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Abstract

While neural dependency parsers provide state-
of-the-art accuracy for several languages, they
still rely on large amounts of costly labeled
training data. We demonstrate that in the small
data regime, where uncertainty around param-
eter estimation and model prediction matters
the most, Bayesian neural modeling is very ef-
fective. In order to overcome the computa-
tional and statistical costs of the approximate
inference step in this framework, we utilize
an efficient sampling procedure via stochastic
gradient Langevin dynamics to generate sam-
ples from the approximated posterior. More-
over, we show that our Bayesian neural parser
can be further improved when integrated into
a multi-task parsing and POS tagging frame-
work, designed to minimize task interference
via an adversarial procedure. When trained
and tested on 6 languages with less than 5k
training instances, our parser consistently out-
performs the strong BiLSTM baseline (Kiper-
wasser and Goldberg, 2016). Compared with
the BiAFFINE parser (Dozat et al., 2017) our
model achieves an improvement of up to 3%
for Vietnamese and Irish, while our multi-task
model achieves an improvement of up to 9%
across five languages: Farsi, Russian, Turkish,
Vietnamese, and Irish.

1 Introduction

Dependency parsing is essential for many Natural
Language Processing (NLP) tasks (Levy and Gold-
berg, 2014; Angeli et al., 2015; Toutanova et al.,
2016; Hadiwinoto and Ng, 2017; Marcheggiani
et al., 2017). While earlier work on dependency
parsing required careful feature engineering (Mc-
Donald et al., 2005b; Koo et al., 2008), this has
become less of a concern in recent years with the
emergence of deep neural networks (Kiperwasser
and Goldberg, 2016; Dozat et al., 2017). Nonethe-
less, an accurate parser still requires a large amount

of labeled data for training, which is costly to ob-
tain, while the lack of data often causes overfitting
and poor generalization.
Several approaches for parsing in the small

data regime have been proposed. These include
augmenting input data with pretrained embed-
ding (Dozat et al., 2017; Che et al., 2018), lever-
aging unannotated data via semi-supervised learn-
ing (Corro and Titov, 2018), predicting based on a
pool of high probability trees (Niculae et al., 2018;
Keith et al., 2018), and transferring annotation or
model across languages (Agic et al., 2016; Lacroix
et al., 2016; Rasooli and Collins, 2017). Despite the
empirical success of these approaches, an inherent
problem still holds: The maximum likelihood pa-
rameter estimation (MLE) in deep neural networks
(DNNs) introduces statistical challenges at both
estimation (training), due to the risk of overfitting,
and at test time as the model ignores the uncertainty
around the estimated parameters. When training
data is small these challenges are more pronounced.
The Bayesian paradigm provides a statistical

framework which addresses both challenges by (i)
including prior knowledge to guide the learning
in the absence of sufficient data, and (ii) predict-
ing under the full posterior distribution of model
parameters which offers the desired degree of un-
certainty by exploring the posterior space during
inference. However, this solution comes with a high
computational cost, specifically in DNNs, and is
often replaced by regularization techniques such as
dropout (Srivastava et al., 2014) as well as ensem-
ble learning and prediction averaging (Liu et al.,
2018; Che et al., 2018).

Bayesian neural networks (BNNs) have attracted
some attention (Welling and Teh, 2011; Hernández-
Lobato and Adams, 2015; Li et al., 2016; Gong
et al., 2018). Yet, its current application to NLP is
limited to language modeling (Gan et al., 2017),
and BNNs have not been developed for structured
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prediction tasks such as dependency parsing.
In this paper we aim to close this gap and pro-

pose the first BNN for dependency parsing (BNNP).
To address the costs of inference step, we apply an
efficient sampling procedure via stochastic gradi-
ent Langevin dynamics (SGLD) (Welling and Teh,
2011). At training, samples from the posterior dis-
tribution of the parser parameters are generated
via controlled noise injection to the maximum a
posteriori (MAP) gradient update. The generated
samples are then used during the inference step to
create multiple viable parses based on which the
final dependency parse is generated.
Another means of directing a model towards

more accurate predictions in the small data regime
is via multi-task learning (Caruana, 1997). Such
a framework allows models for multiple tasks to
reinforce each other towards more accurate joint
solutions, which is particularly useful when train-
ing data is scarce. We hence present a multi-task
framework where our BNNP is integrated with a
POS tagger through an adversarial procedure de-
signed to guide the two models towards improved
joint solutions.
Our experiments with monolingual and delexi-

calized cross-lingual parsing using the Universal
Dependency treebank (Zeman et al., 2017) demon-
strate the effectiveness of our approach. Particu-
larly, our BNNP consistently outperforms the sin-
gle task BiLSTM baseline (Kiperwasser and Gold-
berg, 2016), while outperforming the BiAFFINE
parser (Dozat et al., 2017) by up to 3% on Viet-
namese and Irish. Additionally, our multi-task
model achieves an improvement of up to 9% over
the BiAFFINE parser for five low-resource languages:
Farsi, Russian, Turkish, Vietnamese, and Irish.

