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Mining and manipulation of antibiotic biosynthesis in Streptomyces  

Jacob A. Pollock 

New small-molecule drugs are needed, both to address existing disease and to combat the rise of 

antibiotic resistance in pathogenic microbes. A major source of antibiotics and other valuable 

therapeutic agents remains the natural products produced by Streptomyces and allied bacteria. The 

advent of genome-level sequencing has changed how such bioactive products are identified in two 

ways: first, by enabling new approaches to engineering of known clusters to obtain new analogues; 

and secondly by enabling mining of their large (8-12 Mbp) genomes to make rapid links between 

valuable compounds and the gene clusters responsible for their biosynthesis; as well as a complete 

inventory of orphan clusters for decryption. In this work, both of these aspects were explored.  

 Accelerated Evolution (AE) is a new method of induced recombination in Streptomyces that 

produces libraries of analogues of a parent compound in a single experiment. It has been previously 

applied to a typical assembly-line biosynthetic pathway involving a multimodular polyketide synthase, 

that for the immunosuppressant rapamycin. Here, the utility of AE was initially explored with several 

polyketide antibiotics, before focussing on the polyene filipin. Unfortunately, this system proved 

refractory to the AE method, since only recombinants which had either lost filipin production, or which 

maintained some level of filipin production, were recovered. These results suggested that deeper 

understanding of the fundamental processes of recombination in Streptomyces are now needed to 

allow the AE approach to flourish. 

 A genome mining approach was taken to identify and analyse the gene cluster in Streptomyces 

albus DMS40763 for pseudouridimycin (PUM), a rare C-nucleoside antibiotic and a newly-recognised 

selective inhibitor of bacterial RNA polymerase. The fully-sequenced genome (8.01 Mbp) of S. albus 

was analysed and 27 biosynthetic gene clusters were found, including those for 11 novel assembly-

line systems. A strong candidate for the PUM gene cluster was identified through BLAST searches with 

a gene probe (truD) found in the gene cluster for a different C-nucleoside in other Streptomyces spp., 

hinting at a common mechanism for formation of the C-nucleoside moiety. Identification of the 

enzymes predicted to be encoded by the gene cluster allowed a detailed biosynthetic pathway to be 

proposed. Several genes from the PUM cluster were expressed and purified as recombinant proteins 

in Escherichia coli, and the proposed enzymatic roles of two of them were verified. One of these, a 

pseudouridine oxidase, also showed activity against uridine. Consistent with this finding, feeding of 

uracil to a mutant S. albus lacking the pseudouridine synthase-like gene truD gave production of the 

novel N-linked analogue of PUM, suggesting that the biosynthetic enzymes may be sufficiently flexible 

to incorporate other, non-natural nucleosides into PUM analogues for testing. 
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Chapter 1: Introduction 

 

1.1: Actinomycete Natural Products and their Targets 

1.1.1: The Role of Natural Products in Medicine 

 

Natural products, and the field of research that attempts to understand and eventually control them, 

lie at the interface between chemistry and biology. Their complex, diverse structures have captured 

the imagination of chemical scientists and led to a flowering of modern methods of stereoselective 

total synthesis 1–3. Meanwhile, the exquisite specificity of action of many natural products has been 

invaluable in the mapping of metabolic pathways and regulatory cascades. Last but not least, natural 

products have been a continuing source of leads and inspiration in drug discovery 4–6  

 The simplest definition of a natural product is a small molecule that is produced by a biological 

source 7. The term natural product generally refers to secondary metabolites. These are non-essential 

molecules; they are not required for the growth, development and reproduction of the producing 

organism. The function of secondary metabolites has been widely discussed and there have been a 

number of views as to why they exist at all; Bu’Lock, who coined the term ‘secondary metabolite’ 

stated “it is the process of secondary biosynthesis which is seen as advantageous, and not, in the 

general case, its products, and in my opinion this is still the general type of explanation” 8; Zähner et 

al held the view that we should “rid ourselves of the simplistic idea that antibiotics are formed as a 

defence mechanism, and recognise instead that antibiotics are nothing more than secondary 

metabolites which possess, more or less incidentally, an antibiotic effect” 9; while Williams et al argue 

that “all natural products have evolved under the pressure of natural selection to bind to specific 

receptors” 10. Perhaps the most widely-accepted view now is that of Firn and Jones 11, who identify 

the ability to produce such bioactive specialised metabolites as the valuable selectable trait, rather 

than the ability to produce a particular molecule and that the secondary metabolism will have evolved 

such that traits that optimise the production and retention of chemical diversity at a minimum cost 

will have been selected for. 

 

 The earliest records of natural products have been found on clay tablets from Mesopotamia, 

dated at 2600 BC. These documented oils from Cupressus sempervirens (Cypress) and Commiphora 

(Myrrh) species, which are still used to treat colds, coughs and inflammation 12. Studies of the ancient 

Egyptian Ebers Papyrus identified about 800 complex prescriptions and over 700 natural agents such 

as Aloe vera, Boswellia carteri (frankincense) and the oil of Ricinus communis (castor oil) 13. The first 
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treatise written on the concepts and practice of Indian Ayurveda was written almost 3000 years ago 

and contains hundreds of plant derived medicines 14. Some of the most important drugs in use today 

have ancient roots; the anti-inflammatory agent, acetylsalicyclic acid (aspirin) is derived from salicin, 

isolated from the bark of Salix alba (willow tree) 15 and the alkaloid morphine is derived from the plant 

Papaver somniferum (opium poppy) 15 (Figure 1.1). 

 

 

Figure 1.1: Historical and modern examples of therapeutic natural products. (1) β-boswellic acid, one of the 

active ingredients in frankincense (2) A trimester of glycerol and ricinoleic acid, the major component of castor 

oil (3) acetylsalicyclic acid (4) morphine (5) benzylpenicillin (6) amphotericin B (7) gentamicin. 

 

 The development of modern medicine has also been shaped in part by the impact of natural 

products. In 1929 Alexander Fleming famously discovered penicillin, derived from the fungus 

Penicillium notatum. The clinical studies and commercialisation of synthetic penicillins that followed 

revolutionised drug discovery and the practice of medicine, allowing operations to be performed at 
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much lower risk, and the treatment of previously life-threatening diseases. Anti-infectives remain an 

important class of natural products, as in 2016 three of the top ten global causes of death were 

infections, including tuberculosis and respiratory infections. Many of these compounds are found in 

the World Health Organisation (WHO) Model List of Essential Medicines, including amphotericin B, 

rifampicin, vancomycin, and gentamicin. Natural products possess a vast chemical diversity and have 

had a profound impact on the development of antitumour, immunosuppressnt and cholesterol-

lowering compounds 16,17, however the focus of the work described here is on anti-infective natural 

products, their producers, and the genes and enzymes responsible for their biosynthesis. 

 Sixteen years after Alexander Fleming’s discovery of penicillin, he shared the 1945 Nobel Prize 

in Physiology or Medicine for the discovery of penicillin. Then, in 1952, Selman A. Waksman received 

the Nobel Prize for the discovery of streptomycin 18, an antibiotic with activity against penicillin-

resistant bacteria, and importantly exhibiting activity against Mycobacterium tuberculosis, the 

causative agent of tuberculosis. This was the first time natural products were systematically sought 

through screening, and it heralded the age of antibiotics and what is known as ‘the Golden Age’ of 

natural product drug discovery. Half of the drugs commonly used today and many of the recognised 

classes `of antibiotics were discovered during this period 19 (Figure 1.1). 

 

1.1.2: Producers of Natural Products 

 

Antibiotic-producing organisms are primarily bacterial, but it is important to note that plants and fungi 

also have specialised secondary metabolic pathways that can generate huge chemical diversity. 

Indeed, penicillin, one of the best known and most influential antibiotics, is derived from a fungus, 

Penicillium notatum. There are approximately 100,000 fungal species known, although the total 

expected number is far in excess of one million. The variety of species and their diversity means fungi 

are a rich source of new natural products. An extension of screening from traditionally used 

saprophytic terrestrial strains to marine and endophytic strains, accompanied by new screening 

strategies, has led to the discovery of many novel fungal metabolites 20. Hypocreolide, a nonenolide 

derived from the terrestrial ascomycete Hypocrea lactea, shows antibacterial, antifungal, and 

cytotoxic activities21. Benzophomopsin A, a new benzoxepin isolated from an endophytic Phomopsis 

strain derived from a Japanese cherry tree, potently inhibits Ca2+ signalling 22. The novel compounds; 

JBIR-37 and JBIR-38, isolated from the marine sponge-derived fungus Acremonium sp., do not exhibit 

any bioactivities, but they are the first examples of glycosyl benzenes from fungi 23, showing that 

advances in chemical screening techniques continue to identify interesting chemotypes. 
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 Plants have historically been a primary source of medicines. In a pre-synthetic era it is 

estimated that 80% of medicines were obtained from roots, bark and leaves 24. With an estimated 

200,000 natural products being generated by plants25, including many valuable alkaloids and 

terpenoids, such as artemisinin, plants are an important source of novel chemical diversity. Plant 

natural product biosynthesis tends to focus on the generation of key intermediate scaffolds which are 

then tailored, or enzymatically decorated, by a small collection of enzymatic transformations, to form 

different classes of natural products. The most widely used drug for the treatment of breast cancer is 

paclitaxel (Taxol), isolated from the bark of Taxus brevifolia (Pacific Yew). Initial screenings of the 

compound required the bark from three 100 year old trees to produce 1 gram of paclitaxel 26. A total 

synthetic route has been developed to help meet the current annual demand for 100 to 200 kg of the 

compound 15, but it is expensive. Fortunately, baccatin III was found to be present in the needles of T. 

brevifolia in much higher quantities and can be used as a starting point for paclitaxel semi-synthesis. 

Unfortunately, only a handful of plant secondary metabolic pathways are fully defined 25, and this lack 

of knowledge of the genes and enzymes involved in bioynthesis has hindered progress. However there 

have been success stories, such as artemisinin. This potent antimalarial was first isolated from 

Artemisia annua, which was originally used in traditional Chinese medicine. The supply of plant-

derived artemisinin is unstable, resulting in complications for drug manufacturers, but through huge 

effort, the pathway for a precursor to artemisinin, artemisinic acid, has been successfully engineered 

into Saccharomyces cerevisiae 27, and an elegant chemical conversion devised to turn this into the 

bioactive natural product. 
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Figure 1.2: Natural products derived from fungi and plants. (1) hypocreolide A (2) benzophomopsin A (3) JBIR-

37 (4) artemisinin (5) paclitaxel. 

 

 Actinomycetes are prolific producers of natural products. More than 5000 antibiotics have 

been identified from this order of organisms, with over 90% of those coming from the genus 

Streptomyces 28. The discoveries of streptothricin and streptomycin in the 1940s led to large scale 

screening of candidates, but it has been estimated that only a small percentage of Streptomyces 

antibiotics have been discovered 29. A number of other genera are also important contributors to 

natural product diversity. The genus Bacillus produces, for example, lanthionine-containing 

antibiotics, bacteriocin, and gramicidin 30,31. The order Myxococcales are also recognised as prolific 

producers of natural products. They contain some of the largest genomes of all bacteria 32 which 

together encode over 500 natural products, mostly the products of polyketide synthase (PKS), non-

ribosomal peptide synthase (NRPS), or hybrid PKS-NRPS pathways 33,34. Pathogenic species of the 

genus Burkholderia are also a rich source of new natural products, producing for example enacyloxins, 

which are active against Gram-positive and Gram-negative pathogens 35; rhizoxin, an antimitotic agent 

36; and the glidobactins, antitumor antibiotics 37. 
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 After the ‘Golden Age’ of natural product drug discovery, it was assumed that the diversity of 

natural products had been fully evaluated and since the 1990s pharmaceutical companies have largely 

abandoned natural product screening in favour of combinatorial chemistry, structure-assisted drug 

design, and antibody-based therapies. However, new technologies and screening strategies can 

uncover many more promising drug candidates from natural products. For example, new screening 

methods have identified many new β-lactams, which as of 2003 held approximately 65% of the global 

antibiotics market. β-lactams remain at the forefront of the fight against antibiotic resistance with the 

development of the current 5th generation β-lactam derived cephalosporins, ceftaroline 38, and 

ceftobiprole 39 which are both highly active against MRSA and other Gram-positive bacteria. 

 Considering that an estimated 99% of all bacteria species are uncultured 40, bacteria still represent a 

largely untapped reservoir of novel chemical diversity. 

 

1.1.3: The Life Cycle of Streptomyces and related actinomycetes 

 

Streptomyces are filamentous actinomycetes, Gram-positive and of characteristically high G+C% 

content. They are abundant in soil and are believed to have had a last common ancestor around 400 

million years ago 41, about the same time at which the land was being colonised by plants. Their major 

role in wider ecosystems was probably the solubilisation of cell walls, or surface components of plants, 

fungi and insects 42, composting early organic material and helping to form primeval soil. This 

ecological function can be seen still at the genome level. Streptomyces reticuli has an estimated 456 

genes encoding proteins involved in degradation and utilisation of cellulose and other carbohydrates 

43. This is a common situation among Streptomyces and suggests that they may have evolved to live in 

mixed communities 44. 

 The developmental cycle of Streptomyces on a surface begins with formation of substrate 

mycelium, a vegetative tip growth phase that produces branching filaments that only septate 

occasionally so that each cell contains multiple chromosomes. In response to nutrient depletion, 

typical Streptomyces alter their growth pattern, producing specialised aerial hyphae, or aerial 

mycelium, which undergoes septation to generate a series of compartments each containing a single 

copy of the (linear) chromosome. Finally, the compartments differentiate to create a chain of heat-

labile but desiccation-resistant spores for dispersion 45 (Figure 1.3). A complex signalling cascade 

controls the transition from vegetative growth to reproduction 46, and might provide checkpoints for 

the coordination of secondary metabolism 47.  
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 The developmental cycle in liquid cultures is different to growth on a surface and has not been 

as extensively studied. This is mainly because most Streptomyces do not sporulate in liquid medium. 

Most industrial processes involving Streptomyces are performed in liquid cultures, so the majority of 

the work in this area has focused on mycelial morphology, medium composition, and bioreactor 

design 48–50. Mycelial morphology, for example, is correlated with secondary metabolite production in 

at least some cases 51,52, but not in others 53. In practice, each strain requires individual optimisation, 

which normally accompanies successive rounds of mutation and selection for improved production. 

 

 

Figure 1.3: The life cycle of Streptomyces spp. Image adapted from Angert et al. 47. 
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1.1.4: Antibiotic modes of action and bacterial mechanisms of resistance 

 

The chemical structure of an antibiotic determines its class, which in turn determine the bacterial 

physiology or biochemistry of the drug’s target. The primary modes of action for antibiotics are 

illustrated in Figure 1.4. Common examples of antibiotic classes and their biological targets are; -

lactams which target cell walls, fluoroquinolones which target DNA and RNA synthesis, sulphonamides 

which target folate synthesis, lipopeptides which target the cell membrane, and aminoglycosides 

which target protein synthesis. 

 

Figure 1.4: Mechanisms of action of antibiotics. 

 

 Self-resistance is an evidently important feature for antibiotic-producing organisms. Self-

resistance is closely connected to acquired resistance, the ability of target organisms to modify 

themselves in some way to overcome the effects of an antibiotic. The development and/or 

recruitment of genes that confer resistance is of clear value for survival. Many genes responsible for 

resistance against several classes of antibiotics have been identified, most systematically by high-

throughput screens of high-density mutant libraries created by targeted insertion or random 

transposon mutagenesis 54,55. An example of intrinsic resistance (Figure 1.5) is given by daptomycin, a 

clinically-used lipopeptide which is effective against Gram-positive, but not Gram-negative bacteria. 

Gram-negative bacteria have fewer phospholipids in the cytoplasmic membrane significantly reducing 
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daptomycin uptake 56. Other mechanisms by which bacteria protect themselves include: minimising 

intracellular concentration of the antibiotic by dedicated active efflux systems; modification of the 

intracellular target by genetic mutation or post-translational modification; or inactivation of the 

antibiotic by hydrolysis or covalent modification. 

 

 

Figure 1.5: Intrinsic mechanisms of resistance. Antibiotic A can enter the cell via a cell membrane spanning pore 

and inhibit peptidoglycan synthesis. Antibiotic B can also enter the cell but is removed by efflux. Antibiotic C 

cannot cross the membrane. Adapted from Blair et al. 56. 

  

Bacterial efflux pumps actively transport molecules out of cells and are major factors to the 

intrinsic resistance to antibiotics for many Gram-negative bacteria. Some pumps are highly substrate 

specific, such as the Tet family efflux pumps, which are specific for tetracycline antibiotics 57. Others 

have a wider substrate specificity, such as AcrB in E. coli. AcrB forms a protein complex with two 

adapter proteins, and resides in the inner cell membrane. Structural studies have shown a large, 

flexible binding pocket which can accommodate molecules of different sizes and structures, allowing 

the transport of a wide range of antibiotics from the cell 58.  

 Antibiotic modifying enzymes are another important factor in resistance. Penicillins and 

cephalosporins are hydrolysed by a range of β-lactamase enzymes 56,59. These enzymes were first 

detected in 1979 after analysis of bacterial isolates resistant to cefamandole, a cephalosporin 60. 

Newer examples have been found to follow, with increasing rapidity, upon the introduction into 
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clinical use of improved β-lactams 56. This type of resistance mechanism is particularly dangerous. The 

resistance can be provided by a single gene carried on a plasmid, meaning the risk of horizontal 

transfer is especially high, which can have serious implications for the treatment of severe infections. 

 Resistance genes have been present in the environment long before the modern development 

of antibiotics 61 but antibiotic resistance is now one of the biggest threats to global health, food 

security and development. A particularly striking example of the dangers of antibiotic resistance was 

the isolation of a strain of methicillin-resistant Staphylococcus aureus (MRSA) with resistance to 

vancomycin, normally used as a drug of last resort 62. The rapid spread of resistance genes across 

bacterial populations has been driven by the widespread and poorly managed use of antibiotics in 

human health, and increasingly in agriculture and aquaculture, leading to increased concentrations of 

antibiotics in the environment and creating perfect conditions for the development of resistance. To 

combat microbial infections in the era of multi-drug resistance bacteria the traditional approaches to 

drug discovery need to change. Economic incentives designed to encourage pharmaceutical 

investment into new antibiotics, and a focus on accurate, personalised diagnosis and narrow spectrum 

antibiotics are steps in the right direction to treat serious infections in the resistance era 63. 

