
 

Dietary amino acids and their 
contribution to de novo 

lipogenesis 

 

 

 
Evelina Charidemou 

Queens’ College 

University of Cambridge  

 November 2018 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 

This dissertation is submitted for the degree of Doctor of Philosophy 



 
 

i  

Declarations 

This dissertation is the result of my own work and includes nothing which is the outcome of 

work done in collaboration except as declared in the Preface and specified in the text. It is not 

substantially the same as any that I have submitted, or, is being concurrently submitted for a 

degree or diploma or other qualification at the University of Cambridge or any other University 

or similar institution except as declared in the Preface and specified in the text. I further state 

that no substantial part of my dissertation has already been submitted, or, is being concurrently 

submitted for any such degree, diploma or other qualification at the University of Cambridge 

or any other University or similar institution except as declared in the Preface and specified in 

the text. It does not exceed the prescribed word limit.  

 

  



 
 

ii  

Abstract 

Dietary amino acids and their contribution to de novo lipogenesis 

This dissertation is submitted for the degree of Doctor of Philosophy 

Evelina Charidemou 

Queens’ College 

The alarming increase in the incidence of the metabolic syndrome is the result of the nutrition 

transition featuring dietary patterns high in sugars, particularly liquid carbohydrates in the form 

of sugary beverages, fat, and protein from red meat. The aim of this thesis was to investigate 

the effect of changing the solid/liquid ratio of meals on gastric emptying as well as the effect of 

changing meal compositions on lipid metabolism.  

A 5-way crossover human study demonstrated that liquid carbohydrate was the main 

determinant of gastric emptying rate compared to macronutrient composition and it delayed 

gastric emptying of the solid fraction. In this study, the energy content of the liquid portion was 

not sufficient to induce de novo lipogenesis, however, the high protein meal, rich in glutamate 

increased de novo lipogenesis-associated triacylglycerides in plasma and liver-derived very 

low-density lipoprotein particles in samples from human subjects.  

The underlying mechanism behind this increase in lipogenesis by dietary amino acids was 

investigated in vitro. In hepatocytes, glutamate derived carbon was incorporated into palmitate 

and subsequently into triacylglycerides. In addition, supplementation with glutamate, glutamine 

and leucine, but not lysine increased synthesised triacylglyceride content in cells and 

decreased glucose uptake. Glutamate, glutamine and leucine increase activation of protein 

kinase B, suggesting that these amino acids induce de novo lipogenesis via the insulin 

signalling cascade.  

As dietary trends have shifted towards high carbohydrate/high fat consumption, and high-

protein diets are popularised as healthier alternatives, the data herein suggest that this is a 

more complex consideration.  Therefore, advocating the consumption of protein in the 

treatment of diabetes and obesity requires a more profound understanding of the role. 
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Chapter 1. Introduction 
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1.1 The nutrition transition and obesity epidemic 

 

Human dietary habits, in all their diversity, significantly delineate people’s health, growth and 

development. Since the Palaeolithic era when humans appeared on the Earth, a series of 

dietary changes have coincided with modernisation, urbanisation, economic development, and 

increased wealth. These changes are reflected in average stature and body composition and 

are accompanied by major changes in health status; i.e. broad patterns in food use and 

corresponding nutrition-related disease (Misra and Khurana, 2008). Currently, research 

focuses on the most recent nutritional shifts as they reflect the global population today. The 

latest transitions include the shift from traditional diets (high in cereal and fibre) to Western-

style diets (high in sugars, fat, and animal-derived food), which is a key contributor to the 

obesity epidemic and increased incidence of non-communicable diseases (NCDs) in 

developing countries (Popkin, 2006).  

 

The World Health Organisation (WHO) defines obesity as the abnormal or excessive 

accumulation of fat with ectopic fat deposition, which may impair health. Ectopic fat deposition 

is described as the storage of lipids in tissues other than adipose tissue, such as liver, skeletal 

muscle, heart and the pancreas. Ectopic fat may interfere with cellular functions leading to 

insulin resistance (Snel et al., 2012). Over-nutrition and a sedentary lifestyle are the major 

factors contributing to obesity (Hruby and Hu, 2015). Persistent obesity dysregulates a variety 

of metabolic processes, including the action of insulin. Insulin, a peptide hormone, is 

responsible for the regulation of glucose and lipid metabolism. Impaired insulin activity can 

disrupt processes controlling blood glucose, blood pressure, and lipids, and consequently, 

precipitate a number of conditions such as dysglycaemia, dyslipidaemia, and hypertension. 

The aforementioned conditions constitute the most dangerous heart attack risk factors and are 

associated with the ‘metabolic syndrome’ (Alberti et al., 2006). Being overweight or obese, and 

having the metabolic syndrome are precursors to the development of Type 2 Diabetes Mellitus 

(T2DM) and cardiovascular disease (CVD). Both of these diseases are examples of chronic 
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NCDs which are increasing in developed and developing countries (Popkin, 2006) and are of 

protracted duration and slow development.  

 

1.2 The metabolic syndrome  

 

A constellation of metabolic disorders, including hypertension, hyperglycaemia and 

hyperuricaemia, were observed in a number of patients back in 1923 by Kylin (Kylin, 1923). 

After Kylin’s observations, Revean noticed that often a person with impaired glucose tolerance 

will have at least one CVD risk factor. He then described this cluster of metabolic abnormalities 

as syndrome X (Reaven, 2001). Initially, central obesity was not included in the term syndrome 

X, and the term metabolic syndrome was coined to include central obesity as a collection of 

interacting risk factors. Even though the concept of the metabolic syndrome was accepted in 

the early 1920s, it was not until 1998, that researchers attempted to develop an internationally 

recognised definition to provide a tool for clinicians and researchers.  

In 1999, the WHO defined the metabolic syndrome as glucose intolerance, impaired glucose 

tolerance or diabetes mellitus and/or insulin resistance together with two or more risk factors 

listed below (Alberti et al., 2006):  

(1) Raised arterial pressure ≥ 140/90 mmHg 

(2) Raised plasma triacylglycerides (TAGs ≥ 1.7 mmol/L) and or low high-density 

lipoprotein (HDL)-cholesterol (< 0.9 mmol/L in men and < 1.0 mmol/L in women) 

(3) Central obesity (waist to hip ratio > 0.90 in males and > 0.85 in females) and or BMI > 

30 kg/m2 

(4) Microalbuminuria (urinary albumin excretion rate ≥ 20 g/min or albumin: creatinine 

ratio  ≥ 30 mg/g) 

Each component of the metabolic syndrome contributes to increased CVD risk, but 

combinations of two or more represent an increased risk compared to the individual factors 

alone (i.e. they are not merely additive). However, people might experience hyperglycaemia 

for up to 10 years before they develop glycaemic disorders (Martín-Timón et al., 2014). 
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Therefore, early management of the metabolic syndrome might have a significant impact on 

both diabetes and CVD, preventing the syndrome to develop into overt disease.   

 

 

1.2.1 Metabolic syndrome and cardiovascular disease 

 

Variable characteristics of the metabolic syndrome, including hyperglycaemia, hypertension, 

insulin resistance, a proinflammatory and prothrombotic state increase the risk of CVD. People 

with the metabolic syndrome have at least 2-fold increased risk of CVD compared to people 

without (Kaur, 2014). Elevated levels of TAGs, low-density lipoprotein (LDL) in the circulation 

and low levels of HDL-C, known as atherogenic dyslipidaemia, contribute to the formation of 

plaques in the artery wall (Grundy, 2004). The onset of diabetes is accompanied with CVD 

risk, suggesting that hyperglycaemia is atherogenic. However, there are limited data on the 

molecular basis of hyperglycaemia inducing atherosclerosis in part reflecting the difficulty in 

modelling long term chronic diseases. A plausible mechanism proposed is the non-enzymatic 

glycosylation of lipoproteins and proteins within the arterial walls (Aronson and Rayfield, 2002). 

Advanced glycosylation end products (AGEs) have been shown to trap LDL in the 

subendothelium as well as reduce LDL recognition by the LDL receptors (Brownlee et al., 

1985) and promote collagen cross-linking (Brownlee et al., 1986). AGEs have also been shown 

to induce the secretion of cytokines such as tumour necrosis factor α (TNF-α) and interleukin-

1 (IL-1) to promote inflammation (Brownlee et al., 1986). The basic concept of atherogenesis 

is the lipid-induced injury within the arteries that induces inflammation followed by the 

proliferation of smooth muscle cells.  

 

 

1.2.2 Metabolic syndrome and T2DM 

  

Glucose transporters, such as glucose transporter type 4 (GLUT4), stimulate glucose transport 

in response to insulin. An increase in postprandial glucose is sensed by the β-cells of the 

pancreatic islets of Langerhans, adjusting insulin secretion to control blood glucose levels. The 

insulin signalling cascade results in the translocation of GLUT4 storage vesicles to the plasma 

membrane to mediate glucose uptake. Impairment of any of the aforementioned steps leads 
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to insulin resistance. Insulin resistance is a major component of the metabolic syndrome. In 

T2DM, cells within the body become insulin resistant (i.e. they no longer take up glucose in 

response to insulin or uptake is impaired) and as the condition progresses, the pancreas 

decreases insulin production following a period of hyperinsulinaemia. The levels of GLUT4 are 

decreased in type 2 diabetic patients (Kampmann et al., 2011). T2DM accounts for ~90% of 

all cases of diabetes and is often associated with obesity (Wu et al., 2014). Lipoprotein 

metabolism is altered in T2DM, characterised by an overproduction of very low-density 

lipoprotein (VLDL) rich in TAGs and a decrease in the production and circulation of HDL (Adiels 

et al., 2008). Furthermore, levels of lipoprotein lipase (LPL) expression and activity of hormone 

sensitive LPL, are decreased, slowing removal of TAGs from VLDL (Verges, 2015). In addition, 

insulin resistant subjects fail to suppress gluconeogenesis, further increasing the levels of 

glucose but continue to activate lipogenesis (Brown and Goldstein, 2008). As in type 1 diabetes 

mellitus (T1DM), an impaired response to insulin produces increased blood glucose, resulting 

in a variety of long-term problems, including diabetic retinopathy (Duh et al., 2017) and diabetic 

gastroparesis (Reddy et al., 2010).  

 

 

1.2.2.1 Diabetic gastroparesis 

 

Diabetic gastroparesis (meaning partial stomach paralysis) refers to a chronic condition of 

delayed gastric emptying experienced by people with both T1DM and T2DM (Halland and 

Bharucha, 2016).  In health, the vagus nerve provides a channel for bidirectional interaction 

between the brain and the gut (Bonaz et al., 2018). Vagal axons associate with the interstitial 

cells of Cajal, which generate electrical slow waves to regulate the strength and frequency of 

the contractions of the gastrointestinal muscles between the stomach and the duodenum 

(Ordog et al., 1999). Firstly, the proximal stomach relaxes to accommodate large volumes of 

food, the antrum grinds food to small particles and the chyme is pumped, in peristaltic waves, 

across the pylorus. In diabetes, prolonged hyperglycaemia damages peripheral nerve fibres 

as well as the interstitial cells of Cajal (Yagihashi et al., 2011). Therefore, the stomach cannot 

contract correctly, and the emptying of its contents to the duodenum is delayed (Marathe et 



 
 

6 

al., 2013). More recently, it has been proposed that macrophages and mast cells are 

responsible for the pathogenesis of delayed gastric emptying (Srinivasan, 2016). It has been 

shown that in diabetes, increased numbers of macrophages correlate with a decrease in the 

number of interstitial cells of Cajal (Mikkelsen, 2010). Diabetic mice lacking macrophages 

(Csf1op/op) in the muscle layer of the small intestine do not lose the interstitial cells of Cajal and 

do not develop delayed gastric emptying (Srinivasan, 2016). Prolonged gastroparesis has 

been associated with increased small intestinal bacterial overgrowth (Reddymasu and 

McCallum, 2010). In addition, gastroparesis may result in the formation of bezoars, which are 

aggregates of undigested food in the stomach that form into a harden solid mass and they can 

potentially block food passing to the intestine (Eng and Kay, 2012). The rate of gastric 

emptying is crucial for the homeostasis of postprandial blood glucose levels. Therefore, 

prolonged gastroparesis may result in poor glycaemic control (Phillips et al., 2015). It is 

therefore important to control the rate of gastric emptying.  

 

 

1.2.2.2 Regulation of gastric emptying  

 

The rate of gastric emptying is crucial for glucose homeostasis. There is a bidirectional 

communication between glucose and gastric emptying (Marathe et al., 2013). Exposure of 

nutrients to the duodenum induces a negative feedback loop, decreasing gastric emptying. 

The intestine releases cholecystokinin (CCK), peptide tyrosine-tyrosine (PYY), and glucagon 

like peptide-1 (GLP-1) to mediate the ileal brake, i.e. decrease the contractions of the stomach 

to delay the transit of chyme through the gastrointestinal track. The interaction of nutrients with 

the small intestine mucosa induces the release of gastric inhibitory polypeptide (GIP) and GLP-

1 from K cells and L cells, respectively (Baggio and Drucker, 2007). Both GIP and GLP-1 

stimulate glucose-dependent insulinotropic effects. However, GLP-1 is also responsible for 

inhibiting the secretion of glucagon to modulate postprandial glycaemic excursions. Insulin and 

amylin are co-secreted from the pancreas to control glucose uptake and inhibit gastric 

emptying (Phillips et al., 2015).  
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1.2.2.3 Factors affecting gastric emptying  

 

There are a variety of factors that affect gastric emptying including: meal energy content, meal 

weight, volume, macronutrient composition, fibre content, pH and temperature (Chaw et al., 

2001; Clegg and Shafat, 2010). Since the obesity epidemic, research has focused on the effect 

of high energy dense food on gastric emptying (Xing and Chen, 2004). Studies have showed 

that high fat meals delay gastric emptying compared to low fat meals (Clegg and Shafat, 2010). 

In addition, high-carbohydrate meals have slower emptying times (Marciani et al., 2015). 

However, data from a previous study at the Medical Research Council-Elsie Widdowson 

Laboratory (MRC-EWL; Bluck, Griffin & Li personal communication) contradicts this. High fat, 

high carbohydrate and, high protein meals had a rapid gastric emptying rate compared to the 

control meal with no significant differences in gastric emptying between the three altered 

meals. The difference between the control meal and the modified meal was that the 

carbohydrate content was in liquid form in the control meal. This might suggest that liquid 

carbohydrate empties the stomach faster and induces slower emptying of the solid portion via 

negative feedback control. This also suggests that liquid carbohydrate is the main driver of 

gastric emptying rates compared to macronutrient compositions. As mentioned above, delayed 

gastric emptying changes the control of glycaemia and might therefore change glucose and 

lipid metabolism, predisposing an individual to insulin resistance. This warrants further 

investigation and forms the basis of this thesis. 
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1.2.3 Metabolic syndrome and non-alcoholic fatty liver disease  

 

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term describing a range of liver 

conditions that arise from fat accumulation without any excessive alcohol consumption. It is 

the most common cause of chronic liver disease in western society and is predicted to be the 

major reason for liver transplantation by 2030 (Byrne and Targher, 2015). There are two 

pathological forms: steatosis and non-alcoholic steatohepatitis (NASH). Isolated steatosis is 

considered a benign condition, however fat accumulation induces inflammation and may 

eventually cause NASH. Persistent inflammation results in the formation of scar tissue 

(fibrosis) and subsequent cirrhosis (Pais et al., 2011). NALFD is strongly correlated with the 

metabolic syndrome, though their relationship is complex and may be bidirectional. 

Approximately 90% of NAFLD patients fulfil one of the metabolic syndrome conditions whilst 

33% patients fulfil three conditions and therefore are defined as suffering from the metabolic 

syndrome as well (Marchesini et al., 2003). In addition, NAFLD is highly prevalent among 

T2DM patients; approximately 85% of NALFD patients have pre-diabetes or T2DM (Gaggini 

et al., 2013). In addition a hallmark for NAFLD and T2DM is increased hepatic de novo 

lipogenesis (DNL) which may further contribute to NAFLD (Sanders and Griffin, 2016).  

 

 

1.2.3.1 The biochemical process of DNL 

 

Hepatic DNL is the biochemical pathway by which fatty acids (FAs) are synthesised from 

acetyl-coenzyme A (CoA) subunits in the liver. Fatty acids are incorporated into a plethora of 

lipid species. Even though lipid species have several biological functions, accumulation of 

lipids, in cases of increased DNL, may be deleterious (Ress and Kaser, 2016). As mentioned 

above, increased DNL has been reported to contribute in the development of NAFLD, a 

condition linked to the metabolic syndrome and T2DM (Paschos and Paletas, 2009). Moreover, 

DNL levels are elevated in insulin resistance, indicating that the levels of DNL might be an 

important metric for pre-diabetes (Ameer et al., 2014). It is therefore crucial to understand the 

biochemical pathways of DNL and how it is induced.  
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When there is excess energy, reflected by increased levels of the reducing agent NADH, the 

tricarboxylic acid (TCA) cycle is inhibited and results in the accumulation of acetyl-CoA in the 

mitochondrion (Shi and Tu, 2015). Acetyl-CoA is then combined with oxaloacetate to 

synthesise citrate via citrate synthase (CS). Citrate is then exported to the cytosol through the 

citrate carrier (CiC) protein, also known as the citrate transport protein (Ferramosca and Zara, 

2014). In the cytosol, citrate is lysed to acetyl-CoA by ATP-citrate lyase (ACL) to initiate DNL. 

Acetyl-CoA is then carboxylated to malonyl-CoA by acetyl-CoA carboxylase (ACC; Bianchi et 

al., 1990). Malonyl-CoA is the elongation unit of the multi-functional enzyme fatty acid synthase 

(FAS). Eukaryotic FAS (Type I FAS) is a multi-protein complex with multiple functional 

polypeptides at different regions. It harbours catalytic domains for all the reactions required for 

fatty acid synthesis as well as acyl-carrier protein (ACP; Smith et al., 2003). The 

phosphopantetheine prosthetic arm of ACP shuttles the elongating acyl-chain to various 

catalytic sites of FAS, which rotates to aid in synthesis (Maier et al., 2008). The process is 

initiated by the transfer of acetyl-CoA and malonyl-CoA to the ACP generating acetyl-ACP and 

malonyl-ACP, respectively (Figure 1A). This reaction is catalysed by the malonyl/acetyl 

transferase (MAT) region of FAS (Mikkelsen et al., 1985). 
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Figure 1. Schematic representation of the organisation of FAS domains and its catalytic cycle. 

(A) Linear organisation of the mammalian FAS domains. (B) High energy balance causes citrate to be 

exported from the mitochondrion to the cytoplasm. In the cytoplasm, citrate is lysed to acetyl-CoA by 

ACL. Acetyl-CoA is then carboxylated to malonyl-CoA by ACC. Acetyl-CoA and malonyl-CoA are 

transferred to ACP by MAT (red). Acetyl-ACP and malonyl-ACP are condensed by KS (purple) to 

synthesise acetoacetyl-ACP in the first cycle of synthesis. In following cycles malonyl-ACP condenses 

with acyl (Cn+2)-ACP to synthesise β-ketoacyl-ACP. The β-ketoacyl-ACP intermediate is then reduced 

to β-hydroxyacyl-ACP by KR (blue), dehydrated to β-enoyl-ACP by DH (yellow) and reduced again to 

synthesise a four-carbon acyl-substrate for further elongation cycles by NADPH-ER (light blue). Once 

an acyl chain of 16 carbons is formed, the reaction is terminated by the action of TE (grey), which 

cleaves the fatty acid from ACP. ACL, ATP-citrate lyase; ACC; acetyl-CoA carboxylase; KS, β-ketoacyl 

synthase; KR, β-ketoacyl reductase; DH, dehydratase; NADPH-ER, NADPH-dependent enoyl 

reductase. Adapted from Maier, Jenni and Ban, 2006. 
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The β-ketoacyl synthase (KS) domain then catalyses the decarboxylative condensation of 

malonyl-ACP and acetyl-ACP to acetoacetyl-ACP in the first cycle or of the acyl (n+2)-ACP 

intermediate and malonyl-ACP to β-ketoaceyl-ACP in the next cycles. The β carbon of the 

ketone is reduced to a hydroxyl group by the β-ketoacyl reductase (KR) domain. The resulting 

β-hydroxyacyl-ACP is dehydrated by the dehydratase (DH) active site to β-enoyl-ACP, which 

is then reduced by an NADPH-dependent enoyl reductase (NADPH-ER; Chang and Hammes, 

1990). This yields a four-carbon acyl-substrate for further elongation cycles. Each time the 

acyl-chain is elongated by 2-carbon units derived from malonyl-CoA.  The end result is usually 

the 16-carbon palmitate which is released from ACP by the action of the thioesterase (TE) 

active site of FAS (Figure 1B; Maier, Jenni and Ban, 2006). Typically, the activity of 

thioesterase is lower for acyl chains shorter than 14 carbon and longer than 18 carbons as 

these might not be accommodated by the binding groove of the thioesterase (Chakravarty et 

al., 2004). Moreover, the longer acyl chains are not readily transferred to the thiol of the 

cysteine in the KS active site (Witkowski et al., 1997).  

 

 

1.2.3.2 Transcriptional control of hepatic de novo lipogenesis  

 

In an effort to maintain metabolic homeostasis, cells employ a variety of biochemical reactions. 

During fasting, hepatocytes and adipocytes stimulate β-oxidation of fatty acids (breakdown of 

fatty acids) to generate energy, whilst during feeding they induce the synthesis of fatty acids, 

requiring energy (Rui, 2014). The two processes are tightly controlled to avoid any metabolic 

perturbations, which may lead to a variety of diseases. The process of β-oxidation more 

specifically is regulated by the transcriptional control of the carnitine palmitoyl transferase 1 

(CPT1) gene. CPT1 is responsible for the transport of fatty acids from the cytosol to the 

mitochondrion where they are oxidised. When the energy balance is high, malonyl-CoA inhibits 

CPT1, preventing the import of fatty acids into the mitochondrion and is itself the substrate for 

fatty acid synthesis (Torchon et al., 2017). This latter mechanism is the main control process 

for fatty acid oxidation following uptake of fatty acids into the cell.  
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Both metabolic and hormonal stimuli, such as glucose and insulin, regulate lipogenesis. There 

are two major transcription factors responsible for the control of hepatic lipogenesis: 

carbohydrate response element binding protein (ChREBP) and sterol regulatory binding 

protein 1c (SREBP-1c). Glucose activates ChREBP whilst insulin activates SREBP-1c.  

 

(1) ChREBP 

During starvation, high glucagon levels increase cAMP and activate protein kinase A (PKA), 

which phosphorylates ChREBP. Phosphorylation at serine residue 196 (Ser196) inactivates 

nuclear export and phosphorylation at threonine 666 (Thr666) inhibits deoxyribonucleic acid 

(DNA) binding of ChREBP (Kawaguchi et al., 2001). In addition, ATP depletion and fatty acid 

oxidation activate AMP-activated protein kinase (AMPK), via increased AMP levels, which also 

phosphorylates and in turn inhibits ChREBP (Kawaguchi et al., 2002). In contrast, glucose and 

high carbohydrate feeding activate ChREBP via an incompletely elucidated mechanism. Data 

suggest that glucose is converted to xylulose-5-phosphate in the pentose phosphate pathway 

to activate protein phosphatase 2A (PP2A). PP2A dephosphorylates ChREBP allowing its 

nuclear translocation (Kabashima et al., 2003). Xylulose-5-phosphate-mediated PP2A 

activation has also been observed when fructose-2,6-bisphosphatase is activated, a key 

enzyme in glycolysis and gluconeogenesis (Nishimura and Uyeda, 1995). In the nucleus 

ChREBP binds to the carbohydrate response element (ChoRE) to induce the expression of 

genes such as FAS and ACC, as well as liver pyruvate kinase (LPK), which converts 

phosphoenolpyruvate (PEP) to pyruvate (Figure 2; Towle et al., 1997). Xyluose-5-phosphate 

is an important mediator for activating glycolysis and lipogenesis in parallel, via ChREBP. 

During glycolysis, glucose generates pyruvate which is oxidised to acetyl-CoA. Acetyl-CoA 

then condenses with oxaloacetate to synthesise citrate. In parallel, glucose is shuttled though 

the pentose phosphate shunt to generate NADPH. Accumulation of citrate in the mitochondrion 

induces its export to the cytosol. Both cytosolic citrate and NADPH are then used for the 

synthesis of fatty acids (Iizuka and Horikawa, 2008).  
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The levels of ChREBP are significantly increased in the liver of ob/ob mice and liver specific 

inhibition of ChREBP in these mice improves hepatic steatosis by decreasing the activity of 

DNL (Dentin et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of hepatic activation of DNL gene expression by ChREBP. 

An increase in postprandial glucose triggers glucose uptake through the transporter GLUT2. Glucose is 

shuttled to glycolysis and the pentose phosphate pathway to provide substrate and the cofactor NADPH 

for DNL, respectively. Xylulose-5-phosphate, an intermediate of the pentose phosphate pathway, 

activates the phosphatase PP2A, which dephosphorylates ChREBP. Dephosphorylation of ChREBP 

activates the transcription factor and allows its translocation to the nucleus where it binds to the ChoRE 

consensus sequence to increase the expression of genes required for DNL. GLUT2, glucose transporter 

2; PP2A, protein phosphatase 2A; ChREBP, carbohydrate response element binding protein; CHoRE, 

carbohydrate response element. 
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(2) SREBP-1c 

As mentioned above, SREBP-1c responds to insulin stimuli to induce the expression of genes 

required for DNL. The SREBP family consists of SREBP-1a, SREBP-1c and SREBP2. 

SREBP-1a and SREBP-1c are encoded by one gene but transcribed by initiation from two 

different promoters. SREBP-1c is mostly expressed in the liver whilst SREBP-1a is abundant 

in immune cells. SREBP-1c is responsible for the expression of lipogenic genes whilst SREBP-

2 is responsible for activating cholesterol-metabolism genes. SREBPs bind to sterol regulatory 

element (SREs) sequences found on promoters of their target genes (Eberlé et al., 2004). 

SREBPs are embedded in the endoplasmic reticulum (ER) membrane as inactive precursors 

by associating with the SREBP cleavage activating protein (SCAP) and ER retention protein 

Insig (Figure 3). In order to be activated, the SCAP-SREBP complex should be dissociated 

from Insig in the ER and associate with COPII-coated vesicles that then migrate to the Golgi 

apparatus. There, SREBPs are cleaved by site 1 and site 2 proteases (S1P and S2P, 

respectively), releasing the N-terminal cytosolic portion of the protein that migrates in the 

nucleus and acts as a mature transcription factor (Xu et al., 2013).  

In the liver, insulin signalling, through the phosphatidylinositol 3-kinase (PI3K), both activates 

and increases the levels of the nuclear SREBP-1c protein. Insulin signalling via the insulin 

receptor induces the phosphorylation and activation of the insulin receptor substrate (IRS). 

Activated IRS recruits PI3K to the membrane where it phosphorylates phosphatidylinositol-4, 

5-bisphosphate (PIP2) to phosphatidylinositol-3, 4, 5-triphosphate (PIP3), which acts as a 

secondary messenger for the mammalian target of rapamycin complex 2 (mTORC2) and 3-

phosphoinositide-dependent protein kinase-1 (PDK1). Both phosphorylate and activate AKT2 

(Protein Kinase B/PKB). PhosphoAKT in turn activates the mammalian target of rapamycin 

complex 1 (mTORC1). The kinase mTORC1 stimulates the nuclear translocation of the liver X 

receptor α (LXRα), where it heterodimerises with the retinoid X receptor (RXR; Kawano and 

Cohen, 2013). The heterodimer then induces the expression of lipogenic genes including that 

of SREBP-1c. The full maturation of SREBP-1c protein is mediated through the inhibition of 

lipin-1 by mTORC1, allowing its entry to the nucleus (Peterson et al., 2011). Suppression of 
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mTORC1 by rapamycin inhibits the expression of SREBP-1c in mice fed with a high 

carbohydrate diet (Li et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of hepatic activation of DNL gene expression by SREBP-1c. 

Insulin interaction with the insulin receptor mediates the recruitment of the IRS to the receptor. The IRS 

recruits PI3K to the membrane, where it phosphorylates PIP2 to PIP3. The secondary signalling molecule 

PIP3 recruits mTORC2 and PDK1 to the membrane. Both kinases phosphorylate and activate AKT2.  In 

turn, AKT2 activates mTORC1, which has a variety of targets. One such target is the kinase p70S6K1, 

which induces the nuclear translocation of LXRα. In the nucleus, LXRα dimerises with RXR and the 

complex binds to the LXRE motif to induce the expression of SREBP-1c and other lipogenic genes. 

Translocation of mature SREBP-1c to the nucleus, where it binds to the SRE motif, induces the 

expression of genes required for DNL. IRS, insulin receptor substrate; PI3K; phosphatidylinositol 3-

kinase; PIP2, phosphatidylinositol-4, 5-bisphosphate; PIP3, phosphatidylinositol-3, 4, 5-triphosphate; 

mTORC1, mammalian target of rapamycin complex 1; p70S6K1, ribosomal protein S6 kinase beta-1;  

LXRα, the liver X receptor α; RXR, retinoid X receptor; LXRE, liver X receptor regulatory element; 

SREBP-1c, sterol regulatory binding protein 1c; SRE, sterol regulatory element. 
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1.2.3.3 Fatty acid synthesis, processing and packaging 

 

Both ChREBP and SREBP-1c increase the expression of genes required for fatty acid 

synthesis as well as processing. This includes ATP citrate lyase (ACLY), acetyl-CoA 

carboxylase α (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase-1 (SCD1) and 

elongation of very long chain fatty acids protein 6 (ELOVL6; Strable and Ntambi, 2010).  

The synthesis of fatty acids is initiated by the carboxylation of acetyl-CoA to malonyl-CoA, 

which undergoes multiple rounds of elongation to generate palmitate (Figure 4, inset 1). Once 

synthesised, palmitate may be desaturated and/or elongated to palmitoleate and stearate by 

SCD1 and ELOVL6, respectively (Figure 4, inset 2). 

Fatty acyl-CoAs are in turn used for de novo synthesis of TAGs. The reaction is initiated by 

the transfer of a fatty acyl-CoA onto glycerol-3-phosphate, generating a lysophosphatidic acid 

(LPA) by glycerol-3-phosphate acyltransferase (GPAT). The LPA is further acetylated to 

phosphatidic acid (PA) by acylglycerol-phosphate acyl transferase (AGPAT). The phosphate 

group is then removed from the PA by the action of phosphatidic acid phosphorylase (PAP), 

generating a diacylglycerol (DAG; Coleman and Lee, 2004). The DAG is finally acylated to a 

TAG by the action of diacylglycerol acyl transferase (DGAT; Shi and Cheng, 2009; Figure 4 

inset 3). 

TAGs are stored in the cytosol in the form of lipid droplets. These lipid droplets are used for 

the assembly of VLDL, which act as the major transport vehicle of lipids from the liver to other 

organs. VLDL particles are made of an external phospholipid layer with cholesterol as well as 

apolipoproteins (apo) while the internal neutral lipid core is formed mainly of TAGs (Sundaram 

and Yao, 2010). VLDL particles are assembled in 2 steps (Rustaeus et al., 1999). The first 

step is the co- and post-translational lipidation of apoB100 by the microsomal transfer protein 

(MTP) to prevent its degradation in the ER (Pan et al., 2002). This generates a precursor-VLDL 

particle which is further lipidated by TAGs in the second step. ApoCIII is also an important 

apolipoprotein for the stabilisation of neutral lipid droplets (Qin et al., 2011). These VLDL 

particles are transported to the Golgi via specialised VLDL transport vesicles. In the Golgi, 

apoB100 is glycosylated and phosphorylated generating a mature VLDL (Swift, 1996). Mature 
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VLDL particles are then trafficked to the membrane via transport vesicles. These vesicles fuse 

with the membrane releasing mature VLDL particles into the circulation (Figure 4 inset 4).  

 

 

 

 

Figure 4. Schematic representation of fatty acid synthesis processing and packaging. Fatty acid 

synthesis commences with the lysis of citrate to acetyl-CoA (1). Acetyl-CoA is carboxylated to malonyl-

CoA. After elongation, FAS generates palmitate, a 16-carbon fatty acid. Palmitate may be desaturated 

and/or elongated (2) and then used for TAG synthesis (3). TAGs are packaged into lipid droplets within 

the cytosol and are used for the assembly of VLDL particles in the ER. Subsequent transport through 

the Golgi generates a mature VLDL particle, which is transported to the membrane for export into the 

circulation (4). FAS, fatty acid synthase; TAGs, triacylglycerides; VLDL, very low-density lipoprotein; 

ER, endoplasmic reticulum.  