2 BiLSTM Dependency Parsing

Our parser extends the graph-based BiLSTM parser
of Kiperwasser and Goldberg (2016). We briefly
review their work and its notable extensions, and
then discuss our extension of their architecture and
the limitations of MLE training.

Model Given an input word sequence w1∶n,1 and
its corresponding POS tag sequence p1∶n, each input
word is encoded as a d-dimensional representation,

wi = e(wi)◦e(pi)◦ê(wi),

1We overload the notation wi, and it refers to both a word
and its d-dimensional representation.

where e(.) denotes trainable embedding, ê denotes
pretrained external embedding, and ◦ denotes con-
catenation. The context dependent representation
of each word is generated through a BiLSTM,

vi = ⃗LSTM� (w1∶i)◦ ⃗LSTM�(wn∶i).

Here, � and � denote the LSTMs’ parameters. The
resulting sequence of l-dimensional vectors, v1∶n,
is then used for computing the ARC-SCORE matrix
(n × n) where cell ARC-SCORE(i, j) is computed as,

V × tanh
(

W (arc−ℎead)vi
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
head specialized wi

+ W (arc−mod)vj
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

modifier specialized wj

+b
)

,

indicating the likelihood of having the arc from wi
to wj . Here, V is (1 × ℎ), b is (ℎ × 1), andW (.) is
a (ℎ × l) matrix used for creating specialized ver-
sions of words in w1∶n. The ℎ-dimensional special-
ized representation of wi as a head or a modifier is
generated via multiplication withW (arc−ℎead) and
W (arc−mod), respectively. Following a first-order
dependence assumption between the arcs, the pars-
ing is done via a dynamic programming solution
that finds the dependency parse T ∗ such that,

T ∗=argmax
T

(

SCORE(T )=
∑

(i,j)∈T
ARC-SCORE(i, j)

)

.

Next, given T ∗, for each arc (i, j) ∈ T ∗ the
LABEL-SCORE(i, j, r) is computed as:
(

V ′×tanh(W ′(arc−ℎead)vi
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
head specialized wi

+W ′(arc−mod)vj
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
modifier specialized wj

+b′)
)

[r],

where r is a dependency relation type, r ∈ {rz}rz=1,
V ′ is (r × ℎ), b′ is (r × 1), andW ′(.) is (ℎ× l). The
label for each dependency arc (i, j) is then chosen
by a max operation.

Dozat et al. (2017) proposed an extension of the
BiLSTM parser by replacing the non-linear transfor-
mation of ARC-SCORE and LABEL-SCORE with a
linear transformation (BiAFFINE). This was further
extended by Che et al. (2018) who utilized contextu-
alized word embeddings (Peters et al., 2018). Both
extensions showed success in dependency parsing
shared tasks (Zeman et al., 2017, 2018).

Our Neural Parser Architecture Our network
architecture extends the BiLSTM model with an ad-
ditional BiLSTM layer and input signals. While our



architecture is not the core contribution of this pa-
per, we aim to implement our BNNP on a strong
architecture. In §5.3 we demonstrate the contribu-
tion of these additions to our final results.
In our BNNP, each word is represented as,

wi = e(wi)◦e(pi)◦ê(wi)◦e(ci),

where, similar to the BiAFFINE parser, e(ci) is a
character-level representation of the word wi, gen-
erated by a BiLSTM:

e(ci) = ⃗LSTM�(c1∶|wi|)◦ ⃗LSTM�(c|wi|∶1).

We consider a maximum of two layers of BiLSTMs,
denoted as 1st and 2nd .2 The output of the 2nd
BiLSTM is denoted as,

ui = ⃗LSTM�(v1∶i)◦ ⃗LSTM�(vn∶i),

where vi is the encoding generated by the 1st layer
of the BiLSTMs.

