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Abstract
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dimensional case. The number of parameters of the model increases logarithmically with
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approximation to the quasi-maximum likelihood estimator (QMLE). We establish rates of
convergence and central limit theorems (CLT) for our estimators in the large dimensional
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1 Introduction

Covariance and correlation matrices are of great importance in many fields. In finance, they
are a key element in portfolio choice and risk management. In psychology, scholars have long
assumed that some observed variables are related to the key unobserved traits through a factor
model, and then use the covariance matrix of the observed variables to deduce properties of
the latent traits. Anderson (1984) is a classic statistical reference that studies the estimation
of covariance matrices and hypotheses testing about them in the low dimensional case (i.e., the
dimension of the covariance matrix, n, is small compared with the sample size T ).

More recent work has considered the case where n is large along with T . This is because many
datasets now used are large. For instance, as finance theory suggests that one should choose a
well-diversified portfolio that perforce includes a large number of assets with non-zero weights,
investors now consider many securities when forming a portfolio. The listed company Knight
Capital Group claims to make markets in thousands of securities worldwide, and is constantly
updating its inventories/portfolio weights to optimize its positions. If n/T is not negligible
when compared to zero but still less than one, we call this the large dimensional case in this
article. (We reserve the phrase ”the high dimensional case” for n > T .) The correct theoretical
framework to study the large dimensional case is to use the joint asymptotics (i.e., both n and
T diverge to infinity simultaneously albeit subject to some restriction on their relative growth
rate), not the usual asymptotics (i.e., n fixed, T tends to infinity alone). Standard statistical
methods such as principal component analysis (PCA) and canonical-correlation analysis (CCA),
do not directly generalize to the large dimensional case; applications to, say, portfolio choice,
face considerable difficulties (see Wang and Fan (2016)).

There are many new methodological approaches for the large dimensional case, for example
Ledoit and Wolf (2003), Bickel and Levina (2008), Onatski (2009), Fan, Fan, and Lv (2008),
Ledoit and Wolf (2012) Fan, Liao, and Mincheva (2013), and Ledoit and Wolf (2015). Yao,
Zheng, and Bai (2015) gave an excellent account of the recent developments in the theory and
practice of estimating large dimensional covariance matrices. Generally speaking, the approach
is either to impose some sparsity on the covariance matrix, meaning that many elements of the
covariance matrix are assumed to be zero or small, thereby reducing the number of parameters
to be estimated, or to use some device, such as shrinkage or a factor model, to reduce dimension.
Most of this literature assumes i.i.d. data.

We consider a parametric model for the covariance or correlation matrix - the Kronecker
product model. For a real symmetric, positive definite n × n matrix ∆, a Kronecker product
model is a family of n× n matrices {∆∗}, each of which has the following structure:

∆∗ = ∆∗1 ⊗∆∗2 ⊗ · · · ⊗∆∗v, (1.1)

where ∆∗j is an nj × nj dimensional real symmetric, positive definite sub-matrix such that
n = n1×· · ·×nv. We require that nj ∈ Z and nj ≥ 2 for all j; the {nj}vj=1 need not be distinct.
We suppose that ∆ is the covariance or correlation matrix of an observable series with sample
size T and {∆∗} is a model for ∆.

We study the Kronecker product model in the large dimensional case. Since n tends to
infinity in the joint asymptotics, there are two main cases: (1) nj → ∞ for j = 1, . . . , v and
v is fixed; (2) {nj}vj=1 are all fixed and v → ∞. We shall study case (2) in detail because of
its dimensionality reduction property. In this case, the number of parameters of a Kronecker
product model grows logarithmically with n. In particular, we show that a Kronecker product
model induces a type of sparsity on the covariance or correlation matrix: The logarithm of a
Kronecker product model has many zero elements, so that sparsity is explicitly imposed on the
logarithm of the covariance or correlation matrix - we call this log sparsity.

The Kronecker product model has a number of intrinsic advantages for applications. The
eigenvalues of a Kronecker product are products of the eigenvalues of its sub-matrices, which
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in the simplest case are obtainable in closed form. In the large dimensional case the eigenvalue
distribution can be quite general, and there is no spikedness property as in strict factor models
(Johnstone and Onatskiy (2018)). The inverse covariance matrix, its determinant, and other
key quantities are easily obtained from the corresponding quantities of the sub-matrices, which
facilitates computation and analysis.

We primarily focus on correlation matrices rather than covariance matrices. This is partly
because the asymptotic theory for the correlation matrix model nests that for the covariance
matrix model, and partly because this will allow us to adopt a more flexible approach to
approximating a general covariance matrix: We can allow the diagonal elements of the covariance
matrix to be unrestricted (and they can be estimated by other well-understood methods).
In practice, fitting a correlation matrix with a Kronecker product model tends to perform
better than doing so for its corresponding covariance matrix. To avoid confusion, we would
like to remark that if a Kronecker product model is correctly specified for a correlation matrix,
its corresponding covariance matrix need not have a Kronecker product structure, and vice
versa. In other words, log sparsity on a correlation matrix does not necessarily imply that its
corresponding covariance matrix has log sparsity, and vice versa.

We show that the logarithm of a Kronecker product model is linear in its unknown param-
eters. We use this as a basis to propose a minimum distance (MD) estimator that is in closed
form. We establish a crude upper bound rate of convergence for the MD estimator under the
joint asymptotics, but we anticipate that this bound could be improved with better technol-
ogy and we leave this for future research. There is a large literature on the optimal rate of
convergence for estimation of high-dimensional covariance matrices and inverse (i.e., precision)
matrices (see Cai, Zhang, and Zhou (2010) and Cai and Zhou (2012)). Cai, Ren, and Zhou
(2014) gave a nice review on those recent results. However their optimal rates are not applica-
ble to our setting because here sparsity is not imposed on the covariance or correlation matrix,
but on its logarithm. In addition, we allow for weakly dependent data, whereas the above cited
papers all assume i.i.d. structures.

Next, we discuss a quasi-maximum likelihood estimator (QMLE) and a one-step estimator,
which is an approximate QMLE. Under the joint asymptotics, we provide feasible central limit
theorems (CLT) for the MD and one-step estimators, the latter of which is shown to achieve
the parametric efficiency bound (Cramer-Rao lower bound) in the fixed n case. When choosing
the weighting matrix optimally, we also show that the optimally-weighted MD and one-step
estimators have the same asymptotic distribution. These CLTs are of independent interest
and contribute to the literature on the large dimensional CLTs (see Huber (1973), Yohai and
Maronna (1979), Portnoy (1985), Mammen (1989), Welsh (1989), Bai and Wu (1994), Saikkonen
and Lutkepohl (1996) and He and Shao (2000)). Last, we give a specification test which allows
us to test whether a Kronecker product model is correctly specified.

We discuss in Section 2 what kind of data gives rise to a Kronecker product model. However,
a given covariance or correlation matrix might not exactly correspond to a Kronecker product;
in which case a Kronecker product model is misspecified, so ∆ /∈ {∆∗}. The previous literature
on Kronecker product models did not touch this, but we shall demonstrate in this article that
a Kronecker product model is a very good approximating device to general covariance or corre-
lation matrices, by trading off variance with bias. We show that for a given Kronecker product
model there always exists a member in it that is closest to the covariance or correlation matrix
in some sense to be made precise shortly.

We provide some simulation evidence that the Kronecker product model works very well
when it is correctly specified. In the empirical study, we apply the Kronecker product model
to S&P500 daily stock returns and compare it with Ledoit and Wolf (2004)’s linear shrinkage
estimator as well as with Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator. We
find that the minimum variance portfolio implied by a Kronecker product model is almost as
good as that constructed from Ledoit and Wolf (2004)’s linear shrinkage estimator. In future
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work we aim to improve the practical performance of our method by combining it with other
approaches such as factor models and by improving the estimation methodology.

1.1 Literature Review

The Kronecker product model has been previously considered in the psychometric literature
(see Campbell and O’Connell (1967), Swain (1975), Cudeck (1988), Verhees and Wansbeek
(1990) etc). In a multitrait-multimethod (MTMM) context, ”multi-mode” data give rise to a
Kronecker product model naturally (we will further discuss this in Section 2). Verhees and
Wansbeek (1990) outlined several estimation methods of the model based on the least squares
and maximum likelihood principles, and provided large sample variances under assumptions of
Gaussianity and fixed n. There is a growing Bayesian and Frequentist literature on multiway
array or tensor datasets, where a Kronecker product model is commonly employed. See for
example Akdemir and Gupta (2011), Allen (2012), Browne, MacCallum, Kim, Andersen, and
Glaser (2002), Cohen, Usevich, and Comon (2016), Constantinou, Kokoszka, and Reimherr
(2015), Dobra (2014), Fosdick and Hoff (2014), Gerard and Hoff (2015), Hoff (2011), Hoff
(2015), Hoff (2016), Krijnen (2004), Leiva and Roy (2014), Leng and Tang (2012), Li and
Zhang (2016), Manceura and Dutilleul (2013), Ning and Liu (2013), Ohlson, Ahmada, and von
Rosen (2013), Singull, Ahmad, and von Rosen (2012), Volfovsky and Hoff (2014), Volfovsky
and Hoff (2015), and Yin and Li (2012). In this literature, they also work with fixed n.

In the spatial literature, there are a number of studies that consider a Kronecker product
structure for the correlation matrix of a random field, see for example Loh and Lam (2000).

This article is the first one studying Kronecker product models in the large dimensional case.
Our work is also among the first exploiting log sparsity; the other is Battey and Fan (2017),
although there are a few differences. First, their log sparsity is an assumption from the onset, in
a similar spirit as Bickel and Levina (2008), whereas our log sparsity is induced by a Kronecker
product model. Second, they work with covariance matrices while we shall focus on correlation
matrices. Even if we look at covariance matrices for the purpose of comparison, the Kronecker
product model imposes different sparsity restrictions - as compared to those imposed by Battey
and Fan (2017) - on the elements of the logarithm of the covariance matrix. Third and perhaps
most important, we look at different estimators.

1.2 Roadmap

The rest of the article is structured as follows. In Section 2 we lay out the Kronecker product
model in detail. Section 3 introduces the MD estimator, gives its asymptotic properties, and
includes a specification test, while Section 4 discusses the QMLE and one-step estimator, and
provides the asymptotic properties of the one-step estimator. Section 5 examines the issue of
model selection. Section 6 provides numerical evidence for the model as well as an empirical
application. Section 7 concludes. Major proofs are to be found in Appendix; the remaining
proofs are put in Supplementary Material (SM in what follows).

1.3 Notation

Let A be an m × n matrix. Let vecA denote the vector obtained by stacking the columns of
A one underneath the other. The commutation matrix Km,n is an mn×mn orthogonal matrix
which translates vecA to vec(Aᵀ), i.e., vec(Aᵀ) = Km,n vec(A). If A is a symmetric n×n matrix,
its n(n−1)/2 supradiagonal elements are redundant in the sense that they can be deduced from
symmetry. If we eliminate these redundant elements from vecA, we obtain a new n(n+1)/2×1
vector, denoted vechA. They are related by the full-column-rank, n2 × n(n+ 1)/2 duplication
matrix Dn: vecA = Dn vechA. Conversely, vechA = D+

n vecA, where D+
n is n(n + 1)/2 × n2

and the Moore-Penrose generalized inverse of Dn. In particular, D+
n = (Dᵀ

nDn)−1Dᵀ
n because
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Dn is full-column-rank. We use vecl(A) to denote the vectorization operator of the lower off-
diagonal elements of A (so this operator excludes the diagonal elements unlike the related vech(·)
operator).

For x ∈ Rn, let ‖x‖2 :=
√∑n

i=1 x
2
i and ‖x‖∞ := max1≤i≤n |xi| denote the Euclidean norm

and the element-wise maximum norm, respectively. Let maxeval(·) and mineval(·) denote the
maximum and minimum eigenvalues of some real symmetric matrix, respectively. For any real
m × n matrix A = (ai,j)1≤i≤m,1≤j≤n, let ‖A‖F := [tr(AᵀA)]1/2 ≡ [tr(AAᵀ)]1/2 ≡ ‖ vecA‖2 and
‖A‖`2 := max‖x‖2=1 ‖Ax‖2 ≡

√
maxeval(AᵀA) denote the Frobenius norm and spectral norm

(`2 operator norm) of A, respectively. Note that ‖ · ‖∞ can also be applied to matrix A, i.e.,
‖A‖∞ = max1≤i≤m,1≤j≤n |ai,j |; however ‖ · ‖∞ is not a matrix norm so it does not have the
submultiplicative property of a matrix norm.

Consider two sequences of n×n real random matrices XT and YT . Notation XT = Op(‖YT ‖),
where ‖ · ‖ is some matrix norm, means that for every real ε > 0, there exist Mε > 0, Nε > 0
and Tε > 0 such that for all n > Nε and T > Tε, P(‖XT ‖/‖YT ‖ > Mε) < ε. Notation

XT = op(‖YT ‖), where ‖ · ‖ is some matrix norm, means that ‖XT ‖/‖YT ‖
p−→ 0 as n, T → ∞

simultaneously. Landau notation in this article, unless otherwise stated, should be interpreted
in the sense that n, T →∞ simultaneously.

Let a∨b and a∧b denote max(a, b) and min(a, b), respectively. For x ∈ R, let bxc denote the
greatest integer strictly less than x and dxe denote the smallest integer greater than or equal
to x. Notation σ(·) defines sigma algebra.

For matrix calculus, what we adopt is called the numerator layout or Jacobian formulation;
that is, the derivative of a scalar with respect to a column vector is a row vector.

2 The Kronecker Product Model

In this section we provide more details on the model. Consider an n-dimensional weakly station-
ary time series vector yt, where µ := Eyt and covariance matrix Σ := E[(yt − µ)(yt − µ)ᵀ]. Let
D be the diagonal matrix containing the diagonal entries of Σ.1 The correlation matrix of yt,
denoted Θ, is Θ := D−1/2ΣD−1/2. A Kronecker product model for the covariance or correlation
matrix is given by (1.1). The factorization n = n1 × · · · × nv could be the prime factorization,
which exists for any integer n, or it could be an aggregation of that. For example, if n = 28,
one factorization is 2× 2× · · ·× 2, called the minimal factorization, at the other extreme 28× 1
is the maximal factorization (we do not consider the maximal factorization in this article). One
also has 4× 4× 4× 4 and 2× 16× 2× 4 etc. Highly composite numbers such as 28 offer many
possible factorizations, but if n is not composite or not composite enough, one can add a vector
of pseudo variables to the system until the final dimension is composite enough.2

Let ∆ denote Σ or Θ according to the modelling purpose. If ∆ ∈ {∆∗}, we say that the
Kronecker product model {∆∗} is correctly specified. Otherwise the Kronecker product model
{∆∗} is misspecified. We first make clearer when a Kronecker product model is correctly specified
(see Verhees and Wansbeek (1990) and Cudeck (1988) for more discussion). A Kronecker
product arises when data have some multiplicative array structure. For example, suppose that
uj,k are error terms in a panel regression model with j = 1, . . . , J and k = 1, . . . ,K. The
interactive effects model of Bai (2009) is that uj,k = γjfk, which implies that u = γ⊗f, where u
is the JK×1 vector containing all the elements of uj,k, γ = (γ1, . . . , γJ)ᵀ, and f = (f1, . . . , fK)ᵀ.

1Matrix D should not be confused with the duplication matrix Dn defined in Notation.
2It is recommended to add a vector of independent variables zt ∼ N (0, Ik) such that (yᵀt , z

ᵀ
t )ᵀ is an n′ × 1

random vector with n′ × n′ correlation matrix

Θ =

[
Θy 0
0 Ik

]
.
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Suppose that γ, f are random, where γ is independent of f , and both vectors have mean zero.
Then,

E[uuᵀ] = E[γγᵀ]⊗ E[ffᵀ].

In this case the covariance matrix of u is a Kronecker product of two sub-matrices. If one
dimension were time and the other were firm, then this implies that the covariance matrix of u
is the product of a covariance matrix representing cross-sectional dependence and a covariance
matrix representing the time series dependence.

We can think of our more general model (1.1) arising from multi-index data with v multiplica-
tive factors. Multiway arrays are one such example as each observation has v different indices
(see Hoff (2015)). Suppose that ui1,i2,...,iv = ε1,i1ε2,i2 · · · εv,iv , ij = 1, . . . , nj for j = 1, . . . , v, or
in vector form

u = (u1,1,...,1, . . . , un1,n2,...,nv)
ᵀ = ε1 ⊗ ε2 ⊗ · · · ⊗ εv,

where the factor εj = (εj,1, . . . , εj,nj )
ᵀ is a mean zero random vector of length nj with covariance

matrix Σj for j = 1, . . . , v, and in addition the factors ε1, . . . , εv are mutually independent. Then

Σ = E[uuᵀ] = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σv.

We hence see that the covariance matrix is a Kronecker product of v sub-matrices. Such
multiplicative effects may be a valid description of a data generating process.3

In earlier versions of this article we emphasized the Kronecker product model for the co-
variance matrix. We now focus primarily on the correlation matrix for the reasons mentioned
in the introduction and leave the diagonal variance matrix D unrestricted. For the present
discussion we assume that D (as well as µ) is known. A Kronecker product model for Θ is
given by (1.1) with ∆∗ and {∆∗j}vj=1 replaced by Θ∗ and {Θ∗j}vj=1, respectively. Since Θ is a
correlation matrix, this implies that the diagonal entries of Θ∗j must be the same, although
this diagonal entry could differ as j varies (so long as the diagonal entries of the implied Θ∗

are one). Without loss of generality, we may impose a normalization constraint that all the
diagonal entries of sub-matrices {Θ∗j}vj=1 are equal to one.

The Kronecker product model substantially reduces the number of parameters to estimate.
In an unrestricted correlation matrix, there are n(n−1)/2 parameters, while a Kronecker product
model has only

∑v
j=1 nj(nj − 1)/2 parameters. As an extreme illustration, when n = 256, the

unrestricted correlation matrix has 32,640 parameters while a Kronecker product model of
factorization 256 = 28 has only 8 parameters! Since we do not restrict the diagonal matrix
we have an additional n variance parameters,4 so overall the correlation matrix version of the
model has more parameters and more flexibility than the covariance matrix version of the
model. The Kronecker product model induces sparsity. Specifically, although Θ∗ is not sparse,
the matrix log Θ∗ is sparse, where log denotes the (principal) matrix logarithm defined through
the eigendecomposition of a real symmetric, positive definite matrix (see Higham (2008) p20
for a definition). This is due to a property of Kronecker products (see Lemma 8.1 in SM 8.1 for
derivation), that

log Θ∗ = log Θ∗1⊗In2⊗· · ·⊗Inv+In1⊗log Θ∗2⊗In3⊗· · ·⊗Inv+· · ·+In1⊗In2⊗· · ·⊗log Θ∗v, (2.1)

3For example, in portfolio choice, one might consider, say, 250 equity portfolios constructed by intersections
of 5 size groups (quintiles), 5 book-to-market equity ratio groups (quintiles) and 10 industry groups, in the
spirit of Fama and French (1993). For example, one equity portfolio might consist of stocks which are in the
smallest size quintile, largest book-to-market equity ratio quintile, and construction industry simultaneously.
Then a Kronecker product model is applicable either directly to the covariance matrix of returns of these 250
equity portfolios or to the covariance matrix of the residuals after purging other common risk factors such as
momentum.

4These parameters can be estimated in a first step by standard methods.

5



whence we see that log Θ∗ has many zero elements, generated by identity sub-matrices.5 That is,
we can write vech(log Θ∗) = Eθ∗ for some matrix E of zeros and ones and vector θ∗ containing
the unrestricted elements of log Θ∗1, . . . , log Θ∗v.

We next discuss some further identification/parameterization issues. First of all, sub-
matrices {Θ∗j}vj=1 are uniquely identified by the following argument based on the architecture

of Θ∗. Suppose that Θ∗ = Θ̃∗1 ⊗ · · · ⊗ Θ̃∗v for other sub-matrices {Θ̃∗j}vj=1, with diagonal ele-
ments being one, whose dimensions agree with those of {Θ∗j}vj=1. Let ρ∗j,k` and ρ̃∗j,k` denote a

typical off-diagonal element of Θ∗j and Θ̃∗j , respectively (k, ` = 1, . . . , nj , k 6= `). Note that ρ∗j,k`
appears, on its own, in some elements of Θ∗, so does ρ̃∗j,k` in the same positions. We must have
ρ∗j,k` = ρ̃∗j;k` for all k, ` = 1, . . . , nj , k 6= ` and j = 1, . . . , v. Therefore, sub-matrices {Θ∗j}vj=1 are
identified from Θ∗ once {nj}vj=1 are specified, or equivalently {ρ∗j,k` : k, ` = 1, . . . , nj , k 6= `}vj=1

are identified from Θ∗ once {nj}vj=1 are specified. We call {ρ∗j,k` : k, ` = 1, . . . , nj , k 6= `}vj=1

the original parameters of some member Θ∗ in the Kronecker product model. If {Θ∗j}vj=1 are
positive definite correlation matrices, then so is Θ∗.

Second, the matrix logarithm of a correlation matrix has a complicated structure, with its
diagonal elements taking any non-positive values and its off-diagonal elements taking any values
(Archakov and Hansen (2018) Lemma 2). As an illustration, suppose that

Θ∗1 =

 1 0.8 0.5
0.8 1 0.2
0.5 0.2 1

 ,

then

log Θ∗1 =

 −0.75 1.18 0.64
1.18 −0.55 −0.07
0.64 −0.07 −0.17

 .

There are
∑v

j=1 nj(nj + 1)/2 parameters in {log Θ∗j}vj=1; we call these log parameters of some
member Θ∗ in the Kronecker product model. On the other hand, Θ∗ has only

∑v
j=1 nj(nj−1)/2

original parameters. For each Θ∗j , its nj(nj − 1)/2 original parameters completely pin down its

nj(nj+1)/2 log parameters. In other words, there exists a function f : Rnj(nj−1)/2 → Rnj(nj+1)/2

which maps the original parameters to the log parameters. However, when nj > 4, f does not
have a closed form because when nj > 4 the continuous functions which map elements of a
matrix to its eigenvalues have no closed form. When nj = 2, we can solve f by hand (see
Example 2.1).

Example 2.1. Suppose

Θ∗1 =

(
1 ρ∗1
ρ∗1 1

)
.

The eigenvalues of Θ∗1 are 1 + ρ∗1 and 1 − ρ∗1, respectively. The corresponding eigenvectors are
(1, 1)ᵀ/

√
2 and (1,−1)ᵀ/

√
2, respectively. Therefore

log Θ∗1 =

(
1 1
1 −1

)(
log(1 + ρ∗1) 0

0 log(1− ρ∗1)

)(
1 1
1 −1

)
1

2

=

 1
2 log(1− [ρ∗1]2) 1

2 log
(

1+ρ∗1
1−ρ∗1

)
1
2 log

(
1+ρ∗1
1−ρ∗1

)
1
2 log(1− [ρ∗1]2)

 .

5A final property of the Kronecker product model is that it is invariant under the Lie group of transformations
G generated by A1⊗A2⊗ · · · ⊗Av, where Aj are nj ×nj nonsingular matrices (see Browne and Shapiro (1991)).
This structure can be used to characterise the tangent space T of G and to define a relevant equivariance concept
for restricting the class of estimators for optimality considerations.
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Thus

f(ρ) =

(
1

2
log(1− ρ2),

1

2
log
(1 + ρ

1− ρ

)
,
1

2
log(1− ρ2)

)ᵀ

.

Third, there are several ways to achieve identification of {log Θ∗j}vj=1 given log Θ∗ (i.e., iden-
tification of log parameters of Θ∗). We outline two methods. The fill and shrink method
estimates the log parameters without imposing the restrictions implied by that {Θ∗j}vj=1 being
correlation matrices, and then imposes those restrictions afterwards. In this case at the esti-
mation stage, we must impose v − 1 identification restrictions on the log parameters because
in (2.1) the diagonal elements of log Θ∗ are sums of diagonal elements from {log Θ∗j}vj=1 (see
Example 8.2 in SM 8.1). There are several ways to impose these v−1 identification restrictions.
For example, one can set tr(log Θ∗j ) to be some fixed value for j = 1, . . . , v − 1, or one can
set v − 1 diagonal elements of {log Θ∗j}vj=1 to be zero (see Examples 8.1 and 8.2 in SM 8.1 for
illustrations). Then in Theorem A.1 in Appendix A.1 we show that there exists an n(n+1)/2×s
full column rank, deterministic matrix E such that

vech(log Θ∗) = Eθ∗,

where θ∗ ∈ Rs are the unrestricted log parameters of Θ∗, where s :=
∑v

j=1 nj(nj+1)/2−(v−1) =
O(log n). So far we have not imposed those restrictions that {Θ∗j}vj=1 are correlation matri-

ces. Nevertheless, D1/2 exp(log Θ∗)D1/2 will always be a covariance matrix, and one could
re-compute the correlation matrix from D1/2 exp(log Θ∗)D1/2 by re-normalization. Alterna-
tively, one could use minimum distance estimation to shrink exp(log Θ∗j ) to a correlation matrix
for j = 1, . . . , v (see SM 8.2 for a discussion).

On the other hand, the shrink and fill method identifies a subset of unrestricted log param-
eters and then fills in the remainder afterwards. A recent paper of Archakov and Hansen (2018)
proposed a neat way to achieve this. Let θ̃∗j := vecl(log Θ∗j ) and we can identify {θ̃∗j}vj=1 from

vecl(log Θ∗). Then we can use θ̃∗j to uniquely determine the diagonal elements of log Θ∗j by some

function φ : Rnj(nj−1)/2 → Rnj , which can be obtained numerically (in the case nj = 2 there
exists a closed form, see Example 2.1). Archakov and Hansen (2018) gave a concrete algorithm
to do this and established its validity.

We shall use the fill and shrink method in what follows; in particular we set the first
diagonal entry of log Θ∗j to zero for j = 1, . . . , v − 1. To summarise, in order to estimate a
correlation matrix Θ using a Kronecker product model Θ∗, there are two approaches. First, one
can estimate the original parameters using the principle of maximum likelihood (see Section
4.1) or nonlinear minimum distance. Then form an estimate of Θ∗. Second, one can estimate
the unrestricted log parameters θ∗ using the principle of minimum distance (see Section 3) or
maximum likelihood (see Section 4.1). Form an estimate of exp(log Θ∗) and then recover the
estimated correlation matrix using either re-normalization or shrinkage. To study the theoretical
properties of a Kronecker product model in large dimension, the second approach is more
appealing as log parameters are additive from (2.1) while original parameters are multiplicative
in nature; additive objects are easier to analyse theoretically than multiplicative objects.

3 Linear Minimum Distance Estimator

In this section, we define a class of estimators of the (unrestricted) log parameters θ∗ of some
member in the Kronecker product model (1.1), which are linear in the log sample correlation
matrix, and give its asymptotic properties.
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3.1 Estimation

We observe a sample {yt}Tt=1. Define the sample covariance matrix and sample correlation matrix

Σ̂T :=
1

T

T∑
t=1

(yt − ȳ)(yt − ȳ)ᵀ, Θ̂T := D̂
−1/2
T Σ̂T D̂

−1/2
T ,

where ȳ := (1/T )
∑T

t=1 yt and D̂T is a diagonal matrix whose diagonal elements are diagonal

elements of Σ̂T . We show in Appendix A.2 that in the Kronecker product model {Θ∗} there
exists a unique member, denoted by Θ0, which is closest to the correlation matrix Θ in the
following sense:

θ0 = θ0(W ) := arg min
θ∗∈Rs

[vech(log Θ)− Eθ∗]ᵀW [vech(log Θ)− Eθ∗], (3.1)

where W is a n(n + 1)/2 × n(n + 1)/2 symmetric, positive definite weighting matrix which is
free to choose. Clearly, θ0 has the closed form solution θ0 = (EᵀWE)−1EᵀW vech(log Θ). The
population objective function in (3.1) allows us to define a minimum distance (MD) estimator:

θ̂T = θ̂T (W ) := arg min
b∈Rs

[vech(log Θ̂T )− Eb]ᵀW [vech(log Θ̂T )− Eb], (3.2)

whence we can solve
θ̂T = (EᵀWE)−1EᵀW vech(log Θ̂T ). (3.3)

Note that θ0 is the quantity which one should expect θ̂T to converge to in some probabilistic sense
regardless of whether the Kronecker product model {Θ∗} is correctly specified or not. When
{Θ∗} is correctly specified, we have θ0 = (EᵀWE)−1EᵀW vech(log Θ) = (EᵀWE)−1EᵀWEθ =
θ. In this case, θ̂T is indeed estimating the elements of the correlation matrix Θ.

In practice the MD estimator is easy to compute. The matrix EᵀWE is of dimensions
s× s and is highly structured (at least in the diagonal W case). One only needs a user-defined
function in some software to generate the matrix E before one can use formula (3.3) to compute
the MD estimator.6

3.2 Rate of Convergence

We now introduce some assumptions for our theoretical analysis. These conditions are sufficient
but far from necessary.

Assumption 3.1.

(i) For all t, for every a ∈ Rn with ‖a‖2 = 1, there exist absolute constants K1 > 1,K2 >
0, r1 > 0 such that7

E
[
exp

(
K2|aᵀyt|r1

)]
≤ K1.

(ii) The time series {yt}Tt=1 are normally distributed.

Assumption 3.2. There exist absolute constants K3 > 0 and r2 > 0 such that for all h ∈ N

α(h) ≤ exp
(
−K3h

r2
)
,

where α(h) is the α-mixing (i.e., strong mixing) coefficients of yt which are defined by α(0) = 1/2
and for h ∈ N

α(h) := 2 sup
t

sup
A∈σ(··· ,yt−1,yt)

B∈σ(yt+h,yt+h+1,··· )

∣∣P(A ∩B)− P(A)P(B)
∣∣ ,

where σ(·) defines sigma algebra.
6We have written a user-defined function in Matlab which can return E within a few seconds for fairly large

n, say, n = 625. It is available upon request.
7”Absolute constants” mean constants that are independent of both n and T .
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Assumption 3.3.

(i) Suppose n, T →∞ simultaneously, and n/T → 0.

(ii) Suppose n, T →∞ simultaneously, and

n4$4κ6(W )(log5 n) log2(1 + T )

T
= o(1)

where κ(W ) is the condition number of W for matrix inversion with respect to the spectral
norm, i.e., κ(W ) := ‖W−1‖`2‖W‖`2 and $ is defined in Assumption 3.4(ii).

(iii) Suppose n, T →∞ simultaneously, and

(a)
n4$4κ(W )(log5 n) log2(1 + T )

T
= o(1),

(b)
$2 log n

n
= o(1),

where κ(W ) is the condition number of W for matrix inversion with respect to the spectral
norm, i.e., κ(W ) := ‖W−1‖`2‖W‖`2, and $ is defined in Assumption 3.4(ii).

