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Abstract

We develop some design examples for approximating a target surface
at the final rigidly folded state of a developable quadrilateral creased pa-
per, which is folded with a 1-DOF rigid folding motion from the planar
state. The final rigidly folded state is reached due to the clashing of
panels. Now we can approximate some specific types of non-developable
surfaces, but we do not yet fully understand how to approximate an ar-
bitrary surface with a developable creased paper that has limited DOFs.
Our designs might have applications in areas related to the formation of
a shell structure from a planar region.

1 Introduction
We discuss here the inverse problem of rigid origami, that is, to approximate a
target surface by rigid origami — usually starting from a planar creased paper.
This problem has been preliminarily discussed in the review [1]. Generally,
we need to consider the following factors when designing a creased paper for
approximation.

1. Which surface we can approximate.

2. The DOF (degree of freedom) during the rigid folding motion.

3. The utilization of materials.

Experience shows that, it is hard to make the creased paper behave well in all
aspects. Generally, as we reduce the possible DOFs during the rigid folding
motion, less surfaces can be approximated. For example, [2] give a universal
algorithm to fold a planar creased paper to any piecewise-polygon orientable
2-manifold, which can be used to approximate any orientable 2-manifold. Al-
though to archive the “watertight” property, they add small additional features
at the vertices and along the edges, this algorithm is practical and guarantees a
minimum number of seams. This result is undoubtedly successful, but will have
many DOFs during its rigid folding motion, and a large proportion of materials
are used in the connections and “walls” hidden in the “tuck” side. On the other
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hand, [3] and [4] use a flat-foldable creased paper. These algorithms guarantee
one degree-of-freedom (1-DOF) during the rigid folding motion and high uti-
lization of materials, but only possible for a cylinderical developable surface or
a surface of revolution, otherwise the creased paper will not be rigid-foldable.
If we triangulate this creased paper, we can approximate more surfaces but
without being 1-DOF.

In this article we will focus on a branch of the inverse problem, to design a
1-DOF rigid origami approximating some desired shapes. More formally, given
a connected surface S in R3, for any positive real number ε > 0, find a creased
paper (P,C), which is the union of a connected planar paper P ⊂ R2 and a
straight-line crease pattern C embedded on P , such that

1. (P,C) is rigid-foldable to its final rigidly folded state (P ′, C ′), where the
rigid folding motion halts because some panels clash.

2. (P,C) has one degree of freedom during the rigid folding motion.

3. the Hausdorff distance d between S and P satisfies d ≤ ε.

More details of the terminologies used here are given in [5].
By using a family of developable quadrilateral creased papers that are rigid-

foldable but not necessarily flat-foldable, we are able to give solutions for ap-
proximating some surfaces at the final rigidly folded state, but they cannot be
completely arbitrary.

Furthermore, the approximation problem naturally induces an optimization
problem, that is, find the “best” creased paper that fits the extra presupposed
requirements. We will discuss it at the end of the article.

2 Choosing Design Example
To our best knowledge, the constraints on 1-DOF rigid-foldability for a creased
paper restrict the configurations it may have. Therefore it seems hard to ap-
proximate an arbitrary connected surface with 1-DOF rigid origami. Our idea
is, from several types of 1-DOF developable and rigid-foldable quadrilateral
creased papers we have known [6, 7], we choose some of them as the design ex-
amples, and study the rigid folding motions of them. For each design example,
the profile of its inner vertices can approximate certain types of surfaces. The
more design examples we can use, the more surfaces we can approximate.

In this section we will analyze two design examples mentioned in [7]. The first
one is the developable case of the "parallel repeating" type, which is generated
among rows of parallel inner creases (Figure 1); and the second one is the
developable case of the "orthodiagonal" type, which is generated among several
parallel straight line segments (Figure 6).

