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Recent work in the acoustic metamaterial literature has focused on the design of metasurfaces that

are capable of absorbing sound almost perfectly in narrow frequency ranges by coupling resonant

effects to visco-thermal damping within their microstructure. Understanding acoustic attenuation

mechanisms in narrow, viscous-fluid-filled channels is of fundamental importance in such applica-

tions. Motivated by recent work on acoustic propagation in narrow, air-filled channels, a theoretical

framework is presented that demonstrates the controlling mechanisms of acoustic propagation in

arbitrary Newtonian fluids, focusing on attenuation in air and water. For rigid-walled channels,

whose widths are on the order of Stokes’s boundary layer thickness, attenuation in air at 10 kHz can

be over 200 dB m�1; in water it is less than 37 dB m�1. However, in water, fluid-structure-interac-

tion effects can increase attenuation dramatically to over 77 dB m�1 for a steel-walled channel,

with a reduction in phase-speed approaching 70%. For rigid-walled channels, approximate analyti-

cal expressions for dispersion relations are presented that are in close agreement with exact solu-

tions over a broad range of frequencies, revealing explicitly the relationship between complex

phase-speed, frequency and channel width.
VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Perforations in plates and structures have traditionally

been used as a sound manipulation tool (Estrada et al., 2008;

Leppington and Levine, 1973; Putra and Thompson, 2010)

with a significant breadth of work having been carried out

over the years, involving analytical, computational, and

experimental approaches. This research has been performed

mainly in order to study the influence of microstructure on

transmission and reflection of incident acoustic energy. In

recent years the term metasurface has been coined by the

metamaterials community, as a microstructured surface that

is capable of almost complete absorption of sound, usually

in a very narrowband manner with some of the microstruc-

ture proposed being quite exotic (Jim�enez et al., 2017;

Jim�enez et al., 2016). A classical related problem, still of

great importance and studied with significant interest, is the

problem of acoustic propagation through a screen with peri-

odic slits or channels (Christensen et al., 2008). The canoni-

cal problem of transmission through a single channel, slit, or

duct with rigid walls has been studied widely over the years

(Allard and Atalla, 2009; Gomperts and Kihlman, 1967;

Gompeters, 1964; Oldham and Zhao, 1993; Stinson and

Champoux, 1992; Wilson and Soroka, 1965). It is well-

known that resonances are set up within the channel,

associated with relations between the wavelength and the

length of the slit, save for what are known as end-correc-
tions. Although the term has not classically been employed,

more recently these resonances have been termed the Fabry-
Perot resonances, terminology that appears to have crossed

over from the electromagnetics community. Christensen

et al. (2008) provided a model for the emergence of such res-

onances associated with an inviscid fluid. As pointed out by

Ward et al. (2015), however, neglecting thermo-viscous

effects is a significant assumption, particularly at small

lengthscales and the latter authors showed that including

attenuation in-air results in the phase speed along a narrow

duct or channel being substantially reduced, even when the

channel width is an order of magnitude greater than the

boundary layer parameter �d� ¼
ffiffiffiffiffiffiffiffiffi
��=�x

p
. Here �� denotes

kinematic viscosity and �x is the radian frequency. In the pre-

sent analysis, we show that Stokes’s boundary layer thick-

ness �ds ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
2��=�x

p
� 9�d� is a better indicator than �d� of

the extent to which the channel-wall boundary layers disturb

the motion of the fluid; �d� underestimates, somewhat, the

true extent of the boundary layer.

More generally then, over the years it has been observed

that thermo-viscous boundary layer effects can have a signif-

icant impact upon the propagation of sound along narrow,

rigid-walled channels giving substantial acoustic absorption

within the audio frequency range in air. This phenomenon is

used routinely in the acoustics industry as a means to softena)Electronic mail: william.parnell@manchester.ac.uk
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boundaries and attenuate unwanted sound. Indeed, the propa-

gation of acoustic waves along channels, ducts, tubes, or slits

has been studied extensively over the years, with work dat-

ing back to the late nineteenth century. Helmholtz (1863)

studied the impact of viscosity and estimated the absorption

due to viscous effects. Kundt (1868) tested the theory experi-

mentally and noticed that absorption was higher than

expected, presumably due to thermal effects. Kirchhoff

(1868) introduced the general theory of thermo-visco acous-

tics based on the Navier-Stokes equations and the Fourier-

law of heat conduction for a perfect gas in a circular tube.

He also gave approximate expressions in the case of a wide
tube, i.e., when the radius is much larger than the viscous/

thermal boundary layer thickness. Rayleigh (1896) gave

approximate solutions for the narrow tube limit, i.e., when

the radius is much smaller than the viscous/thermal bound-

ary layer thickness and for the two-dimensional narrow

channel case. Zwikker and Kosten (1949) introduced an

approximate model for wide tubes that allowed for the deri-

vation of a simpler solution in which viscous and thermal

effects decoupled. Weston (1953), based on Kirchhoff’s

model, developed approximations for tubes of various diam-

eters (narrow, wide, and very wide). Tijdeman (1975)

rewrote Kirchhoff’s model in terms of non-dimensionalized

parameters, which allowed him to estimate the relative

importance of each term and to show that the two main fac-

tors involved are the reduced viscous wavenumber and the

reduced acoustic wavenumber. Bruneau et al. (1989) pre-

sented a general framework for a perfect gas in a bounded

domain; a general formula for the dispersion relation with a

no-slip boundary condition for the velocity and an isother-

mal boundary condition for the temperature is obtained and

applied to simple geometries. Stinson (1991) analyzed

Kirchhoff’s original model and showed that Zwikker and

Kosten’s solution is recovered in the appropriate limit. He

also extended Kirchhoff’s theory to tubes of arbitrary cross-

section. Beltman (1999a) provided an extensive literature

review on the various models and approximations developed

in thermo-viscous acoustics for a perfect gas. All those mod-

els were compared and their domain of validity was

assessed. Solutions for canonical problems for each approxi-

mate/exact model were also provided. In subsequent work,

this theory was then applied to a variety of engineering prob-

lems, such as the spherical resonator, the classic circular

tube, and a miniaturized acoustic transducer (Beltman,

1999b). The last model is of particular interest as it involved

a fluid-structure interaction problem.

It is clear that most, if not all, the literature above is

focused on a perfect gas. The study of thermo-viscous acous-

tic propagation in narrow water filled channels or slits
appears to be lacking although work has been done on the

viscous liquid-filled elastic tube, usually having relatively

thin walls. This area of research was initiated by Del Grosso

(1971) who considered multimode propagation in an inviscid

fluid-filled elastic tube. It has been followed up recently with

work that includes viscous effects, carried out in a number

of papers (Baik et al., 2010; Dokumaci, 2014; Elvira-Segura,

2000; Liangh and Scarton, 2002). We note, however, that

the frequency range considered in these works is generally

high since the studies are mainly associated with non-

destructive evaluation. The low frequency regime appears to

be unexplored territory.

The purpose of the analysis presented in this paper is

therefore two-fold, first to provide a general framework with

which to study thermo-viscous acoustic attenuation in nar-

row channels that is applicable to an arbitrary Newtonian

fluid. In particular, we wish to study the impact of thermo-

viscous effects upon dense fluids of low compressibility, for

which the perfect gas assumption is clearly inappropriate,

and to determine the extent to which boundary layer influen-

ces are felt throughout the channel both in air and in water.

Second, we wish to determine the conditions under which

viscous and thermal boundary effects may influence acoustic

propagation in water, when account is taken of the coupling

between water and a real (elastic) channel wall material. (A

pre-requisite to this study is the development of a theoretical

framework for a general Newtonian fluid.) In the present

study, we restrict our attention to the influence of thermo-

viscous effects upon the lowest order symmetric duct mode,

as only this mode would propagate along a narrow, rigid-

walled tube filled with an inviscid fluid; future studies will

consider higher-order modes.

In Sec. II we summarize the equations that arise when

Beltman’s analysis is extended to an arbitrary Newtonian fluid

by using the linearized, quasi-equilibrium equations of state for a

viscous fluid presented in Chapter 3 of Dunn et al. (2015),

thereby enabling the study of the impact of thermo-viscous

effects upon sound propagation in water. These equations are

then applied to study the propagation of sound in narrow rigid-

walled two-dimensional channels in Sec. III, where analytic

expressions are derived for the dispersion equations of natural

modes incorporating thermo-viscous effects. From this analysis,

we are able to determine the conditions under which thermo-

viscosity has a significant impact upon the propagation of guided

acoustic waves by examining the phase-speed and attenuation of

such waves along the channel for two different thermal boundary

conditions: insulating and conducting. In particular, we show

that the thermal expansion coefficient of the fluid has a signifi-

cant impact upon the relative influence of viscous and thermal

effects.