 

1.2: Biosynthetic Genes and Enzymes of Actinomycetes  

1.2.1: Biosynthetic Gene Cluster Organisation and Regulation. 

 

One of the most important discoveries in the early days of actinobacterial gene sequencing was that 

the genes required for the biosynthesis of secondary metabolites are clustered together on the 

bacterial chromosome, although that clustering is highly variable across and within organisms 64. Most 

gene clusters are organised into several operons, each under the control of a single upstream 

promoter, ensuring tight coupling of transcription and translation 65. Within a biosynthetic gene 

cluster, the core biosynthetic genes encode enzymes that generate the scaffold of the metabolite. Its 

structure will depend on the class of metabolite, for example polyketide, non-ribosomal peptide, or 

terpene. In addition to the core biosynthetic genes, there are genes that encode tailoring enzymes 

that modify the scaffold and generate diversity and bioactivity, such as oxidoreductases, 

methyltransferase, acyltransferases, and glycosyltransferases. Many gene clusters will also contain 

cluster-specific regulatory (CSR) genes, as well as genes conferring self-resistance, and genes encoding 

mechanisms to transport the product out of the cell. As discussed above, the mechanisms for self-

resistance are very important for an organism. Erythromycin A is a potent inhibitor of protein synthesis 

and causes this inhibition in susceptible bacteria by binding to their ribosome. The erythromycin 



21 
 

biosynthetic gene cluster contains a gene, ermE, which confers self-resistance to erythromycin by the 

dimethylation of a specific adenine base in its ribosomal RNA 66. One of the first actinobacterial 

antibiotic biosynthetic gene clusters to be identified was that for the coloured isochromanequinone 

actinorhodin 67. The gene cluster has been characterised in detail and is illustrated in Figure 1.6, 

showing that the core minimal PKS genes form only a small component of a complex system. 

 

Figure 1.6: The actinorhodin gene cluster. The functions of genes are indicated by colour. Adapted from 

Osbourn 64. 

 

 In Streptomyces, and in other actinobacteria, the expression of secondary metabolic pathways 

is typically controlled by complex regulatory cascades that send signals to pathway-specific regulators 

and are often coordinated with morphological changes in the organism, or environmental stimuli 68. 

While the pathway-specific regulators, such as the SARP 69 or LAL 70 families of regulators, are 

responsible for transcriptional control of individual gene clusters, there are also global, or pleiotropic 

regulators that control multiple gene clusters. The highly phosphorylated guanosine nucleotide, 

ppGpp, has received attention for its role in antibiotic production in Streptomyces. It has been shown 

that ppGpp is required for activating the transcription of genes required for antibiotic biosynthesis 

under nitrogen limited conditions, although the exact mechanism is elusive 71. γ-butyrolactones are 

produced by many Streptomyces 72, and have also been implicated in the onset of secondary 

metabolism 68. A-factor, a typical γ-butyrolactone from S. griseus, has been implicated in both the 

activation of secondary metabolism and morphological differentiation 73. 

 

1.2.2: Evolution and Function of Biosynthetic Gene Clusters  

 

The clustered organisation of biosynthetic genes suggests that at some point in their evolution they 

were selected for as a group, rather than as individual genes. If the production of the natural product 

were favoured for the producing organism then it would be beneficial for them to be close together, 
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increasing the probability of them being transferred to subsequent generations of the organism 74. 

This does not explain the origins of the core biosynthetic genes however, which are often considered 

the founders of the gene cluster. Three types of evolutionary pathway are possible: linear, divergent 

and convergent 74. A linear pathway is the easiest to imagine. The first catalytic enzyme of the 

primordial gene cluster could have arisen from random mutation of an enzyme involved in the primary 

metabolism of the starting material. If the product of that enzyme could be secreted from the cell, 

and provided some advantage to the organism, for instance by interacting with a receptor from 

another organism, then the producing organism will be selected for over others. Subsequent 

duplication, or mutation of that first enzyme, or the occurrence of a new enzyme may result in the 

transformation of the product, which may provide additional advantage over the original mutant 

organism. It can be imagined that repeated steps of this process could generate a multi-step 

biosynthetic pathway where each step provides further advantage over the previous steps. A 

divergent evolutionary pathway can be described by a slight modification of the linear one. If, at the 

point of divergence, two mutations of an enzyme are generated that can perform different reactions 

on the same substrate and providing they both provide greater advantage than the original organism, 

then both will be selected for. At that point one can imagine two parallel linear evolutionary pathways 

that diverge as they improve upon the original biosynthesises. Convergent pathways are more difficult 

to imagine occurring randomly, they require a mutation resulting in an enzyme that can bring together 

two different biosynthetic pathways, with the condensed product of the new pathway conferring 

greater advantage to the organism than the previous two products. An example of this kind of 

evolutionary pathway may be dynemicin, an antibiotic with both enediyne and anthracycline 

structural features 75. 

 

1.2.3: Polyketides and Polyketide Synthases 

 

Polyketides are a large and diverse class of biologically active natural product polymers, which can be 

broadly divided into aromatic compounds, in which the carbon skeleton that is built up is then 

stabilised by dehydration and aromatic ring formation; and complex reduced polyketides, in which the 

more chemically stable reduced chain adopts a wide range of structures including linear products, 

macrocycles, and polyethers, and may also be found covalently linked to amino acid units within 

hybrid polyketide-peptide compounds 17 Polyketides have been harvested from a number of 

organisms besides bacteria, including most importantly fungi. In the case of insects, marine sponges, 

and plants the actual producing organism is very often a commensal microorganism 17. Between them 
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polyketides have provided clinically useful compounds with antibacterial, antifungal, antiviral, and 

antitumour activity, as well as immunosuppressant and cholesterol-lowering compounds. This family 

of natural products also includes toxins such as the potent fungal carcinogen aflatoxin from Aspergillus 

spp. 76; macrolide mycolactone produced by Mycobacterium ulcerans 77, the causative agent of the 

necrotizing skin disease Buruli ulcer; and the potent respiratory toxin bongkrekic acid produced by 

Burkholderia gladioli, a notorious contaminant of the traditional Indonesian dish, tempe bongkrek 78. 

  

 Polyketides are an exciting source of drug candidates as they cover a region of chemical space 

that appears to interact with biological targets very effectively 79,80. Over 7000 known polyketide 

structures have led to more than 20 commercial drugs, a hit rate of 0.3%, far greater than the hit rate 

of <0.001% typically found for synthetic compound libraries 81. These drugs have also proved very 

successful commercially, with annual peak sales of the top six totalling $15 billion. Over the last thirty 

years, fundamental research on the genes and enzymes of polyketide biosynthesis has transformed 

our understanding of the pathways and mechanisms involved, and this in turn has presented new 

opportunities to exploit natural products as leads in drug discovery. 

 

Figure 1.7: Examples of polyketide natural products. (1) modular type I PKS product erythromycin A; (2) 

modular type I PKS product amphotericin B; (3) iterative type I PKS product lovastatin; (4) type II PKS product 

doxorubicin; (5) type III PKS product resveratrol. 
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Polyketide Synthases 

 

Polyketide synthases (PKSs) are the key enzymes catalysing the biosynthesis of polyketide polymers. 

They use a mechanism for chain assembly that closely resembles that of fatty acid synthases (FASs), 

in which simple carboxylic acid extender units provided by primary metabolism are linked together by 

iterative Claisen-like condensation reactions 17 (see Figure 1.8). Assembly on a typical fatty acid 

synthase starts by transfer of an acetyl unit from acetyl-CoA onto the active site of a ketosynthase (KS) 

enzyme as a thioester. The transfer is catalysed by an acyltransferase (AT) which in FAS systems also 

transfers a malonyl unit from malonyl-CoA to the 4'-phosphopantetheinyl prosthetic group of an acyl 

carrier protein (ACP). The KS catalyses Claisen-like condensation to give the 3-ketoacyl-ACP product, 

after which reductive processing takes place catalysed by, successively, a β-ketacyl-ACP reductase 

(KR); a dehydratase (DH); and an enoylreductase to give a fully reduced butyryl thioester, which the 

KS transfers back to its active site, freeing the ACP for attachment of a further malonate extender unit. 

This iterative process continues until the chain length is such that chain termination catalysed by a 

thioesterase (TE) or transferase competes effectively with back-transfer of the chain to the KS. In E. 

coli and most other bacteria, the individual enzymatic activities of the FAS are housed on individual 

proteins (a Type II system), while in yeast and animal FAS the enzymes are domains within a covalently-

linked multifunctional enzyme (a Type I system) 17. 

 

 

Figure 1.8: Claisen-like condensation of an ACP-bound malonyl extender unit with the growing polyketide 

backbone. An activated malonyl extender unit, bound to an ACP domain by a phosphopantetheine prosthetic 

group reacts with the polyketide intermediate held by the KS domain, expelling carbon dioxide and forming a 

new polyketide intermediate which is passed to the upstream KS domain for the next round of elongation. 
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The major difference between FAS and PKS is that in the latter type of synthase reductive 

processing is not complete. In Type II dissociated PKSs of bacteria, and in the iterative Type I PKS 

multienzymes of fungi, reduction may take place rarely or not at all, giving a full-length, highly-reactive 

poly--oxo-thioester intermediate which is stabilised by formation of aromatic rings. In bacterial 

modular PKSs reduction is variable and usually incomplete, as discussed below. Table 1.1 summarises 

these different types of synthase and their characteristic products. 

Table 1.1: Summary of polyketide synthase types (adapted from Weissman 82). 

 

Type of PKS Mode 

of operation 

Mode 

of  

substrate 

activation 

Typical product Typical 

organisms 

I Modular ACP Reduced Bacteria 

I Iterative ACP Aromatic and 

reduced 

Bacteria and 

Fungi 

II Iterative ACP Aromatic Bacteria 

III Iterative CoA Aromatic Bacteria, Fungi 

and Plants 

 

 Type III PKSs are relatively simple homodimeric enzymes, with a single KS-like multifunctional 

active site which interacts with CoA-bound substrates (no ACP is involved) to catalyse the iterative 

condensations of acetate units to the CoA-bound starter units. They are found in bacteria, fungi and 

plants 83, typically yielding mono- and bi-cyclic aromatic products 84 formed through intramolecular 

condensations and aromatisation of the linear intermediate within the same PKS active site cavity. 

The type III PKSs were originally discovered in plants 83, where they include chalcone synthases and 

stilbene synthases. They generate a vast array of small polyphenolic molecules important to plant 

survival and fitness. The phenolic compounds were likely early adaptations in plants, involved in the 

transition of plants from aquatic to terrestrial environments 85. These compounds are involved in UV 

protection, flower colour, pollen development, root nodulation, plant architecture and chemical 

defence 86. These systems provide diversity through the choice of CoA-bound starter molecules, the 

number of elongation steps and the mechanisms of cyclisation. Downstream tailoring enzymes can 

then further increase diversity, transforming the initial scaffolds into a huge range of different 

compounds 87. The relatively simple architecture of the type III enzymes has allowed for a mechanistic 

framework to be developed, offering insights into the factors involved in starter unit selection, chain 
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extension and control of ring formation 82. These insights can be helpful when considering similar 

factors in the more complex type II and type I systems. 

 Type II PKSs consist of several different enzymes, each expressed from a distinct gene. Marine- 

and soil-dwelling actinomycetes are the only known organism to employ the type II system. They are 

a rich source of bioactive polyphenols such as tetracyclines and produce doxorubicin, an anthracycline, 

one of the most effective classes of anticancer drugs ever developed 88. Chain initiation, most 

commonly starting with acetate, and elongation, using malonyl-CoA extension units, are achieved by 

a “minimal PKS” which consists of a complex of two ketosynthase-like condensing enzymes (KSα and 

KSβ), and an ACP to which the polyketide intermediate is tethered. The folding of the growing 

polyketide intermediate can be modified by additional enzymes such as a KR, cyclases and aromatases, 

to generate an aromatic product. Once released these polyphenols are often extensively modified by 

hydroxylases, glycosylases and other tailoring enzymes 89. A malonyl-CoA:ACP transferase (MCAT) 

activity to recruit new malonyl extension units is thought a necessary component of the minimal PKS, 

however genes encoding proteins with this activity are absent in most type II PKS gene clusters and it 

was proposed that an endogenous MCAT is recruited from fatty acid biosynthesis 90. An alternative 

model for the recruitment of malonyl extender units was proposed by Simpson et al. that ACP self-

malonylates. Although they demonstrated this activity in vitro, it unfortunately required elevated 

concentrations of malonyl-CoA unlikely to be found in vivo 91. The multienzyme complexes of type II 

PKS have been notoriously hard to study and only recently, through structural studies, has there been 

direct evidence for the KSα, KSβ heterodimer 92. 

 Type I PKSs have proven to be the most complicated and most versatile class of PKS. Iterative 

Type I PKSs are commonly found in fungi where they use a single set or module of enzymes acting 

iteratively to generate the diverse polyketide structures found in fungi natural products. Fungal 

polyketides can broadly be grouped into three classes, based on the extent to which the enzymes 

make use of reducing domains. These are illustrated in Figure 1.9. The classes of non-reduced 

compounds such as orsellinic acid, and partially reduced compounds such as 6-MSA were 

characterised first from the limited set of known fungal PKS genes. Degenerate primers, designed to 

amplify the conserved β-ketoacyl synthase domains identified many new fungal PKS genes, which also 

identified a new class of highly reduced compounds, such as lovastatin 93.  
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Figure 1.9: Examples of iterative Type I PKS products. (1) orsellinic acid; (2) 6-MSA; (3) lovastatin. 

 

1.2.4: Modular Type I Polyketide Synthases and the Assembly-line Paradigm 

 

The modular PKS for the 14-membered macrolide erythromycin A 

 

Macrolides are glycosylated polyketides with potent antibacterial activity (via inhibition of protein 

biosynthesis) and a ring size between 12 and 18, including the 16-membered spiramycin produced by 

Streptomyces ambofaciens 94 and the 12-membered methymycin produced by Streptomyces 

venezuelae 95. Erythromycin A (Figure 1.10) 96 is a prominent member of this class, for together with 

its semi-synthetic derivatives it has been in worldwide clinical use since the 1960s. Erythromycin 

biosynthesis starts with the synthesis of the macrocyclic aglycone precursor 6-deoxyerythronolide B 

(6-dEB) assembled from the successive condensation of the propionyl starter unit with six 

methylmalonyl extender units catalysed by six extension modules housed within three multi-modular 

PKS enzymes 97. Tailoring enzymes then catalyse post-PKS modifications to generate erythromycin A.  
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Figure 1.10: Erythromycin biosynthesis. (1) the biosynthetic intermediate aglycone 6-deoxyerythronolide (6-

dEB) B; (2) erythromycin A. 

 

 In the early 1990s the genes encoding deoxyerythronolide B synthase (DEBS), the PKS 

responsible for the precursor to erythromycin, from the producing organism Saccharopolyspora 

erythraea, were sequenced and characterised by two independent groups 98–101. These were the first 

PKS genes to be sequenced in their entirety and they revealed for the first time the modular 

architecture that became the paradigm for type I PKSs and rationalised the biosynthetic relationship 

between many known reduced polyketides and the PKS multienzymes that produced them. The 

modular architecture of these biological machines has resulted in some of the largest proteins in 

nature. A single subunit of MLSA1, the enzyme responsible for generating nine of the eighteen acyl 

links in the mycolactone polyketide chain, has a molar mass of 1.8MDa 102.  

 A PKS module can be defined as a set of activities (domains) responsible for incorporating a 

particular precursor at a designated point in the nascent acyl chain and for determining its structure 

in the final polyketide produced 103. Figure 1.11 shows the modular organisation of DEBS along with 

the growing polyketide chain of 6-dEB. 
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Figure 1.11: Schematic of the erythromycin PKS assembly line. Image adapted from Weissman 104. The DEBS 

genes are not to scale, but indicate which modules are encoded by which genes. DEBS 1 = 10.5 kb, DEBS 2 = 10.5 

kb, DEBS 3 = 9.5 kb. 

 

 DEBS is made up of three components, DEBS 1-3, which are encoded respectively by three 

large genes, eryAI-III 100. Each polypeptide contains two modules of FAS-related activities, with DEBS 

1 also containing a loading module comprising a propionyl-CoA specific AT and an ACP, to recruit the 

propionyl starter unit. The remaining six modules contain (2S)-methylmalonyl specific AT domains 105 

and DEBS 3 contains a C-terminal TE domain which is responsible for cleaving and cyclising the 

completed heptaketide to generate 6-dEB 103. Strikingly, each module contains the complement of 

reductive domains needed to achieve the appropriate oxidation state after each cycle of chain 

extension. DEBS proved to be the prototype of a very large number of such multi-modular systems, 

composed of several large enzymes with multiple modules in each enzyme, each module is responsible 

for a given catalytic cycle in the polyketide biosynthesis82. All intermediates remain bound to the 

assembly line throughout chain assembly. 
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 The general reaction scheme is similar for all modular type I PKSs. First, the KS is acylated with 

a polyketide intermediate from the upstream module, and the extender unit is selected by the AT 

domain which then charges the ACP with it. The modular arrangement allows different extender units 

to be utilised at different cycles of chain growth, and natural ATs have been identified that are specific 

respectively for malonyl-CoA, methylmalonyl-CoA, ethylmalonyl-CoA, hydroxymalonyl-CoA, and 

methoxymalonyl-CoA 106,107. This larger pool of extender units helps explain the great molecular 

diversity of complex polyketides obtained from modular systems. Secondly, the (alkyl)malonyl-ACP 

docks to the acylated KS which then catalyses the condensation reaction, extending the polyketide 

chain; the resulting β-ketoacyl-ACP intermediate then migrates to the active sites in turn of the 

processing enzymes of the so-called 'reductive loop' (KR, DH and ER) 108; finally the processed 

polyketide intermediate is ferried either to the adjacent downstream module, or to a TE domain which 

catalyses chain-release 109. The stereospecific action of the reductive loop domains (KR, DH and ER) 

provides exquisite control over the shape of the final product 82.  