 
 

18 

1.2.3.4 Markers of de novo lipogenesis  

 

Increased hepatic DNL has been shown to contribute to lipid accumulation in patients with 

insulin resistance and NALFD (Bhat et al., 2012). Labelled palmitate studies demonstrate that 

around 5% of TAGs in the liver of healthy subjects are derived from DNL. Feeding healthy 

subjects with a high carbohydrate meal is sufficient to increase DNL derived TAG content to 

23% (Timlin and Parks, 2005). In hyperinsulinaemic individuals with NALFD, DNL derived TAG 

content increases to 26% (Donnelly et al., 2005). Patients with lipodystrophy also present 

elevated levels of DNL and hepatic lipid accumulation (Semple et al., 2009). They possess a 

significant increase in VLDL particles containing TAG 46:1, TAG 48:0 and TAG 48:1 compared 

to controls, suggesting a possible link between DNL and this group of TAGs (Lee et al., 2015). 

Indeed, the monounsaturated fatty acid, palmitoleate in VLDL-TAGs has been characterised 

as a marker of increased DNL and NAFLD (Eiden et al., 2015). Moreover, in the Fenland 

cohort, a group of shorter chain saturated TAGs (scTAGS; containing FA 16:0, 16:1, 18:0, 

18:1) are linked with DNL and steatosis (Sanders et al., 2018). In the same cohort, palmitate 

synthesis is directly correlated to each of these TAGs. The same group of TAGs have been 

correlated with insulin resistance (Rhee et al., 2011) as well as cardiovascular disease 

(Stegemann et al., 2014).  

 

 

1.2.3.5 Substrates of de novo lipogenesis 

 

Despite the fact that DNL has been linked with overnutrition and the metabolic syndrome 

(Grundy, 2016), our knowledge on acetyl-CoA substrates that fuel the process might be limited. 

A number of studies have been focused on glucose and fructose as ‘lipogenic’ nutrients that 

contribute to the acetyl-CoA pool (Moore et al., 2014). However, the liver can use a variety of 

nutrients to generate acetyl-CoA, including amino acids.  
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(1) Glucose  

A well-characterised substrate for DNL is glucose. Once in the cell, glucose undergoes 

glycolysis generating pyruvate. Pyruvate can either undergo complete oxidation through the 

TCA cycle to generate energy or provide a carbon source for lipid synthesis when there is 

excess energy. While there is a limited capacity to store glycogen from excess glucose, it is 

near limitless for fat. Once pyruvate is in the mitochondrion, it is oxidised to acetyl-CoA, which 

condenses with oxaloacetate to generate citrate. Accumulation of citrate within the 

mitochondrion induces its export to the cytosol, where it is used to synthesise fatty acids 

(Figure 5 inset 1). A high carbohydrate diet increases the rate of DNL by loading the system 

with a large substrate pool (Marques-lopes et al., 2001), exacerbated by the relatively small 

capacity for storing carbohydrates when compared with fats. In addition, carbohydrate 

overfeeding increased scTAG content of secreted VLDL from 5% (basal DNL) to 20% 

(Aarsland et al., 1996) reflecting the dominant products of DNL.  

 

(2) Fructose 

Besides glucose, fructose has also been characterised as a lipogenic substrate (Dekker et al., 

2010). In the liver, fructose is phosphorylated to fructose-1-phosphate by a fructokinase.  

Fructose-1-phosphate is then cleaved by an aldolase to generate dihydroxyacetone phosphate 

(DHAP) and glyceraldehyde, both of which feed into glycolysis via glyceraldehyde 3-phosphate 

(G3P). DHAP is converted to G3P by triose phosphate isomerase, whilst glyceraldehyde is 

phosphorylated to G3P by a triose kinase (Figure 5 inset 2). Fructose consumption in healthy 

humans increased the rates of DNL 2-fold compared to no fructose consumption (Parks et al., 

2008). This might explain the fact that fructose consumption correlates with increased levels 

of obesity, NAFLD and T2DM.  
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(3) Amino acids 

Although amino acids may also provide a potential source of lipogenic acetyl-CoA, studies on 

how amino acids affect DNL are limited. Catabolism of amino acids feeds into the TCA cycle 

at different entry points depending on the amino acid. Therefore, in theory amino acids may 

provide carbon for fatty acid synthesis. However, it is not known whether specific amino acids 

in excess or high protein feeding can induce DNL in a comparable fashion to carbohydrates. 

It is well characterised that glutamine and glutamate provide a carbon source for fatty acid 

synthesis in the context of oncometabolism. Under hypoxic conditions, glutamine undergoes 

reductive carboxylation to generate citrate for fatty acid synthesis (Metallo et al., 2011). 

However, it is still unknown whether glutamate can provide a carbon source for fatty acids 

under physiological conditions. It has more recently emerged that elevated branched chain 

amino acids (BCAAs) contribute to 25% of lipogenic acetyl-CoA in adipocytes (Figure 5 inset 

3; Crown et al., 2015). The BCAAs, leucine, isoleucine and valine, are essential amino acids 

and account for 20% of protein intake. Increased BCAA levels in the bloodstream have been 

correlated with insulin resistance and T2DM in humans (Würtz et al., 2012). Deprivation of 

BCAAs from the diet whilst maintaining levels of other amino acids is sufficient to improve 

glycaemic control (Xiao et al., 2014). Despite this, high protein/low carbohydrate diets are 

popular regimes for weight loss in humans and dietary protein has been shown to decrease 

hepatic lipid accumulation in rodents (Schwarz et al., 2012). Presently, the precise amino acid 

components that are responsible for these effects, and the extent to which amino acids are 

able to induce DNL and VLDL secretion are not known. 
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Figure 5. Substrates of de novo lipogenesis. (1) Glucose undergoes glycolysis to generate pyruvate. 

Pyruvate enters the mitochondrion to undergo reduction to acetyl-CoA by pyruvate dehydrogenase. (2) 

Fructose feeds the glycolytic pathway at the level of dihydroxyacetone phosphate and glyceraldehyde, 

both may be converted to glyceraldehyde 3-phosphate by the triose phosphate isomerase and triose 

kinase respectively. Glyceraldehyde phosphate is then converted to pyruvate through multiple glycolytic 

reactions. (3) Amino acid catabolism feeds into different points in the TCA cycle. During excess 

macronutrient intake, carbon from glucose, fructose and BCAAs (the contribution is still largely unknown 

for other amino acids) is incorporated into fatty acids, through the generation of cytosolic acetyl-CoA. 

TCA cycle, tricarboxylic acid cycle; BCAA, branched-chain amino acids.   
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1.3 Amino acids and the mammalian target of rapamycin   

 

The mammalian target of rapamycin (mTOR) is a kinase encoded by the MTOR gene in 

humans and is the catalytic subunit of two distinct complexes: mTORC1 and mTORC2. 

mTORC1 is composed of mTOR, regulatory-associated protein of mTOR (Raptor) and 

mammalian lethal with SEC13 protein 8 (mLST8) whilst mTORC2 is composed of mTOR, 

rapamycin-insensitive companion of mTOR (RICTOR) and mammalian stress-activated 

protein kinase interacting protein 1 (mSIN1; Foster and Fingar, 2010). The mTORC1 kinase 

has been described as the master regulator of cell growth by sensing nutrients, in particular 

amino acids (Bar-Peled and Sabatini, 2014). The mechanism of sensing amino acids is 

complex and still not completely characterised. Amino acids in the lysosomal lumen are sensed 

by a vacuolar-type H+- ATPase (v-ATPase; Zoncu et al., 2011). This induces a conformational 

change in V-ATPase and Ragulator, releasing the guanine nucleotide exchange factor (GEF) 

activity of Ragulator (Bar-Peled et al., 2012). This results in the conversion of RagA/B into the 

guanosine-5-triphosphate (GTP)-bound form that recruits mTORC1 to the lysosome, where it 

interacts with and is activated by Ras homolog, which is enriched in the brain (Rheb; Yao et 

al., 2017; Figure 6).  

 

The mTORC1 signalling cascade integrates insulin signalling, via its activation by AKT2. The 

kinase AKT2 regulates the tuberous sclerosis complex (TSC1/2) by phosphorylating TSC2 at 

multiple sites. This phosphorylation relieves the inhibitory effect of the TSC1/2 complex on 

Rheb allowing it to activate mTORC1. Phosphorylation of TSC2 impairs the ability of the 

TSC1/2 complex to act as a GTPase activating protein (GAP) on the GTPase Rheb, therefore 

allowing GTP-Rheb to activate mTORC1 (Huang and Manning, 2010). Besides mTORC1 

being a well characterised amino acid sensor, there is some evidence that mTORC2 is also 

activated by amino acids (Tato et al., 2011). mTORC2 is also activated by the insulin signalling 

pathway and in turn activates AKT2. Activation of mTORC1 results in the stimulation of 

ribosomal protein S6 kinase beta-1 (p70S6K1), resulting to the nuclear translocation of LXRα 

and its heterodimerisation with RXR. The LRXα-RXR complex induces the transcription of 
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lipogenic genes including SREBP-1c. The mTORC1 kinase also mediates the full maturation 

of SREBP-1c. Activated p70S6K1 also phosphorylates the insulin receptor substrate at multiple 

serine/threonine residues and directs its degradation. This acts as a negative feedback loop, 

whereby active p70S6K1 attenuates any further activation of the insulin signalling pathway, 

reducing glucose uptake. Persistent activation of p70S6K1 by excessive amino acid 

concentrations may therefore lead to insulin resistance (Tremblay and Marette, 2001).  

 

These effects have been proved for BCAAs and underlie the molecular basis of insulin 

resistance and elevated levels of BCAAs. However, the precise effects of other amino acids 

on DNL and glucose uptake via the mTOR pathway are yet to be fully elucidated. 
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Figure 6. Schematic representation of amino acid activation of mTOR. Amino acids are sensed by 

V-ATPase in the lysosome, inducing a conformational change in V-ATPase and Ragulator. The GEF 

activity of Ragulator results in a GTP-bound RagA, which recruits mTORC1 to the lysosomal membrane 

where it is activated by Rheb. Amino acids may also activate AKT2, which phosphorylate and relieves 

the inhibition of the TSC1/2 complex on Rheb, allowing Rheb to activate mTORC1. Activated mTORC1, 

induces the kinase p70S6K1, which results in the induction of the expression of genes required for DNL. 

Activated p70S6K1 also phosphorylates IRS-1 at multiple serine residues targeting it to degradation and 

therefore decreasing glucose uptake. v-ATPase, vacuolar-type H+-ATPase; Rheb, Ras homolog 

enriched in brain; TSC1/2, tuberous sclerosis complex; mTORC1, mammalian target of rapamycin 

complex 1; p70S6K1, ribosomal protein S6 kinase beta-1; IRS-1, insulin receptor substrate 1. 
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1.4 Thesis aims and overview  

 

The latest nutrition transition from traditional diets to Western-style diets, high in sugars, fats 

and protein from red meat, have led to the growing prevalence of obesity and the metabolic 

syndrome (Popkin, 2006). In particular, the increasing consumption of liquid carbohydrate in 

the form of sugary beverages coincides with the increasing incidence of the metabolic 

syndrome over the last 20 years (Sartorius et al., 2016). Based on a previous study performed 

in our group, it is hypothesised that liquid carbohydrate reaches chemoreceptors in the 

intestine faster, inducing a postprandial neurohormonal delay in the gastrointestinal motility of 

the solid phase. In addition, this increased load of carbohydrate might induce lipogenesis and 

therefore provide a possible mechanism to explain how liquid carbohydrate links with the 

metabolic syndrome.  

 

In chapter 3, a human intervention study is used to characterise the effect of changing 

solid/liquid ratio of isoenergetic meals on gastric emptying and how different macronutrient 

compositions affect DNL. Nine subjects consumed the five randomised meals (containing 13C-

octanoic acid in the solid phase of the meal): Control with Bread (CB) and four other meals in 

which carbohydrate was solely from orange juice - Control (C, without bread), High Fat (HF), 

High Carbohydrate (HC) and High Protein (HP), in a randomised order. The 13C-enrichment 

in breath exhalates was measured by isotope ratio-mass spectrometry to determine the gastric 

emptying rate of each individual after every meal.  In addition, the plasma profile of each 

subject was analysed by liquid chromatography mass spectrometry (LC-MS) to determine how 

different macronutrient compositions affect DNL, using the metric of the scTAG cluster.  

 

Chapter 4 investigates the underlying mechanism of the increase in lipogenic triacylglycerides 

caused by a high protein meal rich in glutamate. As liver is the primary site of DNL, Alpha 

mouse liver 12 (AML12) hepatocytes were utilised to examine whether glutamate may (1) 

provide carbon for fatty acid synthesis and (2) induce DNL. Under normal physiological 

conditions carbohydrates act as the canonical source of substrate for DNL. However, the 
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contribution of amino acids, derived from protein-rich diets, is less well understood beyond the 

context of oncometabolism. To determine whether glutamate can act as a substrate for DNL 

under conditions of typical carbohydrate supply, AML 12 hepatocytes were supplemented with 

13C5-labelled glutamate, one of the most abundant dietary amino acids, to trace its metabolic 

fate. In addition, AML 12 hepatocytes were supplemented with increasing doses of the 

glucogenic amino acid, glutamate, to assess whether it can activate AKT2 and p70SK61, key 

kinases of the insulin signalling cascade. This leads to the expression of SREBP-1c to induce 

the expression of genes required for DNL and therefore increase fatty acid synthesis. 

 

The final chapter examines the extent to which this induction in DNL is a response of a general 

amino acid increase or whether it is amino acid specific. Studies have previously demonstrated 

that a higher protein/lower carbohydrate diet downregulates DNL, typically in longer-term 

dietary interventions (Schwarz et al., 2012). In this chapter, hepatocytes are supplemented 

with glucogenic, ketogenic and BCAAs to investigate whether they can induce DNL at a gene 

expression, protein translation/activity and metabolic level, making use of the scTAG cluster 

as an indicator of rates of DNL.  
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Chapter 2. General methods and materials  

 



 
 

28 

The methods described in the present chapter are used throughout the thesis. Methods 

specific to Chapters 3, 4 and 5, may be found in the appropriate section of each chapter. The 

supplier of the materials used is specified in the relevant section.  

 

2.1 Measurement of metabolite levels by mass spectrometry  

 

2.1.1 Metabolite extractions  

 

Metabolites were extracted from blood plasma or cells using a modified method of Folch and 

colleagues (Folch et al., 1957). Briefly, 15 μL of blood plasma or pelleted cells were mixed with 

chloroform/methanol (2:1, v/v, 750 μL); including a mixture of deuterated internal standards 

(Table 1). Samples were sonicated for 15 min and water was added (300 μL). Samples were 

then centrifuged at 13,000 x g for 20 min. The organic (upper layer) and aqueous (lower layer) 

phases were separated. The organic phase extracts containing lipids were dried under a 

stream of nitrogen gas whilst the aqueous samples were dried in a CentriVap Centrifugal 

Concentrator with attached cold trap (78100 series, Labconco Co, Kansas City, USA). 

 

 

Table 1. Internal standards used for LC-MS of the organic phase. 

  

Internal Standard Supplier 

18:0-d6 CE  QMX 

C16-d31 Ceramide AVANTI 

15:0-d29 FA  QMX 

17:0-d33 FA QMX 

20:0-d39 FA QMX 

14:0-d29 LPC-d13 QMX 

16:0-d31-18:1 PA AVANTI 

16:0-d31-18:1 PC AVANTI 

16:0-d31-18:1 PE AVANTI 

16:0-d31-18:1 PG AVANTI 

14:0 PS-d54 AVANTI 

16:0-d31 SM AVANTI 

45:0-d29 TAG QMX 

48:0-d31 TAG QMX 

54:0-d35 TAG QMX 
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2.1.2 Analysis of intact lipids using orbitrap mass spectrometry  

 

The organic fraction was reconstituted in 100 μL chloroform/methanol (1:1, v/v), and 10 μL of 

the resulting solution added to 90 μL isopropanol (IPA)/acetonitrile (ACN)/water (2:1:1, v/v). 

Analysis of the fractions was performed using an LTQ Orbitrap Elite Mass Spectrometer 

(Thermo Scientific, Hemel Hempstead, UK). In positive mode, 5 μL of sample were injected 

onto a C18 CSH column, 1.7 μM pore size, 2.1 mm x 50 mm, (Cat # 186005296, Waters Ltd, 

Manchester, UK) which was held at 55°C in a Dionex Ultimate 3000 ultra-high performance 

liquid chromatography system (UHPLC; Thermo Scientific). A gradient (flow rate 0.5 mL/min) 

of mobile phase A (ACN/water 60:40, 10 mmol/L ammonium formate) and B (LC–MS-grade 

ACN/IPA 10:90, 10 mmol/L ammonium formate) was used. In negative ion mode, 10 μL of the 

sample was injected and 10 mmol/L ammonium acetate was used as the additive to aid 

ionisation. In both positive and negative ion mode, the gradient began at 40% B, increased to 

43% B at 0.8 min, 50% B at 0.9 min, 54% B at 4.8 min, 70% B at 4.9 min, 81% B at 5.8 min, 

peaked at 99% B at 8 min for 0.5 min, and subsequently returned to the starting conditions for 

another 1.5 min to re-equilibrate the column. The UHPLC was coupled to an electrospray 

ionisation (ESI) source which ionised the analytes before entering the mass spectrometer. 

Data were collected in both positive and negative ion mode with a mass range of 110–2000 

m/z. Default instrument-generated optimisation parameters were used (Table 2). Tandem MS 

was performed, using normalised collision energy, to fragment intact lipids listed in Table 3, in 

order to identify the fatty acyl chains contained within. Xcalibur Software (Thermo Scientific) 

was used to identify peaks and process mass spectra.  
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Table 2. Mass spectrometer optimised settings for intact lipids.  

 

Instrument Optimisation Parameters 

Method Duration (min) 

Ion Source Type 

Ion Spray Voltage: Positive Ion (V) 

Ion Spray Voltage: Negative Ion (V) 

Sheath Gas (Arb) 

Sweep Gas (Arb) 

Capillary Temperature (°C) 

Source Heater Temperature (°C) 

Column Temperature (°C) 

10 

H-ESI 

3500 

2500 

20 

5 

380 

420 

55 

 

 

Table 3. scTAG species. These TAGs contain main products of DNL including, FA 16:0, 

16:1, 18:0 and 18:1. 

 

Triglyceride Product ion [M+NH4]+ 

TAG 46:2 

TAG 46:1 

TAG 46:0 

TAG 48:2 

TAG 48:1 

TAG 48:0 

TAG 49:2 

TAG 49:1 

TAG 49:0 

792.7076 

794.7232 

796.7389 

820. 7389 

822.7545 

824.7702 

834.7545 

836.7702 

838.7858 

 

 

A typical total ion chromatogram (TIC) obtained by this method is illustrated by Figure 1. TAGs 

eluted with a long retention time because they contain three fatty acids, making them less polar 

compared to phospholipids or lysophospholipids that have 2 and 1 fatty acid chains, 

respectively, as well as a more polar head group. scTAGs (Figure 2) were selected for 

fragmentation. This was achieved by applying collision energy to the mass of the selected 

precursors listed in Table 3. The fragments were used for identification. For instance, m/z 

551.49 is a DAG fragment specific to TAG 48:0 containing three palmitic acids (Figure 3).  
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Figure 1. TIC of the intact lipids detected using UHPLC. Different lipid classes elute at different time 

points based on their polarity. In reverse phase chromatography, polar metabolites retain less on the 

stationary phase of the column because of the polarity of the starting solution, and therefore elute first. 

In green is the TAG region which was analysed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Extracted ion chromatogram (EIC) of scTAGs. TAGs with longer fatty acids eluted later, 

while TAGs with double bonds eluted earlier.  
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Figure 3. Collision-induced dissociation mass spectrum. The identification mass spectrum was 

acquired by applying collision energy to the mass of the selected precursors (listed in Table 3). This 

specific example illustrates the fragmentation pattern of TAG 48:0 at m/z 824.7702. The precursor was 

fragmented to give the DAG fragment at m/z 551.49, which is typical of a TAG containing three palmitic 

acids. 

 

 

2.1.3 Picolinyl esters of fatty acids (PEFA) derivatisation for LC-MS 

 

The derivatisation procedure was modified from Li and Franke, 2011. To each dried organic 

extract 200 µL of 10 µmol/L deuterated internal standard mix were added and dried completely 

under nitrogen. Each sample was resuspended in 200 µL of 2 mol/L oxalyl chloride in 

dichloromethane (DCM; Cat. # 310670, Sigma), capped securely, and then incubated at 65°C 

in a heating block for 10 min; achieving cleavage of fatty acids from complex lipids and 

activating the carboxylic group. Samples were then dried under nitrogen and washed with 200 

µL DCM (Cat. # 270997, Sigma) and re-dried. Each dried residue was then resuspended in 

150 µL of 1% 3-hydroxymethylpyridine (Cat. # P66807, Sigma) in ACN and incubated at room 

temperature for 5 min to give derivatised fatty acids. Samples were dried under nitrogen, 
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washed with 200 µL dichloromethane to ensure unreacted 3-hydroxymethylpyridine was 

evaporated, dried under nitrogen once more and stored at -80 °C until analysis. 

 

 

2.1.4 Analysis of total fatty acids by triple quadrupolar mass spectrometry  

 

PEFAs were reconstituted in 100 µL 2:1 (v/v) methanol:water and sonicated for 15 min. 

Samples were then centrifuged for 15 min at 13,000 x g to pellet any remaining debris. A 2 µL 

injection volume of the resulting solution was analysed on a TSQ Quantiva™ Triple 

Quadrupole mass spectrometer attached to a Vanquish UHPLC system (Thermo Scientific). 

Chromatographic separation was achieved on an Acquity UPLC BEH C18 1.7 µm x 2.1 mm x 

50 mm column (Cat # 186002350, Waters). Mobile phase A was 100% water with 0.1% formic 

acid and mobile phase B was 50:50 ACN:IPA with 0.1% formic acid. The chromatography 

gradient started at 30% B for 2.33 min, increased to 100% B over 1.34 min and decreased to 

30% B for 1.23 min (to re-equilibrate the column) at a flow rate of 0.735 mL/min. Default 

instrument-generated optimisation parameters were used (Table 4). Xcalibur Software 

(Thermo Scientific) was used to identify peaks, process mass spectra and normalise data to 

the closest-eluting internal standard. A typical TIC of PEFAs obtained by the above method is 

shown in Figure 4A. The TIC was used to extract fatty acids: 16:0 and 16:1 (Figure 4B) as well 

as 18:0, 18:1 and 18:2 (Figure 4C). 

 

Table 4. Mass spectrometer optimised settings for PEFAs. 

 

Instrument Optimisation Parameters 

Method Duration (min) 

Ion Source Type 

Ion Spray Voltage: Positive Ion (V) 

Sheath Gas (Arb) 

Sweep Gas (Arb) 

Ion Transfer Tube Temperature (°C) 

Vaporiser Temperature (°C) 

Column Temperature (°C) 

5 

H-ESI 

3500 

55 

2 

356 

365 

55 

Needle Wash 1:1 (v:v) IPA:CAN 

Seal Wash 
4:1 (v:v) IPA:Water 

with 0.1% formic acid 
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Figure 4. TIC and EIC for PEFAs. (A) The TIC of all PEFAs detected by LC-MS. (B) The EIC for the 

peaks at m/z 348.36 (FA 16:0) and 346.33 (FA 16:1). FA 16:1 is plotted on the left y-axis and FA 16:0 

is plotted on the right. (C) The EIC for the peaks at m/z 376.40 (FA 18:0), 374.36 (FA 18:1) and 372.33 

(FA 18:2). FA 18:1 and FA 18:2 are plotted on the left y-axis and FA 18:0 is plotted on the right. All 

peaks had a daughter ion at m/z 92.11, corresponding to a loss of the group added by derivatisation.  
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2.2 Statistical analysis   

 

2.2.1 Univariate statistics  

 

Data were visualised using GraphPad (GraphPad Prism 5.2; GraphPad Software, San Diego, 

CA, USA). All data are expressed as means ± the standard error of the mean (SEM). In 

GraphPad, one-, two-way analysis of variance (ANOVA) or two-tailed t-test were performed 

where appropriate to determine significant differences between experimental groups. For one-

way ANOVA, Tukey’s post-hoc multiple comparison test was performed, whilst for two-way 

ANOVA, Sidak’s post-hoc multiple comparison test was used. For the human study analyses 

were paired whilst for the cell culture studies, analyses were unpaired. Differences between 

experimental groups were considered to be statistically significant when p≤0.05. 



 
 

36 

Chapter 3. The effects of diet on gastric 
emptying and the blood lipidome 
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Abstract 

 

Abnormally delayed gastric emptying in the absence of mechanical impediment is common 

among patients with longstanding type 2 diabetes mellitus. Hyperglycaemia, increased blood 

glucose levels, damages the vagus nerve and results in dysregulated gastric emptying that 

can further affect glucose and lipid metabolism. The present study aimed to define, in healthy 

human males, how solid/liquid ratios of meals and macronutrient compositions affect gastric 

emptying and lipid metabolism. After a 12-hour fast, subjects (n=9) consumed each 

of five randomised meals containing 13C-octanoic acid in the solid phase. A standardised  

2 MJ control meal with bread was modified to contain purely liquid carbohydrate. This was 

further altered to provide isoenergetic meals high in fat, protein and carbohydrate. 13C-

enrichment in breath exhalates, measured by isotope ratio-mass spectrometry, demonstrated 

that liquid carbohydrate was the main determinant of gastric emptying and it delayed the 

motility of the solid phase of the food. The liquid carbohydrate meal was not sufficient to induce 

de novo lipogenesis. However, the high protein meal, rich in glutamate, increased plasma 

triacylglycerides (measured by liquid chromatography-mass spectrometry) associated with de 

novo lipogenesis and in liver-secreted lipoproteins. This may implicate glutamate, and/or other 

amino acids, which are not obvious precursors of fat, in the process of de novo lipogenesis 

under physiological conditions following a high protein meal. 
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3.1 Introduction  

 

3.1.1 Gastric emptying  

 

Approximately 50-75% of diabetic patients suffer from diabetic dyslipidaemia related to diabetic 

hyperglycaemia and insulin resistance. Diabetic dyslipidaemia is characterised by increased 

levels of TAGs, VLDL and decreased levels of HDL (Goldberg, 2001). In addition, 

approximately 30-50% of diabetics experience delayed gastric emptying, known as 

gastroparesis diabeticorum (Samsom et al., 2009). This patient group may reflect the possible 

relationship between lipids, lipoprotein metabolism and gastric emptying (Horowitz et al., 

2002).  

 

Gastric emptying is the complex process by which food leaves the stomach and enters the 

duodenum, the first part of the small intestine. Firstly, the proximal stomach (comprising the 

first three parts of the stomach; cardia, fundus, and body) relaxes to accommodate large 

volumes of food. Food then arrives in the antrum, the first part of the distal stomach, where it 

is mixed with gastric juices to aid digestion. The chyme, containing gastric juices and semi-

digested food, is then pumped by peristaltic pulses across the pylorus, the last part of the distal 

stomach. Subsequently, the pyloric sphincter opens allowing the chyme to enter the duodenum 

(Marathe et al., 2013).  

 

Gastric emptying is organised by the motor activity of both the stomach and small intestine, 

which are determined by spontaneous electrical slow waves generated by the interstitial cells 

of Cajal. These activities are thought to be regulated by a feedback mechanism whereby the 

nutrient density is sensed by receptors in the small intestine, inducing the release of neuronal 

and hormonal signals back to the stomach to control gastric emptying (Williams et al., 2016). 

These signals consist of the stimulation of the vagus nerve and secretion of gut hormones, 

such as GLP-1, CCK and PYY (Ronveaux et al., 2015). Other factors that influence gastric 

emptying include the total meal energy content, meal weight, volume, macronutrient 
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composition (the percentage of fat, carbohydrate and protein), fibre content, pH and 

temperature (Chaw et al., 2001; Clegg and Shafat, 2010).  

 

 

3.1.2 Liquid carbohydrate and gastric emptying  

 

A variety of studies examining the effect of macronutrient composition on the rate of gastric 

emptying conclude that high fat and high carbohydrate diets delay gastric emptying. There is 

evidence that high fat diets induce this via the redistribution of stomach contents from the distal 

stomach back into the proximal stomach (Houghton et al., 1990). It is also reported that as the 

carbohydrate content increases, gastric emptying of the meal slows (Calbet and MacLean, 

1997). However, unpublished data collected at the MRC-EWL unit appears contradictory in 

this regard (Bluck, Griffin & Li personal communication). A C meal (15% protein, 40% fat, 45% 

carbohydrate) was altered to create HF, HC and HP meals. All three meals had a more rapid 

gastric emptying rate compared to C with no significant differences in gastric emptying 

between the three altered meals (Figure 1). The possible reason for this disagreement is that 

the carbohydrate content of the C meal was in liquid form (624 kJ in the form of orange juice, 

compared with 85-430 kJ in the others). Therefore, it is conceivable that the liquid form of 

carbohydrate (above ~500 kJ in this phase) might empty from the stomach more rapidly, 

reaching chemoreceptors in the small intestine inducing the release of signals back to the 

stomach to delay the motility of the solid phase. Other data is also supportive in that increasing 

the amount of carbohydrate, especially glucose in a liquid meal, inhibits gastric emptying 

(Brener et al., 1983). Delayed gastric emptying may alter nutrient absorption and induce 

changes in glucose and lipid metabolism. These changes can potentially predispose 

individuals to insulin resistance, dyslipidaemia and diabetes. 
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Figure 1. Gastric emptying rate is delayed in C. Gastric emptying rate as a percentage of food 

expelled from stomach over 6 h after C (blue), HF (green), HC (orange) and HP (red) meal. Data are 

presented as mean ± SEM and analysed by two-way repeated measures ANOVA with post-hoc Sidak’s 

multiple comparisons test; * = p≤0.05, n=12/group (Bluck, Griffin & Li unpublished data). 

 

 

3.1.3 Carbohydrate and de novo lipogenesis 

 

In the liver, energy balance is maintained by the dynamic partitioning of carbon units between 

carbohydrate, lipid synthesis and oxidation. During fasting, there is an increase in fatty acid -

oxidation. These fatty acids are supplied by the process of lipolysis in white adipose tissue, in 

the form of non-esterified fatty acids (NEFAs). Fatty acid oxidation generates ATP and 

reducing intermediates, which may be oxidised further or utilised in the generation of glucose 

via gluconeogenesis. Acetyl-CoA, generated from -oxidation, may be used in the TCA cycle 

to regenerate citrate, or instead to produce ketone bodies (Jones, 2016; Jones et al., 2001). 

However, during feeding, the liver receives a plethora of macronutrients (glucose, amino acids 

and fatty acids), via the portal vein. The portal vein transports approximately 15-30% of glucose 

from the digestive tract to the liver. Glucose undergoes glycolysis, and results in increased 

acetyl-CoA, the primary substrate of DNL (Guo et al., 2012). Dietary glucose as well as fructose 

stimulate DNL, through increased availability of acetyl-CoA. Consequently, liquid carbohydrate 

that empties the stomach faster (approximately 80% of the liquid fraction is emptied before the 

solid fraction; Phillips et al., 2015) might increase the rate of DNL. The initial reaction for the 

production of fatty acids from acetyl-CoA is its condensation with oxaloacetate to produce 

citrate, catalysed by CS in the mitochondria (Tappy and Lê, 2012). Citrate is then shuttled from 

the mitochondrial matrix to the cytosol, whereupon it is cleaved by ACL in the reverse reaction, 
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regenerating oxaloacetate and acetyl-CoA. Acetyl-CoA is carboxylated by cytosolic ACC, itself 

allosterically activated by high concentrations of citrate found during positive energy balance. 

Malonyl-CoA, the product of this reaction, is the subunit from which FAS may generate new 

fatty acids. Malonyl-CoA is also a highly potent inhibitor of CPT1, the enzyme which facilitates 

the entry of fatty acids into the mitochondrion to undergo -oxidation. In this manner, malonyl-

CoA prevents the futile metabolic cycle of newly generated fatty acids being utilised to produce 

acetyl-CoA via -oxidation. The fatty acids produced by FAS (typically the 16-carbon palmitic 

acid) may then be modified by the elongase, ELOVL6 and/or desaturated by SCD1). The 

processed fatty acids are subsequently esterified to glycerol to produce TAGs and 

incorporated into VLDL for export (Berg, Tymoczko and Stryer, 2002; Figure 2).  
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Figure 2. Schematic representation of DNL induction by glucose. Pyruvate from glucose, generated 

via glycolysis, enters the TCA cycle in the mitochondrion. There, pyruvate is oxidised to acetyl-CoA. 