In Sec. IV we present results associated with propagation in

air and in water along rigid-walled channels, and consider the

different behavior of these two fluids. We show that their behav-

iors are captured by simple approximate analytic expressions for

the complex phase-speed that are valid up to the MHz frequency

range. We also compare our theoretical predictions to the in-air

measurements of Ward et al. (2015) and find that our results are

broadly consistent with their data, thereby confirming our analy-

sis, which should be valid for any simple (Newtonian) fluid.

Finally, in Sec. V, we consider acoustic coupling with compliant

boundaries. As is known this is particularly important in the

water-filled channel, unlike the air-filled case where all bound-

aries can, in general, be considered rigid. In particular, we show

that for narrow, water-filled channels that have widths of the

same order of magnitude as Stokes’s boundary layer thickness,

fluid-structure interaction has a dramatic impact upon the char-

acteristics of the fundamental acoustic mode of propagation.

Attenuation is increased by about 40 dB m–1 compared to the

3422 J. Acoust. Soc. Am. 144 (6), December 2018 Cotterill et al.



rigid-walled assumption and the phase speed is slowed by

almost 70%. We offer conclusions in Sec. VI.

Whilst variables and parameters employed herein are

defined in the text, where they are first encountered, a nota-

tion summary is provided in the Appendix for the conve-

nience of the reader.

II. GOVERNING EQUATIONS FOR THERMO-VISCOUS
ACOUSTICS

In this section, the equations governing linear thermo-

viscous acoustics are presented in non-dimensional form. By

combining these equations in the manner described by Beltman

(1999a), for time-harmonic propagation, the vorticity field is

shown to satisfy the Helmholtz equation and fractional tempera-

ture fluctuations of the fluid can be described by a pair of

Helmholtz equations. From these solutions the velocity and

pressure fields can be constructed. The study is restricted to two

dimensions, which is appropriate for the models of interest.

A. Thermo-viscous fluids

Below we state the linearized governing equations for

thermo-viscous fluids with dimensional variables and param-

eters having an over-bar and their non-dimensional counter-

parts being free of bars. In non-dimensional form then, these

equations are (see, e.g., Chapter 3 of Dunn et al., 2015)

@s

@t
þ $ � u ¼ 0; (1)

@u

@t
¼ �$pþ gr2uþ gþ g0ð Þ$ $ � uð Þ; (2)

@h
@t
� K

cp
r2h� b

cp

@p

@t
¼ 0; (3)

s ¼ p� b
cp

h; h ¼ 1

cp
bpþ hð Þ; (4)

where boldface symbols are used to denote vector quantities.

h denotes non-dimensionalized fluctuations of entropy per

unit mass, whilst p is the non-dimensional acoustic pressure.

They are defined by

p ¼ �p � �p0

�q0�c2
0

; h ¼
�T0

�c2
0

�h � �h0ð Þ: (5)

s and h are, respectively, the fractional fluctuations of den-

sity and temperature, i.e.,

s ¼ �q � �q0

�q0

; h ¼ �T � �T0ð Þ= �T0: (6)

In the above, �p; �q; �h, and �T denote, respectively, the fluctu-

ating (dimensional) pressure, density, entropy, and absolute

temperature of the fluid, with �p0; �q0; �h0, and �T 0 being their

equilibrium values (taken to be spatially invariant); �c0 is the

barotropic sound speed of the fluid. Other relations between

dimensional and non-dimensional variables are those for the

fluid particle velocity �u ¼ �c0u ¼ �c0 ðux; uy; 0Þ, Cartesian

variables ð�x; �yÞ ¼ �L ðx; yÞ where �L is a problem specific

length scale and time �t ¼ ð�L=�c0Þ t. Non-dimensional param-

eters are also introduced for convenience, in particular the

first, or shear, coefficient of viscosity: �g ¼ �q0�c0
�L g and sec-

ond coefficient of viscosity: �g0 ¼ �q0�c0
�L g0, noting that �g and

�g0 are related to the commonly used bulk viscosity, �gB,

through �gB ¼ �g0 þ ð2=3Þ�g. Furthermore, the thermodynamic

coefficients of conductivity �K, specific heat at constant pres-

sure �cp, and thermal expansion at constant pressure �b are

non-dimensionalized as follows:

K ¼
�T0

�K
�q0�c3

0
�L
; cp ¼

�T0

�c2
0

�cp; b ¼ �b �T0: (7)

Equation (2) is associated with a non-dimensional viscous

stress tensor, which, in index form, has an ijth component

(see, e.g., Chapter 41 of Feynman et al., 1965)

rij ¼ g
@ui

@xj
þ @uj

@xi

� �
þ g0dij

@uk

@xk
; (8)

where u1 � ux; u2 � uy; x1 � x; x2 � y, dij is the ijth com-

ponent of the Kronecker-delta tensor and we employ the

convention that repeated indices are summed over. The

dimensional stress is �rij ¼ �q0�c2
0rij.

B. Decomposition into vortex and
thermo-compression fields

Beltman (1999a) shows that the governing equations for

an ideal gas decouple into a vortex field, X, and two thermo-

compression fields, H1 and H2. We find this field description

to be valid in the more general case of an arbitrary Newtonian

fluid whose governing equations were described in the previous

section. The decomposition applied to an arbitrary Newtonian

fluid within the frequency domain is given next as well as the

relationships between X; H1; H2, and other variables.

Since the problem here is considered two-dimensional,

the vortex field can be written as X ¼ $� u ¼ k̂X, where k̂

indicates a unit vector pointing in the z-direction, and X is a

scalar function. X satisfies the diffusion equation

@X
@t
¼ gr2X; (9)

and is decoupled from the thermal and compression field-

variables. For harmonic excitation, Xðx;y; tÞ
¼ ~Xðx;y;xÞe�ixt, where x¼ �x �L=�c0 is the non-

dimensionalized frequency (or equivalently non-

dimensionalized acoustic wavenumber), and Eq. (9)

becomes the complex Helmholtz equation for ~X, i.e.,

r2 þ ix
g

� �
~X ¼ 0: (10)

In terms of dimensional parameters,

x
g
¼

�L
�d�

 !2

; (11)
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where �d� is the boundary layer parameter of Ward et al.
(2015) that was referred to in the Introduction.

Similarly, harmonic temperature fluctuations are written

as hðx; y; tÞ ¼ ~hðx; y;xÞe�ixt, where the following decompo-

sition is used for ~h:

~hðx; y;xÞ ¼ ~H1ðx; y;xÞ þ ~H2ðx; y;xÞ: (12)

~H1ðx; y;xÞ and ~H2ðx; y;xÞ each satisfy a Helmholtz equa-

tion, viz.,

ðr2 þ j2
1Þ ~H1 ¼ 0; ðr2 þ j2

2Þ ~H2 ¼ 0; (13)

where

j2
1 ¼ ix

1� ix fþACð Þ½ � þ S
2 1� ixfAð ÞC ;

j2
2 ¼ ix

1� ix fþACð Þ½ � � S
2 1� ixfAð ÞC ; (14)

with

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ix f�ACð Þ½ �2 � 4ix C A � 1ð Þ

q
;

A ¼ 1þ b2

cp
; C ¼ K

cp
; (15)

and f ¼ 2gþ g0 ¼ gB þ ð4=3Þg. C represents the non-

dimensionalized thermal diffusion coefficient. If in Eq. (14) and

the first of Eq. (15), A is replaced by the ratio of specific heats at

constant pressure and volume, the solution for an ideal gas is

recovered; see, for example, Stinson (1991) and Beltman (1999a).

It is readily shown for harmonic excitation, defining the

velocity uðx; y; tÞ ¼ ~uðx; y;xÞe�ixt, condensation sðx; y; tÞ
¼ ~sðx; y;xÞe�ixt and pressure pðx; y; tÞ ¼ ~pðx; y;xÞe�ixt,

that these harmonic variables can be defined in terms of
~X; ~H1 and ~H2 in the forms

ix~u¼ cp

2b
1� ix f�ACð Þ�S½ �$ ~H1

�
þ 1� ix f�ACð ÞþS½ �$ ~H2

�
þg$� k̂ ~X; (16)

~s ¼ cp

b
1þ i

ACj2
1

x

� �
~H1 þ 1þ i

ACj2
2

x

� �
~H2

� �
; (17)

~p ¼ cp

b
1þ i

Cj2
1

x

� �
~H1 þ 1þ i

Cj2
2

x

� �
~H2

� �
: (18)

Having summarized the governing equations and relations

between dependent field variables, we now move on to defin-

ing the problem of interest.