Assumption 3.4.

(i) The minimum eigenvalue of Σ is bounded away from zero by an absolute constant.

(ii) Suppose

mineval

(
1

n
EᵀE

)
≥ 1

$
> 0.

(At most $ = o(n).)

Assumption 3.1(i) is standard in high-dimensional theoretical work (e.g., Fan, Liao, and
Mincheva (2011), Chang, Qiu, Yao, and Zou (2018) etc). In essence it assumes that a random
vector has some exponential-type tail probability (c.f. Lemma A.2 in Appendix A.3), which
allows us to invoke some concentration inequality such as a version of the Bernstein’s inequality
(e.g., Theorem A.2 in Appendix A.5). The parameter r1 restricts the size of the tail of yt - the
smaller r1, the heavier the tail. When r1 = 2, yt is said to be subgaussian, when r1 = 1, yt is
said to be subexponential, and when 0 < r1 < 1, yt is said to be semiexponential.

Needless to say, Assumption 3.1(i) is stronger than a finite polynomial moment assumption
as it assumes the existence of some exponential moment. In a setting of independent observa-
tions, Vershynin (2012) replaced Assumption 3.1(i) with a finite polynomial moment condition
and established a rate of convergence for covariance matrices, which is slightly worse than what
we have in Theorem 3.1(i) for correlation matrices. For dependent data, relaxation of the sub-
gaussian assumption is currently an active research area in probability theory and statistics.
One of the recent work is Wu and Wu (2016) in which they relaxed subgaussianity to a finite
polynomial moment condition in high-dimensional linear models with help of Nagaev-type in-
equalities. Thus Assumption 3.1(i) is likely to be relaxed when new probabilistic tools become
available.

Assumption 3.1(ii), which will only be used in Section 4 for one-step estimation, implies
Assumption 3.1(i) with 0 < r1 ≤ 2. Assumption 3.1(ii) is not needed for the minimum distance
estimation (Theorem 3.2 or 3.3) though.

Assumption 3.2 assumes that {yt}Tt=1 is alpha mixing (i.e., strong mixing) because α(h)→ 0
as h → ∞. In fact, we require it to decrease at an exponential rate. The bigger r2 gets, the
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faster the decay rate and the less dependence {yt}Tt=1 exhibits. This assumption covers a wide
range of time series. It is well known that both classical ARMA and GARCH processes are
strong mixing with mixing coefficients which decrease to zero at an exponential rate (see Section
2.6.1 of Fan and Yao (2003) and the references therein).

Assumption 3.3(i) is for the derivation of a rate of convergence of Θ̂T −Θ in terms of spectral
norm. To establish the same rate of convergence of Σ̂T −Σ in terms of spectral norm, one only
needs n/T → c ∈ [0, 1]. However for correlation matrices, we need n/T → 0. This is because a
correlation matrix involves inverses of standard deviations (see Lemma A.14 in Appendix A.5).

Assumptions 3.3(ii) and (iii) are sufficient conditions for the asymptotic normality of the
minimum distance estimators (Theorems 3.2 and 3.3) and one-step estimator (Theorem 4.2),
respectively. Assumption 3.3(ii) or (iii) necessarily requires n4/T → 0. At first glance, it looks
restrictive, but we would like to emphasize that this is only a sufficient condition. We will have
more to say on this assumption in the discussions following Theorem 3.2.

Assumption 3.4(i) is also standard. This ensures that Θ is positive definite with the mini-
mum eigenvalue bounded away from 0 by an absolute positive constant (see Lemma A.7(i) in
Appendix A.4) and its logarithm is well-defined. Assumption 3.4(ii) postulates a lower bound
for the minimum eigenvalue of EᵀE/n; that is

1√
mineval

(
1
nE

ᵀE
) = O(

√
$).

We divide EᵀE by n because all the non-zero elements of EᵀE are a multiple of n (see Lemma
A.1 in Appendix A.1). In words, Assumption 3.4(ii) says that the minimum eigenvalue of
EᵀE/n is allowed to slowly drift to zero.

The following theorem establishes an upper bound on the rate of convergence for the mini-
mum distance estimator θ̂T . To arrive at this, we restrict r1 and r2 such that 1/r1 + 1/r2 > 1.
However, this is not a necessary condition.

Theorem 3.1.

(i) Suppose Assumptions 3.1(i), 3.2, 3.3(i) and 3.4(i) hold with 1/r1 + 1/r2 > 1. Then

‖Θ̂T −Θ‖`2 = Op

(√
n

T

)
,

where ‖ · ‖`2 is the spectral norm.

(ii) Suppose that ‖Θ̂T − Θ‖`2 < A with probability approaching 1 for some absolute constant
A > 1, then we have

‖ log Θ̂T − log Θ‖`2 = Op(‖Θ̂T −Θ‖`2).

(iii) Suppose Assumptions 3.1(i), 3.2, 3.3(i) and 3.4 hold with 1/r1 + 1/r2 > 1. Then

‖θ̂T − θ0‖2 = Op

(√
n$κ(W )

T

)
,

where ‖·‖2 is the Euclidean norm, κ(W ) is the condition number of W for matrix inversion
with respect to the spectral norm, i.e., κ(W ) := ‖W−1‖`2‖W‖`2, and $ is defined in
Assumption 3.4(ii).

Proof. See Appendix A.3.
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Theorem 3.1(i) provides a rate of convergence of the spectral norm of Θ̂T − Θ, which is a
stepping stone for the rest of theoretical results. This rate is the same as that of ‖Σ̂T − Σ‖`2 .
The rate

√
n/T is optimal in the sense that it cannot be improved without a further structural

assumption on Θ or Σ.
Theorem 3.1(ii) is of independent interest as it relates ‖ log Θ̂T − log Θ‖`2 to ‖Θ̂T −Θ‖`2 . It

is due to Gil’ (2012).
Theorem 3.1(iii) gives a rate of convergence of the minimum distance estimator θ̂T . Note

that θ0 are log parameters of the member in the Kronecker product model, which is closest to
Θ in the sense discussed earlier. For sample correlation matrix Θ̂T , the rate of convergence of
‖ vec(Θ̂T−Θ)‖2 is

√
n2/T (square root of a sum of n2 terms each of which has a convergence rate

1/T ). Thus the minimum distance estimator θ̂T of the Kronecker product model converges faster
provided $κ(W ) is not too large, in line with the principle of dimension reduction. However,
given that the dimension of θ0 is s = O(log n), one would conjecture that the optimal rate of
convergence for θ̂T should be

√
log n/T . In this sense, Theorem 3.1(iii) does not demonstrate the

full advantages of a Kronecker product model. Because of the severe non-linearity introduced
by the matrix logarithm it is a challenging problem to prove a faster rate of convergence for
‖θ̂T − θ0‖2.

3.3 Asymptotic Normality

We define yt’s natural filtration Ft := σ(yt, yt−1, . . . , y1) and F0 = {∅, ∅c}.

Assumption 3.5.

(i) Suppose that {yt − µ,Ft} is a martingale difference sequence; that is E[yt − µ|Ft−1] = 0
for all t = 1, . . . , T .

(ii) Suppose that {ytyᵀt − E[yty
ᵀ
t ],Ft} is a martingale difference sequence; that is

E
[
yt,iyt,j − E[yt,iyt,j ]|Ft−1

]
= 0

for all i, j = 1, . . . , n, t = 1, . . . , T .

Assumption 3.5 allows us to establish inference results within a martingale framework. Out-
side this martingale framework, one encounters the issue of long-run variance whenever one tries
to get some inference result. This is particularly challenging in the large dimensional case and
we hence shall not consider it in this article.

To derive the asymptotic normality of the minimum distance estimator, we consider two
cases

(i) µ is unknown but D is known;

(ii) both µ and D are unknown.

We will derive the asymptotic normality of the minimum distance estimator for both these
cases. We first comment on the plausibility or relevance of case (i). We present five situa-
tions/arguments to show that case (i) is relevant and these are by no means exhaustive. First,
one could use higher frequency data to estimate the individual variances and thereby utilise
a very large sample size. But that is not an option for estimating correlations because of the
non-synchronicity problem, which is acute in the large dimensional case (Park, Hong, and Lin-
ton (2016)). Second, one could have unbalanced low frequency data meaning that each firm
has a long time series but they start and finish at different times such that the overlap, which
is relevant for estimation of correlations, can be quite a bit smaller. In that situation one
might standardise marginally using all the individual time series data and then estimate pair-
wise correlations using the smaller overlapping data. Third, we could have a global parametric
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model for D and µ, but a local (in time) Kronecker product model for correlations, i.e., Θ(u)
varies with rescaled time u = t/T . In this situation, the initial estimation of D and µ can
be done at a faster rate than estimation of the time varying correlation Θ(u), so effectively D
and µ could be treated as known quantities. Fourth, case (i) reflects our two-step estimation
procedure where variances are estimated first without imposing any model structure. This is
a common approach in dynamic volatility model estimation such as the DCC model of Engle
and Sheppard (2001) and the GO-GARCH model (van der Weide (2002)). Indeed, in many of
the early articles in that literature standard errors for dynamic parameters of the correlation
process were constructed without regard to the effect of the initial procedure. Finally, we note
that theoretically estimation of µ and D is well understood even in the high dimensional case,
so in keeping with much practice in the literature we do not emphasize estimation of µ and D
again.

Define the following n2 × n2 dimensional matrix H:

H :=

∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt.

Define also the n× n and n2 × n2 matrices, respectively:

Σ̃T :=
1

T

T∑
t=1

(yt − µ)(yt − µ)ᵀ. (3.4)

V := var
(

vec
[
(yt − µ)(yt − µ)ᵀ

])
= E

[
(yt − µ)(yt − µ)ᵀ ⊗ (yt − µ)(yt − µ)ᵀ

]
− E

[
(yt − µ)⊗ (yt − µ)

]
E
[
(yt − µ)ᵀ ⊗ (yt − µ)ᵀ

]
.

Since x 7→ (dxne, x − b
x
ncn) is a bijection from {1, . . . , n2} to {1, . . . , n} × {1, . . . , n}, it is easy

to show that the (a, b)th entry of V is

Va,b ≡ Vi,j,k,` = E[(yt,i−µi)(yt,j−µj)(yt,k−µk)(yt,`−µ`)]−E[(yt,i−µi)(yt,j−µj)]E[(yt,k−µk)(yt,`−µ`)],

where µi = Eyt,i (similarly for µj , µk, µ`), a, b ∈ {1, . . . , n2} and i, j, k, ` ∈ {1, . . . , n}. In the
special case of normality, V = 2DnD

+
n (Σ⊗ Σ) (Magnus and Neudecker (1986) Lemma 9).

Assumption 3.6. Suppose that V is positive definite for all n, with its minimum eigenvalue
bounded away from zero by an absolute constant and maximum eigenvalue bounded from above
by an absolute constant.

Assumption 3.6 is also a standard regularity condition. It is automatically satisfied under
normality given Assumptions 3.3(i) and 3.4(i) (via Lemma A.4(vi) in Appendix A.3). Assump-
tion 3.6 could be relaxed to the case where the minimum (maximum) eigenvalue of V is slowly
drifting towards zero (infinity) at certain rate. The proofs for Theorem 3.2 and Theorem 3.3
remain unchanged, but this rate will need to be incorporated in Assumption 3.3(ii).

3.3.1 When µ Is Unknown But D Is Known

In this case, Θ̂T simplifies into Θ̂T,D := D−1/2Σ̂TD
−1/2. Similarly, the minimum distance

estimator θ̂T simplifies into θ̂T,D := (EᵀWE)−1EᵀW vech(log Θ̂T,D). Let ĤT,D denote the
n2 × n2 matrix

ĤT,D :=

∫ 1

0
[t(Θ̂T,D − I) + I]−1 ⊗ [t(Θ̂T,D − I) + I]−1dt. (3.5)
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Define V ’s sample analogue V̂T whose (a, b)th entry is

V̂T,a,b ≡ V̂T,i,j,k,` :=
1

T

T∑
t=1

(yt,i − ȳi)(yt,j − ȳj)(yt,k − ȳk)(yt,` − ȳ`)

−
(

1

T

T∑
t=1

(yt,i − ȳi)(yt,j − ȳj)
)(

1

T

T∑
t=1

(yt,k − ȳk)(yt,` − ȳ`)
)
,

where ȳi := 1
T

∑T
t=1 yt,i (similarly for ȳj , ȳk and ȳ`), a, b ∈ {1, . . . , n2} and i, j, k, ` ∈ {1, . . . , n}.

For any c ∈ Rs define the scalar

cᵀJDc := cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c.

In the special case of normality, cᵀJDc could be simplified into (see Example 8.3 in SM 8.8 for
details): 2cᵀ(EᵀWE)−1EᵀWD+

nH(Θ⊗Θ)HD+ᵀ

n WE(EᵀWE)−1c. We also define the estimate
cᵀĴT,Dc:

cᵀĴT,Dc := cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2 ⊗D−1/2)V̂T (D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c.

Theorem 3.2. Let Assumptions 3.1(i), 3.2, 3.3(ii), 3.4, 3.5 and 3.6 be satisfied with 1/r1 +
1/r2 > 1. In particular we set r1 = 2. Then

√
Tcᵀ(θ̂T,D − θ0)√

cᵀĴT,Dc

d−→ N(0, 1),

for any s× 1 non-zero vector c with ‖c‖2 = 1.

Proof. See Appendix A.4.

Theorem 3.2 is a version of the large-dimensional CLT, whose proof is mathematically non-
trivial. To simplify the technicality, we assume subgaussianity (r1 = 2). Because the dimension
of θ0 is growing with the sample size, for a CLT to make sense, we need to transform θ̂T,D − θ0

to a univariate quantity by pre-multiplying cᵀ. The magnitudes of the elements of c are not
important, so we normalize it to have unit Euclidean norm. What is important is whether the
elements of c are zero or not. The components of θ̂T,D − θ0 whose positions correspond to the
non-zero elements of c are effectively entering the CLT.

We contribute to the literature on the large-dimensional CLT (see Huber (1973), Yohai
and Maronna (1979), Portnoy (1985), Mammen (1989), Welsh (1989), Bai and Wu (1994),
Saikkonen and Lutkepohl (1996) and He and Shao (2000)). In this strand of literature, a
distinct feature is that the dimension of parameter, say, θ0, is growing with the sample size, and
at the same time we do not impose sparsity on θ0. As a result, the rate of growth of dimension
of parameter has to be restricted by an assumption like Assumption 3.3(ii); in particular, the
dimension of parameter cannot exceed the sample size. Assumption 3.3(ii) necessarily requires
n4/T → 0. In Lewis and Reinsel (1985), Saikkonen and Lutkepohl (1996), Chang, Chen, and
Chen (2015), they require n3/T → 0 for establishment of a CLT for an n-dimensional parameter.
Hence there is much room of improvement for Assumption 3.3(ii) because the dimension of θ0 is
s = O(log n). The difficulty for this relaxation is again, as we had mentioned when we discussed
the rate of convergence of θ̂T (Theorem 3.1), due to the severe non-linearity introduced by matrix
logarithm. In this sense Assumption 3.3(ii) is only a sufficient condition; the same reasoning
applies to Assumption 3.3(iii).

Our approach is different from the recent literature on high-dimensional statistics such as
Lasso, where one imposes sparsity on parameter to allow its dimension to exceed the sample
size.

We also give a corollary which allows us to test multiple hypotheses like H0 : Aᵀθ0 = a.
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Corollary 3.1. Let Assumptions 3.1(i), 3.2, 3.3(ii), 3.4, 3.5 and 3.6 be satisfied with 1/r1 +
1/r2 > 1. In particular we set r1 = 2. Given a full-column-rank s×k matrix A where k is finite
with ‖A‖`2 = O(

√
log n · nκ(W )), we have

√
T (AᵀĴT,DA)−1/2Aᵀ(θ̂T,D − θ0)

d−→ N
(
0, Ik

)
.

Proof. See SM 8.8.

Note that the condition ‖A‖`2 = O(
√

log n · nκ(W )) is trivial because the dimension of A is
only of order O(log n)×O(1). Moreover we can always rescale A when carrying out hypothesis
testing.

If one chooses the weighting matrix W optimally, albeit infeasibly,

WD,op =
[
D+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n

]−1
,

the scalar cᵀJDc reduces to

cᵀ
(
Eᵀ [D+

nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ
n

]−1
E
)−1

c.

Under a further assumption of normality (i.e., V = 2DnD
+
n (Σ ⊗ Σ)), the preceding display

further simplifies to

cᵀ
(

1

2
EᵀDᵀ

nH
−1(Θ−1 ⊗Θ−1)H−1DnE

)−1

c,

by Lemmas 11 and 14 of Magnus and Neudecker (1986). We shall compare the preceding display
with the variance of the asymptotic distribution of the one-step estimator in Section 4.

3.3.2 When Both µ and D Are Unknown

The case where both µ and D are unknown is considerably more difficult. If one simply recycles
the proof for the case where only µ is unknown and replaces D with its plug-in estimator D̂T ,
it will not work.

Let ĤT denote the n2 × n2 matrix

ĤT :=

∫ 1

0
[t(Θ̂T − I) + I]−1 ⊗ [t(Θ̂T − I) + I]−1dt. (3.6)

Define the n2 × n2 matrix P :

P := In2 −DnD
+
n (In ⊗Θ)Md, Md :=

n∑
i=1

(Fii ⊗ Fii),

where Fii is an n × n matrix with one in its (i, i)th position and zeros elsewhere. Matrix Md

is an n2 × n2 diagonal matrix with diagonal elements equal to 0 or 1; the positions of 1 in the
diagonal of Md correspond to the positions of diagonal entries of an arbitrary n × n matrix A
in vecA. Matrix P first appeared in (4.6) of Neudecker and Wesselman (1990). Note that for
any correlation matrix Θ, matrix P is an idempotent matrix of rank n2 − n and has n rows of
zeros. Neudecker and Wesselman (1990) proved that

∂ vec Θ

∂ vec Σ
= P (D−1/2 ⊗D−1/2);

that is, the derivative ∂ vec Θ
∂ vec Σ is a function of Σ.
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For any c ∈ Rs define the scalar cᵀJc and its estimate cᵀĴT c:

cᵀJc := cᵀ(EᵀWE)−1EᵀWD+
nHP (D−1/2⊗D−1/2)V (D−1/2⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c.

cᵀĴT c := cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗D̂−1/2

T )V̂T (D̂
−1/2
T ⊗D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c,

where P̂T := In2 −DnD
+
n (In ⊗ Θ̂T )Md.

Assumption 3.7.

(i) For every positive constant C

sup

Σ∗:‖Σ∗−Σ‖F≤C
√
n2

T

∥∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ∗

− P (D−1/2 ⊗D−1/2)

∥∥∥∥∥
`2

= O

(√
n

T

)
,

where ·|Σ=Σ∗ means ”evaluate the argument Σ at Σ∗”.

(ii) The s× s matrix

EᵀWD+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE

has full rank s (i.e, being positive definite). Moreover,

mineval
(
EᵀWD+

nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE
)
≥ n

$
mineval2(W ).

Assumption 3.7(i) characterises some sort of uniform rate of convergence in terms of spectral
norm of the Jacobian matrix ∂ vec Θ

∂ vec Σ . This type of assumption is usually made when one wants

to stop Taylor expansion, say, of vec Θ̂T , at first order. If one goes into the second-order
expansion (a tedious route), Assumption 3.7(i) can be completely dropped at some expense
of further restricting the relative growth rate between n and T . The radius of the shrinking
neighbourhood

√
n2/T is determined by the rate of convergence in terms of the Frobenius norm

of the sample covariance matrix Σ̂T . The rate on the right side of Assumption 3.7(i) is chosen
to be

√
n/T because it is the rate of convergence of∥∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̂T

− P (D−1/2 ⊗D−1/2)

∥∥∥∥∥
`2

which could be easily deduced from the proof of Theorem 3.3. This rate
√
n/T could even be

relaxed to
√
n2/T as the part of the proof of Theorem 3.3 which requires Assumption 3.7(i) is

not the ”binding” part of the whole proof.
We now examine Assumption 3.7(ii). The s× s matrix

EᵀWD+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE

is symmetric and positive semidefinite. By Observation 7.1.8 of Horn and Johnson (2013), its
rank is equal to rank(EᵀWD+

nHP ), if (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2) is positive definite.
In other words, Assumption 3.7(ii) is assuming rank(EᵀWD+

nHP ) = s, provided (D−1/2 ⊗
D−1/2)V (D−1/2⊗D−1/2) is positive definite. Even though P has only rank n2−n, in general the
rank condition does hold except in a special case. The special case is Θ = In and W = In(n+1)/2.
In this special case

rank(EᵀWD+
nHP ) = rank(EᵀD+

n P ) =
v∑
j=1

nj(nj − 1)

2
< s.

The second part of Assumption 3.7(ii) postulates a lower bound for its minimum eigenvalue.
The rate mineval2(W )n/$ is specified as such because of Assumption 3.4(ii). Other magnitudes
of the rate are also possible as long as the proof of Theorem 3.3 goes through.
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Theorem 3.3. Let Assumptions 3.1(i), 3.2, 3.3(ii), 3.4, 3.5, 3.6 and 3.7 be satisfied with
1/r1 + 1/r2 > 1. In particular we set r1 = 2. Then

√
Tcᵀ(θ̂T − θ0)√

cᵀĴT c

d−→ N(0, 1),

for any s× 1 non-zero vector c with ‖c‖2 = 1.

Proof. See SM 8.4.

Again Theorem 3.3 is a version of the large-dimensional CLT, whose proof is mathematically
non-trivial. It has the same structure as that of Theorem 3.2. However cᵀĴT c differs from
cᵀĴT,Dc reflecting the difference between cᵀJc and cᵀJDc. That is, the asymptotic distribution
of the minimum distance estimator depends on whether D is known or not.

We also give a corollary which allows us to test multiple hypotheses like H0 : Aᵀθ0 = a.

Corollary 3.2. Let Assumptions 3.1(i), 3.2, 3.3(ii), 3.4, 3.5, 3.6 and 3.7 be satisfied with
1/r1 + 1/r2 > 1. In particular we set r1 = 2. Given a full-column-rank s× k matrix A where k

is finite with ‖A‖`2 = O(
√

log2 n · nκ2(W )$), we have

√
T (AᵀĴTA)−1/2Aᵀ(θ̂T − θ0)

d−→ N
(
0, Ik

)
.

Proof. Essentially the same as that of Corollary 3.1.

The condition ‖A‖`2 = O(
√

log2 n · nκ2(W )$) is trivial because the dimension of A is only

of order O(log n) × O(1). Moreover we can always rescale A when carrying out hypothesis
testing. In the case of both µ and D unknown, the infeasible optimal weighting matrix will be

Wop =
[
D+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n

]−1
.

3.4 Specification Test

We give a specification test (also known as an over-identification test) based on the minimum
distance objective function in (3.2). Suppose we want to test whether the Kronecker product
model {Θ∗} is correctly specified given the factorization n = n1 × · · · × nv. That is,

H0 : Θ ∈ {Θ∗} (i.e., vech(log Θ) = Eθ), H1 : Θ /∈ {Θ∗}.

We first fix n (and hence v and s). Recall (3.2):

θ̂T = θ̂T (W ) := arg min
b∈Rs

[vech(log Θ̂T )− Eb]ᵀW [vech(log Θ̂T )− Eb] =: arg min
b∈Rs

gT (b)ᵀWgT (b).

Theorem 3.4. Fix n (and hence v and s).

(i) Suppose µ is unknown but D is known. Let Assumptions 3.1(i), 3.2, 3.4, 3.5 and 3.6 be
satisfied with 1/r1 + 1/r2 > 1. In particular we set r1 = 2. Thus, under H0,

TgT,D(θ̂T,D)ᵀŜ−1
T,DgT,D(θ̂T,D)

d−→ χ2
n(n+1)/2−s, (3.7)

where

gT,D(b) := vech(log Θ̂T,D)− Eb
ŜT,D := D+

n ĤT,D(D−1/2 ⊗D−1/2)V̂T (D−1/2 ⊗D−1/2)ĤT,DD
+ᵀ
n .
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(ii) Suppose both µ and D are unknown. Let Assumptions 3.1(i), 3.2, 3.4, 3.5, 3.6, and 3.7
be satisfied with 1/r1 + 1/r2 > 1. In particular we set r1 = 2. Thus, under H0,

TgT (θ̂T )ᵀŜ−1
T gT (θ̂T )

d−→ χ2
n(n+1)/2−s,

where
ŜT := D+

n ĤT P̂T (D̂
−1/2
T ⊗ D̂−1/2

T )V̂T (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n .

Proof. See SM 8.7.

Note that Ŝ−1
T,D and Ŝ−1

T are the feasible versions of optimal weighting matrices WD,op and
Wop, respectively. From Theorem 3.4, we can easily get the following result of the diagonal path
asymptotics, which is more general than the sequential asymptotics but less general than the
joint asymptotics (see Phillips and Moon (1999)).

Corollary 3.3.

(i) Suppose µ is unknown but D is known. Let Assumptions 3.1(i), 3.2, 3.4, 3.5 and 3.6 be
satisfied with 1/r1 + 1/r2 > 1. In particular we set r1 = 2. Under H0,

TgT,n,D(θ̂T,n,D)ᵀŜ−1
T,n,DgT,n,D(θ̂T,n,D)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→ N(0, 1),

where n = nT as T →∞.

(ii) Suppose both µ and D are unknown. Let Assumptions 3.1(i), 3.2, 3.4, 3.5, 3.6, and 3.7
be satisfied with 1/r1 + 1/r2 > 1. In particular we set r1 = 2. Under H0,

TgT,n(θ̂T,n)ᵀŜ−1
T,ngT,n(θ̂T,n)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→ N(0, 1),

where n = nT as T →∞.

Proof. See SM 8.7.

4 QMLE and One-Step Estimator

4.1 QMLE

In the context of Gaussian quasi-maximum likelihood estimation (QMLE), given a factorization
n = n1 × · · · × nv, we shall additionally assume that the Kronecker product model {Θ∗} is
correctly specified (i.e. vech(log Θ) = Eθ). Let ρ ∈ [−1, 1]sρ be the original parameters of some
member of the Kronecker product model; we have mentioned that sρ =

∑v
j=1 nj(nj − 1)/2.

Given Assumption 3.5, the log likelihood function in terms of original parameters ρ for a sample
{y1, y2, . . . , yT } is given by

`T (µ,D, ρ) = −Tn
2

log(2π)− T

2
log
∣∣∣D1/2Θ(ρ)D1/2

∣∣∣− 1

2

T∑
t=1

(yt − µ)ᵀD−1/2Θ(ρ)−1D−1/2(yt − µ).

(4.1)

17



Write Ω = Ω(θ) := log Θ. Given Assumption 3.5, the log likelihood function in terms of log
parameters θ for a sample {y1, y2, . . . , yT } is given by

`T (µ,D, θ)

= −Tn
2

log(2π)− T

2
log
∣∣∣D1/2 exp(Ω(θ))D1/2

∣∣∣− 1

2

T∑
t=1

(yt − µ)ᵀD−1/2[exp(Ω(θ))]−1D−1/2(yt − µ).

(4.2)

In practice, conditional on some estimates of µ and D, we use an iterative algorithm based
on the derivatives of `T with respect to either ρ or θ to compute the QMLE of either ρ or
θ. Theorem 4.1 below provides formulas for the derivatives of `T with respect to θ. The
computations required are typically not too onerous, since for example the Hessian matrix is of
an order log n by log n. See Singull et al. (2012) and Ohlson et al. (2013) for a discussion of
estimation algorithms in the case where the data are multiway array and v is of low dimension.
Nevertheless since there is quite complicated non-linearity involved in the definition of the
QMLE, it is not so easy to directly analyse QMLE.

Instead we shall consider a one-step estimator that uses the minimum distance estimator in
Section 3 to provide a starting value and then takes a Newton-Raphson step towards the QMLE
of θ. In the fixed n case it is known that the one-step estimator is equivalent to the QMLE in
the sense that it shares its asymptotic distribution (Bickel (1975)).

Below, for slightly abuse of notation, we shall use µ,D, θ to denote the true parameter (i.e.,
characterising the data generating process) as well as the generic parameter of the likelihood
function; we will be more specific whenever any confusion is likely to arise.

4.2 One-Step Estimator

Here we only examine the one-step estimator when µ is unknown but D is known. When neither
µ nor D is known, one has to differentiate (4.2) with respect to both θ and D. The analysis
becomes considerably more involved and we leave it for future work. Suppose D is known, the
likelihood function (4.2) reduces to

`T,D(θ, µ) =

− Tn

2
log(2π)− T

2
log
∣∣∣D1/2 exp(Ω(θ))D1/2

∣∣∣− 1

2

T∑
t=1

(yt − µ)ᵀD−1/2[exp(Ω(θ))]−1D−1/2(yt − µ).

(4.3)

It is well-known that for any choice of Σ (i.e., D and θ), the QMLE for µ is ȳ. Hence we may
define

θ̂QMLE,D = arg max
θ
`T,D(θ, ȳ).

Theorem 4.1.

(i) The s× 1 score function of (4.3) with respect to θ takes the following form8

∂`T,D(θ, µ)

∂θᵀ
=
T

2
EᵀDᵀ

n

[∫ 1

0
etΩ ⊗ e(1−t)Ωdt

]
vec
[
e−ΩD−1/2Σ̃TD

−1/2e−Ω − e−Ω
]
,

where Σ̃T is defined in (3.4).

8The likelihood function (4.3) implicitly assumes Assumption 3.5 and positive definiteness of Θ.
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(ii) The s× s block of the Hessian matrix of (4.3) corresponding to θ takes the following form

∂2`T,D(θ, µ)

∂θ∂θᵀ
=

− T

4
EᵀDᵀ

n

∫ 1

0

∫ 1

0

(
e−stΩ ⊗ e−(1−s)tΩAe−(1−t)Ω + e−(1−t)ΩAe−(1−s)tΩ ⊗ e−stΩ

)
ds · tdtDnE

− T

4
EᵀDᵀ

n

∫ 1

0

∫ 1

0

(
e−(1−s)tΩAe−(1−t)Ω ⊗ e−stΩ + e−stΩ ⊗ e−(1−t)ΩAe−(1−s)tΩ) ds · tdtDnE

where A := D−1/2Σ̃TD
−1/2. Symmetry of

∂2`T,D(θ,µ)
∂θ∂θᵀ is in an obvious way.