Acetyl-CoA and oxaloacetate condense to make citrate, via CS. Citrate is then shuttled to the cytosol 

where it is cleaved by ACL to generate cytosolic acetyl-CoA. Cytosolic acetyl-CoA is then carboxylated 

by ACC to malonyl-CoA. Malonyl-CoA is the working unit of FAS that synthesises palmitate. Palmitate 

may then be desaturated or elongated by SCD1 or ELOVL6 respectively. Fatty acids are esterified to 

glycerol to form TAGs in a series of reactions with the last one catalysed by DGAT2. TAGs are 

transported through the intracellular membranes by the MTP and associate with ApoCIII to form VLDL. 

VLDL particles are then exported into the circulation for transport to other cells.  
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3.1.4 Specific TAGs and DNL  

 

Increased hepatic DNL contributes to lipid accumulation in patients with insulin resistance and 

NAFLD (Bhat et al., 2012). Patients with lipodystrophy also present elevated levels of DNL and 

hepatic lipid accumulation. In addition, this group of patients demonstrate a significant increase 

in VLDL particles containing TAG 46:1, TAG 48:0 and TAG 48:1 compared to controls, 

suggesting a possible link between DNL and this group of TAGs (Lee et al., 2015). Indeed, the 

monounsaturated fatty acid palmitoleate in VLDL-TAGs has been characterised as a marker 

of increased DNL and NAFLD (Eiden et al., 2015). In the AusDiab cohort, the metabolic 

phenotype of 11,247 people was assessed biomedically and with anthropometric 

measurements. Around 6500 of these people came back for a follow up to track the changes 

of the incidence and progression of diabetes. TAGs containing monounsaturated fatty acids 

correlated with pre-diabetes in the AusDiab cohort (Wong et al., 2013). Moreover, in the 

Fenland cohort, whereby the metabolic health, diet, other lifestyle factors, body composition 

and physical activity of approximately 12,500 people were assessed, a group of scTAGs 

containing FA 16:0, 16:1, 18:0 and 18:1 were linked with DNL and steatosis (Sanders et al., 

2018). In healthy humans, the amount of de novo-produced TAG incorporated in VLDL is 

minimal (below 5%; Timlin and Parks, 2005). However, in hyperinsulinaemic individuals with 

NALFD, DNL derived TAG content increases to 26% (Donnelly et al., 2005). Furthermore, in 

healthy human subjects, feeding with a high carbohydrate meal is sufficient to increase DNL 

derived TAG content to 23% (Timlin and Parks, 2005).  
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3.2 Chapter aims   

 

In this chapter a human dietary intervention study is used to test the hypothesis that 

carbohydrate in the liquid form delays gastric emptying and induces DNL in healthy adult 

males. In this study, we use the non-invasive 13C-octanoic acid breath test (OBT) to measure 

gastric emptying, and LC-MS to characterise the plasma TAG profile. Moreover, the study aims 

to define the main determinant of gastric emptying in relation to the solid/liquid ratio and 

macronutrient composition, as well as to characterise the contribution of macronutrients to 

DNL, using the metric of the scTAG cluster as a measure of DNL activity.  
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3.3 Materials and methods  

 

3.3.1 Clinical protocol  

 

General design  

 

The protocol of the present study was approved by both the internal research review board of 

MRC-EWL and the Cambridge South Local Research Ethics Committee, UK (Ref no.: 

15/EE/0232). The study was divided into the following sections: (1) recruitment (2) pre-

screening questionnaire and screening visit and (3) five separate study days (Figure 3). Nine 

participants took part in a randomised, five-way crossover study. Each participant had a 

screening visit, followed by five trial visits separated by at least a two-week washout period. 

Twenty-four hours before each trial day, the diet and activity of each participant was monitored. 

On the trial day, participants attended MRC-EWL for 7 h and received one of the five 

isoenergetic mixed meals in a randomised order. The five isoenergetic meals comprised of: 

Control with Bread (CB) and four other meals in which carbohydrate was solely from orange 

juice - Control (C, without bread), High Fat (HF), High Carbohydrate (HC) and High Protein 

(HP). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. General study design. The study was divided into three sections: recruitment, screening 

(orange boxes) and five separate study days (red boxes). There was a minimum of two-week washout 

between each study day. The diet and activity of each volunteer was monitored. 
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Volunteer recruitment and screening  

 

Nine healthy, non-smoking men aged 19 to 29 years with a BMI between 18.9 and 27.5 kg/m2 

were recruited. The sample size calculation is summarised in Appendix I A. Only men were 

recruited due to the large difference between the lipid profiles of men and pre-menopausal 

women arising from different sex hormones, which are important regulators of lipid metabolism 

(Varlamov et al., 2015). All participants were recruited through contact with companies, 

universities and colleges via letters and email, distributing leaflets in offices, shops and local 

residential areas, displaying posters on local community notice boards and from the volunteer 

database held at MRC-EWL. An information sheet was provided to men who were interested 

in participating. Subjects who showed interest were assessed by the pre-screening 

questionnaire in the first instance. Volunteers that fulfilled the inclusion criteria were invited to 

the MRC-EWL suite for the screening visit.  

 

 

Screening visit  

 

Participants were requested to complete a 24-hour food diary. After an overnight 12-hour fast, 

participants attended MRC-EWL. During the screening visit, the study process was described 

to the participant, giving them the opportunity to ask any questions. Participants were 

requested to read and sign the informed consent form. Subsequently, anthropometric 

measurements (weight, height, blood pressure) and a fasting blood sample were taken. The 

fasting blood sample was taken by venepuncture for analysis of full blood count, liver function, 

glucose, insulin and lipid profile, including total cholesterol, HDL, LDL and triacylglycerides. 

These measurements were used to determine whether participants met the inclusion criteria 

(Appendix I B) of the study. 
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Study day protocol  

 

Participants arrived at the MRC-EWL Volunteer Suite in the morning after a 12-hour overnight 

fast. The 24-hour food diary for the day before was requested from the volunteers. Upon arrival, 

participants were cannulated via the antecubital vein of one arm and two basal breath and 

blood samples were collected, 10 min apart. Participants then consumed, within 15 min of 

onset of eating, one of the five isoenergetic mixed meals containing 100 μL [1-13C]-octanoic 

acid (Figure 4, 0 h). Subsequently, blood and breath samples were collected over a six-hour 

period. During the six-hour period, food consumption was not allowed, and only water was 

permitted ad libitum after 3 h had elapsed. Breath samples (22 samples per participant; blue 

arrows) were collected every 15 min in the first 4 h and every 30 min in the following 2 h (Figure 

4). Blood samples were collected at 12 time points at various intervals throughout the 6-hour 

period (238 mL blood in total; red arrows). The cannula was cleared with 2 mL isotonic saline 

(0.9% NaCl) after every blood sample. Finally, the cannula was removed from the participant 

after all blood samples were collected, allowing them to depart. Blood sample collection was 

performed by Matthew Harvey. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Breath and blood sampling time points. The blue arrows indicate the breath sampling 

points and the red arrows indicate the blood sampling points. At t=0 h the participants consumed one of 

the five isoenergetic mixed meals containing 100 μL 13C-octanoic acid. 
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3.3.2 Analytical protocol   

 

Test meals  

 

All test meals consisted of eggs, butter and orange juice. The CB meal also had white bread, 

while soy protein powder (rich in glutamate) was added to obtain the HP meal. The detailed 

meal compositions are shown in Appendix II A. The egg yolk was labelled with 100 μL [1-13C]-

octanoic acid (C/D/N Isotopes Inc., Quebec, Canada). A detailed procedure of the food 

preparation is described in Appendix II B. The ingredient compositions were modified so that 

on each study day the volunteer consumed a 2 MJ meal (Table 1). The detailed fatty acid and 

amino acid composition of meals are shown in Appendix II C and II D respectively. The 

compositions of the meals are compared to the Dietary reference values (DRVs) of the UK 

Department of Health and European Food Safety Authority (EFSA) as well as to previous 

studies (Appendix II E). 

 

Table 1. Test Meal Compositions. 

 

 Protein (%) Fat (%) Carbohydrate (%) 
Volume (Orange 

juice/mL) 

Control with bread (CB) 

 
15 40 45 365 

Control without bread (C) 

 
15 40 45 556 

High Fat (HF) 

 
14 62 24 271 

High Carbohydrate (HC) 

 
14 26 60 681 

High Protein (HP) 

 
32 33 35 414 

 

 

 
13C-Breath test (sample collection and analysis)  

 

Isotopic enrichment of 13C in breath samples was analysed by continuous flow (CF) isotope 

ratio mass spectrometry (IRMS; AP2003 IRMS, Analytical Precision Ltd, Northwich, Cheshire, 

UK). The CF-IRMS was calibrated against a reference gas and the results were expressed as 

a percentage relative to the primary standard, Pee Dee Belemnite (PDB). The baseline-
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corrected 13C-enrichment values were fitted to an established gastric emptying model to derive 

the lag time (Tlag, the time taken to maximal 13CO2 excretion), and half excretion time (Thalf, 

time taken for 50 % of the total 13C excreted to appear in the breath). This analysis was 

performed by Elise Orford at the MRC EWL. 

 

 

Blood sampling  

 

Samples collected during the screening visits were analysed by the Pathology Partnership 

(Addenbrooke’s Hospital, Cambridge, UK). Glucose and insulin concentrations were 

quantified, and a full blood count, full lipid profile and liver function tests were performed. On 

the study days, fresh blood was drawn into a vacutainer serum separator tube containing either 

K2-EDTA or lithium heparin, depending on the analysis to be performed (Table 2). Samples in 

K2-EDTA were centrifuged immediately after collection at 4°C at 8000 x g for 20 min whilst 

samples in lithium heparin were kept on ice for 30 min before centrifugation in the same 

conditions. 

 

Table 2. Human samples analyses.  

 

Vacutainer serum separator tube type Analysis 

K2-EDTA Lipidomics and VLDL/LDL 

Lithium heparin Insulin concentration 

 

 

Insulin quantification 

 

Insulin levels were measured using chemiluminescence immunoassay on a Diasorin Liaison 

XL AutoAnalyser (Diasorin S.p.A, Saluggia, Italy) by the Pathology Partnership 

(Addenbrooke’s Hospital, Cambridge, UK). The working range of the assay was 3 - 3000 

pmol/L (fasting adult 'normal range' for insulin is up to 80 pmol/L). 
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 LDL/VLDL purification 

  

Purified LDL/VLDL fractions were obtained using an LDL/VLDL Purification kit 

(Ultracentrifugation free; Cell Biolabs, Inc.). To 200 μL of plasma on ice, 10 μL of dextran 

solution and 100 μL of precipitation solution A were added. The samples were incubated for 5 

min on ice before centrifuging (6000 x g) for 10 min at 4°C. The remaining pellet (containing 

LDL/VLDL) was resuspended in 80 μL of bicarbonate solution and centrifuged (6000 x g) for 

10 min at 4°C. The supernatant was transferred to a new tube and mixed thoroughly with 1 mL 

of 1X precipitation solution B and centrifuged (6000 x g) for 10 min at 4°C. The pellet was 

resuspended in 40 μL of 5% sodium chloride solution, mixed thoroughly with 1 mL of 1X 

precipitation solution C and centrifuged (6000 x g) for 10 min at 4°C. The above step was 

repeated, and the pellet resuspended in 100 μL of sodium chloride solution. To the mixture  

16 μL was added of dextran removal solution before incubating for 1 h at 4°C and then 

centrifuging (6000 x g) for 10 min at 4°C. The supernatant (containing purified LDL/VLDL) was 

recovered and stored at -80°C. After acquiring the purified LDL/VLDL fractions, metabolites 

were extracted from these fractions as described below and analysed by LC-MS of the lipid 

fraction. 

 

 

Metabolite extractions  

 

Metabolites were extracted as described in Chapter 2, Section 2.1.1.   

 

 

Analysis of intact lipids using orbitrap mass spectrometry 

  

The organic fraction was analysed by the method described in Chapter 2, Section 2.1.2.   

 

 

PEFA derivatisation of organic fractions for LC-MS and analysis of total fatty acids by 

triple quadrupole mass spectrometry  

 

Each dried organic extract was derivatised by the method described in Chapter 2, Section 

2.1.3 and analysed by the method described in Chapter 2, Section 2.1.4  
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Measurement of glutamate using triple quadrupole mass spectrometry 

 

After inferring the effect of high protein feeding, rich in glutamate, on fatty acid synthesis, the 

levels of glutamate were measured in plasma. Aqueous extracts were reconstituted in 100 µL 

of 7:3 (v/v) ACN:water with 0.1% ammonium carbonate before glutamate was separated using 

reverse phase liquid chromatography using a Vanquish UHPLC attached to a TSQ Quantiva 

triple quadrupole mass spectrometer (Thermo Scientific). Multiple reaction monitoring was 

used in conjunction with positive/negative ion mode switching. For each sample, 5 µL was 

injected onto an Acquity UHPLC BEH amide column 100 mm x 2.1 mm, 1.8 µm (Waters, Corp.) 

at a flow rate of 0.6 mL/min. For chromatography on the UHPLC system, mobile phase (A) 

was water with 10 mmol/L ammonium carbonate and mobile phase (B) was ACN. The gradient 

started at 80% (B), decreased to 40% (B) at 4 min for 1 min and returned to the starting 

conditions for another 3 min to re-equilibrate the column. The mass transition for glutamate 

was 148.0 > 84.2. Collision energies and RF lens voltages were generated for each species 

using the TSQ Quantiva optimisation function. Instrument optimisation parameters are detailed 

in Table 3. Xcalibur Software (Thermo Scientific) was used to identify peaks, process mass 

spectra and normalise data to the closest-eluting internal standard. 
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Table 3. Mass spectrometer optimised settings for aqueous LC-MS. 

 

Instrument Optimisation Parameters 

Method Duration (min) 

Ion Source Type 

Ion Spray Voltage: Positive Ion (V) 

Ion Spray Voltage: Negative Ion (V) 

Sheath Gas (Arb) 

Sweep Gas (Arb) 

Ion Transfer Tube Temperature (°C) 

Vaporiser Temperature (°C) 

Column Temperature (°C) 

7 

H-ESI 

3500 

2500 

54 

2 

362 

440 

30 

Needle wash 1:1 (v:v) water:CAN 

Seal wash 
4:1 (v:v) IPA:Water 

with 0.1% formic acid 

 

 

 

 

A TIC of aqueous metabolites in human blood plasma obtained by the above method is shown 

in Figure 5A. From the TIC glutamate (m/z 148.0 > 84.2) and glutamine (m/z 147.1 > 84.2) 

were extracted (Figure 5B).  
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Figure 5. TIC and EICs for glutamate and glutamine. (A) The TIC of aqueous metabolites in human 

blood plasma detected by LC-MS. (B) EIC for the peaks at m/z 148.0 (glutamate) and 147.1 (glutamine). 

Both peaks had a daughter ion at m/z 84.2.  
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3.3.3 Data analysis  

 

WinBUGS analysis of gastric emptying  

 

Breath test data was collected in the form of isotope molar fractions (1) and fitted to curves 

according to (2) based on a Bayesian model as described previously by Ghoos et al., 1993 

using the package WinBUGS. The fitted parameters k(n) and β(n) where assumed to be 

uniformly distributed and were assigned vague informative priors based on previous breath 

test data collected. From these fitted parameters, Tlag (3) and Thalf (4) were calculated. Tlag 

described the peak emptying of the label and Thalf, the time when half of the label was excreted 

in the breath. 13C released from metabolism of labelled octanoic acid was sequestered initially 

in the citric acid cycle, and subsequently, as 13CO2 in the bicarbonate pool. Thus, a further 

equation was derived considering the incorporation of the label into the bicarbonate pool, 

giving rise to the cumulative "self-corrected” data used herein (5). From this equation the self-

corrected parameters Tlag (Tlag(in)) and Thalf (Thalf(in)) were derived. This analysis was 

performed by Xuefei Li. 

The calculations performed were as follows:  

 

CO2 production rate (
mol

h
) , 𝐹𝐶𝑂2

= 0.04518𝑊0.5378𝐻0.3964  

δ13C = (
(

¹³𝐶

¹²𝐶
)

𝑠𝑎𝑚𝑝𝑙𝑒

(
¹³𝐶

¹²𝐶
)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) × 1000 ‰                                                                                        (1) 

𝛿(𝑛, 𝑡) = 𝛿𝑏(𝑛) +
1000∙𝑑

(𝑃𝐷𝐵)∙𝐹𝐶𝑂2
(𝑛)

𝐹∞(𝑛)𝑘(𝑛)𝛽(𝑛)(1 − 𝑒−𝑘(𝑛)𝑡)𝛽(𝑛)−1 ∙ 𝑒−𝑘(𝑛)𝑡                              (2) 

𝑇𝑙𝑎𝑔(𝑛) =
ln 𝛽(𝑛)

𝑘(𝑛)
                                                                                                                                 (3) 

𝑇ℎ𝑎𝑙𝑓 (𝑛) =
− ln(1−2

−1
𝛽(𝑛))

𝑘(𝑛)
                                                                                                                  (4) 

𝐺(𝑛, 𝑡) = 𝛽(𝑛)(1 − 𝑒−𝑘(𝑛)𝑡)𝛽(𝑛)−1 − (𝛽(𝑛) − 1)(1 − 𝑒−𝑘(𝑛)𝑡)𝛽(𝑛)                                               (5) 

 

Where the CO2 production rate is defined as 𝐹𝐶𝑂2
= 0.04518𝑊0.5378𝐻0.3964 (W is weight in kg 

and H is height in m), F∞ (n) is the fraction of the dose recoverable in breath, d is the isotope 

dose given, PDB is the isotopic composition of the international standard of fixed carbon 

isotope ratio (calcium carbonate from belemnite from the Pee Dee formation in South 
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Carolina; 
¹³𝐶

¹²𝐶
= 0.0112), 𝛿𝑏(𝑛, 𝑡) and 𝛿𝑏(𝑛) (‰) the measured isotopic compositions with 

respect to PDB for each of the breath tests at time t and in the basal state, respectively. 

 

 

KNIME pipeline for the analysis of lipidomic data 

 

Samples obtained from human subjects were acquired in two analytical batches using the 

analytical method described above, along with a set of quality controls (QCs, obtained by 

pooling 15 L of all samples). The resulting raw data files were converted into mzML format 

using the tool MSConvert of the ProteoWizard software package (Holman et al., 2014; Kessner 

et al., 2008). Further processing occurred within the R environment (R Core Team, 2017) with 

the libraries IPO, XCMS and CAMERA (Kuhl et al., 2012; Libiseller et al., 2015; Smith et al., 

2006) to perform parameter optimisation based on the QC samples, peak extraction, grouping, 

retention time correction, and annotation of adducts and isotopes. The output from these pre-

processing steps was exported as a .csv file and imported into an adapted implementation of 

the KniMet pipeline (Liggi et al., 2018) for post-processing. The nonlinear local polynomial 

regression (LOESS) batch correction utility was used to normalise for differences among the 

two analytical batches (based on QCs for intra-batch correction, and on all samples for inter-

batch correction). Features were filtered firstly based on their presence in the QC samples on 

the two separate batches with the QC-based feature filtering functionality (thresholds for 

missing values and relative standard deviation were 50% and 20%, respectively), whilst 

median peak area comparison, as previously described by Dunn and co-workers (Dunn et al., 

2011), was used on the merged dataset. Metabolites were annotated based on accurate mass 

using a library built with the LIPID MAPS mass spectrometry combinatorial expansion package 

(Sud et al., 2012). Finally, the data matrix to be utilised for multivariate statistical analysis was 

subjected to missing values imputation with the KniMet MVI-KNN tool. This analysis was 

performed by Sonia Liggi. The quality assurance of the method is detailed in Appendix III. 
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3.3.4 Statistical analysis  

  

Multivariate statistics 

  

Multivariate statistical analyses were performed in SIMCA-P software, Version 13.0 (Umetrics, 

Sweden). All variables were univariate (UV) scaled and subjected to principal components 

analysis (PCA) coupled with Hotelling’s T2 test to evaluate the distribution of the observations 

and identify any possible outliers. Subsequently, samples were classified based on the diet 

and a supervised Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-

DA) model was developed to maximise separation between the different classes. The models 

were validated by a permutation test (n=100) and their significance (p≤0.05) was assessed by 

submitting the scores of the models to a cross‐validated analysis of variance (CV-ANOVA) 

test. Loadings plots and the variable importance in projection (VIP) were acquired for each 

model to determine which variables drove the separation between classes (threshold limit > 

1.0).  These variables were subsequently visualised using univariate statistics. The extent to 

which the model fits and predicts the data is supplied by R2X and Q2X, respectively. R2X, the 

“goodness of fit”, varies between 0 and 1, where 1 is a perfectly fitted model. However, with 

increasing complexity, (i.e. increased numbers of parameters and components), R2X will tend 

towards 1, and so Q2X, the “goodness of prediction” is used as a supplementary measure, with 

a value greater than 0.4 considered significantly predictive. 

 

 

Univariate statistics  

 

Data were visualised using GraphPad (GraphPad Prism 5.2; GraphPad Software, San Diego, 

CA, USA). All data are expressed as means ± the SEM. In GraphPad, repeated measures 

one-, two-way ANOVA or paired two-tailed t-test were performed where appropriate to 

determine significant differences between experimental groups. For one-way ANOVA, Tukey’s 

post-hoc multiple comparison test was performed, whilst for two-way ANOVA, Sidak’s post-

hoc multiple comparison test was used. Differences between experimental groups were 

considered to be statistically significant when p≤0.05.  
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3.4 Results  

 

3.4.1. Participant characteristics  

 

The nine participants’ screening results adhered to the inclusion criteria of the study. The 

anthropometric, haematological and biochemical characteristics of the participants that met 

the inclusion criteria are detailed in Table 4. Their age and BMI ranged from 19-29 years old 

and 18.9-27.5 kg/m2, respectively. Their haematological characteristics, including arterial 

blood pressure and full blood count were within the healthy range. Moreover, their fasting lipid 

profile, blood insulin and glucose as well as liver function test were all within the defined healthy 

range.  

 

 

3.4.2 Gastric emptying rates and parameters  

 

The breath test kinetics, measured by 13C-OBT to characterise gastric emptying, are detailed 

in Table 5. Each parameter, Thalf (Table 5A) and Tlag (Table 5B) as well as Thalf(in) (Table 5C) 

and Tlag(in) (Table 5D), were analysed between each group using repeated measures one-way 

ANOVA with post-hoc Tukey’s multiple comparisons test. The percentage of the solid food 

fraction expelled from stomach was not significantly different between HF and CB, HP and C, 

HP and HC as well as C and HC. The results that were significant for both Thalf(in) and Tlag(in) 

(red box) will be shown in more detail below. 

 

 

Gastric emptying rate was faster in HF group compared to the HP, C or HC group 

 

Volunteers that consumed a HF meal experienced a significantly faster gastric emptying rate 

compared to the same volunteers consuming a HP (Figure 6A), C (Figure 6B) and HC meal 

(Figure 6C). Thalf(in) was significantly faster in the HF group than the HP (by 25.2%; Figure 7A), 

C (by 28.7%; Figure 7B) and HC group (by 28.1%; Figure 7C). Tlag(in) was significantly faster in 

the HF group than the HP (by 31.3%; Figure 7D), C (by 42.7%; Figure 7E) and HC group (by 

42.0%; Figure 7F). 
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Gastric emptying rate was faster in CB group compared to the HP, C or HC group  

 

Volunteers that consumed a CB meal experienced a significantly faster gastric emptying rate 

compared to the same volunteers consuming a HP (Figure 8A), C (Figure 8B) and HC meal 

(Figure 8C). Thalf(in) was significantly faster in the CB group than the HP (by 11.5%; Figure 9A), 

C (by 14.6%; Figure 9B) and HC group (by 14.1%; Figure 9C). Tlag(in) was significantly faster in 

the CB group than the HP (by 12.4%; Figure 9D), C (by 22.2%; Figure 9E) and HC group (by 

21.6%; Figure 9F). 

 

Table 4. Participant characteristics. Table detailing anthropometric, haematological and 

biochemical characteristics of the volunteers.  

 

Anthropometric Parameter Units Mean Standard Deviation Range 

Age years 24.7 4.24 19-29 

Weight kg 72.4 7.38 65.5-88.7 

Height cm 179 7.74 168-192 

BMI kg/m2 22.7 2.58 18.9-27.5 

Systolic BP mmHg 123 8.41 100-140 

Diastolic BP mmHg 71.1 8.54 50-85 

Haematology     

White blood cell (WBC)count 109/L 5.03 0.542 3.90-10.2 

Red blood cell (RBC) count 1012/L 5.10 0.312 4.30-5.75 

Haemoglobin (Hb) g/L 147 4.70 135-172 

Haematocrit (Hct) L/L 0.445 0.0197 0.395-0.505 

Mean cell volume (MCV) fL 87.4 5.63 80.0-99.0 

Mean cell haemoglobin(MCH) pg 28.8 2.08 27.0-33.5 

Red cell distribution width (RDW) % 13.1 0.791 11.0-16.0 

Platelet (PLT) count 109/L 230 28.1 150-370 

Platelet Haematocrit (PCT) L/L 0.199 0.0215 0.19-0.29 

Mean Platelet Volume (MPV) fL 8.67 0.870  

Neutrophil count 109/L 2.74 0.576 1.50-7.70 

Lymphocyte count 109/L 1.48 0.337 1.10-4.50 

Monocyte count 109/L 0.346 0.110 0.10-0.90 

Eosinophil count 109/L 0.0944 0.0436 0.02-0.50 

Basophil count 109/L 0.0322 0.0172 0.00-0.20 

Lipid profile, insulin and glucose     

Cholesterol mmol/L 4.16 0.688 < 5 

Triglyceride mmol/L 0.878 0.342 0.3-1.80 

HDL Cholesterol mmol/L 1.39 0.170 > 1 

LDL Cholesterol mmol/L 2.37 0.582 < 2.59 

Cholesterol/HDL Ratio  3.02 0.696 < 3.5 

Non HDL Cholesterol mmol/L 2.77 0.702 <2.95 

Insulin pmol/l 36.3 19.6 0-80 

Serum Glucose mmol/L 4.47 0.415 3.9-5.5 

Liver function     

Albumin g/L 42.8 2.95 35-50 

Total Bilirubin µmol/L 15.0 4.66 0-20 

Alkaline Phosphatase U/L 65.3 12.2 30-130 

Alanine Transaminase U/L 20.5 6.78 7-40 

Gamma Glutamyltransferase U/L 16.1 4.99 0-72 
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Table 5A. Thalf represented as a mean ± 

SEM. Thalf comparisons between meals were 

analysed by one-way repeated measures 

ANOVA with post-hoc Tukey’s multiple 

comparisons test; * = p≤0.05, n = 9/group. 
 

 

Table 5B. Tlag represented as a mean ± 

SEM. Tlag comparisons between meals were 

analysed by one-way repeated measures 

ANOVA with post-hoc Tukey’s multiple 

comparisons test; * = p≤0.05, n = 9/group. 
 

Thalf (h) HF CB HP C HC  Tlag (h) HF CB HP C HC 

Mean ± 
SEM 

3.15 
± 

0.63 

3.32 
± 

0.64 

3.68 
± 

0.68 

3.51 
± 

0.66 

3.48 
± 

0.66 

 Mean ± 
SEM 

2.42 
± 

0.55 

2.63 
± 

0.57 

2.91  
±  

0.60 

2.89 
± 

0.60 

2.86 
± 

0.60 

HF vs. CB ns (p = 0.4)      HF vs. CB ns (p = 0.2     

HF vs. HP *(p = 0.002)     HF vs. HP * (p = 0.003)    

HF vs. C * (p = 0.02)    HF vs. C * (p = 0.008)   

HF vs. HC ns (p = 0.2)  HF vs. HC ns (p = 0.05) 

CB vs. HP  * (p = 0.01)     CB vs. HP  * (p = 0.005)    

CB vs. C  ns (p = 0.09)    CB vs. C  * (p = 0.003)   

CB vs. HC  ns (p = 0.5)  CB vs. HC  ns (p = 0.003) 

HP vs. C   ns (p = 0.1)    HP vs. C   ns (p = 0.08)   

HP vs. HC   ns (p = 0.3)  HP vs. HC   ns (p = 0.3) 

C vs. HC       Ns (p = 1)  C vs. HC       ns (p = 1) 

             

           
 

Table 5C. Thalf(in) represented as a mean ± 
SEM. Thalf(in) comparisons between meals 
were analysed by one-way repeated 
measures ANOVA with post-hoc Tukey’s 
multiple comparisons test; * = p≤0.05, n = 
9/group. 
 

 

Table 5D. Tlag(in) represented as a mean ± 
SEM. Tlag(in) mean comparisons between 
meals were analysed by one-way repeated 
measures ANOVA with post-hoc Tukey’s 
multiple comparisons test; * = p≤0.05, n = 
9/group. 

 

Thalf(in) (h) HF CB HP C HC  Tlag(in) (h) HF CB HP C HC 

Mean ± 
SEM 

1.71 
± 

0.46 

1.92 
± 

0.49 

2.14 
± 

0.52 

2.20 
± 

0.52 

2.19 
± 

0.52 

 Mean ± 
SEM 

1.31 
± 

0.40 

1.53 
± 

0.44 

1.72  
±  

0.46 

1.87 
± 

0.48 

1.86 
± 

0.48 

HF vs. CB ns (p = 0.2)      HF vs. CB ns (p = 0.1)     

HF vs. HP * (p = 0.003)       HF vs. HP * (p = 0.005)     

HF vs. C * (p = 0.006)    HF vs. C * (p = 0.005)   

HF vs. HC * (p = 0.03)  HF vs. HC * (p = 0.02) 

CB vs. HP  * (p = 0.003)     CB vs. HP  * (p = 0.002)    

CB vs. C  * (p = 0.0002)    CB vs. C  * (p = 0.0002)   

CB vs. HC   * (p = 0.02)   CB vs. HC   * (p = 0.009) 

HP vs. C   ns (p = 0.6)    HP vs. C   ns (p = 0.06)   

HP vs. HC   ns (p = 0.9)  HP vs. HC   ns (p = 0.4) 

C vs. HC       ns (p = 1)  C vs. HC       ns (p = 1) 

 



 
 

60 

 

 

 

 

 

Figure 6. Gastric emptying rate was faster after consuming the HF meal compared with the HP, 

C and HC meal. (A) Gastric emptying rate as a percentage of food expelled from stomach over 6 h after 

HF (green) and HP (red) meals. (B) Gastric emptying rate as a percentage of food expelled from 

stomach over 6 h after HF (green) and C (blue) meals. (C) Gastric emptying rate as a percentage of 

food expelled from stomach over 6 h after HF (green) and HC (orange) meals. Data are presented as 

mean ± SEM and analysed by two-way repeated measures ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 9/group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Thalf(in) and Tlag(in) were faster after consuming the HF meal compared with the HP, C and 

HC meal. (A) Thalf(in) after HF (green) and HP meals (red). (B) Thalf(in) after HF (green) and C meals (blue). 

(C) Thalf(in) after HF (green) and HC meals (orange). (D) Tlag(in) after HF (green) and HP meals (red). (E) 

Tlag(in) after HF (green) and C meals (blue). (F) Tlag(in) after HF (green) and HC meals (orange). Data are 

presented as individual values and analysed by paired two-tailed t-Test; * = p≤0.05, n = 9/group. 
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Figure 8. Gastric emptying rate was faster after consuming the CB meal compared with the HP, 

C and HC meal. (A) Gastric emptying rate as a percentage of food expelled from stomach over 6 h after 

CB (purple) and HP (red) meals. (B) Gastric emptying rate as a percentage of food expelled from 

stomach over 6 h after CB (purple) and C (blue) meals. (C) Gastric emptying rate as a percentage of 

food expelled from stomach over 6 h after CB (purple) and HC (orange) meals. Data are presented as 

mean ± SEM and analysed by two-way repeated measures ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 9/group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Thalf(in) and Tlag(in) were faster after consuming the HF meal compared with the HP, C and 

HC meal. (A) Thalf(in) after CB (purple) and HP meals (red). (B) Thalf(in) after CB (purple) and C meals 

(blue). (C) Thalf(in) after CB (purple) and HC meals (orange). (D) Tlag(in) after CB (purple) and HP meals 

(red). (E) Tlag(in) after CB (purple) and C meals (blue). (F) Tlag(in) after CB (purple) and HC meals (orange). 