III. THERMO-VISCOUS ACOUSTIC PROPAGATION IN
NARROW CHANNELS WITH RIGID WALLS

In this section and with reference to Fig. 1, we examine

the behavior of the natural modes of propagation along an

infinitely-long parallel-sided channel, considering the impact of

frequency, and channel width in particular, upon phase-speed

and attenuation. The channel is aligned with the x-direction and

lies in j�yj � �L. Its width in the z-direction is considered to be

of infinite extent, and the motion of the fluid is considered to be

independent of �z. Hence, the problem is two dimensional, gov-

erned by the equations summarized in Sec. II.

We start by setting the characteristic length scale,
�L ¼ �L, i.e., equal to the half-width of the channel. Thus, in

non-dimensional coordinates, the channel lies in jyj � 1 and

is aligned along the x direction. Its walls are considered rigid

so that

~uðx; y ¼ 61;xÞ ¼ 0: (19)

Solutions are sought with the dependence eikx, where k may

be complex [with =ðkÞ 	 0] and its permissible values are

determined by the boundary conditions on the channel wall.

Here we concentrate upon natural modes possessing a sym-

metric pressure distribution about the centre-line of the chan-

nel. This case is of particular interest because, for an inviscid

fluid, only the lowest order symmetric mode is cut on at

channel widths and frequencies of interest; all other modes

are evanescent. For symmetric modes, we require ~pðx; y;xÞ
to be an even function of y. This requires ~s; ~h, and ~ux to be

even functions of y, whilst ~X and ~uy are odd. Hence our

basic k-space solutions for temperature and vorticity, which

we denote by ĥðk; y;xÞ ¼ Ĥ1ðk; y;xÞ þ Ĥ2ðk; y;xÞ, and

X̂ðk; y;xÞ, respectively, using the hat symbol to denote a k-

space function, take the forms

ĥðk;y;xÞ¼Bðk;xÞcoshðc1yÞþDðk;xÞcoshðc2yÞ; (20)

X̂ðk; y;xÞ ¼ Eðk;xÞsinhðayÞ; (21)

where c1¼ðk2�j2
1Þ

1=2;c2¼ðk2�j2
2Þ

1=2;a¼ðk2� ix=gÞ1=2
.

The functional forms of B, D, and E will clearly depend

upon the thermal properties of the channel walls. We now

consider two cases: thermally insulating walls and isother-

mal (perfectly conducting) walls.

In addition to Eq. (19), a thermally insulating channel
wall must also satisfy

@~h
@y

x; y ¼ 61;xð Þ ¼ 0; (22)

or its equivalent form in k-space. Imposing the boundary

conditions in Eqs. (19) and (22) upon the basic solutions

FIG. 1. Thermo-viscous acoustic propagation in a channel, running parallel

to the x axis and having rigid walls at y¼61.
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from Eqs. (20) and (21), noting Eq. (16), requires that for

natural modes of propagation along the channel, k must sat-

isfy the following dispersion equation:

k2tanhðaÞf 1� ixðf�ACÞ � S½ �c2tanhðc2Þ
� 1� ixðf�ACÞ þ S½ �c1tanhðc1Þ g
þ 2ac1c2S tanhðc1Þtanhðc2Þ ¼ 0: (23)

Temperature fluctuations vanish on a perfectly conduct-
ing channel wall whose temperature is maintained at the

equilibrium temperature of the fluid. Thus, the thermal

boundary condition for this case is

~hðx; y ¼ 61;xÞ ¼ 0; (24)

with the corresponding dispersion equation for symmetric
modes being

af 1� ixðf�ACÞ � S½ �c1tanhðc1Þ
� 1� ixðf�ACÞ þ S½ �c2tanhðc2Þg
þ 2k2S tanhðaÞ ¼ 0: (25)

A. The limit of zero thermal expansion

In Sec. IV below, we examine the numerical behavior of

the dispersion equation for typical values of the thermo-

viscous coefficients applicable to air and water. First, how-

ever, it is instructive to consider the limit of vanishingly

small thermal expansion, which is of particular relevance to

water.

It is clear from Eq. (4) that for a vanishingly small ther-

mal expansion coefficient, pressure and density variations

are decoupled from temperature fluctuations. That is as

b! 0,

s! p; h! h

cp
; (26)

and the acoustic (compressional) channel modes become

independent of thermal effects but may still be influenced by

the viscous boundary layer. In this limit, we see from Eq.

(15) that clearly A ¼ 1þ Oðb2Þ, and S ! 1� ixðf� CÞ
þOðb2Þ, whence Eqs. (23) and (25) acquire the following

common form:

Dvr ¼ k2tanhðaÞ � ac2tanhðc2Þ ¼ 0: (27)

Equation (27) is independent of c1 and hence j1, where in

the limit b! 0, j1 depends only upon thermal parameters

(and fluid density), indeed

j1 !
ffiffiffiffiffi
ix
C

r
1þ O b2

	 
� �
as b! 0; (28)

whilst

j2 !
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ixf
p 1þ O b2

	 
� �
as b! 0; (29)

which depends only upon viscous and acoustic parameters.

Furthermore, as b! 0, Eqs. (16) to (18) acquire the follow-

ing forms:

ix~u ! cp

b
1� ix f� Cð Þ½ �$ ~H2 þ g$� k~X; (30)

~s ! ~p ! cp

b
1� ix f� Cð Þ

1� ixf

� �
~H2: (31)

Clearly as b! 0; ~H2=b must remain bounded and ~H2 must

vanish, if the physical variables ~u; ~s and ~p are to remain

finite, whence from Eq. (12), ~h ! ~H1. Finally, using Eq.

(31) to eliminate ~H2 from Eq. (30), we see that

ix~u ! ð1� ixfÞ$~p þ g$� k ~X; (32)

which, if b is set to zero at the outset, follows directly from

Eqs. (1), (2), the first of Eq. (4), and the definition of X
[given just prior to Eq. (9)]. And we note that ~p now satisfies

r2 þ x2

1� ixf

� �
~p ¼ 0: (33)

In this limit, the visco-acoustic and thermal problems

appear to decouple completely, which of course cannot be the

case because viscous losses in the former problem cause ther-

mal heating of the fluid. This anomaly arises because non-

linear terms associated with viscous stresses were neglected in

the energy/heat equation [Eq. (3)]. In most circumstances, this

is perfectly acceptable, but in the limit b! 0, these non-

linear terms become the dominant source term of the heat

equation. Thus, in the limit b! 0, the visco-acoustic problem

can be solved without reference to thermal effects and the vis-

cous stresses from its solution lead to known, non-linear,

source terms in the thermal problem. We note, however, that

if non-linear effects are significant in the energy equation, it

may be necessary to revisit the form of the equations of state;

see, for example, Pierce (1978).

IV. IMPLEMENTATION FOR AIR AND WATER FILLED
CHANNELS

The theory is now implemented in the case of air and

water filled channels. Relevant parameters are listed in Table

I, taken from Dunn et al. (2015), and assumed independent

of frequency.

In Sec. IV A, we evaluate the phase speed and attenua-

tion of acoustic waves propagating along air-filled and

water-filled channels, by finding the lowest order roots of the

dispersion equations derived in Sec. III. The results are pre-

sented as a function of the channel width, �W ¼ 2 �L, relative

to Stokes’s boundary layer thickness, �ds, where the latter is

defined by

�ds ¼ 2p

ffiffiffiffiffiffi
2 ��

�x

r
; (34)

and �� , the kinematic viscosity, is related to the dynamic vis-

cosity, �g, through �� ¼ �g=�q0. The phase-speed values
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obtained for an air-filled channel are compared with the

experimental data of Ward et al. (2015), noting that these data

are parameterized against �d�= �W , rather than �ds= �W , where

�d� ¼
ffiffiffiffi
��

�x

r
� 0:11�ds: (35)

In Sec. IV B, we examine the fluid-particle-velocity pro-

file across the channel for various channel widths in order to

determine the extent to which the channel-wall boundary-

layer influences the motion of the fluid and hence the propa-

gation of acoustic waves.