Learning For structured prediction, the objec-
tive function is to maximize the margin between
the gold structure T and the other structures. To
achieve this, the cost augmented hinge loss is used,
where the fixed margin m is replaced by a cost func-
tion, COST(T , T ), sensitive to the local mistakes
(here, each local mistake has a constant cost of 1),
and computed as:

arc=max
(

0, COST(T , T )+SCORE(T )−SCORE(T )
)

For label prediction, hinge loss with m = 1 is used
(denoted by rel). We refer to the parser loss as:

parse = arc + rel.

Beyond MLE Training The point-estimate of
DNN parameters is computationally efficient, but
ignores the uncertainty around model parameters
during learning. This results in an overconfidence
over model predictions during the inference phase.
A common generic practice to incorporate a de-
gree of uncertainty is to consider an ensemble of
models. Indeed, for dependency parsing ensemble
learning has shown to improve accuracy (Surdeanu
andManning, 2010; Kuncoro et al., 2016; Che et al.,
2018). However, ensembles are computationally
demanding due to the large number of participating
models. The de-facto approach to overcome this

2Stacking BiLSTMs is believed to be helpful. In our case,
the addition of a third layer led to overfitting.

has been to randomly perturb the structure of the
network for each training instance by switching off
connections between the nodes, a practice known
as dropConnect (Wan et al., 2013), or eliminating
the nodes entirely, which is known as dropout (Sri-
vastava et al., 2014).

Hinton et al. (2012) demonstrated that dropping
out a node with probability � from a neural model
 at training, and scaling the same node’s out-
put at test time (in the fully connected ), per-
forms very well in practice. While this scaling trick
avoids the need for running multiple models at test
time, it lacks theoretical guarantees when applied
to DNNs. Gal and Ghahramani (2016) showed that
dropout can be casted as integrating out the pos-
terior of model parameters, and in this regard is
a form of Bayesian approximation. Still, dropout
is not as effective when applied to the small data
regime (Goodfellow et al., 2016). We hence pro-
pose a fully Bayesian approach.

3 Bayesian Neural Parsing

The Bayesian paradigm is appealing in its ability to
capture uncertainty around parameters, avoid over-
fitting, and incorporate prior knowledge to com-
pensate for the lack of sufficient training data in
resource lean settings. Dependency parsing may be
a natural candidate for Bayesian modeling since a
typical sentence can have multiple viable parses cor-
responding to different grammatical ambiguities,
and considering these possibilities have shown to
improve predictive accuracy (Niculae et al., 2018;
Keith et al., 2018). In the same spirit, Bayesian in-
ference can be interpreted as a statistically grounded
means to generate this pool of high quality trees.
In detail, Bayesian inference for parsing com-

putes the predictive distribution P (T |s,)3 of the
dependency parse tree T for an input sentence s
given the training data  by posterior averaging:

P (T |s,) = ∫ P (T |s, �)P (�|)d�,

where P (�|) ∝ p(|�)p(�) denotes the poste-
rior distribution of the BNNP parameters � given
observations . Here the prior distribution p(�)
is a standard Gaussian  (0, I), and, by assum-
ing i.i.d training datapoints, the likelihood term

3When P (T |s, �) is replaced by the unnormalized score
from the first-order arc-factored model, P (T |s,) can be in-
terpreted as the expected score assigned to a dependency tree
under the full posterior distribution of model parameters.



is P (|�) =
∏

xi∈ P (xi|�) where xi = (si, Ti) is
a training instance.

The above integral is intractable, however an em-
pirical estimate can be computed using  samples
from the posterior,

P (T |s,) ≈ 1


∑

{�k∼P (�|D)}k=1

P (T |s, �k). (1)

Therefore, efficient generation of posterior sam-
ples is the key for applying the Bayesian treatment.
Since the posterior is intractable in DNNs, addi-
tional machineries such as Markov Chain Monte
Carlo (MCMC) (Robert and Casella, 2010) are re-
quired for sampling. In this paper we explore an
efficient class of Stochastic Gradient Markov Chain
Monte Carlo (SG-MCMC) methods, designed for
NNs by adjusting stochastic gradient descent with
properly scaled Gaussian noise to generate posterior
samples.

3.1 Stochastic Gradient Langevin Dynamics
We first consider the Stochastic Gradient Langevin
Dynamics (SGLD) (Welling and Teh, 2011) sam-
pler to generate posterior samples. Intuitively, this
mechanism guides SGD to explore the posterior dis-
tribution rather than finding the maximum a poste-
riori (MAP) solution. More concretely, at each time
step t we first compute a stochastic estimate of the
gradient for the negative log-posterior distribution
on a mini-batch bt:

∇�t≈ −
(

∇�t logP (�t)+
||

|bt|
∑

xi∈bt

∇�t logP (xi|�t)
)

,

and then update the BNNP parameters by SGDwith
noise injection,

�t+1←�t −
�t
2
∇�t+�t, �t∼ (0, �tI) (2)

Theoretically, the distribution of �t converges to the
true posterior p(�|) when bt = , t → ∞ and
�t → 0 (see Teh et al. (2016) for SGLD convergence
rate proofs and analysis).