2.1 Parallel Repeating Type
Figure 1 shows the developable case of the parallel repeating type of rigid-
foldable quadrilateral creased papers, which is generated among rows of parallel
inner creases. In each column we can choose independent input sector angles
αi, βi, γi, and δi = 2π−αi−βi−γi, then construct the rest of the creased paper
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Figure 1: (a) is the developable case of the parallel repeating type. In each row
there are three independent sector angles αi, βi, γi, and δi = 2π − αi − βi − γi.
Column 1 is an example of general input sector angles, where a "basic unit" of
this column is labelled by a dashed red cycle; columns 2, 3 and 4 are flat-foldable
and "straight-line" input sector angles. (b) is a rigidly folded state of (a) plotted
by Freeform Origami [8]. The mountain and valley creases are colored red and
blue. The inner vertices of a column are co-planar (see Proposition 1).

with both these angles and the supplement of these angles. αi, βi, γi, δi should
not form a cross. Here the length of creases does not affect the rigid-foldability,
but will affect the profile of inner vertices. Based on that we start to analyze
which surface the parallel repeating type can approximate.

Proposition 1. The inner vertices on a column of the parallel repeating type
are co-planar.

Proof. Figure 2(a) shows a general column. We know A1A2 ‖ A3A4 at any
rigidly folded state. Thus A1, A2, A3, A4 are coplanar. Because AiAi+1 ‖
Ai+2Ai+3, this argument continues down the column, which means all the inner
vertices are co-planar, and the angle between any two adjacent inner creases is
ξ, as illustrated in Figure 2(b). Figure 2(c) demonstrates a rigidly folded state
of this column.

To study the profile of inner vertices on a column of the parallel repeating
type, we use

Definition 1. A x-y coordinate system is built on the plane mentioned in
Proposition 1. We say the inner vertices (xi, yi) of a column can approximate
a given planar curve f : I → R2 if ∀ε > 0, there exists a column whose inner
vertices (xi, yi) make the Hausdorff distance d between the set (xi, yi) and the
curve f satisfy d ≤ ε.

Proposition 2. The inner vertices on a column of the parallel repeating type
can only approximate a planar curve f : I 3 t→ (x(t), y(t)) ∈ R2 that satisfies
the following condition: there exists a rotation θ ∈ [0, 2π) and a shear trans-
formation of magnitude π/2 − ξ, ξ ∈ [0, π], s.t. after the affine transformation
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Figure 2: (a) A "basic unit" of a column of the parallel repeating type. The
mountain and valley creases are colored red and blue. Note that the folding
angles ρ1, ρ2, ρ3 on corresponding inner creases are opposite. (b) The inner
creases of a column with its independent parameters labelled. (c) A view of a
column from a view point in the plane coincident with the inner vertices, plotted
by Freeform Origami [8].

f → f described below, f is monotone decreasing.[
x(t)
y(t)

]
=

[
1 −1/ tan ξ
0 1/ sin ξ

] [
cos θ sin θ
− sin θ cos θ

] [
x(t)
y(t)

]
(1)

We name the curve approximated by the inner vertices of a column as a target
curve.

Proof. Sufficiency: An example of approximation is shown in Figure 3. For a
given curve f , after a rotation by θ and a shear transformation by π/2− ξ, as in
equation (1), f (black curve in (b)) is mapped to f (black curve in (c)), where
the inner creases are parallel to the x and y axes. Then if f is monotonous, we
can construct an approximation corresponding to the partition when we apply
the Darboux sum to describe the Darboux-integrability (red line segments in
(c)). Because f is monotonous, it is Darboux-integrable (if f(I) is unbounded,
the limit of difference between lower and upper Darboux sum is zero when the
partition is infinitesimally refined) and only has at most countable first-kind
discontinuity points, so arbitrarily refining the partition will make the Hausdorff
distance be arbitrarily small. Hence we can approximate f by re-transforming
the approximation in the x-y coordinate system to the x-y coordinate system
(red line segments in (b)). Here the requirement of monotone decreasing makes
the angle between adjacent inner creases ξ, not π − ξ.

Necessity: If a curve f can be approximated by the inner vertices of a col-
umn, we can always find corresponding θ and ξ and do the affine transforma-
tion in equation (1). Because alternate inner creases are parallel, f must be
monotonous. To make the angle between adjacent inner creases ξ, not π − ξ, f
should be monotone decreasing.

Corollary 0.1. The inner vertices of a column cannot approximate a closed
planar curve.
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(a) (b)

Figure 3: (a) shows a target curve (coloured black) and the result of an approx-
imation (coloured red). Here f(t) = [t, t2/4]T , t ∈ [−2, 2]. (b) is the image of
(a) under equation (1) with θ = 70◦ and ξ = 60◦. The image of the target curve
and the approximation are coloured black and red respectively.