A. Phase speed and attenuation

Given the root, k, for any one of the dispersion Eqs.

(23), (25), and (27), the complex non-dimensionalized

phase-speed, v, along the channel is given by

v ¼ �v

�c0

¼ x
k
: (36)

Roots for the dispersion equations were calculated using the

MATLAB [version 9.2.0.556344 (R2017a)] command fsolve,

which finds the local zero of a user-specified function close

to a given starting point.

Before presenting the results thereby obtained, we first

note that in air and water both xf and xC are very much less

than unity at frequencies up to the order of 1 GHz. Under

these circumstances, and provided x
 1, the following

approximate expressions for the (dimensionless) complex

phase-speed can be obtained from Eqs. (23) and (25):

vinsul �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh

1� iffiffiffi
2
p

d�

� �

1� iffiffiffi

2
p

d�

� �s
(37)

and

vcond �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh

1� iffiffiffi
2
p

d�

� �

1� iffiffiffi

2
p

d�

� �

1þA� 1ffiffiffiffiffi
Pr
p tanh

1� iffiffiffi
2
p

dh

� �

1� iffiffiffi

2
p

d�

� �
vuuuuuut ; (38)

where d� ¼ �d�=�L is Ward’s (Ward et al., 2015) viscous

boundary layer parameter, non-dimensionalized on the half-

width �L of the duct; dh ¼ �dh=�L is an equivalent thermal

boundary layer parameter with �dh defined as

�dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�K

�q0 �x�cp

s
; (39)

and Pr is the Prandtl number, which is given by

Pr ¼ �g�cp

�K
¼

�d�
�dh

 !2

: (40)

The expression for vinsul is independent of all thermal

parameters and varies only with the dimensionless parameter
�L=�d� . However, vcond is additionally dependent upon Pr and

the dimensionless parameter A� 1 ¼ ð�b2 �T0�c2
0Þ=�cp, noting

that Eq. (38) recovers Stinson’s solution for an ideal gas

(Stinson, 1991) if A is replaced by the ratio of specific heats

at constant pressure and volume.

If the fundamental thermo-viscous parameters are fre-

quency independent, as assumed here, we see that in the cases

of thermally insulating and perfectly conducting channel-wall

boundary conditions, the functional frequency dependence of

their associated complex phase-speeds is contained entirely

within the expressions for the boundary layer parameters �d�
and �dh. Indeed, given the definition in Eq. (40) of Pr, it is suf-

ficient to specify just one of the boundary layer parameters

and the Prandtl number, which is frequency independent.

Although not illustrated herein, we find that for the

range of channel-widths under consideration, Eqs. (37) and

(38) are in almost exact agreement with values obtained

using the full dispersion equations at all frequencies up to at

least 1 MHz in air and 50 MHz in water. Furthermore, their

validity is not confined to air and water. Indeed, these

expressions are valid for any Newtonian fluid, provided the

conditions specified in their derivation are satisfied, namely,

xf
 1; xC 
 1; and x
 1.

Returning to the solutions of the exact dispersion equa-

tions, we note from Eqs. (37) and (38) that as �L; �W !1,

both vinsul and vcond tend to unity, which is equivalent to

k ! x. Thus, an appropriate method for finding their roots,

using fsolve, is to begin with a wide channel (we chose
�W ¼ 100�ds), and to start the root search from k¼x. We

then gradually reduce �W down to the desired value, using

the root found for the previous (larger) value of �W as a new

starting point for fsolve.

TABLE I. Thermo-viscous parameter values for water and air, taken from Dunn et al. (2015), noting that �b ¼ 1= �T 0 for an ideal gas.

Parameter Unit Symbol Water (10 �C) Air (27 �C)

Speed of sound m s�1 �c0 1490 343

Density kg m�3 �q0 1000 1.19

Dynamic shear viscosity kg m�1 s�1 �g 1.002� 10�3 1.846� 10�5

Dynamic bulk viscosity kg m�1 s�1 �gB 3.006� 10�3 1.108� 10�5

Thermal conductivity W m�1 K�1 �K 0.597 2.624� 10�2

Specific heat at constant pressure J kg�1 K�1 �cp 4192 1005

Ambient temperature K �T 0 283.16 300

Coefficient of thermal expansion K�1 �b 8.822� 10�5 1/300

3426 J. Acoust. Soc. Am. 144 (6), December 2018 Cotterill et al.



By way of example, Fig. 2 shows the resulting real
phase-speed and attenuation along an air-filled channel as a

function of �ds= �W . Here, real phase-speed is defined as <ðvÞ,
and the attenuation in dB/wavelength is 40pðki=krÞ log10ðeÞ,
where kr ¼ <ðkÞ and ki ¼ =ðkÞ. The curves for viscous only

and thermally insulating channel-wall boundary conditions

are identical, indicating that for a thermally insulating

boundary condition, the lowest order symmetric duct mode

is decoupled from thermal fluctuations as expected.

However, a different behavior is observed for the conducting

curve shown in Fig. 2, again as expected. We observe that

the results of Ward et al. (2015), indicted by the black

crosses of Fig. 2, lie in-between the two extreme thermal

boundary conditions of conducting and insulating channel

walls. Although not presented here, we find that the behavior

in air, illustrated in Fig. 2, is valid at all frequencies up to

the order of 1 MHz.

Figure 3 demonstrates the behavior of a water-filled

channel, which is found to be valid at all frequencies below

a maximum value approaching 50 MHz. The behavior of

water is very similar to that of air, except that for water, ther-

mal effects are seen to be negligible for both the thermally

conducting (isothermal) and insulating channel-wall bound-

ary conditions, primarily because of water’s low coefficient

of thermal expansion (as discussed previously). For water

this leads to the parameter A being very close to unity,

A � 1:001 in water, whilst in air A � 1:39. In addition, Pr

in water is about ten times greater than in air. Taken

together, these two factors lead to the second term in the

denominator of Eq. (38) being negligible for water, thereby

recovering Eq. (37).

In summary, we see that in water, thermal effects have a

negligible impact upon acoustic propagation along narrow

channels, and this is also true in air if the channel wall is

thermally insulating, which is perhaps not surprising as this

boundary condition is close to the adiabatic thermal condi-

tion expected in freely propagating acoustic waves.

However, in air, thermal effects are significant when the

channel wall is conducting. For the thermally insulating

channel wall boundary condition, the behavior of air and

water with respect to their dimensionless phase speed and

attenuation along the channel in dB/wavelength is essentially

identical when parameterized against the dimensionless

parameter �ds= �W . Note, however, that the attenuation along a

fixed distance, say 1 m, is much less in water than in air due

to the higher dimensional phase speed of water, leading to a

wavelength in water that is about five times greater than in

air. As an example in this case of rigid boundaries where the

channel width is of the order of the boundary layer thickness,

the attenuation in air at 10 kHz can be over 200 dB m�1,

whereas in water it is less than 37 dB m�1.

B. Fluid particle velocity profiles

Similar behavior to that discussed above is observed for

the fluid particle velocity profiles across the channel. Below,

we plot the x- and y-components of fluid particle velocity,

normalized so that uxðy ¼ 0Þ ¼ 1. For fluids such as air and

water, which are characterized by low viscous and diffusion

coefficients, we find that for both the insulating and isother-

mal channel-wall boundary conditions, uxðyÞ=uxð0Þ depends

only upon the non-dimensionalized viscous boundary layer

parameter d� ¼ �d�=�L; there is no dependence upon the ther-
mal properties of the fluid. For air, this is illustrated in the

upper plot of Fig. 4 for a channel-width of 10�ds. Both the

magnitude and the phase (the latter is not shown) of

uxðyÞ=uxð0Þ have the same values for all three channel wall

boundary conditions. The same behavior (not shown) is

observed in water.

For the y-component of fluid-particle velocity, we find

that in the case of a thermally insulating channel-wall, the

scaled parameter uyðyÞ=ðg uxð0ÞÞ depends upon only d� .
However, when the channel wall is perfectly conducting,

FIG. 2. (Color online) Phase speed and attenuation along an air-filled chan-

nel. The upper plot shows the phase speed relative to �c0. The lower plot

shows the attenuation along the channel. Different line styles indicate

channel-wall boundary conditions corresponding to Viscous only (red,

solid); Thermally insulating (cyan, dashed); Isothermal/conducting (blue,

dotted). The black crosses indicate the single slit measured data extracted

from Fig. 4 of Ward et al. (2015), and reproduced here by kind permission

of Professor Alastair Hibbins.

