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Abstract: Researchers are often challenged with assessing the impact of
an intervention on an outcome of interest in situations where the interven-
tion is non-randomised, the intervention is only applied to one or few units,
the intervention is binary, and outcome measurements are available at mul-
tiple time points. In this paper, we review existing methods for causal infer-
ence in these situations. We detail the assumptions underlying each method,
emphasize connections between the different approaches and provide guide-
lines regarding their practical implementation. Several open problems are
identified thus highlighting the need for future research.
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1. Introduction

Evaluation of the causal effect of an intervention (e.g. a newly introduced policy,
a novel experimental practice or an unexpected event) on an outcome of interest
is a problem frequently encountered in several fields of scientific research. These
include economics (Angrist and Pischke, 2009; Imbens and Wooldridge, 2009),
epidemiology and public health (Rothman and Greenland, 2005; Glass et al.,
2013), management (Antonakis et al., 2010), marketing (Rubin and Waterman,
2006; Varian, 2016), and political sciences (Keele, 2015).

Researchers are often interested in assessing the impact of an intervention
(occasionally referred to as treatment henceforth) in situations where: i) the
data are observational, i.e. the allocation of the sample units to the intervention
and control groups is not randomised, but instead determined by factors that
confound the association between the indicator of intervention and the outcome
of interest; ii) the intervention is binary, i.e. sample units cannot receive the
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interventions at varying intensities; iii) only one or a small number of units are
treated; and iv) at each of a set of time points, before and after the time at which
the intervention is introduced, the outcome is measured on every sampled unit,
thus giving rise to panel data.

Several statistical methods for causal inference in this setting have been de-
veloped to account for the special characteristics of the data: the presence of
(likely unobserved) confounders, the existence of temporal trends in the out-
come and the limited number of sample units to which the intervention is given.
In this paper we review the existing literature, motivated by recent methodolog-
ical developments and the increasing application of these methods to real-life
problems. Since the existing literature comes from a wide range of research
disciplines, our focus is on unifying the various methods under a common ter-
minology and notation, appropriate to a statistical audience. Further, we draw
connections between various methods and point out issues related to their prac-
tical implementation. Finally, we suggest some possible directions for future
research.

We focus on four classes of methods: difference-in-differences, latent factor
models, synthetic control-type methods and the causal impact method. Excluded
from our review are propensity score methods (Rosenbaum and Rubin, 1983)
(see Austin (2011) for a recent review), because the small number of treated
units does not allow accurate estimation of the parameters of a propensity score
model, and the interrupted time series method (Lopez Bernal, Cummins and
Gasparrini, 2016), because it does not use data on the units that do not receive
the intervention.

This manuscript is structured as follows. In Section 2 we define notation,
describe the causal framework underlying the methods and introduce the illus-
trative example. Section 3 presents the four classes of methods. Section 4 is
about quantification of uncertainty and hypothesis testing. Section 5 discusses
issues related to practical implementation. Sections 6 and 7 contain an applica-
tions to real data and a discussion, respectively. Finally, in Section 8 we highlight
some remaining problems in the field.

2. Preliminaries

2.1. Notation

Let i = 1, . . . , n index the entities (e.g. hospitals or general practices) for which
the outcome of interest is observed: henceforth, we refer to these entities as
units. For unit i we have measurements yi· = (yi1, . . . , yiT )>, where t indexes
time. We let y·t = (y1t, . . . , ynt)

> denote the vector containing the set of n
observations at time t and yi,t1:t2 = (yit1 , . . . , yit2)> denote the measurements
on unit i from time t1 to time t2 (t1 ≤ t2). Throughout, we assume that yit is
univariate.

Let dit = 1 if unit i receives the intervention at or just before time t, and
dit = 0 otherwise. Let di = (di1, . . . , diT )>. Of the n units, the first n1 remain
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untreated for the entire study period. We call these the controls. For the n2
treated units, there is a time T1 (1 < T1 < T ) immediately after which the
intervention is applied. We assume that all treated units receive the intervention
at the same time. Hence dit = 1 if i > n1 and t > T1, and dit = 0 otherwise.
We make this assumption to simplify the notation, but the methods we describe
can be easily extended to allow for different treatment times. The number of
post-intervention observation times is denoted by T2 = T − T1. For each unit
and time we may also observe a set of K covariates xit = (xit1, . . . xitK)>.

2.2. Potential outcomes

We adopt the potential outcomes framework (Rubin, 1974, 1990), also known
as the Rubin causal model (Holland, 1986, RCM). Under this model, for each
treated unit (i > n1) and post-intervention time (t > T1) there are two potential

outcomes, y
(0)
it and y

(1)
it : y

(0)
it represents the outcome that would be observed if

intervention were not applied, and y
(1)
it is the outcome that would be observed

if the intervention were applied. We only observe y
(1)
it , i.e., yit = y

(1)
it . For the

control units (i ≤ n1) at any time t and the treated units (i > n1) at a pre-

intervention time (t ≤ T1), we only define y
(0)
it and y

(0)
it = yit is observed.

The RCM allows the effect of intervention unit i (i > n1) at time t (t > T1)

to be expressed as τit = y
(1)
it − y

(0)
it . Estimation of τit is complicated by the fact

that y
(0)
it is not observed. In order to estimate τit from the observed data, it is

necessary to make identifying assumptions (Morgan and Winship, 2007; Keele
and Minozzi, 2013). For the methods considered in this paper, these assumptions

allow the unobserved counterfactual outcomes y
(0)
it of treated units in the post-

intervention period (i.e. for i > n1 and t > T1) to be predicted using the
observed outcomes on control and treated units. Denote these predictions as

ŷ
(0)
it . The intervention effect τit can then be estimated as τ̂it = yit − ŷ(0)it .

2.3. An illustrative example

As our illustrative example we use data from Abadie, Diamond and Hainmueller
(2015) who investigated the effect that West Germany’s reunification with East
Germany in 1990 had on the economic growth of the former. To do so, they
compared West Germany’s annual per-capita GDP (the outcome variable) to its
counterfactual GDP (i.e. its GDP had reunification not taken place), which they
predicted based on annual per-capita GDP data from n1 = 16 member countries
of the Organisation for Economic Co-operation and Development (OECD) (none
of which underwent reunification, and so are ‘control units’). The authors used
data from 1960-2003 and hence there are T1 = 30 pre-intervention and T2 = 13
post-intervention time points. Figure 1 shows the time-series of the outcome on
all 17 units. In Section 6, we analyse this dataset using the methods reviewed
in this article.
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Fig 1: Time series plot of the German reunification data. The values on the y-axis
represent per-capita GDP measured in U.S. dollars. West Germany’s per-capita
GDP is shown in blue; the data on control units (16 other OECD countries)
are shown in light red; the dashed red line represents the average GDP of the
control units. The dashed gray line indicates 1990, the year of reunification.

3. Estimation methods

In this section, we review four classes of methods for predicting the counter-

factual treatment-free outcomes y
(0)
it of the treated units at post-intervention

times, needed to calculate τ̂it. Here we focus on the intuition and the assump-
tions underlying each method, and report results on theoretical properties of
unbiasedness and consistency in Appendix A. For full technical details of each
approach, the reader is directed to the original publications.

3.1. Difference-in-differences

Early works (Ashenfelter, 1978; Ashenfelter and Card, 1985; Card and Krueger,
1994) used so-called difference-in-differences (DID) models to compare two time
periods (pre versus post-intervention). The identifying assumption in DID mod-
els is that the average outcomes of control and treated units in the absence of
an intervention would follow parallel trends over time (Abadie, 2005).