(iii) The negative normalized expected Hessian matrix evaluated at the true parameter θ takes
the following form

ΥD := E
[
− 1

T

∂2`T,D(θ, µ)

∂θ∂θᵀ

]
=

1

2
EᵀDᵀ

n

∫ 1

0

∫ 1

0

(
e−stΩ ⊗ estΩ + estΩ ⊗ e−stΩ

)
ds · tdtDnE (4.4)

=
1

2
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
ΨDnE, (4.5)

where Ψ :=
∫ 1

0 e
tΩ ⊗ e(1−t)Ωdt.

(iv) Under normality (i.e., V = 2DnD
+
n (Σ⊗ Σ)), we have the well-known relation

ΥD = E
[

1

T

∂`T,D(θ, µ)

∂θᵀ
∂`T,D(θ, µ)

∂θ

]
.

Proof. See SM 8.5.

We hence propose the following one-step estimator in the spirit of van der Vaart (1998) p72
or Newey and McFadden (1994) p2150:

θ̃T,D := θ̂T,D −
1

T
Υ̂−1
T,D

∂`T,D(θ̂T,D, ȳ)

∂θᵀ
, (4.6)

where Υ̂T,D is a plug-in estimator of ΥD and is defined as 1
2E

ᵀDᵀ
n

[∫ 1
0

∫ 1
0 Θ̂t+s−1

T,D ⊗ Θ̂1−t−s
T,D dtds

]
DnE

(We show in SM 8.6 that Υ̂T,D is invertible with probability approaching 1.) We did not use

the plain vanilla one-step estimator because the Hessian matrix
∂2`T,D(θ,µ)
∂θ∂θᵀ is rather complicated

to analyse.

4.3 Large Sample Properties

To provide the large sample theory for the one-step estimator θ̃T,D, we make the following
assumption.

Assumption 4.1. For every positive constant M and uniformly in b ∈ Rs with ‖b‖2 = 1,

sup

θ∗:‖θ∗−θ‖2≤M
√
n$κ(W )

T

∣∣∣∣∣√Tbᵀ
[

1

T

∂`T,D(θ∗, ȳ)

∂θᵀ
− 1

T

∂`T,D(θ, ȳ)

∂θᵀ
−ΥD(θ∗ − θ)

]∣∣∣∣∣ = op(1).
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Assumption 4.1 is one of the sufficient conditions needed for the asymptotic normality of θ̃T,D
(Theorem 4.2). This kind of assumption is standard in the asymptotics of one-step estimators
(see (5.44) of van der Vaart (1998) p71) or of M-estimation (see (C3) of He and Shao (2000)).

Assumption 4.1 implies that 1
T
∂`T,D(θ,ȳ)

∂θᵀ is differentiable at the true parameter θ, with derivative

tending to ΥD in probability. The radius of the shrinking neighbourhood
√
n$κ(W )/T is

determined by the rate of convergence of any preliminary estimator, say, θ̂T,D in our case. It is
possible to relax the op(1) on the right side of the display in Assumption 4.1 to op(

√
n/($2 log n))

by examining the proof of Theorem 4.2.

Theorem 4.2. Suppose that the Kronecker product model {Θ∗} is correctly specified. Let As-
sumptions 3.1(ii), 3.2, 3.3(iii), 3.4, 3.5, and 4.1 be satisfied with 1/r1 + 1/r2 > 1 and r1 = 2.
Then √

Tcᵀ(θ̃T,D − θ)√
cᵀΥ̂−1

T,Dc

d−→ N(0, 1)

for any s× 1 vector c with ‖c‖2 = 1.

Proof. See SM 8.6.

Theorem 4.2 is a version of the large-dimensional CLT, whose proof is mathematically non-
trivial. It has the same structure as that of Theorem 3.2 or Theorem 3.3. Note that under
Assumption 3.1(ii), the QMLE is actually the maximum likelihood estimator (MLE). If we re-
place normality (Assumption 3.1(ii)) with the subgaussian assumption (Assumption 3.1(i) with
r1 = 2) - that is the Gaussian likelihood is not correctly specified - although the norm consistency
of θ̃T,D should still hold, the asymptotic variance in Theorem 4.2 needs to be changed to have a

sandwich formula. Theorem 4.2 says that
√
Tcᵀ(θ̃T,D − θ)

d−→ N
(
0, cᵀ

(
E
[
− 1
T
∂2`T,D(θ,µ)
∂θ∂θᵀ

])−1
c
)
.

In the fixed n case, this estimator achieves the parametric efficiency bound by recognising a

well-known result
∂2`T,D(θ,µ)
∂µ∂θᵀ = 0. This shows that our one-step estimator θ̃T,D is efficient when

D (the variances) is known.
By recognising that H−1 =

∫ 1
0 e

t log Θ ⊗ e(1−t) log Θdt = Ψ (see Lemma 8.10 in SM 8.8),
we see that, when D is known, under normality and correct specification of the Kronecker
product model, θ̃T,D and the optimal minimum distance estimator θ̂T,D(WD,op) have the same

asymptotic variance, i.e.,
(

1
2E

ᵀDᵀ
nH−1(Θ−1 ⊗Θ−1)H−1DnE

)−1
.

We also give the following corollary which allows us to test multiple hypotheses like H0 :

Aᵀθ = a.

Corollary 4.1. Suppose the Kronecker product model {Θ∗} is correctly specified. Let Assump-
tions 3.1(ii), 3.2, 3.3(iii), 3.4, 3.5, and 4.1 be satisfied with 1/r1 + 1/r2 > 1 and r1 = 2. Given
a full-column-rank s× k matrix A where k is finite with ‖A‖`2 = O(

√
log n · n), we have

√
T (AᵀΥ̂−1

T,DA)−1/2Aᵀ(θ̃T,D − θ)
d−→ N

(
0, Ik

)
.

Proof. Essentially the same as that of Corollary 3.1.

The condition ‖A‖`2 = O(
√

log n · n) is trivial because the dimension of A is only of order
O(log n)×O(1). Moreover we can always rescale A when carrying out hypothesis testing.
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5 Model Selection

We discuss the issue of model selection here. One shall not worry about this if the data are in
the multi-index format with v multiplicative factors. This is because in this setting a Kronecker
product model is pinned down by the structure of multiway arrays - the Kronecker product
model is correctly specified. This issue will pop up when one uses Kronecker product models
to approximate a general covariance or correlation matrix - all Kronecker product models are
then misspecified. The rest of discussions in this section will be based on this approximation
framework.

First, if one permutes the data, the performance of a given Kronecker product model is likely
to change. However, based on our experience, the performance of a Kronecker product model
is not that sensitive to the ordering of the data. We will illustrate this in the empirical study.
Moreover, usually one fixes the ordering of the data before considering the issue of covariance
matrix estimation. Thus, Kronecker product models have a second-mover advantage: the choice
of a Kronecker product model depends on the ordering of the data.

Second, if one fixes the ordering of the data as well as a factorization n = n1× · · · ×nv, but
permutes Θ∗j s, one obtains a different Θ∗ (i.e., a different Kronecker product model). Although
the eigenvalues of these two Kronecker product models are the same, the eigenvectors of them
are not.

Third, if one fixes the ordering of the data, but uses a different factorization of n, one
also obtains a different Kronecker product model. Suppose that n has the prime factorization
n = p1 × p2 × · · · × pv for some positive integer v (v ≥ 2) and primes pj for j = 1, . . . , v.
Then there exist several different Kronecker product models, each of which is indexed by the
dimensions of the sub-matrices. The baseline model has dimensions (p1, p2, . . . , pv), but there
are many possible aggregations of this, for example,

(
(p1 × p2), . . . , (pv−1 × pv)

)
.

To address the second and third issues, we might choose among Kronecker product models
using some model selection criterion which penalizes models with more parameters. For exam-
ple, we may define the Bayesian Information Criterion (BIC) in terms of the original parameters
ρ:

BIC(ρ) = − 2

T
`T (µ,D, ρ) +

log T

T
sρ,

where `T is the log likelihood function defined in (4.1), and sρ is the dimension of ρ. We seek
the Kronecker product model with the minimum preceding display. Typically there are not so
many factorizations to consider, so this is not too computationally burdensome.

6 Monte Carlo Simulations and an Application

In this section, we first provide a set of Monte Carlo simulations that evaluate the performance
of the QMLE and MD estimator, and then give a small application of our Kronecker product
model to daily stock returns.

6.1 Monte Carlo Simulations

We simulate T random vectors yt of dimension n according to

yt = Σ1/2zt, zt ∼ N(0, In) Σ = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σv, (6.1)

where n = 2v and v ∈ N. That is, the sub-matrices Σi are 2 × 2 for i = 1, . . . , v. These
sub-matrices Σj are generated with unit variances and off-diagonal elements drawn randomly
from a uniform distribution on (−1, 1). This ensures positive definiteness of Σ. Note that we
have two sources of randomness in this data generating process: random innovations (zt) and
random off-diagonal elements of the Σi for i = 1, . . . , v. Due to the unit variances, Σ is also the
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correlation matrix Θ of yt, but the econometrician is unaware of this: He applies a Kronecker
product model to the correlation matrix Θ. We consider the correctly specified case, i.e., the
Kronecker product model has a factorization n = 2v. The sample size is set to T = 300 while
we vary v (hence n). We set the Monte Carlo simulations to 1000.

We shall consider the QMLE and MD estimator. For the QMLE, we estimate the original
parameters ρ and obtain an estimator for Θ (and hence Σ) directly. Recalling (4.1), we could
use `T (ȳ, D̂T , ρ) to optimise ρ. For the MD estimator, we estimate the log parameters θ0 via
formula (3.3), obtain an estimator for log Θ, and finally obtain an estimator for Θ (and hence
Σ) via matrix exponential. In the MD case, we need to specify a choice of the weighting
matrix W . Given its sheer dimension (n(n + 1)/2 × n(n + 1)/2), any non-sparse W will be a
huge computational burden in terms of memory for the MD estimator. Hence we consider two
diagonal weighting matrices

W1 = In(n+1)/2, W2 =
[
D+
n

(
D̂T ⊗ D̂T

)
D+ᵀ
n

]−1
.

In the latter case, the MD estimator is inversely weighted by the sample variances. Weighting
matrix W2 resembles, but is not the same as, a feasible version of the optimal weighting matrix
Wop. The choice of W2 is based on heuristics. In an unreported simulation, we also consider
the optimally weighted MD estimator. The optimally weighted MD estimator is extremely
computationally intensive and its finite sample performance is not as good as those weighted
by W1 or W2. This is probably because a data-driven, large-dimensional weighting matrix
introduces additional sizeable estimation errors in small samples - such a phenomenon has been
well documented in the GMM framework by Andersen and Sørensen (1996).

We compare our estimators with Ledoit and Wolf (2017)’s direct nonlinear shrinkage esti-
mator (the LW2017 estimator hereafter).9

Given a generic estimator Σ̃ of the covariance matrix Σ and in each simulation, we can
compute

1−
‖Σ̃− Σ‖2F
‖Σ̂T − Σ‖2F

.

The median of the preceding display is calculated among all the simulations and denoted RI in
terms of Σ. Criterion RI is closely related to the percentage relative improvement in average
loss (PRIAL) criterion in Ledoit and Wolf (2004).10 As PRIAL, RI measures the performance
of the estimator Σ̃ with respect to the sample covariance estimator Σ̂T . Note that RI ∈ (−∞, 1]:
A negative value means Σ̃ performs worse than Σ̂T while a positive value means otherwise. RI
is more robust to outliers than PRIAL.

Often an estimator of the precision matrix Σ−1 is of more interest than that of Σ itself, so
we also compute RI for the inverse covariance matrix; that is, we compute the median of

1−
‖Σ̃−1 − Σ−1‖2F
‖Σ̂−1

T − Σ−1‖2F
.

Note that this requires invertibility of the sample covariance matrix Σ̂T and therefore can only
be calculated for n < T .

Our final criterion is the minimum variance portfolio (MVP) constructed from an estimator
of the covariance matrix. The weights of the minimum variance portfolio are given by

wMV P =
Σ−1ιn
ιᵀnΣ−1ιn

, (6.2)

9The Matlab code for the direct nonlinear shrinkage estimator is downloaded from the website of Professor
Michael Wolf from the Department of Economics at the University of Zurich. We are grateful for this.

10It is defined as

PRIAL = 1− E‖Σ̃− Σ‖2F
E‖Σ̂T − Σ‖2F

.
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n 4 8 16 32 64 128 256

RI-1

QMLE 0.227 0.529 0.714 0.820 0.892 0.929 0.950
MD1 0.345 0.632 0.789 0.862 0.897 0.909 0.618
MD2 0.339 0.631 0.785 0.858 0.896 0.908 0.616

LW2017 0.020 0.027 0.046 0.063 0.087 0.106 0.127

RI-2

QMLE 0.323 0.615 0.805 0.914 0.973 0.995 1.000
MD1 0.354 0.632 0.771 0.752 0.665 0.588 0.837
MD2 0.344 0.643 0.790 0.796 0.714 0.628 0.846

LW2017 0.136 0.181 0.235 0.351 0.521 0.756 0.991

VR

QMLE 0.999 0.995 0.980 0.953 0.899 0.770 0.389
MD1 0.999 0.993 0.979 0.953 0.900 0.774 0.401
MD2 0.999 0.993 0.979 0.954 0.899 0.774 0.400

LW2017 1.000 0.999 0.998 0.993 0.975 0.912 0.544

Table 1: The baseline setting. QMLE, MD1, MD2 and LW2017 stand for the quasi-maximum likelihood

estimator of the Kronecker product model, the minimum distance estimator (weighted by W1) of the

Kronecker product model, the minimum distance estimator (weighted by W2) of the Kronecker product

model, and the Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively. RI-1 and

RI-2 are RI criteria in terms of Σ and Σ−1, respectively. VR is the median of the ratio of the standard

deviation of the MVP using the estimator to that using the sample covariance matrix out of sample.

The sample size is fixed at T = 300.

where ιn = (1, 1, . . . , 1)
ᵀ

is of dimension n (see Ledoit and Wolf (2003), Chan, Karceski, and
Lakonishok (1999) etc). The first MVP weights are constructed using the sample covariance
matrix Σ̂T while the second MVP weights are constructed using a generic estimator of Σ̃. These
two minimum variance portfolios are then evaluated by calculating their standard deviations in
the out-of-sample data (yt) generated using the same mechanism. The out-of-sample size is set
to T ′ = 21. The ratio of the standard deviation of the minimum variance portfolio constructed
from Σ̃ over that of the minimum variance portfolio constructed from Σ̂T is calculated. We
report its median (VR) over Monte Carlo simulations. Note that VR ∈ [0,+∞): A value
greater than one means Σ̃ performs worse than Σ̂T while a value less than one means otherwise.

Table 1 reports RI-1 (RI in terms of Σ), RI-2 (RI in terms of Σ−1) and VR for various n.
We observe the following patterns. First, we see that all our estimators QMLE, MD1, MD2
outperform the sample covariance matrix in all dimensional cases including both the small-
dimensional cases (e.g., n = 4) and the large-dimensional cases (e.g., n = 256). Note that
in the large dimensional case like n = 256, T = 300, the ratio n/T is close to 1 - a case not
really covered by Assumption 3.3. This perhaps illustrates that Assumption 3.3 is a sufficient
but not necessary condition for theoretical analysis of our proposed methodology. Second, such
a phenomenon holds in terms of RI-1, RI-2 and VR. The superiority of our estimators over
the sample covariance matrix increases when n/T increases. Third, the QMLE outperforms
the MD estimators whenever n/T is close to one, while the opposite holds when n/T is small.
Fourth, the LW2017 estimator also beats the sample covariance matrix but its RI-1 margin is
thin. This is perhaps not surprising as the LW2017 estimator does not utilise the Kronecker
product structure of the data generating process. Overall, the QMLE is the best estimator in
this baseline setting.

As robustness checks, we consider two modifications of our baseline data generating process:
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n 4 8 16 32 64 128 256

RI-1

QMLE 0.219 0.514 0.712 0.821 0.887 0.928 0.951
MD1 0.321 0.611 0.775 0.849 0.880 0.889 0.798
MD2 0.310 0.611 0.770 0.844 0.877 0.890 0.796

LW2017 0.025 0.032 0.049 0.065 0.093 0.117 0.155

RI-2

QMLE 0.320 0.654 0.824 0.932 0.980 0.997 1.000
MD1 0.338 0.639 0.737 0.691 0.593 0.517 0.822
MD2 0.347 0.652 0.775 0.753 0.657 0.571 0.839

LW2017 0.220 0.292 0.429 0.634 0.818 0.939 0.997

VR

QMLE 0.998 0.988 0.975 0.927 0.860 0.728 0.383
MD1 0.997 0.987 0.973 0.925 0.862 0.733 0.406
MD2 0.997 0.987 0.973 0.924 0.862 0.732 0.406

LW2017 1.000 0.999 0.997 0.990 0.970 0.907 0.568

Table 2: Modification (i). QMLE, MD1, MD2 and LW2017 stand for the quasi-maximum likelihood

estimator of the Kronecker product model, the minimum distance estimator (weighted by W1) of the

Kronecker product model, the minimum distance estimator (weighted by W2) of the Kronecker product

model, and the Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively. RI-1 and

RI-2 are RI criteria in terms of Σ and Σ−1, respectively. VR is the median of the ratio of the standard

deviation of the MVP using the estimator to that using the sample covariance matrix out of sample.

The sample size is fixed at T = 300.

(i) Time series yt is still generated as in (6.1) but the actual data are wt:

w1 = y1

wt = awwt−1 +
√

1− a2
wyt, t = 2, . . . , T.

The parameter aw is set to be 0.5 to capture the temporal dependence.

(ii) Same as modification (i), but yt is drawn from a multivariate t distribution of 5 degrees
of freedom with Σ as its correlation matrix.

In modification (i), wt is serially correlated given any non-zero autoregressive scalar aw but
its covariance matrix is still Σ. A choice of aw = 0.5 is consistent with Assumption 3.2. Our
simulation results are reasonably robust to the choice of aw. In modification (ii), in addition
to the serial dependence, we add heavy-tailed features to the data which might be a better
reflection of reality. Heavy-tailed data are not covered by Assumption 3.1, so this modification
serves as a robustness check for our theoretical findings.

The results of modification (i) are reported in Table 2. Those four observations we made
from the baseline setting (Table 1) still hold when we relax the independence assumption of the
data. Modification (ii) are reported in Table 3. When we switch on both temporal dependence
and heavy tails, all estimators - ours and the LW2017 estimator - are adversely affected to a
certain extent. In particular, in terms of RI-2, both the QMLE and LW2017 estimators fare
worse than the sample covariance matrix in small dimensions. Overall, the identity weighted
MD estimator is the best estimator in modification (ii). That the MD estimator trumps the
QMLE in heavy-tailed data is intuitive because the MD estimator is derived not based on a
particular distributional assumption.
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n 4 8 16 32 64 128 256

RI-1

QMLE 0.021 0.105 0.203 0.320 0.442 0.564 0.690
MD1 0.071 0.211 0.348 0.492 0.621 0.719 0.605
MD2 0.084 0.242 0.378 0.510 0.626 0.712 0.581

LW2017 −0.023 −0.001 0.029 0.069 0.118 0.158 0.220

RI-2

QMLE −0.035 −0.139 −0.357 −0.831 −0.202 0.867 0.999
MD1 0.006 0.035 0.111 0.385 0.896 0.636 0.829
MD2 −0.006 −0.009 0.032 0.255 0.894 0.724 0.854

LW2017 −0.103 −0.206 −0.428 −0.847 −0.279 0.825 0.997

VR

QMLE 0.996 0.982 0.956 0.923 0.842 0.708 0.379
MD1 0.994 0.982 0.955 0.921 0.840 0.720 0.432
MD2 0.994 0.982 0.955 0.920 0.840 0.719 0.429

LW2017 1.000 0.999 0.995 0.989 0.968 0.906 0.577

Table 3: Modification (ii). QMLE, MD1, MD2 and LW2017 stand for the quasi-maximum likelihood

estimator of the Kronecker product model, the minimum distance estimator (weighted by W1) of the

Kronecker product model, the minimum distance estimator (weighted by W2) of the Kronecker product

model, and the Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively. RI-1 and

RI-2 are RI criteria in terms of Σ and Σ−1, respectively. VR is the median of the ratio of the standard

deviation of the MVP using the estimator to that using the sample covariance matrix out of sample.

The sample size is fixed at T = 300.

6.2 An Application

We now consider estimation of the covariance matrix of n′ = 441 stock returns (yt) in the S&P
500 index. We have daily observations from January 3, 2005 to November 6, 2015. The number
of trading days is T = 2732. Since the underlying data might not have a multiplicative structure
giving rise to a Kronecker product - or if they do but we are unaware of it - a Kronecker product
model in this application is inherently misspecified. In other words, we are exploiting Kronecker
product models’ approximating feature to a general covariance matrix.

We have proved in Appendix A.2 that in a given Kronecker product model there exists
a member which is closest to the true covariance matrix. However, in order for this closest
”distance” to be small, the chosen Kronecker product model needs to be versatile enough to
capture various data patterns. In this sense, a parsimonious model, say, 441 = 3× 3× 7× 7, is
likely to be inferior to a less parsimonious model, say, 441 = 21× 21.

We add an 3 × 1 dimensional pseudo random vector zt which is N(0, I3) distributed and
independent over t. The dimension of the final system is n = 441 + 3 = 444. Again we fit
Kronecker product models to the correlation matrix of the final system and recover an estimator
for the covariance matrix of the final system via left and right multiplication of the estimated

correlation matrix of the final system by D̂
1/2
T . Last, we extract the 441× 441 upper-left block

of the estimated covariance matrix of the final system to form our Kronecker product estimator
of the covariance matrix of yt. The dimension of the added pseudo random vector should not be
too large to avoid introducing additional noise, which could adversely affect the performance of
the Kronecker product models. We choose the dimension of the final system to be 444 because
its prime factorization is 2 × 2 × 3 × 37, and we experiment with several Kronecker product
models. We did try other dimensions for the final system and the pattern discussed below
remains generally the same.

As we are considering less parsimonious models, the QMLE is computationally intensive
and found to perform worse than the MD estimator in preliminary investigations, so we only
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MD MD MD MD
LW2004 LW2017

(2× 2× 3× 37) (4× 111) (3× 148) (2× 222)

original ordering of the data
Impr 0.265 0.379 0.394 0.440 0.459 0.518
Prop 0.811 0.896 0.915 0.953 0.991 0.981

a random permutation of the data
Impr 0.259 0.364 0.404 0.431 0.459 0.518
Prop 0.811 0.887 0.915 0.943 0.991 0.981

a random permutation of the data
Impr 0.263 0.351 0.366 0.436 0.459 0.518
Prop 0.811 0.887 0.906 0.943 0.991 0.981

Table 4: MD, LW2004 and LW2017 stand for the (identity matrix weighted) minimum distance estima-

tors of the Kronecker product models (factorisations given in parentheses), the Ledoit and Wolf (2004)’s

linear shrinkage estimator, and the Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator, re-

spectively. Impr is the median of the 106 quantities calculated based on (6.3) and Prop is the proportion

of the times (out of 106) that a competitor MVP outperforms the sample covariance MVP (i.e., the

proportion of the times when (6.3) is positive). A random permutation of the data means that the order

of the 441 stocks is randomly reshuffled.

use the MD estimator. The MD estimator is extremely fast because its formula is just (3.3).
We choose the weighting matrix to be the identity matrix.

We follow the approach of Fan et al. (2013) and estimate our model on windows of size 504
days (equal to two years’ trading days) that are shifted from the beginning to the end of the
sample. The Kronecker product estimator of the covariance matrix of yt is used to construct the
minimum variance portfolio (MVP) weights as in (6.2). We also compute the MVP weights using
the sample covariance matrix of yt. These two minimum variance portfolios are then evaluated
using the next 21 days (equal to one month’s trading days) out-of-sample. In particular, we
calculate

1− sd(a competitor MVP)

sd(sample covariance MVP)
, (6.3)

where sd(·) computes standard deviation. Then the estimation window of 504 days is shifted
forward by 21 days. This procedure is repeated until we reach the end of the sample; the total
number of out-of-sample evaluations is 106. We consider two evaluation criteria of performance:
Impr and Prop. Impr is the median of the 106 quantities calculated based on (6.3). Note that
Impr ∈ (−∞, 1]: A negative value means a competitor MVP performs worse than the sample
covariance MVP while a positive value means otherwise. Prop is the proportion of the times (out
of 106) that a competitor MVP outperforms the sample covariance MVP (i.e., the proportion
of the times when (6.3) is positive).

For comparison, we consider Ledoit and Wolf (2004)’s linear shrinkage estimator and Ledoit
and Wolf (2017)’s direct nonlinear shrinkage estimator. The results are reported in Table
4. We first use the original ordering of the data, i.e. alphabetical, and have the following
observations. First, all the Kronecker product MVPs outperform the sample covariance MVP.
Second, as we move from the most parsimonious factorisation (444 = 2 × 2 × 3 × 37) to the
least parsimonious factorisation (444 = 2× 222), the performance of Kronecker product MVPs
monotonically improves. This is intuitive: Since we are using Kronecker product models to
approximate a general covariance matrix, a more flexible Kronecker product model could fit the
data better. There is no over-fitting at least in this application as we consider out-of-sample
evaluation. Third, the performance of the (2 × 222) Kronecker product MVP is very close to
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that of a sophisticated estimator like Ledoit and Wolf (2004)’s linear shrinkage estimator. This
is commendable because here a Kronecker product model is a misspecified parametric model
for a general covariance matrix while the linear shrinkage estimator is in essence a data-driven,
nonparametric estimator.

We next randomly reshuffle the order of the 441 stocks twice and use the same Kronecker
product models. In these two cases, the rows and columns of the true covariance matrix also
get reshuffled. We see that the performances of those Kronecker product models are marginally
affected by the reshuffle. Ledoit and Wolf (2004)’s and Ledoit and Wolf (2017)’s shrinkage
estimators are, as expected, not affected by the ordering of the data.

7 Conclusions

We have established the large sample properties of estimators of Kronecker product models in the
large dimensional case. In particular, we obtained norm consistency and the large dimensional
CLTs for the MD and one-step estimators. Kronecker product models outperform the sample
covariance matrix theoretically, in Monte Carlo simulations, and in an application to portfolio
choice. When a Kronecker product model is correctly specified, Monte Carlo simulations show
that estimators of it can beat Ledoit and Wolf (2017)’s direct non-linear shrinkage estimator.
In the application, when one uses Kronecker product models as an approximating device to
a general covariance matrix, a less parsimonious one can perform almost as good as Ledoit
and Wolf (2004)’s linear shrinkage estimator. It is possible to extend the framework in various
directions to improve performance.

A final motivation for the Kronecker product structure is that it can be used as a component
of a super model consisting of several components. For instance, the idea of the decomposition
in (1.1) could be applied to components of dynamic models such as multivariate GARCH, an
area in which Luc Bauwens has contributed significantly over the recent years, see also his
highly cited review paper Bauwens, Laurent, and Rombouts (2006). For example, the dynamic
conditional correlation (DCC) model of Engle (2002), or the BEKK model of Engle and Kroner
(1995) both have intercept matrices that are required to be positive definite and suffer from
the curse of dimensionality, for which model (1.1) would be helpful. Also, parameter matrices
associated with the dynamic terms in the model could be equipped with a Kronecker product,
similar to a suggestion by Hoff (2015) for vector autoregressions.

A Appendix

This appendix is organised as follows: Appendix A.1 further discusses this matrix E of the
minimum distance estimator in Section 3. Appendix A.2 shows that a Kronecker product
model has a best approximation to a general covariance or correlation matrix. Appendix A.3
and A.4 contain proofs of Theorem 3.1 and of Theorem 3.2, respectively. Appendix A.5 contains
auxiliary lemmas used in various places of this appendix.

A.1 Matrix E

The proof of the following theorem gives a concrete formula for the matrix E of the minimum
distance estimator.

Theorem A.1. Suppose that
Θ∗ = Θ∗1 ⊗Θ∗2 ⊗ · · · ⊗Θ∗v,

where Θ∗j is nj ×nj dimensional such that n = n1×n2× · · ·×nv. Taking the logarithm on both
sides gives

log Θ∗ = log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv + In1 ⊗ log Θ∗2 ⊗ In3 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ In2 ⊗ · · · ⊗ log Θ∗v.
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For identification we set the first diagonal entry of log Θ∗j to be 0 for j = 1, . . . , v − 1. In total
there are

s :=
v∑
j=1

nj(nj + 1)

2
− (v − 1)

unrestricted log parameters; let θ∗ ∈ Rs denote these. Then there exists a n(n + 1)/2 × s full
column rank matrix E such that

vech(log Θ∗) = Eθ∗.

Proof. Note that

vec(log Θ∗) = vec(log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv) + vec(In1 ⊗ log Θ∗2 ⊗ In3 ⊗ · · · ⊗ Inv) + · · ·
+ vec(In1 ⊗ In2 ⊗ · · · ⊗ log Θ∗v).

If
vec(In1 ⊗ log Θ∗i ⊗ In3 ⊗ · · · ⊗ Inv) = Ei vech(log Θ∗i )

for some n2 × ni(ni + 1)/2 matrix Ei for i = 1, . . . , v, then we have

vech(log Θ∗) = D+
n vec(log Θ∗) = D+

n

[
E1 E2 · · · Ev

]


vech(log Θ∗1)
vech(log Θ∗2)

...
vech(log Θ∗v)

 .
For identification we set the first diagonal entry of log Θ∗j to be 0 for j = 1, . . . , v − 1. In total
there are

s :=
v∑
j=1

nj(nj + 1)

2
− (v − 1)

(identifiable) log parameters; let θ∗ ∈ Rs denote these. Then there exists a n(n+ 1)/2× s full
column rank matrix E such that

vech(log Θ∗) = Eθ∗,

where
E := D+

n

[
E1,(−1) E2,(−1) · · · Ev−1,(−1) Ev

]
and Ei,(−1) stands for matrix Ei with its first column removed. We now determine the formula
for Ei. We first consider vec(log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv).

vec(log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv) = vec(log Θ∗1 ⊗ In/n1
) =

(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
vec(log Θ∗1)⊗ vec In/n1

)
=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
vec(log Θ∗1)⊗ vec In/n1

· 1
)

=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
⊗ vec In/n1

)
vec(log Θ∗1)

=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
⊗ vec In/n1

)
Dn1 vech(log Θ∗1),

where the second equality is due to Magnus and Neudecker (2007) Theorem 3.10 p55. Thus,

E1 :=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
⊗ vec In/n1

)
Dn1 .