 

Extension of the modular paradigm to other major classes of complex polyketide 

 

Polyether ionophores are an abundant class of polyketides with broad-spectrum activity against 

bacteria and parasites 110. More recently, certain polyethers such as salinomycin (Figure 1.9) have 

been shown to be selective killers of cancer stem cells 111 and to be active in an animal model of 

latent TB 112. Unfortunately, their clinical use is limited by their significant toxicity 113, however 

targeted modification of these compounds may provide promising drug leads. They are produced 

exclusively by actinobacteria, with the vast majority produced by the genera Streptomyces and 

Actinomadura 114. Polyethers are characterised by chains of tetrahydrofuran and tetrahydropyran 

rings connected via C-C bonds or spiro linkages (Figure 1.9). The high oxygen content of polyether 

ionophores allow them to chelate monovalent metal ions such as Na+ and K+, and in a minority of 

cases divalent ions such as Mg2+ and Ca2+ 115. The resulting complex has a hydrophobic exterior 

surface, allowing transport of the chelated ions through lipid membranes, resulting in a collapse of 

trans-membrane cell potentials and cell death 116.  
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Figure 1.12: Examples of polyether antibiotics. (1) monensin A, R=C2H5, monensin B, R=CH3 (2) salinomycin. 

 

Monensin (Figure 1.12) is an iconic polyether ionophore 117 which has found a widespread 

application in animal husbandry as a coccidiostat and growth promoter 118. Monensin A differs from B 

by the presence of an ethyl substituent rather than methyl at position C16. Both compounds 

selectively bind Na+ ions 118. The monensin gene cluster from S. cinnamonensis was identified and 

sequenced by Leadlay et al. in 2001 118. It consists of 8 open reading frames (monAI to monAVIII) 

encoding the 12 extension modules of the monensin PKS, flanked by tailoring genes that encode 

enzymes required for post-PKS processing of the monensin carbon backbone, as well as efflux and 

regulatory proteins 82. 

 The difference between monensins A and B arises in module 5, where the acyltransferase (AT) 

domain allows the incorporation of either methyl or ethylmalonyl-CoA. MonCI is a unique epoxidase 

which epoxidises three double bonds in the linear precursor, and monBI and monBII are novel ring-

opening epoxide hydrolases/cyclases responsible for forming the ether rings in a cascade reaction 

119,120. The monensin gene cluster also has additional ketosynthase (KS)-like and ACP-like ORFs. It is 

proposed that the KS-like enzyme transfers the full-length triene intermediate onto the ACP-like 

protein where the oxidative cyclisations occur, followed by further tailoring and final release of 

monensin from the discrete ACP catalysed by thioesterase MonCII 121. Deletion of the monCI epoxidase 

gene results in the accumulation of the shunt product premonensin (Figure 1.13) in which the double 

bonds are intact. 
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Figure 1.13: Premonensin, shunt product of monensin biosynthesis. (1) premonensin A, R=C2H5, premonensin 

B, R=CH3. 

 

Macrocyclic polyene polyketides 

 

Amphotericin B and nystatin are valuable macrocyclic polyenes, amphotericin being used in front-line 

treatment of life-threatening systemic fungal infections. Such polyenes are composed of a large 

macrolactone ring with distinct polyol and polyene regions and are often glycosylated with a 

mycosamine sugar residue (see Figure 1.8). Their advantages over other antifungal compounds such 

as azoles is their potent fungicidal action, and the extremely low incidence of resistance 122. Azoles 

disrupt ergosterol biosynthesis, a crucial component of the fungal cell membrane, but are fungistatic 

and resistance can arise more readily 123. Macrocyclic polyenes instead interact directly with 

ergosterol, forming pore-like structures in the cell membrane that lead to cell death 124. Unfortunately 

macrocyclic polyenes also interact with cholesterol in mammalian cell membranes, albeit with much 

lower affinity, and because of this relative toxicity amphotericin is always administered as an 

expensive liposomal formulation (Ambisome) 125.  
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Figure 1.14: Examples of macrocyclic polyenes. (1) nystatin A1 (2) filipin III. Filipin biosynthesis incorporates an 

unusual hexylmalonyl extender unit in the final chain extension. 

 

 Nystatin, produced by Streptomyces noursei, was the first useful macrocyclic polyene to be 

identified. It is widely used for the topical treatment of oral, gastro-intestinal and genital candidosis. 

Nystatin biosynthesis involves the successive condensation of 19 malonyl and methylmalonyl 

extender units catalysed by separate modules housed within the 6 multimodular enzymes of the 

nystatin type 1 PKS. The polyene region of amphotericin contains a conjugated heptaene, but in 

nystatin this region of the molecule is interrupted into diene and tetraene regions because of the 

presence of an enoylreductase (ER) domain in module 5 (Fig. 1.14). Once the polyketide chain is 

complete, the biosynthesis is completed by oxidation of a methyl group to an exocyclic carboxyl group, 

hydroxylation at C-10 in the polyol region and glycosylation with a mycosamine sugar residue 124.

  

 The macrocyclic antifungal polyene filipin was isolated from Streptomyces filipinensis in 1955 

126. Filipin is synthesised by a type I PKS with five multi-modular enzymes consisting of 14 modules 

condensing both malonyl and methylmalonyl extender units. The final PKS extension module 

introduces a hexylmalonyl unit to generate the unusual extended alkyl chain. Post-assembly steps 

involve specific hydroxylations catalysed by cytochrome P450 monooxygenases 127. Filipin lacks the 

mycosamine moiety found in many other macrocyclic polyenes, but maintains its affinity to membrane 

sterols and can form pore-like structures 128. Filipin is too toxic for clinical use as it has similar affinity 
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to both ergosterol and cholesterol. This property does however make it a valuable probe for the 

detection of cholesterol in cellular membranes 129. 

 

Rapamycin, a macrocyclic hybrid polyketide-nonribosomal peptide 

 

Rapamycin (Figure 1.15) is a classic example of a hybrid polyketide-nonribosomal peptide and 

historically has played an important role in PKS engineering. It is a potent antifungal and 

immunosuppressive and possesses a structural motif which is responsible for the specific binding to 

FK506-binding proteins. This binding triggers subsequent binding of the binary complex to the 

mammalian target of rapamycin (mTOR) which mediates its biological activities 130. In 2001, Rowe and 

colleagues spliced an entire PKS extension module from rapamycin between the first two extension 

modules of DEBS 1 in one of the first attempts at combinatorial biosynthesis 131. When the extended 

DEBS 1 was co-expressed in Sa. erythraea with DEBS 2 and DEBS 3 production of a novel octaketide 

was observed. Due to rapamycin’s (and its analogues’) properties as the only known inhibitor of mTOR, 

and as the most selective inhibitor of kinase activity known to date 132, it has been the target of 

extensive work to build a library of related compounds with desirable therapeutic properties. Some 

of the more promising work has focussed on the exotic start unit of rapamycin or rather, its removal. 

Several rapamycin analogues (rapalogs) that underwent clinical trials contained semisynthetic 

alterations at positions derived from the starter unit 132 and in 2005 Gregory and colleagues showed 

that novel starter units can be efficiently incorporated into rapamycin by feeding them to a rapK-

deleted mutant (rapK is involved in the synthesis of the 4,5-dihydroxycyclohex-1-enecarboxylic acid 

starter unit) 132. The rapamycin scaffold has undergone further modification to generate rapalogs 

lacking the O- and C-linked methyl groups at position 16 and 17, respectively (Figure 1.15) 133. These 

modifications were based on knowledge gained from X-ray structures of rapamycin bound to mTOR 

and aimed at reducing steric constraints and increase positive interactions. The group’s efforts were 

rewarded by the production of rapalogs that displayed enhanced inhibition of cancer cell lines 133. 

Rapamycin and its analogues exemplify the potential modular biosynthetic enzymes have for 

bioengineering and guided knowledge-based modifications. 
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Figure 1.15: Structure of the macrocyclic hybrid polyketide-nonribosomal peptide rapamycin. 

 

The active site specificity of PKS domains  

 

As the number of characterised PKS systems has increased, detailed comparisons have revealed active 

site sequence motifs that correlate with observed chemical and stereochemical outcomes within 

extension modules. This was confirmed with the sequencing of the rapamycin PKS gene cluster in 1995 

134. In many cases these have been validated by biochemical experiments and confirmed by atomic 

resolution X-ray crystal structures of individual domains 104,135. In the erythromycin PKS (DEBS) the 

choice of methylmalonyl-CoA could be identified by the motif of YASH 100 residues downstream of 

the active site serine, while malonyl-CoA specific AT domains would have a HAFH motif 135. The 

presence of structural data, also explained the stereospecificity for the (2S)-isomer of methylmalonyl-

CoA in AT domains with the YASH motif, as there would be a steric clash between the (2R)-methyl 

group and residues in the active site. 

Similar analyses of KR, DH and ER domains have provided explanations for substrate 

specificity. All reductase active KR domain active sites contain a tetrad of Tyr, Ser, Lys, and Asn residues 

136 and bind the NADPH cofactor in the same orientation. Therefore the alternative stereochemical 

outcomes of ketoreduction are thought to arise from opposite modes of binding the substrate into 

the active site 104. Several motifs were identified by comparative sequence analysis that predict the 

directions, referred to as A- and B-type KRs 137. An LDD motif in the region between amino acid 

positions 88 and 103 is a strong indication of a B-type and is absent in the A-type KRs. The role of these 

residues in influencing the direction of substrate binding is still unknown, possibly because as yet no 
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KR has been co-crystallised in a complex with both the polyketide intermediate and the NADPH 

cofactor 104. However there have been two alternative mechanisms to account for substrate positions 

proposed by Keatinge-Clay and Bonnett et al. 138,139.  

 DH domains typically form trans double bonds, although cis double bonds are also present 140. 

By studying the stereochemistry of the evolutionary related DH domains from fatty acid synthesis and 

comparing that with PKS DH domains it appears that control of the stereochemistry of the dehydration 

step is ultimately determined by the KR domain and should always yield a trans double bond because 

the catalytic machinery is not in the correct position to yield a cis double bond 141. The origin of cis 

double bonds is less clear. There is little evidence to show they are generated directly, or if they form 

a trans bond before undergoing isomerisation through post-PKS tailoring reactions 142. The only clear 

evidence for cis bond formation by a specific module comes from the phoslactomycin PKS where it 

was shown that the modules of the PKS could discriminate between cis and trans intermediates and 

that they do not contain domains capable of catalysing double bond isomerisation 143.  

 The final domain with reducing activity is the ER domain which acts on trans double bonds, 

reducing them to generate fully-saturated alkyl groups. This reduction has stereochemical 

consequences when a side chain, such as a C-2 methyl substituent, is present. Reduction can produce 

either (2R)- or (2S)-configuration depending on the side from which the double bond is protonated 104. 

Through similar comparisons of sequences that determined key residues in the previously discussed 

domains, a correlation was identified between ER sequence motifs and the stereochemical outcome 

of their reaction 144. A conserved Y residue predicts a (2S)-configuration, while a conserved V residue 

predicts a (2R)-configuration. However, subsequent mutagenesis experiments revealed that 

additional factors affect stereocontrol of the ER domain. When the conserved Y was replaced with a 

V the stereospecificity swapped from a (2S)- to a (2R)-configuration, as was predicted, however in the 

reciprocal experiment where the conserved V was replaced with a Y there was no observed change in 

stereospecificity. A combination of the solved structure of a KR-ER didomain from the second module 

of the spinosyn PKS 145 and further mutagenesis experiments 146 helped to explain these observations. 

In the active site pocket there is a conserved K residue positioned opposite the conserved Y residue. 

When the Y is present it acts as the proton donor in the double bond protonation reaction, but in its 

absence the K residue acts as a proton donor. However, introducing a Y at the conserved position into 

a (2R)-producing ER domain was not enough to overcome the K proton donor, and more work will be 

required to identify the remaining stereochemical determinants. This result highlights the prevailing 

situation across PKS structural studies, that despite the great progress that has been made since their 

discovery, there is still a lot that remains unknown regarding the architecture of PKSs. However, these 
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bioinformatic, structural and biochemical insights provided the essential knowledge for rational 

engineering of PKSs to produce novel chemical diversity and predict the possibility of even finer 

control of these molecular assembly lines in the future. 

 The erythromycin PKS has been a model system for many investigations into PKS engineering, 

leading to the discovery of several interesting properties of PKS systems, namely stuttering and 

skipping. Stuttering of a PKS module refers to its ability to catalyse additional extension cycles before 

the growing polyketide chain is transferred to the next module 147. Skipping of a module has the 

opposite effect, it allows a module to be bypassed, passing the polyketide chain onwards without 

catalysing an extension cycle.131  

 Both the stuttering and the skipping properties of the erythromycin producing system were 

discovered as a result of modification of the PKS, where they highlight an important limitation in 

current polyketide engineering techniques. The desired products of a modified system are often found 

as the minor product whereas the major product will be the product of the parent system, despite the 

modifications. Meanwhile, a number of natural modular PKS systems have been described in which 

non-colinearity is an essential feature 148. For example, formation of the antibiotic borrelidin requires 

that module 5 of the bor PKS acts three times (identically) before the chain is handed on 149. In the 

case of the marginolide azalomycin, the iteration of module 1 actually achieves different outcomes, 

as an essential part of producing the natural product 150. Such programmed iteration offers the 

possibility of generating "aberrant" products from a single production line and offers a possible clue 

to a process that might have been important in the natural evolution of these assembly-line systems. 

 In addition to the functional domains of each DEBS module, they contain additional domains 

comprised of short α-helical regions at the N- and C- termini. These have been associated with docking 

to neighbouring modules thanks to solved crystal and NMR structures of these domains 151,152. The 

heptaketide product of DEBS cannot be produced by DEBS alone, it requires additional enzymatic 

activities to generate 6-dEB. When the DEBS was purified and acylated in vitro, it was shown that all 

six AT domains retained their specificity for (2S)-methylmalonyl, however the configuration of the 

methyl branches in the product was different from that produced in vivo. Stereoselection during the 

biosynthesis must also involve epimerisation activities that DEBS is unable to perform. 

 Following the sequencing of DEBS, Leonard Katz and colleagues performed pioneering work 

on the relationship between the arrangement of domains in PKS systems and the structure of the 

resulting polyketide using erythromycin as a model system. First the group disabled the KR domain of 

module 5 by removing a part of the gene; this resulted in a mutant strain which produced two 

erythromycin analogues in which a hydroxyl group was replaced by a keto group 98. The group then 
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disabled the ER domain in module 4 through mutations in the putative NADPH binding site. The 

resulting mutant strain produced an erythromycin analogue with a double bond at the predicted 

position 153. The structure of these analogues had been predicted by knowledge of the function and 

position of the inactivated domains. This was the first signs of what became known as co-linearity, the 

relationship between the arrangement of the modules at the DNA level and their order of use in the 

biosynthesis of the corresponding polyketide. 

 The sequences for other macrolide PKSs, such as tylosin and spiromycin, were among the first 

to appear after the DEBS sequence 154,155. What was remarkable at the time was the similarity of their 

organisation to DEBS, strengthening the evidence for co-linearity, and making it a general rule for type 

I PKS systems 156. The importance of co-linearity is that it allows for predictions of the polyketide 

structure, given the PKS DNA sequence is known. The prediction became more confident as more PKS 

sequence data became available, as discussed above, making the prospect of engineering novel 

polyketides so tempting, since modifications of the organisation of domains within the PKS lead to 

predictable outcomes in the polyketide metabolites. The architecture of modular Type I PKSs has 

encouraged efforts at combinatorial biosynthesis, in which different natural PKS modules are “mixed 

and matched” to create hybrid PKS systems 157. Combinatorial biosynthesis has resulted in several 

hundred new polyketide structures over the last 20 years and plays an important part in current 

polyketide drug discovery 82. 

 As the number of PKSs discovered to follow the DEBS paradigm increased, an increasing 

number of PKSs were identified that didn’t 103. Two major classes of modular PKSs are now 

distinguished: cis-AT PKSs, including DEBS and others, and trans-AT. The defining feature of a trans-

AT is the absence of an AT domain from all extension modules. Instead the acyltransferase activity is 

provided on a single discrete protein that provides each module with the same extender unit 158, as 

illustrated by the virginiamycin PKS (Figure 1.16). Trans-AT PKSs have other characteristic features 

including; irregular domain arrangements, duplicated and inactive domains, atypical enzymatic 

functions, such as integrated methyltransferase domains, and modules distributed between two 

polypeptides 104.  

 Stereochemical control operates similarly in the two systems, as both contain the full suite of 

reducing domains, which act in the same way. There are differences however in the specificity for the 

AT domains. In cis-AT PKSs, the AT domains have a greater range of specificity, some ATs even 

specifying long-chain linear or branched extender units. In contrast, the majority of discrete AT 

domains from trans-AT PKSs only provide malonyl-CoA, although there are exceptions, such as KirCII, 

the trans-AT from kirromycin biosynthesis which is capable of loading ethylmalonyl-CoA onto a 
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specific ACP 159. Methyl branches in the products of trans-AT PKSs are introduced by methyltransferase 

domains during chain elongation 160. 

 

 

Figure 1.16: Schematic of the virginiamycin trans-AT PKS assembly line. Image adapted from Weissman 104. The 

virginiamycin genes are not to scale, but indicate which modules are encoded by which genes. 