Figure 2 is a graphical representation of the basic DID method for a single
control and single treated unit. The four points A-D on the graph represent the
control (A) and treated (B) units at t = 1, and the control (C) and treated (D)
units at t = 2. Under the parallel trends assumption, the difference between
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the outcome of the treated unit and of the control unit would be constant over
time in the absence of intervention. The counterfactual outcome for the treated
unit at the post-intervention time can then be predicted as point E in Figure 2.
Letting yA, yB , yC , yD and yE denote the y-values corresponding to the points A,
B, C, D and E in Figure 2, respectively, the estimated effect of the intervention
is

τ̂22 = yD − yE
= yD − {yC + {yB − yA}}
= {yD − yC} − {yB − yA} ,

i.e. the difference (after versus before) of the differences between the two units.
The same method can be used when multiple time points and multiple control
units are available.
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Fig 2: Graphical illustration of the difference-in-differences method.

A commonly used solution to adjust for the effect of covariates xit
1 is to

specify a parametric linear DID model for the observed outcome yit (Angrist
and Pischke, 2009; Jones and Rice, 2011)

yit = y
(0)
it + τitdit

y
(0)
it = x>itθ + κi + µt + εit, (3.1)

where θ is a vector of regression coefficients, κi is an (unknown) fixed effect
of unit i, µt allows for temporal trends and εit are the zero-mean error terms

1Blundell et al. (2004) and Abadie (2005) propose alternative DID estimators that can
account for the effect of covariates. However, these methods are not suitable when only a
small number of units are treated and hence are not reviewed in this article.
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which are independent of djs,xjs, κj , µs for all i, j, t, s. Lagged outcomes and/or
transformations of xit can be included as extra covariates in the linear DID
model (Jones and Rice, 2011). The parameters of the linear DID model can be
estimated by ordinary least squares (OLS) regression (see Angrist and Pischke
(2009, pp. 167) for details). Let τ̂DID

it denote the resulting estimate of τit.
The linear DID model (3.1) makes very strong assumptions regarding the

data generating mechanism. The term κi in (3.1) allows expected counterfactual
treatment-free outcomes to be higher (or) lower in the treated units than in
control units, even after adjusting for observed covariates xit. Hence, κi can
represent an unobserved confounder. However, Equation (3.1) assumes that the
effect of this possible confounder on the outcome is constant over time. Similarly,
the term µt in (3.1) can only account for temporal trends that are common to
both treated and control units.

Although the linear DID specification (3.1) is often preferred in practice due
to its simple interpretation and implementation, there exist other methods that
build on the parallel trends idea. Athey and Imbens (2006) relax the linearity
assumption of (3.1), allowing the outcome yit to be a more general (non-linear)
function of the unobserved characteristics of unit i. However, it is difficult to
implement their method when there are more than two time points and xit is
high-dimensional. Another method based on parallel trends is the triple differ-
ences method (Atanasov and Black, 2016; Wing, Simon and Bello-Gomez, 2018),
which uses two groups of control units. For example, when the treated group
consists of male employees of a company, then the control group can be either
the female employees of the same company, or the male employees of a different
company. In such situations, the triple differences method can use the second
control group to correct for biases caused by the violation of the assumption
of parallel trends between the outcomes of the treated group and the control
group.

There are many examples of the use of DID models. Ashenfelter (1978)
and Ashenfelter and Card (1985) investigate the effect of training programs
on worker earnings. Card (1990) assesses the impact that the Mariel Boatlift,
a mass migration of Cuban citizens to Miami in 1980, had on the city’s labour
market, using four other cities as controls. Card and Krueger (1994) estimate
the effect that the increase of the minimum salary had on employment rates
in New Jersey’s fast-food industry in 1992, using fast-food restaurants located
in Pennsylvania as the control group. See Galiani, Gertler and Schargrodsky
(2005); Branas et al. (2011); King et al. (2013) for recent works applications of
the DID approach.

3.2. Latent factor models

In the linear DID model of Equation (3.1), there is one unit-specific term, κi, and
this can represent a single unobserved confounder whose effect on the outcome
is constant over time. In the following latent factor model (LFM), κi is replaced
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by λif t

yit = y
(0)
it + τitdit

y
(0)
it = x>itθ + λ>i f t + εit, (3.2)

where f t = (f1t, . . . , fJt)
> are J time-varying factors, λi = (λi1, . . . , λiJ)>

are unit-specific factor loadings, and εit are the zero-mean errors which are
independent of djs,xjs,λj ,fs for all i, j, t, s. When f t = (1, µt)

> and λi =
(κi, 1)>, the second line in (3.2) reduces to the second line in (3.1). So, the linear
DID model is a special case of the LFM. Just as κi in the linear DID model
can represent a single unobserved confounder, λi can represent J unobserved
confounders, whose effect on the outcome varies with time and is described
by f t. Hence, the LFM (3.2) relaxes the DID assumption that the average
outcomes of control and treated units follow parallel trends. In econometrics,
f t is interpreted as a ‘shock’ that affects all units at time t and λi represents
the response of unit i to these shocks (Bai, 2009).

Xu (2017) proposes a three-step estimation procedure for predicting counter-
factual treatment-free outcomes using the LFM model. In the first step, observa-
tions on control units are used to estimate θ, f1, . . . ,fT and λ1, . . . ,λn1

through

the iterative procedure of Bai (2009) that minimises
∑n1

i=1

∑T
t=1(yit− ŷ(0)it )2, the

mean squared error (MSE) between the observations yit and the corresponding

predicted values ŷ
(0)
it = x>it θ̂ + λ̂

>
i f̂ t. In the second step, the estimated factor

loadings for the treated units, λ̂i (i > n1), are obtained conditional on the pa-
rameter estimates obtained in the first step by minimising the MSE between yit
and ŷ

(0)
it for the treated units in the pre-intervention period. Finally, the third

step involves estimating the intervention effects τit as τ̂XU
it = yit − ŷ(0)it .

Several authors have proposed alternative methods for predicting counter-
factuals using the LFM. These include Ahn, Lee and Schmidt (2013); Gobillon
and Magnac (2016); Chan and Kwok (2016) and Athey et al. (2017). We have
focused on the method of Xu because, to the best of our knowledge, it is the
only one for which an R package has been developed.

Gobillon and Magnac (2016) and Xu (2017) describe applications of the LFM
to real data. Gobillon and Magnac (2016) estimate the effect on unemployment
rates of a French program offering tax reliefs to companies that hired at least
20% of their personnel from the local labour force. Xu (2017) evaluates the
impact of Election Day Registration (EDR), a law that enables eligible citizens
to register on site when they arrive at the voting centre, on voter turnout in
the US. For more applications of the LFM see Kim and Oka (2014) and Sanso-
Navarro, Sanz-Gracia and Vera-Cabello (2018).