We now consider vec(In1 ⊗ · · · ⊗ log Θ∗i ⊗ · · · ⊗ Inv).

vec(In1 ⊗ · · · ⊗ log Θ∗i ⊗ · · · ⊗ Inv) = vec
[
Kn1···ni−1,n/(n1···ni−1)

(
log Θ∗i ⊗ In/ni

)
Kn/(n1···ni−1),n1···ni−1

]
=
[
Kᵀ
n/(n1···ni−1),n1···ni−1

⊗Kn1···ni−1,n/(n1···ni−1)

]
vec
(
log Θ∗i ⊗ In/ni

)
=
[
Kn1···ni−1,n/(n1···ni−1) ⊗Kn1···ni−1,n/(n1···ni−1)

] (
Ini ⊗Kn/ni,ni ⊗ In/ni

) (
In2

i
⊗ vec In/ni

)
Dni vech(log Θ∗i ),
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where the first equality is due to the identity B ⊗A = Kp,m(A⊗B)Km,p for A (m×m) and B
(p× p). Thus

Ei :=
[
Kn1···ni−1,n/(n1···ni−1) ⊗Kn1···ni−1,n/(n1···ni−1)

] (
Ini ⊗Kn/ni,ni ⊗ In/ni

) (
In2

i
⊗ vec In/ni

)
Dni ,

for i = 2, . . . , v.

Lemma A.1. Given that n = n1×n2×· · ·×nv, the s×s matrix EᵀE takes the following form:

(i) For i = 1, . . . , s, the ith diagonal entry of EᵀE records how many times the ith parameter
in θ∗ has appeared in vech(log Θ∗). The value depends on to which log Θ∗j the ith parameter
in θ∗, θ∗i , belongs to. For instance, suppose θ∗i is a parameter belonging to log Θ∗3, then

(EᵀE)i,i = n/n3.

(ii) For i, k = 1, . . . , s (i 6= k), the (i, k) entry of EᵀE (or the (k, i) entry of EᵀE by symmetry)
records how many times the ith parameter in θ∗, θ∗i , and kth parameter in θ∗, θ∗k, have
appeared together (as summands) in an entry of vech(log Θ∗). The value depends on to
which log Θ∗j the ith parameter in θ∗, θ∗i , and kth parameter in θ∗, θ∗k, belong to. For
instance, suppose θ∗i is a parameter belonging to log Θ∗3 and θ∗k is a parameter belonging to
log Θ∗5, then

(EᵀE)i,k = (EᵀE)k,i = n/(n3 · n5).

However, the formula in the preceding display is overridden for the following two cases. If
both θ∗i and θ∗k belong to the same log Θ∗j , then (EᵀE)i,k = (EᵀE)k,i = 0. Also note that
when θ∗i is an off-diagonal entry of some log Θ∗j , then

(EᵀE)i,k = (EᵀE)k,i = 0

for any k = 1, . . . , s (i 6= k).

Proof. Proof by spotting the pattern.

We here give a concrete example to illustrate Lemma A.1.

Example A.1. Suppose that n1 = 3, n2 = 2, n3 = 2. We have

log Θ∗1 =

 0 a1,2 a1,3

a1,2 a2,2 a2,3

a1,3 a2,3 a3,3

 log Θ∗2 =

(
0 b1,2
b1,2 b2,2

)
log Θ∗3 =

(
c1,1 c1,2

c1,2 c2,2

)

The leading diagonals of log Θ∗1 and log Θ∗2 are set to zero for identification as explained before.
Thus

θ∗ = (a1,2, a1,3, a2,2, a2,3, a3,3, b1,2, b2,2, c1,1, c1,2, c2,2)ᵀ.

Then we can invoke Lemma A.1 to write down EᵀE without even using Matlab to compute E;
that is,

EᵀE =



4 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 4 0 0 0 2 2 0 2
0 0 0 4 0 0 0 0 0 0
0 0 0 0 4 0 2 2 0 2
0 0 0 0 0 6 0 0 0 0
0 0 2 0 2 0 6 3 0 3
0 0 2 0 2 0 3 6 0 0
0 0 0 0 0 0 0 0 6 0
0 0 2 0 2 0 3 0 0 6
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A.2 Best Approximation

In this section of the appendix, we show that for any given n×n real symmetric, positive definite
covariance matrix (or correlation matrix), there is a uniquely defined member in the Kronecker
product model that is closest to the covariance matrix (or correlation matrix) in some sense in
terms of the log parameter space, once a factorization n = n1 × · · · × nv is specified.

LetMn denote the set of all n×n real symmetric matrices. For any n(n+1)/2×n(n+1)/2
known, deterministic, positive definite matrix W , define a map

〈A,B〉W := (vechA)ᵀW vechB A,B ∈Mn.

It is easy to show that 〈·, ·〉W is an inner product. Space Mn with inner product 〈·, ·〉W can
be identified by Rn(n+1)/2 with the usual Euclidean inner product. Moreover, since, for finite
n, Rn(n+1)/2 with the usual Euclidean inner product is a Hilbert space, so is Mn. The inner
product 〈·, ·〉W induces the following norm

‖A‖W :=
√
〈A,A〉W =

√
(vechA)ᵀW vechA.

Let Dn denote the set of matrices of the form

Ω1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ Ω2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ Ωv,

where Ωj are nj × nj real symmetric matrices for j = 1, . . . , v. Note that Dn is a (linear)
subspace of Mn as, for α, β ∈ R,

α
(
Ω1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ Ω2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ Ωv

)
+

β
(
Ξ1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ Ξ2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ Ξv

)
= (αΩ1 + βΞ1)⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ (αΩ2 + βΞ2)⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ (αΩv + βΞv)

∈ Dn.

For finite n, Dn is also closed.
Consider a real symmetric, positive definite covariance matrix Σ. We have log Σ ∈Mn. By

the projection theorem of the Hilbert space, there exists a unique matrix L0 ∈ Dn such that

‖ log Σ− L0‖W = min
L∈Dn

‖ log Σ− L‖W .

(Note also that log Σ−1 = − log Σ, so that −L0 simultaneously approximates the precision
matrix Σ−1 in the same norm.)

This says that any real symmetric, positive definite covariance matrix Σ has a closest ap-
proximating matrix Σ0 in a sense that

‖ log Σ− log Σ0‖W = min
L∈Dn

‖ log Σ− L‖W ,

where Σ0 := expL0. Since L0 ∈ Dn, we can write

L0 = L0
1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ L0

2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ L0
v,

where L0
j are nj × nj real symmetric matrices for j = 1, . . . , v. Then

Σ0 = expL0 = exp
[
L0

1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ L0
2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ L0

v

]
= exp

[
L0

1 ⊗ In1 ⊗ · · · ⊗ Inv
]
× exp

[
In1 ⊗ L0

2 ⊗ · · · ⊗ Inv
]
× · · · × exp

[
In1 ⊗ · · · ⊗ L0

v

]
=
[
expL0

1 ⊗ In1 ⊗ · · · ⊗ Inv
]
×
[
In1 ⊗ expL0

2 ⊗ · · · ⊗ Inv
]
× · · · ×

[
In1 ⊗ · · · ⊗ expL0

v

]
= expL0

1 ⊗ expL0
2 ⊗ · · · ⊗ expL0

v =: Σ0
1 ⊗ · · · ⊗ Σ0

v,
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where the third equality is due to Theorem 10.2 in Higham (2008) p235 and the fact that
L0

1⊗ In1 ⊗ · · · ⊗ Inv and In1 ⊗L0
2⊗ · · · ⊗ Inv commute, the fourth equality is due to f(A)⊗ I =

f(A⊗I) for any matrix function f (e.g., Theorem 1.13 in Higham (2008) p10), the fifth equality
is due to a property of Kronecker products. Note that Σ0

j is real symmetric, positive definite
nj × nj matrix for j = 1, . . . , v.

We thus see that Σ0 is of the Kronecker product form, and that the precision matrix Σ−1 has
a closest approximating matrix (Σ0)−1. This reasoning provides a justification (i.e., interpre-
tation) for using Σ0 even when the Kronecker product model is misspecified for the covariance
matrix. The same reasoning applies to any real symmetric, positive definite correlation matrix
Θ.

van Loan (2000) and Pitsianis (1997) also considered this nearest approximation involving
one Kronecker product only and in the original parameter space (not in the log parameter
space). In that simplified problem, they showed that the optimisation problem could be solved
by the singular value decomposition.

A.3 The Proof of Theorem 3.1

In this subsection, we give a proof for Theorem 3.1. We will first give some preliminary lemmas
leading to the proof of this theorem.

The following lemma characterises the relationship between an exponential-type moment
assumption and an exponential tail probability.

Lemma A.2. Suppose that a random variable X satisfies the exponential-type tail condition,
i.e., there exist absolute constants K1 > 1,K2 > 0, r1 > 0 such that

E
[
exp

(
K2|X|r1

)]
≤ K1.

(i) Then for every ε ≥ 0, there exists an absolute constant b1 > 0 such that

P(|X| ≥ ε) ≤ exp
[
1− (ε/b1)r1

]
.

(ii) We have E|X| <∞.

(iii) Part (i) implies that for every ε ≥ 0, there exists an absolute constant c1 > 0 such that

P(|X − EX| ≥ ε) ≤ exp
[
1− (ε/c1)r1

]
.

(iv) Suppose that another random variable Y satisfies E
[
exp

(
K∗2 |Y |r

∗
1
)]
≤ K∗1 for some ab-

solute constants K∗1 > 1,K∗2 > 0, r∗1 > 0. Then for every ε ≥ 0, there exists an absolute
constant b2 > 0 such that

P(|XY | ≥ ε) ≤ exp
[
1− (ε/b2)r2

]
,

where r2 ∈
(

0,
r1r∗1
r1+r∗1

]
.

Proof. For part (i), choose C := logK1 ∨ 1 and b1 := (C/K2)1/r1 . If ε > b1, we have

P(|X| ≥ ε) ≤
E
[
exp(K2|X|r1)

]
exp(K2εr1)

≤ K1e
−K2εr1 = elogK1−K2εr1 = elogK1−C(ε/b1)r1

≤ eC[1−(ε/b1)r1 ] ≤ e1−(ε/b1)r1

where the first inequality is due to a variant of Markov’s inequality. If ε ≤ b1, we have

P(|X| ≥ ε) ≤ 1 ≤ e1−(ε/b1)r1 .
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For part (ii),

E|X| =
∫ ∞

0
P(|X| ≥ t)dt ≤

∫ ∞
0

e1−(t/b1)r1dt = e

∫ ∞
0

e−(t/b1)r1dt =
eb1
r1

∫ ∞
0

y
1
r1
−1
e−ydy

=
eb1
r1

Γ(r−1
1 ) <∞,

where the first inequality is due to part (i), the third equality is due to change of variable

y = (t/b1)r1 , and the last equality is due to recognition of
∫∞

0 [Γ(r−1
1 )]−1y

1
r1
−1
e−ydy = 1 using

Gamma distribution. For part (iii),

P(|X − EX| ≥ ε) ≤ P(|X| ≥ ε− E|X|) = P(|X| ≥ ε− E|X| ∧ ε) ≤ exp

[
1− (ε− E|X| ∧ ε)r1

br11

]
where the second inequality is due to part (i). First consider the case 0 < r1 < 1.

exp

[
1− (ε− E|X| ∧ ε)r1

br11

]
≤ exp

[
1− εr1 − (E|X| ∧ ε)r1

br11

]
= exp

[
1− εr1

br11

+
(E|X| ∧ ε)r1

br11

]
≤ exp

[
1− εr1

br11

+
(E|X|)r1
br11

]
≤ exp

[
C − εr1

br11

]
= exp

[
C

(
1− εr1

(C
1
r1 b1)r1

)]
=: exp

[
C

(
1− εr1

cr11

)]
where the first inequality is due to subadditivity of the concave function: (x+ y)r1 − xr1 ≤ yr1
for x, y ≥ 0. If ε > c1, we have, via recognising C > 1,

P(|X − EX| ≥ ε) ≤ exp

[
C

(
1− εr1

cr11

)]
≤ exp

[
1− εr1

cr11

]
.

If ε ≤ c1, we have

P(|X − EX| ≥ ε) ≤ 1 ≤ exp

[
1− εr1

cr11

]
.

We now consider the case r1 ≥ 1. The proof is almost the same: Instead of relying on subaddi-
tivity of the concave function, we rely on Loeve’s cr inequality: |x + y|r1 ≤ 2r1−1(|x|r1 + |y|r1)

for r1 ≥ 1 to get 21−r1εr1 − (E|X| ∧ ε)r1 ≤ (ε − E|X| ∧ ε)r1 . c1 is now defined as C
1
r1 b12

r1−1
r1 .

For part (iv), an original proof could be found in Fan et al. (2011) p3338. Invoke part (i),

P(|Y | ≥ ε) ≤ exp
[
1− (ε/b∗1)r

∗
1
]
. We have, for any ε ≥ 0, M :=

( ε(b∗1)(r
∗
1/r1)

b1

) r1
r1+r

∗
1 , b := b1b

∗
1,

r :=
r1r∗1
r1+r∗1

,

P(|XY | ≥ ε) ≤ P(|X| ≥ ε/M) + P(|Y | ≥M) ≤ exp

[
1−

(
ε/M

b1

)r1]
+ exp

[
1−

(
M

b∗1

)r∗1]
= 2 exp

[
1− (ε/b)r

]
.

Pick an r2 ∈ (0, r] and b2 > (1 + log 2)1/rb. We consider the case ε ≤ b2 first.

P(|XY | ≥ ε) ≤ 1 ≤ exp
[
1− (ε/b2)r2

]
.

We now consider the case ε > b2. Define a function F (ε) := (ε/b)r − (ε/b2)r2 . Using the
definition of b2, we have F (b2) > log 2. It is also not difficult to show that F ′(ε) > 0 when
ε > b2. Thus we have F (ε) > F (b2) > log 2 when ε > b2. Thus,

P(|XY | ≥ ε) ≤ 2 exp
[
1− (ε/b)r

]
= exp

[
log 2 + 1− (ε/b)r

]
≤ exp[(ε/b)r − (ε/b2)r2 + 1− (ε/b)r]

= exp[1− (ε/b2)r2 ].
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This following lemma gives a rate of convergence in terms of spectral norm for the sample
covariance matrix.

Lemma A.3. Assume n, T → ∞ simultaneously and n/T ≤ 1. Suppose Assumptions 3.1(i)
and 3.2 hold with 1/r1 + 1/r2 > 1. Then

‖Σ̂T − Σ‖`2 = Op

(√
n

T

)
.

Proof. Write Σ̂T = 1
T

∑T
t=1 yty

ᵀ
t − ȳȳᵀ. We have

‖Σ̂T − Σ‖`2 ≤
∥∥∥∥ 1

T

T∑
t=1

yty
ᵀ
t − Eytyᵀt

∥∥∥∥
`2

+ ‖ȳȳᵀ − µµᵀ‖`2 . (A.1)

We consider the first term on the right hand side of (A.1) first. Invoke Lemma A.11 in Appendix
A.5 with ε = 1/4:∥∥∥∥ 1

T

T∑
t=1

yty
ᵀ
t − Eytyᵀt

∥∥∥∥
`2

≤ 2 max
a∈N1/4

∣∣∣∣aᵀ( 1

T

T∑
t=1

yty
ᵀ
t − Eytyᵀt

)
a

∣∣∣∣ =: 2 max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ ,
where za,t := yᵀt a. First, given Assumption 3.1(i), invoke Lemma A.2(i) and (iv): For every
ε ≥ 0, there exists an absolute constant b2 > 0 such that

P(|z2
a,t| ≥ ε) ≤ exp

[
1− (ε/b2)r1/2

]
.

Next, invoke Lemma A.2(iii): For every ε ≥ 0, there exists an absolute constant c2 > 0 such
that

P(|z2
a,t − Ez2

a,t| ≥ ε) ≤ exp
[
1− (ε/c2)r1/2

]
.

Given Assumption 3.2 and the fact that mixing properties are hereditary in the sense that for any
measurable function m(·), the process {m(yt)} possesses the mixing property of {yt} (Fan and
Yao (2003) p69), z2

a,t − Ez2
a,t is strong mixing with the same coefficient: α(h) ≤ exp

(
−K3h

r2
)
.

Define r by 1/r := 2/r1 + 1/r2. Using the fact that 2/r1 + 1/r2 > 1, we can invoke a version of
Bernstein’s inequality for strong mixing time series (Theorem A.2 in Appendix A.5), followed
by Lemma A.12 in Appendix A.5:

2 max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ = Op

(√
log |N1/4|

T

)
.

Invoking Lemma A.10 in Appendix A.5, we have |N1/4| ≤ 9n. Thus we have

∥∥∥∥ 1

T

T∑
t=1

yty
ᵀ
t − Eytyᵀt

∥∥∥∥
`2

≤ 2 max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ = Op

(√
n

T

)
.

We now consider the second term on the right hand side of (A.1).

‖ȳȳᵀ − µµᵀ‖`2 ≤ 2 max
a∈N1/4

∣∣∣∣aᵀ(ȳȳᵀ − µȳᵀ + µȳᵀ − µµᵀ
)
a

∣∣∣∣ = 2 max
a∈N1/4

∣∣∣∣aᵀ((ȳ − µ)ȳᵀ + µ(ȳ − µ)ᵀ
)
a

∣∣∣∣
≤ 2 max

a∈N1/4

∣∣aᵀ(ȳ − µ)ȳᵀa
∣∣+ 2 max

a∈N1/4

∣∣aᵀµ(ȳ − µ)ᵀa
∣∣

≤ 2 max
a∈N1/4

∣∣aᵀ(ȳ − µ)
∣∣ max
a∈N1/4

∣∣ȳᵀa∣∣+ 2 max
a∈N1/4

∣∣aᵀµ∣∣ max
a∈N1/4

∣∣(ȳ − µ)ᵀa
∣∣ ,
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where the first inequality is due to Lemma A.11 in Appendix A.5 with ε = 1/4. We consider
maxa∈N1/4

∣∣(ȳ − µ)ᵀa
∣∣ first.

max
a∈N1/4

∣∣(ȳ − µ)ᵀa
∣∣ = max

a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(yᵀt a− E[yᵀt a])

∣∣∣∣ =: max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ .

Recycling the proof for maxa∈N1/4

∣∣ 1
T

∑T
t=1(z2

a,t − Ez2
a,t)
∣∣ = Op

(√
n
T

)
but with 1/r := 1/r1 +

1/r2 > 1 this time, we have

max
a∈N1/4

∣∣(ȳ − µ)ᵀa
∣∣ = max

a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ = Op

(√
log |N1/4|

T

)
= Op

(√
n

T

)
. (A.2)

Now let’s consider maxa∈N1/4

∣∣aᵀµ∣∣.
max
a∈N1/4

∣∣aᵀµ∣∣ := max
a∈N1/4

∣∣Eaᵀyt∣∣ = max
a∈N1/4

∣∣Eza,t∣∣ ≤ max
a∈N1/4

E|za,t| = O(1), (A.3)

where the last equality is due to Lemma A.2(ii). Next we consider maxa∈N1/4

∣∣aᵀȳ∣∣.
max
a∈N1/4

∣∣aᵀȳ∣∣ = max
a∈N1/4

∣∣aᵀ(ȳ − µ+ µ)
∣∣ ≤ max

a∈N1/4

∣∣aᵀ(ȳ − µ)
∣∣+ max

a∈N1/4

∣∣aᵀµ∣∣ = Op

(√
n

T

)
+O(1)

= Op(1), (A.4)

where the last equality is due to n ≤ T . Combining (A.2), (A.3) and (A.4), we have

‖ȳȳᵀ − µµᵀ‖`2 = Op

(√
n

T

)
.

The following lemma gives a rate of convergence in terms of spectral norm for various quan-
tities involving variances of yt. The rate

√
n/T is suboptimal, but there is no need improving

it further as these quantities will not be the dominant terms in the proof of Theorem 3.1.

Lemma A.4. Suppose Assumptions 3.1(i), 3.2, 3.3(i) and 3.4(i) hold with 1/r1 + 1/r2 > 1.
Then

(i)

‖D̂T −D‖`2 = Op

(√
n

T

)
.

(ii) The minimum eigenvalue of D is bounded away from zero by an absolute positive constant
(i.e., ‖D−1‖`2 = O(1)), so is the minimum eigenvalue of D1/2 (i.e., ‖D−1/2‖`2 = O(1)).

(iii)

‖D̂1/2
T −D1/2‖`2 = Op

(√
n

T

)
.

(iv)

‖D̂−1/2
T −D−1/2‖`2 = Op

(√
n

T

)
.

(v)

‖D̂−1/2
T ‖`2 = Op(1).
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(vi) The maximum eigenvalue of Σ is bounded from the above by an absolute constant (i.e.,
‖Σ‖`2 = O(1)). The maximum eigenvalue of D is bounded from the above by an absolute
constant (i.e., ‖D‖`2 = O(1)).

(vii)

‖D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2‖`2 = Op

(√
n

T

)
.

Proof. Define σ2
i := E(yt,i − σi)2 and σ̂2

i := 1
T

∑T
t=1(yt,i − ȳi)2, where the subscript i denotes

the ith component of the corresponding vector. For part (i),

‖D̂T −D‖`2 = max
1≤i≤n

|σ̂2
i − σ2

i | = max
1≤i≤n

|eᵀi (Σ̂T − Σ)ei| ≤ max
‖a‖2=1

|aᵀ(Σ̂T − Σ)a| = ‖Σ̂T − Σ‖`2 ,

where ei denotes a unit vector whose ith component is 1. Now invoke Lemma A.3 to get the
result. For part (ii),

mineval(D) = min
1≤i≤n

σ2
i = min

1≤i≤n
eᵀiΣei ≥ min

‖a‖2=1
aᵀΣa = mineval(Σ) > 0

where the last inequality is due to Assumption 3.4(i). The statement about the minimum
eigenvalue of D1/2 is also true. For part (iii), invoking Lemma A.13 in Appendix A.5 gives

‖D̂1/2
T −D1/2‖`2 ≤

‖D̂T −D‖`2
mineval(D̂

1/2
T ) + mineval(D1/2)

= Op(1)‖D̂T −D‖`2 = Op

(√
n

T

)
,

where the first and second equalities are due to parts (ii) and (i), respectively. Part (iv) follows
from Lemma A.14 in Appendix A.5 via parts (ii) and (iii). For part (v),

‖D̂−1/2
T ‖`2 = ‖D̂−1/2

T −D−1/2 +D−1/2‖`2 ≤ ‖D̂
−1/2
T −D−1/2‖`2 + ‖D−1/2‖`2

= Op

(√
n

T

)
+O(1) = Op(1),

where the second equality is due to parts (iv) and (ii). For part (vi), we have

‖Σ‖`2 = max
‖a‖2=1

∣∣aᵀ (E[yty
ᵀ
t ]− µµᵀ

)
a
∣∣ ≤ max

‖a‖2=1
Ez2

a,t + max
‖a‖2=1

(Eza,t)2 ≤ 2 max
‖a‖2=1

Ez2
a,t.

We have shown that in the proof of Lemma A.3 that z2
a,t has an exponential tail for any ‖a‖2 = 1.

This says that Ez2
a,t is bounded for any ‖a‖2 = 1 via Lemma A.2(ii), so the result follows. Next

we consider

‖D‖`2 = max
1≤i≤n

σ2
i = max

1≤i≤n
eᵀiΣei ≤ max

‖a‖2=1
aᵀΣa = maxeval(Σ) <∞.

For part (vii),

‖D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2‖`2
= ‖D̂−1/2

T ⊗ D̂−1/2
T − D̂−1/2

T ⊗D−1/2 + D̂
−1/2
T ⊗D−1/2 −D−1/2 ⊗D−1/2‖`2

≤ ‖D̂−1/2
T ⊗ (D̂

−1/2
T −D−1/2)‖`2 + ‖(D̂−1/2

T −D−1/2)⊗D−1/2‖`2

=
(
‖D̂−1/2

T ‖`2 + ‖D−1/2‖`2
)
‖D̂−1/2

T −D−1/2‖`2 = Op

(√
n

T

)
,

where the second equality is due to Lemma A.16 in Appendix A.5, and the last equality is due
to parts (ii), (v) and (iv).
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To prove part (ii) of Theorem 3.1, we shall use Lemma 4.1 of Gil’ (2012). That lemma will
further simplify when we consider real symmetric, positive definite matrices. For the ease of
reference, we state this simplified version of Lemma 4.1 of Gil’ (2012) here.

Lemma A.5 (Simplified from Lemma 4.1 of Gil’ (2012)). For n × n real symmetric, positive
definite matrices A,B, if ‖A−B‖`2 < a for some absolute constant a > 1, then

‖ logA− logB‖`2 ≤ c‖A−B‖`2 ,

for some positive absolute constant c.

Proof. First note that for any real symmetric, positive definite matrix Q, p(Q, x) = x for any
x > 0 in Lemma 4.1 of Gil’ (2012). Since A is real symmetric and positive definite, all its
eigenvalues lie in the region | arg(z− a)| ≤ π/2. Then according to Gil’ (2012) p11, we have for
any t ≥ 0 not coinciding with eigenvalues of A

ρ(A,−t) ≥ (a+ t) sin(π/2) = a+ t

ρ(A,−t)− δ ≥ a+ t− δ,

where

δ :=

{
‖A−B‖1/n`2

if ‖A−B‖`2 ≤ 1

‖A−B‖`2 if ‖A−B‖`2 ≥ 1

and ρ(A,−t) is defined in Gil’ (2012) p3. Then the condition of Lemma A.5 allows one to invoke
Lemma 4.1 of Gil’ (2012) as

ρ(A,−t) ≥ a+ t ≥ a > δ.

Lemma 4.1 of Gil’ (2012) says

‖ logA− logB‖`2 ≤ ‖A−B‖`2
∫ ∞

0
p

(
A,

1

ρ(A,−t)

)
p

(
B,

1

ρ(A,−t)− δ

)
dt

= ‖A−B‖`2
∫ ∞

0

1

ρ(A,−t)
1

ρ(A,−t)− δ
dt ≤ ‖A−B‖`2

∫ ∞
0

1

(a+ t)(a+ t− δ)
dt

≤ ‖A−B‖`2
∫ ∞

0

1

(a+ t− δ)2
dt = ‖A−B‖`2

1

a− δ
=: c‖A−B‖`2 .

We are now ready to give a proof for Theorem 3.1

Proof of Theorem 3.1. For part (i), recall that

Θ̂T = D̂
−1/2
T Σ̂T D̂

−1/2
T , Θ = D−1/2ΣD−1/2.

Then we have

‖Θ̂T −Θ‖`2 = ‖D̂−1/2
T Σ̂T D̂

−1/2
T − D̂−1/2

T ΣD̂
−1/2
T + D̂

−1/2
T ΣD̂

−1/2
T −D−1/2ΣD−1/2‖`2

≤ ‖D̂−1/2
T ‖2`2‖Σ̂T − Σ‖`2 + ‖D̂−1/2

T ΣD̂
−1/2
T −D−1/2ΣD−1/2‖`2 . (A.5)

Invoking Lemmas A.3 and A.4(v), we conclude that the first term of (A.5) is Op(
√
n/T ). Let’s

consider the second term of (A.5). Write

‖D̂−1/2
T ΣD̂

−1/2
T −D−1/2ΣD̂

−1/2
T +D−1/2ΣD̂

−1/2
T −D−1/2ΣD−1/2‖`2

≤ ‖(D̂−1/2
T −D−1/2)ΣD̂

−1/2
T ‖`2 + ‖D−1/2Σ(D̂

−1/2
T −D−1/2)‖`2

≤ ‖D̂−1/2
T ‖`2‖Σ‖`2‖D̂

−1/2
T −D−1/2‖`2 + ‖D−1/2‖`2‖Σ‖`2‖D̂

−1/2
T −D−1/2‖`2 .
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Invoking Lemma A.4(ii), (iv), (v) and (vi), we conclude that the second term of (A.5) is
Op(

√
n/T ). For part (ii), it follows trivially from Lemma A.5. For part (iii), we have

‖θ̂T − θ0‖2 = ‖(EᵀWE)−1EᵀW‖`2‖D+
n ‖`2‖ log Θ̂T − log Θ‖F ≤

‖(EᵀWE)−1EᵀW‖`2
√
n‖ log Θ̂T − log Θ‖`2 = O(

√
$κ(W )/n)

√
nOp(

√
n/T ) = Op

(√
n$κ(W )

T

)
,

where the first inequality is due to (A.8), and the second equality is due to (A.14) and parts
(i)-(ii) of this theorem.

A.4 The Proof of Theorem 3.2

In this subsection, we give a proof for Theorem 3.2. We will first give some preliminary lemmas
leading to the proof of this theorem.

The following lemma linearizes the matrix logarithm.

Lemma A.6. Suppose both n × n matrices A + B and A are real, symmetric, and positive
definite for all n with the minimum eigenvalues bounded away from zero by absolute constants.
Suppose the maximum eigenvalue of A is bounded from above by an absolute constant. Further
suppose ∥∥[t(A− I) + I]−1tB

∥∥
`2
≤ C < 1 (A.6)

for all t ∈ [0, 1] and some constant C. Then

log(A+B)− logA =

∫ 1

0
[t(A− I) + I]−1B[t(A− I) + I]−1dt+O(‖B‖2`2 ∨ ‖B‖

3
`2).

The conditions of the preceding lemma implies that for every t ∈ [0, 1], t(A−I)+I is positive
definite for all n with the minimum eigenvalue bounded away from zero by an absolute constant
(Horn and Johnson (1985) Theorem 4.3.1 p181). Lemma A.6 has a flavour of Frechet derivative
because

∫ 1
0 [t(A− I) + I]−1B[t(A− I) + I]−1dt is the Frechet derivative of matrix logarithm at

A in the direction B (Higham (2008) (11.10) p272); however, this lemma is slightly stronger in
the sense of a sharper bound on the remainder.

Proof. Since both A + B and A are positive definite for all n, with minimum eigenvalues real
and bounded away from zero by absolute constants, by Theorem A.3 in Appendix A.5, we have

log(A+B) =

∫ 1

0
(A+B − I)[t(A+B − I) + I]−1dt, logA =

∫ 1

0
(A− I)[t(A− I) + I]−1dt.

Use (A.6) to invoke Lemma A.15 in Appendix A.5 to expand [t(A− I) + I + tB]−1 to get

[t(A− I) + I + tB]−1 = [t(A− I) + I]−1 − [t(A− I) + I]−1tB[t(A− I) + I]−1 +O(‖B‖2`2)
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and substitute into the expression of log(A+B)

log(A+B)

=

∫ 1

0
(A+B − I)

{
[t(A− I) + I]−1 − [t(A− I) + I]−1tB[t(A− I) + I]−1 +O(‖B‖2`2)

}
dt

= logA+

∫ 1

0
B[t(A− I) + I]−1dt−

∫ 1

0
t(A+B − I)[t(A− I) + I]−1B[t(A− I) + I]−1dt

+ (A+B − I)O(‖B‖2`2)

= logA+

∫ 1

0
[t(A− I) + I]−1B[t(A− I) + I]−1dt−

∫ 1

0
tB[t(A− I) + I]−1B[t(A− I) + I]−1dt

+ (A+B − I)O(‖B‖2`2)

= logA+

∫ 1

0
[t(A− I) + I]−1B[t(A− I) + I]−1dt+O(‖B‖2`2 ∨ ‖B‖

3
`2),

where the last equality follows from maxeval(A) < C < ∞ and mineval[t(A − I) + I] > C ′ >
0.