 

The differences in architecture suggests independent, or divergent evolutionary pathways for 

the two classes of modular PKS systems. Nguyen et al. argue that while cis-AT PKSs evolved through 

gene duplication, the trans-AT class evolved through horizontal recruitment and assembly of 

substrate-specific KS domains 161. However, recent studies have suggested that at least some trans-AT 

PKSs share a common ancestor with cis-AT PKSs 162. Solved crystal structures have revealed that 

remnants of the linker regions found between KS-AT didomains in cis-AT PKSs can be recognised within 

trans-AT PKSs. 
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1.3: Genome-level Analysis; Sequencing, Assembly, and Annotation 

1.3.1: Evolution of Sequencing and Assembly Technologies 

 

The initial characterisation of biosynthetic gene clusters from Streptomyces and allied bacteria, 

leading to the uncovering of the assembly line paradigm for both PKS and nonribosomal peptide 

synthetase (NRPS) systems, was made using conventional Sanger sequencing, later automated using 

fluorescent chain terminators. Even several actinomycete genomes were sequenced in this way. The 

first was Mycobacterium tuberculosis in 1998 163, followed several years later by the model organism 

Streptomyces coelicolor 164 and by Streptomyces avermitilis 165 The S. coelicolor sequence was 

generated by sequencing an ordered library of cosmid and BAC clones. In contrast the S. avermitilis 

sequence was the first to attempt a whole-genome shotgun approach. The final assembly had to rely 

on additional sequence data from over 10,000 cosmids, additional cosmid shotgun sequencing, 

hundreds of PCR products and many manually curated sequences 165. The assembly of the S. avermitilis 

genome highlighted issues that any attempt at sequencing actinomycete genomes would encounter; 

high GC% content, and large sections of highly conserved repeats. In 2005 and 2006 the so-called Next 

Generation Sequencing (NGS) technologies were introduced: 454 and Solexa/Illumina sequencing. 

These took advantage of increased processing power to allow for massively parallel sequencing of 

shotgun fragments 166,167. Several other complete actinomycete genomes were reported at this stage, 

including those of Sa. erythraea 168 and S. griseus 169. Rapid improvements in the Illumina platform 

have since then made it the method of choice for genome-scale sequencing of bacterial and small 

fungal genomes. Single Molecule Real Time (SMRT) sequencing 170, usually referred to as PacBio, and 

Nanopore sequencing 171 allow sequencing of single DNA molecules, without amplification and in real 

time, to generate read lengths of up to several kilobases 172. As yet, the high costs of PacBio and the 

high error rate of Nanopore sequencing means that they have yet to supplant Illumina as the method 

of choice outside major sequencing centres. 

A search for actinobacteria in the NCBI database reveals 15,600 genome assemblies, more 

than double the number of entries since 2015, at 7057 173. The most important discovery to come from 

all these sequence data is that actinobacteria contain many more putative biosynthetic gene clusters 

than are expected from compounds isolated under laboratory conditions, in some cases the 

underrepresentation of metabolites is up to 10-fold, with some species dedicating up to 11% of their 

genome to secondary metabolism 174. This realisation has led to much focus on these orphaned gene 

clusters and the biosynthetic potential that they represent. 
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1.3.2: Prediction of Biosynthetic Gene Clusters  

 

To help identify putative orphaned gene clusters, automated BLAST searches 175 can be used to identify 

similarities with proteins in the public databases. The improvement of recognition of characteristic 

protein sequence motifs and prediction of substrate specificity for biosynthetic genes has been the 

main focus for this field, particularly for PKS and NRPS annotation 176. The most commonly used 

software is antiSMASH, which aims to define biosynthetic loci covering the entire range of known 

secondary metabolite classes 177. Its current iteration, antiSMASH 4.0 178, is an extremely useful tool 

for the identification of biosynthetic gene clusters in actinomycetes, but manual curation is often 

required to obtain an accurate assessment of the biosynthetic potential of a gene cluster, as will be 

discussed in following chapters. 

 

1.3.3: Genome and Metagenome Mining 

 

The combination of advances in sequencing technologies and the development of robust biosynthetic 

gene cluster prediction software has led to a new paradigm for natural product discovery. The new 

approach uses sequence data and annotation to identify biosynthetic gene clusters of interest, and 

then study the product, or if it is an orphan gene cluster, attempt to ‘wake up’ the cluster and generate 

the product. There are three strategies used to obtain and characterise unknown products of a 

biosynthetic gene cluster (Figure 1.17): activation of expression in the host strain; heterologous 

cloning and expression; and mutation of key genes followed by metabolic profiling. An example of the 

first approach was the identification of the stambomycins, a family of 51-membered glycosylated 

macrolides, synthesised by an PKS gene cluster spanning almost 150kb found in Streptomyces 

ambofaciens 179. Fermentation extracts showed no evidence for the product of this gene cluster, but 

after constitutive expression of a LuxR activator gene present in the cluster, stambomycins were 

detected and could be characterised. The second strategy was used in the identification and 

characterisation of grisemycin, a peptide natural product produced by S. griseus 180. The gene cluster 

had previously been identified by comparing homologous genes to the characterised cypemycin gene 

cluster and a mass signal could be seen that matched the predicted mass of the unknown compound. 

To verify that the gene cluster was involved in grisemycin biosynthesis the entire gene cluster was 

cloned into a plasmid and transformed into S. coelicolor A3(2) and heterologous production was 

confirmed by mass spectrometry. The third strategy is useful when the gene cluster is expressed, but 

the product is unknown, for example in the identification and characterisation of the cuevaenes, 
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ansamycins from Streptomyces sp. LZ35 181. By identification and subsequent knocking out of key 

biosynthetic genes, such as Cuv10, a putative 3-hydroxybenzoate (3-HBA) synthase, the authors could 

study the metabolic profiles of several mutants and identify the product of the gene cluster. By feeding 

3-HBA to the ΔCuv10 mutant, the authors could also confirm the function of the putative gene. 

 

 

Figure 1.17: Natural products identified through genome mining. (1) stambomycin A (2) grisemycin (3) 

cuevaene A. 

 

Metagenomic mining is an important tool to estimate the total biosynthetic potential of 

organisms in certain complex environments, such as soil, and to identify if there are any gene clusters 

of note and worth pursuing. It has been estimated that over 99% of microorganisms from the 

environment resist cultivation in a laboratory setting with unculturable organisms in every prokaryotic 

group, and even entire divisions with no cultured representative 182. This is an extremely deep 

reservoir of potential novel natural products, and achievements such as the identification of novel 
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pentacyclic type II polyketides 183, and a novel indolotryptoline with antiproliferative activity 184 

encourage further study. The characterisation of the potent cell wall synthesis inhibitor teixobactin 185 

and isolation of other organisms previously thought unculturable 182 have shown the importance of 

non-traditional culturing techniques in this endeavour. 

 

1.4: Engineering of Complex Polyketide Biosynthesis 

1.4.1 Engineering in the native host 

 

Two different experimental approaches are available for the engineering of the biosynthetic pathway 

to complex polyketides, which are encoded by gene clusters typically between 70-150 kbp in size. The 

first of these is the use of homologous recombination between identical sequences to delete, alter, or 

swap segments of genomic DNA in the natural host organism is the first strategy used to attempt 

engineering of PKS systems. This approach ensures the presence of the required precursors and any 

tailoring enzymes. The architecture of PKSs is modular, and the boundaries and active sites of each 

domain have been identified and are increasingly well understood. The hypothesis behind 

combinatorial biosynthesis was that if the component enzymes of a PKS system were sufficiently 

autonomous to carry out their natural functions in alternative contexts and with new substrates then 

it should be possible to create novel PKSs that produce novel polyketide products by rearranging the 

domains. 

 Through the directed manipulation of domains, hybrid PKSs have indeed been produced with 

novel properties including: modified levels of β-keto reduction in the avermectin PKS 186; increased 

and decreased polyketide chain lengths in the erythromycin 131 and spinosyn PKS 187; respectively, and 

changed selection for starter 188 and extension 189 units in model PKS systems based on DEBS. However, 

these experiments have also shown that modular PKSs are not entirely modular, and some are 

markedly less modular than others. Crucially, we do not yet understand well enough the spatial 

architecture of native PKS modules required for non-native domains to function together correctly 157, 

which inevitably leads to slow, inefficient and low yielding enzymatic reactions.  

 Despite these problems, over the last few years several successful examples have also been 

published of a knowledge-based approach to the systematic engineering of the biosynthetic pathways 

to complex polyketides. These have included for example the generation of macbecin analogues which 

combine extreme potency against their Hsp90 target with greater safety thanks to elimination of the 

undesirable quinone moiety in this and other antitumour ansamycins such as geldanamycin 190; and 
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the generation of over 130 different rapalogs from S. rapamycinicus 132,133. It is important to note that 

an integrated approach to engineering the pathway is essential: additional manipulation of precursor 

genes and/or genes for late-stage tailoring maximises the number of new compounds that are 

obtained from PKS engineering. While this approach to engineering organisms does result in new 

insights and in the production of valuable chemicals it has the drawback of requiring detailed 

knowledge of the PKS system and of its target, in order to design the alterations to the molecule 

accordingly. The approach is also slow and labour-intensive, and it requires careful initial exploration 

of the strain to confirm that it is genetically tractable and amenable to engineering. Homologous 

recombination can be very difficult to achieve in organisms such as Streptomyces spp. Also, vectors 

suitable for Streptomyces may not function in rare actinomycetes such as Saccharopolyspora. 

 

1.4.2 Engineering in a heterologous host strain 

 

An alternative engineering strategy is the transfer to, and expression of, the target PKS gene cluster 

in a heterologous host that is more tractable to genetic engineering. Heterologous expression has 

already been discussed as a valuable tool in (meta)genome mining, both of known clusters and of 

orphan clusters (section 1.3.3). S. coelicolor, S. lividans, S. avermitilis and S. albus are often used. S. 

coelicolor can naturally produce high yields of secondary metabolites, but by ‘cleaning’ the strain by 

removing endogenous plasmids, and deleting or inactivating biosynthetic gene clusters, the yields of 

heterologously expressed natural products have been increased 191,192. A derivative of S. avermitilis 

from which endogenous gene clusters have been systematically removed has also been used 

successfully for expression of heterologous polyketides 193. Cleaned strains have the benefit of a 

simpler metabolic profile, easing analysis of any gene cluster introduced to the organism.  

 The general approach to heterologous expression is to amplify the PKS genes from the less 

tractable strain, assemble them in E. coli, and transfer them by conjugation into more tractable strains. 

Once in the new host, the genes can then be integrated into the chromosome by homologous 

recombination or through a suitable attachment site. An example is the successful heterologous 

expression of the gene cluster for FK506, a clinically relevant immunosuppressant. The entire 83.5kb 

FK506 gene cluster was assembled into a 130kb PAC clone and used to transform different S. coelicolor 

derivatives, giving yields approximately five-fold higher than in the wild-type strain, S. tsukubaensis 

194. Progress in this area has focussed on ways to improve the promiscuity of the heterologous hosts, 

and to improve the expression of introduced gene cluster 157. Identifying promoters that function well 

with heterologous systems is an important factor, however it appears that PKS gene clusters prefer 
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their own PKS-associated promoter 195, so creating a single system to support a range of PKS gene 

clusters is unlikely. An important pitfall is the propensity of the tandemly repetitive PKS gene 

sequences to undergo unwanted recombination events during transfer to E. coli and thence to the 

Streptomyces host.  

 E. coli itself has been developed as a host for heterologous expression of PKS genes. However, 

extensive engineering was required to allow production of polyketides. E. coli naturally produces 

acetyl-CoA and malonyl-CoA, but lacks any significant quantity of other precursors, such as propionyl-

CoA, or methylmalonyl-CoA 196. Despite this, a series of modifications has resulted in an E. coli strain 

that can convert exogenous propionate into 6-dEB, the precursor scaffold to erythromycin, with a 

yield comparable to an overproducing mutant strain 196. More recent advances have developed upon 

the 6-dEB producing E. coli strain, introducing 17 new heterologous genes to provide the enzymes 

necessary to glycosylate 6-dEB converting it to erythromycin C 197. This work establishes a basis for 

production of other glycosylated polyketides in E. coli.  

 More recently, the potential for Saccharomyces cerevisiae as a heterologous host has been 

shown. A strain of S. cerevisiae was modified to contain two additional plasmids, carrying the genes 

encoding 6-methylsalicyclic acid (6-MSA) synthase from Penicillium patulum and a PPTase from 

Aspergillus nidulans, respectively. Yields of 6-MSA were increased by replacing the promotor sequence 

of ACC1, the gene encoding acetyl-CoA carboxylase, which catalyses the conversion of acetyl-CoA into 

malonyl-CoA with a strong, constitutive promotor 198. S. cerevisiae is a popular host for cloning thanks 

to the simplicity and high efficiency of homologous recombination in yeast, which requires only short 

overlapping sequences of 29 nucleotides to be able to assembly multiple DNA fragments in a single 

step 199. Developments in yeast heterologous expression have included additional tools to aid with 

cloning in this organism. Using an any-gene-any-plasmid approach 200, a yeast cloning cassette can be 

introduced into any vector, along with multiple DNA fragments, at efficiencies approaching 100%, far 

higher than commonly used ligase-based techniques. This approach could be of great use to the study 

of PKSs, allowing rapid, efficient assembly of PCR products into a yeast or E. coli compatible plasmid. 

Despite this exciting progress, heterologous expression it still remains to be seen whether 

heterologous expression will deliver libraries of productive mutant PKS assembly lines. 

 

 

 

 



46 
 

1.4.3: Exploratory approaches to engineering of Streptomyces spp. 

 

Recently, a chance discovery by a group at Isomerase Therapeutics developed into a new method for 

rapidly recombining PKS gene clusters to generate novel polyketide analogues 201. The method, which 

has been termed accelerated evolution (AE), takes advantage of the many highly homologous regions 

within PKS gene clusters to replace, add, or remove modules to generate diversity, in a way that 

mimics a plausible mechanism for the natural evolution of modular PKSs 201. What is particularly 

exciting about AE is that the diversity appears to come from genetic rearrangements induced by the 

relaxation step of the homologous recombination, meaning a single experiment could generate a 

library of analogous molecules. Furthermore, while some knowledge of the target PKS is required, this 

approach is exploratory in that it has the potential to create a range of unpredicted products and by 

studying the crossover points, could reveals new insights into PKS evolution and architecture.  

 Another interesting approach to exploring the potential for combinatorial biosynthesis of 

modular systems is the reconstitution in vitro of (parts of) a biosynthetic pathway using recombinantly 

expressed and purified enzymes. Biochemical experiments were vital to the early development of our 

understanding of assembly-line polyketide synthases. They were used to show, surprisingly, that 

modular PKSs multienzymes are homodimeric 17; to show that the DEBS AT is stereospecific, accepting 

only the (2S) isomer of methylmalonyl-CoA as substrate 105; and to show that individual modules of 

DEBS are autonomously active 202. Now, in vitro reconstitution offers not only critical validation of 

proposed biosynthetic mechanisms but also insight into potential bottlenecks in biosynthesis, and into 

the substrate specificity of individual enzymes, information which can be used to guide in vivo 

engineering. There have been many examples of the application of in vitro reconstitution and the 

insights these attempts can bring 203. One of the first attempts to produce an aromatic polyketide in 

vitro was by Carreras and colleagues when they reconstituted the actinorhodin PKS from its purified 

components 204. Using 14C-labeled malonyl-CoA they observed shunt product intermediates of the 

actinorhodin biosynthetic pathway. Through this work they also observed that the malonyl-CoA:ACP 

transacylase (MAT) is shared by the fatty acid synthase in the natural host, and notably, was the 

discovery that the KS domain and chain length factor (CLF) of type II PKSs formed a heterodimer. The 

insights gained by this in vitro reconstitution paved the way for further mechanistic analyses of the 

how the CLF controls polyketide chain length, and enabled the production of more advanced 

intermediates through in vitro reconstitution 205,206. A more recent example is found in the elucidation 

of the biosynthesis of antifungal C-nucleoside malayamycin which identified the key precursor as 5’-

pseudouridine-monophosphate (5’--MP) and provided the opportunity for engineering through 

mutasynthetic or semisynthetic approaches (Hong et al., (2018) ms. in the press).  
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Aims of the project 

 

This project aimed to evaluate two powerful and complementary approaches to the discovery and 

engineering of biosynthetic gene clusters in actinomycete bacteria, and their potential to deliver novel 

chemical diversity of potential therapeutic value. 

First, the recently introduced (and still poorly-understood) technique termed accelerated evolution 

(AE), for which the published work on rapamycin analogues (rapalogs) provides a worked example, 

would be applied to three other antibiotic producing strains, Saccharopolyspora erythraea, 

Streptomyces filipinensis, and Streptomyces cinamonensis and evaluated for its potential to generate 

not only antibiotic analogues, but potentially also novel insights into PKS evolution. 

Secondly, a genome-level analysis of Streptomyces albus DSM40763, producer of the novel 

antibacterial compound pseudouridimycin (PUM), would be undertaken. This would allow a detailed 

survey of the biosynthetic potential of the strain. In particular, it would provide access to the 

biosynthetic gene cluster for PUM, a remarkable C-nucleoside antibiotic which is now known to target 

a novel site on bacterial RNA polymerase and would allow in vitro and in vivo studies to trace the 

biosynthetic pathway and provide a platform for generation of novel analogues. 
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Chapter 2: Materials and Methods 

 

2.1 Materials 

2.1.1 Chemicals 

 

All chemicals were purchased from Sigma-Aldrich and were of analytical grade. All solvents were 

purchased from Fischer Scientific and were of HPLC grade. Unless stated all water was purified with 

the MilliQ Integral Water Purification system (Merck Millipore). All antibiotics were purchased from 

Sigma-Aldrich and were filtered before being diluted to the stock concentration listed in Table 2.1 and 

were stored at -20°C.  

 

Table 2.1. Antibiotics used in this work 

Antibiotic Solvent Stock Concentration 

(mg/ml) 

Working Concentration 

(µg/ml) 

Ampicillin H2O 100 100 

Apramycin H2O 50 50 

Kanamycin H2O 50 50 

Chloramphenicol EtOH 25 25 

Nalidixic acid 0.15M NaOH 25 25 

Thiostrepton DMSO 50 50 

 

2.1.2 Enzymes 

 

Table 2.2 contains a list of all purchased enzymes used in this study. Enzymes were stored at -20°C 

and were used with the provided buffers. 