Remark 1. We can require f to be continuous and I to be a closed interval
in R for the following reason. If f(I) is not connected, f(I) is the union of at
most countable disjoint closed intervals. Each such subset can be approximated
independently because the rigid folding motions of disconnected creased papers
are independent. Therefore we can require f(I) to be connected, which means
f(I) is continuous and f(I) is continuous. Then we can re-parametrize f(I) =
f(I ′), where I ′ is a closed interval in R.

Next we will analyze the rigid folding motion of a row of the parallel repeating
type.

Proposition 3. The inner vertices on a row of the parallel repeating type can
approximate a Darboux-integrable curve Γ : J → R3 at its final rigidly folded
state, named the datum curve.

Proof. An approximation can be generated following the steps mentioned below.

1. Partition Γ (black curve in Figure 4(a)) by n+ 2 points and connect adja-
cent partition points in sequence by line segments (orange line segments in
Figure 4(a)). Any given Hausdorff distance ε can be satisfied by choosing
a sufficiently large n.

2. Assign a direction of Γ, label each partition point Ai (i ∈ [0, n+ 1]) along
this direction. From the coordinates of Ai, calculate li = ‖AiAi+1‖ (i ∈
[0, n]), βi = ∠Ai−1AiAi+1 (i ∈ [1, n]) and θi = 〈4Ai−1AiAi+1,4AiAi+1Ai+2〉
(i ∈ [1, n − 1]). θi ∈ [0, 2π) is calculated by the rotation angle along the
vector

−−−−→
AiAi+1.

3. Choose the first inner vertex on the left from column 3 in Figure 1, set ρ4
as a specific angle and ρ2 = π (see Figure 4(b)), with a known β1, solve
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(a)

(b)
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A3

ρ2 ρ1
ρ3

ρ4 ρ5

ρ7 ρ6

α1α2
α3 α4

α5α6
α7 α8

x

y

Figure 4: (a) An example of the datum curve Γ (coloured black) with its
approximation by line segments (coloured orange). In this example, n = 9,
Γ(u) = [u + cosu,−2u2, sinu]T , u ∈ [−1, 0.5], ρ4 = 5π/6. Here we partition
Γ uniformly in u. (b) Part of the creased paper. The inner creases of its final
rigidly folded state (coloured orange) exactly form the approximation in (a).
We label all partition points Ak, k ∈ [0, n+ 1]; folding angles ρk, k ∈ [1, 3n+ 1];
sector angles αk, k ∈ [1, 4n]. The planar pattern is viewed along the direction
perpendicular to the plane.

the following equations:

ρ2 = 2 arccos

(
cosα2 cosβ1 − cosα1

sinα2 sinβ1

)
ρ4 = 2 arccos

(
cosα1 cosβ1 − cosα2

sinα1 sinβ1

) (2)

we can obtain α1 and α2.

4. Then we continue to obtain other sector angles (i ∈ [1, n− 1]) in this row,
as shown in Figure 4(b). Regarding α4i−3, α4i−2, α4i−1, α4i, βi, βi+1 and
θi as known variables, there are four equations for α4i+1, α4i+2, α4i+3 and
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α4i+4. Two of them are related to βi, βi+1 and θi.

arccos

(
cosα4i−3 cosβi − cosα4i−2

sinα4i−3 sinβi

)
±arccos

(
cosα4i−1 − cosα4i cosβi

sinα4i sinβi

)
=

arccos

(
cosα4i+2 cosβi+1 − cosα4i+1

sinα4i+2 sinβi+1

)
±arccos

(
cosα4i+4 − cosα4i+3 cosβi+1

sinα4i+3 sinβi+1

)
θi = ± arccos

(
cosα4i−2 − cosα4i−3 cosβi

sinα4i−3 sinβi

)
± arccos

(
cosα4i+1 − cosα4i+2 cosβi+1

sinα4i+2 sinβi+1

)
(3)

Note that the ± depends on the rigid folding motion we choose and the
magnitude of sector angles. These equations can be directly derived from
spherical trigonometry. Another equation is α4i+1+α4i+2+α4i+3+α4i+4 =
2π, but in order to simplify the steps we suppose the other vertices in this
row are from column 2 in Figure 1. Hence there are two more equations:

α4i+1 + α4i+3 = π α4i+2 + α4i+4 = π (4)

5. With li and α4i−3, α4i−2, α4i−1, α4i (i ∈ [1, n]), draw the creased paper.

Remark 2. Generically, We can require Γ to be continuous and J to be a closed
interval in R for the following reason. Similar to our analysis in Remark 1, Γ(J)
can be required as a connected and closed set. If Γ(J) has no second-kind
discontinuity points, Γ(J) is continuous. Then we can re-parametrize Γ(J) =
Γ(J ′), where J ′ is a closed interval in R. Besides, Γ can be a closed curve.

Remark 3. Here the final rigidly folded state is not special, we make it final
by designing the rigid folding motion to be halted by clashing of panels at the
first column of inner vertices from the left. If we release this condition we can
make the datum curve be approximated by an intermediate rigidly folded state.

Corollary 0.2. In step 4 of Proposition 3, If we choose other vertices in the
first row from column 3 in Figure 1 , equation (3) will be simplified:

cosα4i−3 cosβi − cosα4i−2

sinα4i−3 sinβi
=

cosα4i+2 cosβi+1 − cosα4i+1

sinα4i+2 sinβi+1

θ1 = 0 if (α4i−3 + α4i−2 − π)(α4i+1 + α4i+2 − π) > 0

= π if (α4i−3 + α4i−2 − π)(α4i+1 + α4i+2 − π) < 0

(5)

Now there is only one branch of rigid folding motion and only one equation
for α4i+1 and α4i+2. However, it requires θ1 = 0 or π, which means Γ should
be locally planar in a discrete sense. More essentially, [9] illustrate this in a
continuous sense.

From Propositions 1, 2 and 3, we are now in a position of studying which
surface the parallel repeating type can approximate.

Proposition 4. The parallel repeating type can approximate a surface S : V 3
(u, t) → ~r(u, t) ∈ R3 under a given Hausdorff distance ε. The creased paper is
generated by the following steps, and S is described below. (see Figure 5)
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(a)

(b)

To approximate the datum curve

To approximate the target curve

The approximation
of target curve

The approximation of datum curve

x

y

Figure 5: (a) is the creased paper approximating the target surface described
in Proposition 4. The equation of the datum curve is given in the caption of
Figure 4; f1(t) = [t, exp(t)], t ∈ [0, 1]. We choose θ = 73◦. The orange and
green inner creases are to approximate the datum curve Γ and the target curve
f1. The first column of inner vertices from the left approximates the datum
curve is from column 3 in Figure 1, and the others are from column 2 in Figure
1. The planar creased paper is viewed along the direction perpendicular to the
plane. (b) is the final rigidly folded state of (a), where we approximate these
two curves, plotted by Freeform Origami [8]. The rigid folding motion halts due
to a clash at the column we approximate the target curve. The mountain and
valley creases are colored red and blue.

1. Choose a datum curve Γ : u ∈ J → R3 and approximate it in a row under
a sufficiently small Hausdorff distance ε1 < ε, as described in Proposition
3.

2. Choose a target curve f1 : t ∈ I → R2 and approximate it the first
column from the left under a sufficiently small Hausdorff distance ε2 < ε,
as described in Proposition 2.

3. In other columns, the shape of the target curve fi+1 : I 3 t→ (xi+1(t), yi+1(t))

8



(i ∈ [1, n− 1]) is an affine transformation of f1 : I 3 t→ (x1(t), y1(t)).[
xi+1(t)
yi+1(t)

]
= A−1(ξi+1, θ)

i∏
j=1

[
k1 0
0 k2

]
A(ξ1, θ)

[
x1(t)
y1(t)

]
(6)

where,

k1 =
sinα4j−3

sinα4j+2
, k2 =

sinα4j

sinα4j+3

or vice versa. This depends on whether the line segments start in the x
or y direction as shown in Figure 3(b). Additionally,

A(ξ, θ) =

[
1 −1/ tan ξ
0 1/ sin ξ

] [
cos θ sin θ
− sin θ cos θ

]
cos ξi+1 = cosα4i+2 cosα4i+3 +

sinα4i+2 sinα4i+3

sinα4i−3 sinα4i
(cos ξi − cosα4i−3 cosα4i)