Lemma A.7. Suppose Assumptions 3.1(i), 3.2, 3.3(i) and 3.4(i) hold with 1/r1 + 1/r2 > 1.

(i) Then Θ has minimum eigenvalue bounded away from zero by an absolute constant and
maximum eigenvalue bounded from above by an absolute constant.

(ii) Then Θ̂T has minimum eigenvalue bounded away from zero by an absolute constant and
maximum eigenvalue bounded from above by an absolute constant with probability approach-
ing 1.

Proof. For part (i), the maximum eigenvalue of Θ is its spectral norm, i.e., ‖Θ‖`2 .

‖Θ‖`2 = ‖D−1/2ΣD−1/2‖`2 ≤ ‖D−1/2‖2`2‖Σ‖`2 < C,

where the last inequality is due to Lemma A.4(ii) and (vi). Now let’s consider the minimum
eigenvalue of Θ.

mineval(Θ) = mineval(D−1/2ΣD−1/2) = min
‖a‖2=1

aᵀD−1/2ΣD−1/2a ≥ min
‖a‖2=1

mineval(Σ)‖D−1/2a‖22

= mineval(Σ) min
‖a‖2=1

aᵀD−1a = mineval(Σ)mineval(D−1) =
mineval(Σ)

maxeval(D)
> 0,

where the second equality is due to Rayleigh-Ritz theorem, and the last inequality is due to
Assumption 3.4(i) and Lemma A.4(vi). For part (ii), the maximum eigenvalue of Θ̂ is its spectral
norm, i.e., ‖Θ̂‖`2 .

‖Θ̂T ‖`2 ≤ ‖Θ̂T −Θ‖`2 + ‖Θ‖`2 = Op

(√
n

T

)
+ ‖Θ‖`2 = Op(1)

where the first equality is due to Theorem 3.1(i) and the last equality is due to part (i). The min-
imum eigenvalue of Θ̂T is 1/maxeval(Θ̂−1

T ). Since ‖Θ−1‖`2 = maxeval(Θ−1) = 1/mineval(Θ) =

O(1) by part (i) and ‖Θ̂T −Θ‖`2 = Op(
√
n/T ) by Theorem 3.1(i), we can invoke Lemma A.14

in Appendix A.5 to get
‖Θ̂−1

T −Θ−1‖`2 = Op(
√
n/T ),

whence we have
‖Θ̂−1

T ‖`2 ≤ ‖Θ̂
−1
T −Θ−1‖`2 + ‖Θ−1‖`2 = Op(1).

Thus the minimum eigenvalue of Θ̂T is bounded away from zero by an absolute constant.
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Recall ĤT defined in (3.6). The following lemma gives a rate of convergence for ĤT . It is
also true when one replaces ĤT with ĤT,D defined in (3.5).

Lemma A.8. Let Assumptions 3.1(i), 3.2, 3.3(i) and 3.4(i) be satisfied with 1/r1 + 1/r2 > 1.
Then we have

‖H‖`2 = O(1), ‖ĤT ‖`2 = Op(1), ‖ĤT −H‖`2 = Op

(√
n

T

)
. (A.7)

Proof. The proofs for ‖H‖`2 = O(1) and ‖ĤT ‖`2 = Op(1) are exactly the same, so we only give
the proof for the latter. Define At := [t(Θ̂T − I) + I]−1 and Bt := [t(Θ− I) + I]−1.

‖ĤT ‖`2 =

∥∥∥∥∫ 1

0
At ⊗Atdt

∥∥∥∥
`2

≤
∫ 1

0

∥∥At ⊗At∥∥`2 dt ≤ max
t∈[0,1]

∥∥At ⊗At∥∥`2 = max
t∈[0,1]

‖At‖2`2

= max
t∈[0,1]

{maxeval([t(Θ̂T − I) + I]−1)}2 = max
t∈[0,1]

{
1

mineval(t(Θ̂T − I) + I)

}2

= Op(1),

where the second equality is due to Lemma A.16 in Appendix A.5, and the last equality is due
to Lemma A.7(ii). Now,

‖ĤT −H‖`2 =

∥∥∥∥∫ 1

0
At ⊗At −Bt ⊗Btdt

∥∥∥∥
`2

≤
∫ 1

0
‖At ⊗At −Bt ⊗Bt‖`2 dt

≤ max
t∈[0,1]

‖At ⊗At −Bt ⊗Bt‖`2 = max
t∈[0,1]

‖At ⊗At −At ⊗Bt +At ⊗Bt −Bt ⊗Bt‖`2

= max
t∈[0,1]

∥∥At ⊗ (At −Bt) + (At −Bt)⊗Bt
∥∥
`2
≤ max

t∈[0,1]

(∥∥At ⊗ (At −Bt)
∥∥
`2

+
∥∥(At −Bt)⊗Bt

∥∥
`2

)
= max

t∈[0,1]

(
‖At‖`2 ‖At −Bt‖`2 + ‖At −Bt‖`2 ‖Bt‖`2

)
= max

t∈[0,1]
‖At −Bt‖`2 (‖At‖`2 + ‖Bt‖`2)

= Op(1) max
t∈[0,1]

∥∥∥[t(Θ̂T − I) + I]−1 − [t(Θ− I) + I]−1
∥∥∥
`2

where the first inequality is due to Jensen’s inequality, the third equality is due to special
properties of Kronecker product, the fourth equality is due to Lemma A.16 in Appendix A.5,
and the last equality is because Lemma A.7 implies

‖[t(Θ̂T − I) + I]−1‖`2 = Op(1) ‖[t(Θ− I) + I]−1‖`2 = O(1).

Now ∥∥∥[t(Θ̂T − I) + I]− [t(Θ− I) + I]
∥∥∥
`2

= t‖Θ̂T −Θ‖`2 = Op(
√
n/T ),

where the last equality is due to Theorem 3.1(i). The lemma then follows after invoking Lemma
A.14 in Appendix A.5.

Lemma A.9. Given the n2 × n(n+ 1)/2 duplication matrix Dn and its Moore-Penrose gener-
alised inverse D+

n = (Dᵀ
nDn)−1Dᵀ

n (i.e., Dn is full-column rank), we have

‖D+
n ‖`2 = ‖D+ᵀ

n ‖`2 = 1, ‖Dn‖`2 = ‖Dᵀ
n‖`2 = 2. (A.8)

Proof. First note that Dᵀ
nDn is a diagonal matrix with diagonal entries either 1 or 2. Using the

fact that for any matrix A, AAᵀ and AᵀA have the same non-zero eigenvalues, we have

‖D+ᵀ
n ‖2`2 = maxeval(D+

nD
+ᵀ
n ) = maxeval((Dᵀ

nDn)−1) = 1

‖D+
n ‖2`2 = maxeval(D+ᵀ

n D+
n ) = maxeval(D+

nD
+ᵀ
n ) = maxeval((Dᵀ

nDn)−1) = 1

‖Dn‖2`2 = maxeval(Dᵀ
nDn) = 2

‖Dᵀ
n‖2`2 = maxeval(DnD

ᵀ
n) = maxeval(Dᵀ

nDn) = 2
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We are now ready to give a proof for Theorem 3.2.

Proof of Theorem 3.2. We first show that (A.6) is satisfied with probability approaching 1 for
A = Θ and B = Θ̂T −Θ. That is,

‖[t(Θ− I) + I]−1t(Θ̂T −Θ)‖`2 ≤ C < 1 with probability approaching 1,

for some constant C.

‖[t(Θ− I) + I]−1t(Θ̂T −Θ)‖`2 ≤ t‖[t(Θ− I) + I]−1‖`2‖Θ̂T −Θ‖`2
= ‖[t(Θ− I) + I]−1‖`2Op(

√
n/T ) = Op(

√
n/T )/mineval(t(Θ− I) + I) = op(1),

where the first equality is due to Theorem 3.1(i), and the last equality is due to mineval(t(Θ−
I) + I) > C > 0 for some absolute constant C (implied by Lemma A.7(i)) and Assumption
3.3(i). Together with Lemma A.7(ii) and Lemma 2.12 in van der Vaart (1998), we can invoke
Lemma A.6 stochastically with A = Θ and B = Θ̂T −Θ:

log Θ̂T − log Θ =

∫ 1

0
[t(Θ− I) + I]−1(Θ̂T −Θ)[t(Θ− I) + I]−1dt+Op(‖Θ̂T −Θ‖2`2). (A.9)

(We can invoke Lemma A.6 stochastically because the remainder of the log linearization is zero

when the perturbation is zero. Moreover, we have ‖Θ̂T − Θ‖`2
p−→ 0 under Assumption 3.3(i).)

Note that (A.9) also holds with Θ̂T replaced by Θ̂T,D by repeating the same argument. That
is,

log Θ̂T,D − log Θ =

∫ 1

0
[t(Θ− I) + I]−1(Θ̂T,D −Θ)[t(Θ− I) + I]−1dt+Op(‖Θ̂T,D −Θ‖2`2).

Now we can write
√
Tcᵀ(θ̂T,D − θ0)√

cᵀĴT,Dc
=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ)√
cᵀĴT,Dc

+

√
Tcᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2)√
cᵀĴT,Dc

=: t̂D,1 + t̂D,2.

Define

tD,1 :=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec(Σ̃T − Σ)√
cᵀJDc

.

To prove Theorem 3.2, it suffices to show tD,1
d−→ N(0, 1), tD,1 − t̂D,1 = op(1), and t̂D,2 = op(1).

A.4.1 tD,1
d−→ N(0, 1)

We now prove that tD,1 is asymptotically distributed as a standard normal.

tD,1 =

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec
(

1
T

∑T
t=1

[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

])
√
cᵀJDc

=
T∑
t=1

T−1/2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec

[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]
√
cᵀJDc

=:
T∑
t=1

UD,T,n,t.
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Define a triangular array of sigma algebras {FT,n,t, t = 0, 1, 2, . . . , T} by FT,n,t := Ft (the only
non-standard thing is that this triangular array has one more subscript n). It is easy to see that
UD,T,n,t is FT,n,t-measurable. We now show that {UD,T,n,t,FT,n,t} is a martingale difference
sequence (i.e., E[UD,T,n,t|FT,n,t−1] = 0 almost surely for t = 1, . . . , T ). It suffices to show for all
t

E
[
(yt − µ)(yt − µ)ᵀ − E[(yt − µ)(yt − µ)ᵀ]|FT,n,t−1

]
= 0 a.s.. (A.10)

This is straightforward via Assumption 3.5. We now check conditions (i)-(iii) of Theorem A.4
in Appendix A.5. We first investigate at what rate the denominator

√
cᵀJDc goes to zero:

cᵀJDc = cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c

≥ mineval(V )mineval(D−1 ⊗D−1)mineval(H2)mineval(D+
nD

+ᵀ
n )mineval(W )mineval((EᵀWE)−1)

=
mineval(V )mineval2(H)

maxeval(D ⊗D)maxeval(Dᵀ
nDn)maxeval(W−1)maxeval(EᵀWE)

≥ mineval(V )mineval2(H)

maxeval(D ⊗D)maxeval(Dᵀ
nDn)maxeval(W−1)maxeval(W )maxeval(EᵀE)

where the first and third inequalities are true by repeatedly invoking the Rayleigh-Ritz theorem.
Note that

maxeval(EᵀE) ≤ tr(EᵀE) ≤ s · n, (A.11)

where the last inequality is due to Lemma A.1. For future reference

‖E‖`2 = ‖Eᵀ‖`2 =
√

maxeval(EᵀE) ≤
√
sn. (A.12)

Since the minimum eigenvalue of H is bounded away from zero by an absolute constant by
Lemma A.7(i), the maximum eigenvalue of D is bounded from above by an absolute constant
(Lemma A.4(vi)), and maxeval[Dᵀ

nDn] is bounded from above since Dᵀ
nDn is a diagonal matrix

with diagonal entries either 1 or 2, we have, via Assumption 3.6

1√
cᵀJDc

= O(
√
s · n · κ(W )). (A.13)

Also note that

‖(EᵀWE)−1EᵀW 1/2‖`2 =
√

maxeval
([

(EᵀWE)−1EᵀW 1/2
]ᵀ

(EᵀWE)−1EᵀW 1/2
)

=
√

maxeval
(
(EᵀWE)−1EᵀW 1/2

[
(EᵀWE)−1EᵀW 1/2

]ᵀ)
=
√

maxeval
(
(EᵀWE)−1EᵀW 1/2W 1/2E(EᵀWE)−1

)
=
√

maxeval
(
(EᵀWE)−1

)
=

√
1

mineval(EᵀWE)
≤

√
1

mineval(EᵀE)mineval(W )

= O
(√

$/n
)√
‖W−1‖`2 ,

where the second equality is due to the fact that for any matrix A, AAᵀ and AᵀA have the same
non-zero eigenvalues, the third equality is due to (Aᵀ)−1 = (A−1)ᵀ, and the last equality is due
to Assumption 3.4(ii). Thus

‖(EᵀWE)−1EᵀW‖`2 = O(
√
$κ(W )/n), (A.14)

whence we have∥∥cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)

∥∥
2

= O(
√
$κ(W )/n), (A.15)
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via (A.7) and Lemma A.4(ii). We now verify (i) and (ii) of Theorem A.4 in Appendix A.5. We
shall use Orlicz norms as defined in van der Vaart and Wellner (1996): Let ψ : R+ → R+ be a
non-decreasing, convex function with ψ(0) = 0 and limx→∞ ψ(x) = ∞, where R+ denotes the
set of nonnegative real numbers. Then, the Orlicz norm of a random variable X is given by

‖X‖ψ = inf
{
C > 0 : Eψ

(
|X|/C

)
≤ 1
}
,

where inf ∅ = ∞. We shall use Orlicz norms for ψ(x) = ψp(x) = ex
p − 1 for p = 1, 2 in this

article. We consider |UD,T,n,t| first.

|UD,T,n,t| =∣∣∣∣T−1/2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec

[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]
√
cᵀJDc

∣∣∣∣
≤
T−1/2‖cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2)‖2‖ vec
[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]
‖2√

cᵀJDc

= O

(√
$sκ2(W )

T

)∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
F

≤ O
(√

n2$sκ2(W )

T

)∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
∞

where the second equality is due to (A.13) and (A.15). Consider∥∥∥∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
∞

∥∥∥
ψ1

=
∥∥∥ max

1≤i,j≤n

∣∣(yt,i − µi)(yt,j − µj)− E(yt,i − µi)(yt,j − µj)
∣∣∥∥∥
ψ1

≤ log(1 + n2) max
1≤i,j≤n

∥∥∥(yt,i − µi)(yt,j − µj)− E(yt,i − µi)(yt,j − µj)
∥∥∥
ψ1

≤ 2 log(1 + n2) max
1≤i,j≤n

∥∥∥(yt,i − µi)(yt,j − µj)
∥∥∥
ψ1

where the first inequality is due to Lemma 2.2.2 in van der Vaart and Wellner (1996). Assump-
tion 3.1(i) with r1 = 2 gives E

[
exp(K2|yt,i|2)

]
≤ K1 for all i. Then

P
(
|(yt,i − µi)(yt,j − µj)| ≥ ε

)
≤ P

(
|yt,i − µi| ≥

√
ε
)

+ P
(
|yt,j − µj | ≥

√
ε
)

≤ 2 exp
[
1− (

√
ε/c1)2

]
=: Ke−Cε

where the second inequality is due to Lemma A.2(iii). It follows from Lemma 2.2.1 in van der
Vaart and Wellner (1996) that ‖(yt,i − µi)(yt,j − µj)‖ψ1 ≤ (1 +K)/C for all i, j, t. Thus∥∥∥ max

1≤t≤T
|UD,T,n,t|

∥∥∥
ψ1

≤ log(1 + T ) max
1≤t≤T

∥∥∥UD,T,n,t∥∥∥
ψ1

= O

(
log(1 + T )

√
n2$sκ2(W )

T

)
max

1≤t≤T

∥∥∥∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
∞

∥∥∥
ψ1

= O

(
log(1 + T ) log(1 + n2)

√
n2$sκ2(W )

T

)
max

1≤t≤T
max

1≤i,j≤n

∥∥∥(yt,i − µi)(yt,j − µj)
∥∥∥
ψ1

= O

(
log(1 + T ) log(1 + n2)

√
n2$sκ2(W )

T

)
= O

(√
n2$sκ2(W ) log2(1 + T ) log2(1 + n2)

T

)
= o(1)

where the last equality is due to Assumption 3.3(ii). Since ‖U‖Lr ≤ r!‖U‖ψ1 for any random
variable U (van der Vaart and Wellner (1996), p95), we conclude that (i) and (ii) of Theorem
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A.4 in Appendix A.5 are satisfied. We now verify condition (iii) of Theorem A.4 in Appendix
A.5. Since we have already shown in (A.13) that snκ(W )cᵀJDc is bounded away from zero by
an absolute constant, it suffices to show

snκ(W ) ·
∣∣∣∣ 1

T

T∑
t=1

(
cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2)ut

)2
− cᵀJDc

∣∣∣∣ = op(1),

where ut := vec
[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]
. Note that

snκ(W ) ·
∣∣∣∣ 1

T

T∑
t=1

(
cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2)ut

)2
− cᵀJDc

∣∣∣∣
≤ snκ(W )

∥∥∥∥ 1

T

T∑
t=1

utu
ᵀ
t − V

∥∥∥∥
∞

‖cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)‖21

≤ sn3κ(W )

∥∥∥∥ 1

T

T∑
t=1

utu
ᵀ
t − V

∥∥∥∥
∞

‖cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)‖22

≤ sn3κ(W )

∥∥∥∥ 1

T

T∑
t=1

utu
ᵀ
t − V

∥∥∥∥
∞

‖(EᵀWE)−1EᵀW‖2`2‖D
+
n ‖2`2‖H‖

2
`2‖D

−1/2 ⊗D−1/2‖2`2

= Op(sn
3κ(W ))

√
log n

T
· $κ(W )

n
= Op

(√
s2n4κ4(W ) log n ·$2

T

)
= op(1)

where the first equality is due to Lemma A.4(ii), Lemma A.16 in Appendix A.5, (A.7), (A.14),

(A.8), and the fact that
∥∥T−1

∑T
t=1 utu

ᵀ
t − V

∥∥
∞ = Op(

√
logn
T ), which can be deduced from the

proof of Lemma 8.2 in SM 8.3,11 the last equality is due to Assumption 3.3(ii). Thus condition

(iii) of Theorem A.4 in Appendix A.5 is verified and tD,1
d−→ N(0, 1).

A.4.2 tD,1 − t̂D,1 = op(1)

We now show that tD,1− t̂D,1 = op(1). Let AD and ÂD denote the numerators of tD,1 and t̂D,1,
respectively.

tD,1 − t̂D,1 =
AD√
cᵀJDc

− ÂD√
cᵀĴT,Dc

=

√
snκ(W )AD√
snκ(W )cᵀJDc

−
√
snκ(W )ÂD√

snκ(W )cᵀĴT,Dc
.

Since we have already shown in (A.13) that snκ(W )cᵀJDc is bounded away from zero by an
absolute constant, it suffices to show the denominators as well as numerators of tD,1 and t̂D,1
are asymptotically equivalent.

11To see this, write

1

T
utu

ᵀ
t − V =

1

T

T∑
t=1

[
(yt − µ)(yt − µ)ᵀ ⊗ (yt − µ)(yt − µ)ᵀ

]
− E

[
(yt − µ)(yt − µ)ᵀ ⊗ (yt − µ)(yt − µ)ᵀ

]
− 1

T

T∑
t=1

[
(yt − µ)⊗ (yt − µ)

]
· E
[
(yt − µ)ᵀ ⊗ (yt − µ)ᵀ

]
+ E

[
(yt − µ)⊗ (yt − µ)

]
· E
[
(yt − µ)ᵀ ⊗ (yt − µ)ᵀ

]
− E

[
(yt − µ)⊗ (yt − µ)

]
· 1

T

T∑
t=1

[
(yt − µ)ᵀ ⊗ (yt − µ)ᵀ

]
+ E

[
(yt − µ)⊗ (yt − µ)

]
· E
[
(yt − µ)ᵀ ⊗ (yt − µ)ᵀ

]
.

Then many parts of the proof of Lemma 8.2 in SM 8.3 could be recycled.
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A.4.3 Denominators of tD,1 and t̂D,1

We first show that the denominators of tD,1 and t̂D,1 are asymptotically equivalent, i.e.,

snκ(W )|cᵀĴT,Dc− cᵀJDc| = op(1).

Define

cᵀJ̃T,Dc := cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2⊗D−1/2)V (D−1/2⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c.

By the triangular inequality: |snκ(W )cᵀĴT,Dc−snκ(W )cᵀJDc| ≤ |snκ(W )cᵀĴT,Dc−snκ(W )cᵀJ̃T,Dc|+
|snκ(W )cᵀJ̃T,Dc− snκ(W )cᵀJDc|. First, we prove |snκ(W )cᵀĴT,Dc− snκ(W )cᵀJ̃T,Dc| = op(1).

snκ(W )|cᵀĴT,Dc− cᵀJ̃T,Dc|
= snκ(W )|cᵀ(EᵀWE)−1EᵀWD+

n ĤT,D(D−1/2 ⊗D−1/2)V̂T (D−1/2 ⊗D−1/2)ĤT,DD
+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c|
= snκ(W )

· |cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2 ⊗D−1/2)(V̂T − V )(D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c|
≤ snκ(W )‖V̂T − V ‖∞‖(D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c‖21
≤ sn3κ(W )‖V̂T − V ‖∞‖(D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c‖22
≤ sn3κ(W )‖V̂T − V ‖∞‖(D−1/2 ⊗D−1/2)‖2`2‖ĤT,D‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2

= Op(sn
2κ2(W )$)‖V̂T − V ‖∞ = Op

(√
n4κ4(W )s2$2 log n

T

)
= op(1),

where ‖ · ‖∞ denotes the absolute elementwise maximum, the third equality is due to Lemma
A.4(ii), Lemma A.16 in Appendix A.5, (A.7), (A.14), and (A.8), the second last equality is due
to Lemma 8.2 in SM 8.3, and the last equality is due to Assumption 3.3(ii). We now prove
snκ(W )|cᵀJ̃T,Dc− cᵀJDc| = op(1).

snκ(W )|cᵀJ̃T,Dc− cᵀJDc|
= snκ(W )|cᵀ(EᵀWE)−1EᵀWD+

n ĤT,D(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)ĤT,DD
+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c|
≤ snκ(W )

∣∣maxeval
[
(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)

]∣∣ ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖22
+ 2snκ(W )‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖2 (A.16)

where the inequality is due to Lemma A.17 in Appendix A.5. We consider the first term of
(A.16) first.

snκ(W )
∣∣maxeval

[
(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)

]∣∣ ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖22
= O(snκ(W ))‖ĤT,D −H‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(snκ

2(W )$/T ) = op(1),

where the second last equality is due to (A.7), (A.8), and (A.14), and the last equality is due
to Assumption 3.3(ii). We now consider the second term of (A.16).

2snκ(W )‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(snκ(W ))‖H‖`2‖ĤT,D −H‖`2‖D+ᵀ

n ‖2`2‖WE(EᵀWE)−1c‖22 = O(
√
nκ4(W )s2$2/T ) = op(1),

where the first equality is due to (A.7), (A.8), and (A.14), and the last equality is due to
Assumption 3.3(ii). We have proved |snκ(W )cᵀJ̃T,Dc − snκ(W )cᵀJDc| = op(1) and hence

|snκ(W )cᵀĴT,Dc− snκ(W )cᵀJDc| = op(1).
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A.4.4 Numerators of tD,1 and t̂D,1

We now show that numerators of tD,1 and t̂D,1 are asymptotically equivalent, i.e.,√
snκ(W )|AD − ÂD| = op(1).

This is relatively straight forward.√
Tsnκ(W )

∣∣cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ− Σ̃T + Σ)

∣∣
=
√
Tsnκ(W )

∣∣cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ̃T )

∣∣
=
√
Tsnκ(W )

∣∣cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec

[
(ȳ − µ)(ȳ − µ)ᵀ

]∣∣
≤
√
Tsnκ(W )‖(EᵀWE)−1EᵀW‖`2‖D+

n ‖`2‖H‖`2‖D−1/2 ⊗D−1/2‖`2‖ vec
[
(ȳ − µ)(ȳ − µ)ᵀ

]
‖2

= O(
√
Tsnκ(W ))

√
$κ(W )/n‖(ȳ − µ)(ȳ − µ)ᵀ‖F

≤ O(
√
Tsnκ(W ))

√
$κ(W )/nn‖(ȳ − µ)(ȳ − µ)ᵀ‖∞

= O(
√
Tsn2κ2(W )$) max

1≤i,j≤n

∣∣(ȳ − µ)i(ȳ − µ)j
∣∣ = Op(

√
Tsn2κ2(W )$) log n/T

= Op

(√
log3 n · n2κ2(W )$

T

)
= op(1),

where the third equality is due to (A.7), (A.8), and (A.14), the third last equality is due to
(8.23) in SM 8.3, and the last equality is due to Assumption 3.3(ii).

A.4.5 t̂D,2 = op(1)

Write

t̂D,2 =

√
T
√
snκ(W )cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2)√
snκ(W )cᵀĴT,Dc

.

Since the denominator of the preceding equation is bounded away from zero by an absolute con-
stant with probability approaching one by (A.13) and that |snκ(W )cᵀĴT,Dc− snκ(W )cᵀJDc| =
op(1), it suffices to show

√
T
√
snκ(W )cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2) = op(1).

This is straightforward:

|
√
Tsnκ(W )cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2)|

≤
√
Tsnκ(W )‖cᵀ(EᵀWE)−1EᵀWD+

n ‖2‖ vecOp(‖Θ̂T,D −Θ‖2`2)‖2
= O(

√
Ts$κ(W ))‖Op(‖Θ̂T,D −Θ‖2`2)‖F = O(

√
Ts$nκ(W ))‖Op(‖Θ̂T,D −Θ‖2`2)‖`2

= O(
√
Ts$nκ(W ))Op(‖Θ̂T,D −Θ‖2`2) = Op

(
κ(W )

√
Ts$nn

T

)
= Op

(√
s$n3κ2(W )

T

)
= op(1),

where the last equality is due to Assumption 3.3(ii).

A.5 Auxiliary Lemmas

This subsection of Appendix contains auxiliary lemmas which have been used in other subsec-
tions of Appendix. We first review definitions of nets and covering numbers.

Definition A.1 (Nets and covering numbers). Let (T, d) be a metric space and fix ε > 0.
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(i) A subset Nε of T is called an ε-net of T if every point x ∈ T satisfies d(x, y) ≤ ε for some
y ∈ Nε.

(ii) The minimal cardinality of an ε-net of T is denoted |Nε| and is called the covering number
of T (at scale ε). Equivalently, |Nε| is the minimal number of balls of radius ε and with
centers in T needed to cover T .

Lemma A.10. The unit Euclidean sphere {x ∈ Rn : ‖x‖2 = 1} equipped with the Euclidean
metric satisfies for every ε > 0 that

|Nε| ≤
(

1 +
2

ε

)n
.

Proof. See Vershynin (2011) Lemma 5.2 p8.

Recall that for a symmetric n×n matrix A, its `2 spectral norm can be written as: ‖A‖`2 =
max‖x‖2=1 |xᵀAx|.

Lemma A.11. Let A be a symmetric n × n matrix, and let Nε be an ε-net of the unit sphere
{x ∈ Rn : ‖x‖2 = 1} for some ε ∈ [0, 1). Then

‖A‖`2 ≤
1

1− 2ε
max
x∈Nε

|xᵀAx|.

Proof. See Vershynin (2011) Lemma 5.4 p8.

The following theorem is a version of Bernstein’s inequality which accommodates strong
mixing time series.

Theorem A.2 (Theorem 1 of Merlevede, Peligrad, and Rio (2011)). Let {Xt}t∈Z be a sequence
of centered real-valued random variables. Suppose that for every ε ≥ 0, there exist absolute
constants γ2 ∈ (0,+∞] and b ∈ (0,+∞) such that

sup
t≥1

P(|Xt| ≥ ε) ≤ exp
[
1− (ε/b)γ2

]
.

Moreover, assume its alpha mixing coefficient α(h) satisfies

α(h) ≤ exp(−chγ1), h ∈ N

for absolute constants c > 0 and γ1 > 0. Define γ by 1/γ := 1/γ1 + 1/γ2; constants γ1 and γ2

need to be restricted to make sure γ < 1. Then, for any T ≥ 4, there exist positive constants
C1, C2, C3, C4, C5 depending only on b, c, γ1, γ2 such that, for every ε ≥ 0,

P
(∣∣∣∣ 1

T

T∑
t=1

Xt

∣∣∣∣ ≥ ε) ≤ T exp

(
−(Tε)γ

C1

)
+ exp

(
− (Tε)2

C2(1 + C3T )

)
+ exp

[
−(Tε)2

C4T
exp

(
(Tε)γ(1−γ)

C5(log(Tε))γ

)]
.

We can use the preceding theorem to establish a rate for the maximum.

Lemma A.12. Suppose that we have for 1 ≤ i ≤ n, for every ε ≥ 0,

P
(∣∣∣∣ 1

T

T∑
t=1

Xt,i

∣∣∣∣ ≥ ε) ≤ T exp

(
−(Tε)γ

C1

)
+ exp

(
− (Tε)2

C2(1 + C3T )

)
+ exp

[
−(Tε)2

C4T
exp

(
(Tε)γ(1−γ)

C5(log(Tε))γ

)]
.

Suppose log n = o(T
γ

2−γ ) if n > T . Then

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

Xt,i

∣∣∣∣ = Op

(√
log n

T

)
.
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Proof.