FIG. 3. (Color online) Phase speed and attenuation along a water-filled chan-

nel. The upper plot shows the phase speed relative to �c0. The lower plot

shows the attenuation along the channel. Line styles are as indicated in Fig. 2.
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uyðyÞ=ðg uxð0ÞÞ depends, in general, also upon the additional

parameters dh ¼ �dh=�L and A� 1 ¼ b2=cp, or alternatively

its behavior may be characterized in terms of d� , the Prandtl

number Pr, and b2=cp. For air, this behavior is illustrated in

the lower plot of Fig. 4 for a channel-width of 10�ds. We see

that whilst the viscous only and thermally insulating velocity

profiles are identical, the profile for a conducting wall is dif-

ferent, demonstrating the influence of thermal effects in this

case. Although not shown here, in water, the three thermal

boundary conditions have identical velocity profiles as a

result of water’s low coefficient of expansion.

In the absence of boundary layer effects, the y-compo-

nent of fluid particle velocity would be zero everywhere, and

the x-component would be constant across the channel; that

is ux would be independent of y. The red and blue, vertical,

dashed lines marked on the upper plot of Fig. 4 indicate,

respectively, the positions of the non-dimensionalized

boundary layer thickness parameters, �d�=�L and �ds=�L, rela-

tive to the channel walls on y ¼ 61. The black crosses show

Stokes’s solution for an oscillating pressure gradient within

a fluid-filled half-space lying above a rigid surface, under the

assumption that the boundary layers on the two walls of the

channel are well separated and hence non-interacting

(Batchelor, 2000). For this relatively wide channel, the fluid-

particle-velocity profile for ux is very similar to that of

Stokes’s half-space solution, and we observe that �ds is a sig-

nificantly better indicator than �d� , of the extent to which the

channel-wall boundary layers disturb the motion of the fluid.
�d� underestimates the true extent of the boundary layer but

as we have seen above it is a very useful parameter with

which to characterize the fluid’s behavior when it is influ-

enced by boundary layer effects.

Figure 5 shows the velocity profile for a much narrower

channel, �W ¼ �ds=2, in which the boundary layers on the two

walls are strongly interacting. Stokes’s solution for a fluid

half-space is no longer relevant; rather the velocity profile

resembles that of Poiseuille flow, as indicated by the red

crosses. Using �d�=�L as boundary layer thickness can be seen

in Fig. 5 to be severely underestimating this length.

The large difference in the magnitude of the y-compo-

nent of fluid particle velocity, which is observed in Figs. 4

and 5, arises mainly because the expression for

uyðyÞ=ðg uxð0ÞÞ contains a scaling factor of 1=d� .

V. FLUID-STRUCTURE INTERACTION EFFECTS

Until now, all boundaries have been considered rigid,

which is a sensible approximation in the air-filled channel

but not necessarily so in the case of a water-filled channel. In

order to investigate the effect of elastic boundaries, and in

particular their impact upon phase-speed and attenuation in

this case, let us consider a water-filled channel in an

undamped elastic medium of infinite extent; the only damp-

ing mechanism considered is the viscosity of the fluid. The

presence of semi-infinite elastic walls requires the consider-

ation of body waves, both compressional and shear, propa-

gating within the elastic material. Generally, this

necessitates the mathematical formulation of a physical

problem with some specified forcing, the solution of which

will be expressed in terms of integrals around branch-cuts

that are then associated with outgoing and incoming body

waves and additionally, a sum of the natural modes of propa-

gation in the waveguide. However, such an analysis is

beyond the scope of the present study; we are primarily con-

cerned with demonstrating the impact of an elastic boundary

on the natural modes of propagation within the water-filled

channel, and comparing this behavior to the idealized case

of a rigid boundary. In order to proceed here then we must

FIG. 4. (Color online) Magnitude of the fluid particle velocity across an air-

filled channel of width of 10 �ds. The upper plot shows the x-component of

the fluid particle velocity, and the lower plot shows the y-component; u is

normalized, independently for each boundary condition, such that

uxðy ¼ 0Þ ¼ 1. Line styles are as indicated in Fig. 2. On the upper plot: the

black crosses indicate Stokes solution for a fluid half-space; the blue-dashed

vertical lines indicate the position of Stokes’s boundary layer thickness,
�ds=�L, relative to the channel walls at y¼61; the red-dashed vertical lines

indicate the location of �d�=�L.

FIG. 5. (Color online) Magnitude of the fluid particle velocity across an air-

filled channel of width of �ds=2. The upper plot shows the x-component of

fluid-particle-velocity, and the lower plot shows the y-component; u is nor-

malized, independently for each boundary condition, such that

uxðy ¼ 0Þ ¼ 1. Line styles are as indicated in Fig. 2. On the upper plot: the

red crosses indicate the velocity profile for Poiseuille flow across a narrow

channel, the red-dashed vertical lines indicate the location of �d�=�L.
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merely ensure that the choice of branch cuts is consistent

with the requirements of causality. This is discussed further

below.

We shall neglect all thermal effects in this analysis since

as shown earlier these are negligible in the case of acoustic

propagation in water (due to the low value of the thermal

expansion coefficient). Recalling that as b! 0; s! p, the

(time-harmonic) fluid velocity here is therefore written com-

pactly in terms of the condensation and vorticity, i.e.,

~u ¼ �i

x
1� ixfð Þr~s þ gr� ~X

	 

; (41)

where ~s is governed by

r2 þ x2

1� ixf

� �
~s ¼ 0: (42)

The components of the total (time-harmonic) fluid stress ten-

sor are

~Rij¼ ~rij� ~pdij¼g
@~ui

@xj
þ@~uj

@xi

� �
�dij 1� ixg0ð Þ~s: (43)

Next, referring back to Fig. 1, instead of imposing the

rigid no-slip conditions [Eq. (19)] on the boundary, we now

suppose that the medium in jyj 	 1 is a linear isotropic elas-

tic medium of infinite extent. Using a consistent non-

dimensionalization scheme to that defined for the fluid with

time-harmonic dependence e�ixt, Navier’s equations of lin-

ear elasticity may be written as

ðkþ 2lÞ$~/ � l$� ~w þ x2qs ~w ¼ 0; (44)

where k is the Lam�e modulus and l the shear modulus, both

being non-dimensionalized on �q0�c2
0. Furthermore, qs

¼ �qs=�q0 denotes the non-dimensionalized solid density and

w ¼ ðwx;wy; 0Þ ¼ �w=�L is the non-dimensionalized elastic

displacement, with a tilde denoting its time-harmonic coun-

terpart. Furthermore, the following potentials have been

introduced, ~/ ¼ $ � ~w, and ~w ¼ $� ~w. As with the fluid

vorticity, the rotation vector ~w points in the z-direction and

may be written ~w ¼ k̂ ~w. The scalar potentials ~/ and ~w sat-

isfy the Helmholtz equations

ðr2 þ j2
pÞ~/ ¼ 0; (45)

ðr2 þ j2
s Þ~w ¼ 0; (46)

where jp and js are the non-dimensionalized compressional

and shear wavenumbers

jp ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qs

kþ 2l

r
¼ �x �L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qs

�k þ 2�l

s
;

js ¼ x
ffiffiffiffiffi
qs

l

r
¼ �x �L

ffiffiffiffiffi
�qs

�l

r
: (47)

The elastic displacement is written simply using Eq. (44) in

the form

~w ¼ � 1

x2qs

kþ 2lð Þ$~/ � l$� ~w
h i

; (48)

which is the analogous form, in terms of potentials, to the

fluid velocity expression in Eq. (41). Finally, the (time-har-

monic) elastic stress tensor is given by

~rij ¼ dijk~/ þ l
@ ~wi

@xj
þ @ ~wj

@xi

� �
: (49)

As with the case of a rigid-walled channel, we seek sol-

utions in k-space, which again we denote by the ^ symbol.