Data are presented as individual values and analysed by paired two-tailed t-Test; * = p≤0.05, n = 

9/group. 
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3.4.3 Gastric emptying parameter correlations 

 

Gastric emptying parameters weakly correlated with dietary fat and carbohydrate but 

did not correlate with protein intake  

 

Gastric emptying parameters, Thalf(in) and Tlag(in), were weakly associated with fat (Figure 10) 

and carbohydrate content (Figure 11) but did not correlate with protein (Figure 12) content. 

Pearson correlation analysis did not reveal any statistically significant correlation coefficients 

(r). The data were then fitted into a linear regression model. The coefficients of determination, 

r2, for all models were low, indicating weak models.  

 

 

 

 

 

 

 

 

 

Figure 10. Gastric emptying weakly correlated with fat content. (A) Linear regression model 

showing Thalf(in) as a function of fat content (r2=0.20; p=0.002). (B) Linear regression model showing 

Tlag(in) as a function of fat content (r2=0.23; p=0.0008). Data are presented as mean ± SEM; n = 9/group.  

 

 

 

 

 

 

 

 

 

 

Figure 11. Gastric emptying weakly correlated with carbohydrate content. (A) Linear regression 

model showing Thalf(in) as a function of carbohydrate content (r2=0.13; p=0.02). (B) Linear regression 

model showing Tlag(in) as a function of carbohydrate content (r2=0.19; p=0.003). Data are presented as 

mean ± SEM; n = 9/group.  

 



 
 

63 

 

 

 

 

 

 

 

 

 

Figure 12. Gastric emptying did not correlate with protein content. (A) Linear regression model 

showing Thalf(in) as a function of protein content (r2=0.02; p=0.3). (B) Linear regression model showing 

Tlag(in) as a function of protein content (r2=0.009; p=0.5). Data are presented as mean ± SEM; n = 9/group.  

 

 

The fact that the C and the CB meals have the same fat, carbohydrate and protein content but 

they consistently do not fall on the same point on the line, suggests that there is another factor 

affecting gastric emptying.  

 

 

Gastric emptying rate parameters were delayed with increasing liquid carbohydrate  

 

Even though total carbohydrate content and other macronutrients did not correlate with gastric 

emptying parameters, liquid carbohydrate delayed gastric emptying as determined by the 

increases in the parameters, Thalf(in) (Figure 13A) and Tlag(in) (Figure 13B). The effect of liquid 

carbohydrate content of the meal on gastric emptying rates was only apparent up to 50% of 

the total meal composition and Thalf(in) plateaued at this stage.  
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Figure 13. Gastric emptying was delayed with increasing liquid carbohydrate intake. (A) Second 

order polynomial equation describing Thalf(in) as a function of liquid carbohydrate content (B) Second 

order polynomial equation Tlag(in) as a function of liquid carbohydrate content. Data are presented as 

mean ± SEM and analysed by two-way repeated measures ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 9/group.  

 

 

Fat fraction expelled from stomach positively correlated with the total amount of lipids 

in plasma  

 

The amount of fat expelled from the stomach was calculated by multiplying gastric emptying 

by total fat intake per meal (Figure 14A) at each time point. The area under the curve (AUC; 

Figure 14B) was calculated to provide an estimate of the total amount of fat expelled from the 

stomach over the course of 6 h. The total amount of fat expelled from stomach after consuming 

the HC or HP meals was significantly lower compared to the C meal. However, the total amount 

of fat expelled from the stomach after consuming the CB or HF meals was significantly higher 

compared to the C meal.  
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Figure 14. Total plasma lipids positively correlated with total fat fraction expelled from stomach. 

(A) Fat fraction expelled from the stomach, after consuming HF (green), HP (red), C (blue), CB (purple) 

and HC (orange) meals over 6 h. (B) Total amount of fat expelled from the stomach after consuming HF 

(green), HP (red), C (blue), CB (purple) and HC (orange) meal. (C) Linear regression model of fat total 

plasma lipids as a function of total fat fraction expelled from the stomach. HP meal resulted in more 

plasma lipids than expected from the linear trend (red circle). Data are presented as mean ± SEM and 

analysed by one-way repeated measures ANOVA with post-hoc Tukey’s multiple comparisons test; * = 

p≤0.05, n = 9/group.  

 

 

Linear regression analysis of total plasma lipids, reflected by the TIC of mass spectra, as a 

function of fat fraction expelled from stomach gave a positive linear relationship (Figure 14C). 

The coefficient of determination, r2, was 0.87 (close to 1), indicating a good fit of data into a 

linear model (p=0.02). The exception to this good linear model was the HP group. The total 

amount of lipids detected in plasma after consuming the HP meal was greater than the amount 

of fat fraction expelled from the stomach after consuming the same meal (red circle, Figure 

14C).  
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3.4.4 Open profile lipidomics and fatty acid analysis of plasma and liver-derived 

lipoproteins    

 

 

ScTAGs were the major discriminant variables between high protein- and control-fed 

healthy male subjects 

 

To assess changes in the plasma triglyceride profiles obtained by LC-MS, spectra were 

processed to construct PCA models to identify the distribution of the variables and remove any 

outliers detected by the Hotelling’s T2 test. Subsequently, OPLS-DA models were created to 

discriminate between the two groups. In the OPLS-DA models, time points T3, T4 and T5 were 

utilised as this provided sufficient time for ingested macronutrients to reach the extrahepatic 

blood (Samson et al., 2012). OPLS-DA readily separated the HP group from the C group (R2X 

= 0.84, Q2 = 0.47; Figure 15A). The model was validated using a permutation test, yielding R2X 

and Q2 values [R2 = (0.0, 0.56), Q2= (0.0, -0.63)] lower than the original, indicating a stable and 

non-random model (Figure 15B). CV-ANOVA also showed a significant p-value for the model 

(p=0.0063). 

 

The loadings plot of the model, C versus HP, was then used to determine the metabolite 

features that differ between the groups (Figure 15C). VIP was utilised to filter important 

metabolites in the model. The vectors in the projection were regularised such that, if all 

variables were of equal importance, their values would be equal to 1. Therefore, any variable 

with a VIP value greater than 1 was considered to be a potential discriminant. TAGs containing 

shorter and more saturated fatty acids, scTAGs, (red circles; Figure 15C) were the VIPs most 

elevated in the HP group (Figure 15D).   
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Figure 15. Multivariate data analysis of C- and HP-fed healthy human subjects. (A) OPLSA-DA 

scores plot discriminating TAG profiles in plasma of C- and HP-fed individuals after 3, 4 and 5 h. Each 

blue circle represents a single C-fed individual, whilst red represents HP-fed individuals (R2X = 0.84, Q2 

= 0.47). (B) Cross validation of (A) acquired through 100 permutation tests; y-axis intercepts: R2 = (0.0, 

0.56), Q2= (0.0, -0.63). (C) OPLS-DA loadings plot of TAG influence on the separation between the HP 

and C groups. TAGs elevated in HP are displayed on the positive side of the predictive component, 

whilst TAGs elevated in C are displayed on the negative. Red circles scTAGs. (D) Box plots showing 

the range of scTAGs in C- (blue) and HP-fed (red) individuals. Data are presented as mean ± SEM and 

analysed by two-way repeated measures ANOVA with post-hoc Sidak’s multiple comparisons test; * = 

p≤0.05, n = 9/group. 
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HP feeding in healthy male subjects revealed discrete clusters of TAGs in blood plasma 

 

The TAG profiles were further analysed by hierarchical clustering, and heatmap 

representations were obtained from the Spearman correlation matrix among metabolites. One 

of the clusters contained scTAGs, indicating that changes in TAG levels were consistent within 

members of the cluster, and these have been previously correlated with DNL and steatosis 

(Figure 16).  

 

 

Figure 16. scTAGs form a distinct cluster. Hierarchical Cluster Analysis with Spearman correlation 

among the TAG profiles measured by LC-MS of all individuals after a HP meal; n = 9. 
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HP feeding in healthy male subjects increased scTAGs in blood plasma  

 

The total amount of triacylglycerides was not significantly different between all five meals 

(Figure 17A). However, scTAGs were significantly elevated after a HP meal at 3 and 4 h 

compared to the same individuals fed with C, CB, HF or HC meals (Figure 17B). scTAG content 

in CB, HC, and HF was not significantly different when compared to C (Figure 17B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. scTAGs were elevated in plasma after a HP meal in healthy human subjects. (A) Fasting 

(baseline; 0 h) and postprandial total TAG abundance in plasma after CB (purple), C (blue), HP (red), 

HF (green) and HC (orange) meals measured by LC-MS in samples drawn over 6 h. (B) Fasting 

(baseline; 0 h) and postprandial sum of scTAG abundance in plasma CB (purple), C (blue), HP (red), 

HF (green) and HC (orange) meals measured by LC-MS in samples drawn over 6 h. Data are presented 

as mean ± SEM and analysed by two-way repeated measures ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 9/group. 
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HP feeding in healthy male subjects increased scTAGs in the LDL/VLDL fraction 

 

The total triglyceride content was not significantly different between the C and HP groups 

(Figure 18A). However, total scTAGs were markedly elevated in HP-fed subjects 3 h post-

feeding compared with the same individuals fed with the C meal (Figure 18B). After an 

overnight fast and subsequent feeding with the HP meal, there was an increase in scTAGs up 

to 4 h compared with baseline (Figure 18B). There were no significant differences in scTAGs 

between the baseline and hourly samples in C-fed subjects (Figure 18B). To determine 

whether these TAGs were produced by the liver and not the intestine or adipose tissue, 

LDL/VLDL particles were extracted from plasma, by a series of precipitation and low 

centrifugation steps, and their TAG profiles analysed. In line with changes in plasma, the sum 

of scTAGs in the LDL/VLDL fraction was higher in HP-fed subjects than C-fed subjects after 3 

h (Figure 18C).  

 

Fatty acids from the meal as well as free fatty acid (FFA) are major precursors of lipoprotein 

TAGs. The C and HP meals did not have any differences in meal fatty acid compositions 

(Appendix II C) nor in the plasma FFA content (Appendix IV), indicating that these TAGs were 

synthesised de novo. 
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Figure 18. scTAGs were elevated in plasma and plasma LDL/VLDL fraction after a HP meal in 

healthy human subjects. (A) Fasting (baseline; 0 h) and postprandial total TAG abundance in plasma 

after C (blue) and HP (red) meal measured by LC-MS in samples drawn over 6 h. (B) Fasting (baseline; 

0 h) and postprandial sum of scTAG abundance in plasma after C (blue) and HP (red) meal measured 

by LC-MS in samples drawn over 6 h. (C) Fasting (baseline; 0 h) and postprandial LDL/VLDL TAG 

abundance in plasma after C (blue) and HP (red) meals measured by LC-MS in samples drawn over 6 

h. Data are presented as mean ± SEM and analysed by two-way repeated measures ANOVA with post-

hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 9/group. 
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Fatty acid analysis indicated an increase in the DNL index after consuming HP meal 

 

The plasma 16:0/18:2n-6 ratio was calculated as an index of DNL, as during DNL, plasma 

TAGs are enriched with 16:0, the primary product of FAS, and depleted in 18:2n-6, an essential 

fatty acid. At 4 h, where the biggest increase in scTAGs was observed, the 16:0/ 18:2n-6 ratio 

was significantly greater after the HP meal than after the C meal (Figure 19).  

 

 

 

 

 

 

 

 

 

 

Figure 19. DNL index increased after a HP meal in healthy human subjects. DNL index reflected 

by the ratio of FA 16:0 to FA 18:2n-6 after C (blue) and HP (red) meals at 4 h. Data are presented as 

mean ± SEM and analysed by a paired t-Test (E); * = p≤0.05, n = 9/group. 

 

 

3.4.5 Plasma glutamate levels    

  

High protein meal increased plasma glutamate levels 

 

High protein feeding, using a soy protein intervention rich in glutamate, resulted in increased 

levels of scTAGs and VLDL-associated scTAGs in plasma of human subjects. To characterise 

what was driving this increase in DNL, glutamate levels in plasma were analysed. At 3 h (one 

hour before maximum DNL levels), the plasma glutamate levels were significantly higher in 

subjects that consumed the HP meal compared to the same subjects fed with the C meal. 

However, at 4h there was a decrease in plasma glutamate levels after the HP meal, possibly 

indicating uptake by the liver (Figure 20). 
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Figure 20. HP-feeding increased plasma glutamate levels in human subjects. Fasting (baseline; 0 

h) and postprandial glutamate abundance in plasma after C (blue) and HP (red) meal measured by LC-

MS in samples drawn over 6 h. Data are presented as mean ± SEM and analysed by two-way repeated 

measures ANOVA with post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 9/group. 

 

 

3.4.6 Liquid carbohydrate and DNL   

  

Liquid carbohydrate did not correlate with DNL 

 

scTAGs that were used as markers of DNL were not dependent on the amount of liquid 

carbohydrate (Figure 21). Pearson correlation analysis did not give any statistically significant 

correlation coefficients (r) and the data did not fit into a linear regression model. The coefficient 

of determination, r2, for the model was 0.01 indicating no correlation.  

 

 

 

 

 

 

 

 

 

 

Figure 21. scTAGs did not correlate with liquid carbohydrate content. Linear regression model 

showing Sum of scTAGs as a function of liquid carbohydrate content (r2=0.01; p=0.5). Data are 

presented as mean ± SEM; n = 9/group. 
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3.4.7 Plasma insulin levels 

 

Insulin levels correlated with dietary carbohydrate and protein  

 

Blood insulin concentration was positively associated with carbohydrate and protein content of 

the meals (Figure 22). Pearson correlation analysis did not give statistically significant 

correlation coefficient (r) between insulin and carbohydrate only (r=0.86; p=0.06). However, 

insulin as a function of carbohydrate and protein content together gave a significant correlation 

coefficient (r=0.96; p=0.007). The data were then fitted into linear regression models. The 

coefficient of determination, r2, for insulin versus carbohydrate only was not significant (r2=0.74; 

p=0.06; Figure 22A). For insulin versus carbohydrate and protein, r2 was significant and higher 

than that of insulin versus carbohydrate indicating a stronger relationship (r2=0.94; p=0.007; 

Figure 22B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Plasma insulin concentration correlated with carbohydrate and protein. (A) Linear 

regression model showing insulin concentration (pmol/L) a function carbohydrate content (r2 = 0.74; 

p=0.06). (B) Linear regression model showing insulin concentration (pmol/L) as a function of 

carbohydrate and protein content (r2=0.94; p=0.007). Data are presented as mean ± SEM; n = 9/group.  
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Insulin levels were not different between the C and HP groups   

 

Differences in insulin levels may be a more plausible explanation for the increase in lipogenesis 

during high protein (Boden et al., 2013). Even though insulin correlated better with 

carbohydrate and protein rather than carbohydrate only, there were no significant differences 

in the plasma insulin levels (Figure 23A) as well as the total amount of insulin released between 

the C and HP groups (Figure 23B).  

 

 

 

 

 

 

 

 

 

 

Figure 23. Plasma insulin levels. (A) Plasma insulin released after consuming a C (blue), HP (red) 

and a HF (green) meal. (B) Total plasma insulin released after consuming a C (blue), HP (red) and a 

HF (green) meal over 3 hours. Data are presented as mean ± SEM and analysed by two-way repeated 

measures ANOVA with post-hoc Sidak’s multiple comparisons test (A); or by a paired two-tailed t-test 

(B); * = p≤0.05, n = 9/group.
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3.5 Discussion 

 

Gastroparesis, defined as abnormally delayed gastric emptying is prevalent amongst patients 

with longstanding T2DM. Persistent hyperglycaemia damages the vagus nerve and leads to 

uncontrolled emptying of the stomach (Wilcox, 2005.). A range of studies have previously 

characterised how different macronutrient compositions, energy, meal texture, volumes, 

temperatures and pH affect gastric emptying (Leiper, 2015). However, there is limited data on 

which factor is the main determinant of gastric emptying and how this in turn affects lipid 

metabolism. In this chapter, liquid carbohydrate was shown to be the main determinant of 

gastric emptying, which delayed the emptying of the solid fraction. Moreover, DNL was not 

affected by liquid carbohydrate in the present study. However, the HP meal increased scTAGs 

in healthy males, a set of TAGs previously associated with DNL.  

 

Previous studies into the effects of macronutrient composition of gastric emptying have 

concluded that high fat and carbohydrate meals delay gastric emptying in liquids or semi-solid 

meals (Gentilcore et al., 2006; Hellström et al., 2017; Mushref and Srinivasan, 2013). The 

results of this study indicate that liquid carbohydrate was the primary determinant of gastric 

emptying rather than macronutrient compositions. The delay caused by carbohydrate in the 

liquid phase occurred only up to a liquid carbohydrate content of 50%, at which point, 

increasing levels of liquid carbohydrate no longer slowed gastric emptying rates in the present 

study. Liquid gastric emptying is faster than solid gastric emptying and therefore in the C and 

HC meals (containing a greater proportion of the meal in liquid form), the rate of early 

carbohydrate delivery to the duodenum was higher than in the HF, CB and HP meals. This 

agrees with the hypothesis that early delivery of carbohydrate to the duodenum is sensed by 

receptors in the small intestine to delay the emptying of the solid portion, where the supplied 

13C-octanoic acid is bound. This hypothesis is also supported by Collins et al., wherein a delay 

in gastric emptying was induced by dextrose following a mixed meal (Collins et al., 1991). The 

extent to which the gastric emptying response was partly due to volume, or composition of the 
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liquid is unknown. Water (liquid without carbohydrate) might be having an effect in this delay 

and therefore is should be further investigated to fully characterise what induces this delay.  

 

It has previously been demonstrated that high carbohydrate diets induce DNL (Tappy and Lê, 

2012; Timlin and Parks, 2005). This was elicited by postprandial glucose activation of the 

transcription factor, ChREBP by glucose (Iizuka and Horikawa, 2008). Rapidly increased 

hepatic glucose levels induce glycolysis, and a number of glycolytic intermediates, including 

glucose-6-phosphate and fructose-2,6-bisphosphate, have been shown to increase the activity 

of ChREBP (Otero et al., 2014). This transcription factor then upregulates the expression of 

DNL genes encoding ACL, ACC and FAS. It also induces the expression of pyruvate kinase 

that generates pyruvate, which is in turn de-carboxylated to acetyl-CoA to provide an 

alternative source of the DNL substrate (Ma et al., 2005). Mice deficient in ChREBP also 

present with decreased levels of DNL (Iizuka et al., 2004). It is conceivable that liquid 

carbohydrate, which empties from the stomach and reaches the liver rapidly (Phillips et al., 

2015), induces DNL. However, the HC meal, containing the highest amount of liquid 

carbohydrate in this study did not increase the levels of typical scTAGs. Moreover, scTAG 

content was not different between the two meals that contained the same carbohydrate content 

whilst the form of carbohydrate was different (solid compared with liquid), suggesting that liquid 

carbohydrate did not induce DNL in this study. This may be explained by the fact feeding was 

preceded by a 12 h fast which typically suppresses DNL and increases gluconeogenesis. 

Refeeding with a 2 MJ high carbohydrate meal may not have been sufficient in this case to 

replenish the glycogen stores and induce DNL. In studies demonstrating an increase in DNL 

after high carbohydrate feeding, the meals were above 3 MJ (Marques-lopes et al., 2001) and 

in some, subjects were fed multiple times (Timlin and Parks, 2005).   

 

Besides glucose, insulin can also induce DNL, through activation of the sterol responsive 

SREBP-1c transcription factor and subsequent activation of DNL gene transcription (Boden et 

al., 2013). They both involve PI3K/PKB, which can result in the phosphorylation and activation 

of SREBP1c or LXRα; (Kawano and Cohen, 2013). Important nodes of the insulin signalling 



 
 

78 

cascade are the mTOR complexes that are activated by amino acids (Bar-Peled and Sabatini, 

2014). In this study, insulin concentration correlated better with dietary carbohydrate and 

protein together rather than solely carbohydrate content. This may suggest that dietary protein 

might also induce the release of insulin to activate DNL.  

 

Interestingly, the HP meal had more plasma lipid than that expelled from the stomach, when 

estimated by calculating the AUCs. The HP meal, rich in glutamate, specifically increased 

scTAGs in plasma (rather than a global increase in TAGs) as well as in the LDL/VLDL fraction 

in healthy human males. A previous study reported that DNL peaks at 4 hours after feeding 

(Timlin and Parks, 2005), which aligns with the peak concentration of scTAGs in plasma and 

the LDL/VLDL fraction. Plasma glutamate concentration peaked at 3 h and decreased at 4 h 

when DNL peaked. This may suggest that glutamate was utilised by the liver to induce DNL, 

or possibly that its uptake was driving the increase in DNL. This agrees with the finding that 

glutamate, like citrate, is an allosteric activator of ACC (Boone et al., 2000). It is postulated 

that glutamate induces the polymerisation of ACC1 (the isoform that is present in lipogenic 

tissues) and thereby increases its activity (Boone et al., 2000). Even though glutamate is not 

typically viewed as a lipogenic precursor, carbon from glutamate/glutamine has been shown 

to be incorporated into fatty acids in cells with increased isocitrate dehydrogenase 1/2 (IDH1/2) 

activity. These cells are usually functioning under hypoxic conditions in the cancerous state 

(Metallo et al., 2011). However, wild-type brown adipocytes have been showed to have 

increased in vivo activity of IDH1 (Yoo et al., 2008). IDH1/2 converts α-ketoglutarate to citrate 

via reductive carboxylation under a high mitochondrial reduced nicotinamide (NADH) oxidised 

nicotinamide (NAD+) ratio (Koh et al., 2004). Increases in energy balance, reflected by a high 

mitochondrial NADH/NAD+ ratio, increase the activity of IDH1/2 to induce reductive 

carboxylation and generate citrate from glutamate. The extent to which glutamate surplus 

affects the NADH/NAD+ ratio and is itself incorporated into lipids in hepatocytes will be 

examined in the next chapter. 

The data also support the fact that BCAAs, leucine, isoleucine and valine correlate with insulin 

resistance and T2DM in humans (Würtz et al., 2012). It has been demonstrated that 
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deprivation of BCAAs from the diet whilst maintaining levels of other amino acids is sufficient 

to improve glycaemic control (Xiao et al., 2014). Increased circulating BCAAs are sensed by 

mTOR and subsequently promote DNL and may explain the effects of BCAAs (Crown et al., 

2015). The effects seen in this study were following a 12-hour fast, which typically supresses 

DNL (Nieminen et al., 2016), and may therefore have general implications for high-protein diets 

and T2DM. Studies have previously demonstrated that a higher protein/lower carbohydrate 

diet downregulates DNL (Garcia-Caraballo et al., 2013; Margolis et al., 2016), typically in 

longer-term dietary interventions. However, the precise amino acid composition of high protein 

diets used in many studies is not often reported in publications. The detailed metabolic 

parameters of amino acid-driven DNL will be investigated in subsequent chapters.  
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3.6 Conclusions  

 

In this human intervention study, liquid carbohydrate was the main determinant of gastric 

emptying rate, not macronutrient composition. Indeed, the energy contained within the liquid 

carbohydrate component of the meal delayed gastric emptying of the solid component up to 

approximately 1000 KJ, with no further delay being observed with increasing liquid 

carbohydrate energy content beyond that value. This suggests that liquid carbohydrate 

reaches chemoreceptors in the intestine faster, inducing a postprandial neurohormonal delay 

in the gastrointestinal motility of the solid phase. The energy content of the liquid portion was 

not sufficient to induce DNL, as liquid carbohydrate did not correlate with the amount of 

scTAGs. However, the HP meal, rich in glutamate, increased scTAGs in plasma and the liver-

derived lipoprotein, VLDL. The data suggest that glutamate may be responsible for inducing 

DNL. The effects of glutamate on DNL will be examined in the next chapter.   
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Chapter 4. Glutamate is a substrate of 
fatty acid synthesis and induces de novo 

lipogenesis in hepatocytes 
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Abstract 

 

Glutamate is one of the most abundant amino acid in foods. In the previous chapter, a meal 

rich in glutamate increased the levels of triacylglycerides associated with de novo lipogenesis 

in plasma and liver-derived lipoproteins. The studies contained in this chapter investigate the 

underlying mechanism of the increase in lipogenic triacylglycerides caused by a meal 

containing high levels of glutamate. Carbon from glutamate was incorporated into fatty acids 

and palmitate-containing triacylglycerides, through an increase in cellular energy balance. In 

addition, glutamate increased the levels of lipogenic triacylglycerides in hepatocytes, through 

the activation of the protein kinase B pathway. The expression of lipogenic genes under the 

control of protein kinase B were increased with glutamate treatment. The induction of de novo 

lipogenesis by glutamate was dependent on insulin. The levels of lipogenic triacylglycerides 

and expression of genes were not increased in insulin starved cells. Though glutamate is not 

considered a canonical precursor of lipogenesis, the data suggest that the levels of 

incorporation of glutamate-derived carbon into fats are appreciable even under physiological 

glucose concentrations. In addition, glutamate supplementation was sufficient to induce de 

novo lipogenesis in wild-type hepatocytes, suggesting that the use of diets rich in glutamate, 

and by extension high protein, for the treatment of metabolic dysregulation requires greater 

consideration.  
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4.1 Introduction  

 

4.1.1 DNL substrates  

 

DNL is the pathway that converts acetyl-CoA to fatty acids primarily in the liver (Diraison et al., 

2003) and may be considered as a pathway for the storage of excess carbon from nutrients 

into fatty acids and energy-dense TAGs, which can be later mobilised to provide energy as 

needed. Abnormal rates of DNL may represent an early stage in the development of fatty liver 

and diabetes as increased lipid accumulation is a common feature of both disorders 

(Paglialunga and Dehn, 2016). Despite the fact that DNL has been linked with overnutrition 

and the metabolic syndrome (Grundy, 2016), our knowledge of substrates that fuel the process 

is limited. A significant number of studies have focused on glucose and fructose as ‘lipogenic’ 

nutrients that contribute to the acetyl-CoA pool (Moore, Gunn and Fielding, 2014). However, 

the liver is capable of utilising a variety of molecules to generate acetyl-CoA, including amino 

acids. In particular, glutamate has been shown to be incorporated into fatty acids under hypoxic 

conditions (Brose, Marquardt and Golovko, 2015). 

 

 

4.1.2 Glutamate and hypoxia 

 

Hypoxia is a status prevalent in many disorders including cancer, heart disease, 

atherosclerosis, brain injury, neurological disorders, and aging (Clambey et al., 2012; Kirby et 

al., 2012; Raymond et al., 2011). Biological hypoxia is defined as sub-physiological partial 

pressure of oxygen, or pO2. In the case of cancer, cell proliferation outpaces blood supply by 

vascularisation, thus depleting large regions of tumour tissue of oxygen (Muz and Azab, 2015).  

One major adaptation to anaerobic conditions is the increased levels of glutamate 

consumption, at levels exceeding protein synthesis requirements (Eales et al., 2016). Indeed, 

it has been reported that glutamate increases lipid synthesis under hypoxia, via its contribution 

to lipogenic acetyl-CoA (Brose et al., 2015).  
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4.1.3 Glutaminolysis and reductive carboxylation 

 

There are two pathways by which glutamate can generate acetyl-CoA: glutaminolysis and 

reductive carboxylation. In glutaminolysis, glutamate is converted to α-ketoglutarate, an 

intermediate of the TCA cycle. α-ketoglutarate is oxidised in the TCA cycle to malate, which 

can be converted to pyruvate via malic enzyme. Pyruvate then undergoes oxidative 

decarboxylation to generate acetyl-CoA (Kim et al., 2017). This is then combined with 

oxaloacetate, via CS, to generate citrate (Figure 1A). Alternatively, operating in reverse of the 

typical flow of the TCA cycle, α-ketoglutarate can be converted to citrate via IDH1/2 in the 

process of reductive carboxylation (Figure 1B).  

 

Citrate produced by both pathways is transported to the cytosol and lysed to lipogenic acetyl-

CoA. In the context of oncometabolism, both glutaminolysis and reductive carboxylation have 

been demonstrated in rapidly dividing cancer cells (Fendt et al., 2013). However, it has not yet 

been determined whether glutamate can be incorporated into fatty acids under physiological 

conditions. 
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Figure 1. Schematic representation of the production of lipogenic acetyl-CoA from 13C5
15N-L-

glutamate. (A) Label from glutamate is routed to lipids via glutaminolysis; malic enzyme produces fully 

labelled pyruvate [M+3] from malate [M+4], and pyruvate is then decarboxylated to acetyl-CoA [M+2]. 

Fully labelled oxaloacetate [M+4] then combines with labelled acetyl-CoA [M+2], via citrate synthase, to 

generate fully labelled citrate [M+6]. Citrate is then lysed to generate fully labelled acetyl-CoA [M+2]. 

(B) Label from glutamate is routed to lipids via reductive decarboxylation; fully labelled α-ketoglutarate 

[M+5] is carboxylated to labelled isocitrate and citrate [M+5]. Citrate is then lysed by ACL to generate 

fully labelled acetyl-CoA [M+2]. In both cases carbon from acetyl-CoA may be shuttled to lipids. Adapted 

from Kim et al., 2017. 
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4.1.4 NAD+ to NADH ratio and DNL 

 

The ratio of oxidised to reduced nicotinamide nucleotides (redox state) affects the activity of 

metabolic reactions in the cell. It has been shown that addition of nicotinamide to rats inhibits 

the rate of lipogenesis by approximately 50% (Mclean and Greenbaum, 1970), by artificially 

inducing a low energetic state. This ratio greatly affects the activity of the three isoforms of IDH 

(IDH1, IDH2 and IDH3). IDH1 catalyses the reversible reaction of isocitrate to α-ketoglutarate 

in the cytosol and IDH2 catalyses the same reaction in the mitochondrion. IDH3 is directly 

related to the forward TCA cycle as it catalyses the irreversible reaction of isocitrate to α-

ketoglutarate (Khallaf, 2017).  

 

A low NAD+/NADH ratio will prevent the forward direction of the mitochondrial TCA cycle by 

inhibiting IDH3. Increased NADH, indicating a more positive energy balance, favours the 

reductive carboxylation of α-ketoglutarate to isocitrate by the reverse reactions of IDH1/2 (Wise 

et al., 2011). Citrate accumulated in the mitochondrion from IDH2 is transported to the cytosol 

and together with cytosolic citrate already present from IDH1, they participate in anabolic 

processes, such as DNL. Overexpression of cytosolic IDH1 leads to increased lipogenesis in 

liver and adipose tissue (Koh et al., 2004). The conversion of glutamate to α-ketoglutarate, via 

glutamate dehydrogenase, decreases the NAD+/NADH ratio by generating NADH (Botman et 

al., 2014), increasing the mitochondrial energy balance. Therefore, glutamate might participate 

in the synthetic pathways of IDH1 and 2, by inhibiting IDH3, to shuttle citrate out of the 

mitochondrion and induce an anabolic effect rather than being used by the TCA cycle (Figure 

2).  
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Figure 2. The role of the three isocitrate dehydrogenase isoforms during periods of anabolism. 

Once glutamate is in the cell, glutamate dehydrogenase oxidises glutamate to α-ketoglutarate using 

NAD+ as a cofactor. Under reduced conditions (low NAD+/NADH), IDH1 and IDH2 synthesise citrate in 

the mitochondrion and cytosol, respectively, by reducing α-ketoglutarate through the use of increased 

NADH. IDH3 is inhibited and therefore, citrate is not oxidised in the TCA cycle. Citrate that has 

accumulated in the mitochondrion by IDH2 is exported to the cytosol. Build-up of citrate in the cytosol, 

from IDH1 and 2, induces DNL as the lysis of citrate produces the DNL’s substrate acetyl-CoA. 

 

 

4.1.5 mTOR and DNL  

 

DNL takes place in the cytosol and in order to obtain cytosolic acetyl-CoA (the primary 

substrate), citrate is exported from the mitochondrion to the cytosol. Once in the cytosol, citrate 

is lysed by ACL to generate cytosolic acetyl-CoA. Acetyl-CoA is then carboxylated to malonyl-

CoA by ACC. Malonyl-CoA is the working substrate of FAS, which generates fatty acids. 