3.3. Synthetic control-type approaches

The original synthetic controls method (SCM) was developed by Abadie and
Gardeazabal (2003) and Abadie, Diamond and Hainmueller (2010) and can only
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be applied to one treated unit at a time. The idea behind the SCM is to find
weights w = (w1, . . . , wn1

)
>

for the control units such that the weighted average
of the controls’ outcomes best predicts (in terms of MSE) the outcome of the
treated unit during the pre-intervention period, and then use the weights to
estimate the counterfactual treatment-free outcomes in the post-intervention
period. The set of weights w minimises√(

yn1+1,1:T1
− Y c

1:T1
w
)>
V
(
yn1+1,1:T1

− Y c
1:T1

w
)
, (3.3)

subject to the constraints

n1∑
i=1

wi = 1 and wi ≥ 0, (3.4)

where Y c
1:T1

is the T1 × n1 matrix with i-th column yi,1:T1
and V is a T1 ×

T1 symmetric, positive semi-definite matrix reflecting the importance given to
the different pre-intervention time points (Abadie and Gardeazabal, 2003). The
predicted counterfactual of the treated unit is:

ŷ
(0)
n1+1,(T1+1):T = Y c

(T1+1):Tw, (3.5)

where Y c
(T1+1):T is defined analogously to Y c

1:T1
. The estimated intervention

effect at times t (t > T1) is then τ̂SCM
n1+1,t = yn1+1,t − ŷ(0)n1+1,t.

It is also possible to use the covariates, by replacing yi,1:T1
with zi,1:T1

=

(y>i,1:T1
,x>i,1:T1

)> in Equation (3.3). Abadie, Diamond and Hainmueller (2010)
suggest that instead of using the full data zi,1:T1

, it may be reasonable to con-

sider only a few summaries, such as the mean outcome 1
T1

∑T1

t=1 yit in the pre-
intervention period, and the corresponding means of the covariates i.e. to replace
zi,1:T1 by ( 1

T1

∑T1

t=1 yit,
1
T1

∑T1

t=1 x
>
it)
>. Such reduction of the dimensionality of

zi,1:T1 might be necessary in applications with T1 >> n1 in order to reduce
computation time.

The choice of matrix V can either be based on a subjective judgement of
the relative importance of the variables in yi,1:T1

or zi,1:T1
or be determined

through a data-driven approach. For example, Abadie and Gardeazabal (2003)
and Abadie, Diamond and Hainmueller (2010) choose V as the positive defi-
nite diagonal matrix that minimises the MSE between the observed outcomes
yi,1:T1

(i = 1, . . . , T1) and estimated outcomes ŷi,1:T1
= Y c

1:T1
w(V ) in the

pre-intervention period, where w(V ) is the solution to (3.3) for a fixed V .
The SCM makes no assumptions regarding the data generating mechanism.

The method has strong links with the matching literature, where the outcome
of each treated individual is compared to the outcomes of controls with similar
covariate values (Rosenbaum, 2002; Stuart, 2010). However, it is more general
in the sense that a good match is sought by weighted averaging of the controls.
The SCM also relates to the method of analogues used for time-series prediction.
The difference is that in the method of analogues there is only one time-series
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and ‘controls’ are simply earlier segments of the time-series; for more details see
Viboud et al. (2003).

There have been several proposed extensions of the SCM. To allow for mul-
tiple treated units, Kreif et al. (2016) apply the SCM to the averaged vec-
tor outcome ȳtr = ( 1

n2

∑n
i=n1+1 yi1, . . . ,

1
n2

∑n
i=n1+1 yiT )> of the treated units.

Acemoglu et al. (2016) assume that the intervention effects τn1+1, . . . , τn are
equal and estimate the common effect at time t (t > T1) as the weighted aver-
age

∑n
i=n1+1 q

−1
i τ̂it/

∑n
i=n1+1 q

−1
i , where τ̂it (i > n1) is obtained by applying

the original algorithm to just the data on treated unit i and the control units

1, . . . , n1, and qi =
√
T−11 (yi,1:T1

− ŷ(0)
i,1:T1

)>(yi,1:T1
− ŷ(0)

i,1:T1
). Their stated ra-

tionale for using weights q−1i is that units with good fit in the pre-intervention
period should be more reliable for estimating the common intervention effect
and hence receive higher weights.

Hsiao, Ching and Wan (2012, henceforth HCW) and Doudchenko and Imbens
(2016, henceforth DI) extend the SCM by adding a time-constant intercept
term to the SCM estimator and removing the constraints on the weights. The
intercept is necessary when the outcome of the treated unit is systematically
(over time) higher or lower than the outcomes of the controls units and hence
there exists no set of weights that can provide a good fit for yn1+1,t in the
pre-intervention period. The removal of the constraints on the weights is useful,
for example, when there exist control units with outcomes that are negatively
correlated with the outcomes on the treated unit. HCW suggest estimating

y
(0)
n1+1,t (t > T1) as ŷ

(0)
n1+1,t = β0 +

∑n1

i=1 βiyit, where β0, . . . , βn1
are the OLS

coefficient estimates of the regression of yn1+1,1:T1
on y1,1:T1

, . . . ,yn1,1:T1
, i.e.

they minimise(
yn1+1,1:T1

− β01− Y c
1:T1

β
)> (

yn1+1,1:T1
− β01− Y c

1:T1
β
)
, (3.6)

where 1 denotes a T1-vector of ones, β0 is the intercept and β = (β1, . . . , βn1
)
>

.
Amjad, Shah and Shen (2018) also remove the constraint on the weights and
suggest that, before estimating these weights, the data on the control outcomes
Y c

1:T1
should be de-noised.

Ben-Michael, Feller and Rothstein (2018) introduced the augmented SCM.
First, the SCM is applied and weights w1, . . . , wn1

obtained. Second, a model

(e.g. a LFM) for the untreated outcomes y
(0)
i of all n1 + 1 units is fitted to all

the outcomes of the untreated units and the pre-intervention outcomes of the

untreated unit. If ỹ
(0)
it (i = 1, . . . , n1 + 1; t > T1) denote the predicted untreated

outcomes from this model, then
∑n1

i=1 wiyit− ỹ
(0)
n1+1,t is an estimate of the bias of

the SCM estimator. The augmented SCM estimator of the counterfactual y
(0)
n1+1

equals the original SCM estimate plus this estimated bias. They argue that this
method is particularly useful when the SCM method provides a poor fit in the
pre-intervention period.

Hazlett and Xu (2018) estimate the weights using a kernel transformation of
the pre-intervention outcomes. This is done to ensure that higher-order features
of the outcomes (authors mention, e.g., volatility and variance) are taken into
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account when estimating the weights. Using simulated examples, they showed
that their approach can eliminate biases that occur if the untransformed out-
comes are used to estimate the weights.

Several recent works utilise synthetic control-type approaches for estimating
the effects of an intervention. These include Cavallo et al. (2013), who examine
the effect of large-scale natural disasters on gross domestic product, and Ryan
et al. (2016), who investigate the impact that UK’s Quality and Outcomes
Framework, a pay-for-performance scheme in primary health, had on population
mortality. For more applications of synthetic control-type methods, see Billmeier
and Nannicini (2013); Fujiki and Hsiao (2015); Saunders et al. (2015) and Aytuğ
et al. (2017).

3.4. Causal impact

The causal impact method (CIM) was introduced by Brodersen et al. (2015)
and can only be applied to a single treated unit at a time. A Bayesian model is
assumed for the outcome of the treated unit. This model includes a time-series
component that relates the outcome of the treated unit at time t to previous
outcomes on the same unit, and a regression component that uses the outcomes
on control units as covariates. Specifically:

y
(0)
n1+1,t = β0t +

n1∑
i=1

βiyit + εt (t = 1, . . . , T )

β0,t+1 = β0,t + δt + ηt

δt+1 = δt + ζt, (3.7)

with mutually independent εit ∼ N(0, σ2
ε), ηt ∼ N(0, σ2

η) and ζt ∼ N(0, σ2
ζ ), and

priors for β00, δ0, β1, . . . , βn1
, σ2

ε , σ2
η and σ2

ζ . In Equations (3.7), the compo-
nent β0t induces temporal correlation in the outcome, the regression component∑n1

i=1 βiyit relates y
(0)
n1+1,t to measurements from control units, and the error

component εt accounts for unexplained variability. More complex models can
be adopted (Brodersen et al., 2015), e.g. by adding a seasonal component.