P
(

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

Xt,i

∣∣∣∣ ≥ ε) ≤ n∑
i=1

P
(∣∣∣∣ 1

T

T∑
t=1

Xt,i

∣∣∣∣ ≥ ε)
≤ nT exp

(
−(Tε)γ

C1

)
+ n exp

(
− (Tε)2

C2(1 + C3T )

)
+ n exp

[
−(Tε)2

C4T
exp

(
(Tε)γ(1−γ)

C5(log(Tε))γ

)]
We shall choose ε = C

√
log n/T for some C > 0 and consider the three terms on the right side

of inequality separately. We consider the first term for the case n ≤ T

nT exp

(
−(Tε)γ

C1

)
= exp

(
log(nT )− Cγ

C1
(T log n)γ/2

)
= exp

[
(T log n)γ/2

(
log(nT )

(T log n)γ/2
− Cγ

C1

)]
≤ exp

[
(T log n)γ/2

(
2 log T

(T log n)γ/2
− Cγ

C1

)]
= exp

[
(T log n)γ/2

(
o(1)− Cγ

C1

)]
= o(1),

for large enough C. We next consider the first term for the case n > T

nT exp

(
−(Tε)γ

C1

)
= exp

(
log(nT )− Cγ

C1
(T log n)γ/2

)
= exp

[
(T log n)γ/2

(
log(nT )

(T log n)γ/2
− Cγ

C1

)]
≤ exp

[
(T log n)γ/2

(
2 log n

(T log n)γ/2
− Cγ

C1

)]
= exp

[
(T log n)γ/2

(
o(1)− Cγ

C1

)]
= o(1),

for large enough C given the assumption log n = o(T
γ

2−γ ). We consider the second term.

n exp

(
− (Tε)2

C2(1 + C3T )

)
= exp

(
log n− C2 log n

C2/T + C2C3

)
= exp

[
log n

(
1− C2

C2/T + C2C3

)]
= o(1)

for large enough C. We consider the third term.

n exp

[
−(Tε)2

C4T
exp

(
(Tε)γ(1−γ)

C5(log(Tε))γ

)]
≤ n exp

[
−(Tε)2

C4T
exp

(
(Tε)γ(1−γ)

C5(Tε)γ

)]
= n exp

[
−(Tε)2

C4T
exp

(
1

C5(Tε)γ2

)]
= n exp

[
−(Tε)2

C4T
(1 + o(1))

]
= exp

[
log n− C2 log n

C4
(1 + o(1))

]
= o(1),

for large enough C. This yields the result.

Lemma A.13. Let A,B be n× n positive semidefinite matrices and not both singular. Then

‖A−B‖`2 ≤
‖A2 −B2‖`2

mineval(A) + mineval(B)
.

Proof. See Horn and Johnson (1985) Problem 17 p410.

Lemma A.14. Let Ω̂n and Ωn be invertible (both possibly stochastic) n × n square matrices
whose dimensions could be growing. Let T be the sample size. For any matrix norm, suppose
that ‖Ω−1

n ‖ = Op(1) and ‖Ω̂n − Ωn‖ = Op(an,T ) for some sequence an,T with an,T → 0 as

n→∞, T →∞ simultaneously (joint asymptotics). Then ‖Ω̂−1
n − Ω−1

n ‖ = Op(an,T ).
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Proof. The original proof could be found in Saikkonen and Lutkepohl (1996) Lemma A.2.

‖Ω̂−1
n − Ω−1

n ‖ ≤ ‖Ω̂−1
n ‖‖Ωn − Ω̂n‖‖Ω−1

n ‖ ≤
(
‖Ω−1

n ‖+ ‖Ω̂−1
n − Ω−1

n ‖
)
‖Ωn − Ω̂n‖‖Ω−1

n ‖.

Let vn,T , zn,T and xn,T denote ‖Ω−1
n ‖, ‖Ω̂−1

n − Ω−1
n ‖ and ‖Ωn − Ω̂n‖, respectively. From the

preceding equation, we have

wn,T :=
zn,T

(vn,T + zn,T )vn,T
≤ xn,T = Op(an,T ) = op(1).

We now solve for zn,T :

zn,T =
v2
n,Twn,T

1− vn,Twn,T
= Op(an,T ).

Theorem A.3 (Higham (2008) (11.1) p269; Dieci, Morini, and Papini (1996)). For A ∈ Cn×n
with no eigenvalues lying on the closed negative real axis (−∞, 0],

logA =

∫ 1

0
(A− I)[t(A− I) + I]−1dt.

Lemma A.15. Let A,B be n×n real matrices. Suppose that A is symmetric, positive definite for
all n and its minimum eigenvalue is bounded away from zero by an absolute constant. Assume
‖A−1B‖`2 ≤ C < 1 for some constant C. Then A+B is invertible for every n and

(A+B)−1 = A−1 −A−1BA−1 +O(‖B‖2`2).

Proof. We write A + B = A[I − (−A−1B)]. Since ‖ − A−1B‖`2 ≤ C < 1, I − (−A−1B) and
hence A+B are invertible (Horn and Johnson (1985) p301). We then can expand

(A+B)−1 =
∞∑
k=0

(−A−1B)kA−1 = A−1 −A−1BA−1 +
∞∑
k=2

(−A−1B)kA−1.

Then ∥∥∥∥∥
∞∑
k=2

(−A−1B)kA−1

∥∥∥∥∥
`2

≤

∥∥∥∥∥
∞∑
k=2

(−A−1B)k

∥∥∥∥∥
`2

‖A−1‖`2 ≤
∞∑
k=2

∥∥∥(−A−1B)k
∥∥∥
`2
‖A−1‖`2

≤
∞∑
k=2

∥∥∥−A−1B
∥∥∥k
`2
‖A−1‖`2 =

∥∥A−1B
∥∥2

`2
‖A−1‖`2

1−
∥∥A−1B

∥∥
`2

≤
‖A−1‖3`2‖B‖

2
`2

1− C
,

where the first and third inequalities are due to the submultiplicative property of a matrix
norm, the second inequality is due to the triangular inequality. Since A is real, symmetric, and
positive definite with the minimum eigenvalue bounded away from zero by an absolute constant,
‖A−1‖`2 = maxeval(A−1) = 1/mineval(A) < D < ∞ for some absolute constant D. Hence the
result follows.

Lemma A.16. Consider real matrices A (m× n) and B (p× q). Then

‖A⊗B‖`2 = ‖A‖`2‖B‖`2 .
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Proof.

‖A⊗B‖`2 =
√

maxeval[(A⊗B)ᵀ(A⊗B)] =
√

maxeval[(Aᵀ ⊗Bᵀ)(A⊗B)]

=
√

maxeval[AᵀA⊗BᵀB] =
√

maxeval[AᵀA]maxeval[BᵀB] = ‖A‖`2‖B‖`2 ,

where the fourth equality is due to the fact that both AᵀA and BᵀB are symmetric, positive
semidefinite.

Lemma A.17. Let A be a p× p symmetric matrix and v̂, v ∈ Rp. Then

|v̂ᵀAv̂ − vᵀAv| ≤ |maxeval(A)|‖v̂ − v‖22 + 2‖Av‖2‖v̂ − v‖2.

Proof. See Lemma 3.1 in the supplementary material of van de Geer, Buhlmann, Ritov, and
Dezeure (2014).

Theorem A.4 (McLeish (1974)). Let {Xn,i, i = 1, ..., kn} be a martingale difference array with
respect to the triangular array of σ-algebras {Fn,i, i = 0, ..., kn} (i.e., Xn,i is Fn,i-measurable
and E[Xn,i|Fn,i−1] = 0 almost surely for all n and i) satisfying Fn,i−1 ⊂ Fn,i for all n ≥ 1.
Assume,

(i) maxi≤kn |Xn,i| is uniformly (in n) bounded in L2 norm,

(ii) maxi≤kn |Xn,i|
p−→ 0, and

(iii)
∑kn

i=1X
2
n,i

p−→ 1.

Then, Sn =
∑kn

i=1Xn,i
d−→ N(0, 1) as n→∞.
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8 Supplementary Material

This section contains supplementary materials to the main article. SM 8.1 contains additional
materials related to the Kronecker product (models). SM 8.2 outlines a shrinkage approach
via minimum distance to make the estimated exp(log Θ0

j ) indeed a correlation matrix for j =

1, . . . , v. SM 8.3 gives a lemma characterising a rate for ‖V̂T − V ‖∞, which is used in the
proofs of limiting distributions of our estimators. SM 8.4, SM 8.5, and SM 8.6 provide proofs
of Theorem 3.3, Theorem 4.1, and Theorem 4.2, respectively. SM 8.7 gives proofs of Theorem
3.4 and Corollary 3.3. SM 8.8 contains miscellaneous results.

8.1 Additional Materials Related to the Kronecker Product

The following lemma proves a property of Kronecker products.

Lemma 8.1. Suppose v = 2, 3, . . . and that A1, A2, . . . , Av are real symmetric and positive
definite matrices of sizes a1 × a1, . . . , av × av, respectively. Then

log(A1 ⊗A2 ⊗ · · · ⊗Av)
= logA1 ⊗ Ia2 ⊗ · · · ⊗ Iav + Ia1 ⊗ logA2 ⊗ Ia3 ⊗ · · · ⊗ Iav + · · ·+ Ia1 ⊗ Ia2 ⊗ · · · ⊗ logAv.

Proof. We prove by mathematical induction. We first give a proof for v = 2; that is,

log(A1 ⊗A2) = logA1 ⊗ Ia2 + Ia1 ⊗ logA2.

Since A1, A2 are real symmetric, they can be orthogonally diagonalized: Ai = Uᵀ
i ΛiUi for

i = 1, 2, where Ui is orthogonal, and Λi = diag(λi,1, . . . , λi,ai) is a diagonal matrix containing
those ai eigenvalues of Ai. Positive definiteness of A1, A2 ensures that their Kronecker product
is positive definite. Then the logarithm of A1 ⊗A2 is:

log(A1 ⊗A2) = log[(U1 ⊗ U2)ᵀ(Λ1 ⊗ Λ2)(U1 ⊗ U2)] = (U1 ⊗ U2)ᵀ log(Λ1 ⊗ Λ2)(U1 ⊗ U2),
(8.1)
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where the first equality is due to the mixed product property of the Kronecker product, and
the second equality is due to a property of matrix functions. Next,

log(Λ1 ⊗ Λ2) = diag(log(λ1,1Λ2), . . . , log(λ1,a1Λ2)) = diag(log(λ1,1Ia2Λ2), . . . , log(λ1,a1Ia2Λ2))

= diag(log(λ1,1Ia2) + log(Λ2), . . . , log(λ1,a1Ia2) + log(Λ2))

= diag(log(λ1,1Ia2), . . . , log(λ1,a1Ia2)) + diag(log(Λ2), . . . , log(Λ2))

= log(Λ1)⊗ Ia2 + Ia1 ⊗ log(Λ2), (8.2)

where the third equality holds only because λ1,jIa2 and Λ2 have real positive eigenvalues only
and commute for all j = 1, . . . , a1 (Higham (2008) p270 Theorem 11.3). Substitute (8.2) into
(8.1):

log(A1 ⊗A2) = (U1 ⊗ U2)ᵀ log(Λ1 ⊗ Λ2)(U1 ⊗ U2) = (U1 ⊗ U2)ᵀ(log Λ1 ⊗ Ia2 + Ia1 ⊗ log Λ2)(U1 ⊗ U2)

= (U1 ⊗ U2)ᵀ(log Λ1 ⊗ Ia2)(U1 ⊗ U2) + (U1 ⊗ U2)ᵀ(Ia1 ⊗ log Λ2)(U1 ⊗ U2)

= logA1 ⊗ Ia2 + Ia1 ⊗ logA2.

We now assume that this lemma is true for v = k. That is,

log(A1 ⊗A2 ⊗ · · · ⊗Ak)
= logA1 ⊗ Ia2 ⊗ · · · ⊗ Iak + Ia1 ⊗ logA2 ⊗ Ia3 ⊗ · · · ⊗ Iak + · · ·+ Ia1 ⊗ Ia2 ⊗ · · · ⊗ logAk.

(8.3)

We prove that the lemma holds for v = k + 1. Let A1−k := A1 ⊗ · · · ⊗ Ak and Ia1···ak :=
Ia1 ⊗ · · · ⊗ Iak .

log(A1 ⊗A2 ⊗ · · · ⊗Ak ⊗Ak+1) = log(A1−k ⊗Ak+1) = logA1−k ⊗ Iak+1
+ Ia1···ak ⊗ logAk+1

= logA1 ⊗ Ia2 ⊗ · · · ⊗ Iak ⊗ Iak+1
+ Ia1 ⊗ logA2 ⊗ Ia3 ⊗ · · · ⊗ Iak ⊗ Iak+1

+ · · ·+
Ia1 ⊗ Ia2 ⊗ · · · ⊗ logAk ⊗ Iak+1

+ Ia1 ⊗ · · · ⊗ Iak ⊗ logAk+1,

where the third equality is due to (8.3). Thus the lemma holds for v = k + 1. By induction,
the lemma is true for v = 2, 3, . . ..

Next we provide two examples to illustrate the necessity of an identification restriction in
order to separately identify log parameters.

Example 8.1. Suppose that n1, n2 = 2. We have

log Θ∗1 =

(
a11 a12

a12 a22

)
log Θ∗2 =

(
b11 b12

b12 b22

)
Then we can calculate

log Θ∗ = log Θ∗1 ⊗ I2 + I2 ⊗ log Θ∗2 =


a11 + b11 b12 a12 0
b12 a11 + b22 0 a12

a12 0 a22 + b11 b12

0 a12 b12 a22 + b22

 .

Log parameters a12, b12 can be separately identified from the off-diagonal entries of log Θ∗ be-
cause they appear separately. We now examine whether log parameters a11, b11, a22, b22 can be
separately identified from diagonal entries of log Θ∗. The answer is no. We have the following
linear system

Ax :=


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1




a11

a22

b11

b22

 =


[
log Θ∗

]
11[

log Θ∗
]
22[

log Θ∗
]
33[

log Θ∗
]
44

 =: d.

2



Note that the rank of A is 3. There are three effective equations and four unknowns; the linear
system has infinitely many solutions for x. Hence one identification restriction is needed to
separately identify log parameters a11, b11, a22, b22. We choose to set a11 = 0.

Example 8.2. Suppose that n1, n2, n3 = 2. We have

log Θ∗1 =

(
a11 a12

a12 a22

)
log Θ∗2 =

(
b11 b12

b12 b22

)
log Θ∗3 =

(
c11 c12

c12 c22

)

Then we can calculate

log Θ∗ = log Θ∗1 ⊗ I2 ⊗ I2 + I2 ⊗ log Θ∗2 ⊗ I2 + I2 ⊗ I2 ⊗ log Θ∗3 =
a11 + b11 + c11 c12 b12 0 a12 0 0 0

c12 a11 + b11 + c22 0 b12 0 a12 0 0
b12 0 a11 + b22 + c11 c12 0 0 a12 0
0 b12 c12 a11 + b22 + c22 0 0 0 a12
a12 0 0 0 a22 + b11 + c11 c12 b12 0
0 a12 0 0 c12 a22 + b11 + c22 0 b12
0 0 a12 0 b12 0 a22 + b22 + c11 c12
0 0 0 a12 0 b12 c12 a22 + b22 + c22

.
Log parameters a12, b12, c12 can be separately identified from off-diagonal entries of log Θ∗ because
they appear separately. We now examine whether log parameters a11, b11, c11, a22, b22, c22 can be
separately identified from diagonal entries of log Θ∗. The answer is no. We have the following
linear system

Ax :=



1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1





a11

a22

b11

b22

c11

c22


=



[
log Θ∗

]
11[

log Θ∗
]
22[

log Θ∗
]
33[

log Θ∗
]
44[

log Θ∗
]
55[

log Θ∗
]
66[

log Θ∗
]
77[

log Θ∗
]
88


=: d.

Note that the rank of A is 4. There are four effective equations and six unknowns; the linear
system has infinitely many solutions for x. Hence two identification restrictions are needed to
separately identify log parameters a11, b11, c11, a22, b22, c22. We choose to set a11 = b11 = 0.

8.2 Shrinkage via Minimum Distance

Recall that in the fill and shrink method, there is no guarantee that the estimated exp(log Θ0)
will be a correlation matrix. However, the estimated D1/2 exp(log Θ0)D1/2 will be a covariance
matrix. As mentioned in the main article, one can re-normalise the estimated covariance matrix
to obtain a correlation matrix. The alternative method would be to shrink exp(log Θ0

j ) to a
correlation matrix for j = 1, . . . , v.

This is easy for the n = 2v case. Consider the 2 × 2 submatrix Θ0
1, with log Θ0

1 containing
log parameters θ0

1. Given that Θ0
1 is a correlation matrix, then we have

log Θ0
1 =

(
1 1
1 −1

)(
λ1,1 0

0 λ1,1

)(
1 1
1 −1

)
1

2
=

(
1
2λ1,1 + 1

2λ1,2
1
2λ1,1 − 1

2λ1,2
1
2λ1,1 − 1

2λ1,2
1
2λ1,1 + 1

2λ1,2

)

which implies that

θ0
1 :=

 θ0
1,1

θ0
1,2

θ0
1,3

 =
1

2

 1 1
1 −1
1 1

( λ1,1

λ1,2

)
=: C

(
λ1,1

λ1,2

)
.

3



Further, we have

Θ0
1 =

(
1 1
1 −1

)(
exp(λ1,1) 0

0 exp(λ1,2)

)(
1 1
1 −1

)
1

2

=

(
1
2 exp(λ1,1) + 1

2 exp(λ1,2) 1
2 exp(λ1,1)− 1

2 exp(λ1,2)
1
2 exp(λ1,1)− 1

2 exp(λ1,2) 1
2 exp(λ1,1) + 1

2 exp(λ1,2)

)
. (8.4)

By observing the diagonal elements of (8.4), we must have 1
2 exp(λ1,1) + 1

2 exp(λ1,2) = 1 or
equivalently λ1,1 = log

(
2− exp(λ1,2)

)
. Also, we have

exp(λ1,1)− exp(λ1,2) = 2− 2 exp(λ1,2) ∈ [−2, 2], (8.5)

by observing the off-diagonal elements of (8.4). From (8.5), we have −∞ < λ1,2 ≤ log 2.
We now consider shrinkage. Given θ0

1 ∈ R3 we define λ1,2 as the solution of the following
population objective function

min
t∈(−∞,log 2]

∥∥∥∥∥∥θ0
1 − C

(
log(2− exp(t))

t

)∥∥∥∥∥∥
2

Thus define the estimator λ̂1,2 to be the solution of the following sample objective function

min
t∈(−∞,log 2]

∥∥∥∥∥∥θ̂1 − C

(
log(2− exp(t))

t

)∥∥∥∥∥∥
2

,

where θ̂1 is some fill and shrink estimator of θ0
1. Then we calculate λ̂1,1 = log(2 − exp(λ̂1,2)).

This ensures that Θ̂0
1,S := Θ0

1(λ̂1,1, λ̂1,2) is a correlation matrix. We can repeat this procedure

for other sub-matrices {Θ0
j}vj=2. The final estimate

Θ̂0
S = Θ̂0

1,S ⊗ · · · ⊗ Θ̂0
v,S

will be a correlation matrix. We acknowledge that for higher dimensional sub-matrices, this
approach starts to get problematic. We leave it for future research.

8.3 A Rate for ‖V̂T − V ‖∞
The following lemma characterises a rate for ‖V̂T −V ‖∞, which is used in the proofs of limiting
distributions of our estimators.

Lemma 8.2. Let Assumptions 3.1(i) and 3.2 be satisfied with 1/γ := 1/r1 + 1/r2 > 1. Suppose

log n = o(T
γ

2−γ ) if n > T . Then

‖V̂T − V ‖∞ = Op

(√
log n

T

)
.

Proof. Let ỹt,i denote yt,i − ȳi, similarly for ỹt,j , ỹt,k, ỹt,`, where i, j, k, ` = 1, . . . , n. Let ẏt,i
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denote yt,i − µi, similarly for ẏt,j , ẏt,k, ẏt,` where i, j, k, ` = 1, . . . , n.

‖V̂T − V ‖∞ := max
1≤a,b≤n2

|V̂T,a,b − Va,b| = max
1≤i,j,k,`≤n

|V̂T,i,j,k,` − Vi,j,k,`|

≤ max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ỹt,iỹt,j ỹt,kỹt,` −
1

T

T∑
t=1

ẏt,iẏt,j ẏt,kẏt,`

∣∣∣∣ (8.6)

+ max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ẏt,iẏt,j ẏt,kẏt,` − E[ẏt,iẏt,j ẏt,kẏt,`]

∣∣∣∣ (8.7)

+ max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ỹt,iỹt,j

)(
1

T

T∑
t=1

ỹt,kỹt,`

)
−
(

1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,`

)∣∣∣∣ (8.8)

+ max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,`

)
− E[ẏt,iẏt,j ]E[ẏt,kẏt,`]

∣∣∣∣ (8.9)

Display (8.7)

Assumption 3.1(i) says that for all t, there exist absolute constants K1 > 1,K2 > 0, r1 > 0 such
that

E
[
exp

(
K2|yt,i|r1

)]
≤ K1 for all i = 1, . . . , n.

By repeated using Lemma A.2 in Appendix A.3, we have for all i, j, k, ` = 1, 2, . . . , n, every
ε ≥ 0, absolute constants b1, c1, b2, c2, b3, c3 > 0 such that

P(|yt,i| ≥ ε) ≤ exp
[
1− (ε/b1)r1

]
P(|ẏt,i| ≥ ε) ≤ exp

[
1− (ε/c1)r1

]
P(|ẏt,iẏt,j | ≥ ε) ≤ exp

[
1− (ε/b2)r3

]
P(|ẏt,iẏt,j − E[ẏt,iẏt,j ]| ≥ ε) ≤ exp

[
1− (ε/c2)r3

]
P(|ẏt,iẏt,j ẏt,kẏt,`| ≥ ε) ≤ exp

[
1− (ε/b3)r4

]
P(|ẏt,iẏt,j ẏt,kẏt,` − E[ẏt,iẏt,j ẏt,kẏt,`]| ≥ ε) ≤ exp

[
1− (ε/c3)r4

]
where r3 ∈ (0, r1/2] and r4 ∈ (0, r1/4]. Use the assumption 1/r1 + 1/r2 > 1 to invoke Theorem
A.2 followed by Lemma A.12 in Appendix A.5 to get

max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ẏt,iẏt,j ẏt,kẏt,` − Eẏt,iẏt,j ẏt,kẏt,`
∣∣∣∣ = Op

(√
log n

T

)
. (8.10)

Display (8.9)

We now consider (8.9).

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,`

)
− E[ẏt,iẏt,j ]E[ẏt,kẏt,`]

∣∣∣∣
≤ max

1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,` − E[ẏt,kẏt,`]

)∣∣∣∣ (8.11)

+ max
1≤i,j,k,`≤n

∣∣∣∣E[ẏt,kẏt,`]

(
1

T

T∑
t=1

ẏt,iẏt,j − E[ẏt,iẏt,j ]

)∣∣∣∣ . (8.12)
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Consider (8.11).

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,` − Eẏt,kẏt,`
)∣∣∣∣

≤ max
1≤i,j≤n

(∣∣∣∣ 1

T

T∑
t=1

ẏt,iẏt,j − Eẏt,iẏt,j
∣∣∣∣+
∣∣Eẏt,iẏt,j∣∣) max

1≤k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ẏt,kẏt,` − Eẏt,kẏt,`
∣∣∣∣

=

(
Op

(√
log n

T

)
+O(1)

)
Op

(√
log n

T

)
= Op

(√
log n

T

)
where the first equality is due to Lemma A.2(ii) in Appendix A.3, Theorem A.2 and Lemma
A.12 in Appendix A.5. Now consider (8.12).

max
1≤i,j,k,`≤n

∣∣∣∣E[ẏt,kẏt,`]

(
1

T

T∑
t=1

ẏt,iẏt,j − E[ẏt,iẏt,j ]

)∣∣∣∣
≤ max

1≤k,`≤n
|E[ẏt,kẏt,`]| max

1≤i,j≤n

∣∣∣∣ 1

T

T∑
t=1

ẏt,iẏt,j − Eẏt,iẏt,j
∣∣∣∣ = Op

(√
log n

T

)
where the equality is due to Lemma A.2(ii) in Appendix A.3, Theorem A.2 and Lemma A.12
in Appendix A.5. Thus

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,`

)
− E[ẏt,iẏt,j ]E[ẏt,kẏt,`]

∣∣∣∣ = Op

(√
log n

T

)
. (8.13)

Display (8.6)

We first give a rate for max1≤i≤n |ȳi − µi|. The index i is arbitrary and could be replaced with
j, k, `. Invoking Lemma A.12 in Appendix A.5, we have

max
1≤i≤n

|ȳi − µi| = max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

(yt,i − µi)
∣∣∣∣ = Op

(√
log n

T

)
. (8.14)

Then we also have

max
1≤i≤n

|ȳi| = max
1≤i≤n

|ȳi − µi + µi| ≤ max
1≤i≤n

|ȳi − µi|+ max
1≤i≤n

|µi| = Op

(√
log n

T

)
+O(1) = Op(1).

(8.15)
We now consider (8.6):

max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ỹt,iỹt,j ỹt,kỹt,` −
1

T

T∑
t=1

ẏt,iẏt,j ẏt,kẏt,`

∣∣∣∣ .
With expansion, simplification and recognition that the indices i, j, k, ` are completely symmet-
ric, we can bound (8.6) by

max
1≤i,j,k,`≤n

∣∣ȳiȳj ȳkȳ` − µiµjµkµ`∣∣ (8.16)

+ 4 max
1≤i,j,k,`≤n

∣∣∣ȳi (ȳj ȳkȳ` − µjµkµ`)∣∣∣ (8.17)

+ 6 max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

yt,iyt,j

)(
ȳkȳ` − µkµ`

)∣∣∣∣ (8.18)

+ 4 max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

yt,iyt,jyt,k

)(
ȳ` − µ`

)∣∣∣∣ . (8.19)
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We consider (8.16) first. (8.16) can be bounded by repeatedly invoking triangular inequalities
(e.g., inserting terms like µiȳj ȳkȳ`) using Lemma A.2(ii) in Appendix A.3, (8.15) and (8.14).
(8.16) is of order Op(

√
log n/T ). (8.17) is of order Op(

√
log n/T ) by a similar argument. (8.18)

and (8.19) are of the same order Op(
√

log n/T ) using a similar argument provided that both

max1≤i,j≤n |
∑T

t=1 yt,iyt,j |/T and max1≤i,j,k≤n |
∑T

t=1 yt,iyt,jyt,k|/T are Op(1); these follow from
Lemma A.2(ii) in Appendix A.3, Theorem A.2 and Lemma A.12 in Appendix A.5. Thus

max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ỹt,iỹt,j ỹt,kỹt,` −
1

T

T∑
t=1

ẏt,iẏt,j ẏt,kẏt,`

∣∣∣∣ = Op(
√

log n/T ). (8.20)

Display (8.8)

We now consider (8.8).

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ỹt,iỹt,j

)(
1

T

T∑
t=1

ỹt,kỹt,`

)
−
(

1

T

T∑
t=1

ẏt,iẏt,j

)(
1

T

T∑
t=1

ẏt,kẏt,`

)∣∣∣∣
≤ max

1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ỹt,iỹt,j

)(
1

T

T∑
t=1

(
ỹt,kỹt,` − ẏt,kẏt,`

))∣∣∣∣ (8.21)

+ max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẏt,kẏt,`

)(
1

T

T∑
t=1

(
ỹt,iỹt,j − ẏt,iẏt,j

))∣∣∣∣ (8.22)

It suffices to give a bound for (8.21) as the bound for (8.22) is of the same order and follows
through similarly. First, it is easy to show that max1≤i,j≤n | 1T

∑T
t=1 ỹt,iỹt,j | = max1≤i,j≤n | 1T

∑T
t=1 yt,iyt,j−

ȳiȳj | = Op(1) (using Lemma A.2(ii) in Appendix A.3 and Lemma A.12 in Appendix A.5). Next

max
1≤k,`≤n

∣∣∣∣ 1

T

T∑
t=1

(
ỹt,kỹt,` − ẏt,kẏt,`

)∣∣∣∣ = max
1≤k,`≤n

∣∣∣∣−(ȳk − µk)(ȳ` − µ`)
∣∣∣∣ = Op

(
log n

T

)
. (8.23)

The lemma follows after summing up the rates for (8.10), (8.13), (8.20) and (8.23).

8.4 Proof of Theorem 3.3

In this subsection, we give a proof for Theorem 3.3. We will first give a preliminary lemma
leading to the proof of this theorem.

Lemma 8.3. Let Assumptions 3.1(i), 3.2, 3.3(i) and 3.4(i) hold with 1/r1 + 1/r2 > 1. Then
we have

‖P‖`2 = O(1), ‖P̂T ‖`2 = Op(1), ‖P̂T − P‖`2 = Op

(√
n

T

)
. (8.24)

Proof. The proofs for ‖P‖`2 = O(1) and ‖P̂T ‖`2 = Op(1) are exactly the same, so we only give
the proof for the latter.

‖P̂T ‖`2 = ‖In2 −DnD
+
n (In ⊗ Θ̂T )Md‖`2 ≤ 1 + ‖DnD

+
n (In ⊗ Θ̂T )Md‖`2

≤ 1 + ‖Dn‖`2‖D+
n ‖`2‖In ⊗ Θ̂T ‖`2‖Md‖`2 = 1 + 2‖In‖`2‖Θ̂T ‖`2 = Op(1)

where the second equality is due to (A.8) and Lemma A.16 in Appendix A.5, and last equality
is due to Lemma A.7(ii). Now,

‖P̂T − P‖`2 = ‖In2 −DnD
+
n (In ⊗ Θ̂T )Md − (In2 −DnD

+
n (In ⊗Θ)Md)‖`2

= ‖DnD
+
n (In ⊗ Θ̂T )Md −DnD

+
n (In ⊗Θ)Md)‖`2 = ‖DnD

+
n (In ⊗ (Θ̂T −Θ))Md‖`2

= Op(
√
n/T ),

where the last equality is due to Theorem 3.1(i).
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We are now ready to give a poof for Theorem 3.3.

Proof of Theorem 3.3. We write
√
Tcᵀ(θ̂T − θ0)√

cᵀĴT c

=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH vec(Θ̂T −Θ)√
cᵀĴT c

+

√
Tcᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)√
cᵀĴT c

=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ
∂ vec Σ

∣∣∣
Σ=Σ̊

(i)
T

vec(Σ̂T − Σ)√
cᵀĴT c

+

√
Tcᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)√
cᵀĴT c

=: t̂1 + t̂2,

where ∂ vec Θ
∂ vec Σ

∣∣∣
Σ=Σ̊

(i)
T

denotes a matrix whose jth row is the jth row of the Jacobian matrix ∂ vec Θ
∂ vec Σ

evaluated at vec Σ̊
(j)
T , which is a point between vec Σ and vec Σ̂T , for j = 1, . . . , n2.

Define

t1 :=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nHP (D−1/2 ⊗D−1/2) vec(Σ̃T − Σ)√
cᵀJc

.