ξ1 = |2α2 − π|

A is the affine matrix we used in Proposition 2, and θ is the rotation angle
in the approximation of f1. We then define the angle between the planes
where fi and fi+1 locate by φi (i ∈ [1, n− 1]), which can be expressed by

η1 = arccos

(
cosα4i − cosα4i−3 cos ξi

sinα4i−3 sin ξi

)
η2 = arccos

(
cosα4i+3 − cosα4i+2 cos ξi+1

sinα4i+2 sin ξi+1

)
cosφi = − cos η1 cos η2 − sin η1 sin η2 cos(α4i−3 + α4i+2)

(7)

When the Hausdorff distance ε→ 0, the surface S can be expressed as:

~r(u, t) = Γ(u) + f̃u(t) (8)

where f̃u depends on u (equation (6)) and locates on different planes determined
by φi (equation (7)).

Corollary 0.3. If Γ is piecewise-spiral, on each piece Γj , α4i+1, α4i+2, α4i+3

and α4i+4 (i ∈ [1, n−1]) will keep the same from the second column respectively.
Then each piece Sj induced by Γj can be expressed analytically as f1 scanning
along Γ. Some examples are demonstrated in [4] when Γ is circular. Besides, if
f1 is piecewise-linear, fu remains piecewise-linear.

2.2 Orthodiagonal Type
The developable case of the orthodiagonal type of rigid-foldable quadrilateral
creased papers is generated among several parallel line segments [7], as shown
in Figure 6. For all i, j, The sector angles here should satisfy

tanαij

tanαij+1
=

tanαi+1j

tanαi+1j+1
(9)

i ≥ 1, j ≥ 0. This equation guarantees each column of inner vertices to be
co-planar during the rigid folding motion.

9



(a) (b)

α31
π-α31

α21

π-α21

α11

π-α11

α31

π-α31

α21

π-α21
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π-α11

α32

π-α32

α22

π-α22

α12

π-α12
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π-α32

α22
π-α22

α12
π-α12

α33

π-α33

α23
π-α23

α13

π-α13

α30
π-α30

α20
π-α20

α10
π-α10

Figure 6: (a) is an example of the developable case of the orthodiagonal type,
where we label out the relations among the sector angles. Additionally, the
sector angles should satisfy equation (9). (b) is a rigidly folded state of (a),
plotted by Freeform Origami [8]. The mountain and valley creases are colored
red and blue.

Proposition 5. The inner vertices on a column of the orthodiagonal type can
approximate a Darboux-integrable curve Γ : J → R2, named a datum curve.

Proof. An approximation can be generated following the steps mentioned below.

1. Under a given Hausdorff distance ε, partition Γ (black curve in Figure
7(a)) by n+2 points and connect adjacent partition points in sequence by
line segments (orange line segments in Figure 7(a)). To make the angle
between adjacent inner creases not too close to π we choose partition
points on an ε-tube of Γ (purple curves in Figure 7(a)). Note that here we
use a method different from step 1 in Proposition 3, and there are many
techniques to approximate a Darboux-integrable curve by a series of line
segments.

2. Assign a direction of Γ, label each partition point Ai (i ∈ [0, n + 1])
along this direction. From the coordinates of Ai, calculate li = ‖AiAi+1‖
(i ∈ [0, n]) and βi = ∠Ai−1AiAi+1 (i ∈ [1, n]).

3. Without loss of generality, we just consider the first column from the left.
Calculate all the sector angles on the left αi0 (i ∈ [1, n]) from equation
(10), which is to make the rigid folding motion halt at the left side of the
first column.

αi0 =
π ± βi

2
(10)

Note that the ± depends on whether the line segments (coloured orange
in Figure 7(a)) “turn left” or “turn right” along the direction assigned for
Γ. Only one of αi1 can be randomly chosen. Suppose it is α11, which
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should satisfy equation (11) to make sure the inner creases turn left or
right properly, and the rigid folding motion halts at the left side.

(α11 − π/2)(α10 − π/2) > 0

0 < |α11 − π/2| < |α10 − π/2|
(11)

Then the other sector angles αi1 (i ∈ [2, n]) can be calculated by equation
(9).