For the fluid-structure interaction problem, it is convenient

to relate the x- and k-space potentials of the elastic solid as

follows:

~/ x; y;wð Þ ¼
qs

kþ 2l
/̂ k; y;wð Þeikx;

~w x; y;wð Þ ¼
qs

l
ŵ k; y;wð Þeikx; (50)

with /̂ and ŵ satisfying

@2

@y2
� c2

p

 !
/̂ ¼ 0;

@2

@y2
� c2

s

 !
ŵ ¼ 0; (51)

where

cp ¼ ðk2 � j2
pÞ

1=2; cs ¼ ðk2 � j2
s Þ

1=2: (52)

The choice of cuts for cp and cs are discussed shortly. For the

fluid, we write

~s x; y;wð Þ ¼
1

1� ixf
ŝ k; y;wð Þeikx;

~X x; y;wð Þ ¼
1

g
X̂ k; y;wð Þeikx; (53)

with ŝ and X̂ satisfying

@2

@y2
� c2

2

 !
ŝ ¼ 0;

@2

@y2
� a2

 !
X̂ ¼ 0; (54)

where c2 ¼ ð k2 � x2=ð1� ixfÞ Þ1=2
and we recall that

a ¼ ðk2 � ix=gÞ1=2
.

A. The boundary value problem

Boundary conditions require continuity of displacement/

velocity at the fluid-solid interface and continuity of the trac-

tion components across the channel wall. In k-space, these

conditions require, for the velocity

@ŵ

@t
k;y¼61ð Þ¼�ixŵ k;y¼61ð Þ¼ û k;y¼61ð Þ; (55)

and for the traction

J. Acoust. Soc. Am. 144 (6), December 2018 Cotterill et al. 3429



r̂yyðk; y ¼ 61Þ ¼ R̂yyðk; y ¼ 61Þ; (56)

r̂xyðk; y ¼ 61Þ ¼ R̂xyðk; y ¼ 61Þ; (57)

noting that ~wðx;y;xÞ¼ŵðk;y;xÞeikx; ~uðx;y;xÞ¼ûðk;y;xÞeikx

and similarly for the stress components.

By inserting Eqs. (50) and (53) into Eqs. (41), (43),

(48), and (49), as appropriate, and imposing the boundary

conditions from Eqs. (55)–(57), we obtain the following con-

straints upon our solutions at y¼61:

$ŝ þ $� X̂ ¼ � $/̂ � $� ŵ
� �

; (58)

x2

l
þ2ik2P

 !
ŝþ2kP@X̂

@y
¼ 2k2�j2

s

	 

/̂þ2ik

@ŵ
@y
; (59)

2kP @ŝ

@y
� x2

l
þ 2ik2P

 !
X̂ ¼ �2ik

@/̂
@y
þ 2k2 � j2

s

	 

ŵ;

(60)

where

P ¼ xg
l

� �
¼ �x�g

�l

� �
: (61)

Note that x2=lð¼ j2
s=qs ¼ �q0 �x2 �L

2
=�lÞ and P are mea-

sures of the fluid loading acting on the elastic wall, i.e., they are

measures of the fluid’s inertial and viscous forces relative to the

elastic stresses at the channel-wall. Clearly they are important

non-dimensional parameters that will influence significantly the

characteristics of our solution, although we note below that in

the air and water cases, as well as a wide range of other scenar-

ios P 
 1 and can be set to zero in order to simplify the disper-

sion relation. Other important non-dimensional parameters

(most of which have been defined previously) include

l¼ �l
�q0�c2

0

; g¼ �g
�q0�c0

�L
; qs ¼

�qs

�q0

; �¼ �g0

�g
; d� ¼

ffiffiffiffi
g
x

r
:

(62)

With these definitions, the other non-dimensional parameters

that arise can be written as

js ¼ x
ffiffiffiffiffi
qs

l

r
; jp ¼ js

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2t

2 1� tð Þ

s
; xf¼ 2þ �ð ÞlP;

(63)

where t denotes Poisson’s ratio.

B. Dispersion relations for symmetric modes in a
fluid-filled channel within an infinite elastic solid

As for the rigid-walled channel, only modes where s is

symmetric in y are considered here. In this problem (that is

independent of thermal effects), the k-space vorticity and

condensation then take the form

X̂ ¼ EsinhðayÞ; ŝ ¼ Fcoshðc2yÞ: (64)

For the solid, appropriate symmetric solutions to Eqs. (51)

and (52) are similarly given by

/̂ðk;y	1Þ¼Xe�cpðy�1Þ; /̂ðk;y��1Þ¼Xecpðyþ1Þ; (65)

ŵðk;y	1Þ¼Ye�csðy�1Þ; ŵðk;y��1Þ¼�Yecsðyþ1Þ; (66)

in which the square root functions of Eq. (52) are chosen

such that cp ! k and cs ! k as k !1, with the branch cuts

from jp and js taken in the upper-half plane and those from

�jp and �js taken in the lower-half plane. To be definitive

in the calculations below, the branch cuts are chosen to run

parallel to the imaginary axis from their respective branch

points.

The dispersion equation in k for the natural modes of

propagation is obtained by substituting the solution forms

from Eqs. (64)–(66) into the boundary conditions from Eqs.

(58)–(60), evaluated on y¼61. Requiring the determinant

of the resulting set of simultaneous equations, in the

unknown coefficients E, F, X, and Y, to be zero then leads to

the following dispersion equation:

Dve ¼
1

D1D2

(
Dvr D1 þ 4ik2P D2 2þ iPð Þ � j2

s

� �� �

þ j2
s

qs

n
2k2 2D2 1þ iPð Þ � j2

s

� �

�tanha� j2
s acp þ csc2tanhc2tanha
� �o

þ j4
s

q2
s

D2tanha

)
¼ 0; (67)

where D1 ¼ ð2k2 � j2
s Þ

2 � 4k2cscp ¼ 0 is Rayleigh’s disper-

sion equation for natural modes on the surface of a stress-

free elastic half-space, and D2 ¼ k2 � cscp is the dispersion

equation for the natural modes on the surface of a clamped

elastic half-space. Furthermore, Dvr is the dispersion equa-

tion [Eq. (27)] for the natural modes of propagation along a

rigid-walled channel filled with a viscous fluid in which ther-

mal effects are negligible. We note that in the limit of

l; qs !1 with l/qs¼ constant, Eq. (67) reduces to

Dvr ¼ 0.

C. Fluid structure interaction implementation for air
and water filled channels in steel

Let us now consider the implementation of the above in

the specific case of a fluid-filled channel in steel with density

�qs ¼ 7871 kg m�3, and compressional and shear wave-speed

�vp ¼ 6000 m s�1 and �vs ¼ 3000 m s�1, respectively. These

parameter values imply a shear modulus �l ¼ 70:839 GPa

and a Lam�e modulus �k ¼ 141:68 GPa.

For air- and water-filled channels, P 
 1 and may be

set to zero in Eq. (67). Furthermore, as discussed in Sec.

IV A, at frequencies and channel-widths of interest

xf
 1; x
 1, and we expect k ¼ OðxÞ. Thus,

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ix=g

p
¼ ð1� iÞ=

ffiffiffi
2
p

d� , which is independent of k,

and c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2
p

, where jc2j 
 1. Under these conditions,

we find that the non-dimensional phase speed, v¼x/k, satis-

fies the following approximate dispersion equation:
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Dve �
1

D̂1D̂2

D̂1

tanha
a
� 1� v2ð Þ

� ��

þ 1

qs

v2

v2
s

2 2D̂2 �
v2

v2
s

" #
tanha

a

(

� v2

v2
s

v

x
ĉp þ

x
v

ĉs 1� v2ð Þ tanha
a

� �)

þ 1

q2
s

v4

v4
s

D̂2

tanha
a

)
¼ 0; (68)

where ĉp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=v2

p

q
; ĉs¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=v2

s

p
; D̂1¼ð2�v2=v2

s Þ
2

�4ĉsĉp; D̂2¼1� ĉsĉp, with vp¼ �vp=�c0 and vs¼ �vs=�c0 being

the non-dimensional compressional and shear wave-speeds;

all of these parameters are independent of frequency.

It is clear from the above expression that the depen-

dence of phase speed upon frequency is somewhat more

complicated for an elastic-walled channel than it is for the

case of a rigid-walled channel, expressions for which are

provided in Eqs. (37) and (38).

1. Phase speed and attenuation

All the results presented in this section were obtained

from the full dispersion equation [Eq. (67)]. Figure 6 shows

results for phase speed and attenuation as a function of �ds= �W
along an air-filled channel in steel at 10 kHz, compared with

those for a rigid-walled channel, noting that thermal effects

have been neglected. Figure 7 reveals the behavior of a

water-filled channel. Also illustrated in the latter are the

phase speed and attenuation along a steel-walled channel

neglecting viscosity. The latter data were obtained from the

roots of the dispersion equation for an elastic-walled chan-

nel, filled with an inviscid fluid; these are derived from the

boundary conditions applicable to this case, namely,

r̂yyðk; y ¼ 61Þ ¼ R̂yyðk; y ¼ 61Þ; (69)

r̂xyðk; y ¼ 61Þ ¼ 0; (70)

�ixŵyðk; y ¼ 61Þ ¼ ûyðk; y ¼ 61Þ; (71)

in which viscosity is excluded by setting E ¼ g ¼ gB ¼ 0.