The model (3.7) is fitted to the observed data, y
(0)
n1+1,1, . . . , y

(0)
n1+1,T1

, treating

the counterfactuals y
(0)
n1+1,T1+1, . . . , y

(0)
n1+1,T as unobserved random variables. In-

dependent, improper, uniform priors are used for τn1+1,T1+1, . . . , τn1+1,T . Then,

L samples y
(0,l)
n1+1,t (l = 1, . . . , L) are drawn from the resulting posterior predic-

tive distribution of the counterfactual outcome y
(0)
n1+1,t (t > T1), thus providing

samples yn1+1,t − y(0,l)n1+1,t from the posterior distribution of τn1+1,t. Typically,
this would be done using a Markov chain Monte Carlo algorithm. A point esti-
mate τ̂CIM

n1+1,t for the causal effect τn1+1,t at time t (t > T1) is then given by its
posterior mean.

Bruhn et al. (2017) use the CIM to assess the impact of pneumococcal conju-
gate vaccines on pneumonia-related hospitalisations using hospitalisations from
other diseases as the control time-series. de Vocht et al. (2017) evaluate the
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benefits of stricter alcohol licensing policies on alcohol-related hospitalisations
in several areas, control areas being other areas where these policies were not
implemented. See also de Vocht (2016); González and Hosoda (2016); Vizzotti
et al. (2016) for other applications of the CIM.

4. Quantification of uncertainty & hypothesis testing

We now describe approaches to estimating standard errors and testing the null
hypothesis that τit = 0, or, for Bayesian methods, estimating the posterior
distribution of τit.

DID. If it is assumed that the errors εit in the linear DID are mutually inde-
pendent and homoscedastic, variance estimates for the OLS estimates of τit (i >
n1, t > T1) are easy to obtain. These represent the variance of τ̂DID

it over repeated
samples of the errors εit holding (x>11, . . . ,x

>
1T , κ1,d

>
1 , . . . ,x

>
n1, . . . ,x

>
nT , κn,d

>
n ,

µ1, . . . , µT )> fixed. A Wald test for τit = 0 can then be performed. However,
the assumption that the errors εit are mutually independent may not be plausi-
ble. Bertrand, Duflo and Mullainathan (2004) show that when, as is likely, the
errors εi1, . . . , εiT are serially correlated, the variance estimator for τ̂it is biased
downwards and type-I error rates are inflated, and they describe methods to deal
with this. Standard errors can also be underestimated if there are correlations
due to units being grouped (e.g. hospitals within the same county); Donald and
Lang (2007) discuss possible solutions.

LFM. Xu (2017) uses parametric bootstrap to obtain confidence intervals for
τ̂XU
it and p-values, assuming that ε1t, . . . , εnt are independent and homoscedas-

tic at each individual time t. Repeated sampling here is of the errors εit holding
(x>11, . . . ,x

>
1T ,λ

>
1 ,d

>
1 , . . . ,x

>
n1, . . . ,x

>
nT ,λ

>
n ,d

>
n ,f

>
1 , . . . ,f

>
T )> fixed. Li (2018)

derive the asymptotic distribution (as T1, T2 →∞) of the average effect
∑T
t=T1+1 τ̂

XU
it

for the i-th treated unit.
Synthetic control-type approaches. Abadie, Diamond and Hainmueller

(2010, 2015) argue that traditional statistical inference is difficult in this setting,
unless one is prepared to assume that the unit that received the intervention
was chosen at random. Under that assumption, a standard permutation test
would provide a valid p-value for the null hypothesis that treatment would have
no effect on any of the units (i.e. τit = 0 for all i = 1, . . . , n1 + 1). Abadie,
Diamond and Hainmueller propose using a very similar test even in settings
where the intervention is not randomly assigned and called this a ‘placebo test’.
They argue that such a test provides an alternative mode of inference, saying
that our confidence that a large treatment effect estimate truly reflects the effect
of the intervention would be undermined if similarly large effect estimates were
obtained when the treatment labels of the units were permuted.

More specifically, Abadie, Diamond and Hainmueller (2010, 2015) compare
τ̂SCM
n1+1,t to τ̂SCM

1t , . . . , τ̂SCM
n1t , the estimated effects considering each of the control

units in turn as though it had been the treated unit, and using the remaining
n1 − 1 controls to estimate the weights, at each post-intervention time. Their
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test statistic ri is

ri =
T1(yi,T1+1:T − ŷi,T1+1:T )>(yi,T1+1:T − ŷi,T1+1:T )

T2(yi,1:T1
− ŷi,1:T1

)>(yi,1:T1
− ŷi,1:T1

)
, (4.1)

that is, the ratio of post- to pre-intervention MSE between the observed and
predicted outcomes. The predicted counterfactual of control unit i (i ≤ n1) is
obtained by applying the SC method to that unit, using the remaining n1 −
1 controls to find weights. Their intuition is that under the null hypothesis
the predictive ability of the SCM should be similar in the two periods and
thus the ratio rn1+1 close to 1. Hence, a value of rn1+1 that lies in the tail
of the empirical distribution of r1, . . . , rn1+1 can be viewed as evidence for a
non-zero intervention effect. Firpo and Possebom (2018) investigate the impact
that the choice of the test statistic has on the results of Abadie, Diamond and
Hainmueller’s test, finding that ri outperformed alternative statistics that they
considered in several performance measures.

Firpo and Possebom (2018) propose a generalisation of Abadie, Diamond
and Hainmueller’s placebo test. Rather than giving equal weight to all possible
permutations of the treatment labels when calculating the p-value, they make
the weights depend on a sensitivity parameter φ. The reasoning is that even if
the unit that received the intervention had actually been chosen at random, some
units might have been more likely to be chosen, thus making some permutations
of the treatment labels more probable than others. Firpo and Possebom (2018)
vary the value of φ and assess how robust to this value is the conclusion of a
treatment effect (or lack thereof).

Amjad, Shah and Shen (2018) take an empirical Bayes approach to test the

hypothesis that τn1+1,t = 0. They assume that yn1+1,1:T ∼ N
(
Ỹ

c

1:T1
w, σ2I

)
,

where Ỹ
c

1:T1
are the de-noised control outcomes obtained via singular value

thresholding, and the weights w have a N
(
0, σ2

wI
)

prior distribution, for some
value of σ2

w. The posterior distribution of w can be used to calculate the pos-

terior predictive distribution of y
(0)
n1+1,t (t > T1). Let a and b be the 97.5th and

2.5th centiles of this distribution. The 95% posterior credible interval for τn1+1,t

is (yn1+1,t − a, yn1+1,t − b).
Abadie, Diamond and Hainmueller (2010) also consider a variant of their

placebo test in which the time of the intervention, rather than the unit that
receives intervention, is changed. They do not, however, propose this as being a
way to calculate a p-value.