In practice, the learning rate �t = a(b+t)− , start-
ing high and decaying, plays a crucial role in eqn. 2
dynamics. Intuitively, while the variance of the in-
jected noise is �t, the variance of the gradient is of
(�2t ). In the earlier stages of the optimization, the
�t
2
∇� term is dominant as gradients are of greater

impact and the learning rate is high, simulating
stochastic gradient descent. As the optimization

proceeds, the impact of the gradient shrinks and
the injected Gaussian noise becomes the dominant
term, transitioning from SGD to Langevin Monte
Carlo (Neal, 2011).
Since �t → 0 might cause slow mixing in prac-

tice, we also set a minimum threshold for the learn-
ing rate to allow mixing at later stages. SGLD and
SGD have the same time complexity as sampling oc-
curs along with parameter updates with a negligible
overhead of drawing �ts.

3.2 Preconditioned SGLD

As SGLD relies on a single learning rate along all
dimensions of �, it has the same potential ineffi-
ciencies of SGD for optimizing functions with dif-
ferent curvatures along each dimension. Inspired
by more advanced optimization techniques that ad-
just to the geometry of parameter space, Li et al.
(2016) proposed preconditioning of SGLD (similar
to RMSprop (Tieleman and Hinton, 2012)) which
scales the gradients with respect to the weighted
average of the gradients along each dimension, such
that a unified learning rate is sufficient. The pro-
posed preconditioner diagonal matrix is computed
as follows,

G(�t) = diag(1⊘ (�1 +
√

V (�t))),
V (�t) = �V (�t−1) + (1 − �)∇�t⊙ ∇�t,

where ⊙,⊘ are element-wise matrix product and
division, and �, � are hyperparameters controlling
the extremes of the curvature, and weighting aver-
age of previous and current gradients, respectively.
The updated preconditioned eqn. 2 is,

�t+1← �t −
�t
2
G(�t)∇�t+�t, �t∼ (0, �tG(�t)).

Here, replacing the preconditioner matrix G(�t)
with an identity matrix will recover the SGLD update
formulation. In case of a diagonal preconditioner,
it has the same time complexity of SGLD, although
the constant factors in the complexity figure can
be slightly higher due to additional computations
involved in G(�t) and V (�t).
While SGLD is designed to explore different

modes of the posterior distribution, we found (§5.4)
that in practice we still require dropout to facilitate
modes exploration via random perturbation of the
model structure.

3.3 Prediction
The generated posterior samples can be used to com-
pute the approximate expectation of eqn. 1 by scor-
ing all plausible parses via explicit model averaging.



As this solution is not computationally feasible, we
use the sampled parameters and follow a procedure
that minimizes the Bayes risk (MBR) (Goodman,
1996). Given each sampled parameter, first we gen-
erate the maximum scoring parse using the arc-
factored decomposition (McDonald et al., 2005a)
and dynamic programming (Eisner, 1996). This
can be done concurrently for all samples, result-
ing in a running time identical to the non-Bayesian
approach. For each labelled edge, we replace its
score in the ARC-SCORE matrix with its occurrence
count in the collection of sampled trees and infer
the final tree using counts as scores. The predicted
structure is then passed to the label predictor, which
assigns labels to the edges (§2). This decoding ap-
proach, while selecting the global structure with
the highest probability under the approximate pos-
terior, could potentially allow for additional correc-
tions of the highest scoring tree in the pool of sam-
ples (Shareghi et al., 2015; Kuncoro et al., 2016).

4 Multi-Task Learning

Multi-task learning (Caruana, 1997) lends itself as
a natural choice for low-resource settings as it aims
at leveraging the commonality between tasks to im-
prove their performance in the absence of sufficient
amount of training data. This framework hence nat-
urally complements Bayesian modeling in dealing
with the challenges of the small data regime.