To prove Theorem 3.3, it suffices to show t1
d−→ N(0, 1), t1 − t̂1 = op(1), and t̂2 = op(1). The

proof is similar to that of Theorem 3.2, so we will be concise for the parts which are almost
identical to those of Theorem 3.2.

8.4.1 t1
d−→ N(0, 1)

We now prove that t1 is asymptotically distributed as a standard normal.

t1 =
√
Tcᵀ(EᵀWE)−1EᵀWD+

nHP (D−1/2 ⊗D−1/2) vec
(

1
T

∑T
t=1

[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

])
√
cᵀJc

=

T∑
t=1

T−1/2cᵀ(EᵀWE)−1EᵀWD+
nHP (D−1/2 ⊗D−1/2) vec

[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]
√
cᵀJc

=:
T∑
t=1

UT,n,t.

Again it is straightforward to show that {UT,n,t,FT,n,t} is a martingale difference sequence. We
first investigate at what rate the denominator

√
cᵀJc goes to zero:

cᵀJc = cᵀ(EᵀWE)−1EᵀWD+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c

≥ mineval
(
EᵀWD+

nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE
)
‖(EᵀWE)−1c‖22

≥ n

$
mineval2(W )c(EᵀWE)−2c ≥ n

$
mineval2(W )mineval

(
(EᵀWE)−2

)
=

n ·mineval2(W )

$maxeval2(EᵀWE)
≥ n

$maxeval2(W−1)maxeval2(W )maxeval2(EᵀE)

=
n

$κ2(W )maxeval2(EᵀE)
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where the second inequality is due to Assumption 3.7(ii). Using (A.11), we have

1√
cᵀJc

= O(
√
s2 · n · κ2(W ) ·$). (8.25)

Verification of conditions (i)-(iii) of Theorem A.4 in Appendix A.5 will be exactly the same as
those in Section A.4.1, so we omit the details in the interest of space.

8.4.2 t1 − t̂1 = op(1)

We now show that t1− t̂1 = op(1). Let A and Â denote the numerators of t1 and t̂1, respectively.

t1 − t̂1 =
A√
cᵀJc

− Â√
cᵀĴT c

=

√
s2nκ2(W )$A√
s2nκ2(W )$cᵀJc

−
√
s2nκ2(W )$Â√

s2nκ2(W )$cᵀĴT c
.

Since we have already shown in (8.25) that s2nκ2(W )$cᵀJc is bounded away from zero by an
absolute constant, it suffices to show the denominators as well as numerators of t1 and t̂1 are
asymptotically equivalent.

8.4.3 Denominators of t1 and t̂1

We first show that the denominators of t1 and t̂1 are asymptotically equivalent, i.e.,

s2nκ2(W )$|cᵀĴT c− cᵀJc| = op(1).

Define

cᵀJ̃T c = cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗D̂−1/2

T )V (D̂
−1/2
T ⊗D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c.

By the triangular inequality: s2nκ2(W )$|cᵀĴT c−cᵀJc| ≤ s2nκ2(W )$|cᵀĴT c−cᵀJ̃T c|+s2nκ2(W )$|cᵀJ̃T c−
cᵀJc|. First, we prove s2nκ2(W )$|cᵀĴT c− cᵀJ̃T c| = op(1).

s2nκ2(W )$|cᵀĴT c− cᵀJ̃T c|

= s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )V̂T (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )V (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c|
= s2nκ2(W )$

· |cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )(V̂T − V )(D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c|

≤ s2nκ2(W )$‖V̂T − V ‖∞‖(D̂−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖21
≤ s2n3κ2(W )$‖V̂T − V ‖∞‖(D̂−1/2

T ⊗ D̂−1/2
T )P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖22
≤ s2n3κ2(W )$‖V̂T − V ‖∞‖(D̂−1/2

T ⊗ D̂−1/2
T )‖2`2‖P̂

ᵀ
T ‖

2
`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2

= Op(s
2n2κ3(W )$2)‖V̂T − V ‖∞ = Op

(√
n4κ6(W )s4$4 log n

T

)
= op(1),

where ‖ · ‖∞ denotes the absolute elementwise maximum, the third equality is due to Lemma
A.4(v), Lemma A.16 in Appendix A.5, (A.7), (A.14), (A.8) and (8.24), the second last equality
is due to Lemma 8.2 in SM 8.3, and the last equality is due to Assumption 3.3(ii).

We now prove s2nκ2(W )$|cᵀJ̃T c− cᵀJc| = op(1). Define

cᵀJ̃T,ac := cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c

cᵀJ̃T,bc := cᵀ(EᵀWE)−1EᵀWD+
n ĤTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c.
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We use triangular inequality again

s2nκ2(W )$|cᵀJ̃T c− cᵀJc| ≤
s2nκ2(W )$|cᵀJ̃T c− cᵀJ̃T,ac|+ s2nκ2(W )$|cᵀJ̃T,ac− cᵀJ̃T,bc|+ s2nκ2(W )$|cᵀJ̃T,bc− cᵀJc|.

(8.26)

We consider the first term on the right side of (8.26).

s2nκ2(W )$|cᵀJ̃T c− cᵀJ̃T,ac| =

s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )V (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c|

≤ s2nκ2(W )$
∣∣maxeval(V )

∣∣ ‖(D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖22
+ s2nκ2(W )$‖V (D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖2 (8.27)

where the inequality is due to Lemma A.17 in Appendix A.5. We consider the first term of
(8.27) first.

s2nκ2(W )$
∣∣maxeval(V )

∣∣ ‖(D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖22
= O(s2nκ2(W )$)‖D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2‖2`2‖P̂

ᵀ
T ‖

2
`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(s

2nκ3(W )$2/T ) = op(1),

where the second last equality is due to (A.7), (A.8), (A.14), (8.24) and Lemma A.4(vii), and
the last equality is due to Assumption 3.3(ii).

We now consider the second term of (8.27).

2s2nκ2(W )$‖V (D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(s2nκ2(W )$)‖D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2‖`2‖P̂

ᵀ
T ‖

2
`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= O(

√
s4nκ6(W )$4/T ) = op(1),

where the first equality is due to (A.7), (A.8), (A.14), (8.24) and Lemma A.4(vii), and the last
equality is due to Assumption 3.3(ii). We have proved s2nκ2(W )$|cᵀJ̃T c− cᵀJ̃T,ac| = op(1).

We consider the second term on the right hand side of (8.26).

s2nκ2(W )$|cᵀJ̃T,ac− cᵀJ̃T,bc| =
s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+

n ĤT P̂T (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c|
≤ s2nκ2(W )$

∣∣maxeval[(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)]
∣∣ ‖(P̂T − P )ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖22
+ 2s2nκ2(W )$‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(P̂T − P )ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖2 (8.28)

where the inequality is due to Lemma A.17 in Appendix A.5. We consider the first term of
(8.28) first.

s2nκ2(W )$
∣∣maxeval[(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)]

∣∣ ‖(P̂T − P )ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c‖22
= O(s2nκ2(W )$)‖P̂ ᵀ

T − P
ᵀ‖2`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(s

2nκ3(W )$2/T ) = op(1),

10



where the second last equality is due to (A.7), (A.8), (A.14), and (8.24), and the last equality
is due to Assumption 3.3(ii).

We now consider the second term of (8.28).

2s2nκ2(W )$‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(P̂T − P )ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(s2nκ2(W )$)‖P̂ ᵀ

T − P
ᵀ‖2`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= O(

√
s4nκ6(W )$4/T ) = op(1),

where the first equality is due to (A.7), (A.8), (A.14), and (8.24), and the last equality is due
to Assumption 3.3(ii). We have proved s2nκ2(W )$|cᵀJ̃T,ac− cᵀJ̃T,bc| = op(1).

We consider the third term on the right hand side of (8.26).

s2nκ2(W )$|cᵀJ̃T,bc− cᵀJc| =
s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+

n ĤTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
nHTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c|
≤ s2nκ2(W )$

∣∣maxeval[P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀ]
∣∣ ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖22
+ 2s2nκ2(W )$‖P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖2 (8.29)

where the inequality is due to Lemma A.17 in Appendix A.5. We consider the first term of
(8.29) first.

s2nκ2(W )$
∣∣maxeval[P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀ]

∣∣ ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖22
= O(s2nκ2(W )$)‖ĤT −H‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(s

2nκ3(W )$2/T ) = op(1),

where the second last equality is due to (A.7), (A.8), and (A.14), and the last equality is due
to Assumption 3.3(ii).

We now consider the second term of (8.29).

2s2nκ2(W )$‖P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(s2nκ2(W )$)‖ĤT −H‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2 = O(
√
s4nκ6(W )$4/T ) = op(1),

where the first equality is due to (A.7), (A.8), and (A.14), and the last equality is due to
Assumption 3.3(ii). We have proved s2nκ2(W )$|cᵀJ̃T,bc − cᵀJc| = op(1). Hence we have
proved s2nκ2(W )$|cᵀJ̃T c− cᵀJc| = op(1).

8.4.4 Numerators of t1 and t̂1

We now show that numerators of t1 and t̂1 are asymptotically equivalent, i.e.,√
s2nκ2(W )$|A− Â| = op(1).
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Note that

Â =
√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

vec(Σ̂T − Σ)

=
√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

vec(Σ̂T − Σ̃T )

+
√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

vec(Σ̃T − Σ)

=: Âa + Âb.

To show
√
s2nκ2(W )$|A − Â| = op(1), it suffices to show

√
s2nκ2(W )$|Âb − A| = op(1) and√

s2nκ2(W )$|Âa| = op(1). We first show that
√
s2nκ2(W )$|Âb −A| = op(1).√

s2nκ2(W )$|Âb −A|

=
√
s2nκ2(W )$

∣∣∣∣√Tcᵀ(EᵀWE)−1EᵀWD+
nH

[
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

− P (D−1/2 ⊗D−1/2)

]
vec(Σ̃T − Σ)

∣∣∣∣
≤
√
Ts2nκ2(W )$‖(EᵀWE)−1EᵀW‖`2‖D+

n ‖`2‖H‖`2

·
∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

− P (D−1/2 ⊗D−1/2)

∥∥∥∥
`2

‖ vec(Σ̃T − Σ)‖2

= O(
√
Ts2nκ2(W )$)

√
$κ(W )/nOp

(√
n

T

)
‖Σ̃T − Σ‖F ≤ O(

√
ns2κ3(W )$2)

√
n‖Σ̃T − Σ‖`2

= O(
√
ns2κ3(W )$2)

√
nOp

(√
n

T

)
= Op

(√
n3s2κ3(W )$2

T

)
= op(1),

where the second equality is due to Assumption 3.7(i), the third equality is due to Lemma A.3,
and final equality is due to Assumption 3.3(ii).

We now show that
√
s2nκ2(W )$|Âa| = op(1).√

s2nκ2(W )$T

∣∣∣∣cᵀ(EᵀWE)−1EᵀWD+
nH

∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

vec(Σ̂T − Σ̃T )

∣∣∣∣
=
√
s2nκ2(W )$T

∣∣∣∣cᵀ(EᵀWE)−1EᵀWD+
nH

∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

vec
[
(ȳ − µ)(ȳ − µ)ᵀ

]∣∣∣∣
≤
√
s2nκ2(W )$T‖(EᵀWE)−1EᵀW‖`2‖D+

n ‖`2‖H‖`2

∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

∥∥∥∥
`2

‖ vec
[
(ȳ − µ)(ȳ − µ)ᵀ

]
‖2

= O(
√
Ts2nκ2(W )$)

√
$κ(W )/n‖(ȳ − µ)(ȳ − µ)ᵀ‖F

≤ O(
√
Ts2nκ2(W )$)

√
$κ(W )/nn‖(ȳ − µ)(ȳ − µ)ᵀ‖∞

= O(
√
Ts2n2κ3(W )$2) max

1≤i,j≤n

∣∣(ȳ − µ)i(ȳ − µ)j
∣∣ = Op(

√
Ts2n2κ3(W )$2) log n/T

= Op

(√
log4 n · n2κ3(W )$2

T

)
= op(1),

where the third last equality is due to (8.23), the last equality is due to Assumption 3.3(ii), and
the second equality is due to (A.7), (A.8), (A.14), and the fact that∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

∥∥∥∥
`2

=

∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̊

(i)
T

− P (D−1/2 ⊗D−1/2)

∥∥∥∥
`2

+

∥∥∥∥P (D−1/2 ⊗D−1/2)

∥∥∥∥
`2

= Op

(√
n

T

)
+O(1) = Op(1).
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8.4.5 t̂2 = op(1)

Write

t̂2 =

√
T
√
s2nκ2(W )$cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)√
s2nκ2(W )$cᵀĴT c

.

Since the denominator of the preceding equation is bounded away from zero by an absolute
constant with probability approaching one by (8.25) and that s2nκ2(W )$|cᵀĴT c−cᵀJc| = op(1),
it suffices to show

√
T
√
s2nκ2(W )$cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2) = op(1).

This is straightforward:

|
√
Ts2nκ2(W )$cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)|

≤
√
Ts2nκ2(W )$‖cᵀ(EᵀWE)−1EᵀWD+

n ‖2‖ vecOp(‖Θ̂T −Θ‖2`2)‖2
= O(

√
Ts2κ3(W )$2)‖Op(‖Θ̂T −Θ‖2`2)‖F = O(

√
Tns2κ3(W )$2)‖Op(‖Θ̂T −Θ‖2`2)‖`2

= O(
√
Tns2κ3(W )$2)Op(‖Θ̂T −Θ‖2`2) = Op

(√
n3s2κ3(W )$2

T

)
= op(1),

where the last equality is due to Assumption 3.3(ii).

8.5 Proof of Theorem 4.1

In this subsection, we give a proof for Theorem 4.1. We first give a useful lemma which is used
in the proof of Theorem 4.1.

Lemma 8.4 (Magnus and Neudecker (2007) p218). Let φ be a twice differentiable real-valued
function of an n × q matrix X. Then the following two relationships hold between the second
differential and the Hessian matrix of φ at X:

d2φ(X) = tr
[
B(dX)ᵀCdX

]
⇐⇒ ∂2φ(X)

∂(vecX)∂(vecX)ᵀ
=

1

2
(Bᵀ ⊗ C +B ⊗ Cᵀ)

and

d2φ(X) = tr
[
B(dX)CdX

]
⇐⇒ ∂2φ(X)

∂(vecX)∂(vecX)ᵀ
=

1

2
Kqn(Bᵀ ⊗ C + Cᵀ ⊗B).

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. For part (i), letting A denote D−1/2Σ̃TD
−1/2, we take the first differen-
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tial of `T,D(θ, µ) with respect to Ω(θ):

d`T,D(θ, µ) = −T
2
d log

∣∣eΩ
∣∣− 1

2
d

T∑
t=1

tr
[
(yt − µ)ᵀD−1/2e−ΩD−1/2(yt − µ)

]
= −T

2
d log

∣∣eΩ
∣∣− T

2
dtr

[
D−1/2 1

T

T∑
t=1

(yt − µ)(yt − µ)ᵀD−1/2e−Ω

]
= −T

2
d log

∣∣eΩ
∣∣− T

2
dtr
[
Ae−Ω

]
= −T

2
tr(e−ΩdeΩ)− T

2
tr
(
Ade−Ω

)
= −T

2
tr(e−ΩdeΩ) +

T

2
tr
(
Ae−Ω(deΩ)e−Ω

)
= −T

2
tr(e−ΩdeΩ) +

T

2
tr
(
e−ΩAe−ΩdeΩ

)
(8.30)

=
T

2
tr
[(
e−ΩAe−Ω − e−Ω

)
deΩ

]
=
T

2

(
vec
[(
e−ΩAe−Ω − e−Ω

)ᵀ])ᵀ

vec deΩ

=
T

2

(
vec
[
e−ΩAe−Ω − e−Ω

])ᵀ
vec

[∫ 1

0
e(1−t)Ω(dΩ)etΩdt

]
=
T

2

(
vec
[
e−ΩAe−Ω − e−Ω

])ᵀ [∫ 1

0
etΩ ⊗ e(1−t)Ωdt

]
d vec Ω

=
T

2

(
vec
[
e−ΩAe−Ω − e−Ω

])ᵀ [∫ 1

0
etΩ ⊗ e(1−t)Ωdt

]
DnEdθ

where the fourth equality is due to that d log |X| = tr(X−1dX) for any square matrix X, the
fifth equality is due to that dX−1 = −X−1(dX)X−1, the six equality is due to the cyclic
property of trace operator, the eighth equality is due to that tr(AB) = (vec[Aᵀ])ᵀ vecB, the
ninth equality is due to that deΩ =

∫ 1
0 e

(1−t)Ω(dΩ)etΩdt (c.f. (10.15) in Higham (2008) p238),
the second last equality is due to that vec(ABC) = (Cᵀ⊗A) vecB, and the last equality is due
to vec Ω = Dn vech Ω = DnEθ. Thus, we conclude that

∂`T,D(θ, µ)

∂θᵀ
=
T

2
EᵀDᵀ

n

[∫ 1

0
etΩ ⊗ e(1−t)Ωdt

]
vec
[
e−ΩD−1/2Σ̃TD

−1/2e−Ω − e−Ω
]
.

For part (ii), the s×s block of the Hessian matrix of (4.3) corresponding to θ is more difficult
to derive. There are two approaches; they give the same Hessian but sometimes it is difficult
to see the equivalence because of the presence of Kronecker products, duplication matrices etc.
The first approach is to differentiate the score function with respect to θ again. The second
approach is to start from (8.30), take differential again, manipulate the final result into the
canonical form, and extract the Hessian from the canonical form. The second approach is due
to Magnus and Neudecker (2007); Minka (2000) provided an easily accessible introduction to
this approach. We shall use the second approach to derive the Hessian matrix.

There are two terms in (8.30). The first term could be simplified into

− T

2
tr(e−ΩdeΩ) = −T

2
tr

(
e−Ω

∫ 1

0
e(1−t)Ω(dΩ)etΩdt

)
= −T

2

∫ 1

0
tr
(
e−Ωe(1−t)Ω(dΩ)etΩ

)
dt

= −T
2

∫ 1

0
tr
(
e−tΩ(dΩ)etΩ

)
dt = −T

2

∫ 1

0
tr
(
dΩ
)
dt = −T

2
tr
(
dΩ
)

whence we see that it is not a function of Ω (dΩ is not a function of Ω). Thus taking differential
of (8.30) will cause this term drop out. We now take the differential of the second term in
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(8.30):

d
T

2
tr
(
e−ΩAe−ΩdeΩ

)
= d

T

2
tr

(
e−ΩAe−Ω

∫ 1

0
e(1−t)Ω(dΩ)etΩdt

)
= d

T

2

∫ 1

0
tr
(
e(t−1)ΩAe−tΩdΩ

)
dt =

T

2

∫ 1

0
tr
(

(de(t−1)Ω)Ae−tΩdΩ + e(t−1)ΩA(de−tΩ)dΩ
)
dt

=
T

2

∫ 1

0
tr
(∫ 1

0
e(1−s)(t−1)Ω(d(t− 1)Ω)es(t−1)ΩdsAe−tΩdΩ

)
dt

+
T

2

∫ 1

0
tr
(
e(t−1)ΩA

∫ 1

0
e−(1−s)tΩ(d(−t)Ω)e−stΩdsdΩ

)
dt

= −T
2

∫ 1

0

∫ 1

0
tr
(
e−(1−s)(1−t)Ω(dΩ)e−s(1−t)ΩAe−tΩdΩ

)
ds · (1− t)dt

− T

2

∫ 1

0

∫ 1

0
tr
(
e−(1−t)ΩAe−(1−s)tΩ(dΩ)e−stΩdΩ

)
ds · tdt.

We next invoke Lemma 8.4 to get

∂2`T,D(θ, µ)

∂ vec Ω∂(vec Ω)ᵀ
=

− T

2

∫ 1

0

∫ 1

0

1

2
Kn,n

(
e−(1−s)(1−t)Ω ⊗ e−s(1−t)ΩAe−tΩ + e−tΩAe−s(1−t)Ω ⊗ e−(1−s)(1−t)Ω

)
ds · (1− t)dt

− T

2

∫ 1

0

∫ 1

0

1

2
Kn,n

(
e−(1−s)tΩAe−(1−t)Ω ⊗ e−stΩ + e−stΩ ⊗ e−(1−t)ΩAe−(1−s)tΩ

)
ds · tdt

= −T
2

∫ 1

0

∫ 1

0

1

2
Kn,n

(
e−stΩ ⊗ e−(1−s)tΩAe−(1−t)Ω + e−(1−t)ΩAe−(1−s)tΩ ⊗ e−stΩ

)
ds · tdt

− T

2

∫ 1

0

∫ 1

0

1

2
Kn,n

(
e−(1−s)tΩAe−(1−t)Ω ⊗ e−stΩ + e−stΩ ⊗ e−(1−t)ΩAe−(1−s)tΩ

)
ds · tdt

where the second equality is due to change of variables 1 − t 7→ t and 1 − s 7→ s for the first
term only. Note that although we have used symmetry of Ω throughout the derivation, we have
not yet incorporated this fact into the Hessian. In our case, there is no need to incorporate
symmetry of Ω into the Hessian because our ultimate goal is to get the Hessian in terms of
the unique elements of Ω, θ (see Minka (2000) for more explanations of this). Thus the final
Hessian in terms of θ is

∂2`T,D(θ, µ)

∂θ∂θᵀ
=

− T

2

∫ 1

0

∫ 1

0

1

2
EᵀDᵀ

nKn,n

(
e−stΩ ⊗ e−(1−s)tΩAe−(1−t)Ω + e−(1−t)ΩAe−(1−s)tΩ ⊗ e−stΩ

)
ds · tdtDnE

− T

2

∫ 1

0

∫ 1

0

1

2
EᵀDᵀ

nKn,n

(
e−(1−s)tΩAe−(1−t)Ω ⊗ e−stΩ + e−stΩ ⊗ e−(1−t)ΩAe−(1−s)tΩ) ds · tdtDnE

= −T
4
EᵀDᵀ

n

∫ 1

0

∫ 1

0

(
e−stΩ ⊗ e−(1−s)tΩAe−(1−t)Ω + e−(1−t)ΩAe−(1−s)tΩ ⊗ e−stΩ

)
ds · tdtDnE

− T

4
EᵀDᵀ

n

∫ 1

0

∫ 1

0

(
e−(1−s)tΩAe−(1−t)Ω ⊗ e−stΩ + e−stΩ ⊗ e−(1−t)ΩAe−(1−s)tΩ) ds · tdtDnE

where the second equality is due to that Kn,nDn = Dn and symmetry of Kn,n (see (52) of
Magnus and Neudecker (1986)).

For part (iii), note that E[A] = E[D−1/2Σ̃TD
−1/2] = Θ = eΩ. Then by merging terms, we
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have

ΥD =
1

2
EᵀDᵀ

n

∫ 1

0

∫ 1

0

(
e−stΩ ⊗ estΩ + estΩ ⊗ e−stΩ

)
ds · tdtDnE.

To prove the equivalence between (4.4) and (4.5), it suffices to show∫ 1

0

∫ 1

0

(
e−stΩ ⊗ estΩ + estΩ ⊗ e−stΩ

)
ds · tdt =

∫ 1

0

∫ 1

0
e(t+s−1)Ω ⊗ e(1−t−s)Ωdsdt. (8.31)

Suppose Θ = eΩ = Qᵀdiag(λ1, . . . , λn)Q (orthogonal diagonalization). The eigenvalues λjs
are all positive but need not be distinct. We first consider the first term of (8.31). By definition
of matrix function, we have

e−stΩ = Qᵀdiag(λ−st1 , . . . , λ−stn )Q estΩ = Qᵀdiag(λst1 , . . . , λ
st
n )Q

e−stΩ ⊗ estΩ + estΩ ⊗ e−stΩ =

(Q⊗Q)ᵀ
[
diag(λ−st1 , . . . , λ−stn )⊗ diag(λst1 , . . . , λ

st
n ) + diag(λst1 , . . . , λ

st
n )⊗ diag(λ−st1 , . . . , λ−stn )

]
(Q⊗Q)

=: (Q⊗Q)ᵀM1(Q⊗Q),

where M1 is an n2× n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is
(λj
λi

)st
+
(
λi
λj

)st
for i, j = 1, . . . , n. Thus∫ 1

0

∫ 1

0

(
e−stΩ ⊗ estΩ + estΩ ⊗ e−stΩ

)
ds · tdt = (Q⊗Q)ᵀ

∫ 1

0

∫ 1

0
M1ds · tdt(Q⊗Q),

where
∫ 1

0

∫ 1
0 M1tdsdt is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is

1 if i = j
1 if i 6= j, λi = λj

1[
log
(
λi
λj

)]2 [ λiλj +
λj
λi
− 2
]

if i 6= j, λi 6= λj

for i, j = 1, . . . , n. To see this,

∫ 1

0

∫ 1

0

(λj
λi

)st
tdsdt =

∫ 1

0

[ (λj
λi

)st
log
(λj
λi

)t
]1

0

tdt =
1

log
(λj
λi

) ∫ 1

0

[(λj
λi

)t
− 1

]
dt

=
1[

log
(λj
λi

)]2 (λjλi − 1− log

(
λj
λi

))
.

Similarly ∫ 1

0

∫ 1

0

(λi
λj

)st
tdsdt =

1[
log
(
λi
λj

)]2 (λiλj − 1− log

(
λi
λj

))
,

whence we have∫ 1

0

∫ 1

0

[(λj
λi

)st
+
(λi
λj

)st]
tdsdt =

1[
log
(
λi
λj

)]2 [λiλj +
λj
λi
− 2
]
.
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We now consider the second term of (8.31). By definition of matrix function, we have

e(t+s−1)Ω = Qᵀdiag(λ
(t+s−1)
1 , . . . , λ(t+s−1)

n )Q e(1−t−s)Ω = Qᵀdiag(λ
(1−t−s)
1 , . . . , λ(1−t−s)

n )Q

e(t+s−1)Ω ⊗ e(1−t−s)Ω = (Q⊗Q)ᵀ
[
diag(λ

(t+s−1)
1 , . . . , λ(t+s−1)

n )⊗ diag(λ
(1−t−s)
1 , . . . , λ(1−t−s)

n )
]

(Q⊗Q)

=: (Q⊗Q)ᵀM2(Q⊗Q),

where M2 is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is
(
λi
λj

)s+t−1
for

i, j = 1, . . . , n. Thus∫ 1

0

∫ 1

0
e(t+s−1)Ω ⊗ e(1−t−s)Ωdsdt = (Q⊗Q)ᵀ

∫ 1

0

∫ 1

0
M2dsdt(Q⊗Q)

where
∫ 1

0

∫ 1
0 M2dsdt is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is

1 if i = j
1 if i 6= j, λi = λj

1[
log
(
λi
λj

)]2 [ λiλj +
λj
λi
− 2
]

if i 6= j, λi 6= λj

for i, j = 1, . . . , n. To see this,∫ 1

0

∫ 1

0

(λi
λj

)s+t−1

dsdt =
λj
λi

∫ 1

0

(λi
λj

)s
ds

∫ 1

0

(λi
λj

)t
dt

=
λj
λi

[∫ 1

0

(λi
λj

)s
ds

]2

=
λj
λi

[[ (
λi
λj

)s
log
(
λi
λj

)]1

0

]2

=
1[

log
(
λi
λj

)]2 λjλi
[
λi
λj
− 1

]2

.

Comparing
∫ 1

0

∫ 1
0 M1tdsdt with

∫ 1
0

∫ 1
0 M2dsdt, we realise (8.31) hold.

For part (iv), using the expression for
∂`T,D(θ,µ)

∂θᵀ and the fact that it has zero expectation,
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we have

E
[

1

T

∂`T,D(θ, µ)

∂θᵀ
∂`T,D(θ, µ)

∂θ

]
=
T

4
EᵀDᵀ

nΨvar
(

vec
(
e−ΩD−1/2Σ̃TD

−1/2e−Ω
))

ΨDnE

=
T

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)var

(
vec

[
1

T

T∑
t=1

(yt − µ)(yt − µ)ᵀ
])

· (D−1/2 ⊗D−1/2)
(
e−Ω ⊗ e−Ω

)
ΨDnE

=
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)var

(
vec
[
(yt − µ)(yt − µ)ᵀ

])
· (D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

=
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)2DnD

+
n (Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

=
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)(In2 +Kn,n)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

=
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

+
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)Kn,n(Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

=
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

+
1

4
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
Kn,nΨDnE

=
1

2
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)

(
e−Ω ⊗ e−Ω

)
ΨDnE

=
1

2
EᵀDᵀ

nΨ
(
e−Ω ⊗ e−Ω

)
ΨDnE,

where the third equality is due to weak stationarity of yt and (A.10) via Assumption 3.5,
the fifth equality is due to that 2DnD

+
n = In2 + Kn,n, the seventh equality is due to that

Kn,n(A⊗B) = (B⊗A)Kn,n for arbitrary n×n matrices A and B, and the second last equality
is due to

Kn,nΨ =

∫ 1

0
Kn,n

(
etΩ ⊗ e(1−t)Ω) dt =

∫ 1

0
e(1−t)Ω ⊗ etΩdt =

∫ 1

0
esΩ ⊗ e(1−s)Ωdt = Ψ,

via change of variable 1− t 7→ s.

8.6 Proof of Theorem 4.2

In this subsection, we give a proof for Theorem 4.2. We will first give some preliminary lemmas
leading to the proof of this theorem.

Lemma 8.5. For arbitrary n× n complex matrices A and E, and for any matrix norm ‖ · ‖,

‖eA+E − eA‖ ≤ ‖E‖ exp(‖E‖) exp(‖A‖).

Proof. See Horn and Johnson (1991) Corollary 6.2.32 p430.

Define

Ξ :=

∫ 1

0

∫ 1

0
Θt+s−1 ⊗Θ1−t−sdtds Ξ̂T,D :=

∫ 1

0

∫ 1

0
Θ̂t+s−1
T,D ⊗ Θ̂1−t−s

T,D dtds

such that ΥD and Υ̂T,D could be denoted 1
2E

ᵀDᵀ
nΞDnE and 1

2E
ᵀDᵀ

nΞ̂T,DDnE, respectively.
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Lemma 8.6. Suppose Assumptions 3.1(i), 3.2, 3.3(i) and 3.4(i) hold with 1/r1 + 1/r2 > 1.
Then

(i) Ξ has minimum eigenvalue bounded away from zero by an absolute constant and maximum
eigenvalue bounded from above by an absolute constant.

(ii) Ξ̂T,D has minimum eigenvalue bounded away from zero by an absolute constant and max-
imum eigenvalue bounded from above by an absolute constant with probability approaching
1.

(iii)

‖Ξ̂T,D − Ξ‖`2 = Op

(√
n

T

)
.