In their application, HCW fit an autoregressive model to the estimated inter-
vention effects τ̂HCW

n1+1,T1+1, . . . , τ̂
HCW
n1+1,T . They then test the null hypothesis that

the mean of these effects, which they refer to as the long-run intervention effect,
equals zero. In their implementation of the HCW method, Gardeazabal and
Vega-Bayo (2017) use a test that is equivalent to the test proposed by Abadie,
Diamond and Hainmueller (2010, 2015) for the SCM, to test if τit = 0 for all
i and t > T1. As pointed out by one of the referees, an intuitive approach to
obtain confidence intervals for τ̂HCW

n1+1,t would be to use the bootstrap. Finally,
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Li and Bell (2017) derive the asymptotic distribution (as T1, T2 → ∞) of the

average effect
∑T
t=T1+1 τ̂

HCW
n1+1,t.

CIM. For the CIM, a 95% posterior credible interval for τn1+1,t can be calcu-
lated as (yn1+1,t− a, yn1+1,t− b), where a and b denote, respectively, the 97.5th
and 2.5th centiles of the posterior predictive distribution of the counterfactual

y
(0)
n1+1,t.

All methods. Recently, there has been work building upon the end-of-
sample stability test (Andrews, 2003). For a single treated unit, the idea is

that under the hypothesis of no intervention effect, the process yn1+1,t− ŷ(0)n1+1,t

(t = 1, . . . , T ) is stationary. Chernozhukov, Wüthrich and Zhu (2017) propose
a permutation procedure to test the stationarity of this process and show that
their approach gives valid inference for several methods including DID, LFM and
SCM. Hahn and Shi (2017) apply the same idea to the SCM. Both note that
confidence sets for the intervention effect can be obtained by statistic inversion.

5. Implementation issues

In this section, we discuss issues related to the practical implementation of the
methods presented in Section 3: model choice and diagnostic checks.

5.1. Model choice

Choosing the control units. When implementing the SCM, HCW, DI and CIM,
it may be desirable to exclude some of the potential control units. Using all
potential controls might result in non-unique causal effect estimates when there
are more such controls than pre-intervention time points. Moreover, standard
errors of estimates can be reduced by discarding controls whose outcomes are
not related to the outcome of the treated unit.

HCW develop a two-stage approach to exclude potential controls. For each
` = 1, . . . , n1 they implement their method

(
n1

`

)
times, where each time they

use a different subset of size ` of the control units. For each ` they choose the
subset that maximises the regression R2 and thus obtain n1 candidate models.
They recommend choosing one of these n1 models according to a model selection
criterion such as the AIC. An alternative approach was suggested by Li and Bell
(2017), who use the least absolute shrinkage and selection operator (LASSO) to
select controls.

DI exclude potential controls by encouraging some of the weights βi to shrink
towards (or even equal to) zero. This achieved by including the penalty term

ρ

(
1− δ

2

n1∑
i=1

β2
i + φ

n1∑
i=1

|βi|

)
, (5.1)

in the objective function (3.6), where ρ and φ are penalty parameters. For
CIM Brodersen et al. (2015) induce sparsity on the vector (β1, . . . , βn1

)> that
describes the dependence on controls by using a spike-and-slab prior.
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Choosing the covariates. An issue that may arise when implementing the
linear DID and the LFM methodology of Xu (2017) is the choice of covariates to
include. Exclusion of potential covariates may be desirable for the same reasons
that one might exclude control units. For the linear DID model, covariates,
which may include lagged outcomes and interactions of lagged outcomes with
the covariates, may be selected by imposing sparsity on the regression coefficient
vector, using, for example, the LASSO. For the LFM, one can use the factor-
lasso approach of Hansen and Liao (2016).

When implementing the SCM, users need to decide which variables (pre-
intervention outcomes, covariates or summaries of these) to use to determine the
weights. Ferman, Pinto and Possebom (2016) demonstrate that the estimated
counterfactual may differ depending on which variables are used. Dube and
Zipperer (2015) develop the following approach for selecting among K sets of
variables. First, for every set k (k = 1, . . . ,K) they apply the SCM to the

data on every control unit in turn, and calculate the predicted outcomes ŷ
(k)
it

(i = 1, . . . , n1) based on the estimated weights. Then, they choose the set k∗ that
minimises the mean (over control units) MSE between observed and predicted

outcomes ŷ
(k)
it in the post-intervention period. An alternative approach when T1

is large is to split the pre-intervention data into a training dataset, to which the
SCM is applied using different sets of variables, and a validation dataset, which
is used to assess which set has the best predictive performance.

Other issues. Some of the methods for estimating the parameters of the LFM
(Gobillon and Magnac, 2016; Chan and Kwok, 2016; Xu, 2017) require that
the number of factors J be chosen. The usual approach is to fit the LFM for
various values of J and determine the optimal J using cross-validation. An
alternative for choosing J is to use the procedures developed by Bai and Ng
(2002). However, these approaches provide estimates of standard errors that do
not account for the uncertainty about J .

For the CIM, practitioners need to decide what dynamical components to
include in the counterfactual model. Similar methods to those used for choosing
variables for the SCM can be used. An alternative is to fit several models and
use the one that achieves the optimal trade-off between accuracy (the difference
yn1+1,t− ŷn1+1,t) and precision (the length of the credible interval for yn1+1,t) in
the pre-intervention period. In small datasets the inferences provided by the CIM
impact method will be sensitive to the choice of prior distributions. Therefore,
these specifications should ideally be determined based on expert opinion.

5.2. Diagnostics

All the methods described in this article make assumptions about the coun-
terfactual outcomes of the treated units in the post-intervention period. Since
these outcomes cannot be observed, it is never possible to test the full set of
assumptions. Nonetheless, it is sometimes possible to assess the validity of a
subset of these assumptions using data from the pre-intervention period.

When no covariates are used and T1 > 1, an informal check of the parallel
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trends assumption of DID methods can be conducted by plotting the average
outcomes of control and treated units in the pre-intervention period (Keele and
Minozzi, 2013): an approximately constant (over time) distance between the
two lines suggests that parallel trends is plausible. The SCM should not be
used when the outcome of the treated unit lies outside the convex hull of the
outcomes of controls units. This can be checked by plotting the time-series of
the outcome on all the units.

The fit provided for the outcomes on treated units in the pre-intervention
period can be used as a diagnostic check. Intuitively, if a model is not predictive
of the outcome in the pre-intervention period, it is less likely to provide good
predictions for the counterfactuals in the post-intervention period. Goodness-of-
fit can be assessed using the MSE between the observed and predicted values.
However, in order for a good pre-intervention fit to be reassuring, one needs to
establish that it does not occur due to overfitting, as can be the case e.g. for the
SCM when n1 > T1. For the methods that provide fitted values for the outcomes
of control units, i.e. the linear DID model and the method of Xu (2017), one
can further use the fit over the post-intervention period for these units as a
diagnostic tool.

Finally, for both the linear DID model and the LFM method of Xu (2017),
extrapolation biases may occur when the covariates (and loadings for the LFM)
of treated and control units do not share a common support. In order to ex-
clude the possibility of such biases, it suffices to ensure that the characteristics
of the treated units are not extreme compared to the characteristics of con-
trol units. When a small number of covariates (and factors) is used, one can
visually compare the two groups for each covariate (and loading) in turn. If
this is not feasible, methods for multivariate outlier detection (e.g. Filzmoser,
Maronna and Werner (2008)) can be used to identify treated units with extreme
characteristics.

6. Application: Effect of German reunification on GDP

In this section, we demonstrate the use of the methods we have described by
analysing the data introduced in Section 2.3. The dataset is publicly available2.
We omit the available covariates because they might have been affected by the
reunification.