Further molecules of acetyl-CoA are used to generate malonyl-CoA, transferred to FAS and 

added to the lengthening carbon chain to generate palmitate (Donnelly et al., 2005). Palmitate 

is the primary product of DNL, and it can be further desaturated by SCD1, and/or elongated, 

by ELOVL6. The resulting fatty acids may then be incorporated into TAGs and VLDLs for 

export. A subset of TAGs containing short chain saturated fatty acids, typically palmitate, have 

been previously correlated with DNL and hepatic steatosis (Sanders et al., 2018). 
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The expression of genes that encode for the proteins mentioned above as being central to 

DNL (ACLY, ACACA, FASN, SCD1 and ELOVL6) is under the control of mainly two 

transcription factors; ChREBP1 and SREBP-1c. Glucose activates ChREBP1 (Tong et al., 

2009) whilst insulin activates SREBP-1c (Ferré and Foufelle, 2007). Activation of the insulin 

receptor results in the activation of the IRS that recruits PI3K to the membrane, where it 

phosphorylates PIP2 to PIP3. PIP3 acts as a docking site for the kinases mTORC2 and PDK1. 

Both mTORC2 and PDK1 phosphorylate and therefore activate PKB/AKT2. PhosphoAKT2 

then activates mTORC1, which stimulates p70S6K1. This induces the nuclear translocation of 

LXRα, where it heterodimerises with RXR (Kawano and Cohen, 2013). The heterodimer then 

induces the expression of lipogenic genes including that of SREBP-1c. Once SREBP-1c is 

expressed, it matures via a series of reactions, to also induce the expression of lipogenic 

genes. In general, amino acids are regulators of the mTOR complexes (Tato et al., 2011) and 

glutamate may therefore induce DNL via the PI3K/PKB/AKT2 signalling cascade. 
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4.2 Chapter aims  

 

After identifying that a high protein meal, rich in glutamate, increases scTAG content in blood 

plasma that have been previously correlated with increased DNL, it is hypothesised that 

glutamate may induce DNL or may itself be used to synthesise lipids. In this chapter, 

hepatocytes are supplemented with labelled glutamate to determine whether carbon from 

glutamate can be incorporated into fatty acids and intact lipids under physiological glucose 

concentrations. In addition, hepatocytes are treated with increasing doses of glutamate to 

characterise whether glutamate can induce DNL in terms of gene expression, protein function 

and at the metabolic level, using the scTAG cluster as a proxy.   
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4.3 Materials and methods  

 

4.3.1 Cell culture  

 

Growth of AML 12 hepatocytes  

 

AML 12 cells were purchased from American Type Culture Collection (ATCC) and cultured in 

1:1 (v/v) Dulbecco's modified Eagle's medium and Ham's F12 medium (Thermo), 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin (100 units/mL 

and 100 µg/mL, respectively), 1% insulin-transferrin-selenium (ITS; 10 mg/L, 5.5 mg/L and 6.7 

µg/L respectively) and dexamethasone (100 µmol/L) at 37°C in 5% CO2. Cells were removed 

from liquid nitrogen, thawed rapidly and initially cultured in a T25 flask (Cat. # 690175, Greiner). 

Medium was changed every two days, and upon reaching confluence, cells were sub-cultured 

in T75 flasks (Cat. # 7340290, Corning) at a ratio of 1:3. Cells were plated at a density of 

50,000 cells/well in collagen 1-coated 12-well plates (Cat. # 7340295, Corning) and grown to 

confluence in maintenance medium. Cells were then supplemented with low glucose (7.60 

mmol/L) with unlabelled L-glutamate (2.4 mmol/L) and dialysed FBS (Thermo) for 2 days. After 

switching medium, cells were serum-starved for 20 h in low glucose medium. 

 

 

AML 12 13C5-15N-L-glutamate labelling procedure   

 

Cells were supplemented with glucose (7.60 mmol/L) with unlabelled-L-glutamate (4 mmol/L, 

n=3) or glucose (7.60 mmol/L) with 13C5
15N-L-glutamate (4 mmol/L, n=3). Based on previous 

experiments, the cells were allowed 3 h such that the 13C5-15N-L-glutamate could reach an 

isotopic steady state in the TCA cycle. Cells and media were harvested at 0, 3 and 24 h (Figure 

3). Table 1 summarises the composition of growth and treatment media used. 
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Figure 3. Schematic representation of growth and 13C5
15N-L-glutamate treatment of AML 12 

hepatocytes. Hepatocytes were switched to low-glucose (LG) for 2 days, serum starved for a day and 

then treated with either labelled or unlabelled L-glutamate. Cells were collected at 0, 3, 24 h.  

 

 

Table 1. Medium components used for growth and treatment of AML 12 hepatocytes. 

 

Medium Components 
[Glucose] & 

[Glutamate] 
Manufacturer 

Maintenance 

90% 1:1 DMEM/F12 a 

10% FBSb 

ITS c 

0.10 mol/L Dexamethasoned 

Penicillin/Streptomycin e 

 

17.50 mmol/L Glucose 

2.44 mmol/L               

L-Glutamine 

 

Cat. # 11330-032, Thermo a 

Cat. # F7524, Sigma b 

Cat. # 41400045, Thermo c 

Cat. # D4902, Sigma d 

Cat. # P4333, Sigma e 

Unlabelled 

glutamate 

90% 1:1 DMEM/F12 f 

10% dialysed FBS g 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

4 mmol/ L 
12C-L-glutamic acid h 

 

Cat. # D5921:N4888, Sigma f 

Cat. # A3382001, Thermo g 

Cat. # 49450, Fluka h 

    

Labelled 

glutamate 

100% DMEM/F12 f 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

4 mmol/L 
13C-L-glutamic acid i 

 

Cat. # CNLM-7812-0.25, 

Cambridge Isotope 

Laboratories i 

Increasing 

dose of 

glutamate 

90% 1:1 DMEM/F12 f 

10% dialysed FBS g 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

0,2,4 and 10 mmol/ L 
12C-L-glutamic acid h 

 

Cat. # D5921:N4888, Sigma f 

Cat. # A3382001, Thermo g 

Cat. # 49450, Fluka h 

a-i Components lettered a-i and corresponding catalogue number and manufacturers 
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Dose response of glutamate in insulin sufficient AML 12 hepatocytes 

  

Cells were supplemented with low glucose (7.60 mmol/L) and 1% ITS without glutamate (0 

mmol/L, n=3) or with increasing levels of glutamate (2, 4, 10 mmol/L, n=3/amino acid 

concentration). Cells and media were harvested after 24 h (Figure 4). 

 

 

Dose response of glutamate in insulin depleted AML 12 hepatocytes  

 

Cells were supplemented with low glucose (7.60 mmol/L, n = 3), 5.5 mg/L transferrin and 6.7 

µg/L selenium without insulin. Cells were treated without glutamate (0 mmol/L) or with 

increasing levels of glutamate (2, 4, 10 mmol/L, n = 3/amino acid concentration). Cells and 

media were harvested after 24h (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of growth and dose response of glutamate in AML 12 

hepatocytes. Hepatocytes were switched to LG for 2 days, serum starved for a day and then treated 

with 0, 2, 4 or 10 mmol/L glutamate with or without insulin. Cells were collected at 24 h.  
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Harvesting of AML 12 cells for metabolomics  

 

For cells and media undergoing metabolomic analyses, 900 µL of medium was taken from 

each well and stored at -80°C. Each well was then washed with 1 mL of 0.9% saline (9 g/L 

NaCl) and cells were lifted from the plates by adding 0.5 mL trypsin (10X trypsin-EDTA, Cat. 

# 25300045, Invitrogen). Each well was re-washed with 0.5 mL of 0.9% sterile-filtered saline 

and the resulting solution was transferred into a 2 mL microcentrifuge tube and centrifuged at 

13,000 x g for 10 min to pellet the cells. The supernatant was removed and the pellet was 

resuspended in 750 µL of a 2:1 (v:v) chloroform:methanol solution to prevent enzymatic 

degradation of metabolites, and frozen at -80°C.  

 

 

Metabolite extractions  

 

Metabolites were extracted as described in Chapter 2, Section 2.1.1.   

 

 

4.3.2 LC-MS of aqueous and organic fractions 

 

Analysis of aqueous metabolites by triple quadrupole-mass spectrometry  

 

Metabolites were extracted as described above and aqueous extracts were reconstituted in 50 

µL of 10 mmol/L ammonium acetate in water before TCA cycle intermediates were separated 

using reversed phase liquid chromatography using a Vanquish UHPLC attached to a TSQ 

Quantiva triple quadrupole mass spectrometer (Thermo Scientific). Multiple reaction 

monitoring was used in conjunction with positive/negative ion mode switching utilising the 

optimised mass transitions detailed in Table 3. A C18-PFP column (150 mm x 2.1 mm, 2.0 µm; 

ACE) was utilised at a flow rate of 0.5 mL/min, with a 3.5 µL injection volume. For 

chromatography on the UHPLC system, mobile phase A was 0.1% formic acid in water and 

mobile phase B was 0.1% formic acid in ACN. The gradient started at 30% B, increased to 

90% B at 4.5 min for 0.5 min and returned to the starting conditions for a further 1.5 min to re-

equilibrate the column. Mass transitions of each species were as follows (precursor > product): 

D5-L-proline 121.2 > 74.2; D8-L-valine 126.1 > 80.2; D10-L-leucine 142.0 > 96.2; L-glutamate 
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[M] 148.0 > 84.2; L-glutamate [M+1] 149.0 > 85.2; L-glutamate [M+6] 154.1 > 89.1; Citrate 

191.0 > 111.0; Citrate [M+1] 192.0 > 112.0; Citrate [M+2] 193.0 > 113.0; Citrate [M+3] 194.0 

> 114.0; Citrate [M+4] 195.0 > 114.0; Citrate [M+5] 196.0 > 115.0; Citrate [M+6] 197.0 > 116.0. 

Collision energies and RF lens voltages were generated for each species using the TSQ 

Quantiva optimisation function. Instrument optimisation parameters are detailed in Table 2. 

Xcalibur Software (Thermo Scientific) was used to identify peaks, process mass spectra and 

normalise data to the closest-eluting internal standard. 

 

 

Table 2. Mass spectrometer optimised settings for aqueous LC-MS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instrument Optimisation Parameters 

Method Duration (min) 

Ion Source Type 

Ion Spray Voltage: Positive Ion (V) 

Ion Spray Voltage: Negative Ion (V) 

Sheath Gas (Arb) 

Sweep Gas (Arb) 

Ion Transfer Tube Temperature (°C) 

Vaporiser Temperature (°C) 

Column Temperature (°C) 

6.5 

H-ESI 

3500 

2500 

16 

2 

356 

420 

30 

Needle Wash 1:1 (v:v) water:ACN 

Seal Wash 
4:1 (v:v) IPA:Water 

with 0.1% formic acid 
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A TIC of aqueous metabolites in hepatocytes obtained by the above method is shown in Figure 

5A. From the TIC, unlabelled and labelled glutamate (Figure 5B) as well as unlabelled and 

labelled citrate (Figure 5C) were extracted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. TIC and EIC for glutamate and citrate. (A) The TIC of aqueous metabolites in hepatocytes 

detected by LC-MS. (B) The EIC for glutamate M, glutamate M+1 and glutamate M+6 ions. (C) The EIC 

for citrate M, citrate M+2 and citrate M+5 ions.  
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Picolinyl esters of fatty acids (PEFA) derivatisation of organic fractions for LC-MS and 

analysis of total fatty acids by triple quadruple mass spectrometry  

 

Each dried organic extract was derivatised by the method described in Chapter 2, Section 

2.1.3 and analysed by the method described in Chapter 2, Section 2.1.4.  

 

 

Analysis of intact lipids using orbitrap mass spectrometry 

  

The organic fraction was analysed by the method described in Chapter 2, Section 2.1.2.   

 

 

4.3.3 NAD+/NADH quantification assay 

 

NAD+/NADH was measured according to the manufacturer’s protocol (Abcam, ab65348). 

Briefly, cells were lysed using the NAD+/NADH extraction buffer and enzymes that consumed 

NADH were removed by filtration through a 10 kDa spin column (Abcam, ab93349). For NADH 

detection, NAD+ was decomposed by heating samples at 60°C for 30 min. Samples [NADH 

with decomposed NAD+ and total NAD(H)] and standards were incubated with 100 μL NAD 

cycling reaction mix to convert NAD+ to NADH. After 5 min, 10 μL of NADH developer was 

added and the reaction was allowed to cycle for 2 h. The OD was measured at 450 nm after 

stopping the reaction with 10 μL stop solution. 

 

 

4.3.4 Staining 

 

Oil red O staining 

  

Media were aspirated, and cells were washed with sterile phosphate-buffered saline (PBS). 

After aspirating PBS, the cells were fixed with 1 mL of 10% formalin for 30 min at 37°C. A stock 

oil red O solution was prepared by dissolving 0.6 g of oil red O powder in 200 mL of 99% 

isopropanol. In the fume hood, 3 parts of oil red O stock solution were mixed with 2 parts 

deionised water and filtered through a 45 μm filter to remove precipitates. After formalin was 

removed from the plates, cells were washed with deionised water and 1 mL of 60% isopropanol 

was added to each well for 5 min. To the fixed cells, 1 mL of oil red O solution was added for 
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10 min. Oil red O was removed from the wells and the plates were rinsed with deionised water 

before adding 1 mL haematoxylin counterstain into each well for 2 min. Haematoxylin was 

poured off and the plates were gently rinsed with warm water. Plates were viewed on a phase 

contrast microscope. Intact lipids were stained red and nuclei blue.  

 

 

4.3.5 Gene expression analysis 

 

Ribonucleic acid (RNA) extraction and purification from AML12 hepatocytes 

 

Total RNA was extracted and purified from hepatocytes using a RNeasy Mini Kit (QIAgen) 

according to the manufacturer’s specifications. After aspirating the media, 350 μL of buffer 

RLT and 70% ethanol were added to each well to lyse the cells. After mixing, the solution was 

transferred to a RNeasy spin column and centrifuged at 8,000 x g for 15 s to bind RNA to the 

membrane. The flow-through was discarded and the membrane was washed with 700 μL RW1 

wash buffer by centrifuging at 8,000 x g for 15 s. The flow-through was discarded and the 

washing step was repeated. Subsequently, 500 μL of Buffer RPE (working ethanol buffer) was 

added to the RNeasy spin column and centrifuged at 8,000 x g for 15 s. The flow-through was 

discarded and the process repeated, before centrifugation at 8,000 x g for 15 s. The RNeasy 

spin column was placed in a new 2 mL collection tube and centrifuged at maximum speed for 

2 min to dry the membrane and prevent carryover of ethanol. To elute pure RNA, the column 

was placed in a new 1.5 mL collection tube and 30 μL RNase-free water was added directly to 

the membrane before centrifuging at 8,000 x g for 1 min. Purified RNA concentration was 

quantified at 260 nm using a NanoDrop 100 (Thermo Fisher Scientific). 

 

 

Complimentary DNA production by reverse transcription  

 

Each purified RNA sample was diluted with RNase-free water to a final concentration of 100 

ng/μL. Complimentary DNA (cDNA) synthesis and genomic DNA elimination in RNA samples 

was performed using an RT2 First Strand Synthesis kit (QIAgen) according to the 

manufacturer’s specifications. Genomic DNA elimination was performed by mixing each RNA 
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sample with 2 μL of genomic elimination buffer (buffer GE) and incubating on a thermocycler 

(Techne) at 42°C for 5 min and then immediately placed on ice for 1 min. The reverse 

transcription mix was prepared by adding 4 μL 5X Buffer BC3, 1 μL Control P2 (random 

hexamers), 2 μL RE3 Reverse Transcriptase Mix and 3 μL RNase-free water. To each reaction 

tube, 10 μL reverse-transcription mix were added and mixed gently. The samples were then 

reverse transcribed by incubating on a thermocycler at 42°C for exactly 15 min and then 

immediately terminating the reaction by incubating at 95°C for 5 min. The reactions were stored 

at -20°C prior to real time quantitative PCR analysis. 

 

 

Quantitative Polymerase Chain Reaction (qPCR) 

 

The relative abundance of transcripts of interest was measured by qPCR in RT2 SYBR Green 

Mastermix (QIAgen) with a StepOnePlus detection system (Applied Biosystems). The SYBR 

Green qPCR Mastermix contained HotStart DNA Taq Polymerase, PCR Buffer, dNTP mix 

(dATP, dCTP, dGTP, dTTP) and SYBR Green dye. Before adding cDNA to each well of the 

96-well plate, cDNA was diluted in RNase-free water to a final concentration of 8 ng/μL. PCR 

component mix was prepared by mixing 10 μL SYBR Green qPCR Mastermix with 0.6 μL of 

10 μmol/L target primers (forward and reverse; 6 pmoles/reaction) and 4.4 μL RNase-free 

water. To each well of a 96-well plate, 5 μL cDNA (total amount 40 ng) and 15 μL PCR 

components mix were added. The plate was centrifuged at 1000 x g for 30 s to ensure that the 

contents were mixed and to remove any bubbles present in the wells. The plate was placed in 

the real-time cycler with the following cycling conditions: 10 min at 95°C for 1 cycle to activate 

HotStart DNA Taq Polymerase; 15 s at 95°C and 1 min at 60°C to perform elongation and 

cooling for 40 cycles. RT2 qPCR Primer Assays for mouse Rn18s, Fasn, Acaca, Acly, Elvol6, 

Scd1, Dgat2, Mttp and Apoc3 were purchased from QIAgen. Expression levels were 

normalised to the endogenous control, Rn18s, using the ΔΔCt method and fold changes 

reported were relative to the control group in the dose response (0 mmol/L ‘amino acid’). 
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4.3.6 Protein quantification and activity analysis  

 

Preparation of cell lysates  

 

Cell pellets were lysed in 100 μL Cell Extraction Buffer (10 mmol/L Tris, 100 mmol/L NaCl, 1 

mmol/L EDTA, 1 mmol/L EGTA, 10 mmol/L NaF, 20 mmol/L Na4P2O7, 20 mmol/L Na3VO4, 1% 

Triton X-100, 10% glycerol, 0.1% sodium dodecyl sulfate, 0.5% deoxycholate, 1 mmol/L 

phenylmethylsulfonyl fluoride, complete protease inhibitor tablet and 1% of each phosphatase 

cocktail inhibitor 2 and 3) for 30 min, vortexing at 10-min intervals. The lysate was centrifuged 

at 13,000 x g for 10 min at 4°C and the supernatant was collected and stored at -80°C. 

 

 

AKTpS473 and AKT [total] quantification by enzyme-linked immunosorbent assay  

 

PKB/AKT concentrations were measured using commercial assay kits (Invitrogen). The 

protocol was followed according to the manufacturer’s specifications. Briefly, cells were 

collected by centrifugation and washed with cold PBS. After diluting samples and standards 

with standard diluent buffer, they were incubated on a 96-well plate containing an immobilised 

antibody to AKTpS473 or AKT [Total] for 2 h at room temperature with gentle shaking. 

Unbound constituents were washed off and then an AKT [Total] biotin conjugate or AKTpS473 

detection antibody was added to each well for 1 h at room temperature with gentle shaking. 

After washing off unbound conjugates, streptavidin-HRP solution (AKT [Total]) or anti-rabbit 

IgG HRP solution (AKTpS473) was added to each well and incubated for 30 min at room 

temperature with gentle shaking. Following washing, a stabilised chromogen was added to 

each well and incubated for 30 min in the dark without shaking. Stop solution was added to 

each well to stop the enzymatic reaction and the absorbance was read at 450 nm. The 

background absorbance was subtracted from all data points, including standards, and a 

standard curve was generated. The unknown concentrations were read from the standard 

curve and the concentrations were multiplied by the appropriate dilution factor. Values were 

normalised to protein concentration using a reducing-agent compatible bicinchoninic acid 

(BCA) protein assay and values of AKT [pS473] were normalised to AKT [Total].  
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p70S6K1 activity assay 

 

The activity of p70S6K1 was measured according to the manufacturer’s protocol (Abcam 

ab139438). A 96-well plate was incubated with 50 μL of kinase assay dilution buffer at room 

temperature for 10 min. Cells were lysed as detailed above, and each sample was loaded into 

the appropriate well. The reaction was initiated by addition of 10 μL of diluted ATP and 

incubating at 30°C for 1 h. The kinase reaction was stopped by emptying the contents of each 

well. The phosphospecific substrate antibody was then added to each well and incubated at 

room temperature for 1 h. The contents of the well were emptied again and washed 4 times. 

After drying, the diluted Anti-Rabbit IgG: HRP Conjugate was added to each well for 30 min at 

room temperature. Following washing the TMB substrate was added to each well and 

incubated for 30 min at room temperature. Stop solution was added to each well to stop the 

enzymatic reaction and the absorbance was read at 450 nm. The background absorbance was 

subtracted from all data points, including standards, and a standard curve was generated. The 

unknown kinase activity was read from the standard curve and the activities were multiplied 

by the appropriate dilution factor. Values were normalised to protein concentration using a 

reducing-agent compatible bicinchoninic acid protein assay.  

 

 

Bicinchoninic acid protein (BCA) assay - reducing agent compatible  

 

Protein concentrations were measured using a commercial assay kit by Pierce™ Thermo 

Scientific. The protocol was followed according to the manufacturer’s specifications. Briefly, 

samples were diluted in Compatibility Reagent Stock solution (1:1, v:v) and incubated at 37°C 

for 15 min. Samples were cooled at room temperature for at least 5 min. After samples and 

Bovine serum albumin (BSA) standards were added to a 96-well plate, BCA working reagent 

was added to each well (1:3, v:v, sample/standard: BCA working reagent). The absorbance 

was measured at 562 nm and the average absorbance of the blank replicates was subtracted 

from each standard and sample replicate. A standard curve was generated by plotting the 

average blank corrected absorbance measurements for each BSA standard versus the known 
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concentration. An equation in the form y=mx+c was generated for the protein standards from 

which the unknown concentrations were calculated.  

 

 

4.3.7 Statistical analysis 

 

Univariate statistics  

 

Data were visualised using GraphPad (GraphPad Prism 5.2; GraphPad Software, San Diego, 

CA, USA). All data are expressed as means ± SEM. In GraphPad, one-, two-way ANOVA or 

two-tailed Student’s t-Test were performed where appropriate to determine significant 

differences between experimental groups. For one-way ANOVA, Tukey’s post-hoc multiple 

comparison test was performed, whilst for two-way ANOVA, Sidak’s post-hoc multiple 

comparison test was used. Differences between experimental groups were considered to be 

statistically significant when p≤0.05.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

102 

4.4 Results  

 

4.4.1 Glutamate acts as a substrate for the synthesis of TAGs, via the TCA cycle 

and DNL-derived palmitate in AML 12 hepatocytes 

 

Labelling of palmitate from glutamate via reductive carboxylation  

 

Under normal physiological conditions carbohydrates act as the canonical source of substrate 

for DNL. However, the contribution of amino acids, which could be derived from protein-rich 

diets, is less well understood beyond the context of oncometabolism. To determine whether 

glutamate acts as substrate for DNL under conditions of typical carbohydrate supply 

(approximately 5 mmol/L), AML 12 hepatocytes were supplemented with 13C5-labelled 

glutamate, one of the most abundant dietary amino acids, to trace its metabolic fate. Glutamate 

may enter the TCA cycle via deamination to α-ketoglutarate. Analysis of subsequent TCA cycle 

intermediates using mass spectrometry showed that, compared with unlabelled samples, the 

levels of labelled TCA cycle intermediate citrate [M+2]+and [M+5]+ (mass of the unlabelled 

compound plus 2 and 5 Da for the labelled carbons) were markedly increased in labelled 

samples over 24 h (Figure 6). Interestingly, the [M+4]+ citrate generated by the addition of 

unlabelled acetyl-CoA to [M+4]+ oxaloacetate cannot supply [M+2]+ labelled acetyl-CoA for the 

synthesis of fatty acids (Marietta et al., 1981). Whilst citrate is chemically symmetrical, the 

enzymes CS and ACL are regiospecific, such that the acetyl-CoA cleaved by ACL is the same 

as that added by CS (Berwick et al., 2002; Gottschalk, 1968). The 13C label from glutamate 

was detected in the [M+4]+ ion of palmitate, which was found to be significantly increased in 

labelled samples 3 h post-supplementation (Figure 7A). Once fatty acids are synthesised, they 

are packaged into TAGs and exported from the liver as VLDL. We further detected the label in 

the scTAG 48:0 both intracellularly and in the cell culture media (Figure 7B).  

 

As such, we suggest the most likely process by which carbon from glutamate was incorporated 

into FAs was via reductive carboxylation in the TCA cycle. This reverse flow through the TCA 

cycle typically occurs during periods of decreased NAD+ to NADH ratio, corresponding to high 
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energy balance, which was detected in glutamate-supplemented samples compared to control 

(Figure 7C).  

 

Taken together, these data suggest that not only do amino acids provide carbon for use in 

DNL, the levels of incorporation of amino acid-derived carbon are appreciable even under 

physiological glucose concentrations. 

Figure 6. Carbon from 13C5-labelled glutamate is incorporated into the TCA cycle in AML 12 

hepatocytes. Labelling in glutamate and citrate, detected by LC-MS over 24 h post-supplementation. 

Data are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 3/group. 
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Figure 7. Carbon from 13C5-labelled glutamate is incorporated into DNL-derived palmitate and 

triacylglycerols in AML 12 hepatocytes. (A) Labelling derived from glutamate in the [M+4]+ ion of the 

picolynyl-ester of palmitate (FA16:0) generated by DNL, detected by LC-MS over 24 h post-

supplementation. (B) Labelling derived from glutamate in the [M+2]NH4
+, [M+4]NH4

+ and [M+6]NH4
+ 

ions of glyceryl tripalmitate (TAG 48:0) produced from DNL-derived palmitate in both cells and medium, 

detected by LC-MS after 24 h. (C) NAD+/NADH at 0 mmol/L and 4 mmol/L glutamate after 24 h. Data 

are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test (A-B) or unpaired t-Test (C); * = p≤0.05, n = 3/group. 
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4.4.2 Glutamate induces DNL in AML 12 hepatocytes 

 

Glutamate increased scTAGs in AML 12 hepatocytes 

 

To determine whether the glucogenic amino acid, glutamate, can also increase DNL, AML 12 

hepatocytes were supplemented with increasing concentrations of glutamate. As expected, 

intracellular glutamate levels increased dose dependently in response to glutamate increases 

in media (Figure 8A). Total scTAG levels also increased dose-dependently in response to 

glutamate concentrations, with a significant change at 10 mmol/L glutamate (Figure 8B). The 

total amount of TAGs did not change (Figure 8C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Intracellular scTAGs levels increased dose-dependently in response to glutamate 

concentrations in AML 12 hepatocytes. (A) Glutamate levels in cells in response to glutamate 

treatment at 0, 2, 4 and 10 mmol/L concentrations measured by LC-MS after 24 h. (B) Sum of scTAG 

content in cells in response to glutamate treatment at 0, 2, 4 and 10 mmol/L concentrations measured 

by LC-MS after 24 h. (C) Sum of total TAG content in cells in response to glutamate treatment at 0, 2, 

4 and 10 mmol/L concentrations measured by LC-MS after 24 h. Data are presented as mean ± SEM 

and analysed by one-way ANOVA with post-hoc Dunnett’s multiple comparisons test; * = p≤0.05, n = 

3/group. 

 

 



 
 

106 

Total intact lipid content was not changed in response to glutamate concentrations 

 

To determine whether glutamate changes the total lipid content, AML12 hepatocytes were 

treated with increasing glutamate concentrations and stained with oil red O. Oil red O is a fat-

soluble diazol dye that stains neutral lipids red (TAGs and cholesteryl esters). The cell nuclei 

were stained blue with haematoxylin to normalise for cell count. The total neutral lipid content 

between cells treated with different concentrations of glutamate was not significantly different 

(Figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Intracellular total neutral lipid content was not affected by glutamate in AML 12 

hepatocytes. Visualisation and quantification of neutral lipids by oil red O (red) and nuclei by 

haematoxylin (blue) in AML 12 hepatocytes treated with 0, 2, 4 and 10 mmol/L glutamate after 24 h. 

Scale bars, 100 μm; magnification is × 40. Data are presented as mean ± SEM and analysed by one-

way ANOVA with post-hoc Dunnett’s multiple comparisons test; n = 3/group.  
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Glutamate increased the expression of DNL genes 

 

The synthesis of VLDL particles may be separated into 3 main processes (Figure 10 inset): 

synthesis of fatty acids (1), elongation and desaturation of fatty acids (2) and packing of fatty 

acids into triacylglycerols and VLDL (3). Synthesis of fatty acids is initiated by ATP-citrate lyase 

(Acly), responsible for lysing citrate to acetyl-CoA. Acetyl-CoA is then carboxylated to malonyl-

CoA, via acetyl-CoA carboxylase (Acaca), which is subsequently utilised by a multifunctional 

enzyme, fatty acid synthase (Fasn), to synthesise fatty acids.  

 

Increasing levels of glutamate elevated the expression of Acly and Fasn dose-dependently, 

with a significant increase at 10 mmol/L glutamate after 24 h (Figure 10A). However, there 

were no changes in the expression of Acaca. Once synthesised, palmitate may be desaturated 

and/or elongated to palmitoleate and stearate by stearoyl-CoA desaturase 1 (Scd1) and 

elongation of very long fatty acids protein 6 (Elovl6), respectively. Glutamate increased the 

expression of Scd1 (10 mmol/L glutamate) and Elovl6 (4 and 10 mmol/L glutamate; Figure 

10B). Fatty acids are then sequentially esterified to glycerol to form triacylglycerides, with the 

terminal step catalysed by diacylglycerol O-acyltransferase 2 (Dgat2). The microsomal 

triglyceride transfer protein (Mttp) is then responsible for shuttling triacylglycerides through 

membranes such that they may associate with apolipoprotein B100 and apolipoprotein C-III 

(Apoc3). Glutamate at 10 mmol/L increased the expression of Dgat2 and Apoc3 but not Mttp 

(Figure 10C). 