The dispersion equation, Dieðx; kÞ ¼ 0, is then readily

shown to be

Dieðx; kÞ ¼ qsc2tanhðc2Þ ð2k2 � j2
s Þ

2 � 4k2cscp

h i
þ j4

s cp ¼ 0; (72)

noting that if tanhðc2Þ were set to unity, Eq. (72) recovers

the dispersion equation for Scholte waves, i.e., the dispersion

equation for surface waves at the interface between elastic

and fluid half spaces (Rauch, 1980).

It is clear from Fig. 6 that for air, the natural-mode behav-

ior of the steel-walled channel is essentially indistinguishable

from that of a rigid-walled channel when thermal effects are

neglected, whereas in the case of a water-filled channel, these

behaviors are dramatically different as seen in Fig. 7. This is

due to the strong interaction between water and the steel wall,

which has the effect of slowing down the phase speed of the

natural mode and reducing its attenuation along the channel in

terms of dB/wavelength. The damping mechanism for the

mode is still that of dissipation within the viscous boundary

layer on the steel wall, as opposed to radiation loss through

the wall into the elastic material. This is apparent from the

inviscid curves of Fig. 7, which show that fluid structure inter-

action is the main cause of the dramatic reduction in phase

speed, but alone this mechanism gives no damping.

Although the attenuation in terms of dB/wavelength is

substantially smaller in water for the steel-walled channel

FIG. 6. (Color online) Phase speed and attenuation along an air-filled chan-

nel at 10 kHz. The upper plot shows the phase speed relative to �c0. The

lower plot shows the attenuation along the channel (dB/wavelength). In both

plots, the solid red curve indicates a rigid-walled channel, and the dashed

cyan curve is associated with a steel-walled channel. Thermal effects are

neglected.

FIG. 7. (Color online) Phase speed and attenuation along a water-filled

channel at 10 kHz. The upper plot shows the phase speed relative to �c0. The

lower plot shows the attenuation along the channel (dB/wavelength). In both

plots, the solid red curve indicates results for a water-filled rigid-walled

channel; the dashed cyan curve is associated with a water-filled steel-walled

channel. The dotted blue curve is associated with propagation in a steel-

walled water-filled channel where fluid viscosity is neglected. In all three

cases, thermal effects are neglected.
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than the rigid-walled case, the attenuation measured along a

fixed length of say 1 m is actually greatly increased due to the

large reduction in phase speed, which gives rise to a much

smaller wavelength. This is illustrated in Fig. 8, which com-

pares the attenuation at 10 kHz in dB m–1 along water-filled

rigid and elastic walled channels. For comparison, the attenua-

tion along an air-filled channel is also shown. We see that

taken together, fluid-structure interaction and viscosity lead to

a large increase in attenuation for the water-filled channel.

For completeness, Fig. 9 shows the behavior of a water-

filled steel-walled channel at 100 kHz. Unlike the rigid-walled

results discussed earlier, we see by comparison with Fig. 7

that the steel walled channel shows an additional frequency

dependence beyond that associated with the thickness of the

viscous boundary layer. This characteristic is illustrated fur-

ther in Fig. 10, which illustrates the variation in phase speed

and attenuation against non-dimensional frequency at a fixed

value of �ds= �W ¼ 1. Whilst the attenuation is fairly constant

across the range of values shown for x, the variation in phase

speed is considerable unlike the case of a rigid channel wall

for which both parameters would be constant.

2. Particle velocity profiles

Figures 11 and 12 compare fluid particle velocity pro-

files across a fluid-filled channel of width 10�ds for rigid and

steel walls, neglecting thermal effects. Figure 11, for air,

shows no discernable difference in the behavior of the two

wall types. The same is also true of the x-component of fluid

particle velocity when the channel is filled with water. This

is evident from the upper plot of Fig. 12. However, the lower

plot of Fig. 12 shows that, for a water-filled channel, replac-

ing the rigid wall with steel leads to a substantial change in

the behavior of the y-component of fluid particle velocity.

Indeed, for a steel-walled channel, juyj is so much greater

than that found for a rigid-walled channel that the plot of juyj
for the latter is only just observable at the bottom of the fig-

ure. Note that juyj =! 0 on the steel-walls. We observe that

whilst in an air-filled channel, the steel wall may be regarded

as rigid, this is not so when the channel is filled with water.

Similar behavior is seen for a much narrower channel as

illustrated in Fig. 13 for a water-filled channel of width �ds=2.

Although not shown, for an air-filled channel, there is again no

discernable difference between steel and rigid-walled channels.

Figure 14 shows the evolution of elastic-velocity with

distance �ys from the channel wall for the case of a water-

filled channel of width �ds=2, noting that the elastic-velocity

at the channel wall (�ys ¼ 0) matches that within the fluid of

FIG. 8. (Color online) Attenuation along air and water-filled channels at

10 kHz (dB m�1). Line styles indicate attenuation associated with propaga-

tion in a water-filled rigid-walled channel (solid red); a water-filled steel-

walled channel (dashed cyan); an air-filled rigid-walled channel with iso-

thermal boundary conditions (dotted blue); an air-filled rigid-walled channel

with insulating boundary conditions (dash-dotted green).

FIG. 9. (Color online) Phase speed and attenuation along a water-filled

channel at 100 kHz. The upper plot shows the phase speed relative to �c0.

The lower plot shows the attenuation along the channel (dB/wavelength). In

both plots, the solid red curve indicates results for a water-filled rigid-walled

channel; the dashed cyan curve is associated with a water-filled steel-walled

channel. The dotted blue curve is associated with propagation in a steel-

walled water-filled channel, where fluid viscosity is neglected. In all three

cases, thermal effects are neglected.

FIG. 10. (Color online) Phase speed and attenuation along a water filled

channel of fixed width �ds= �W ¼ 1 as a function of the non-dimensional fre-

quency x. The long-dashed cyan curves are associated with a water-filled

channel including viscosity. The short-dashed blue curves are associated

with a water-filled channel neglecting viscosity. The exterior elastic medium

is steel. Thermal effects are neglected.
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Fig. 13 at �y=�L ¼ 1. It is clear that the elastic-velocity decays

rapidly with increasing distance from the wall and hence the

elastic waves associated with this mode do not carry energy

away from the channel as surmised in Sec. V C 1.

It is perhaps worth considering in a little detail the

nature of the propagating wave in a water-filled elastic-

walled channel. For a semi-infinite elastic body, it is well

known since the work of Lord Rayleigh that waves confined

to its free surface can propagate without attenuation at a

speed slightly less than that of shear body waves. If an invis-

cid fluid occupies the space above the elastic body, then the

Rayleigh wave becomes leaky because its speed is greater

than the wave speed in the fluid (i.e., it is supersonic). That

is, energy is shed into acoustic waves above the solid, and

hence the wave becomes attenuating. However, there is

another wave at fluid/solid boundaries, called the Scholte

wave, which is subsonic in both media and propagates with-

out loss along the interface, decaying exponentially away

from the boundary into both fluid and solid domains. It is

found (Zhu et al., 2004) that Scholte waves are not easily

excited, as most of the energy is confined to the fluid region;

the higher the acoustic impedance of the fluid, the stronger

the Scholte wave becomes for a given forcing. Hence, for an

air-steel interface, one expects to see near the surface that

the Rayleigh waves dominate; they will leak energy slowly

FIG. 11. (Color online) Magnitude of fluid particle velocity across an air-

filled channel at 10 kHz for a channel width of 10�ds. The upper plot shows

the x-component of fluid-particle-velocity, and the lower plot shows the y-

component. u is normalized, independently for each boundary condition,

such that uxðy ¼ 0Þ ¼ 1. The solid-red curves indicate results associated

with a rigid-walled channel, and the dashed-cyan curves are for a steel-

walled channel. Thermal effects are neglected.

FIG. 12. (Color online) Magnitude of fluid particle velocity across a water-

filled channel at 10 kHz for a channel width of 10�ds. The upper plot shows

the x-component of fluid-particle-velocity, and the lower plot shows the y-

component. u is normalized, independently for each boundary condition,

such that uxðy ¼ 0Þ ¼ 1. The solid-red curves indicate results associated

with a rigid-walled channel, and the dashed-cyan curves are for a steel-

walled channel. Thermal effects are neglected.