For the DID and SCM, some of the diagnostic checks described in Section 5.2
do not require implementing these methods and therefore we started by carrying
out these tests. Figure 4 of Appendix B shows the difference between West Ger-
many’s GDP, y17,t, and the average GDP in the control countries, 1

16

∑16
i=1 yit,

over the pre-reunification period. The difference has a clear increasing trend
suggesting that the parallel trends assumption does not hold, so the linear DID
model is not appropriate for this application. As we see from Figure 1, the out-
come of the treated unit lies in the convex hull of the outcomes of control units
so this provides no evidence that the SCM should not be used.

2http://dx.doi.org/10.7910/DVN/24714

http://dx.doi.org/10.7910/DVN/24714
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We only implement methods for which (to the best of our knowledge) R (R
Core Team, 2016) software exists. The linear DID method can be implemented
using any linear regression function (e.g. lm). For the remaining methods, we
used the packages specifically developed for these methods: gsynth for the LFM;
Synth (Abadie, Diamond and Hainmueller, 2011) for the SCM; pamp (Vega-
Bayo, 2015) for the HCW method; and CausalImpact for the CIM. The code
we used for our real data analysis is available online3.

We fitted the linear DID model (3.1). For the method of Xu (2017) we set
f1t = 1 for all t and λi2 = 1 for all i in order to have time and country
fixed effects, respectively. The total number of latent factors was set via cross-
validation. For the SCM, we estimated the weights using the whole vector of
outcomes yi,1:T1

in the pre-intervention period (rather than summaries of the
outcomes). The HCW method was implemented using all control countries and
pre-intervention time points. Finally, for the CIM we fitted the model of Equa-
tion (3.7) but without the term δt because we found that inclusion of this term
did not improve the fit and led to substantially wider credible intervals for the
causal effect of interest. The prior distributions for all model parameters were
set to the software defaults. We fitted the linear DID method for illustration
purposes even though DID should not be used here.

Before examining the causal estimates, we performed the remaining diag-
nostic checks. Figure 3 shows the difference between the actual and estimated
counterfactual West German GDP, y17,· − ŷ17,· for the entire study period. We
see that all methods except for the linear DID almost perfectly reproduce West
Germany’s GDP before reunification. Thus, the pre-intervention goodness-of-fit
diagnostic provides no indication against any of the methods except for lin-
ear DID. The estimated factor loadings for the 17 countries in the dataset are
shown in Table 2 of Appendix B. The estimated loadings for West Germany are
not extreme compared to the estimated loadings of the control countries, hence
suggesting that the predicted counterfactual is not obtained by extrapolation.
Overall we see that the only method that fails our diagnostic checks is the linear
DID.

Figure 3 reveals that the other four methods provide similar estimates of the
causal effect. In particular, the difference between the observed and counterfac-
tual outcomes is positive during the first three years after 1989, suggesting that
reunification initially had a positive impact on West Germany’s GDP. Abadie,
Diamond and Hainmueller (2015) attribute this to a ‘demand boom’. The esti-
mated impact reduces thereafter, and is negative for all four methods in year
2003. The estimated average reduction in annual GDP over the period 1990-
2003 due to the reunification (we also show DID for completeness) is shown in
Table 1.

Figure 3 presents 95% intervals for the LFM of Xu (2017) and the CIM. These
exclude zero in all years after 1993 thus suggesting a significant intervention
effect. The placebo test of no intervention effect in any of the years 1990-2003
described by Abadie, Diamond and Hainmueller (2010, 2015) is also suggestive

3https://osf.io/b5fv3/

https://osf.io/b5fv3/
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Fig 3: Annual estimates of the effect of the German reunification on West
Germany’s per-capita GDP obtained using the linear DID model (red), the
LFM (green), the SCM method (light blue), the HCW method (blue) and the
CIM (purple). The dashed lines (when applicable) represent the 95% confi-
dence/credible intervals.



P. Samartsidis et al/Causal inference with observational panel data 18

Method GDP decrease

Linear DID -604
LFM (XU) 1546

SCM 1322
HCW 1473
CIM 1629

Table 1
Average (over the period 1990-2003) reduction in West Germany’s annual per capita GDP,

as estimated by the 5 methods. All values are in United States dollars.

of a non-zero intervention effect. In particular, the r statistic defined in Equation
(4.1) is r17 = 30.72 for West Germany, larger than all the ri values obtained
for the 16 control countries. We further implemented this test with the HCW
method. The rank of the r statistic for West Germany is 16, that is there is
only one country whose r statistic is higher. Table 3 in Appendix B shows the
r statistics obtained by applying the SCM and HCW methods. Overall, taking
into consideration all tests conducted, we conclude that there is evidence that
reunification had a negative long-term impact on West Germany’s per-capita
GDP, although it may have had a positive short-term impact.

7. Discussion

7.1. Connections between methods

There are several ways in which the methods described in this paper relate to
one another.

Firstly, for the case of a single treated unit and no covariates, most of them

propose counterfactual estimators of the form ŷ
(0)
n1+1,t = αt+

∑n1

i=1 βiyit (t > T1)
with αt and βi being estimated using the data from the pre-intervention period
(i.e. t ≤ T1). For the DID method, the parallel trends assumption implies that

αt = 1
T1

∑T1

s=1

(
yn1+1,s − 1

n1

∑n1

i=1 yis

)
for all t > T1 and βi = 1

n for all i ≤ n1

(Chernozhukov, Wüthrich and Zhu, 2017). The SCM assumes αt = 0 for all t
and requires that β1, . . . , βn are non-negative and sum to one. The HCW and
DI methods impose the constraint that the intercept is constant over time, i.e.
αt = α for all t. Finally, the CIM assumes that αt obeys a time-series model
(e.g. a random walk model). When there are covariates these similarities break
down because methods account for covariates in a different way.

Secondly, most of the methods relate to the LFM. We have already seen that
the linear DID model (3.1) is a special case of the LFM (3.2). As discussed
in Appendix A, the SCM and HCW estimators are asymptotically unbiased
when the true data-generating mechanism obeys a LFM. We expect that due
to their similarities with the HCW estimator just explained, both DI and CIM
estimators will be unbiased under the same LFM.
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7.2. Recommendations for implementation

None of the methods is universally superior to the others. Extensive simulation
experiments comparing the relative performance of a subset of them have been
conducted by multiple authors including Gobillon and Magnac (2016); O’Neill
et al. (2016); Gardeazabal and Vega-Bayo (2017); Xu (2017) and Kinn (2018).
They all find settings in which one of the methods outperforms the others.
However, the findings from these simulation studies may not generalise to other
data generating mechanisms. Practitioners should choose the method to apply
on the basis of the characteristics of the dataset and, in particular the values,
of n1, T1 and their ratio n1/T1.

The DID method can be used for any n1 and T1. As explained in Sections
3.1 and 7.1, the DID method arguably requires the strongest assumptions. As a
result, it may provide more precise estimates of the intervention effects compared
to the other methods. However, these estimates might be severely biased when
the parallel trends assumption does not hold (see simulation studies by O’Neill
et al. (2016) and Gobillon and Magnac (2016)). This occurred in our application
(Section 6), where the DID estimate of the average reunification effect had
opposite sign compared to all the other estimates. Hence, it is essential to test
the plausibility of parallel trends in the pre-intervention period before applying
DID to a dataset. This is easy when there are no covariates.

The LFM can be used for any value of n1/T1. However, both n1 and T1
should be at least moderate in size in order to accurately estimate the factors and
loadings, respectively. For example, for the asymptotic unbiasedness property of
Xu’s method (see Appendix A) to be relevant to a finite sample, they recommend
T1 > 10 and n1 > 40.