(iv)

‖Ψ‖`2 =

∥∥∥∥∫ 1

0
etΩ ⊗ e(1−t)Ωdt

∥∥∥∥
`2

= O(1).

Proof. The proofs for the first two parts are the same, so we only give one for part (i). Under
assumptions of this lemma, we can invoke Lemma A.7(i) in Appendix A.4 to have eigenvalues of
Θ to be bounded away from zero and from above by absolute positive constants. Let λ1, . . . , λn
denote these. We have already shown in the proof of Theorem 4.1 in SM 8.5 that eigenvalues
of Ξ are 

1 if i = j
1 if i 6= j, λi = λj

1[
log
(
λi
λj

)]2 [ λiλj +
λj
λi
− 2
]

if i 6= j, λi 6= λj

for i, j = 1, . . . , n. This concludes the proof.
For part (iii), we have∥∥∥∥∫ 1

0

∫ 1

0
Θ̂t+s−1
T,D ⊗ Θ̂1−t−s

T,D dtds−
∫ 1

0

∫ 1

0
Θt+s−1 ⊗Θ1−t−sdtds

∥∥∥∥
`2

≤
∫ 1

0

∫ 1

0

∥∥∥Θ̂t+s−1
T,D ⊗ Θ̂1−t−s

T,D −Θt+s−1 ⊗Θ1−t−s
∥∥∥
`2
dtds

=

∫ 1

0

∫ 1

0

∥∥∥Θ̂t+s−1
T,D ⊗ Θ̂1−t−s

T,D − Θ̂t+s−1
T,D ⊗Θ1−t−s + Θ̂t+s−1

T,D ⊗Θ1−t−s −Θt+s−1 ⊗Θ1−t−s
∥∥∥
`2
dtds

=

∫ 1

0

∫ 1

0

∥∥∥Θ̂t+s−1
T,D ⊗ (Θ̂1−t−s

T,D −Θ1−t−s) + (Θ̂t+s−1
T,D −Θt+s−1)⊗Θ1−t−s

∥∥∥
`2
dtds

=

∫ 1

0

∫ 1

0

[
‖Θ̂t+s−1

T,D ‖`2‖Θ̂
1−t−s
T,D −Θ1−t−s‖`2 + ‖Θ̂t+s−1

T,D −Θt+s−1‖`2‖Θ1−t−s‖`2
]
dtds

≤ max
t,s∈[0,1]

[
‖Θ̂t+s−1

T,D ‖`2‖Θ̂
1−t−s
T,D −Θ1−t−s‖`2 + ‖Θ̂t+s−1

T,D −Θt+s−1‖`2‖Θ1−t−s‖`2
]
.

First, note that for any t, s ∈ [0, 1], ‖Θ̂t+s−1
T,D ‖`2 and ‖Θ1−t−s‖`2 are Op(1) and O(1), respectively.

For example, diagonalize Θ, apply the function f(x) = x1−t−s, and take the spectral norm.
The result would then follow if we show that

max
t,s∈[0,1]

‖Θ̂1−t−s
T,D −Θ1−t−s‖`2 = Op(

√
n/T ), max

t,s∈[0,1]
‖Θ̂t+s−1

T,D −Θt+s−1‖`2 = Op(
√
n/T ).

It suffices to give a proof for the first equation, as the proof for the second is similar.

‖Θ̂1−t−s
T,D −Θ1−t−s‖`2 =

∥∥e(1−t−s) log Θ̂T,D − e(1−t−s) log Θ
∥∥
`2

≤ ‖(1− t− s)(log Θ̂T,D − log Θ)‖`2 exp[(1− t− s)‖ log Θ̂T,D − log Θ‖`2 ] exp[(1− t− s)‖ log Θ‖`2 ]

= ‖(1− t− s)(log Θ̂T,D − log Θ)‖`2 exp[(1− t− s)‖ log Θ̂T,D − log Θ‖`2 ]O(1),
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where the first inequality is due to Lemma 8.5, and the second equality is due to the fact
that all the eigenvalues of Θ are bounded away from zero and infinity by absolute positive
constants. Now use Theorem 3.1 to get ‖ log Θ̂T,D − log Θ‖`2 = Op

(√
n
T

)
. The result follows

after recognising exp(op(1)) = Op(1).
The proof for part (iv) is very similar to the one which we gave in the proof of Theorem

4.1 in SM 8.5. Since Θ = Qᵀdiag(λ1, . . . , λn)Q, we have Θt = Qᵀdiag(λt1, . . . , λ
t
n)Q and Θ1−t =

Qᵀdiag(λ1−t
1 , . . . , λ1−t

n )Q. Then

Θt ⊗Θ1−t = (Q⊗Q)ᵀ
[
diag(λt1, . . . , λ

t
n)⊗ diag(λ1−t

1 , . . . , λ1−t
n )

]
(Q⊗Q) =: (Q⊗Q)ᵀM3(Q⊗Q),

where M3 is an n2 × n2 diagonal matrix whose [(i − 1)n + j]th diagonal entry is λj
(
λi
λj

)t
for

i, j = 1, . . . , n. Thus

Ψ =

∫ 1

0
Θt ⊗Θ1−tdt = (Q⊗Q)ᵀ

∫ 1

0
M3dt(Q⊗Q)

where
∫ 1

0 M3dt is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is
λi if i = j
λi if i 6= j, λi = λj

λi−λj
log λi−log λj

if i 6= j, λi 6= λj

for i, j = 1, . . . , n. To see this,

λj

∫ 1

0

(λi
λj

)t
dt = λj

[ (
λi
λj

)t
log
(
λi
λj

)]
1

0

=
1

log
(
λi
λj

)λj [λi
λj
− 1

]
.

Lemma 8.7. Suppose Assumptions 3.1(i), 3.2, 3.3(i) and 3.4 hold with 1/r1 + 1/r2 > 1. Then

(i)

‖Υ̂T,D −ΥD‖`2 = Op

(
sn

√
n

T

)
.

(ii)

‖Υ̂−1
T,D −Υ−1

D ‖`2 = Op

(
$2s

√
1

nT

)
.

Proof. For part (i),

‖Υ̂T,D −ΥD‖`2 =
1

2
‖EᵀDᵀ

n(Ξ̂T,D − Ξ)DnE‖`2 ≤
1

2
‖Eᵀ‖`2‖Dᵀ

n‖`2‖Ξ̂T,D − Ξ‖`2‖Dn‖`2‖E‖`2

= O(1)‖Ξ̂T,D − Ξ‖`2‖E‖2`2 = Op

(
sn

√
n

T

)
,

where the second equality is due to (A.8), and the last equality is due to (A.12) and Lemma
8.6(iii).

For part (ii),

‖Υ̂−1
T,D −Υ−1

D ‖`2 = ‖Υ̂−1
T,D(ΥD − Υ̂T,D)Υ−1

D ‖`2 ≤ ‖Υ̂
−1
T,D‖`2‖ΥD − Υ̂T,D‖`2‖Υ

−1
D ‖`2

= Op($
2/n2)Op

(
sn

√
n

T

)
= Op

(
s$2

√
1

nT

)
,

where the second last equality is due to (8.32).

20



We are now ready to give a proof for Theorem 4.2.

Proof of Theorem 4.2. We first show that Υ̂T,D is invertible with probability approaching 1, so

that our estimator θ̃T,D := θ̂T,D − Υ̂−1
T,D

∂`T,D(θ̂T,D,ȳ)
∂θᵀ /T is well defined. It suffices to show that

Υ̂T,D has minimum eigenvalue bounded away from zero by an absolute constant with probability
approaching one.

mineval(Υ̂T,D) =
1

2
mineval(EᵀDᵀ

nΞ̂T,DDnE) ≥ mineval(Ξ̂T,D)mineval(Dᵀ
nDn)mineval(EᵀE)/2

≥ C n

$
,

for some absolute positive constant C with probability approaching one, where the second
inequality is due to Lemma 8.6(ii), Assumption 3.4(ii), and that Dᵀ

nDn is a diagonal matrix
with diagonal entries either 1 or 2. Hence Υ̂T,D has minimum eigenvalue bounded away from
zero by an absolute constant with probability approaching one. Also as a by-product

‖Υ̂−1
T,D‖`2 =

1

mineval(Υ̂T,D)
= Op

(
$

n

)
‖Υ−1

D ‖`2 =
1

mineval(ΥD)
= O

(
$

n

)
. (8.32)

From the definition of θ̃T,D, for any b ∈ Rs with ‖b‖2 = 1 we can write

√
TbᵀΥ̂T,D(θ̃T,D − θ) =

√
TbᵀΥ̂T,D(θ̂T,D − θ)−

√
Tbᵀ

1

T

∂`T,D(θ̂T,D, ȳ)

∂θᵀ

=
√
TbᵀΥ̂T,D(θ̂T,D − θ)−

√
Tbᵀ

1

T

∂`T,D(θ, ȳ)

∂θᵀ
−
√
TbᵀΥD(θ̂T,D − θ) + op(1)

=
√
Tbᵀ(Υ̂T,D −ΥD)(θ̂T,D − θ)− bᵀ

√
T

1

T

∂`T,D(θ, ȳ)

∂θᵀ
+ op(1)

where the second equality is due to Assumption 4.1 and the fact that θ̂T,D is
√
n$κ(W )/T -

consistent. Defining aᵀ := bᵀΥ̂T,D, we write

√
T

aᵀ

‖a‖2
(θ̃T,D − θ) =

√
T

aᵀ

‖a‖2
Υ̂−1
T,D(Υ̂T,D −ΥD)(θ̂T,D − θ)−

aᵀ

‖a‖2
Υ̂−1
T,D

√
T

1

T

∂`T,D(θ, ȳ)

∂θᵀ
+
op(1)

‖a‖2
.

By recognising that ‖aᵀ‖2 = ‖bᵀΥ̂T,D‖2 ≥ mineval(Υ̂T,D), we have 1
‖a‖2 = Op

(
$
n

)
. Thus

without loss of generality, we have, for any c ∈ Rs with ‖c‖2 = 1,

√
Tcᵀ(θ̃T,D − θ) =

√
TcᵀΥ̂−1

T,D(Υ̂T,D −ΥD)(θ̂T,D − θ)− cᵀΥ̂−1
T,D

√
T

1

T

∂`T,D(θ, ȳ)

∂θᵀ
+ op($/n).

We now determine a rate for the first term on the right side in the preceding display. This is
straightforward

√
T |cᵀΥ̂−1

T,D(Υ̂T,D −ΥD)(θ̂T,D − θ)| ≤
√
T‖c‖2‖Υ̂−1

T,D‖`2‖Υ̂T,D −ΥD‖`2‖θ̂T,D − θ‖2

=
√
TOp($/n)snOp(

√
n/T )Op(

√
n$κ(W )/T ) = Op

(√
n2 log2 n$3κ(W )

T

)
,

where the first equality is due to (8.32), Lemma 8.7(i) and the rate of convergence for the
minimum distance estimator θ̂T (θ̂T,D). Thus

√
Tcᵀ(θ̃T,D − θ) = −cᵀΥ̂−1

T,D

√
T

1

T

∂`T,D(θ, ȳ)

∂θᵀ
+ rem, rem = Op

(√
n2 log2 n$3κ(W )

T

)
+ op($/n)

21



whence, if we divide by
√
cᵀΥ̂−1

T,Dc, we have

√
Tcᵀ(θ̃T,D − θ)√

cᵀΥ̂−1
T,Dc

=
−cᵀΥ̂−1

T,D

√
T
∂`T,D(θ,ȳ)

∂θᵀ /T√
cᵀΥ̂−1

T,Dc
+

rem√
cᵀΥ̂−1

T,Dc
=: t̂os,D,1 + tos,D,2.

Define

tos,D,1 :=
−cᵀΥ−1

D

√
T
∂`T,D(θ,µ)

∂θᵀ /T√
cᵀΥ−1

D c
.

To prove Theorem 4.2, it suffices to show tos,D,1
d−→ N(0, 1), t̂os,D,1 − tos,D,1 = op(1), and

tos,D,2 = op(1).

8.6.1 tos,D,1
d−→ N(0, 1)

We now prove that tos,D,1 is asymptotically distributed as a standard normal. Write

tos,D,1 :=
−cᵀΥ−1

D

√
T
∂`T,D(θ,µ)

∂θᵀ /T√
cᵀΥ−1

D c
=

T∑
t=1

−1
2c

ᵀΥ−1
D EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)T−1/2 vec
[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]√
cᵀΥ−1

D c

=:
T∑
t=1

Uos,D,T,n,t.

The proof is very similar to that of tD,1
d−→ N(0, 1) in Section A.4.1. It is straightforward to

show that {Uos,D,T,n,t,FT,n,t} is a martingale difference sequence. We first investigate that at

what rate the denominator
√
cᵀΥ−1

D c goes to zero.

cᵀΥ−1
D c = 2cᵀ

(
EᵀDᵀ

nΞDnE
)−1

c ≥ 2mineval
((
EᵀDᵀ

nΞDnE
)−1
)

=
2

maxeval
(
EᵀDᵀ

nΞDnE
) .

Since,

maxeval
(
EᵀDᵀ

nΞDnE
)
≤ maxeval(Ξ)maxeval(Dᵀ

nDn)maxeval(EᵀE) ≤ Csn,

for some positive constant C because of Lemma 8.6(i), (A.11) and that Dᵀ
nDn is a diagonal

matrix with diagonal entries either 1 or 2. Thus we have

1√
cᵀΥ−1

D c
= O(

√
sn). (8.33)
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We now verify (i) and (ii) of Theorem A.4 in Appendix A.5. We consider |Uos,D,T,n,t| first.

|Uos,D,T,n,t| =∣∣∣∣ 1
2c

ᵀΥ−1
D EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)T−1/2 vec
[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]√
cᵀΥ−1

D c

∣∣∣∣
≤

1
2T
−1/2

∥∥cᵀΥ−1
D EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)
∥∥

2

∥∥vec
[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]∥∥
2√

cᵀΥ−1
D c

= O

(√
s2$2

T

)∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
F

≤ O
(√

n2s2$2

T

)∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
∞ ,

where the second equality is due to (8.33) and that∥∥cᵀΥ−1
D EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)
∥∥

2

≤ ‖Υ−1
D ‖`2‖E

ᵀ‖`2‖Dᵀ
n‖`2‖Ψ‖`2‖Θ−1 ⊗Θ−1‖`2‖D−1/2 ⊗D−1/2‖`2 = O

(
$

n

)√
sn = O

(√
s$2

n

)
via (8.32) and (A.12). Next, using a similar argument which we explained in detail in Section
A.4.1, we have∥∥∥ max

1≤t≤T
|Uos,D,T,n,t|

∥∥∥
ψ1

≤ log(1 + T ) max
1≤t≤T

∥∥Uos,D,T,n,t∥∥ψ1

= log(1 + T )O

(√
n2s2$2

T

)
max

1≤t≤T

∥∥∥∥∥(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ
∥∥
∞

∥∥∥
ψ1

= log(1 + T ) log(1 + n2)O

(√
n2s2$2

T

)
max

1≤t≤T
max

1≤i,j≤n

∥∥(yt,i − µi)(yt,j − µj)
∥∥
ψ1

= O

(√
n2s2$2 log2(1 + T ) log2(1 + n2)

T

)
= o(1)

where the last equality is due to Assumption 3.3(iii). Since ‖U‖Lr ≤ r!‖U‖ψ1 for any random
variable U (van der Vaart and Wellner (1996), p95), we conclude that (i) and (ii) of Theorem
A.4 in Appendix A.5 are satisfied.

We now verify condition (iii) of Theorem A.4 in Appendix A.5. Since we have already shown
that sncᵀΥ−1

D c is bounded away from zero by an absolute constant, it suffices to show

sn

∣∣∣∣ 1

T

T∑
t=1

(
1

2
cᵀΥ−1

D EᵀDᵀ
nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)ut

)2

− cᵀΥ−1
D c

∣∣∣∣ = op(1),

where ut := vec
[
(yt − µ)(yt − µ)ᵀ − E(yt − µ)(yt − µ)ᵀ

]
. Under Assumptions 3.1(ii) and 3.5,

we have already shown in the proof of part (iv) of Theorem 4.1 that

cᵀΥ−1
D c = cᵀΥ−1

D ΥDΥ−1
D c = cᵀΥ−1

D

(
1

2
EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)ΨDnE

)
Υ−1
D c

=
1

4
cᵀΥ−1

D EᵀDᵀ
nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)(Θ−1 ⊗Θ−1)ΨDnEΥ−1

D c.
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Thus

sn

∣∣∣∣ 1

T

T∑
t=1

(
1

2
cᵀΥ−1

D EᵀDᵀ
nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)ut

)2

− cᵀΥ−1
D c

∣∣∣∣
≤ 1

4
sn

∥∥∥∥ 1

T

T∑
t=1

utu
ᵀ
t − V

∥∥∥∥
∞

∥∥(D−1/2 ⊗D−1/2)(Θ−1 ⊗Θ−1)ΨDnEΥ−1
D c
∥∥2

1

≤ 1

4
sn3

∥∥∥∥ 1

T

T∑
t=1

utu
ᵀ
t − V

∥∥∥∥
∞

∥∥(D−1/2 ⊗D−1/2)(Θ−1 ⊗Θ−1)ΨDnEΥ−1
D c
∥∥2

2

≤ 1

4
sn3

∥∥∥∥ 1

T

T∑
t=1

utu
ᵀ
t − V

∥∥∥∥
∞

‖D−1/2 ⊗D−1/2‖2`2‖Θ
−1 ⊗Θ−1‖2`2‖Ψ‖

2
`2‖Dn‖2`2‖E‖

2
`2‖Υ

−1
D ‖

2
`2

= Op(sn
3)

√
log n

T
· sn · $

2

n2
= Op

(√
n4 · log n ·$4 · log4 n

T

)
= op(1)

where the first equality is due to (8.32), (A.12) and the fact that
∥∥T−1

∑T
t=1 utu

ᵀ
t − V

∥∥
∞ =

Op(
√

logn
T ), which can be deduced from the proof of Lemma 8.2 in SM 8.3, and the last equality

is due to Assumption 3.3(iii).

8.6.2 t̂os,D,1 − tos,D,1 = op(1)

We now show that t̂os,D,1−tos,D,1 = op(1). Let Aos,D and Âos,D denote the numerators of tos,D,1
and t̂os,D,1, respectively.

t̂os,D,1 − tos,D,1 =
Âos,D√
cᵀΥ̂−1

T,Dc
−

Aos,D√
cᵀΥ−1

D c
=

√
snÂos,D√
sncᵀΥ̂−1

T,Dc
−
√
snAos,D√
sncᵀΥ−1

D c

Since we have already shown in (8.33) that sncᵀΥ−1
D c is bounded away from zero by an absolute

constant, it suffices to show the denominators as well as numerators of t̂os,D,1 and tos,D,1 are
asymptotically equivalent.

8.6.3 Denominators of t̂os,D,1 and tos,D,1

We need to show
sn|cᵀ(Υ̂−1

T,D −Υ−1
D )c| = op(1).

This is straightforward.

sn|cᵀ(Υ̂−1
T,D −Υ−1

D )c| ≤ sn‖Υ̂−1
T,D −Υ−1

D )‖`2 = snOp

(
s$2

√
1

nT

)
= Op

(
s2$2

√
n

T

)
= op(1),

where the last equality is due to Assumption 3.3(iii).

8.6.4 Numerators of t̂os,D,1 and tos,D,1

We now show

√
sn

∣∣∣∣cᵀΥ̂−1
T,D

√
T
∂`T,D(θ, ȳ)

∂θᵀ
/T − cᵀΥ−1

D

√
T
∂`T,D(θ, µ)

∂θᵀ
/T

∣∣∣∣ = op(1).

24



Using triangular inequality, we have

√
sn

∣∣∣∣cᵀΥ̂−1
T,D

√
T
∂`T,D(θ, ȳ)

∂θᵀ
/T − cᵀΥ−1

D

√
T
∂`T,D(θ, µ)

∂θᵀ
/T

∣∣∣∣
≤
√
sn

∣∣∣∣cᵀΥ̂−1
T,D

√
T
∂`T,D(θ, ȳ)

∂θᵀ
/T − cᵀΥ−1

D

√
T
∂`T,D(θ, ȳ)

∂θᵀ
/T

∣∣∣∣
+
√
sn

∣∣∣∣cᵀΥ−1
D

√
T
∂`T,D(θ, ȳ)

∂θᵀ
/T − cᵀΥ−1

D

√
T
∂`T,D(θ, µ)

∂θᵀ
/T

∣∣∣∣ (8.34)

We first show that the first term of (8.34) is op(1).

√
sn

∣∣∣∣cᵀ(Υ̂−1
T,D −Υ−1

D )
√
T
∂`T,D(θ, ȳ)

∂θᵀ
/T

∣∣∣∣
=
√
sn

∣∣∣∣cᵀ(Υ̂−1
T,D −Υ−1

D )
√
T

1

2
EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ)

∣∣∣∣
= O(

√
sn)‖Υ̂−1

T,D −Υ−1
D ‖`2

√
T‖Eᵀ‖`2‖Σ̂T − Σ‖F = O(

√
sn)$2s

√
1/(nT )

√
T
√
sn
√
n‖Σ̂T − Σ‖`2

= O(
√
sn)$2s

√
1/(nT )

√
T
√
sn
√
n
√
n/T = Op

(√
n3s4$4

T

)
= op(1),

where the last equality is due to Assumption 3.3(iii).
We now show that the second term of (8.34) is op(1).

√
sn

∣∣∣∣cᵀΥ−1
D

√
T

(
∂`T,D(θ, ȳ)

∂θᵀ
/T −

∂`T,D(θ, µ)

∂θᵀ
/T

)∣∣∣∣
=
√
sn

∣∣∣∣cᵀΥ−1
D

√
T

1

2
EᵀDᵀ

nΨ(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ̃T )

∣∣∣∣
= O(

√
sn)‖Υ−1

D ‖`2
√
T‖E‖`2‖Σ̂T − Σ̃T ‖F = Op(

√
sn)

$

n

√
T
√
snn

log n

T
= Op

(√
log4 n · n2$2

T

)
= op(1),

where the third last equality is due to (8.23), and the last equality is due to Assumption 3.3(iii).

8.6.5 tos,D,2 = op(1)

To prove tos,D,2 = op(1), it suffices to show that
√
sn|rem| = op(1). This is delivered by

Assumption 3.3(iii).

8.7 Proof of Theorem 3.4 and Corollary 3.3

In this subsection, we give proofs of Theorem 3.4 and Corollary 3.3.

Proof of Theorem 3.4. We only give a proof for part (i), as that for part (ii) is similar. Note
that under H0,

√
TgT,D(θ) =

√
T [vech(log Θ̂T,D)− Eθ] =

√
T [vech(log Θ̂T,D)− vech(log Θ)]

=
√
TD+

n vec(log Θ̂T,D − log Θ).

Thus we can adopt the same method as in Theorem 3.2 to establish the asymptotic distribution
of
√
TgT,D(θ). In fact, it will be much simpler here because we fixed n. We should have

√
TgT,D(θ)

d−→ N(0, S), S := D+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n , (8.35)
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where S is positive definite given the assumptions of this theorem. The closed-form solution for
θ̂T = θ̂T,D has been given in (3.3), but this is not important. We only need that θ̂T,D sets the
first derivative of the objective function to zero:

EᵀWgT,D(θ̂T,D) = 0. (8.36)

Notice that
gT,D(θ̂T,D)− gT,D(θ) = −E(θ̂T,D − θ). (8.37)

Pre-multiply (8.37) by
∂gT,D(θ̂T,D)

∂θᵀ W = −EᵀW to give

−EᵀW [gT,D(θ̂T,D)− gT,D(θ)] = EᵀWE(θ̂T,D − θ),

whence we obtain

θ̂T,D − θ = −(EᵀWE)−1EᵀW [gT,D(θ̂T,D)− gT,D(θ)]. (8.38)

Substitute (8.38) into (8.37)

√
TgT,D(θ̂T,D) =

[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]√
TgT,D(θ) + E(EᵀWE)−1

√
TEᵀWgT,D(θ̂T,D)

=
[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]√
TgT,D(θ),

where the second equality is due to (8.36). Using (8.35), we have

√
TgT,D(θ̂T,D)

d−→ N
(

0,
[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]
S
[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]ᵀ)
.

Now choosing W = S−1, we can simplify the asymptotic covariance matrix in the preceding
display to

S1/2
(
In(n+1)/2 − S−1/2E(EᵀS−1E)−1EᵀS−1/2

)
S1/2.

Thus √
T Ŝ
−1/2
T,D gT,D(θ̂T,D)

d−→ N
(

0, In(n+1)/2 − S−1/2E(EᵀS−1E)−1EᵀS−1/2
)
,

because ŜT,D is a consistent estimate of S given (A.7) and Lemma 8.2, which hold under the
assumptions of this theorem. The asymptotic covariance matrix in the preceding display is
idempotent and has rank n(n+ 1)/2− s. Thus, under H0,

TgT,D(θ̂T,D)ᵀŜ−1
T,DgT,D(θ̂T,D)

d−→ χ2
n(n+1)/2−s.

To prove Corollary 3.3, we give the following two auxiliary lemmas.

Lemma 8.8 (van der Vaart (1998) p27).

χ2
k − k√

2k

d−→ N(0, 1),

as k →∞.

Lemma 8.9 (van der Vaart (2010) p41). For T, n ∈ N let XT,n be random vectors such that

XT,n
d−→ Xn as T → ∞ for every fixed n such that Xn

d−→ X as n → ∞. Then there exists a

sequence nT →∞ such that XT,nT
d−→ X as T →∞.

Now we are ready to give a proof for Corollary 3.3.
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Proof of Corollary 3.3. We only give a proof for part (i), as that for part (ii) is similar. From
(3.7) and the Slutsky lemma, we have for every fixed n (and hence v and s)

TgT,D(θ̂T,D)ᵀŜ−1
T,DgT,D(θ̂T,D)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→
χ2
n(n+1)/2−s −

[n(n+1)
2 − s

]
[
n(n+ 1)− 2s

]1/2 ,

as T →∞. Then invoke Lemma 8.8

χ2
n(n+1)/2−s −

[n(n+1)
2 − s

]
[
n(n+ 1)− 2s

]1/2 d−→ N(0, 1),

as n→∞ under H0. Next invoke Lemma 8.9, there exists a sequence n = nT such that

TgT,n,D(θ̂T,n,D)ᵀŜ−1
T,n,DgT,n,D(θ̂T,n,D)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→ N(0, 1), under H0

as T →∞.

8.8 Miscellaneous Results

This subsection contains miscellaneous results of the article.

Proof of Corollary 3.1. Note that Theorem 3.2 and a result we proved before, namely,

|cᵀĴT,Dc− cᵀJDc| = op

(
1

snκ(W )

)
, (8.39)

imply √
Tcᵀ(θ̂T,D − θ0)

d−→ N(0, cᵀJDc). (8.40)

Consider an arbitrary, non-zero vector b ∈ Rk. Then∥∥∥∥ Ab

‖Ab‖2

∥∥∥∥
2

= 1,

so we can invoke (8.40) with c = Ab/‖Ab‖2:

√
T

1

‖Ab‖2
bᵀAᵀ(θ̂T,D − θ0)

d−→ N

(
0,

bᵀAᵀ

‖Ab‖2
JD

Ab

‖Ab‖2

)
,

which is equivalent to √
TbᵀAᵀ(θ̂T,D − θ0)

d−→ N
(
0, bᵀAᵀJDAb

)
.

Since b ∈ Rk is non-zero and arbitrary, via the Cramer-Wold device, we have

√
TAᵀ(θ̂T,D − θ0)

d−→ N
(
0, AᵀJDA

)
.

Since we have shown in the mathematical display above (A.11) that JD is positive definite and
A has full-column rank, AᵀJDA is positive definite and its negative square root exists. Hence,

√
T (AᵀJDA)−1/2Aᵀ(θ̂T,D − θ0)

d−→ N
(
0, Ik

)
.

Next from (8.39),

∣∣bᵀBb∣∣ :=
∣∣bᵀAᵀĴT,DAb− bᵀAᵀJDAb

∣∣ = op

(
1

snκ(W )

)
‖Ab‖22 ≤ op

(
1

snκ(W )

)
‖A‖2`2‖b‖

2
2.

27



By choosing b = ej where ej is a vector in Rk with jth component being 1 and the rest of
components being 0, we have for j = 1, . . . , k∣∣Bjj∣∣ ≤ op( 1

snκ(W )

)
‖A‖2`2 = op(1),

where the equality is due to ‖A‖`2 = O(
√
snκ(W )). By choosing b = eij , where eij is a vector

in Rk with ith and jth components being 1/
√

2 and the rest of components being 0, we have∣∣Bii/2 +Bjj/2 +Bij
∣∣ ≤ op( 1

snκ(W )

)
‖A‖2`2 = op(1).

Then
|Bij | ≤ |Bij +Bii/2 +Bjj/2|+ | − (Bii/2 +Bjj/2)| = op(1).

Thus we proved
B = AᵀĴT,DA−AᵀJDA = op(1),

because the dimension of the matrix B, k, is finite. By Slutsky’s lemma
√
T (AᵀĴT,DA)−1/2Aᵀ(θ̂T,D − θ0)

d−→ N
(
0, Ik

)
.

Lemma 8.10. For any positive definite matrix Θ,(∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt

)−1

=

∫ 1

0
et log Θ ⊗ e(1−t) log Θdt.

Proof. (11.9) and (11.10) of Higham (2008) p272 give, respectively, that

vecE =

∫ 1

0
et log Θ ⊗ e(1−t) log Θdt vecL(Θ, E),

vecL(Θ, E) =

∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt vecE.

Substitute the preceding equation into the second last

vecE =

∫ 1

0
et log Θ ⊗ e(1−t) log Θdt

∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt vecE.

Since E is arbitrary, the result follows.

Example 8.3. In the special case of normality, V = 2DnD
+
n (Σ⊗ Σ) (Magnus and Neudecker

(1986) Lemma 9). Then cᵀJDc could be simplified into

cᵀJDc =

2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)DnD

+
n (Σ⊗ Σ)(D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c

= 2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c

= 2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2ΣD−1/2 ⊗D−1/2ΣD−1/2)HD+ᵀ

n WE(EᵀWE)−1c

= 2cᵀ(EᵀWE)−1EᵀWD+
nH(Θ⊗Θ)HD+ᵀ

n WE(EᵀWE)−1c,

where the second equality is true because, given the structure of H, via Lemma 11 of Magnus
and Neudecker (1986), we have the following identity:

D+
nH(D−1/2 ⊗D−1/2) = D+

nH(D−1/2 ⊗D−1/2)DnD
+
n .
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