We couple our BNNP with POS tagging due to
the strong connection between the two tasks (Rush
et al., 2010) and the availability of joint training data
in several languages (Zeman et al., 2017). While
multi-task frameworks have shown success in some
areas (Reichart et al., 2008; Finkel and Manning,
2009; Liu et al., 2016;Malca and Reichart, 2018), in
our case we found that our two tasks interfered with
each other and degraded the parser performance
(see similar findings for other tasks at Søgaard and
Goldberg (2016); Plank and Alonso (2017)).
To minimize task interference, an approach

shown effective (Ganin and Lempitsky, 2015; Kim
et al., 2017; Chen et al., 2017; ZareMoodi and Haf-
fari, 2018) is to implicitly guide the update signals
during training via an adversarial procedure that
avoids shared parameters contamination. We adapt
this idea to our multi-task learning.

Architecture Given an input word, wi, the score
for a POS tag p is computed as tanh(W ′′vi+b′′)[p],
where p ∈ {pz}

p
z=1,W

′′ is (p× l), and b′′ is (p×1).
To train the POS tagger, the cross-entropy loss is
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Figure 1: The MULTI TASK architecture flow for a sin-
gle word in a sequence.

used (denoted by pos). Taking wis as input, the
shared BiLSTM strictly encodes a task-agnostic l-
dimensional representation of the input (explained
in the next subsection),

si = ⃗LSTM�(w1∶i)◦ ⃗LSTM� (wn∶i).

The input to each task is then defined as the concate-
nation of task-agnostic and task-specific represen-
tations. We considered a basic architecture where
both tasks have their separate parameters (identical
number of layers, dimensions, etc.) and they only
share the shared BiLSTM (denoted as MULTI TASK
in Table 1). 4

Adversarial Training The shared BiLSTM out-
put, si, is meant to encode a task-agnostic repre-
sentation of the input word wi. In order to en-
force this criterion, we apply an adversarial training
procedure. The shared representation, si, is for-
warded to a task discriminator (denoted as Disc. in
Figure 1) through a gradient reversal layer. The
task discriminator predicts the task identity for
each word in the input via a linear transformation
(W ′′′si + b′′′)[�] followed by a softmax, where
� ∈ {parser,tagger} and W ′′′ and b′′′ are
(2 × l) and (2 × 1), respectively. To train the dis-
criminator, a sum of the cross-entropy losses for
w1∶n is used (denoted by disc). As the parameters
of the discriminators are being updated, the gradi-
ent signals to minimize the discriminator’s error are
backpropagated with an opposite sign to the shared
BiLSTM layer, which adversarially encourages the
shared BiLSTM to fool the discriminator.

Our training schedule alternates between the two
modes, in one mode optimizing the shared and task-
specific parameters based on parse and pos (in

4We also tried layer-wise placements of tasks (Søgaard and
Goldberg, 2016; Hashimoto et al., 2017) and the results were
slightly worse. Details are omitted for space reason.



random order), while in the other mode optimizing
disc which includes the shared and discriminator-
specific parameters.

5 Experiments and Results

We experiment withmono-lingual and cross-lingual
dependency parsing using the treebanks of the
CoNLL 2017 shared task on parsing to Universal
Dependencies (UD) (Zeman et al., 2017).5

5.1 Experimental Setup
We use the UDPipe baseline outputs for segmenta-
tion and POS tagging of the raw test data (released
along with the raw test data). While segmenta-
tion and POS errors substantially impact the qual-
ity of the final predicted parse, their exploration
is beyond our scope. Our evaluation metric is La-
beled Attachment Score (LAS), computed by the
shared task evaluation script. Statistical signifi-
cance, when mentioned, is computed over 20 runs,
via the Kolmogorov-Smirnov test (Reimers and
Gurevych, 2017; Dror et al., 2018) with p = 0.01.

Mono-Lingual Experiments We experiment
with Persian (fa), Korean (ko), Russian (ru), Turk-
ish (tr), Vietnamese (vi) and Irish (ga), all with
less than 5k training sentences (Table 1). For
comparison we report the scores published by
the top system of the CoNLL 2017 shared task,
BiAFFINE (Dozat et al., 2017), noting the follow-
ing differences between their input and output and
ours. The BiAFFINE parser: (i) uses the UDPipe
outputs for segmentation but corrects POS errors
before parsing, (ii) includes both language specific
and universal POS tags in the input layer while
we only include the universal POS tags, and (iii)
applies post-process correction for non-projective
languages.

Cross-Lingual Experiments We use the En-
glish (en), French (fr), Russian (ru), and Persian (fa)
datasets of the UD treebanks as our training and
test data, with the addition of 3 languages for which
we did not have any training data: Kurmanji (kmr),
Buriat (bxr), and Northern Sami (sme). We also
report the results for each language, where the com-
bination of training datasets for the rest of the lan-
guages (marked as +) was used for training. The
cross-lingual experiments are done on delexicalized

5For train and dev sets (1-1983), test set (1-2184),
and pretrained embeddings (1-1989) see: https:
//lindat.mff.cuni.cz/repository/xmlui/
handle/11234/{1-1983,1-2184,1-1989}

parses after replacing the words with their Univer-
sal POS tags.