Synthetic control approaches are mostly suited for applications where T1
is large. This is required to accurately estimate the relationships between the
outcome of the treated unit and the outcomes of control units. When n1 ≥ T1
regularisation is required because the number of parameters exceeds the number
of observations4. Regularisation is possible for both the HCW and DI estimators,
as described in Section 5.1, but not for the SCM. The SCM should not be used
when the outcome of the treated unit does not lie in the convex hull of the
outcomes of control units.

The CIM is similar in spirit to synthetic control approaches and also requires
large T1. Because of its time-series component it can work even in cases when
the outcome of treated unit is not correlated to the outcomes of control units.
However, it requires larger T1 than synthetic control-type approaches to estimate
the additional time-series parameters. In practice, the value of T1 required will
depend on the complexity of the time-series model. When n1 > T1 regularisation
can be achieved via a spike-and-slab prior on the regression coefficients.

In applications where certain covariates are known to be highly predictive
of the outcome, it is preferable to use the linear DID or LFM. This is because

4Synthetic control approaches regress the outcome of the treated unit on the outcomes of
the control units. Therefore we can think of y1:n,t as a single data point (observation) in a
regression model.



P. Samartsidis et al/Causal inference with observational panel data 20

they use the covariates of control units and therefore can estimate the regres-
sion parameters of the predictive covariates with higher precision compared to
the HCW, DI and CIM5. This can in turn lead to more precise estimates of
the counterfactuals. Covariates that are potentially affected by the interven-
tion should not be included when using any of the methods except the SCM,
because the treatment-free values of the covariate are not observed in the post-
intervention period. The SCM can use these covariates in the pre-intervention
period to estimate the weights.

There will be applications where more than one method is appropriate. This
is to be expected considering their connections explained in Section 7.1. For
example, the SCM, HCW, DI and CIM estimators are all well-suited when T1
is large and there are few control units. In such cases, users might choose any
of these methods. However, it is still worth applying the remaining methods in
order to check that conflicting results are not obtained. Methods that perform
poorly on diagnostic checks or are based on assumptions that seem unrealis-
tic for the dataset of interest should not be considered. Even within the same
method a sensitivity analysis is recommended. This can be carried out by imple-
menting the method using different model specifications as explained in Section
5.1. Ideally, results obtained from the different models should not conflict. For
the SCM, HCW, DI and CIM, one can re-implement these methods excluding
control units that received large coefficients (or weights for the SCM) in the first
implementation, to provide reassurance that results are not driven by a single
control unit.

7.3. Connections with matching

Our review does not cover matching methods even though some forms of match-
ing are suitable for application in the setting that we are investigating. This is
because we view the SCM as the best suited matching method in this setting:
by using data on all control units it attempts to construct an exact match for
the treated unit6.

However, matching can be used prior to applying the methods described in
this paper, to restrict the pool of controls to those with similar characteristics to
the treated units. This approach has been adopted for the DID (O’Neill et al.,
2016), LFM (Gobillon and Magnac, 2016) and CIM (Schmitt et al., 2018). For
the DID method, Ryan et al. (2018) showed that matching can reduce biases that
occur when the parallel trends assumption is violated. For a detailed overview
of the matching literature in the context of causal inference with observational
data, see Rosenbaum (2002, Chapter 10) or Stuart (2010). See Imai, Kim and
Wang (2018) for matching techniques for time-series data.

5Although one might argue that for the HCW, DI and CIM, the effect of covariates is
taken into account through the outcomes of control units which the covariates affect.

6HCW, DI and CIM also attempt to construct an exact match for the treated units.
However, these methods may rely on extrapolation, which is not done in matching approaches.
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8. Proposals for future research

There remain several open problems. Most existing methods do not fully ac-
count for autocorrelation in the outcome of the treated unit measured over
time. In particular, the treatment effect estimates obtained by any of the meth-
ods except for the CIM are invariant to permutation of the time labels in the
pre-intervention period. There may be potential gains in efficiency by extending
these methods to account for structure over time.

The SCM, HCW, DI and CIM assume a linear relationship between the out-
come of the treated unit and the outcomes of control units but this is a strong
assumption. Carvalho, Masini and Medeiros (2018) account for non-linear re-
lationships by regressing yn1+1,t on transformations of the outcomes of con-
trol units but it is hard to choose which transformations to use. Therefore, it
would be worth estimating the relationship between yn1+1,t and the outcomes
of the control units non-parametrically using, for example, machine learning
techniques.

The methods we have described are designed to be applied to a single out-
come. In the majority of applications there are several outcomes that may be af-
fected by the intervention. For example, in the case study of Section 2.3 we have
considered per-capita GDP but there are alternative indexes, such as the unem-
ployment rate, which we could instead be examined. Modelling of all outcomes
jointly may provide a more precise estimate of the causal effect of intervention
on any one of them. Although Robbins, Saunders and Kilmer (2017) provide an
extension of the SCM method for multiple outcomes, the other methods could
also benefit from being extended to handle multiple outcomes.

Another possible direction for future research is to develop models that take
into account geographic location of units. In many applications, one might ex-
pect the outcomes on units with spatial proximity to be correlated. It would
be useful to develop models that incorporate these correlations. Lopes, Salazar
and Gamerman (2008) present a Bayesian LFM that models the correlation be-
tween the loadings of any two units as a function of the distance between these
units. Their model could be used to estimate intervention effects with minor
modifications.

We will investigate some of these problems in our future work.
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Appendix A: Unbiasedness and consistency

Unbiased or asymptotically unbiased estimates of τit can be obtained with all
four methods described in this review. For each one of them, we now describe
the sampling framework and the main assumptions for the unbiasedness to hold.
For ease of exposition, we choose not to list some technical regularity conditions
required for the results presented to hold; readers can refer to the original pub-
lications for these.

DID. For the linear DID estimator, we make use of some well-known results
for OLS regression, see e.g. Wooldridge (2013). If the DID model of Equation
(3.1) holds then τ̂DID

it is unbiased, that is,

E
[
τ̂DID
it

]
= τit,

where the expectation is taken with respect to the conditional distribution of ε =
(ε11, . . . , ε1T , . . . , εn1, . . . , εnT )

>
given Sn, where Sn = (x>11, . . . ,x

>
1T , κ1,d

>
1 , . . . ,

x>n1, . . . ,x
>
nT , κn,d

>
n )>. That is, Sn is common to the repeated samples but the

errors ε differ in each repeated sample.
LFM. Xu (2017) study the properties of τ̂XU

it . If the LFM of Equation (3.2)
holds then under some regularity conditions (which include weak serial correla-
tion of the error terms within each unit) τ̂XU

it is asymptotically unbiased, that
is

E
[
τ̂XU
it

]
→ τit

as n1 →∞ and T1 →∞, where the expectation is taken with respect to the con-
ditional distribution of ε given Sn, where Sn = (x>11, . . . ,x

>
1T ,λ

>
1 ,d

>
1 , . . . ,x

>
n1,

. . . ,x>nT ,λ
>
n ,d

>
n ,f

>
1 , . . . ,f

>
T )>. Intuitively, we require that both n1 and T1 are

large in order to accurately estimate factors at each post-intervention time point
and loadings for the treated units, respectively, which we need in order to predict
the counterfactual outcomes.

Synthetic control-type approaches. These methods do not assume a generative
model, but rather exploit linear relationships between the data on the treated
and control units in order to construct a counterfactual. Such relationships may
arise from various data-generating mechanisms. Hence, their unbiasedness prop-
erties can be studied under any of these.