 

 



49 
 

Table 2.2: Enzymes used in this work 

Enzyme Seller 

Fast Digest restriction endonucleases ThermoFisher Scientific 

Phusion High-Fidelity PCR Master Mix  New England Biolabs 

Q5 High-Fidelity DNA Polymerase New England Biolabs 

Gibson Assembly Master Mix New England Biolabs 

NEBuilder HiFi DNA Assembly Master Mix New England Biolabs 

BioMix Red  Bioline 

Proteinase K Sigma-Aldrich 

Lysozyme Sigma-Aldrich 

 

2.1.3 Culture Media 

 

The media found in Table 2.2 were used in this study. Solid phase media were created by adding agar 

to the liquid media at a ratio of 20g/l. 

 

Table 2.3: Components of the media used in this work 

Medium Component Mass per 1L of medium (g) 

TSB Tryptic soya broth (Difco) 30 

 MilliQ water Up to 1L 

TSBY TSB 30 

 Sucrose 103 

 Yeast Extract 5 

 MilliQ water Up to 1L 

LB Tryptone 10 

 Yeast Extract 5 

 NaCl 10 

 MilliQ water Up to 1L, pH 7.0 

2TY Tryptone 16 

 Yeast Extract 10 

 NaCl 5 

 MilliQ Up to 1L, pH 7.0 
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SFM* Soya flour 20 

 D-Mannitol 20 

 Tap water Up to 1L 

 MgCl2 10 ml/L of 1M stock 

 

*Tap water was added to soya flour and autoclaved. D-Mannitol was added to the mixture which was 

autoclaved a second time. 1M MgCl2 solution was added just before use. 

 

2.1.4 Buffers 

 

Table 2.4: Buffer used in this work 

Chemically Competent Cell Buffers 

Buffer A 50 mM CaCl2, 10 mM CH3COOK, pH 6.2 

Buffer B 50 mM CaCl2, 10 mM CH3COOK, 20% (v/v) glycerol, pH 6.2 

 

Genomic DNA Isolation Buffers 

SET Buffer 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl, pH 7.5 

 

Protein Purification Buffers 

Binding Buffer 20 mM Tris-HCl, 500 mM NaCl, pH 7.9 

Wash Buffer 20 mM Tris-HCl, 500 mM NaCl, 1 M Imidazole, pH 7.9 

Strip Buffer 20 mM Tris-HCl, 500 mM NaCl, 100 mM Imidazole, 100 mM EDTA, pH 7.9 

SDS-PAGE Protein 

Buffer 

10% (w/v) SDS, 10 mM DTT, 20% (v/v) glycerol, 200 mM Tris-HCl, 0.05% (w/v) 

Bromophenol blue, pH 6.8 

 

2.1.5 Oligonucleotides 

 

A complete list of oligonucleotides used in this work is given in the appendix. 
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2.1.6 Vectors 

 

Table 2.5: Vectors created and used in this work 

Plasmid Features  Reference 

pKC1139 oriT, ori (psG5), aac(3)IV, LacZ α  207 

pET28a ori, f1 ori, T7, T7 tag, His tag, T7 term, lacI, kanR  Invitrogen 

pYH7 Derived from pHZ1358, oriT, ori (pIJ101), ori (pBR322), rep, 

sti, tsr, bla, acc(3)IV 

 208 

pKC1139-Fil1 Derived from pKC1139, contains a fragment of module 11 

from the filipin PKS gene cluster in A936 

 This work 

pKC1139-Fil2 Derived from pKC1139, contains a fragment of module 11 

from the filipin PKS gene cluster in A936 

 This work 

pKC1139-Fil3 Derived from pKC1139, contains a fragment of module 11 

from the filipin PKS gene cluster in A936 

 This work 

pKC1139-Fil4 Derived from pKC1139, contains a fragment of module 11 

from the filipin PKS gene cluster in A936 

 This work 

pKC1139-Fil5 Derived from pKC1139, contains a fragment of module 2 

from the filipin PKS gene cluster in A936 

 This work 

pKC1139-Ery1 Derived from pKC1139, contains a fragment of module 6 

from the erythromycin PKS gene cluster in A009 

 This work 

pKC1139-Ery2 Derived from pKC1139, contains a fragment of module 6 

from the erythromycin PKS gene cluster in A009 

 This work 

pKC1139-Ery3 Derived from pKC1139, contains a fragment of module 6 

from the erythromycin PKS gene cluster in A009 

 This work 

pKC1139-Ery4 Derived from pKC1139, contains a fragment of module 6 

from the erythromycin PKS gene cluster in A009 

 This work 

pKC1139-Pre1 Derived from pKC1139, contains a fragment of module 2 

from the monensin PKS gene cluster in A568 

 This work 

pKC1139-Pre2 Derived from pKC1139, contains a fragment of module 2 

from the monensin PKS gene cluster in A568 

 This work 

pKC1139-Pre3 Derived from pKC1139, contains a fragment of module 2 

from the monensin PKS gene cluster in A568 

 This work 
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pKC1139-Pre4 Derived from pKC1139, contains a fragment of module 2 

from the monensin PKS gene cluster in A568 

 This work 

pKC1139-Pre5 Derived from pKC1139, contains a fragment of module 2 

from the monensin PKS gene cluster in A568 

 This work 

pKC1139-Pre6 Derived from pKC1139, contains a fragment of module 2 

from the monensin PKS gene cluster in A568 

 This work 

pET28a-psmH Derived from pET28a, contains the psmH gene from the 

pseudouridimycin gene cluster in A980 

 This work 

pET28a-psmI Derived from pET28a, contains the psmI gene from the 

pseudouridimycin gene cluster in A980 

 This work 

pET28a-psmK Derived from pET28a, contains the psmK gene from the 

pseudouridimycin gene cluster in A980 

 This work 

pET28a-psmM Derived from pET28a, contains the psmM gene from the 

pseudouridimycin gene cluster in A980 

 This work 

pET28a-psmO Derived from pET28a, contains the psmO gene from the 

pseudouridimycin gene cluster in A980 

 This work 

pET28a-yeiN Derived from pET28a, contains the yeiN gene from E. coli 

O81 

 This work 

pYH7-ΔpsmN Derived from pYH7, contains DNA designed for knocking 

out the psmN gene in A980 

 This work 

pYH7-ΔpsmU Derived from pYH7, contains DNA designed for knocking 

out the psmU gene in A980 

 This work 

pYH7-ΔpsmB Derived from pYH7, contains DNA designed for knocking 

out the psmB gene in A980 

 This work 
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2.1.7 Bacterial Strains 

 

Table 2.6: Bacterial strains used in this work 

Escherichia coli 

strains 

Genotype Reference 

DH10B F- endA1 deoR+ recA1 galE15 galK16 nupG rpsL Δ(lac)X74 φ8

0lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-

mcrBC) StrR λ- 

Invitrogen 

BL21 E. coli B F– ompT gal dcm lon hsdSB(rB
–mB

–) [malB+]K-12(λS) NEB 

ET12567/pUZ8002 F- dam-13::Tn9 dcm-6 hsdM hsdR zjj-202::Tn10 recF143 

galK2 galT22 ara-14 lacY1 xyl-5 leuB6 thi-1 tonA31 rpsL136 

hisG4 tsx-78 mtl-1 glnV44 

(MacNeil et 

al. 1992) 209 

  

 

Streptomyces and 

Saccharopolyspora 

strains 

Genotype Reference 

S. filipinensis 

DSM40112 (A936) 

Filipin-producing wild type strain DSMZ 

S. erythraea NRRL 

2338 (A009) 

Erythromycin-producing wild type strain NRRL 

S. cinnamonensis 

(A568) 

ΔmonCI, ΔmonBI, ΔmonBII, premonensin-producing 

overproducer strain 

PFL 

S. albus DSM40763 

(A980) 

Pseudouridimycin-producing wild type strain DSMZ 

A980:ΔpsmN A980 with psmN knocked out This work 

A980:ΔpsmU A980 with psmU knocked out This work 

A980:ΔpsmB A980 with psmB knocked out This work 
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2.2 Microbiological Methods 

2.2.1 Growth and Maintenance of E. coli 

 

E. coli strains were grown and maintained in solid or liquid LB or 2TY supplemented with the 

appropriate antibiotics. Unless stated all E. coli cultures were grown at 37°C overnight in Falcon tubes 

or on plates. Liquid cultures were shaken at 220 rpm. 

 

2.2.2 Growth and Maintenance of Streptomyces 

 

Streptomyces cultures were grown and maintained in solid or liquid TSB, TSBY or SFM. All 

Streptomyces cultures were grown at 30°C in conical flasks with metal springs to provide aeration, or 

on plates. Liquid cultures were shaken at 220 rpm for 72 hrs. Solid media cultures were incubated for 

3-14 days. For spore isolation cultures were grown on solid SFM media for 14 days. Spores were 

collected by the addition of 1-2 ml MilliQ water and agitation by sterilised cotton buds. The spore 

suspension was cleaned by filtration through cotton wool. 

 

2.2.3 Growth of Streptomyces for metabolite production 

 

For production of filipin, seed cultures of S. filipinensis were grown in 5 ml SFM for 48 hours at 30°C, 

200 rpm in 50 ml flasks with metal springs. 10% (v/v) of the seed medium was used to inoculate a 

larger culture of 50 ml SFM in a 250 ml flask with metal springs. The larger culture was incubated for 

up to 7 days at 30°C, 200 rpm. 

For production tests of a large number of S. filipinensis mutants, a 96 well plate with 2 ml wells 

was used. Each well was filled with 1 ml of SFM and a small glass bead was added to prevent clumping. 

The wells were inoculated with a small piece of sporulating mycelium grown on SFM agar for 7 days. 

The 96 well plates were incubated for 5-7 days at 30°C, 200 rpm. 

For production of pseudouridimycin, seed cultures of A980 were grown in 5 ml TSBY for 48 

hours at 30°C, 200 rpm in 50 ml flasks with metal springs. 10% (v/v) of the seed medium was used to 

inoculate a larger culture of 50 ml SFM in a 250 ml flask with metal springs. The larger culture was 

incubated for up to 7 days at 30°C, 200 rpm. 
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2.2.4 Preparation of chemically competent cells 

 

For the preparation of chemically competent cells an overnight culture of E. coli ET12567/pUZ8002 or 

DH10B was used as an inoculum (0.5 ml into 50 ml) of 2TY with the appropriate antibiotics. The culture 

was incubated at 37°C with shaking at 220 rpm until an optical density of A600 = 0.3-0.5 was achieved. 

The cells were pelleted by centrifugation and resuspended in 30 ml ice cold buffer A (Table 2.3). After 

1 hr incubation with occasional agitation the cells were pelleted by centrifugation and resuspended in 

1-3 ml ice cold buffer B. The culture was aliquoted (50-100 µl) in the cold room. All tips, cryotubes, 

and racks were pre-cooled in the cold room. Aliquots were frozen in dry ice and stored at -80°C. 

 

2.2.5 Transformation of E. coli 

 

An aliquot of E. coli ET12567/pUZ8002 or DH10B competent cells was thawed on ice for 20 mins. 1-5 

µl (2-200 ng) of DNA was added and the mixture was left of ice for 30 mins. Cells were submitted to 

heat shock for 30 s at 42°C and then placed on ice for 2 mins. 250-750 µl was added and the mixture 

was incubated at 37°C for 1 hr with shaking at 220 rpm. 50-200 µl was spread on an LB or 2TY plate 

with appropriate antibiotics and incubated at 37°C overnight. Successfully transformed colonies were 

identified through colony PCR (cPCR). 

 

2.2.6 Transformation of Streptomyces by conjugation 

 

Transformations of Streptomyces with integrative plasmids were carried out through intergenic 

conjugation with E. coli ET12567/pUZ8002 following protocols based on those in the laboratory 

manual “Practical Streptomyces Genetics”. 

Competent cells of E. coli ET12567/pUZ8002 were prepared and transformed with the 

integrative plasmid as described above. Single colonies were picked and used to inoculate 10 ml LB 

with chloramphenicol, kanamycin, and the desired selective antibiotic and were grown overnight at 

37°C, 220 rpm. Fresh LB (10 ml) containing half concentration of antibiotics was inoculated with 100 

µl of the overnight culture and grown at 37°C, 220 rpm until an A600 of 0.4-0.6 was reached. Meanwhile 

a culture of Streptomyces was grown in 50 ml TSBY for 48 to 72 hrs. E. coli and Streptomyces cells were 

harvested by centrifugation and were washed three times in LB. The Streptomyces pellet was 
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resuspended in 500 µl LB and the E. coli pellet was resuspended in 100 µl LB. 100 µl of the E. coli and 

the Streptomyces for each conjugation plate were mixed together before being spread on an SFM agar 

plate and incubated at 30°C for 12-20 hrs. The plates were overlaid with 1 ml of MilliQ water containing 

nalidixic acid and the selective antibiotic. The plates were then incubated at 30°C until colonies were 

visible. 

Conjugations using Streptomyces spores instead of a liquid culture were performed as above, 

except that before mixing with resuspended E. coli the spores were heat shocked at 50°C for 10 mins 

before incubation on ice for 10 mins. 

 

2.3 Molecular Biology Methods 

2.3.1 Isolation of Plasmid DNA from E. coli 

 

Plasmid DNA was isolated from 5-10 ml cultures grown overnight using the Plasmid Mini Kit I (Omega 

BioTek) following the manufacturer’s protocol. 

 

2.3.2 Isolation of Genomic DNA from Streptomyces 

 

Streptomyces genomic DNA was isolated using the salting out procedure outlined in the laboratory 

manual “Practical Streptomyces Genetics”. 

A culture of Streptomyces was grown in 10 ml TSBY at 30°C, 220 rpm for 48 hrs. The cells were 

then harvested by centrifugation. The pellet was resuspended in 5 ml SET buffer, 100 µl of lysozyme 

solution (50 mg/ml) was added and the mixture was incubated at 37°C for 1 hr. 140 µl proteinase K 

solution (20 mg/ml) was added, the mixture was mixed, then 600 µl SDS solution (10%), pre-warmed 

to 55°C, was added. The mixture was incubated at 55°C for 2 hrs with occasional inversion. 2 ml of 5M 

NaCl was added and the mixture was allowed to cool to 37°C. 5 ml chloroform was added, and the 

mixture was mixed for 30 mins at room temperature before being centrifuged for 15 mins at 5000 x 

g. The upper layer was transferred to a fresh tube, 0.6 volumes of isopropanol was added, and the 

tube was inverted until the DNA became visible. The DNA was spooled onto a pipette tip, transferred 

to a fresh tube and washed twice with 5 ml ethanol (70%). The DNA was then air dried and redissolved 

in 0.5-2 ml MilliQ water. 

 



57 
 

2.3.3 Polymerase Chain Reaction 

 

All polymerase chain reaction (PCR) reactions were carried out on a GeneAmp PCR system 9700 (PE 

Applied Biosystems). For cloning, a 2x Phusion Master Mix with GC buffer or a 2x Q5 High-fidelity 

Master Mix was used (Table 2.7, condition 1). For colony PCR a 2x Bioline BioMix with Taq polymerase 

(Table 2.7, condition 2) was used. Typical reactions conditions are shown in Table 2.7 and typical PCR 

temperature cycling conditions are shown in Table 2.8. 

 

Table 2.7: Components required for a single polymerase chain reaction 

Components Reaction conditions 1 (µl) Reactions conditions 2 (µl) 

Polymerase Mix 25 10 

DMSO 1.5 1 

Primer 1 (10 pM) 2.5 1 

Primer 2 (10 pM) 2.5 1 

Template DNA X X 

MilliQ water  Up to 50 µl Up to 20 µl 

 

Table 2.8: Thermal cycling conditions for PCR. The annealing temperature is dependent on the 

melting temperature of the primers 

PCR cycle stage (30 cycles) Temperature (°C) Time (sec) 

Initial denaturation 95 120 

Denaturation 95 10 

Annealing X  20 

Extension 72 (68 for Taq) 30-60 per kb 

Final extension 72 (68 for Taq) 300 

Rest 4 ∞ 

 

2.3.4 Colony PCR for E. coli 

 

Routine screening of transformed E. coli was performed by colony PCR (cPCR) of single colonies. 

Isolated colonies were picked with a toothpick and agitated in a 250 µl PCR tube containing 20 µl of 
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cPCR master mix. The toothpick was then streaked on an LB or 2TY plate containing appropriate 

antibiotics. The plates were incubated at 37°C overnight. The PCR tubes were incubated according to 

the conditions described above. 

 

2.3.5 Colony PCR for Streptomyces 

 

Screening of large numbers of transformed Streptomyces colonies was performed by a modified cPCR 

protocol. Small amounts of mycelium were scraped off each colony using a toothpick and agitated in 

a 250 µl PCR tube containing 20 µl of 1:1 DMSO:MilliQ water. The tubes were microwaved at a high 

setting for 30 s on, 30 s off for a total microwave times of 2 min. 1 µl of the mixture was used as the 

template DNA in the PCR protocol described above. 

 

2.3.6 Agarose Gel Electrophoresis 

 

DNA separation and visualisation was performed by agarose gel electrophoresis using a horizontal 

flow tank. Agarose was dissolved in 1x TAE buffer (4.85 g Tris, 1.14 ml glacial acetic acid, 2 ml 0.5M 

EDTA Ph 8.0) at 0.7% (w/v) and SYBR Safe gel stain (3 µl to 100ml buffer) was added for DNA 

visualisation. DNA samples were mixed with a 6x loading buffer (Fermentas) and GeneRuler 1kb Plus 

DNA ladder (Fermentas) was used as a molecular DNA length marker. DNA was visualised with a UV 

transilluminator (254 nm).  

 

2.3.7 Recovery of DNA from Agarose Gel 

 

For preparative purposed DNA fragments bands were cut from the gel and purified using a QIAquick 

Gel Extraction Kit (Qiagen) according to the manufacturer’s protocol. 
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2.3.8 Restriction Enzyme Digestion of DNA 

 

Analytical and preparative DNA digestion was performed using the following restriction endonuclease 

digestion protocol. The components and volumes are shown in Table 2.9. Digestion mixtures were 

incubated at 37°C for 0.5-1 hrs, then separated and visualised by gel electrophoresis. 