Models and Baselines - Single-Task We con-
sider the following models: BASE is the BiLSTM
model of Kiperwasser and Goldberg (2016);
BASE++ extends BASE by having 2 layers of
BiLSTMs and using 1 layer of character level
BiLSTM (§2); +SHARED includes an additional
BiLSTM (dashed box in Figure 1). We included this
to provide a fair comparison (in terms of the number
of parameters) with the multi-task experiments but
we apply a higher dropout rate to resolve overfitting;
ENSEMBLE denotes a collection of 9 +SHARED
models each randomly initialized (Reimers and
Gurevych, 2017) and trained for MLE with MBR
(§3.3) applied for prediction; MAP denotes the
+SHARED model optimized forMAP instead of MLE;
+SGLD denotes Bayesian learning and prediction
(§3.1), and +PRECOND denotes preconditioned
SGLD (§3.2). +SGLD and +PRECOND are applied
to the +SHARED model.

Models and Baselines - Multi-Task We con-
sider the same models as in the single-task setup,
with the following changes. BASEMT is the vari-
ant of MULTI TASK architecture where the shared
BiLSTM is removed and all components except
for decoders are shared between the two tasks.
+SHARED and +ADV denote the results without
and with the adversarial training (§4), respectively.

5.2 Hyperparameters
Training is done for 330 epochs with early stopping,
using successive6 mini-batches of 5000 words,7
with drop-out rate 0.33 unless stated otherwise.
SGLD is only applied for learning the parameters of
the parser, with learning rate decaying from 0.01
to 0.0001 ( = 0.5), and the preconditioned matrix
hyperparameters are � = 10−5, � = 0.99. The rest
of the parameters are updated using Adam (Kingma
and Ba, 2014) with default DyNet parameters (Neu-
big et al., 2017). The size and selection of the sam-
ples used in Bayesian inference are tuned on Irish
(see §6.1 of the main paper). In all experiments,
training stops based on loss convergence of a single
model on the dev set. We also tried GRUs and our
results were substantially worse than LSTMs.

We consider the following sizes within the mod-
els: BASE is 1 layer of BiLSTM with 125 hidden

6We found that random batches perform slightly worse.
7When the 5000 words limit lands in the middle of a sen-

tence, the entire sentence is included.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/{1-1983,1-2184,1-1989}
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/{1-1983,1-2184,1-1989}
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/{1-1983,1-2184,1-1989}


units, 100-D word embeddings, 25-D POS embed-
dings, and dropout rate of 0.33; BASE++ extends
BASE by having 2 layers of BiLSTMs with 200-D
hidden units, 100-D external word embeddings, and
using 1 layer of character level BiLSTM with 200-
D hidden units to generate 100-D character em-
beddings (§2); +SHARED includes an additional
BiLSTM with 200-D hidden units in BASE++ to
provide a fair comparison (in terms of the number
of parameters) with the multi-task experiments but
we apply a higher dropout rate of 0.66 to resolve
overfitting.

5.3 Results

Mono-Lingual Parsing Table 1 summarizes the
training data statistics and the LAS results of the var-
ious models, with bold-font marking cases where a
model outperforms the BiAFFINE parser.

1. SINGLE TASK Comparison between BASE++
and +SHARED reveals that the additional BiLSTM
in the +SHARED does not improve the results. As
expected, model averaging in ENSEMBLE improved
the results over the +SHARED model. Additionally,
the MAP results show slight improvements com-
pared with +SHARED. Both of these findings sug-
gest that the quality of predictions is likely to im-
prove if some notion of uncertainty (via averaging,
or prior insertion) is included.
For Bayesian solutions, both +SGLD and +PRE-

COND consistently (and in a statistically significant
manner) outperform the ENSEMBLE models and the
strong BiLSTM baselines on all languages, while
PRECOND outperforms BiAFFINE by up to 3% on
two languages (vi, and ga). The consistency of
improvements as we incorporate richer means of
capturing the uncertainty suggests that these gains
are independent of our specific choice of neural ar-
chitecture and that they might also hold for future
parsing architectures.