 



 
 

108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Increasing glutamate concentration increased DNL synthesis, processing and VLDL 

packaging gene expression for fatty acids in AML 12 hepatocytes. (A) qPCR analysis of expression 

of DNL synthesis genes Acly, Acaca and Fasn after 24 h. (B) qPCR analysis of expression of processing 

genes Scd1 and Elovl6 after 24 h. (C) qPCR analysis of expression of packaging genes Dgat2, Mttp 

and Apoc3 after 24 h. Inset: Schematic representation of (1) cytosolic palmitate synthesis from citrate 

via acetyl- and malonyl-CoA, (2) processing by desaturation and/or elongation of palmitate to stearate, 

oleate and palmitoleate, (3) packaging of DNL-derived fatty acids into triacylglycerols and subsequently 

VLDL for export. Data are presented as mean ± SEM and analysed by one-way ANOVA with post-hoc 

Dunnett’s multiple comparisons test; * = p≤0.05, n = 3/group.  
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Glutamate increased phosphorylation of AKT  

 

Through a partially characterised mechanism, insulin activates the transcription factor SREBP-

1c to induce the expression of genes required for hepatic DNL. A key node in this signalling 

cascade is PKB/AKT2, a protein kinase that transduces the signal to downstream effectors, 

such mTORC1. It is known that amino acids activate mTORC1, however, it has only recently 

been reported that mTORC1 activation in the absence of PKB/AKT2 is not sufficient to 

stimulate SREBP1c and thus DNL (Yecies et al., 2011). To characterise whether glutamate 

can act upstream of mTORC1 and activate PKB/AKT2, the levels of the active kinase, 

phosphorylated PKB/AKT2 (pPKB/AKT2), were measured. In particular, phosphorylation at 

Ser 473 of the protein was quantified as a ratio of total PKB/AKT2. In AML12 hepatocytes, 

intracellular pPKB/AKT2 levels increased dose-dependently in response to glutamate (4 and 

10 mmol/L) (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Intracellular pAKT levels increased dose-dependently in response to glutamate 

concentrations in AML 12 hepatocytes. Analysis of AKT activation as a function of AKTpS473 levels 

detected by ELISA after 24 h of glutamate supplementation. Data are presented as mean ± SEM and 

analysed by one-way ANOVA with post-hoc Dunnett’s multiple comparisons test; * = p≤0.05, n = 

3/group. 
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Glutamate increased the activity of p70S6K1 

 

A downstream effector of mTORC1 is p70S6K1, which induces the nuclear localisation of the 

LXRα and heterodimerises with RXR to induce the transcription of DNL genes, including 

SREBP-1C (Hwahng et al., 2009). To examine whether glutamate treatment can also 

propagate signals from PKB/AKT downstream to p70S6K1, AML 12 cells were treated with 

glutamate and the activity of p70S6K1 was measured. The intracellular activity of p70S6K1 

increased significantly in response to glutamate (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Intracellular activity of p70S6K1 increased in response to glutamate concentrations in 

AML 12 hepatocytes. Quantification of p70S6K1 activity by an ELISA based activity kit after 24 h of 

glutamate supplementation. Data are presented as mean ± SEM and analysed by an unpaired t-Test; * 

= p≤0.05, n = 3/group. 
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4.4.3 Induction of DNL by glutamate is insulin-dependent in AML 12 hepatocytes 

 

Glutamate did not increase scTAGs in the absence of insulin 

 

Recent advances in the understanding of mTOR regulation have demonstrated that both 

hormonal and nutrient signals are required for full activation of this pathway. In particular, 

amino acids have been shown to increase the activity of p70S6K1 and insulin has been proven 

to further increase its activity to maximal levels (Hara et al., 1998). To examine whether insulin 

is required for glutamate to induce DNL, AML 12 hepatocytes were supplemented with 

increasing concentrations of glutamate, but insulin starved. The intracellular levels of scTAGs 

did not increase without insulin. The amount of scTAGs at 2, 4 and 10 mmol/L glutamate was 

significantly greater in the presence of insulin compared with insulin-starved cells (Figure 13).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Intracellular levels of scTAGs were decreased in the absence of insulin in AML 12 

hepatocytes supplemented with glutamate. Sum of scTAG content in cells in response to glutamate 

treatment at 0, 2, 4 and 10 mmol/L concentrations ± insulin measured by LC-MS after 24 h. Data are 

presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 3/group. 
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Glutamate did not increase the expression fatty acid synthesis genes in the absence of 

insulin 

 

To examine whether the absence of insulin affects the expression of DNL genes, the 

expression of DNL genes in insulin starved cells was measured by qPCR. The relative 

expression of fatty acid synthesis genes, Acly, Acaca and Fasn, did not increase in the 

absence of insulin. The expression of Acly and Fasn at 4 and 10 mmol/L glutamate was 

significantly greater in the presence of insulin compared with insulin starved cells (Figure 14A 

and 14C). The expression of Acaca at 4 mmol/L glutamate was significantly higher in insulin 

sufficient cells than insulin starved cells (Figure 14B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The expression levels of fatty acid synthesis genes were decreased in insulin starved 

AML 12 hepatocytes supplemented with glutamate. (A) qPCR analysis of expression of fatty acid 

synthesis gene Acly after a 24 h treatment with glutamate at 0, 2, 4 and 10 mmol/L ± insulin. (B) qPCR 

analysis of expression of fatty acid synthesis gene Acaca after a 24 h treatment with glutamate at 0, 2, 

4 and 10 mmol/L ± insulin. (C) qPCR analysis of expression of fatty acid synthesis gene Fasn after a 24 

h treatment with glutamate at 0, 2, 4 and 10 mmol/L ± insulin. Data are presented as mean ± SEM and 

analysed by two-way ANOVA with post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group.  
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Glutamate did not increase the expression of fatty acid processing genes in the absence 

of insulin in AML 12 hepatocytes 

 

The relative expression of fatty acid processing genes, measured by qPCR, was not changed 

in insulin starved cells. The expression of the desaturase, Scd1, at 4 and 10 mmol/L glutamate 

was higher in insulin sufficient cells than insulin starved cells (Figure 15A). The expression of 

the elongase, Elovl6, at 2, 4 and 10 mmol/L glutamate was higher in insulin sufficient cells than 

insulin starved cells (Figure 15B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. The expression levels of fatty acid processing genes were decreased in insulin 

starved AML 12 hepatocytes supplemented with glutamate. (A) qPCR analysis of expression of 

fatty acid processing gene Scd1 after a 24 h treatment with glutamate at 0, 2, 4 and 10 mmol/L ± insulin. 

(B) qPCR analysis of expression of fatty acid processing gene Elvol6 after a 24 h treatment with 

glutamate at 0, 2, 4 and 10 mmol/L ± insulin. Data are presented as mean ± SEM and analysed by two-

way ANOVA with post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group.  
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4.5 Discussion  

 

The nutritional transition from traditional to western-style diets (rich in sugar, fat and protein 

from red meat) has led to a growing prevalence of NAFLD and T2DM (Bhat et al., 2012). 

Hepatic lipid accumulation, via upregulated levels of DNL, is mutual to both disorders. Whilst 

it is well-established that glucose and fructose are lipogenic precursors (Moore et al., 2014; 

Tappy and Lê, 2012), studies of other lipogenic precursors are limited. It has been reported 

that glutamate is the main carbon source for lipid synthesis in cancer tissue demonstrating that 

it can be an important substrate for DNL under certain conditions (Yin et al., 2012). However, 

the contribution of glutamate, one of the most common amino acids in foods, to fat synthesis 

under physiological conditions has been understudied. In the previous chapter, a high protein 

meal rich in glutamate increased the levels of triacylglycerides associated with DNL in plasma 

and liver-derived lipoproteins. This study investigated the underlying mechanism of the 

increase in lipogenic triacylglycerides caused by a high glutamate meal. 

 

In the present chapter, carbon from glutamate was incorporated into palmitate and palmitate-

containing triacylglycerides under physiological glucose concentrations in wild-type 

hepatocytes. Glutamate can be incorporated into the TCA cycle via glutaminolysis or reductive 

carboxylation. Both pathways have been proven to be active in cancer (Fendt et al., 2013), 

however, studies  using physiological conditions are limited. In glutaminolysis, α-ketoglutarate 

from glutamate is oxidised to malate, which can exit the mitochondrion and be converted to 

pyruvate. In this study, labelled pyruvate was not detected suggesting that glutamate was not 

incorporated into lipids via glutaminolysis under physiological conditions. During reductive 

carboxylation, α-ketoglutarate is reduced to isocitrate and then citrate. Citrate [M+5] was the 

most abundant label in the labelled samples, suggesting that citrate was derived from reduction 

of α-ketoglutarate (rather than oxidation). Reductive carboxylation is induced by an increase 

in the cellular energy balance, reflected by a low NAD+/NADH ratio (Wise et al., 2011). High 

NADH concentrations inhibit the oxidation of isocitrate to α-ketoglutarate (inhibition of IDH3) 

and stimulate the reduction of α-ketoglutarate to isocitrate by the reverse reactions of IDH1/2 
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(Wise et al., 2011). Isocitrate from both reverse reactions is then converted to citrate, which 

accumulates in the cytosol. The ratio of NAD+/NADH was lower when cells were supplemented 

with glutamate compared with cells without glutamate. This is because, once glutamate is in 

the cell, glutamate dehydrogenase catalyses the oxidative deamination of glutamate to α-

ketoglutarate by using NAD+ to form NADH. Accumulated citrate in the cytosol is used to 

synthesise fatty acids by DNL (Giudetti et al., 2016). Levels of labelled palmitate, the primary 

product of DNL, and glyceryl tripalmitate (TAG 16:0/16:0/16:0) were significantly higher in 

samples supplemented with labelled glutamate compared with samples with unlabelled 

glutamate. Together, these data demonstrate that labelled glutamate was incorporated into 

lipids via reductive carboxylation.   

 

Besides demonstrating that glutamate is incorporated into lipids under physiological 

conditions, it is also demonstrated that glutamate induces the process of DNL. In support to 

the finding that a meal rich in glutamate increases scTAGs, glutamate supplementation of 

hepatocytes increased scTAGs. Glutamate supplementation also increased the expression of 

fatty acid synthesis genes, Acly and Fasn, processing and packaging genes. However, 

glutamate did not affect the expression of the synthetic gene, Acaca. Acaca encodes ACC, the 

enzyme that catalyses the formation of malonyl-CoA, the working unit of FAS. Glutamate 

directly increases the activity of pure ACC by inducing its polymerisation (Boone et al., 2000). 

Despite the fact that the activity of ACC is increased by glutamate, its expression was not 

affected. The expression of fatty acid synthesis and processing genes is under the control of 

the transcription factor SREBP-1c (Benhamed et al., 2012), however, Acaca did not exhibit the 

expected response of SREBP-1c controlled genes. This might suggest the Acaca has an 

additional level of transcriptional regulation. It has been reported that Acaca has CpG 

signatures that delineate the 5’ ends housekeeping genes (Travers et al., 2005), suggesting 

that it is not acutely regulated.  

 

A plausible mechanism to account for these changes induced by glutamate is the mTOR 

signalling cascade. The mTORC1 is responsible for sensing amino acid signals as well as 
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integrating insulin signals via its phosphorylation by PI3-kinase/AKT2 (Yoon and Choi, 2016). 

AKT2 is activated by mTORC2 and in turn it stimulates mTORC1 (Vinod and Venkatesh, 

2009). The mTORC1 activates p70S6K1, leading to the nuclear translocation of LXRα and its 

heterodimerisation with RXR. This protein dimer induces the expression of lipogenic genes, 

including that of the transcription factor SREBP-1c (Hwahng et al., 2009). Full maturation of 

SREBP-1c is also mediated by mTORC1. SREBP-1c is also required for the expression of 

lipogenic genes. In this study, glutamate increased the activity of AKT2, suggesting that 

glutamate acts upstream of mTORC1. This is supported by the recent finding that mTORC1 

activation in the absence of AKT2 is not sufficient to stimulate SREBP-1c, and thus DNL. In 

addition, glutamate increased the activity of p70S6K1, indicating that the signal propagates to 

one of the last effectors of the pathway to induce the expression of DNL genes.  

 

As mentioned above, mTORC1 governs and integrates signals from multiple pathways, 

including energy status, stress, amino acids, and insulin (Saxton and Sabatini, 2017). It has 

recently been demonstrated that both hormonal and nutritional signals are required to fully 

activate this pathway (Tremblay and Marette, 2001). The activation of the kinase p70S6K1 has 

been shown to be maximal in the presence of amino acids and insulin together (Patti et al., 

1998). In this study, the absence of insulin impairs the action of glutamate to increase DNL in 

hepatocytes. This indicates that both stimuli, insulin and glutamate, are required to induce 

DNL.  

 

Amino acids in general are sensed by mTOR, particularly the BCAA leucine (Lynch, 2001). 

Elevated BCAA levels have been correlated with insulin resistance and type 2 diabetes (Würtz 

et al., 2012). Hyperactivation of the mTOR pathway by excessive amino acid concentrations 

leads to the phosphorylation of multiple serine residues within, and subsequent inactivation of, 

IRS-1 (Tremblay et al., 2007). This results in a weakened response to insulin, progressing to 

persistent insulin resistance. Despite this, high protein/low carbohydrate diets are popular 

regimes for weight loss in humans and dietary protein has been shown to decrease hepatic 

lipid accumulation in rodents (Schwarz et al., 2012). Presently, the precise amino acid 
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components that are responsible for these effects, and the extent to which amino acids are 

able to induce DNL and VLDL secretion are not known. In the next chapter, a variety of amino 

acids (representatives of glucogenic, ketogenic and BCAA) will be used to study their effects 

on DNL and glucose uptake.  
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4.6 Conclusions  

 

This chapter investigated the mechanism underlying the increase in lipogenic triacylglycerides 

caused by a high protein meal rich in glutamate. Carbon from glutamate was incorporated into 

palmitate and palmitate-containing triacylglycerides, via reductive carboxylation. This suggests 

that glutamate, besides glucose and fructose, can also act as a lipogenic precursor under 

physiological conditions. In addition, glutamate increased scTAG content and the expression 

DNL genes, indicating that this amino acid not only provides a carbon source for fats but also 

induces DNL. Glutamate increased the activity of hepatic AKT2 and p70S6K1, downstream 

effectors of the insulin signalling cascade, that activate the SREBP-1c to promote hepatic 

lipogenesis. The effect of glutamate on hepatic DNL was abrogated in insulin deprived cells, 

indicating that both hormonal and nutritional signals are required to fully activate this lipogenic 

pathway. The extent to whether this induction in DNL is a response of a general amino acid 

increase or amino acid specific will be investigated in the next chapter.  



 
 

119 

Chapter 5. Select amino acids induce de 
novo lipogenesis and decrease glucose 

uptake in hepatocytes 
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Abstract 

 

Dietary changes have led to the growing prevalence of type 2 diabetes and non-alcoholic fatty 

liver disease. A hallmark of both disorders is hepatic lipid accumulation, derived in part from 

increased de novo lipogenesis. Despite high protein diets being popular for weight loss in 

patients with these metabolic disorders, the effect of dietary protein on de novo lipogenesis is 

poorly studied and the precise amino acid composition of high protein diets is not yet 

determined. In the previous chapters, high protein feeding, rich in glutamate, increased de 

novo lipogenesis-associated triacylglycerides in plasma and liver-derived very low-density 

lipoprotein particles in samples from human subjects. In hepatocytes, glutamate was 

incorporated into palmitate and in turn into triacylglycerides. In this chapter, it is demonstrated 

that specific amino acids provide carbon for fatty acid synthesis, through a change in energy 

balance. The same amino acids were able to induce de novo lipogenesis, through increasing 

the activation of protein kinase B, and in turn decrease glucose uptake in hepatocytes. In 

addition, their effects on lipogenesis were dependent on insulin, suggesting that these amino 

acids induce de novo lipogenesis via the insulin signalling cascade. These findings provide 

mechanistic insight into how select amino acids may induce de novo lipogenesis and insulin 

resistance, suggesting that utilising high protein feeding to tackle diabetes and obesity requires 

greater consideration.  
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5.1 Introduction  

 

5.1.1 DNL and the metabolic syndrome 

 

Both NAFLD and T2DM have been associated with increased hepatic lipid production via DNL 

(Bhat et al., 2012). This pathway synthesises “new” fat, utilising acetyl-CoA as a carbon 

source, derived from a number of metabolic reactions including glycolysis and the deamination 

of amino acids. Fatty-acyl chains can then be incorporated into a variety of lipid species, 

including TAG and phospholipids. To obtain cytosolic acetyl-CoA, citrate is exported to the 

cytosol where is lysed by ACL to acetyl-CoA. The pathway of DNL commences by 

carboxylation of acetyl-CoA to malonyl-CoA by ACC. Malonyl-CoA is then transferred to a 

complex multifunctional enzyme, FAS. Multiple rounds of activation of acetyl-CoA to malonyl-

CoA, transferral to FAS and addition to the lengthening carbon chain generate palmitate 

(Donnelly et al., 2005). DNL is regulated at a transcriptional level by both glucose and insulin. 

It has previously been established that hyperinsulinaemia and high carbohydrate diets “prime” 

DNL by providing a large substrate pool (Marques-lopes et al., 2001; Schwarz et al., 2003). 

Glucose also stimulates the expression of anabolic DNL genes, including those encoding ACL, 

ACC and FAS (ACLY, ACACA and FASN, respectively) by the action of the transcription factor, 

ChREBP (Kim et al., 2016). In turn, insulin activates the same genes, via protein kinase 

B/AKT2 (Titchenell et al., 2016), by the action of SREBP-1c, one of two transcripts produced 

from the sterol response element-binding protein gene. Once FAs are synthesised, they are 

subsequently desaturated via the action of SCD1, and/or elongated, by ELOVL6. Finally, fatty 

acids may be incorporated into TAGs and packaged into VLDLs for export. 

 

Accumulation of a subset of scTAGs and VLDL-associated TAGs in the liver and blood, 

respectively, has been associated with hepatic steatosis (Sanders et al., 2018). In healthy 

humans, the amount of de novo-produced TAG incorporated in VLDL is minimal (below 5%; 

(Timlin and Parks, 2005). However, in hyperinsulinaemic individuals with NALFD, TAG content 

increases to 26% (Donnelly et al., 2005). Furthermore, in healthy human subjects, feeding with 

a high carbohydrate meal is sufficient to increase TAG content to 23% (Timlin and Parks, 
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2005). Whilst numerous studies have shown that high carbohydrate feeding increases DNL 

(Hudgins et al., 1996), studies of the effect of high protein feeding in relation to DNL in humans 

are limited. 

 

In previous chapters, a high protein meal, rich in glutamate, increased scTAGs and VLDL-

associated scTAGs. Moreover, glutamate induced DNL and is itself incorporated in fatty acids 

via the TCA cycle in hepatocytes, indicating that amino acids can be potential precursors for 

DNL substrates.  

 

 

5.1.2 The fates of carbon skeletons of amino acids  

 

Amino acids can be classified as ‘ketogenic’ or ‘glucogenic’ based on intermediates they form 

during their catabolism. Ketogenic amino acids break down directly to acetoacetate (leucine, 

lysine, phenylalanine, tryptophan and tyrosine) or to acetyl-CoA (isoleucine, leucine and 

tryptophan) to form ketone bodies (Figure 1). Ketone bodies are used as energy sources, 

particularly by the brain, during low blood glucose concentrations (Nehlig, 2004). On the other 

hand, glucogenic amino acids may be converted to glucose via pyruvate (alanine, cysteine, 

serine and tryptophan), α-ketoglutarate (arginine, glutamate, glutamine, histidine and proline), 

succinyl-CoA (isoleucine, methionine, threonine and valine), fumarate (phenylalanine and 

tyrosine) or oxaloacetate (asparagine and aspartate). This occurs during starvation, to 

synthesise ‘new glucose’ from amino acids through gluconeogenesis (Felig et al., 1969). Out 

of the 20 proteinogenic amino acids, only leucine and lysine are exclusively ketogenic. During 

high energy balance, the carbon of amino acids may be used for fatty acid synthesis, via the 

formation of acetyl-CoA (Whereat et al., 1967). The extent to which amino acids can provide 

carbon for fatty acid synthesis under physiological conditions has not been studied. 
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Figure 1. Amino acid entry in the TCA cycle. Ketogenic amino acids (yellow) break down to 

acetoacetate (leucine, lysine, phenylalanine, tryptophan and tyrosine) or to acetyl-CoA (isoleucine, 

leucine and tryptophan). Whilst glucogenic amino acids (orange) may be converted to glucose via 

pyruvate (alanine, cysteine, serine and tryptophan), α-ketoglutarate (arginine, glutamate, glutamine, 

histidine and proline), succinyl-CoA (isoleucine, methionine, threonine and valine), fumarate 

(phenylalanine and tyrosine) and oxaloacetate (asparagine and aspartate) 

 

 

5.1.3 Branched-chain amino acids and insulin resistance  

 

The BCAAs, leucine, isoleucine and valine, are essential amino acids that have an aliphatic 

side-chain with a methyl group as a branch. BCAAs account for 20% of protein intake and are 

known to correlate with insulin resistance and T2DM in humans (Würtz et al., 2012). Studies 

have demonstrated that deprivation of BCAAs from the diet whilst maintaining levels of other 

amino acids is sufficient to improve glycaemic control (Xiao et al., 2014). Circulating BCAAs 

are sensed by mTOR, a protein kinase which is a critical node of the insulin signalling cascade, 

and subsequently promote DNL (Figure 2). Activation of the insulin receptor results in the 

recruitment and phosphorylation of the IRS at multiple tyrosine residues. These 

phosphorylated sites act as docking motifs for PI3K (Shaw, 2011). PI3K phosphorylates PIP2 
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to PIP3, where PKB/AKT2 can bind and get phosphorylated at threonine 308 by PDK1 

(Sarbassov et al., 2005). AKT2 is also phosphorylated by mTORC2 at serine 473 (Sarbassov 

et al., 2005). The kinase AKT2 regulates the TSC1/2 by phosphorylating TSC2 at multiple 

sites. This phosphorylation relieves the inhibitory effect of the TSC1/2 complex on Rheb 

allowing it to activate mTORC1 (Harrington et al., 2004). 

 

 A downstream effector of mTORC1 is the p70S6K1, which induces the nuclear translocation of 

the LXRα and its heterodimerisation with the RXR. The LXRα-RXR complex increases the 

expression of lipogenic genes (ACLY, ACACA, FASN, SCD1 and ELOVL6) and SREBP-1c 

(Yoshikawa et al., 2001).  

 

Activated mTORC1 and p70S6K1 phosphorylate the insulin receptor substrate at multiple serine 

residues, which leads to its degradation and therefore inhibits any further activation of the 

aforementioned signalling pathway (Carlson et al., 2004). This inhibition works as a negative 

feedback loop (Yu et al., 2011). However, hyperactivation of the mTOR pathway by excessive 

amino acid concentrations leads to the phosphorylation of multiple serine residues and 

subsequent inactivation of IRS-1 (Tremblay et al., 2007). This results in a weakened response 

to insulin, progressing to persistent insulin resistance (Yoon, 2016). 
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Figure 2. Schematic representation of mTOR activation by amino acids. Amino acids may activate 

mTORC1 and mTORC2. The mTOR complexes activate the insulin signalling cascade at different 

nodes. The mTORC2 activates PKB/AKT2, which activates mTORC1. Whilst mTORC1 activates 

p70S6K1 and results in the activation of the LXRα-RXR complex. The pathway induces DNL by stimulating 

the expression of genes required for the process of fatty acid synthesis. Once DNL genes are expressed 

and translated into proteins, they activate the synthesis (ACLY, ACACA and FASN) and processing 

(SCD1 and ELOVL6) of fatty acids as well as the esterification of fatty acid with glycerol to synthesise 

TAGs (DGAT2) and subsequent packaging (MTTP and APOC3) of TAGs in VLDL particles for export. 

Activation of p70S6K1 results in the phosphorylation of IRS-1 at multiple serine residues, leading to its 

subsequent degradation. 
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5.2 Chapter aims   

 

In the previous chapters, a meal rich in glutamate increased the levels of a subset of TAGs 

that have been correlated with DNL. Carbon from glutamate was detected in palmitate and 

palmitate-containing triacylglycerols. Glutamate also induced DNL, through activation of the 

AKT2 pathway, and induced the expression of genes required for DNL. To examine whether 

these effects are due to a general increase in amino acid levels or specific to amino acids, 

hepatocytes are treated with glucogenic, ketogenic and BCAAs to investigate whether they 

can induce DNL at a genomic, proteomic and metabolic level, using the scTAG cluster.   
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5.3 Materials and methods  

 

5.3.1 Cell culture  

 

Growth of AML 12 hepatocytes  

 

AML 12 cells were purchased from ATCC and cultured in 1:1 (v:v) Dulbecco's modified Eagle's 

medium and Ham's F12 medium (Thermo), supplemented with 10% FBS, 1% 

penicillin/streptomycin (100 units/mL and 100 µg/mL, respectively), 1% ITS (10 mg/L, 5.5 mg/L 

and 6.7 µg/L, respectively) and dexamethasone (100 µmol/L) at 37°C in 5% CO2. Cells were 

removed from liquid nitrogen, thawed rapidly and initially cultured in a T25 flask (Cat. # 690175, 

Greiner). Medium was changed every two days, and upon reaching confluence, cells were 

sub-cultured in T75 flasks (Cat. # 7340290, Corning) at a ratio of 1:3. Cells were plated at a 

density of 50,000 cells/well in collagen 1-coated 12-well plates (Cat. # 7340295, Corning) and 

grown to confluence in maintenance medium. Cells were then supplemented with low glucose 

(7.60 mmol/L) with unlabelled L-glutamine, L-leucine or L-lysine (2.4 mmol/L) and dialysed 

FBS (Thermo) for 2 days. After switching medium, cells were serum-starved for 20 h in low 

glucose medium. 

 

 

Dose response of glutamine, leucine and lysine in insulin sufficient AML 12 hepatocytes  

 

Cells were supplemented with low glucose (7.60 mmol/L) and 1% ITS without the specific 

amino acid (0 mmol/L, n = 3) or with increasing levels of amino acid (2, 4, 10 mmol/L, n = 

3/amino acid). Cells and media were harvested after 24 h (Figure 3). 

 

 

Dose response of glutamine, leucine and lysine in insulin-depleted AML 12 hepatocytes  

 

Cells were supplemented with low glucose (7.60 mmol/L), 5.5 mg/L transferrin and 6.7 µg/L 

selenium without any insulin. Cells were treated without the specific amino acid (0 mmol/L, n 

= 3) or with increasing levels of amino acid (2, 4, 10 mmol/L, n = 3/amino acid). Cells and 

media were harvested after 24 h (Figure 3).  
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Figure 3. Schematic representation of dose response with glutamine, leucine and lysine in AML 

12 hepatocytes. Hepatocytes were switched to LG for 2 days, then serum starved for a day and then 

treated with 0, 2, 4 or 10 mmol/L amino acid with or without insulin. Cells were collected at 24 h.  

 

 

AML 12 cell 13C6-L-lysine labelling procedure   

 

Cells were supplemented with glucose (7.60 mmol/L, n = 3) with unlabelled-L-lysine (4 mmol/L) 

or glucose (7.60 mmol/L, n = 3) with 13C6-L-lysine (4 mmol/L, n = 3). Based on previous 

experiments, the cells were allowed 3 h such that the 13C6-L-lysine could reach an isotopic 

steady state in the TCA cycle. Cells and media were harvested at 0 and 24 h (Figure 4). Table 

1 summarises the media used for growth and treatment. 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of growth and 13C6-L-lysine treatment of AML 12 hepatocytes. 

Hepatocytes were switched to LG for 2 days, then serum starved for a day and then treated with either 

labelled or unlabelled L-lysine. Cells were collected at 0, and 24 h.  
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Table 1. Medium components used for growth and treatment of AML 12 hepatocytes. 

 

Medium Components 
[Glucose] &  

[Amino acid] 
Manufacturer 

Maintenance  

90% 1:1 DMEM/F12 a 

10% FBS b 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

17.50 mmol/L 

Glucose 

2.44 mmol/L             

L-Glutamine 

 

Cat. # 11330-032, Thermo a 

Cat. # F7524, Sigma b 

Cat. # 41400045, Thermo c 

Cat. # D4902, Sigma d 

Cat. # P4333, Sigma e 

Increasing 

dose of 

glutamine  

90% 1:1 DMEM/F12 f 

10% dialysed FBS g 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

0,2,4 and 10 mmol/ L 
12C-L-glutamine h 

 

Cat. # D9443:N4888, Sigmaf 

Cat. # A3382001, Thermo g 

Cat. # 25030081, Thermo h 

Increasing 

dose of 

leucine   

90% 1:1 DMEM/F12 f 

10% dialysed FBS g 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

0,2,4 and 10 mmol/ L 
12C-L-leucine i 

 

Cat. # D9443:N4888, Sigmaf 

Cat. # A3382001, Thermo g 

Cat. # L8000, Sigma i 

Increasing 

dose of 

lysine   

90% 1:1 DMEM/F12 f 

10% dialysed FBS g 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

0,2,4 and 10 mmol/ L 
12C-L-lysine j 

 

Cat. # D9443:N4888, Sigmaf 

Cat. # A3382001, Thermo g 

Cat. # L5751, Sigma j 

Unlabelled 

lysine  

90% 1:1 DMEM/F12 f 

10% dialysed FBS g 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

 

7.60 mmol/L Glucose 

4 mmol/ L 
12C-L-lysine j 

 

Cat. # D9443:N4888, Sigmaf 

Cat. # A3382001, Thermo g 

Cat. # L5751, Sigma j 

Labelled 

lysine 

100% DMEM/F12 f 

ITS c 

0.10 mol/L Dexamethasone d 

Penicillin/Streptomycin e 

7.60 mmol/L Glucose 

4 mmol/L 
13C-L-lysine k 

 

Cat. # CLM-2247-H-0.05, 

Cambridge Isotope 

Laboratories k 

a-k Components lettered a-k and corresponding catalogue number and manufacturers 

 

 

Harvesting of AML12 cells for metabolomics  

 

For cells and media undergoing metabolomic analyses, 900 µL of medium was taken from 

each well and stored at -80°C. Each well was then washed with 1 mL of 0.9% saline and cells 

were lifted from the plates by adding 0.5 mL trypsin (10X trypsin-EDTA, Cat. # 25300045, 

Invitrogen). Each well was re-washed with 0.5 mL of 0.9% sterile-filtered saline and the 

resulting solution was transferred into a 2 mL microcentrifuge tube and centrifuged at 13,000 
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x g for 10 min to pellet the cells. The supernatant was removed and the pellet was resuspended 

in 750 µL of a 2:1 (v:v) chloroform:methanol solution to prevent enzymatic degradation of 

metabolites, and frozen at -80°C.  

 

 

Metabolite extractions  

 

Metabolites were extracted as described in Chapter 2, Section 2.1.1.   

 

 

5.3.2 LC-MS of organic fractions 

 

PEFA derivatisation of organic fractions for LC-MS and analysis of total fatty acids by 

triple quadrupole mass spectrometry  

 

Each dried organic extract was derivatised by the method described in Chapter 2, Section 

2.1.3 and analysed by the method described in Chapter 2, Section 2.1.4  

 

 

Analysis of intact lipids using orbitrap mass spectrometry 

  

The organic fraction was analysed by the method described in Chapter 2, Section 2.1.2.   

 

 

5.3.3 Oxidising/Reducing agent quantification 

 

NAD+/NADH assay  

 

NAD+/NADH was measured according to the manufacturer’s protocol (Abcam, ab65348). 

Briefly, cells were lysed using NAD+/NADH extraction buffer and enzymes that consumed 

NADH were removed by filtration through a 10 kDa spin column (Abcam, ab93349). For NADH 

detection, NAD+ was decomposed by heating samples at 60°C for 30 min. Samples [NADH 

with decomposed NAD+ and total NAD(H)] and standards were incubated with 100 μL NAD 

cycling reaction mix to convert NAD+ to NADH. After 5 min, 10 μL of NADH developer was 

added and the reaction was allowed to cycle for 2 h. The optical density (OD) was measured 

at 450 nm after stopping the reaction with 10 μL stop solution. 
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5.3.4 Gene expression analysis 

 

RNA extraction and purification from AML 12 hepatocytes 

 

Total RNA was extracted and purified from hepatocytes using a RNeasy Mini Kit (QIAgen) 

according to the manufacturer’s specifications. After aspirating the media, 350 μL of buffer 

RLT and 70% ethanol were added to each well to lyse the cells. After mixing, the solution was 

transferred to an RNeasy spin column and centrifuged at 8,000 x g for 15 s to bind RNA to the 

membrane. The flow-through was discarded and the membrane was washed with 700 μL RW1 

wash buffer by centrifuging at 8,000 x g for 15 s. The flow-through was discarded and the 

washing step was repeated. Subsequently, 500 μL of Buffer RPE (working ethanol buffer) was 

added to the RNeasy spin column and centrifuged at 8,000 x g for 15 s. The flow-through was 

discarded and the process repeated, before centrifugation at 8,000 x g for 15 s. The RNeasy 

spin column was placed in a new 2 mL collection tube and centrifuged at maximum speed for 

2 min to dry the membrane and prevent carryover of ethanol. To elute pure RNA, the column 

was placed in a new 1.5 mL collection tube and 30 μL RNase-free water was added directly to 

the membrane before centrifuging at 8,000 x g for 1 min. Purified RNA concentration was 

quantified at 260 nm using a NanoDrop 100 (Thermo Fisher Scientific). 

 

 

cDNA production by reverse transcription  

 

Each purified RNA sample was diluted with RNase-free water to a final concentration of 100 

ng/μL. cDNA synthesis and genomic DNA elimination in RNA samples was performed using 

an RT2 First Strand Synthesis kit (QIAgen) according to the manufacturer’s specifications. 

Genomic DNA elimination was performed by mixing each RNA sample with 2 μL of genomic 

elimination buffer (buffer GE) and incubating on a thermocycler (Techne) at 42°C for 5 min 

before being rapidly cooled to 4°C for 1 min. The reverse transcription mix was prepared by 

adding 4 μL 5X Buffer BC3, 1 μL Control P2 (random hexamers), 2 μL RE3 Reverse 

Transcriptase Mix and 3 μL RNase-free water. To each reaction tube, 10 μL reverse-

transcription mix were added and mixed gently. The samples were then reverse transcribed 
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by incubating them on a thermocycler (Techne) at 42°C for exactly 15 min and then 

immediately terminating the reaction by incubating at 95°C for 5 min. The reactions were stored 

at -20°C prior to real time PCR analysis. 