4. With li and αi0, αi1 (i ∈ [1, n]), draw the creased paper.

Remark 4. As shown in Remark 2, generically, we can require Γ to be continu-
ous and J to be a closed interval in R. Besides, Γ can be a closed curve. Another
point is the approximation of Γ does not need to turn left or right alternately,
which means the mountain-valley assignment in each row not necessarily change
alternately.

Then we will analyze which surface the orthodiagonal type can approximate.
From equation (9), we know the sector angles in the first column and first row
are independent, therefore we can also approximate a Darboux-integrable curve
with the inner vertices in a row. The problem of such approximation is, we
cannot write a clear expression for the curve approximated by other rows of inner
vertices in this creased paper, which makes it hard to grasp the feature of the
target surface. (In step 3 of Proposition 4, we express the curve approximated by
other columns of inner vertices as an affine transformation of the target curve.)
Based on that we set α1j+1 = α1j (j ≥ 1), and the result in Proposition 2 can
be applied. For the orthodiagonal type, this simplification makes it possible
to express the curve approximated by other rows of inner vertices as an affine
transformation of the curve approximated by the first row of inner vertices. If
we regard the surface approximated by such a simplified creased paper as a
piece, the target surface can consist of these pieces stitched in the transverse
direction, as shown in Proposition 6.

Proposition 6. The orthodiagonal type can approximate a surface S which
is stitched by at most countable pieces Sk : V 3 (u, t) → ~r(u, t) ∈ R3 in the
transverse direction under a given Hausdorff distance ε. Each piece is generated
by the following steps. (see Figure 7)

1. Choose a datum curve Γ : u ∈ J → R2 and approximate it in a col-
umn under a sufficiently small Hausdorff distance ε1 < ε, as described in
Proposition 5.

2. Choose a target curve f1 : t ∈ I → R2 and approximate it in the first
row from the top under a sufficiently small Hausdorff distance ε2 < ε, as
described in Proposition 2.

3. Here α1j+1 = α1j (j ≥ 1). With equation (9), calculate the other sector
angles in the creased paper. In other columns, the shape of the target
curve fi : I 3 t → (xi(t), yi(t)) (i ∈ [2, n]) is an affine transformation of
f1 : I 3 t→ (x1(t), y1(t)).[

xi(t)
yi(t)

]
=

sinαi1

sinα11
A−1(ξi, θ)A(ξ1, θ)

[
x1(t)
y1(t)

]
(12)

11



To approximate
the target curve

To approximate
the datum curveThe approximation

of datum curve

The approximation
of target curve

(a) (b)

(c)

Figure 7: (a) An example of the datum curve Γ (coloured black) with its ap-
proximation by line segments (coloured orange) generated from a ε-tube of
Γ (coloured purple). In this example, n = 9, Γ(u) = [u, sinu]T , u ∈ [0, π],
α1 = π/4 + α2/2. Here we partition Γ uniformly in u. (b) is the creased paper
approximating a piece described in Proposition 6, and f1(t) = [t, t − ln(t)]T ,
t ∈ [0.5, 1.5]. We choose θ = 30◦. The orange and green inner creases are to
approximate the datum curve Γ and the target curve f1. (c) is the final rigidly
folded state of (b), where we approximate these two curves, plotted by Freeform
Origami [8]. The rigid folding motion halts due to a clash at the column we
approximate the datum curve. The mountain and valley creases are colored red
and blue.

where,

A(ξ, θ) =

[
1 −1/ tan ξ
0 1/ sin ξ

] [
cos θ sin θ
− sin θ cos θ

]
is the affine matrix we used in Proposition 2, and for i ∈ [1, n]

cos ξi =
4 cos2 αi1

1− cosβi
− 1

θ is the rotation angle in the approximation of f1. fi locates on a plane

12



perpendicular to Γ.

When the Hausdorff distance ε→ 0, the piece Sk can be expressed as:

~r(u, t) = Γ(u) + f̃u(t) (13)

where f̃u depends on u (equation (12)) and locates on the tangent plane of Γ at
u that is also perpendicular to Γ.

