prior information about the system as input, and then designs experiments

that are most likely to produce the best outputs (Overstall et al., 2017).

Performing an experiment

In the future, standard molecular biology experiments will be performed by robots, and execut-

able experimental protocols will be published alongside each journal article to ensure repro-

ducibility. Although many labs do not have access to laboratory automation, there are many

associated techniques that will improve the reproducibility of research. For instance, systems

like Protocols.io can help researchers to describe protocols in unambiguous ways that can be

easily understood by other researchers. Sharing laboratory know-how, using tools such as

OpenWetWare, will also enable a tighter feedback look between performing and planning

experiments.

Analysing experimental data

In a few years, we hope that many more data formats and pipelines will be standardised, repro-

ducible and open-access. For researchers who are most comfortable in a wet-lab environment,

the article "Five selfish reasons to work reproducibly" makes a strong case for learning how to

code (Markowetz, 2015). Jupyter notebooks are an easy way to share data analyses with

embedded text descriptions, executable code snippets, and figures. Workshops run by The

Carpentries are a good way to learn software skills such as the unix shell, version control with

git, and programming in Python or R or domain specific techniques for data wrangling, analysis

and visualisation.

Sharing your work

For anyone keen to know more about archiving their data, preprints, open access and the pre-

registration of studies, we recommend the "Rainbow of Open Science Practices" (Kramer and

Bosman, 2018) and Rachael Ainsworth’s slides from our workshop (Ainsworth, 2018).

Generating new hypotheses

Pooling studies across laboratories and textual analysis of publications will help identify scien-

tific questions worth studying. The beginning of a new cycle of research might start with an

automated search of the literature for similar research (Extance, 2018) with tools such as

Semantic Scholar from the Allen Institute for Artificial Intelligence. Alternatively, you could

search for new data to investigate using Google’s Dataset Search, or more specific resources

from the European Bioinformatics Institute or National Institute of Mental Health Data Archive.
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community, and finding innovative connections

across disciplinary boundaries. Essentially, they

will be focused on the varied and interesting

parts of science, rather than the mundane and

repetitive parts.
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