 

Table 2.9: Components required for DNA restriction digest 

Components Analytical digestion mix (µl) Preparative digestion mix (µl) 

DNA to be digested X (100 ng of DNA) X (1 µg of DNA) 

10x digestion buffer 1 5 

Restriction enzyme 0.2 1 

MilliQ water Up to 10 µl Up to 50 µl 

 

2.3.9 Ligation of DNA Fragments 

 

Ligations of DNA fragments were carried out using the protocol laid out in Table 2.10. The ligation 

reaction mixture was incubated at 16°C overnight, after which the entire reaction volume was used 

for transformation of E. coli. 

 

Table 2.10: Components required for DNA ligation 

Components Volume (µl) 

T4 DNA ligase 1 

10x ligation buffer 1 

Linearised vector DNA X (20-50 ng of DNA) 

Insert DNA Y (5x molar excess of insert DNA) 

MilliQ water Up to 10 µl 
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2.3.10 Isothermal Assembly of DNA Fragments 

 

Isothermal assemblies of DNA fragments were performed using the NEBuilder HiFi DNA Assembly 

Master Mix (NEB) following the protocol laid out in Table 2.11. The reaction mixture was incubated at 

50°C for 1 hr, after which 10 µl of the reaction volume was used for transformation of E. coli. 

 

Table 2.11: Components required for isothermal assembly of DNA fragments 

Components Volume (µl) 

Assembly Master Mix 10 

Linearised vector DNA X (50-100 ng of DNA) 

Insert DNA Y (3x molar excess of insert DNA) 

MilliQ water Up to 20 µl 

 

2.3.11 DNA Sequencing 

 

All cloning was confirmed by sequencing. All routine sequencing reactions were carried out by the 

DNA Sequencing Facility in the Department of Biochemistry, University of Cambridge. 

Whole genome sequencing reactions were carried out by the DNA Sequencing Facility and 

assembly and automated annotation was performed by Dr Markiyan Samborskyy of the Leadlay Lab. 

 

2.3.12 Protein Expression in E. coli 

 

Protein expression was carried out by taking advantage of the T7 promoter in pET28a to express the 

target gene in the presence of Isopropyl-β-D-1-thiogalactopyranoside (IPTG). 

pET28a vectors containing the target gene downstream of the T7 promoter were constructed 

following the protocols described above and used to transform E. coli BL21(DE3) cells. A single colony 

was inoculated into LB (10 ml) with appropriate antibiotics and incubated overnight. This seed culture 

was then used to inoculate LB (1 L) with antibiotics and was incubated until A600 = 0.5-1.0 was reached. 

IPTG was added (final concentration 0.1-0.3 mM) and the culture was incubated at 16°C overnight.  
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2.3.13 Affinity Chromatography 

 

The pET28a expression system generates His tagged proteins, and so the target protein can be purified 

from the cell culture by Nickel-NTA affinity chromatography (nitrilotriacetic acid (NTA) is a chelating 

ligand coupled to a cross-linked 6% agarose resin that when charged with nickel can purify 6xHis 

tagged recombinant proteins). 

The overnight culture, as described above, was pelleted by centrifugation, the supernatant 

discarded, and the pellet resuspended in binding buffer (30 ml), see table 2.4. The resuspended culture 

was sonicated on ice and the lysate was centrifuged. This supernatant was then used for 

chromatography, the steps of which are summarised in Table 2.12. 

 

Table 2.12: Wash steps used in affinity chromatography 

Solutions added to column in order Volume (ml) 

MilliQ water 10 

NiCl2 (50 mM) 4 

MilliQ water 4 

Binding buffer 4 

Lysate All supernatant 

Wash buffer (0 mM Imidazole) 15 

Wash buffer (10 mM Imidazole) 15 

Wash buffer (40 mM Imidazole) 5 

Wash buffer (80 mM Imidazole) 2 

Wash buffer (100 mM Imidazole) 2 

Wash buffer (150 mM Imidazole) 2 

Wash buffer (200 mM Imidazole) 2 

Wash buffer (300 mM Imidazole) 2 

Strip buffer 5 

MilliQ water 20 

MilliQ water 20 

Ethanol (20%) 5 
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The lysate fraction, all wash fractions and a sample of the pellet were analysed by SDS-PAGE gel 

electrophoresis. A sample of each fraction (10 µl) was added to SDS-PAGE protein buffer (10 µl), see 

table 2.3. The mixture was boiled for 10 mins before being loaded onto the SDS-PAGE gel. 

The SDS-PAGE gels were visualised by the addition of InstantBlue, and incubation at room 

temperature until the bands were visible. 

 

2.4 Chemical and Analytical Methods 

2.4.1 Analysis of Polyketide Products 

 

For analysis of filipin, 1 ml was sampled from S. filipinensis production cultures and were extracted 

with 1-2 ml of ethyl acetate. The mixture was shaken vigorously for 5 mins before being separated by 

centrifugation. The upper layer was taken, and the solvent was removed by drying in air. The residue 

was redissolved in 500 µl of methanol. Samples were centrifuged before HPLC analysis. 

For analysis of pseudouridimycin and related molecules, 1 ml of A980 production cultures was 

sampled and the cells pelleted by centrifugation. The supernatant was collected and was centrifuged 

before HPLC analysis.  

 

2.4.2 Liquid Chromatography and Mass Spectrometry 

 

HPLC-MS analysis was performed using an HPLC (Hewlett Packard, Agilent Technologies 1200 series) 

coupled to a Finnigan MAT LTQ mass spectrometer (Thermo Finnigan) fitted with an electrospray 

ionisation (ESI) source. The mass spectrometer was run in positive ionisation mode, scanning from 

m/z 150 to 1800 with fragmentation at 12 % normalised collision energy. 

 

2.4.3 HPLC analysis 

 

The HPLC was fitted with a Prodigy C18 (250 mm × 4.6 mm, 5μm, Phenomenex) column. Filipin samples 

were eluted using a solvent system of solvent A (H2O + 0.1% FA) and solvent B (MeOH), with a linear 

gradient starting at 50% A for 3 mins, 50%-10% A over 9 mins, 10% A for 8 mins, 10%-0% A over 1 min, 

0% A for 2 mins, and 0%-50% A over 4 mins at a flow rate of 0.8 ml/min. Pseudouridimycin and related 
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standards and intermediates were eluted using a solvent system of solvent A (H2O + 0.1% TFA) and 

solvent B (CH3CN), with a linear gradient starting at 100% A for 5 mins, 100%-95% A over 10 mins, 

95%-0% A over 10 mins, 0% A for 4 mins, and 0%-100% A over 1 min at a flow rate of 0.4 ml/min. 

 

2.4.4 NMR analysis 

 

All samples for NMR spectroscopy were prepared with substrates as concentrations of 1 mM, and 

enzymes at a concentration of 10 µM, in 50 mM phosphate or HEPES buffer, pH 7.5, 100 mM NaCl, 

supplemented with 10% D2O (Sigma) and 0.0025% 3,3,3-trimethylsilylpropionate (Sigma) in 5 mm 

Ultra-Imperial grade NMR tubes (Wilmad). All spectra were recorded at 298 K on a Bruker Avance 

800 MHz spectrometer equipped with a z-shielded gradient triple resonance probe. One dimensional 

1H spectra were acquired by averaging 32 scans using the first row of a NOESY experiment with 

Watergate solvent suppression. 

 

2.4.5 Measurement of DNA and Protein Concentration 

 

For the measurement of concentrations of DNA and protein in samples, a Nanodrop 

spectrophotometer (ND-100 v3.2.1) was used. 

 

2.4.6 Bioinformatics and software 

 

Genome sequences were analysed and visualised with Artemis [ref], and genomes were annotated by 

AntiSMASH 4.0 178. BLAST 175 was used to search for DNA and protein homologues in public databases, 

and Clustal Omega 210 was used to align multiple DNA and protein sequences. SnapGene (GSL Biotech, 

Chicago, IL) was used to design vectors, and Primer3 211 was used to design primers. ChemDraw 

(PerkinElmer, CambridgeSoft) was used to draw chemical structures and calculate exact masses. 

Xcalibur v2.1 (Thermo Finnigan) was used to process and visualise HPLC-MS data. 
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Chapter 3: Homologous Recombination Based Engineering of Modular 

Polyketide Synthases 

 

3.1: Introduction 

 

Recently an attempt at using homologous recombination to carry out a conventional domain swap in 

the modular rapamycin PKS (Figure 3.1) led to the serendipitous discovery by Dr Steve Kendrew (then 

at Biotica Technology) of an efficient method to increase the structural diversity of a polyketide 

template following a single integration event 201. Instead of the expected product, the various progeny 

generated by the experiment produced a variety of unexpected rapalogs at comparable titres to the 

wild type production of rapamycin. Each of the progeny strains produced a single rapalog, and the 

various progeny, between them producing an array of different rapalogs, were generated from a single 

crossover event. Follow up studies isolated and characterised the rapalog compounds. It became clear 

that each rapalog was directly related to rapamycin but lacked between 2 or 12 carbon atoms from 

the rapamycin backbone, and in one case had 2 additional carbon atoms. The structures matched the 

predicted polyketide structures that would be produced by truncated or expanded rapamycin PKS 

multienzymes. This result was repeatable, and further investigation showed that the diversity was 

generated during the second crossover event. The second recombination event can occur between 

several homologous regions of DNA in the PKS gene cluster, leading to a mixture of recombinant 

strains with varying number of modules in the target PKS, as illustrated schematically in Figure 3.2. 

This integration leads to a high ratio of productive strains to non-productive strains, where the 

productive strains can be isolated and separated giving multiple individual strains each producing a 

specific novel polyketide (see Figure 3.3). The productivity of the recombinant strains was surprisingly 

not much reduced from the parent strain. This is unusual, as manipulations of PKS gene clusters, 

especially those creating hybrid PKSs, tend to lead to strains with low productivity 212. Analysis of the 

genome sequences for the rapalog producing strains revealed that all genomic changes were confined 

to the PKS region of the rapamycin BGC. For each rapalog producer the new PKS systems matched the 

predicted sequence of domains based on the rapalog structures. The architecture of the mutant PKSs 

was consistent with homologous recombination having occurred between modules at regions of high 

sequence similarity. Additionally, the apparent deletion of one or more modules was often more 

complex than might be expected. For example, sequence analysis of the mutant producing the 1-

module expanded rapalog revealed that the PKS had lost almost two modules (modules 2 and 3) and 

that three extra modules (modules 11, 12 and 13 from rapC) had been inserted into rapA. In the cases 
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where PKS architecture was similar, it was observed that the contractions had occurred at different 

junction points. Taking the data together, it appeared that the junction points tended to occur either 

in the coding sequences for the KS or AT domains, or in a region just upstream of the ACP. 

It is possible that this approach mimics how modular PKSs might have evolved, utilising 

processes involving gene duplication, module duplications, homologous recombination (both inter 

and intra-BGC) and horizontal transfer of genes or gene clusters 213. Due to the similarities between 

this process and natural evolution, this approach to PKS engineering has been called Accelerate 

Evolution (AE). 

 

 

Figure 3.1: Schematic diagram of the rapamycin PKS multienzyme. Adapted from Wlodek et al. 201. CoL = CoA 

ligase like, hCHCA = trans-4-hydroxycyclohexanecarboxylic acid which is fed to the strain to initiate biosynthesis 

of rapamycin. Shaded circles indicate inactive domains. 
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Figure 3.2: Schematic representation of the recombineering process. Primary integration uses entry point DNA 

encoding a region of module 4 from the PKS, leading to a series of different potential secondary recombination 

outputs.  

 

 

Figure 3.3: Representation of the outputs from recombineering on the rapamycin PKS. In this example, initial 

recombination was into DNA encoding module 3 of the rapamycin PKS. Adapted from Wlodek et al. 201.  
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 AE differs from traditional engineering approaches by its apparent lack of target. Typically, a 

conventional attempt at engineering PKS would first decide upon a target molecule then, utilising the 

co-linearity principle, design a PKS system that could generate that polyketide. AE instead picks a 

system which could generate useful analogues, then introduces homologous DNA at a target site 

within the PKS which results in a library of analogous compounds. This principle is illustrated in Figure 

3.4. 

Wlodek and colleagues at Isomerase Therapeutics began optimising this process to further 

study it after the rapalogs were identified. To simplify the work, they used short regions of 

homologous DNA rather than the pairs of flanking DNA sequences that are used to remove or 

introduce DNA. When designing this entry point DNA, a desired initial integration site can be selected 

for. This marks a central point from where the second recombination event can occur between 

homologous regions in other modules, leading to the expanded or contracted macrocyclic ring or 

linear chain structures of the modified polyketide. The original work suggests a preferential target for 

the entry point DNA would be a sequence of >100 bases of homologous sequence which is >80% 

identical (but quickly a standard length of approximately 2 kb was adopted). This high sequence 

homology is common between comparable domains within PKS multi-enzymes and especially 

between domains of the same PKS. If the desired entry point lacks sufficient sequence identity, it is 

possible that the PKS could be prepared for the application of AE by increasing the homology of 

comparable domains using silent mutations of the sequence. Due to the clinical importance of many 

polyketide compounds, the ability to create libraries of analogues could lead to novel compounds with 

therapeutic activities. Replicating the success of AE with the rapamycin gene cluster in other systems 

would provide important evidence for the general use of this technique, even for the most well-known 

polyketides such as erythromycin and monensin. AE is still in its infancy, and so will require a thorough 

investigation of its mode of action, and optimisation of the protocol for each actinomycete strain may 

well be required. 
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Figure 3.4: Comparison between the design logic of a traditional engineering-based approach and an 

accelerated evolution-based approach. 

 

 There are a number of factors to consider when designing an AE experiment. These are; the 

suitability of the PKS system for AE, the entry point DNA (the sequence of DNA homologous to the 

desired integration site), and the vector chosen to carry the entry point DNA into the cell and initiate 

the secondary recombination event. There are several characteristics which through an examination 

of the proposed mechanisms, experimental methods, and analytical techniques should determine 

whether a PKS system is suitable for engineering by AE: 

1. High production levels in wild type 

2. UV spectrum 

3. Low number of background peaks 

4. No tailoring enzymes 

5. High-quality whole genome sequence 

6. Co-linear arrangement of PKS genes 

7. Exotic unit required (conditional synthesis) 

8. Strain genetically tractable 

 Most of these characteristics are chosen to assist in characterisation of the fermentation 

products of any AE-generated strains. A high production level is helpful for any engineering method, 

and a characteristic UV spectrum allows for rapid analysis by HPLC and UV-vis spectrometry. Due to 

the nature of AE it will generate products that may have unpredictable molecular weights. Choosing 

systems that have a low number of background peaks and no post-PKS tailoring enzymes makes 
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identifying and characterising new mass signals easier. A high-quality whole genome sequence makes 

genetic analysis easier, and a co-linear arrangement of PKS genes refers to a linear arrangement of 

PKS genes. Using the rapamycin PKS as an example, a co-linear arrangement would involve the rapA 

gene followed by rapB and rapC. This is a common feature among PKS gene clusters, but not universal. 

The co-linear arrangement allows for the maximum possible range of contractions, while minimising 

the creation of any progeny that have inactive an PKS, through loss of a TE or starting KS domain. An 

exotic unit involved in the biosynthesis is not mandatory, but will make analysis easier, as it creates 

the possibility of conditional synthesis. The pathway required to generate the exotic unit can be 

knocked out, and then the exotic unit fed to the fermentation media to initiate production. The final 

characteristic, essential for any engineering attempt, is that the strain must be genetically tractable.  

 Once a system has been selected on these criteria, the choice of the entry point DNA is also 

an important consideration. It must be a sequence that has a high sequence similarity to multiple 

comparable domains within the PKS. The entry point DNA also determines the module where primary 

integration occurs. This is thought to mark the centre from which recombination can occur, although 

the above examples show that the recombination can also occur at locations some distance from the 

insertion module. Work by Wlodek and colleagues highlighted certain ‘hot-spots’ where the most 

common junction points are found. These were in the KS and AT domains, and in the interdomain 

region following the ACP domain. 

 A controllable origin of replication (for example temperature controlled) is known to be critical 

to the success of the second recombination event, but it must also contain selection markers for both 

the parent host (for example E. coli) and the PKS-producing hosts. There are a number of vectors with 

temperature sensitive origins of replication, such as pSG5 214 or pKC1139 207. pSG5 is found naturally 

as a temperature-sensitive plasmid in Streptomyces ghanaensis DSM 2932 which replicates only at 

temperatures below 34°C. The nucleotide sequence of its minimal replicon is the template for the 

pGM vector family. The naturally temperature-sensitive replication of pSG5 and its derivatives makes 

it ideal for this technique because the replication can be controlled to induce recombination events. 

The vector pKC1139 in particular contains the temperature sensitive replicon from pSG5, as well as an 

apramycin resistance gene, multiple cloning sites and an oriT fragment which allows for transfer of 

the plasmid to the PKS-producing host via conjugation 215. Assembly of the entry point DNA into the 

vector is typically achieved using Gibson isothermal ligation assembly 216 in E. coli DH10B.  

The work by Wlodek et al. is not the first recorded evidence of an AE-like modification of a 

PKS multienzyme, but it is the first to recognise its significant and to repeat and characterise the effect. 

In 2002 Sergey Zotchev and colleagues from the Norwegian Institute of Science and Technology 
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reported that an attempt to manipulate the nysC gene of the nystatin PKS yielded a recombinant strain 

that produced a hexaene nystatin derivative 217. Further investigation revealed that the hexaene 

compound was a 36-membered macrocycle (compared to the 38-membered nystatin backbone) and 

was fully decorated by the post-PKS enzymes. Sequence analysis of the recombinant strain revealed 

an in-frame deletion in the nysC gene that had resulted in the loss of an entire module. The 

recombination occurred between the KR domains of modules 4 and 5, which share 99.9% sequence 

similarity, and have a G+C% of 64%, much lower than the 74% found in the rest of the gene cluster, 

suggesting that those sequences were acquired from another organism through horizontal gene 

transfer. The Norwegian group came to similar conclusions that the modification was generated by 

homologous recombination between regions of highly similar DNA through a process that mimicked 

the evolution of the nystatin PKS cluster, however they did not repeat the experiment to investigate 

whether this was a random and deleterious occurrence, or a process that could be replicated and 

made useful. 