Corollary 0.4. If Γ is piecewise-circular, on each piece Γj , αi0 and αi1 (i ∈
[1, n]) will keep the same respectively. Then each piece Sj induced by Γj can
be expressed analytically as f1 scanning along Γj . Besides, if f1 is piecewise-
linear, fu remains piecewise-linear, then each piece induced by f1 will become
a cylinderical developable surface.

3 Discussion

3.1 Comment on the Algorithms
This article presents some initial results for the problem we have set. We rec-
ognize there are flaws and limitations in the algorithms, some of which are
discussed here.

1. In Proposition 2, for a given target curve f and an angle ξ, the condition
we give to find an appropriate θ is not convenient. For the examples in
this article we try scattered θ ∈ [0, 2π) to find possible approximations.

2. In Proposition 3, the folding angle ρ4 is a flexible parameter, that can be
used to adjust the sector angles α1 and α2. Actually, ρ4 is the magnitude
of all the folding angles on every row of inner creases. If we set ρ4 too close
to π, α1 will increase, but the width of approximation will be too small
in the longitudinal direction, which may not be suitable for application.
If we set ρ4 too far from π, the singularity of solutions will increase. For
the approximation shown in Figure 4(c) and 4(d) we choose ρ4 = 5π/6.

3. The algorithm in Proposition 3 does not guarantee a solution. We need to
assume the rigid folding motion and choose the signs that make equation
(3) most likely to be solved. If it happens that the parameters are on the
singular points of equations (2) and (3), there may be no solution.

4. Even if we have obtained all the sector angles, when we plot the creased
paper as described in Propositions 4 and 6, the inner creases in different
columns may intersect at points other than vertices. We haven’t found a
good way to control this. Sometimes scaling the datum or target curve
will help.

5. In Proposition 5, the sector angle α1 is also a flexible parameter, which can
be used to control the width of the approximation. There is no singularity
in the algorithm proposed here.
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3.2 Comment on the Approximation
Apart from the algorithms, we want to mention a few points related to an
approximation for a surface.

1. In Propositions 4 and 6, when the Hausdorff distance ε → 0, we haven’t
found a good way to express the target surface S analytically, even though
it is determined by the datum curve Γ, target curve f1, and a folding
angle ρ4 (Proposition 4) or a sector angle α1 (Proposition 6). We only
give analytical expressions for special cases mentioned in Corollaries 0.3
and 0.4. However, an analytical solution for how to approximate a curve
is given in [10], which might be helpful in solving this problem.

2. It is not necessary to make the rigid folding motion halt at the first col-
umn from the left. Such halting columns can be inserted to the creased
paper arbitrarily. Besides, the two examples shown in sections 2.1 and 2.2
design the halting column differently, and there are many other possible
techniques.

3. The utilization of materials of our design depends on the proportion of
halting columns with respected to the whole creased paper, which is at a
relatively high level.

4. If there are some holes on the target surfaces in Propositions 4 and 6,
we can follow the algorithms described in this article and generate the
approximation by applying kirigami on the creased papers.

5. In this article we show that a series of developable surfaces can approx-
imate a non-developable surface, which means the collection of all devel-
opable surfaces is not a closed set.

6. Another possible design example is a quadrilateral creased paper with no
inner panel [7], which can approximate more surfaces but will have some
big “cracks” almost running through the final rigidly folded state. We will
include the discussion on it in a future article.

3.3 Optimization
Optimizations can be applied to the algorithms mentioned in this article, which
will lead to future work.

1. In Propositions 2, 3 and 5, the piecewise-linear approximation do not
need to be uniformly-spaced. Furthermore, the partition points are not
necessarily on the curve. Given the number of partition points, there are
some classic methods to approximate the datum and target curves, which
will improve the accuracy of approximation.

2. There are some other criteria for an approximation in Propositions 2, 3 and
5 under a given Hausdorff distance ε, such as minimizing the number of
inner vertices, the total bending energy [11]; or restricting the minimum
length of all the creases, the minimum of sector angles, etc, which will
involve more complex calculations.
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4 Conclusion
We have shown that it is possible to approximate some types of non-developable
surfaces with a 1-DOF rigid folding motion starting from a planar creased paper.
This might have useful engineering applications, for instance as a way of forming
a shell structure in 3-dimensional space. However, given an arbitrary surface, the
methods that can be used to generate an approximation with a planar creased
paper that has limited DOFs are not fully understood.
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