2. MULTI TASK As explained earlier (§4), com-
paring the parser performances under +SHARED
models in single and multi task settings indicates
that parser quality was degraded with the inclu-
sion of a POS tagging task, possibly due to interfer-
ence between the tasks. This issue was alleviated
with the inclusion of task discriminator and the ad-
versarial training. The +ADV model consistently
improves the results (in a statistically significant
manner), while outperforming the SINGLE TASK
(+SHARED) by 2.2% for Persian (fa), and 5.2% for
Irish (ga). This is an indicator that low-resource lan-

fa ko ru tr vi ga
TRAIN(sen.) 4798 4400 3850 3685 1400 566

Labeled Attachment Score (LAS)
BiAFFINE 86.31 82.49 83.65 62.79 42.13 70.06
BASE 80.97 64.76 75.45 52.64 39.36 62.50

SINGLE TASK
BASE++ 83.15 76.70 79.44 58.92 41.03 66.58
+SHARED 83.11 76.32 79.62 58.72 41.10 66.42
ENSEMBLE 84.12 77.28 80.17 59.36 41.89 68.12
MAP 83.59 76.61 79.78 59.13 41.33 66.95
+SGLD 84.98 78.91 80.86 60.53 43.12 69.51
+PRECOND 85.76 79.83 81.9 61.71 44.52 70.91

MULTI TASK
BASEMT 81.54 75.78 78.61 57.12 40.08 60.51
+SHARED 81.03 75.08 78.64 57.09 40.04 65.24
+ADV 84.93 78.12 81.23 60.66 43.11 69.89
ENSEMBLE 85.01 78.31 81.56 60.92 43.3 70.00
MAP 85.02 78.26 81.59 60.72 43.25 70.36
+SGLD 85.89 79.50 83.06 62.13 44.57 72.52
+PRECOND 86.75 80.97 84.51 63.24 45.96 74.12

Table 1: Mono-Lingual results. Models that outper-
form the BiAFFINE parser are highlighted in bold.

guages could potentially benefit more from multi-
task learning. Other variants of +ADV are also re-
ported in Table 1 and similar patterns to the single
task setting are observed.

Next, we test the effectiveness of Bayesian learn-
ing and inference using  = 9 thinned samples
(§5.4). For all languages in the multi-task setting
the gain from including +SGLD in +ADV is statisti-
cally significant. However, the gain decays as the
amount of training data increases: from 3.8% on
Irish (ga) to 1.1% on Persian (fa). This verifies our
expectation that Bayesian learning helps parameter
estimation and prediction in the small data regime.
Compared to +SGLD, +PRECOND provides further
improvements (all are statistically significant) of
2.2% on Irish and 1% on Persian, showing a similar
generic negative correlation with data size.
To summarize our mono-lingual results, the

Bayesian framework shows its merit in improv-
ing predictive quality, and multi-task learning in-
troduces new and informative signal via a related
task which allows for better parameter estimation.
The integration of a Bayesian parser into a multi-
task learning framework outperforms the BiAFFINE
parser on up to 5 languages, while we observe
decreasing improvements as the data size grows.
Also, since our Bayesian approach builds on the
BASE model, it is subject to the shortcomings of
this model: For instance, on Korean (ko) the differ-
ence between BASE and BiAFFINE is too large to be
closed without further adjustment of model design,



sen. Labeled Attachment Score (LAS)
en fr ru fa kmr bxr sme

en 13k 81.04
+0.94

64.34
+1.34

44.61
+0.99

24.57
+1.05

27.62
+1.21

24.97
+1.39

33.42
+1.16

fr 15k 57.71
+0.89

79.14
+1.21

47.72
+0.82

29.23
+1.02

28.06
+1.39

18.04
+1.02

29.72
+1.01

ru 3k 52.25
+3.26

62.30
+2.58

77.55
+3.41

46.47
+2.61

27.80
+3.14

39.29
+2.75

32.40
+3.36

fa 5k 37.53
+1.30

50.94
+1.97

43.41
+1.82

78.28
+1.01

45.29
+1.66

21.65
+1.36

23.94
+1.41

+ 36k 82.79
+0.78

80.92
+1.16

77.19
+0.87

78.25
+0.78

43.26
+0.96

20.57
+0.94

35.00
+0.82

Table 2: Cross-Lingual Parsing Evaluation. LAS of an
ensemble of  = 9 SINGLE TASK (BASE++) models,
and the performance gain by the Bayesian MULTI TASK
(+PRECOND), placed as subscript.

or its inputs and outputs.