FIG. 13. (Color online) Magnitude of fluid particle velocity across a water-filled

channel at 10 kHz for a channel width of �ds=2. The upper plot shows the x-com-

ponent of fluid-particle-velocity, and the lower plot shows the y-component. u is

normalized, independently for each boundary condition, such that

uxðy ¼ 0Þ ¼ 1. The solid-red curves indicate a rigid-walled channel, and the

dashed-cyan curves are for a steel-walled channel. Thermal effects are neglected.

FIG. 14. (Color online) Steel wall velocity external to a water-filled channel

at 10 kHz and �W ¼ �ds=2. The upper plot shows the x-component of particle-

velocity, and the lower plot shows the y-component. In these plots, �ys

denotes the dimensional distance from the channel wall within the solid.

The velocity u is normalized such that ux ¼ 1 at the center of the fluid-filled

channel. The solid-red curves indicate the real part of velocity, and the

dashed-cyan curves show the imaginary part. Thermal effects are neglected.
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and the Scholte waves will be negligible. For water and steel,

the Rayleigh waves will attenuate strongly due to radiation

loss and Scholte waves will be more strongly excited.

The situation can be expected to be somewhat similar for

water- or air-filled channels in steel; however, the leaky

Rayleigh waves in both cases cannot radiate acoustic energy due

to confinement and so will persist. However, the channel must

be wide enough to allow the shed acoustic waves to propagate,

or conversely, if the channel is too narrow, the coupled duct-

Rayleigh wave mode will be cut-off. A numerical examination

of the dispersion equation for the water-filled steel-walled chan-

nel indicates that at 10 kHz, the coupled duct-Rayleigh wave

mode is cut-off for channel widths less than about 35�ds; we can

then expect to find only a Scholte-type propagating wave mode

in the water-filled steel-walled channel. This is consistent with

results presented in Figs. 13 and 14 where most of the motion

(and hence energy) is confined to the fluid region. Note that the

presence of viscosity in the fluid means that the mode is attenuat-

ing along the channel, but otherwise it has little effect on the

phase speed of the mode, as already seen.

VI. CONCLUSIONS

A general framework has been presented with which one

can study the influence of thermal and viscous effects on acoustic

propagation in narrow channels or ducts filled with an arbitrary

Newtonian fluid. Of specific interest here was to put the experi-

mental results of Ward et al. (2015) on a formal theoretical foot-

ing and better understand their conclusions regarding the

influence of the boundary layer on the attenuation of acoustic

waves in channels. Furthermore, of great importance as regards

applications was to extend this analysis to the consideration of

thermo-visco acoustic propagation in water. The theoretical anal-

ysis presented indicates that it is Stokes’s boundary layer thick-

ness that gives a proper indication of the extent to which acoustic

propagation along narrow channels is influenced by thermal and

viscous boundary effects. The parameter �d� considered in the

work of Ward et al. (2015) is an underestimate of the extent of

the influence of the boundary layer and this therefore explains

the effect that was noted in the analysis of the experimental

results presented there. In the context of propagation in-air, it has

been demonstrated here that thermal effects can be significant in

a channel with thermally conducting walls, but they are negligi-

ble if the wall is thermally insulating. As should be expected, the

results presented in Ward et al. (2015) sit between these two ide-

alized cases. Turning to the context of acoustic propagation in

the channel when it is water filled, it has been shown here that

any associated thermal effects are always negligible thanks to the

extremely low coefficient of thermal expansion of water.

For rigid-walled channels, filled with low viscosity fluids

such as air and water, we find that the behavior of the lowest

order symmetric duct-mode is captured by simple analytic

expressions, one for each of the two channel-wall thermal

boundary conditions that were considered. These expressions,

valid up to at least 1 MHz in air and 50 MHz in water, demon-

strate explicitly that for the thermally insulating boundary con-

dition, the complex phase speed along the channel, v ¼ �v=�c0,

is independent of thermal effects. Indeed, it depends only upon

the channel’s width relative to the viscous boundary layer

parameter, �d�; that is, v depends only upon the dimensionless

parameter �L=�d� , with the latter containing all of the frequency

dependence of v. For the thermally conducting boundary con-

dition, we find that in addition to �L=�d� , v depends upon the

Prandtl number, Pr, and the dimensionless parameter,

A� 1 ¼ b2=cp ¼ ð�b
2 �T0�c2

0Þ=�cp; if
ffiffiffiffiffiffiffiffiffi
1=Pr

p
ðb2=cpÞ is small,

as is the case for water, thermal effects are negligible.

An important aspect that must be taken into account for

water-filled channels is the effect of the fluid-structure interaction

associated with the channel wall. Although for the in-air context

all boundaries can be considered as perfectly rigid, it is well

known that the in-water situation cannot be treated with such a

simplification. Attenuation of acoustic energy from the channel

is thereby achieved via both viscous and radiative mechanisms

(i.e., energy flux into the surrounding elastic medium). Only

modal solutions in the channel have been considered here, there-

fore the partition of this attenuated energy into viscous and radi-

ated parts was not discussed; there is a need to investigate this

when considering forced problems, and this shall be the focus of

future work. The latter shall also examine the cut-on of possible

coupled duct-Rayleigh wave modes, and the partition of energy

between this and the present Scholte-type channel mode.

For the present study of the lowest order symmetric duct

mode, we find that for a water-filled channel in steel, the

interaction between water and the steel-wall dramatically

reduces the phase speed of the mode, even when the water is

treated as inviscid. For example, in a channel whose width is

on the order of �ds, the phase speed reduces by approximately

70% at a frequency of 10 kHz. The introduction of viscosity

has little further impact upon phase speed, but when the

reduction in phase-speed arising from fluid-structure interac-

tion is combined with viscous losses due to boundary layer

effects, we find that the mode’s attenuation, in dB m–1, is

much greater than it would be for a rigid-walled channel.

For example, at 10 kHz and a channel width of order �ds, the

attenuation increases from about 37 dB m–1 in a rigid-walled

channel to over 77 dB m–1 in a steel-walled channel.

We close by commenting that although the main focus of

this study has been to investigate the differences between

thermo-viscous acoustic propagation in air and water-filled chan-

nels, the general theoretical framework presented here for arbi-

trary Newtonian fluids and elastic walls permits future study of

more general configurations. Further studies on higher order

modes can also be conducted although the study here of the lead-

ing order symmetric mode already indicates key, important dif-

ferences between the air-filled and water-filled scenarios.
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Ambient, total and non-dimensional fluctuation

of the fluid’s entropy
�K;K ¼ �T 0

�K=ð�q0�c3
0
�LÞ Coefficient of thermal conductivity of the

fluid and non-dimensional counterpart

C ¼ K=cp Non-dimensional thermal diffusion

coefficient of the fluid

k ¼ �k=ð�q0�c2
0Þ;

l ¼ �l=ð�q0�c2
0Þ

Lam�e’s elastic and shear modulus

qs ¼ �qs=�q0 Solid density

�vp; vp ¼ �vp=�c0 Compressional wave-speed of the solid and

non-dimensional counterpart

�vs; vs ¼ �vs=�c0 Shear wave-speed of the solid and non-

dimensional counterpart

j1; j2 Coupled thermo-compressional wavenumbers

of the fluid

cj ¼ ðk2 � j2
j Þ

1=2
,

j¼ 1,2

Arises in argument of thermo-compression

solution, given eikx dependence

a ¼ ðk2 � ix=gÞ1=2
Arises in argument of vorticity solution,

given eikx dependence

jp ¼ x=vp;

js ¼ x=vs

Non-dimensional compressional and shear

elastic wavenumbers

cp ¼ ðk2 � j2
pÞ

1=2
Arises in argument of compressional elastic

solution, given eikx dependence

cs ¼ ðk2 � j2
s Þ

1=2
Arises in argument of shear elastic solution,

given eikx dependence

X z component of vorticity X ¼ r� u ¼ Xk̂

/ ¼ r � w Compressional elastic potential (dilation)

w z component of shear elastic potential,

w¼r�w¼wk̂

�r ¼ �q0�c2
0r Viscous stress tensor

�u ¼ �c0u Fluid particle velocity

v ¼ �v=�c0 ¼ x=k Phase speed along channel

�w ¼ �Lw Elastic displacement
�W ¼ 2 �L Channel width
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