 

 

qPCR 

 

The relative abundance of transcripts of interest was measured by qPCR in RT2 SYBR Green 

Mastermix (QIAgen) with a StepOnePlus detection system (Applied Biosystems). The SYBR 

Green qPCR Mastermix contained HotStart DNA Taq Polymerase, PCR Buffer, dNTP mix 

(dATP, dCTP, dGTP, dTTP) and SYBR Green dye. Before adding cDNA to each well of the 

96-well plate, cDNA was diluted in RNase-free water to a final concentration of 8 ng/μL. PCR 

component mix was prepared by mixing 10 μL SYBR Green qPCR Mastermix with 0.6 μL of 

10 μmol/L target primers (forward and reverse; 6 pmoles/reaction) and 4.4 μL RNase-free 

water. To each well of a 96-well plate, 5 μL cDNA (total amount 40 ng) and 15 μL PCR 

components mix were added. The plate was centrifuged at 1000 x g for 30 s to ensure that the 

contents were mixed and to remove any bubbles present in the wells. The plate was placed in 

the real-time cycler with the following cycling conditions: 10 min at 95°C for 1 cycle to activate 

HotStart DNA Taq Polymerase; 15 s at 95°C and 1 min at 60°C to perform elongation and 

cooling for 40 cycles. RT2 qPCR Primer Assays for mouse Rn18s, Fasn, Acaca, Acly, Elvol6, 

Scd1, Dgat2, Mttp and Apoc3 were purchased from QIAgen. Expression levels were 

normalised to the endogenous control, Rn18s, using the ΔΔCt method and fold changes 

reported were relative to the control group in the dose response (0 mmol/L ‘amino acid’). 
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5.3.5 Protein quantification and glucose uptake analysis 

 

Preparation of cell lysates  

 

Cell pellets were lysed in 100 μL Cell Extraction Buffer (10 mmol/L Tris, 100 mmol/L NaCl, 1 

mmol/L EDTA, 1 mmol/L EGTA, 10 mmol/L NaF, 20 mmol/L Na4P2O7, 20 mmol/L Na3VO4, 1% 

Triton X-100, 10% glycerol, 0.1% sodium dodecyl sulfate, 0.5% deoxycholate, 1 mmol/L 

phenylmethylsulfonyl fluoride, complete protease inhibitor tablet and 1% of each phosphatase 

cocktail inhibitor 2 and 3) for 30 min, vortexing at 10-min intervals. The lysate was centrifuged 

at 13,000 x g for 10 min at 4°C and the supernatant was collected and stored at -80°C. 

 

 

Cell AKTpS473 and AKT [total] quantification by enzyme-linked immunosorbent assay  

 

PKB/AKT concentrations were measured using commercial assay kits (Invitrogen). The 

protocol was followed according to the manufacturer’s specifications. Briefly, cells were 

collected by centrifugation and washed with cold PBS. After diluting samples and standards 

with standard diluent buffer, they were incubated on a 96-well plate containing an immobilised 

antibody to AKTpS473 or AKT [Total] for 2 h at room temperature with gentle shaking. 

Unbound constituents were washed off and then an AKT [Total] biotin conjugate or AKTpS473 

detection antibody was added to each well for 1 h at room temperature with gentle shaking. 

After washing off unbound conjugates, streptavidin-HRP solution (AKT [Total]) or anti-rabbit 

IgG HRP solution (AKTpS473) was added to each well and incubated for 30 min at room 

temperature with gentle shaking. Following washing, a stabilised chromogen was added to 

each well and incubated for 30 min in the dark without shaking. Stop solution was added to 

each well to stop the enzymatic reaction and the absorbance was read at 450 nm. The 

background absorbance was subtracted from all data points, including standards, and a 

standard curve was generated. The unknown concentrations were read from the standard 

curve and the concentrations were multiplied by the appropriate dilution factor. Values were 

normalised to protein concentration using a reducing-agent compatible bicinchoninic acid 

protein assay and values of AKT [pS473] were normalised to AKT [Total].  
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BCA Protein assay- reducing agent compatible  

 

Protein concentrations were measured using a commercial assay kit by Pierce™ Thermo 

Scientific. The protocol was followed according to the manufacturer’s specifications. Briefly, 

samples were diluted in Compatibility Reagent Stock solution (1:1) and incubated at 37°C for 

15 min. Samples were cooled at room temperature for at least 5 min. After cooling, samples 

and BSA standards were added to a 96-well plate, BCA working reagent was added to each 

well (1:3 sample/standard: BCA working reagent). The absorbance was measured at 562 nm 

and the average absorbance of the blank replicates was subtracted from each standard and 

sample replicate. A standard curve was generated by plotting the average blank corrected 

absorbance measurements for each BSA standard vs. known concentration. An equation in 

the form y = mx + c was generated for the protein standards from which the unknown 

concentrations were calculated.  

 

 

2-Deoxyglucose uptake assay  

 

2-Deoxyglucose uptake was measured using a commercial assay kit (Abcam, ab136955). The 

protocol was followed according to the manufacturer’s instructions. In brief, cells were washed 

3 times with PBS and starved of glucose by pre-incubating with Krebs-Ringer phosphate buffer 

(KRPH) with 2% BSA for 40 min. Cells were subsequently washed with PBS (background), 

stimulated or not stimulated with 1 μmol/L insulin for 20 min. Insulin and non-insulin stimulated 

(control) cells were incubated with the glucose analogue 2-deoxyglucose for 20 min. Cells 

were then washed and lysed with extraction buffer by freeze/thawing and vortex mixing. 

Endogenous NAD(P) was subsequently degraded by heating at 85°C for 40 min. After diluting 

samples and standards with assay buffer, NADPH was generated from 2-deoxyglucose 

oxidation. Any unused NADP left in the sample was degraded by heating to 90°C for 40 min. 

This resulted in the oxidation of the substrate which was detected at 412 nm in kinetic mode.  
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5.3.6 Statistical analysis 

 

Univariate statistics  

 

Data were visualised using GraphPad (GraphPad Prism 5.2; GraphPad Software, San Diego, 

CA, USA). All data are expressed as means ± SEM. In GraphPad, one- or two-way ANOVA 

was performed where appropriate to determine significant differences between experimental 

groups. For one-way ANOVA, Tukey’s post-hoc multiple comparison test was performed, 

whilst for two-way ANOVA, Sidak’s post-hoc multiple comparison test was used. Differences 

between experimental groups were considered to be statistically significant when p≤0.05.  
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5.4 Results  

 

5.4.1 Select amino acids induce DNL in AML 12 hepatocytes  

 

Glutamine and leucine but not lysine increased scTAGs in AML 12 hepatocytes  

 

After demonstrating that glutamate induces DNL in Chapter 4, the effect of other amino acids 

on DNL was examined. AML 12 hepatocytes were supplemented with increasing 

concentrations of representatives of glucogenic (glutamine) and ketogenic (leucine and lysine) 

amino acids. As expected, intracellular amino acid levels increased dose dependently in 

response to the corresponding amino acid increases in media (Figure 5A). Total scTAG levels 

increased dose-dependently in response to glutamine and leucine but not lysine 

concentrations (Figure 5B), with the greatest effect achieved via supplementation with leucine. 

The amount of total TAGs did not change in response to any amino acid (Figure 5C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Intracellular scTAGs levels increased dose-dependently in response to glutamine and 

leucine but not lysine concentrations in AML 12 hepatocytes. (A) Amino acid levels in cells in 

response to specific amino acid treatment at 0, 2, 4 and 10 mmol/L concentrations measured by LC-MS 

after 24 h. (B) Sum of scTAG content in cells in response to specific amino acid treatment at 0, 2, 4 and 

10 mmol/L concentrations measured by LC-MS after 24 h. (C) Sum of total TAG content in cells in 

response to amino acid treatment at 0, 2, 4 and 10 mmol/L concentrations measured by LC-MS after 24 

h. Data are presented as mean ± SEM and analysed by one-way ANOVA with post-hoc Dunnett’s 

multiple comparisons test; * = p≤0.05, n = 3/group. 
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Glutamine and leucine but not lysine increased the energy balance of AML 12 

hepatocytes 

 

As previously mentioned, lipogenesis commences with the export of citrate from the 

mitochondrion to the cytosol. This is achieved by the low NAD+/NADH ratio. Supplementation 

of glutamine and leucine significantly decreased the NAD+/NADH ratio. However, lysine 

supplementation did not change the energy balance within the cell. In support to the previous 

finding that leucine had the greatest increase in scTAGs, it also increased the energy balance 

the most (biggest decrease in NAD+/NADH ratio). Moreover, lysine did not affect scTAG 

content nor the energy balance of cells (Figure 6). 

 

 

 

 

 

 

 

 

 

Figure 6. Glutamine and leucine but not lysine decreased the NAD+/NADH ratio in AML 12 

hepatocytes. NAD+/NADH at 0 mmol/L and 4 mmol/L glutamine, leucine and lysine after 24 h. Data are 

presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 3/group 

 

 

Carbon from labelled lysine was not incorporated in palmitate and palmitate-containing 

triacylglycerides 

 

As shown above, lysine did not affect the scTAG content but also did not change the 

NAD+/NADH ratio, suggesting that this amino acid did not affect DNL. Even though catabolism 

of lysine generates acetyl-CoA, label from 13C6-lysine was not detected in palmitate or 

palmitate-containing triacylglycerides (Figure 7A & 7B respectively), suggesting that lysine 

cannot provide sufficient amounts of substrate for DNL. 
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Figure 7. Carbon from 13C6-labelled lysine was not incorporated into DNL-derived palmitate or 

triacylglycerols in AML 12 hepatocytes. (A) The [M+4]+ ion of the picolynyl-ester of palmitate (FA16:0) 

detected by LC-MS was not labelled by lysine over 24 h post-supplementation. (B) The [M+2]NH4
+, 

[M+4]NH4
+ and [M+6]NH4

+ ions of glyceryl tripalmitate (TAG 48:0) in cells detected by LC-MS were not 

labelled by lysine after 24 h. Data are presented as mean ± SEM and analysed by two-way ANOVA with 

post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

Glutamine increased the expression of DNL genes 

 

To determine whether these changes in DNL were because of changes in the expression of 

genes required for DNL, the expression levels of key genes in the synthesis of VLDL particles 

were quantified by qPCR. The synthesis of VLDL particles may be separated into 3 main 

processes: synthesis of fatty acids, elongation and desaturation of fatty acids (processing) 

and packaging of fatty acids into triacylglycerols and VLDL. Glutamine at 2 and 4 mmol/L 

increased the expression of the fatty acid synthesis genes (Acly and Fasn, but not Acaca), as 

well as the processing and packaging genes. However, at 10 mmol/L glutamine, the 

expression of Fasn and Elovl6 was no longer significantly increased (Figure 8).  
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Figure 8. Glutamine concentrations increased the expression of DNL synthesis, processing and 

VLDL packaging gene expression in AML 12 hepatocytes. qPCR analysis of expression of Acly, 

Acaca, Fasn, Scd1, Elovl6, Dgat2, Mttp and Apoc3 in response to 0, 2, 4 and 10 mmol/L glutamine after 

24 h. Data are presented as mean ± SEM and analysed by one-way ANOVA with post-hoc Dunnett’s 

multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

Leucine decreased the expression of fatty acid synthesis and processing genes but 

increases the expression of packaging genes 

 

Despite leucine resulting in the greatest increase in scTAGs in hepatocytes, it decreased the 

expression of fatty acid synthesis (except Acaca) and processing genes, with significant 

changes at 10 mmol/L leucine. However, it increased the expression of packaging genes dose-

dependently (Figure 9). 

 

 

 

 

 

 

 

 

 

Figure 9. Leucine concentrations decreased the expression of DNL synthesis and processing 

genes but increases VLDL packaging gene expression in AML 12 hepatocytes. qPCR analysis of 

expression of Acly, Acaca, Fasn, Scd1, Elovl6, Dgat2, Mttp and Apoc3 in response to 0, 2, 4 and 10 

mmol/L leucine after 24 h. Data are presented as mean ± SEM and analysed by one-way ANOVA with 

post-hoc Dunnett’s multiple comparisons test; * = p≤0.05, n = 3/group. 
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Lysine did not affect the expression of DNL genes 

 

Lysine did not change the expression of any genes significantly. This is in agreement with the 

finding that lysine did not affect scTAG content nor the NAD+/NADH ratio in hepatocytes 

(Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Lysine concentrations did not affect the expression of DNL synthesis, processing and 

VLDL packaging gene expression in AML 12 hepatocytes. qPCR analysis of expression of Acly, 

Acaca, Fasn, Scd1, Elovl6, Dgat2, Mttp and Apoc3 in response to 0, 2, 4 and 10 mmol/L lysine after 24 

h. Data are presented as mean ± SEM and analysed by one-way ANOVA with post-hoc Dunnett’s 

multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

Glutamine and leucine increased phosphorylation of AKT  

 

Insulin induces the expression of genes required for hepatic DNL, by activating SREBP-1c. 

PKB/AKT2 transduces the signal to mTORC1. It is well characterised that mTORC1 responds 

to amino acids stimuli, however, it has only recently been reported that mTORC1 activation in 

the absence of PKB/AKT2 is not sufficient to stimulate SREBP1c and thus DNL (Yecies et al., 

2011). To investigate whether amino acids act upstream of mTORC1, the levels of the active 

PKB/AKT2, were quantified. The levels of the active kinase were expressed as a ratio to total 

PKB/AKT2, via measuring phosphorylation at Ser 473. In AML12 hepatocytes, intracellular 

pPKB/AKT2 levels increased dose-dependently in response to glutamine (10 mmol/L) and 

leucine (4 and 10 mmol/L). Lysine concentrations did not affect pPKB/AKT2 levels (Figure 11).  
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Figure 11. Intracellular pAKT levels increased dose-dependently in response to glutamine and 

leucine but not lysine concentrations in AML 12 hepatocytes. Analysis of AKT activation as a 

function of AKTpS473 levels detected by ELISA after 24 h of amino acid supplementation. Data are 

presented as mean ± SEM and analysed by one-way ANOVA with post-hoc Dunnett’s multiple 

comparisons test; * = p≤0.05, n = 3/group. 

 

 

5.4.2 Select amino acids decrease glucose uptake in AML 12 hepatocytes  

 

Glutamine and leucine decreased glucose uptake in AML 12 hepatocytes 

 

As insulin resistance is thought, at least in part, to result from the hyperactivation of mTOR 

and the subsequent phosphorylation of IRS-1 (Tremblay and Marette, 2001), the acute effects 

of amino acid supplementation on the uptake of the glucose analogue, 2-deoxyglucose, were 

examined. This molecule is recognised by glucose transporters, phosphorylated within the cell 

by glucokinase but cannot be further metabolised and is thus sequestered within the cell. Upon 

addition of 2-deoxyglucose, insulin-stimulated uptake was significantly lower in both glutamine- 

and leucine-supplemented cells (Figure 12A and 12B, respectively), but not with lysine (Figure 

12C).  
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Figure 12. 2-deoxyglucose uptake decreased in response to glutamine and leucine but not lysine 

in AML 12 hepatocytes. (A) 2-deoxyglucose uptake assay on AML12 cells exposed to 0, 4 and 10 

mmol/L glutamine for 24 h. (B) 2-deoxyglucose uptake assay on AML12 cells exposed to 0, 4 and 10 

mmol/L leucine for 24 h. (C) 2-deoxyglucose uptake assay on AML12 cells exposed to 0, 4 and 10 

mmol/L lysine for 24 h. Data are presented as mean ± SEM and analysed by two-way ANOVA with post-

hoc Sidak’s multiple comparisons test; a,b = p≤0.05, n = 3/group. a = comparisons between ± insulin 

within same amino acid concentration; b = comparisons between different amino acid concentrations 

within insulin treatment versus 0 mmol/L. 

 

 

5.4.3 Induction of DNL by glutamine is lessened in the absence of insulin in AML 

12 hepatocytes 

 

Glutamine did not increase scTAGs in the absence of insulin in AML 12 hepatocytes 

 

Full activation of the mTOR signalling pathway requires both hormonal and nutritional signals 

(Hara et al., 1998). As shown in the previous chapter, glutamate induced DNL was dependent 

on insulin. To examine whether insulin is required for glutamine to induce DNL, AML 12 

hepatocytes were supplemented with increasing concentrations of glutamine, but insulin 

starved. The intracellular levels of scTAGs did not increase without insulin. The amount of 

scTAGs at 2, 4 and 10 mmol/L glutamine was significantly more in the presence of insulin 

compared with insulin starved cells (Figure 13).  
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Figure 13. Intracellular levels of scTAGs did not increase in the absence of insulin in glutamine 

supplemented AML 12 hepatocytes. Sum of scTAG content in cells in response to glutamine 

treatment at 0, 2, 4 and 10 mmol/L concentrations with insulin or without insulin measured by LC-MS 

after 24 h. Data are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s 

multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

Insulin deprivation decreased the expression of fatty acid synthesis genes in cells 

supplemented with glutamine 

 

To examine whether the absence of insulin affects the expression of DNL genes, the 

expression of DNL genes in insulin starved cells was measured by qPCR. The expression of 

Acly and Fasn at 2, 4 and 10 mmol/L glutamine was significantly more in the presence of 

insulin compared with insulin starved cells (Figure 14A and 14C). The expression of Acaca at 

2 mmol/L glutamine was significantly higher in insulin sufficient cells than insulin starved cells 

(Figure 14B). 
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Figure 14. The expression of fatty acid synthesis genes decreased in insulin starved AML 12 

hepatocytes supplemented with glutamine. (A) qPCR analysis of expression of fatty acid synthesis 

gene Acly after a 24 h treatment with glutamine at 0, 2, 4 and 10 mmol/L with insulin or without insulin. 

(B) qPCR analysis of expression of fatty acid synthesis gene Acaca after a 24 h treatment with glutamine 

at 0, 2, 4 and 10 mmol/L with insulin or without insulin (C) qPCR analysis of expression of fatty acid 

synthesis gene Fasn after a 24 h treatment with glutamine at 0, 2, 4 and 10 mmol/L with insulin or 

without insulin. Data are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc 

Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

Insulin deprivation decreased the expression of fatty acid processing genes in cells 

supplemented with glutamine 

 

The relative expression of fatty acid processing genes, measured by qPCR, decreased in the 

absence of insulin. The expression of the desaturase, Scd1, at 2, 4 and 10 mmol/L glutamine 

was significantly higher in insulin sufficient cells than insulin starved cells (Figure 15A). The 

expression of the elongase, Elovl6, at 2 mmol/L glutamine was higher in insulin sufficient cells 

than insulin starved cells (Figure 15B).  
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Figure 15. The expression of fatty acid processing genes decreased in insulin starved AML 12 

hepatocytes supplemented with glutamine. (A) qPCR analysis of expression of fatty acid processing 

gene Scd1 after a 24 h treatment with glutamine at 0, 2, 4 and 10 mmol/L with insulin or without insulin. 

(B) qPCR analysis of expression of fatty acid processing gene Elvol6 after a 24 h treatment with 

glutamine at 0, 2, 4 and 10 mmol/L with insulin or without insulin. Data are presented as mean ± SEM 

and analysed by two-way ANOVA with post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 

3/group. 

 

 

5.4.4 Induction of DNL by leucine is lessened is the absence of insulin in AML 12 

hepatocytes 

 

The absence of insulin decreased the scTAG content of leucine-supplemented cells 

 

To examine whether insulin is required for leucine to induce DNL, AML 12 hepatocytes were 

supplemented with increasing concentrations of leucine, but insulin starved. The amount of 

scTAGs at 10 mmol/L leucine was significantly higher in insulin sufficient cell than insulin 

starved cells (Figure 16).  

 

 



 
 

146 

 

 

 

 

 

 

 

 

 

Figure 16. Intracellular levels of scTAGs were decreased in the absence of insulin in AML 12 

hepatocytes supplemented with leucine. Sum of scTAG content in cells in response to leucine 

treatment at 0, 2, 4 and 10 mmol/L concentrations with insulin or without insulin measured by LC-MS 

after 24 h. Data are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s 

multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

The absence of insulin increased the expression of fatty acid synthesis genes in 

leucine-supplemented cells 

 

Even though leucine induced the biggest increase in scTAG content, it decreased the 

expression of DNL genes in the presence of insulin. The absence of insulin increased the 

expression of fatty acid synthesis genes at 10 mmol/L leucine. The expression of Acly and 

Fasn at 10 mmol/L leucine was significantly less in the presence of insulin compared with 

insulin starved cells (Figure 17A and 17C). The expression of Acaca was not changed between 

the two treatments (Figure 17B). 
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Figure 17. The expression of fatty acid synthesis genes increased in insulin starved AML 12 

hepatocytes supplemented with leucine. (A) qPCR analysis of expression of fatty acid synthesis 

gene Acly after a 24 h treatment with leucine at 0, 2, 4 and 10 mmol/L with insulin or without insulin. (B) 

qPCR analysis of expression of fatty acid synthesis gene Acaca after a 24 h treatment with leucine at 

0, 2, 4 and 10 mmol/L with insulin or without insulin (C) qPCR analysis of expression of fatty acid 

synthesis gene Fasn after a 24 h treatment with leucine at 0, 2, 4 and 10 mmol/L with insulin or without 

insulin. Data are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s 

multiple comparisons test; * = p≤0.05, n = 3/group. 

 

 

The absence of insulin increased the expression of fatty acid processing genes in leucine-

supplemented cells 

 

The relative expression of fatty acid processing genes, measured by qPCR, increased in the 

absence of insulin. The expression of the desaturase, Scd1, and the elongase Elovl6 at 10 

mmol/L leucine were lower in insulin sufficient cells than insulin starved cells (Figure 18A&B).  
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Figure 18. The expression of fatty acid processing genes increased in insulin starved AML 12 

hepatocytes supplemented with leucine. (A) qPCR analysis of expression of fatty acid processing 

gene Scd1 after a 24 h treatment with leucine at 0, 2, 4 and 10 mmol/L with insulin or without insulin. 

(B) qPCR analysis of expression of fatty acid processing gene Elvol6 after a 24 h treatment with leucine 

at 0, 2, 4 and 10 mmol/L with insulin or without insulin. Data are presented as mean ± SEM and analysed 

by two-way ANOVA with post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group.  

 

 

5.4.5 Lysine supplementation does not affect DNL in the absence of insulin 

 

Lysine supplementation did not affect the content of scTAGs in the absence of insulin 

 

The amounts of scTAGs detected at 2, 4 and 10 mmol/L lysine were not different between 

insulin sufficient and starved cells (Figure 19).  

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Intracellular levels of scTAGs were not affected by the absence of insulin in AML 12 

hepatocytes supplemented with lysine. Sum of scTAG content in cells in response to lysine treatment 

at 0, 2, 4 and 10 mmol/L concentrations with or without insulin measured by LC-MS after 24 h. Data are 

presented as mean ± SEM and analysed by two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test; * = p≤0.05, n = 3/group. 
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Lysine supplementation did not alter the expression of fatty acid genes in the absence 

of insulin  

 

The relative expression of fatty acid synthesis genes, measure by qPCR, did not change 

between the two treatment groups (Figure 20A-C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. The expression of fatty acid synthesis genes was not changed between insulin starved 

and insulin sufficient AML 12 hepatocytes supplemented with lysine. (A) qPCR analysis of 

expression of fatty acid synthesis gene Acly after a 24 h treatment with lysine at 0, 2, 4 and 10 mmol/L 

with or without insulin. (B) qPCR analysis of expression of fatty acid synthesis gene Acaca after a 24 h 

treatment with lysine at 0, 2, 4 and 10 mmol/L with or without insulin (C) qPCR analysis of expression 

of fatty acid synthesis gene Fasn after a 24 h treatment with lysine at 0, 2, 4 and 10 mmol/L with or 

without insulin. Data are presented as mean ± SEM and analysed by two-way ANOVA with post-hoc 

Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group. 
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Lysine supplementation decreased the expression of fatty acid genes in the absence of 

insulin  

 

The relative expression of fatty acid processing genes, measured by qPCR, decreased in the 

absence of insulin. The expression of the desaturase, Scd1, and the elongase Elovl6 at 10 

mmol/L lysine were higher in insulin sufficient cells than insulin starved cells (Figure 21A&B).  

 

 

 

 

 

 

Figure 21. The expression of fatty acid processing genes decreased in insulin starved AML 12 

hepatocytes supplemented with lysine. (A) qPCR analysis of expression of fatty acid processing 

gene Scd1 after a 24 h treatment with lysine at 0, 2, 4 and 10 mmol/L with or without insulin. (B) qPCR 

analysis of expression of fatty acid processing gene Elvol6 after a 24 h treatment with lysine at 0, 2, 4 

and 10 mmol/L with or without insulin. Data are presented as mean ± SEM and analysed by two-way 

ANOVA with post-hoc Sidak’s multiple comparisons test; * = p≤0.05, n = 3/group.  
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5.5 Discussion  

 

The latest nutritional transition from traditional to western-style diets (rich in sugar, fat and 

protein from red meat) has led to a growing prevalence of NAFLD and T2DM (Bhat et al., 

2012). Hepatic lipid accumulation, via upregulated levels of DNL, is mutual to both disorders. 

Whilst it is well established that high carbohydrate feeding increases DNL (Hudgins et al., 

1996), studies of the effect of high protein feeding in relation to DNL in humans, are limited. 

Despite high protein/low carbohydrate diets being popular regimes for weight loss in humans 

to prevent obesity and diabetes, recent studies correlated elevated BCAA levels with insulin 

resistance and T2DM (Würtz et al., 2012). Studies have previously demonstrated that a higher 

protein/lower carbohydrate diet downregulates DNL (Garcia-Caraballo et al., 2013; Margolis 

et al., 2016), typically in longer-term dietary interventions. However, the precise amino acid 

composition of the high protein diet is not determined. In the previous chapters, dietary amino 

acids increased scTAGs in healthy human subjects. Carbon from glutamate was incorporated 

into palmitate via DNL, suggesting that amino acids may provide carbon as a substrate for this 

process under physiological substrate concentrations. In this chapter, amino acids had 

differential effects on scTAGs as well as the expression of genes required for synthesis, 

processing and packaging of fatty acids, likely involving the action of AKT2 in hepatocytes.  

 

Citrate is found at a cross-road between catabolism and anabolism. An increase in the energy 

balance (decreased NAD+/NADH ratio) inhibits catabolic pathways and drives the anabolic 

reactions within a cell, such as fatty acid synthesis (Whereat et al., 1967). During anabolism, 

citrate is withdrawn from the TCA cycle and exported from the mitochondrion to the cytosol, 

via the mitochondrial citrate carrier (Gnoni et al., 2009). In the cytosol, citrate is lysed to acetyl-

CoA, which may then be used for fatty acid synthesis (Williams and O’Neill, 2018). These 

synthetic processes are tightly regulated by the high energy balance; high NADH levels inhibit 

β-oxidation and promote the synthesis of cytosolic acetyl-CoA, via citrate, which in turn inhibits 

the activity of glycolytic enzymes (Williams and O’Neill, 2018). Cytosolic acetyl-CoA is then 

carboxylated by ACC to malonyl-CoA, which inhibits CPT1, the enzyme which facilitates the 
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entry of fatty acids into the mitochondrion to undergo -oxidation. In theory all amino acids may 

provide acetyl-CoA for fatty acid synthesis. Ketogenic amino acids break down in the 

mitochondrion to acetyl-CoA, which condenses with oxaloacetate to synthesise citrate by 

citrate synthase, whilst glucogenic amino acids break down to a variety of TCA cycle 

intermediates that eventually generate citrate (Andrea, 1998). The data herein demonstrate 

that glutamine and leucine but not lysine supplementation increased the energy balance in 

hepatocytes. This agrees with the result that carbon from lysine was not incorporated in fatty 

acids. In contrast, glutamate supplementation was sufficient to induce DNL and provide carbon 

for fatty acids synthesis (Chapter 4). Carbon from glutamine and leucine has also been shown 

to be incorporated into fatty acids in differentiated 3T3-L1 adipocytes (Crown et al., 2015). The 

data suggest that glutamate, glutamine, leucine but not lysine supplementation is sufficient to 

export citrate in the cytosol and generate cytosolic acetyl-CoA for fatty acid synthesis. Once 

citrate is in the cytosol, a variety of enzymes are required to synthesise fatty acids (Ducheix et 

al., 2017). The expression of genes that translate to these enzymes is under the control of the 

insulin signalling cascade and mTOR (Zhou et al., 2018). 

 

A master regulator of cell growth, mTORC1, is responsible for sensing nutrient signals, 

particularly amino acids (Yoon and Choi, 2016). The mTORC1 signalling pathway integrates 

insulin signals, through its phosphorylation by PI3-kinase/AKT2 (Vinod and Venkatesh, 2009). 

Activation of mTORC1 leads to the nuclear localisation of LXRα, whereupon it heterodimerises 

with the RXR to induce the expression of lipogenic genes as well as SREBP1c (Hwahng et al., 

2009). The mTORC1 also mediates the nuclear translocation of SREBP1c, where it induces 

the transcription of genes required for DNL (Peterson et al., 2011). However, it has recently 

been reported that mTORC1 activation in the absence of AKT2 is not sufficient to stimulate 

SREBP1c, and thus DNL (Yecies et al., 2011), suggesting that amino acids regulate an 

upstream node in the pathway, or act in an, as yet, undetermined manner. The data of this 

chapter show that select amino acids, glutamine and leucine but not lysine, activated AKT2. 

This may also indicate that specific amino acids may regulate mTORC2, responsible for the 

activation of AKT2 and subsequent induction in the expression of genes required for DNL, in 
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support of a signalling pathway proposed by Tato et al (Tato et al., 2011). Amino acids, 

branched-chain in particular, have been linked with insulin resistance. The molecular basis is 

the activation p70S6K1 by amino acids (Iiboshi et al., 1999), a downstream kinase of mTORC1. 

This in turn phosphorylates the insulin receptor substrate at multiple serine/threonine residues 

and directs it to degradation. This acts as a negative feedback loop, whereby active p70S6K1 

attenuates any further activation of the insulin signalling pathway, reducing glucose uptake. 

Persistent activation of p70S6K1 by excessive amino acid concentrations may therefore lead to 

insulin resistance (Tremblay and Marette, 2001). Herein, it is demonstrated that glutamine and 

leucine decrease insulin-dependent glucose uptake, whilst lysine does not.  

 

In support of the finding that specific amino acids activated PKB/AKT2 (glutamate, glutamine 

and leucine but not lysine), the same amino acids increased scTAG content and decreased 

glucose uptake in hepatocytes. In addition, the same amino acids increased the energy 

balance, as measured by the reducing potential of the cell, and have been shown to provide 

carbon for fatty acid synthesis. These differential effects of amino acids on DNL are not specific 

to an amino acid class (ketogenic, glucogenic or BCAAs) as glutamate, glutamine and leucine 

that affect DNL belong to different amino acid classes. The data suggest that specific amino 

acids are able to change the energy balance, activate the mTOR complexes and subsequently 

induce DNL. 

 

Leucine resulted in the greatest increase in scTAG content followed by glutamine and lastly, 

glutamate (Chapter 4). Both glutamate and glutamine increased the expression of genes 

required for the synthesis, processing as well as packaging of fatty acids. Perhaps surprisingly, 

leucine and the highest concentration of glutamine decreased the expression of genes 

required for synthesis and processing of fatty acids but increased the expression of genes 

required for packaging. This suggests a possible negative feedback mechanism, whereby 

accumulation of high levels of scTAGs or other intermediate species (such as fatty acyl-CoAs 

or diacylglycerides) in the liver inhibit the expression of these genes, but not the expression of 

genes required for subsequent processing and packaging. Indeed, studies demonstrate that 
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unsaturated fatty acids lower the levels of mRNA for SREBP1c by accelerating its degradation 

(Ou et al., 2001), whilst longer chain polyunsaturated fatty acids are potent inhibitors of ACC 

(Brim et al., 1997). The findings presented in this chapter also suggest that fatty acid synthesis 

and processing genes are differentially regulated to packaging genes. SREBP1c induces the 

expression of genes required for the synthesis (Acly, Acaca and Fasn) and processing (Scd1 

and Elovl6) of fatty acids (Ducheix et al., 2017). On the other hand, packaging genes (Mttp 

and Apoc3) have been shown to be regulated by the Forkhead box O1 (FoxO1) transcription 

factor (Sparks and Dongb, 2009). FoxO1 is responsible for the expression of the gene 

encoding functional MTP, a protein responsible for the packaging of lipids with nascent apoB 

(only present in VLDL) in the endoplasmic reticulum. The action of MTP upon the growing 

VLDL particles is a rate limiting step in their formation and release into the blood. Elevated 

levels of MTP increase the secretion of VLDL by the liver and correlate with the 

pathophysiology of insulin resistance and T2DM (Higuchi et al., 2011). FoxO1 is itself 

negatively regulated by insulin, which causes its phosphorylation and nuclear exclusion 

(Altomonte et al., 2004). In cases of impaired insulin regulation, this may result in 

uncontrollable levels of MTP (Higuchi et al., 2011) expression. The production of hepatic, but 

not intestinal apoCIII is also controlled by FoxO1 via the -498/-403 element in the apoC3 

promoter (Altomonte et al., 2004; West et al., 2017). Two separate insulin signalling axes, PI3-

kinase/PKB/AKT2 and MAPK(erk), may be responsible for this inhibition. While there is 

evidence supporting a role for both axes (Brunet et al., 1999; Liang et al., 2016), data herein 

suggest that PI3-kinase/PKB/AKT2 is not involved in this inhibition, as the expression of Mttp 

and apoC3 are increased in the presence of increased PKB/AKT2. This is consistent with the 

work of Au et al, 2003 that demonstrated that insulin inhibits the transcription of Mttp via the 

MAPK(erk) signalling cascade, but not that of PI-3 kinase (Au et al., 2003). In the context of 

insulin resistance and the development of fatty liver via dysregulated rates of DNL, it might be 

considered hepato-protective to increase the rate at which liver-derived lipoproteins are 

exported, at least in the shorter term. However, it is unlikely that prolonged 
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hypertriglyceridaemia, brought about by chronic insulin resistance, has equally beneficial 

effects on long-term cardiovascular health.   