Cross-Lingual Delexicalized Parsing We
tested our most successful mono-lingual model,
MULTI TASK(+PRECOND), in the cross-lingual
setup against an ensemble of  = 9 randomly
initialized SINGLE TASK (BASE++) models.
Table 2 summarizes the training data size (rounded
up) and the LAS results of both models.

As expected, the ensemble models perform best
when the training and test data come from the same
language or language family (as in Buryat to Rus-
sian and Kurmanji to Persian). Showing a similar
pattern to mono-lingual parsing, in all cases the
performance gain of the Bayesian MULTI TASK
(+PRECOND) setting, reported as under-text in the
table, consistently outperforming the ENSEMBLE
(in a statistically significant manner) and the impact
decays with the training set size.

5.4 Ablation Analysis
We aim to answer two questions: (i) how many of
the generated samples are used during inference?
and (ii) how much the success of SGLD depends on
other sources of noise during training?

1. UTILIZING SAMPLES Once the training
stops, different strategies could be applied to utilize
the collection of posterior samples to recompute
ARC-SCORE matrix (see §3.3). An extreme option
is including all samples (denoted by All), another
option is to only use the last sample (denoted by
Last). An intermediate alternative is to choose 
samples with interval ⌊ ⌋, an approach known as
Thinning (Gan et al., 2017).
Comparing the results in Figure 2a, Thinning

consistently outperforms the other strategies. In-
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Figure 2: Ablation analysis for Irish. Similar patterns
are observed for the other languages.

terestingly, when we compared Thinning with a
variant (denoted by Δ in Figure 2a) that just uses
the last 5 samples , it appears that Thinning which
includes earlier samples is still superior. This is
likely to be an indicator that a larger (and more
diverse) set of trees can potentially improve MBR
decoding. In practice, we use Thinned samples.

2. DROPOUT, SGLD, AND MINI-BATCH We
would next like to better understand the interdepen-
dence between SGLD and two existing sources of
noise: dropout and mini-batch size. Results are
reported in Figure 2b. In all four stacked bars, the
top segment demonstrates the gain when includ-
ing +SGLD. The right-most stacked bar illustrates
the performance of MULTI TASK (+ADV) with-
out (bottom part of the bar) and with +SGLD. This
is our reference and in the following three experi-
ments, we make a single change to this model while
keeping everything else fixed.

In the left-most stacked bar, we exclude dropout.
This significantly hurts the performance, an indi-
cation that the random perturbation of model by
dropout can provide a positive complimentary ef-
fect for better exploration of the posterior modes via
SGLD. Comparing the top parts of all stacked bars
(representing the gain with +SGLD) reveals that this
gain is at its maximum when dropout is switched
off. An interpretation can be that in the absence of
dropout, SGLD becomes the main component for
countering overfitting.
In the second stacked bar from the right, we re-

move the noise caused by mini-batching and use
the entire dataset as one batch. This slightly im-
proves the results, although this improvement is
not statistically significant. Based on eqn. 2, full
training data gradient updates cause ∇� → 0 in
fewer steps. Consequently, the learning rate (which
controls the variance of the noise) is at a higher



value when the gradient is close to zero, giving a
better chance for the sampler to mix via �t.
In the second stacked bar from left, parameters

are updated for each training sentence. In this set-
ting the learning rate, �t, is consumed much faster
and can potentially reach zero on the MAP solu-
tion, discarding the effect of the injected noise and
+SGLD. Hence, the gain for including SGLD is at its
minimum. We speculate that adjusting the decaying
speed of the learning rate (which we left untouched)
could allow for this extreme case to perform better.

6 Conclusion
We proposed a Bayesian framework for neural de-
pendency parsing (BNNP). We employ efficient
SG-MCMC approximate inference mechanisms
through stochastic gradient Langevin dynamics to
generate posterior samples during optimization.
The collected samples are then used via a minimum
Bayes risk parsing algorithm to generate the final
parse tree. In mono-lingual and cross-lingual ex-
periments in the small data regime, where Bayesian
learning in expected to bemost effective, our BNNP
consistently outperformed the strong BiLSTM base-
lines. Moreover, when integrating the BNNP into a
multi-task learning framework, utilized to prevent
task interference, we outperformed the BiAFFINE
parser (best system of the CoNLL17 shared task)
on 5 low-resource languages by up to 9% LAS.
In future work, we intend to investigate other

types of priors over the network parameters (e.g.,
sparse priors (Lobacheva et al., 2017)). We would
also like to explicitly quantify the uncertainty cap-
tured in our framework under different sampling
strategies orMCMC-SGmethods (e.g., similar toMc-
Clure and Kriegeskorte (2016); Teye et al. (2018)).
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