Assume that the LFM

yit = y
(0)
it + τitdit

y
(0)
it = µt + x>i θt + λ>i f t + εit, (A.1)

holds, the error terms εit have zero mean given Sn and εit ⊥⊥ εjs given Sn,
(i 6= j and t 6= s), where µt are time fixed-effects, xi = (xi1, . . . , xiK)> are time-
invariant covariates and Sn = (x>1 ,λ

>
1 ,d

>
1 , . . . ,x

>
n ,λ

>
n ,d

>
n ,f

>
1 , . . . ,f

>
T , µ1, . . . ,

µt)
>. Abadie, Diamond and Hainmueller (2010) show that if there exist$1, . . . , $n1
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such that

λn1+1 =

n1∑
i=1

$iλi

xn1+1 =

n1∑
i=1

$ixi, (A.2)

then under some regularity conditions τ̂SCn1+1,t is asymptotically unbiased, i.e.

E
[
τ̂SCn1+1,t

]
→ τn1+1,t

as T1 →∞, where the expectation is taken with respect to the conditional dis-
tribution of ε given Sn. The conditions (A.2) imply that both observed (xn1+1)
and unobserved (λn1+1) characteristics of the treated unit lie in the convex hull
of the characteristics of control units, thus allowing interpolation. When this is
not true (i.e. when such $1, . . . , $n1 do not exist, thus forcing extrapolation to
be used), the SCM estimator will be generally biased (Gobillon and Magnac,
2016; Ferman and Pinto, 2016).

Assume the following variant of the LFM:

y
(0)
it = κi + λ>i f t + εit, (A.3)

where κi are unit fixed effects and εit are zero-mean, homoscedastic error terms
which are independent of fs for all t, s and independent of djs for all i 6= j.
Hsiao, Ching and Wan (2012) prove that if there exist γ1, . . . , γn1

such that

λn1+1,j =

n1∑
i=1

γiλij (A.4)

is true for every j = 1, . . . , J (along with some technical conditions), then τ̂HCW
n1+1,t

is unbiased, i.e.
E
[
τ̂HCW
n1+1,t

]
= τn1+1,t,

where the expectation is taken with respect to the conditional distribution of ε
given Sn, where Sn = (κ1,λ

>
1 ,d

>
1 , . . . , κn,λ

>
n ,d

>
n ,f

>
1 , . . . ,f

>
T )>.

CIM. If the CIM of Equations (3.7) is the true data-generating model and
the prior on the vector of model parameters ϑ = (β1, . . . , βn1

, σ2
ε , σ

2
η, σ

2
ζ )> as-

signs non-zero probability to its true value, then the posterior distribution of ϑ
will converge to a point mass on its true value as T1 → ∞. Consequently, the

posterior mean of y
(0)
n1+1,t will converge to its true value, and so τ̂CIM

n1+1,t is an
asymptotically unbiased estimate of of τn1+1,t (as T1 →∞).

The above results concern (asymptotic) unbiasedeness. Consistent estimation
of τit is not feasible, unless it is assumed that τit = τi or τit = τt, i.e. that
the unit-specific treatment effects are the same at all post-intervention times or
(when n > n1+1) are the same at each time for all treated units. This is because,

regardless of how many units and timepoints there are, y
(1)
it is only measured
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once for each i > n1 and t > T1. It is not uncommon to assume that τit = τ
(e.g. Angrist and Pischke (2009); Gobillon and Magnac (2016)). When this is
done, existing results for the linear DID model (e.g. Wooldridge (2013)) and the
LFM method of Xu (2017) (e.g. Bai (2009)) imply consistency of the estimator
of τ when either of those methods are used. These results, though, require some
additional technical assumptions to hold. Alternatively, a looser structure could
be imposed on τit. For example, HCW assume that τn1+1,T1+1, . . . , τn1+1,T , is an
auto-regressive moving-average process. This enables the mean of this process
to be consistently estimated.

Appendix B: Real data supplementary analysis

In this section, we provide supplementary material for the data analysis of Sec-
tion 6. Figure 4 shows the parallel trends diagnostic check described in Section
5.2. The estimated factor loadings obtained by applying the LFM method of Xu
(2017) are shown in Table 2. Finally, the r statistics obtained by applying the
empirical test of Abadie, Diamond and Hainmueller (2015) with the SCM and
HCW methods are shown in Table 3.

Parallel trends empirical test
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Fig 4: Difference over time between West Germany’s per capita GDP and the
average of control countries. Rather than being constant, the difference increases
over time thus suggesting that the DID parallel trends assumption might not
be plausible.
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Factor
Country 1 2 3 4 5 6 7 8 9 10

West Germany -0.75 -0.16 0.29 0.26 -0.15 -0.12 -0.80 0.35 -0.42 -1.42
Australia -0.14 0.47 0.91 -0.55 1.71 -0.62 -0.34 -0.64 -0.25 0.93

Austria -0.50 -0.52 -0.17 0.18 -0.69 -1.06 0.26 0.45 -2.28 0.21
Belgium -0.22 -0.46 0.10 1.02 -0.44 -0.32 0.98 1.61 -0.43 -0.20

Denmark -0.34 0.24 0.21 -1.34 0.09 -1.01 -0.93 -0.25 1.24 0.02
France -0.14 -0.33 0.05 0.11 -0.45 -0.18 -0.95 1.12 -0.19 -0.92
Greece 1.95 -0.02 1.52 1.10 -0.55 -0.88 0.17 -1.99 -0.01 -1.54

Italy -0.03 -0.72 -0.62 -0.65 -0.39 -0.26 -0.49 0.48 -0.85 -1.14
Japan -0.33 -1.18 -2.04 -0.30 -0.07 -0.53 2.30 -1.28 1.15 0.12

Netherlands -0.45 0.31 0.02 1.30 0.07 -1.68 -0.83 1.08 1.99 0.74
New Zealand 1.32 -0.12 1.40 -2.35 -0.26 0.35 1.24 1.10 0.14 0.96

Norway -1.60 2.55 0.29 -0.15 -2.04 0.83 0.53 -0.70 0.08 -0.05
Portugal 1.73 0.49 -2.18 -0.58 -0.53 0.92 -1.74 -0.17 0.02 0.14

Spain 0.98 0.85 -0.44 1.57 0.74 0.54 0.37 -0.16 -0.93 2.16
Switzerland -0.71 -2.19 1.10 0.70 -0.71 2.23 -0.77 -0.49 0.77 0.77

UK 0.10 0.89 -0.10 0.49 1.92 1.58 0.88 1.04 0.61 -1.92
USA -1.63 -0.24 -0.05 -0.55 1.58 0.07 -0.68 -1.20 -1.05 -0.28

Table 2
Factor loadings for the 17 countries, as obtained by fitting the LFM of Xu (2017) to the

West German reunification data.

Method
Country SCM HCW

West Germany 30.72 71.53
Australia 6.86 16.83
Austria 4.24 45.04
Belgium 4.52 16.90
Denmark 6.25 21.35
France 8.00 52.07
Greece 7.83 18.72
Italy 20.48 46.72
Japan 4.87 29.73
Netherlands 20.44 36.83
New Zealand 5.16 16.99
Norway 13.78 77.36
Portugal 0.70 57.69
Spain 7.53 14.32
Switzerland 2.36 29.75
UK 6.94 30.27
USA 5.97 42.55

Table 3
r statistics obtained by applying the empirical test of Abadie, Diamond and Hainmueller

(2015) to the German reunification data, for both the SCM and HCW methods.
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