 The significance of AE technology is that from a single exconjugant (primary), representing a 

single integration event, a wealth of diversity can be generated via the random truncations. The 

technique appears to overcome the limitations of conventional PKS engineering, namely the 

interference of domain boundaries resulting in poor productivity, by removing the need to artificially 

determine domain boundaries and instead allowing recombination processes to occur and the 

selecting for the productive strains. Furthermore, as a single strain can undergo a series of 

recombination events between different sites in the PKS gene sequence one can potentially create 

multiple stable strains that have had one or more module inserted or deleted during a single 

experiment. The analysis of AE-generated hybrid PKS modules could provide valuable insights to guide 

the rational engineering of modular PKS. Additionally, AE has the potential to become a standard 

approach to the engineering of PKS in its own right. Compared to rational PKS engineering, where the 

design of a single DNA construct is aimed at the production of a single strain that produces a single 

desired compound, AE allows for the rapid parallel creation of a number of strains each producing a 

member of a family of novel compounds. This work was done with kind advice from scientists at 

Isomerase Therapeutics, particularly Dr Aleksandra Wlodek. 
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3.2: Results and Discussion 

3.2.1: Nystatin Gene Cluster Rearrangement 
 

The first recorded instance of an AE-like deletion of a PKS module was in the nystatin PKS. Therefore, 

it made sense to evaluate the nystatin producer S. noursei as a possible testbed for extension of AE, 

since the machinery for homologous recombination could be assumed present in this strain. Other 

integration sites would be tested in the nystatin PKS, with the aim of eventually generating a library 

of compounds. The nystatin gene cluster spans 267 kbp. There are six core PKS genes; nysA,B,C,I,J,K 

which between them encode 19 modules (see Figure 3.5). 

(A) 
 

 
 
(B) 
 

 

 

Figure 3.5: Nystatin PKS biosynthesis. (A) Nystatin gene cluster: NysA/B/C/I/J/K: PKS genes, nysL: P450 

monooxygenase, nysM: ferredoxin, nysM: P450 monooxygenase, nysDII: amino transferase, nysDI: 

glycosyltransferase. (B) Nystatin PKS biosynthetic pathway and completed nystatin structure. 
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As Figure 3.5 illustrates, the nystatin PKS genes are not co-linear with the arrangement of the 

genes in the cluster, and while there are large regions where homologous recombination can occur 

harmlessly, the location of nysA and nysK, which are essential to production of nystatin, presents the 

risk of generating recombinant nystatin BGCs that are inactive. To maximise the chances of generating 

novel nystatin derivatives an experiment based on CRISPR/Cas9 engineering was designed to 

rearrange the nystatin gene cluster. 

 To obtain the nystatin gene cluster rearrangement, a vector was constructed that contained 

the cassette necessary to make two accurate cuts to cleave nysA, B, and C (nysCBA) from the genome, 

and to re-join the digested ends. The protocol for designing and creating the vector was based on the 

protocol outlined in the supplementary materials of Cobb et al. 218. The nysCBA PKS genes were chosen 

for mobilisation, as this region is flanked by larger regions of non-coding DNA than the nysIJK genes. 

Once the vector had been designed, it would be transferred into the host through intergeneric 

conjugation and the desired cleavage performed. The next step would be to design a second vector 

that contained a cassette with nysCBA, and the required homologous arms to induce homologous 

recombination and insert nysCBA into a co-linear position within the nystatin BGC. This vector would 

be inserted, and progeny would be screened for the desired insertion. Figure 3.6 illustrates the 

targeted rearrangement of the nystatin BGC. 

 

 

Figure 3.6: The scheme for the rearrangement the nystatin biosynthetic gene cluster. NysABC is deleted by two 

targeted double stranded breaks mediated by the CRISPR-Cas9 complex. The nysABC cassette is then 

constructed and inserted back into the cluster upstream of nysIJK to complete the rearrangement. 
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The S. noursei genome was sequenced and assembled by the Department of Biochemistry 

DNA Sequencing Facility, and the sequence of the nystatin gene cluster was fully checked and 

confirmed (Figure 3.5). The genes nysCBA were to be deleted and reinserted in sequential order 

adjacent to nysKJI. The template sequence was created by amplifying 1kbp of genomic DNA on either 

side of nysCBA to provide flanking arms. The flanking arms were purified by gel electrophoresis and 

were ligated together with pCRISPomyces2, previously linearised by digestion with the restriction 

enzyme XbaI, by using Gibson isothermal assembly (Figure 3.7) 216. 

Candidate crRNA sites were identified using an online tool 219 and target sites were chosen 

based on the 21bp target sequence and the position relative to nysCBA. These crRNA sites were 

included in the sgRNA sequence containing appropriate promoters and terminators (Figure 3.8). The 

designed sgRNA was bought as a gene fragment from Eurofins Genomics and ligated into 

pCRISPomyces2 via Golden Gate assembly (Figure 3.9). The completed pC2-nysCBA plasmid was 

verified by PCR amplification of the region containing the sgRNA and template inserts, and by 

sequencing. 

Transformation of pC2-nysCBA into S. noursei was attempted through conjugation with 

chemically competent ET12567/pUZ8002 cells which had previously been transformed with pC2-

nysCBA. Conjugations were performed on several different media; SFM, MAM, ABB13 and R6, varying 

concentration of MgCl2, using both mycelium and spores of S. noursei and varying incubation times 

before overlaying the conjugation plate with antibiotics (summarized in Table 3.1).  

CRISPR/Cas9 gene editing has been used successfully to edit Streptomyces spp. genomes218,220 

and so a deletion of approximately 40 kb in the nystatin gene cluster was considered achievable. This 

deletion would be the first step in a large-scale rearrangement of the nystatin cluster, an achievement 

in its own right, and one which would allow a more efficient and extensive application of AE 

technology. Despite many attempts at optimising the conjugation of ET12567/pUZ8002 with S. noursei 

exconjugants were never observed, so this ambitious attempt at large-scale rearrangement was 

abandoned. 

 

 



74 
 

 

Figure 3.7: Scheme for three-fragment assembly of the nysCBA flanking arms into pCRISPomyces2 to form the 

template sequence. pCRISPomyces2 was linearised by digestion with the restriction enzyme XbaI. PCR primers 

had 40bp overhangs, forming complementary regions to allow isothermal assembly. 

 

5’acgctccctttctttagaagaggcgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaa

cttgaaaaagtggcaccgagtcggtgcttttttagcataaccccttggggcctctaaacgggtcttgaggggttt

tttggctgctccttcggtcggacgtgcgtctacgggcaccttaccgcagccgtcggctgtgcgacacggacggat

cgggcgaactggccgatgctgggagaagcgcgctgctgtacggcgcgcaccgggtgcggagcccctcggcgagcg

gtgtgaaacttctgtgaatggcctgttcggttgctttttttatacggctgccagataaggcttgcagcatctggg

cggctaccgctatgatcggggcgttcctgcaattcttagtgcgagtatctgaaaggggatacgcactagtgattc

cccggtccggttt-3’ 

 
BbsI-Spacer 1-tracrRNA tail-T7 Terminator-gapdhp(EL)-Spacer 2-BbSI 

 

Figure 3.8: Design of sgRNA. BbsI indicates the sticky ends, complementary to the sticky ends left by BbsI 

digestion of pCRISPomyces2. Spacers 1 and 2 are the crRNAs that will guide Cas9 to the target sequences. The 

tracrRNA tail is the second part of the sgRNA and forms a scaffold to bind to Cas9. T7 is a terminator and 

gapdhp(EL) is a promoter. The missing promoter for Spacer 1 and the tracrRNA tail and terminator for Spacer 2 

are found on the pCRISPomyces2 plasmid. 
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Figure 3.9: Golden gate assembly of sgRNA into pCRISPomyces2 linearised by digestion with the restriction 

enzyme BbsI. BbsI cuts outside its recognition sequence and so the arrows above indicate the direction in which 

BbsI cuts, allowing for a seamless insertion of the sgRNA fragment. 

 

Table 3.1: Conditions attempted for conjugation between ET12567/pUZ8002 and S. noursei. 
 

Medium MgCl2 concentration S. noursei cell type Incubation time Antibiotic 

concentrations 

SFM 10mM Mycelium 20hrs (Nal + Apr) Nal: 25ng/µl 

MAM 20mM Spores 14hrs (Nal + Apr) Apr: 50ng/µl 

ABB13 

R6 

  3hrs (Nal),  

14hrs (Apr) 
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3.2.2: Nystatin Accelerated Evolution 
 

Accelerated Evolution is a new technology. It is known that entry point DNA requires high homology 

to comparable sequences in the PKS gene cluster, and that in the case of rapamycin most new 

junctions were found within the KS and AT domains, and C-terminal of the ACP domain. Besides that, 

there are few guidelines for choosing a suitable site for the entry point DNA. In this case, the entry 

point DNA was chosen by aligning all modules against one another and choosing the region of highest 

mutual percentage identity to counterparts in all other modules. (see Figure 3.10). It was believed that 

this should maximise the chance of recombination with sites in neighbouring modules after initial 

integration at the entry point.  

 

 

Figure 3.10: Sequence homology between KS domains in the nystatin PKS gene cluster. The highlighted column 

shows the sequence similarity between the KS in module 9 and all other KS domains. The KS domain in module 

9 was chosen as the entry point for AE as it has the highest sequence similarity compared to all other KS domains. 

 

The region with the highest identity contained most of the KS domain of module 6, therefore 

the whole KS6 domain (1383 bp) was chosen as the entry point DNA. The KS6 domain was amplified 

by PCR and purified using gel electrophoresis. This fragment was then inserted into pKC1139 which 

had been linearised by the restriction enzymes XbaI and EcoRI using Gibson isothermal assembly, to 

create the plasmid pKC1139-nysKS6. Figure 3.11 shows a general scheme for the creation of all 

pKC1139 derived vectors used in this work and Figure 3.12 shows the PCR amplification of the entry 
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point DNA and bands confirming the presence of the entry point DNA insert in pKC1139 generated by 

cPCR. 

 Transformation of pKC1139-nysKS6 into S. noursei was attempted through conjugation at 37°C 

with chemically competent ET12567/pUZ8002 cells which had previously been transformed with 

pKC1139-nysKS6. The same conditions as described in Table 3.1 were used, but once again failed to 

produce exconjugants despite attempts at optimisation using literature precedents as a guide 221. The 

difficulty of conjugating into S. noursei could have been overcome through further attempts at 

optimisation, or though other methods of transformation such as electroporation or transduction. 

However, due to the difficulties presented, it was decided that rather than continue working with 

nystatin, focus would be shifted to other strains which are known to be easily conjugatable, and where 

the natural arrangement of the PKS genes favours AE. 

Accordingly, three other modular PKS systems were evaluated for AE: filipin, erythromycin 

and monensin. Each of these systems have their PKS genes organized sequentially in the cluster and 

in the case of erythromycin and monensin they had been extensively characterised and effective 

conjugation protocols were well known. 

 

 

Figure 3.11: General scheme of amplification and ligation of entry point DNA into pKC1139. The primers 

include 20bp overhangs that are complementary to the ends of the linearised pKC1139. pKC1139 is linearised 

by XbaI and EcoRI digestion. 
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Figure 3.12: Gel images showing amplification of entry point DNA and screening of the pCK1139-nysKS6 

vector. (A) Amplification of entry point DNA; (B) Screening of pCK1139-nysKS vector by cPCR. The ‘Ladder’ lane 

contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side of each ladder refer to the size of each 

relevant band in the ladder. Each numbered lane refers to a colony of E. coli that was screened for the correct 

vector. 

 

3.2.3: Filipin, Erythromycin and Monensin Accelerated Evolution. 
 

Erythromycin and monensin are well known polyketide compounds with useful therapeutic activity, 

and their biosynthesis has been well characterised over many years. Filipin is not useful as a 

therapeutic agent, but its biosynthesis, along with other macrolide polyenes, such as amphotericin 

and nystatin, is well characterised. They were chosen for several reasons, the first criterion being the 

ease with which the strains can be manipulated, but each gene cluster also presents characteristics 

that make it a plausible candidate system for AE. All three antibiotics are produced at easily detectable 

production levels, accompanied by a low number of background peaks. Filipin biosynthesis involves 

few tailoring enzymes, and for monensin a mutant strain of S. cinnamonensis was available in which 

the gene monCI was knocked out, preventing oxidative cyclisation of the linear polyketide backbone 

and instead producing the simple triene shunt product, premonensin 222. . High quality genome 

sequences were already available for the erythromycin and monensin producers, and the filipin-

producing strain, S. filipinensis had been acquired and was submitted for whole genome sequencing 

and assembly. Finally, in all three gene clusters the PKS genes were aligned in the same direction in 

the order in which their encoded enzymes act, maximising the scope for productive recombination. 
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Filipin had the additional advantage of a distinctive UV spectrum and an exotic hexylmalonyl-CoA 

extender unit, the synthesis of which could potentially be knocked out and used as a basis for 

conditional synthesis of filipin analogs. Figure 3.13 shows the polyketide biosynthetic pathway for the 

three chosen PKS systems and highlights the chosen entry points in the PKS genes and structures. 

 The initial entry point DNA for erythromycin and monensin AE was designed using the same 

method as described above for nystatin, and once again KS domains (KS6 for erythromycin and KS2 

for monensin) were chosen as they held the highest sequence similarity between modules. Meanwhile 

the S. filipinensis genome was sequenced, assembled and annotated by the Department of 

Biochemistry DNA Sequencing Facility staff. Once the assembly was completed the entry point DNA, 

also a KS domain (KS11), was chosen for filipin. KS11 was chosen on the basis of its high sequence 

similarity with the KS domain of other modules, and because module 11 is involved in biosynthesis of 

part of the polyol region of filipin. The reasoning was that if contractions were generated, they would 

be more likely to leave the characteristic UV signature of filipin intact, which would help detection of 

novel filipin analogues. The entry point DNA for all three clusters was amplified by PCR and purified 

using gel electrophoresis. The fragments were then inserted into pKC1139, which had been linearised 

by the restriction enzymes XbaI and EcoRI, through Gibson isothermal assembly to create the plasmids 

pKC1139-eryKS6, pKC1139-preKS2 and pKC1139-filKS11 for the erythromycin cluster, monensin and 

filipin gene clusters, respectively (Figure 3.11). Successful assemblies were screened for using cPCR. 

Constructs were used to transform the S. erythraea, S. cinnamonensis, and S. filipinensis hosts was 

attempted through intergeneric conjugation at 37°C with chemically competent ET12567/pUZ8002 

cells which had previously been transformed with each construct. The initial conjugation attempts 

failed to produce exconjugants. Standard conjugation protocols were known to be effective in these 

strains 127,223,224 and so there must have been another issue, such as the vector, the entry point DNA, 

or the modifications to the conjugation protocol. The AE protocol requires conjugations to occur at 

37°C. Exconjugants are restreaked to ensure no contamination is carried over, and once confirmed as 

clean they are analysed by PCR to confirm the presence of the vector in the host genome. Only at this 

point are the cells grown at 30°C, which was described as vital to the success of AE in the original 

experimental protocol. The importance of the initial higher temperature is due to the pSG5 origin of 

the pKC1129 vector. This origin of replication is non-permissive at temperatures higher than 34°C, 

therefore the plasmid cannot replicate and must integrate into the genome to survive. The pKC1139 

vector is commonly used as a suicide vector for transformation of Streptomyces spp. 225. Why the 

temperature control is so vital to success is currently unknown but if the pSG5 origin were responsible 

for this effect one might expect it to have been observed before now.  
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(A) 

 
(B) 

 
(C) 

 
 
Figure 3.13: PKS biosynthetic pathways of erythromycin, monensin, and filipin. The PKS biosynthetic pathways, 

intermediates and completed structures for; (A) erythromycin (B) monensin (the simple shunt compound 

"premonensin" was the target for the AE work) (C) filipin. 
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One hypothesis is that lowering the temperature initiates replication from the pSG5 origin within the 

host genome. This would generate single stranded DNA, which is known to be highly recombinogenic 

226 and could start strand invasion and recombination at neighbouring regions of homology, creating 

a recombination event between the entry point and the site of secondary integration, that truncates 

the PKS-encoding region between the two sites. An alternative hypothesis instead suggests might be 

that the temperature sensitive origin is just an efficient means to transform DNA into Streptomyces 

spp., and that the inter-module recombination is the secondary effect of the induced stress of 

repairing double stranded breaks, or other DNA damage caused by the integration of the pKC1139 

vector. 

 The modified protocol appeared to interfere with the growth of exconjugants. A larger-scale 

conjugation was attempted to overcome the reduced probability of generating exconjugants. This 

work resulted in exconjugants which grew when patched onto selective media. Consultation with our 

collaborators at Isomerase Therapeutics at this point confirmed that this approach did reduce the 

likelihood of generating exconjugants, and more importantly the ‘hot-spots’ within rapamycin PKS 

modules that were discussed in the introduction of this chapter had been identified, and their 

importance in generating mutants was highlighted. This indicated the need to evaluate several 

constructs for each system, covering an entire module, and to carry out conjugations on a larger scale.  

The AE experiments were therefore repeated for a new series of constructs. Entry point DNA 

for the new constructs was designed using the same module within each of the three gene clusters as 

in the initial experiments with the KS region only. For each chosen module, four constructs were 

designed to cover the entire module from the ACP domain in the previous module, to the KR domain 

in the chosen module. Figure 3.14 shows the sequence similarity across each module in the respective 

PKS gene clusters and Figure 3.15 shows the region each construct covers within the chosen module. 