 

It has been reported that both hormonal and nutritional stimuli are required to fully activate the 

mTOR signalling pathway (Drummond et al., 2008; Saxton and Sabatini, 2017). The data 

herein show that insulin is required for the induction of DNL by glutamine and leucine. The 

induction of DNL by glutamine is diminished in the absence of insulin. The amount of scTAGs 

and the expression of lipogenic genes in insulin-deprived cells supplemented with glutamine 

were lower compared with insulin-sufficient cells. In addition, the levels of scTAGs in insulin 

deprived cells supplemented with leucine were lower than insulin sufficient cells. The 

expression of genes required for DNL in leucine supplemented cells did not decrease in the 

absence of insulin. As mentioned above, leucine had the biggest increase in scTAGs and 

therefore this induced a negative regulation in the gene expression required for DNL. In the 

absence of insulin, the expression of genes required for DNL did not decrease, suggesting that 

the expression of genes required for DNL is not negatively regulated as less scTAGs are 

accumulating in the liver. 
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5.6 Conclusions  

 

In the previous chapters, a meal rich in glutamate increased scTAGs in healthy males. Carbon 

from glutamate was incorporated into palmitate via DNL and glutamate induced DNL at a 

protein, genomic and metabolic level. Studies have previously demonstrated that a higher 

protein/lower carbohydrate diet downregulates DNL, typically in longer-term dietary 

interventions. However, the precise amino acid composition of the high protein diets in these 

studies were not determined. In this chapter, it is demonstrated that specific amino acids 

provide carbon for fatty acid synthesis, through a change in the energy balance of the cell. In 

addition, the same amino acids were responsible for inducing DNL, via the AKT2 pathway, as 

well as decreasing the glucose uptake in hepatocytes by reducing insulin sensitivity. The 

precise metabolic parameters of other amino acids and time-frame of these effects on DNL 

remain to be fully elucidated. As dietary trends have shifted towards high carbohydrate/high 

fat consumption, and high-protein diets are popularised as healthier alternatives, the data 

herein suggest that this is a more complex consideration.  Therefore, advocating the 

consumption of protein in the treatment of diabetes and obesity requires a more profound 

understanding of the roles of amino acids in the context of hepatic DNL.  
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Chapter 6. Conclusion
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6.1 Summary of findings  

 

The work contained in this thesis examined the role of changing the solid/liquid ratio as well 

as macronutrient composition of meals on the rates of gastric emptying and DNL. The thought 

processes and hypotheses of this thesis are shown in Appendix V. In Chapter 3, liquid 

carbohydrate delayed gastric emptying of healthy subjects. The delay caused by carbohydrate 

in the liquid phase occurred only up to a liquid carbohydrate content of 50%, after which, 

increasing levels of liquid carbohydrate no longer affected gastric emptying rates. Though 

liquid carbohydrate emptied the stomach faster and delayed the emptying of the solid phase, 

it was not sufficient to induce DNL. Interestingly, HP meal, rich in glutamate, increased the 

levels of DNL-derived metabolites, suggestive of an increase in rates of DNL.  

 

In Chapter 4, the role of glutamate on DNL was investigated. Glutamate supplementation in 

liver cells was sufficient to increase the energy balance and provide carbon for fatty acid 

synthesis. In addition, glutamate induced DNL at a gene expression, protein function and 

metabolic level. In Chapter 5, the effects of specific amino acids (glucogenic, ketogenic and 

branch-chain amino acids) on DNL were examined. Glutamine and leucine but not lysine 

induced a change in the energy balance and stimulated DNL. The same amino acids 

decreased glucose uptake by liver cells, and this might provide a possible link between 

lipogenesis and insulin resistance (Figure 1).  
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Figure 1. Summary of findings. Supplementation of hepatocytes with glutamate (Glu), glutamine (Gln) 

and leucine (Leu) increased the levels of activated AKT2, which is induced by mTORC2. This increased 

the expression of DNL genes, via mTORC1 resulting in increased scTAGs and decreased glucose 

uptake by hepatocytes. Red arrows represent a decrease and blue arrows an increase. 

 

6.2 The effect of liquid carbohydrate on gastric emptying and 

DNL  

 

The results of this thesis indicate that liquid carbohydrate was the primary determinant of 

gastric emptying rather than macronutrient compositions. The delay caused by carbohydrate 

in the liquid phase occurred only up to a liquid carbohydrate content of 50%, after which, 

increasing levels of liquid carbohydrate no longer affected gastric emptying rates. This agrees 

with the hypothesis that early delivery of carbohydrate to the duodenum is sensed by receptors 

in the small intestine to delay the emptying of the solid portion, where the supplied 13C-octanoic 

acid is bound. The rate of gastric emptying is crucial for maintaining blood glucose 

homeostasis as there is bidirectional communication between gastric emptying and glucose 

(Phillips et al., 2015). The delay observed in this study is the physiological response of the 

gastrointestinal tract when exposed to nutrients (known as the ileal brake; Maljaars et al., 

2008). This is only an acute response to nutrient exposure in healthy subjects, it is unknown 



 
 

160 

how prolonged exposure to carbohydrates affects gastric emptying. It has been postulated that 

the reaction of the stomach to nutrients could be adaptive to dietary habits, thus affecting 

gastric emptying of subsequent meals (Karen M. Cunningham et al., 1991). This adaptation 

could be protective to control glycaemia; however, it could also be maladaptive and result in 

uncontrolled glycaemia. It would be interesting to discover at a population level, using 

epidemiological studies, how liquid carbohydrate affects gastric emptying, glycaemic control 

and insulin sensitivity.  

 

Liquid carbohydrate empties the stomach faster: approximately 80% of the liquid fraction is 

emptied before the solid fraction (Phillips et al., 2015) and this might provide substrate to 

support increased rates of DNL. However, in this study a 2 MJ high carbohydrate meal was 

not sufficient in this case to induce DNL, which may be a consequence of it being used to 

replenish glycogen stores depleted by the preceding fast. In previous studies demonstrating 

an increase in DNL after high carbohydrate feeding, the meals were above 3 MJ (Marques-

lopes et al., 2001) and in some other studies, subjects were fed twice rather than once (Timlin 

and Parks, 2005). Interestingly, the HP meal increased the levels of scTAGs, that have been 

correlated with insulin resistance and steatosis, at 4 hours after feeding, agreeing with the time 

that DNL peaks after eating (Timlin and Parks, 2005). Even though amino acids are not 

typically viewed as lipogenic precursors, the data of Chapter 3 suggested that amino acids 

may induce DNL.  

 

 

6.3 The role of amino acids on DNL  

 
In this thesis a high protein meal, rich in glutamate (5.7g), induced DNL in humans. This is 

above the acceptable daily intake (ADI) of dietary glutamate and glutamate food additives such 

as monosodium glutamate, potassium glutamate, ammonium glutamate, calcium glutamate 

and magnesium glutamate. The EFSA established an ADI of 30 mg/kg body weight per day 

for all glutamate and glutamate additives (EFSA Panel on Food Additives and Nutrient Sources 

added to Food, 2017). This safety level of intake is based on the highest dose of these 
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additives at which adverse effects are seen on animals. This is alarming as meat/fish eaters, 

vegetarians consume on average 15 g/day of glutamate from natural foods (Tennant, 2018). 

This obvious exceedance of the proposed acceptable daily intake creates uncertainties about 

the potential effects of glutamate from natural sources as well as glutamate additives. The 

adverse effect seen in this thesis is the induction of DNL by glutamate. Therefore, a more 

mechanistic understanding of how glutamate and other amino acids induce DNL is required. 

 

 

Biochemical mechanisms of DNL activation by amino acids  

Oscillations of the cellular redox NAD+/NADH and oxidised nicotinamide phosphate 

(NADP+)/reduced nicotinamide phosphate (NADPH) determine the cellular metabolic 

phenotype (Mclean and Greenbaum, 1970). The reduced cofactors, NADH and NADPH are 

used for biosynthesis, whilst, NAD+ and NADP+, have been found to inhibit synthesis and 

promote catabolism (Mclean and Greenbaum, 1970). An increase in the energy balance, 

reflected by increased levels of reduced cofactors, induces the export of citrate from the 

mitochondrion to the cytosol, where it is lysed to generate cytosolic acetyl-CoA for fatty acid 

synthesis. It has recently been reported that high protein intake is associated with low plasma 

NAD+ levels in healthy humans (Seyedsadjadi et al., 2018). NAD+ supplementation decreases 

lipogenesis (Mclean and Greenbaum, 1970), supported by findings in this thesis, where acute 

protein feeding (which decreased NAD+ compared to NADH) increased DNL in healthy 

subjects. Together, the data support that protein feeding modulates the NAD+/NADH redox. 

Indeed, select amino acids (glutamate, glutamine and leucine but not lysine) affected the 

energy balance in liver cells by decreasing the NAD+/NADH redox ratio, suggesting that these 

amino acids may activate fatty acid synthesis. It has been demonstrated in this thesis that 

carbon from glutamate is incorporated into fatty acids whilst carbon from lysine is not. In 

addition, glutamine and leucine have been previously shown to provide carbon for fatty acid 

synthesis (Crown et al., 2015). 

 

Once citrate is in the cytosol a variety of enzymes are required to synthesise and process fatty 

acids. The expression of the genes that encode these enzymes is under the control of the 
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transcription factor SREBP-1c, which responds to insulin stimuli (Zhou et al., 2018). 

Engagement of insulin to the insulin receptor activates the insulin receptor substrate that 

recruits PI3K to the membrane, where it phosphorylates PIP2 to PIP3. The PIP3 acts as a 

docking site for the kinases mTORC2 and PDK1. Both mTORC2 and PDK1 phosphorylate and 

thereby activate PKB/AKT2. Activated AKT2 relieves the inhibitory effect of TSC1/2 on the 

mTORC1 by phosphorylating TSC2 at multiple sites (Huang and Manning, 2010). The kinase 

mTORC1 has multiple downstream effectors, one of which is p70S6K1, that induces the nuclear 

translocation of LXRα, where it may heterodimerise with RXR (Kawano and Cohen, 2013). 

The heterodimer then induces the expression of lipogenic genes including SREBP-1c. The 

kinase mTORC1 is responsible for sensing nutrient signals, particularly amino acids (Yoon and 

Choi, 2016) and therefore it integrates nutrient and insulin signals, through its phosphorylation 

by PI3-kinase/AKT2 (Vinod and Venkatesh, 2009). The activation of mTORC1 in the absence 

of AKT2 is not sufficient to induce SREBP1c, and thus DNL (Yecies et al., 2011), suggesting 

that amino acids regulate an upstream node in the pathway, or act in an, as yet, undetermined 

pathway. AKT2 activation was amino acid specific, agreeing with the finding of this thesis that 

glutamate, glutamine and leucine but not lysine, increased scTAG levels. This may also 

indicate that specific amino acids may regulate mTORC2, responsible for the activation of 

AKT2 and subsequent induction in the expression of genes required for DNL, in support of the 

signalling pathway proposed by Tato et al., 2011.   

 

Increased levels of BCAAs correlate with insulin resistance (Würtz et al., 2012). The activation 

of p70S6K1 by BCAAs has been described as the molecular basis of insulin resistance by amino 

acids (Iiboshi et al., 1999). Activated p70S6K1 phosphorylates IRS at multiple serine/threonine 

residues, which leads to its degradation. This negative feedback loop attenuates any further 

activation of the insulin signalling pathway. It is suggested that excess amino acids result in 

the persistent activation of p70S6K1 and may therefore lead to insulin resistance (Tremblay and 

Marette, 2001).  
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The extent to which specific amino acids can shift the energy balance within cells and induce 

DNL is as yet unknown. A plausible explanation might be the net gain of reducing agents 

produced by amino acid catabolism. Once glutamine is within the cell, it is hydrolysed to 

glutamate by a glutaminase. Glutamate is further metabolised to α-ketoglutarate by glutamate 

dehydrogenase, which uses NAD+ and generates NADH. This shift in the energy balance 

activates IDH1/2, which convert α-ketoglutarate to citrate in the cytosol and mitochondrion 

respectively. In addition, high NADH concentrations prevent the unnecessary oxidation of 

isocitrate to α-ketoglutarate via inhibition of IDH3 (Wise et al., 2011). Accumulated citrate in 

the cytosol is used to synthesise fatty acids by DNL (Giudetti et al., 2016). In theory the 

degradation of all amino acids should result in a net gain of reducing equivalents as amino 

acids are oxidised to generate TCA cycle intermediates, pyruvate or acetyl-CoA. However, in 

practise, as shown in this thesis, only specific amino acids changed the cellular energy 

balance. This might be because some amino acids may be preferentially used in other 

metabolic pathways, for instance protein synthesis or just not metabolised to the same extent, 

for example because of differences in activities of their associated amino transferases.  

 

The amino acid specificity of mTORC1 and mTORC2 is also unclear. Although amino acids in 

general promote the lysosomal localisation and activation of mTORC1, the identity of amino 

acid sensor/sites of recognition are yet unclear. The branched-chain amino acids, leucine and 

isoleucine, have been found to be potent activators of mTORC1 (Yoon, 2016). Wolfson et 

al. identified a biochemical sensor of leucine, Sestrin2, which has recently been implicated in 

the lysosomal localisation and activation of mTORC1 (Wolfson et al., 2016). In addition, 

glutamine has also been found to activate mTORC1 indirectly by increasing the uptake of 

leucine (Nicklin et al., 2009) or directly by a different mechanism to that of leucine that does 

not require a GTPase (Jewell et al., 2015). Another amino acid that has been shown to activate 

mTORC1 is arginine (Rebsamen et al., 2015). It has also been reported that for some amino 

acids to activate mTORC1, they require priming by another amino acid. Cysteine has been 

reported to inhibit this priming step in mTORC1 activation (Dyachok et al., 2016). In addition, 

amino acids have been shown to activate mTORC2, however the amino acid specificity of 
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mTORC2 is still unknown. As mentioned, AKT2, which is activated by mTORC2, was activated 

by glutamine, glutamate and leucine but not lysine. This indicates that mTORC2 also has some 

amino acid specificity. Research is focussed on mTORC1 but as seen in this thesis and by 

other work (Tato et al., 2011), specific amino acids activate mTORC2. Therefore, more studies 

are required to understand how amino acids activate mTORC2.  

 

The work in this thesis has introduced novel effects of dietary amino acid supplementation on 

DNL. Though it remains unclear as to how specific amino acids can activate the mTOR 

complexes, the increase in energy balance caused by specific amino acids might change the 

activity of amino acid sensors that are responsible for activating mTORC2 (Figure 2) and thus 

DNL. It would be interesting to characterise the effect of all 20 proteinogenic (and possibly 

non-proteinogenic) amino acids on mTORC1 and mTORC2 activation as well as identify the 

amino acid sensors responsible for these effects. This will enable us to characterise whether 

a group of amino acids are sensed by the same sensor or different ones. 
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Figure 2. Proposed mechanism by which specific amino acids activate DNL. Specific amino acids 

may activate mTORC2, via an increase in the energy balance (decreased NAD+/NADH). Activated 

mTORC2 may then induce DNL, via AKT2/mTORC1, and decrease glucose uptake by liver cells. Red 

arrows represent a decrease and blue arrows an increase. 

 

All the studies in this thesis are focussed on the acute effects of amino acids on DNL. The next 

step will be to study the long-term effects of amino acids on DNL. Studies have previously 

demonstrated that a higher protein/lower carbohydrate diet downregulates DNL (Garcia-

Caraballo et al., 2013; Margolis et al., 2016), typically in longer-term dietary interventions. 

However, the precise amino acid composition of high protein diets used in research is not 

determined and as shown herein the induction of DNL is amino acid specific. Therefore, future 

studies on how protein affects DNL should be more specific as to which amino acid is increased 

in the meal. In addition, it would be interesting to see whether the effects that are seen in cell 



 
 

166 

culture can be translated in vivo, initially into an animal model, in both short-term and long-

term settings.  

 

It is important to characterise the effects of amino acids on DNL as insulin resistance Is 

correlated with dysregulated hepatic lipid metabolism (Brown and Goldstein, 2008), that entails 

increased levels of DNL. The proposed mechanism behind hepatic insulin is the activation of 

protein kinase C isoforms (PKCλ/ζ), by increased diacylglycerol levels synthesised by DNL, 

inhibiting the activation of the IRS (Taniguchi et al., 2006). Expression of PKC in fatty liver is 

also elevated (Samuel et al., 2010). Yet again, amino acids might also be contributing to the 

inhibition of the IRS, both via mTORC1 activation and by inducing lipogenesis. As dietary 

trends have shifted towards high carbohydrate/high fat consumption, and high protein diets 

are popularised as healthier alternatives, the data herein suggest that this is a more complex 

consideration.  Therefore, advocating the consumption of protein in the treatment of diabetes 

and obesity requires a more profound understanding of the roles of amino acids in the context 

of hepatic DNL.  
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Appendix I  

 

A) Sample size calculation  

 
To calculate the sample size of the human study, the following equation was used:  

𝑛 = 2 [
(𝑍𝛼 − 𝑍𝜋)2

(
𝜇𝑎𝑐 − 𝜇𝑐𝑜𝑛

𝜎 )2
] 

 

Z comes from the standardised normal distribution table. The type I error (significance level) 

was set at 5%, Z = 1.645. The type II error was set at  = 20%, resulting to 80% study power 

(), therefore Z = -0.842. The effect size of the control group (con) was set at 100% and a 

40% difference between groups (in gastric emptying rates and lipid levels), resulting to ac = 

140%. The expected standard deviation was set at  = 35%. This gave rise to n = 9/group.  
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B) Exclusion and inclusion criteria of the human study   

 

Exclusion criteria Inclusion criteria  

Smokers  Non-smoker males 

BMI ≤18.5 and ≥ 27.5kg/m2 BMI 18.5-27.5 

Allergy or intolerance to any component of test 
meals 

No allergy or intolerance to any 
component of the meals 
 

Known history of cardiovascular disease  No history of cardiovascular disease  

Impaired fasting glucose (fasting glucose ≥ 6.1 
mmol/L) 

 

Fasting glucose ≤ 6.1 mmol/L 

Cholesterol ≥ 7.7 mmol/L Cholesterol ≤ 7.7 mmol/L 

Triacylglycerides ≥ 2.3 mmol/L  Triacylglycerides ≤ 2.3 mmol/L 

Weight reduction medicines, anti-dyslipidemic 
agents  

No weight reduction medicines or anti-
dyslipidemic agents 

 

Chronic, acute or active metabolic (including 
type 1 and type 2 diabetes mellitus) and 
inflammatory condition, haematological 
disorders, or any other systemic illness of 
renal, hepatic or gastrointestinal origin 

No chronic, acute or active metabolic 
(including type 1 and type 2 diabetes 
mellitus) and inflammatory condition, 
haematological disorders, or any other 
systemic illness of renal, hepatic or 
gastrointestinal origin 

 

Acute and chronic conditions affecting 
gastrointestinal motility  

No acute and chronic conditions affecting 
gastrointestinal motility 

 

Fat maldigestion and malabsorption  No fat maldigestion and malabsorption 

The use of medication known to affect 
gastrointestinal motility (such as antiemetic, 
cathartics, antidiarrheal, anticholinergic and 
narcotic medication)  

No use of medication known to affect 
gastrointestinal motility (such as 
antiemetic, cathartics, antidiarrheal, 
anticholinergic and narcotic medication)  

 

History of mental illness No history of mental illness 

History of substance abuse or alcoholism No history of substance abuse or 
alcoholism 

 

Current self-reported weekly alcohol intake 
exceeding 14 units per week 

Current self-reported weekly alcohol 
intake less than 14 units per week 
 

 

 

 

 

 

 

 

 



 
 

184 

Appendix II 

 

A) Table 1. Amount of foods used to prepare meals.  
 

 

Control 
(C) 

High Fat 
(HF) 

High 
Protein (HP) 

Control  
with Bread 

(CB) 

High 
Carbohydrate 

(HC) 

Orange Juice 
(g) 

556 271 414 367 681 

Whole egg (g) 100 100 50 100 50 

Egg white (g) 26 30 100 0 64 

Butter (g) 13 26 15 12 9 

Soy protein 
powder (g) 

0 0 21 0 0 

White bread (g) 0 0 0 41 0 

 

 

B) Method of food preparation 

  

In order to be able to prepare the meals a food and safety course was required beforehand. 

An apron and gloves were worn, and the hair was tied up. The ingredients (Table 1) were 

measured on the black salter scales. 100 µl 13C-octanoic acid were added straight into the egg 

yolk when raw. For the High Protein meal, the soy protein powder was mixed with the eggs. 

The butter was first melted in the pan (on highest heat) and subsequently the eggs were added. 

The eggs were then scrambled. The meal was served on a tray.  
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C) Table 2. Fatty acid composition of meals. The fatty acid compositions were 

calculated using the FoodWorks database (FoodWorks, 2015), which performed a 

nutrient analysis of the meals. 

 

Fatty acid 
(grams) 

Control 
(C) 

High 
Fat 
(HF) 

High 
Protein 

(HP) 

Control with 
Bread 
(CB) 

High 
Carbohydrate 

(HC) 

FA 4:0 0.342 0.684 0.395 0.316 0.237 

FA 6:0 0.202 0.405 0.234 0.187 0.140 

FA 8:0 0.120 0.238 0.137 0.111 0.083 

FA 10:0 0.267 0.531 0.306 0.246 0.184 

FA 12:0 0.298 0.594 0.343 0.276 0.206 

FA 13:0 0.000 0.000 0.000 0.000 0.000 

FA 14:0 1.095 2.155 1.241 1.013 0.751 

FA 15:0 0.005 0.005 0.002 0.005 0.002 

FA 16:0 4.994 7.763 4.308 4.936 3.030 

FA 17:0 0.016 0.016 0.008 0.016 0.008 

FA 18:0 2.062 3.340 1.866 2.102 1.277 

FA 20:0 0.009 0.009 0.005 0.009 0.005 

FA 22:0 0.011 0.011 0.006 0.011 0.006 

FA 24:0 0.002 0.002 0.001 0.002 0.001 

FA 14:1 0.009 0.009 0.005 0.009 0.005 

FA 15:1 0.000 0.000 0.000 0.000 0.000 

FA 16:1 0.534 0.770 0.421 0.516 0.312 

FA 17:1 0.000 0.000 0.000 0.000 0.000 

FA 18:1 6.125 8.777 4.796 5.978 3.572 

FA 20:1 0.027 0.027 0.014 0.027 0.014 

FA 22:1 0.002 0.002 0.001 0.002 0.001 

FA 18:2 1.386 1.624 0.849 1.866 0.739 

FA 20:2 0.000 0.000 0.000 0.000 0.000 

FA 18:3 0.187 0.341 0.194 0.176 0.123 

FA 18:4 0.000 0.000 0.000 0.000 0.000 

FA 20:4 0.141 0.141 0.070 0.141 0.070 

FA 20:5 0.005 0.005 0.002 0.005 0.002 

FA 22:5 0.000 0.000 0.000 0.000 0.000 

FA 22:6 0.036 0.036 0.018 0.036 0.018 

 

 

 

 



 
 

186 

D) Table 3. Amino acid composition of meals. The amino acid compositions were 

calculated using the FoodWorks database (FoodWorks, 2015), which performed a 

nutrient analysis of the meals. 

 

Amino acid 
(grams) 

Control 
(C) 

High Fat 
(HF) 

High Protein 
(HP) 

Control 
with Bread 

(CB) 

High 
carbohydrate 

(HC 

Alanine 0.858 0.886 1.738 0.807 0.740 

Arginine 0.903 0.930 2.317 0.869 0.744 

Aspartic acid 1.541 1.592 3.807 1.410 1.318 

Cystine 0.363 0.375 0.650 0.358 0.321 

Glutamic acid 2.020 2.099 5.685 2.668 1.727 

Glycine 0.519 0.536 1.339 0.534 0.448 

Histidine 0.360 0.372 0.850 0.366 0.301 

Isoleucine 0.843 0.873 1.824 0.810 0.726 

Leucine 1.308 1.354 2.924 1.294 1.109 

Lysine 1.092 1.130 2.308 0.989 0.913 

Methionine 0.487 0.505 0.790 0.449 0.428 

Phenylalanine 0.829 0.859 1.898 0.821 0.729 

Proline 0.615 0.642 1.594 0.845 0.518 

Serine 1.125 1.160 2.144 1.086 0.934 

Threonine 0.729 0.754 1.477 0.697 0.610 

Tryptophan 0.188 0.194 0.439 0.190 0.161 

Tyrosine 0.621 0.642 1.363 0.604 0.520 

Valine 0.943 0.977 1.983 0.906 0.814 
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E) Table 4. Comparison of meal compositions (of this thesis) with DRVs for UK adults 

and the literature. There is no fixed definition of what is High Fat, High Carbohydrate 

and High protein meal. These compositions were chosen based on the literature and 

DRVs. All the meals used were isocaloric, therefore the macronutrient compositions 

were adjusted accordingly to maintain the same caloric content.  

 

Source 
Control 

 (with or without 
bread) 

High Fat High Carbohydrate High Protein 

% 

C
H

O
 

F
A

T
 

P
R

O
 

C
H

O
 

F
A

T
 

P
R

O
 

C
H

O
 

F
A

T
 

P
R

O
 

C
H

O
 

F
A

T
 

P
R

O
 

this thesis 45 40   15 24 62 14 60 26 14 35 33 32 

DRVsa 50 35 15b          

DRVsc 45-60 20-35  ~12d          

Castiglione et 
al 

   32 55 13 62 25 13    

Hudgins et al    45 40 15 75 10 15    

Margolis et al          46 22 32 

 

a United Kingdom Department of Health, 1991 
b 0.75 g of protein per kilogram bodyweight per day for adults or 56 g/day reference nutrient intake 
(RNI) 
c EFSA, 2017 
d 0.83 g of protein per kilogram bodyweight per day for adults as the population reference intake (PRI)  
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Appendix III 

Quality assurance  
 

Periodical injections of QC samples, obtained as pool of all samples in the study, were used 

for quality control and assurance for each metabolic feature detected, following the procedure 

designed by Dunn and co-workers (Dunn et al., 2011). First, they were used for intra batch 

processing, namely normalisation and removal of all features present in less than 50% of the 

QCs and having a relative standard deviation (RSD) or coefficient of variation (CV) higher than 

20%. This step corrects for signal variation across the run and removes peaks with low 

repeatability. Second, a quality assurance (QA) step was performed on the merged dataset 

containing both batches, to remove features poorly repeatable in terms of intensity, m/z and 

retention time.  This step consisted of: 

1. Match metabolic features detected in the 2 analytical blocks, constructing a reference 

database. The reference database is built by matching features from the two blocks if 

their m/z difference is less than 5 ppm and retention time difference is less than 10 

seconds.  

2. Remove features with a QC Median peak area (MPA) tolerance (ζ) higher than 4, using 

the formula: 

𝜁𝑖 = |
(𝑀𝑃𝐴𝑏,𝑖−𝑀𝑃𝐴𝑟𝑒𝑓,𝑖)

𝑀𝑃𝐴𝑟𝑒𝑓,𝑖
|  

Where b is the batch, i is the feature, and ref is the reference database. 

 
 
The results of the quality assurance feature matching process are summarised in Table 1. 

scTAGs used in this thesis are used as an example to show how repeatability is preserved for 

all molecular classes (Table 2). 
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Table 1: The total number of features detected in each batch in the two ionization modes, the 

number of peaks passing the first intra-batch QC filtering and their percentage compared to 

the total number of features detected, the number of features detected and their percentage 

compared to the features passing intra-batch QC filtering, the number of features passing the 

MPA test and their percentage compared to those matched to the reference database.  

 
Batch No of peaks 

passing QA 
Peaks 

passing 
QA % 

Unique 
matches 

Unique 
matches 

% 

Pass 
MPA 
test 

Pass 
MPA 

test % 

1 positive 
mode 

7827 77% 1584 93% 1360 86% 

2 positive 
mode 

5337 64% 1482 87% 1360 92% 

1 negative 
mode 

5197 79% 645 99% 587 91% 

2 negative 
mode 

3375 72% 631 97% 587 93% 

 
 

Table 2: scTAG masses and their corresponding inter-batch and intra-batch CVs. These TAGs 

are associated with the main fatty acid products from DNL including palmitate, palmitoleic acid, 

stearic acid and oleic acid. These TAGs have been shown to increase when DNL is raised in 

humans (9, 19 & 20). Samples across this study were run in two batches of roughly equal size. 

The technical replicates were pool samples from batch 1, the inter-batch CV was calculated 

as STDEV (all pools for batch X)/Mean of all pools across batch X *100%. The inter-batch CV 

is calculated across the two batches. 

 

Triglyceride 
Product ion 

([M+NH4]1+) 

Intra-batch RSD/CV 

(%) 

Batch 1; Batch2 

Inter-batch RSD/CV 

(%) 

TAG 46:2 

TAG 46:1 

TAG 46:0 

TAG 48:2 

TAG 48:1 

TAG 48:0 

TAG 49:2 

TAG 49:1 

TAG 49:0 

792.7076 

794.7232 

796.7389 

820.7389 

822.7545 

824.7702 

834.7545 

836.7702 

838.7858 

9.65; 6.31 

13.1; 11.4 

12.7; 14.5 

12.0; 7.80 

9.68; 9.55 

34.3; 12.0 

9.38; 9.25 

12.7; 12.6 

5.48; 12.3 

23.6 

19.2 

15.5 

26.5 

15.9 

33.8 

22.1 

31.3 

34.0 
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Appendix IV 

 

 
 

Figure 1. Plasma FFA content is not different between C and HP. (A) FFA 16:0 levels measured by 

LC-MS over 6 hours. (B) FFA 18:0 levels measured by LC-MS over 6 hours. (C) FFA 16:1 levels 

measured by LC-MS over 6 hours. (D) FFA 18:1 levels measured by LC-MS over 6 hours. Data are 

presented as mean ± SEM and analysed by two-way repeated measures ANOVA with post-hoc Sidak’s 

multiple comparisons test; * = p≤0.05, n = 9/group. 
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Appendix V 

 
Flow diagram of the thought processes and hypotheses of the thesis.  

 

 

Chapter 1: Introduction  
- The latest nutrition transition (from 
traditional diets to increased consumption 
of sugar beverages, fats and protein from 
red meat) and its link with obesity, T2DM 
and the metabolic syndrome.  
- Plausible link between lipids and 
lipoprotein metabolism and gastric 
emptying  

Initial hypothesis: 
Liquid carbohydrate may delay gastric 
emptying and induce lipogenesis. 
Comparison of control meals to HC, HF 
and HP 

Chapter 3: Result 1 
- Liquid carbohydrate delayed gastric 
emptying  
- Liquid carbohydrate did not correlate 
with DNL  
- High protein meal increased the content 
of triacylglycerides related with DNL  
- High protein meal was high in glutamate  

Hypothesis:  
Glutamate may induce DNL   

Chapter 4: Result 2 
- Carbon from glutamate was incorporated 
into palmitate containing triacylglycerides 
- Glutamate induced DNL at a metabolic 
and gene level 
- Glutamate induce DNL via the insulin 
signalling cascade  

Hypothesis:  
Other amino acids may induce DNL 

Chapter 5: Result 3 
- Glutamine, Leucine but not Lysine 

induced a change in the energy balance 

within liver cells and stimulated DNL  
- The same amino acids decreased 

glucose uptake    

Chapter 6: Conclusion  
- Advocating the consumption of 

protein in the treatment of diabetes 

and obesity requires a more profound 

understanding of the roles of amino 

acids in the context of hepatic DNL 

Randomised 5-way 
cross-over human 
study  

In vitro – hepatocyte 

supplementation with 
glutamate 

In vitro – hepatocyte 
supplementation with 
Glutamine, Leucine and 
Lysine 
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