The sequence similarity plots show that across the three PKS systems, the regions of highest sequence 

similarity consistently lie within the KS domains, although additional regions of high similarity can be 

found in the AT domains, and in interdomain regions, such as the sequence C-terminal of the ACP 

domain. 
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The entry point DNA for each construct was amplified by PCR and purified using gel 

electrophoresis. The fragments were then inserted into pKC1139, which had been pre-linearised by 

the restriction enzymes XbaI and EcoRI, by Gibson isothermal assembly, to create each construct 

(Table 2.2). Transformation of each construct was attempted via conjugation between 

ET12567/pUZ8002 and the host strains at 37°C. Figure 3.16 shows the PCR amplification of the entry 

point DNA and bands confirming the presence of each entry point DNA insert in pKC1139 vectors for 

the filipin entry point constructs. 

 

Table 3.2: pKC1139-based plasmids for AE recombineering 
 

Plasmid Entry point DNA Length (bp) 

pKC1139-filKS11 Filipin domain KS11 1284 

pKC1139-filKS-AT11 Filipin domains KS-AT11 2056 

pKC1139-filAT-KR11 Filipin domains AT-KR11 2023 

pKC1139-filACP-KS11 Filipin domains ACP10-KS11 1945 

pKC1139-eryKS6 Erythromycin domain KS6 1278 

pKC1139-eryKS-AT6 Erythromycin domains KS-AT6 2031 

pKC1139-eryAT-KR6 Erythromycin domains AT-KS6 2062 

pKC1139-pryACP-KS6 Erythromycin domains ACP5-KS6 1560 

pKC1139-preKS2 Premonensin domain KS2 1278 

pKC1139-preKS-AT2 Premonensin domains KS-AT2 1890 

pKC1139-preACP-KS2 Premonensin domains ACP1-KS2 1727 

pKC1139-preER-KR-ACP2 Premonensin domains ER-KR-ACP2 2475 
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Figure 3.14: Sequence similarity between each module in the respective PKS gene clusters. (A) Erythromycin 

(B) Monensin (C) Filipin. The charts were created by aligning all module sequences from each PKS system and 

plotting sequence similarity using Plotcon (http://emboss.bioinformatics.nl/cgi-bin/emboss/plotcon). The 

schematic of a PKS module is not to scale but indicates regions of the module with the highest sequence 

similarity. 
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(A) 

 

(B) 

 

(C) 

 

Figure 3.15: Entry point DNA constructs covering the length of the chosen modules in each gene cluster. (A) 

Erythromycin PKS module 6 (B) Monensin PKS module 2 (C) Filipin PKS module 11. 
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Figure 3.16: Gel images showing amplification of entry point DNA and screening of the pCK1139-derived 

vectors for the filipin constructs. (A) Amplification of entry point DNA; (B) Screening of pCK1139 filipin vectors. 

The ‘Ladder’ lane contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side of each ladder refer 

to the size of each relevant band in the ladder. Each set of 4 lanes in (B) are from a colony of E. coli that was 

screened for the correct expression vector. 

 

 

Figure 3.17: Scheme for cPCR screening of exconjugants for primaries. A successful primary will have the 

pKC1139 plasmid integrated within the target region of the PKS module. To screen for this pairs of primers were 

designed that would amplify a sequence of DNA across the junction of the integration point. As long as one 

primer is on the plasmid and one is on upstream of the target region, a DNA fragment should be amplified 

regardless of the exact point of integration. 
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(A) 

 

 

Figure 3.18: Confirmation of primary exconjugants by colony PCR. Each set of three bands show PCR 

amplification of the junction regions between inserted vectors and genomic DNA. Each band observed is of the 

expected size, however many lanes do not any bands. This is an intrinsic issue with Streptomyces colony PCR. It 

is unknown whether lanes are missing bands due to a failure of the PCR, or due to the vector not being present 

in the host genome.  

 

This attempt produced several exconjugants for each strain. These were restreaked onto SFM plates 

containing nalidixic acid and apramycin. The exconjugant was cleared of contamination by several 

rounds of restreaking on fresh SFM plates containing antibiotics. The presence of the pKC1139 derived 

construct in the cells was confirmed using Streptomyces cPCR and sequencing. Figure 3.17 shows the 

scheme for screening of primary exconjugants and Figure 3.18 shows the results of the screening.  

 The effectiveness of colony PCR of sporulating Streptomyces colonies was investigated for this 

screening process. A small amount of mycelium was picked, the cells were lysed by boiling in a 50% 

DMSO solution, and the resulting mixture was used as the template for a PCR reaction. While initially 

promising, cPCR required several rounds of optimisation before it could produce products observable 

by gel electrophoresis in the majority of samples. As can be seen in Figure 3.18, the observable bands 
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are clear and of the expected size. However further optimisation is required before Streptomyces cPCR 

can reliably detect successful integration events. 

 The screening revealed only one erythromycin and two monensin primary exconjugants. In 

contrast, every one of the filipin conjugations produced colonies resistance to apramycin, and of those 

all but the FilKS-AT11 construct were confirmed as primaries. Once exconjugants were confirmed, the 

selective pressure of an antibiotic was removed to induce a secondary recombination event and 

removed the integrated plasmid. This is referred to a relaxing and was achieved by inoculating colonies 

into liquid TSBY medium without antibiotics and incubating the cultures at 30°C. Each culture was re-

inoculated after 48 hrs incubation, three times, then finally the cultures were diluted and streaked out 

to single colonies on an SFM plate without antibiotics. The loss of antibiotic resistance was confirmed 

by patching single colonies onto pairs of SFM plates, one without apramycin and one with apramycin. 

The only colonies that lost their resistance to apramycin were derived from S. filipinensis. It is unclear 

whether the relative success of the filipin constructs compared to those of erythromycin and 

monensin is due to chance, or some property of S. filipinensis which lends itself to success with AE. 

 In addition to the loss of apramycin resistance, conferred by the integrated pKC1139 vector, 

putative filipin mutants were screened by PCR. The reasoning behind the PCR screen is outlined in 

Figure 3.19 and the results of the screen are presented in Figure 3.20. This screen is not ideal as it 

relies on the disappearance of a band to identify recombinant DNA. However, considering the number 

of potential recombinants to be screened, this method provided a rapid way to prioritise strains for 

fermentation. 

 

 

Figure 3.19: Scheme for relaxant screening of putative filipin recombinant strains. By using primer pairs that 

amplify across the target region, a wild type strain can be identified. A recombinant strain would not give a 

product. This method is obviously not a reliable way to confirm a recombinant strain but provided a starting 

point for further confirmation. 
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Figure 3.20: Gel images showing the screening for filipin recombinant strains. This screening approach 

identifies all 12 samples of the FilKS-AT relaxant strains and 9 of the FilAT-KR relaxant strains as being putative 

recombinants. In contrast the screening of the PreKS-AT relaxant strains identifies all 12 samples as being wild 

type. 

 

 The first batch of experiments resulted in 53 putative recombinant strains. These were grown 

following the protocol outlined in Chapter 2. After 5 to 7 days of growth the fermentation culture was 

sampled by extraction of 1 ml of culture with 2 ml of ethyl acetate. The ethyl acetate was evaporated 

off, and the remaining residue was dissolved in methanol. The samples were then analysed by LCMS, 

following the procedure in Chapter 2. All but one sample appeared to produce wildtype filipin. The 

remaining sample (sample 2.8.2) gave an LCMS spectrum that showed a profile with the characteristics 

of a filipin-like UV signature, a non-filipin mass, and a shorter retention time than filipin. Figure 3.21 

illustrates the differences between wildtype S. filipinensis, a characteristic sample of a putative 

recombinants, and sample 2.8.2. The shorter retention time of sample 2.8.2 is indicative of a filipin-

related analogue, perhaps generated by a contraction in the number of modules, and the reduction 

in yield is commonly seen in recombinant strains. To test whether this might be a novel filipin 
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derivative I reinoculated the strain from the plate it had been stored on, to repeat the fermentation 

at a larger volume and confirm the result.  

 Unfortunately, despite multiple attempts using liquid media and on SFM agar the strain did 

not grow. The reasons for this are unknown and might be wholly unconnected with filipin biosynthesis. 

It did however raise the possibility that an altered filipin analogue might be toxic to the cells. The 

reduction in the yield I observed in sample 2.8.2 was also a serious concern. To address this a 

production screen was set up using 13 different media. All media were inoculated with 0.5 ml of the 

same seed culture and incubated at 30°C for 5 days. There was an approximately 200-fold difference 

in the production level of filipin between the lowest and highest producing media, with SFM being the 

highest yielding medium. Ethyl acetate extractions of SFM cultures had a strong yellow colour, 

indicative of a high concentration of filipin. The differences are shown in Figure 3.22. Once SFM had 

been identified as the best medium for producing filipin it was used for all further fermentations of S. 

filipinensis. 

Further work focussed on repeating the attempts at AE of S. filipinensis and on maximising the 

output of potential recombinant strains and trying to shorten the time required for analysis. 

Approximately five to ten exconjugants were generated for each of the filipin constructs and these 

were relaxed to generate hundreds of putative recombinants. To maximise the number of putative 

recombinants that could be screened for loss of apramycin resistance, 96 deep-well plates (2ml in 

each well) were adopted for the relaxation stage. These plates contained 1 ml of SFM and a single 

glass bead to prevent clumping. The wells were inoculated from a seed culture from a confirmed 

primary exconjugant, and after several rounds of reinoculation into fresh non-selective media the 

cultures were diluted and spread out to obtain single colonies. These in turn were screened for loss of 

apramycin resistance. Primary exconjugants were screened for loss of production of filipin, resistance 

to apramycin and were also screened by cPCR. Loss of production of filipin is expected if the target 

region has been interrupted by the integrated vector. Figure 3.23 illustrates the loss of production in 

a primary exconjugant. 
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(A) 

 
(B) 

 
(C) 

 
 
Figure 3.21: LCMS analysis of putative recombinant strains. (A) Wildtype S. filipinensis production (B) S. 

filipinensis sample 2.4.4 (C) S. filipinensis sample 2.8.2.  
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Figure 3.22: LCMS analysis of the filipin production screen. Based on the relative intensity of the UV signature 

of filipin SFM media allows an approximate 200-fold increase in yield of filipin compared to YEME without 

sucrose. 

 

 

Figure 3.23: LCMS analysis of the loss of filipin production in a primary. The characteristic peak at 13.9 mins 

has been lost, indicating a loss of filipin production. The peak at 16 mins was always observed with filipin 

production and is most likely a filipin related compound. 
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 Unfortunately, despite the new screening protocols, and the large number of potential 

recombinant strains being fermented and analysed by LCMS no other potential filipin derivatives were 

observed. Perhaps one reason for this was the lack of processing capacity in the lab, which was not 

really set up for such high throughput screening. The total number of potential recombinant strains 

that were generated from the last batch of primaries was approximately 900. Of those only 128 were 

analysed by LCMS. Except for 14 samples, all 128 appeared to produce filipin, matching the molecular 

weight and retention time of wildtype filipin. The remaining 14 samples appeared to have lost filipin 

production, without gaining the ability to make an altered product. This effect has also been observed 

with AE experiments on the antibiotic tylosin 201.  

 

3.3: Concluding Remarks 

 

The work described in this chapter was an attempt to widen the application of AE in Streptomyces spp. 

It began with the optimistic target of applying AE to the nystatin, erythromycin, premonensin, and 

filipin PKS systems, however the scale of that original goal, and the issues found with conjugation into 

the nystatin and to a lesser extent the erythromycin and premonensin producing strains led to a focus 

of the work on the filipin PKS system. Despite this focus, and the large number of putative 

recombinants generated and screened, no new filipin derivatives were characterised. 

 In future work, it would be highly advantageous to mutate S. filipinensis to produce filipin only 

when supplemented. One possible route to this might be through blocking the strain's ability to 

produce the hexylmalonyl-CoA building block required for the last chain-extension step on the PKS. 

FilB has been identified as a 2-octenoyl-CoA reductase that supplies the hexylmalonyl-CoA for filipin 

biosynthesis 227. Knocking out this gene would provide the basis for conditional synthesis, through 

feeding a cell-permeable precursor of hexylmalonyl-CoA to the strain. Having an S. filipinensis strain 

with conditional filipin synthesis would address concerns about generating toxic metabolites and 

would greatly ease analysis of any recombinant strains. 

 A significant barrier to the wider application of AE is that the underlying mechanism behind 

its generation of derivatives is not understood. It is possible that there is a specific requirement for AE 

to function correctly that happens to be found in the rapamycin producing strain, and not in others. 

The fact that this effect has only been recorded once, other than the paper by Wlodek et al. suggests 

that AE is possible in other strains but is extremely rare. This would also explain why a possible filipin 

derivative was observed in sample 2.8.2 but was never repeated. With the benefit of hindsight, it was 
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perhaps premature to begin trying to generalise the technology. The success of AE with rapamycin is 

undeniable, but I believe in the absence of a better understanding of the mechanism, it relied too 

heavily on luck to achieve an effect that had only been observed in a very small number of polyketide 

producing strains. The study of homologous recombination in Streptomyces is decades behind 

research focussing on E. coli 228,229 which makes it difficult to identify the similarities or differences 

required to make a strain amenable to AE. One way to explore this initially would be to continue AE 

on S. rapamycinicus, aimed at another of the metabolites of that strain, such as the long chain linear 

polyene clethramycin 230. It would be of great interest to know whether AE on a different metabolite 

was equally productive.  

 AE is a fascinating technology that if generalised has the potential to bring about a paradigm 

shift in the field of polyketide biosynthesis. The ability to rapidly generate a library of derivatives from 

a single experiment could lead to therapeutic agents with novel activities, improved efficacies, or 

agents that are able to overcome antibacterial resistance, especially if the generation of mutants could 

be linked to a high-throughput selection or screen. 
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Chapter 4: Genome-level analysis of the pseudouridimycin producing 

strain Streptomyces albus DSM40763 

 

4.1 Introduction 

 

As discussed in the introduction, advances in DNA sequencing and genome annotation have provided 

huge benefits to the study of bacterial natural products. Streptomyces and allied genera have 

exceptionally large genomes (8-12 Mbp) and their high G+C % content and frequent regions of 

repetitive DNA pose significant technical problems for sequence analysis. This is reflected in the fact 

that the vast majority of publicly deposited draft genomes are highly fragmented and poorly 

interpretable. However, high-quality, well-annotated, genome sequences are afforded by the in-

house Department of Biochemistry Sequencing Facility and the customised assembly and automated 

annotation pipeline developed by Dr Markiyan Samborskyy. Together with the cluster-finding 

software AntiSMASH this provides an accurate estimate of the biosynthetic potential of a given strain 

and allows recovery of the full sequence of even the largest gene clusters. Their work has confirmed 

that on average a Streptomyces strain houses 20-25 clusters, although an exceptional strain such as 

Streptomyces malaysiensis DSM 4137 has 53 annotated clusters (Samborskyy et al., ms in 

preparation). Typically, most of these clusters do not give rise to detectable products under standard 

laboratory growth conditions. This genomics-based approach is now the method of choice for helping 

identify species and assessing the biosynthetic potential of a strain. However, it is only the first step 

in correctly matching a gene cluster to its product. 

 Pseudouridimycin (PUM) (Figure 4.1) is a nucleoside antibiotic first isolated under the name 

strepturidin in 1993. It was identified through the antibacterial activity of an extract of Streptomyces 

albus culture against the Gram-negative nitrogen-fixing soil bacterium Azotobacter chroococcum 231, 

and tests proved positive for guanidine groups, sugars and amino sugars, and negative for aromatic 

amines, organic acids, amino acids and peptides. A proposal for its structure was made in 2014 232, 

together with a tentative proposal for its biosynthetic pathway. The structure was initially 

characterised using HPLC-HR-ESI-(+)-Orbitrap-MS and IR spectroscopy. A molecular formula of 

C17H27O9N8 was identified by high-resolution mass spectroscopy, and IR spectroscopy revealed the 

presence of amine groups, hydroxyl groups, and amide carbonyls. UV spectroscopy showed 

characteristic absorptions for heterocycles. These insights were combined with the results of 

extensive 1H and 1H-13C 2D-NMR spectroscopy, which identified four distinct spin systems, to complete 
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the structural elucidation. The first spin system was identified as Nα-hydroxylated glutamine, the 

second was a triol-containing carbon chain, supposedly derived from diamino aldopentose, the third 

spin system was identified as 2-aminoimidazole-5-one, and the final spin system was identified as 

uracil. Signals indicative of the connection between these spin systems were also observed, identifying 

the structure seen in Figure 4.1 as strepturidin. 

 PUM was also independently reported by Ebright, Donadio, and colleagues in 2017 233 through 

screening a library of 3,000 actinobacterial and fungal culture extracts for inhibitory activity against E. 

coli RNA polymerase (RNAP) 234. PUM was isolated from two culture extracts with antibacterial activity, 

and it was shown to selectively inhibit bacterial RNAP in both Gram-negative and Gram-positive 

bacterial strains, and against both drug-sensitive and drug-resistant strains. It also showed no cross-

resistance with the potent, and broad-spectrum bacterial RNAP inhibitor rifampicin, exhibiting 

additive antibacterial activity when co-administered with rifampicin (a constituent of the standard 

DOTS treatment for TB). This suggests that PUM acts through a different mechanism to rifampicin, 

which makes it an exciting target for study, and a possible drug lead. 

 

 

Figure 4.1: Structures of (1) strepturidin and (2) pseudouridimycin. Deoxy-pseudouridimycin refers to a loss of 

the N-hydroxyl group. 

 

 The PUM structure shown in Figure 4.1 was independently established 233 by high-field NMR 

but additional 15N-HSQC spectroscopy indicated the uracil moiety was C-linked to C1’ of 6’-amino-

ribose, which HMBC spectra indicated was linked in turn to the glutaminyl moiety at the N6’ of 6’-

amino-ribose. Further data indicated the presence of glycine C-linked to the glutamine Nα, and of 

formamidine C-linked to the glycine Nα. The structure was completed when the absence of a 

glutaminyl Nα signal in the N-HSQC spectrum suggested the presence of a hydroxamic acid, which was 

confirmed by reduction of PUM with TiCl3, yielding deoxy-PUM (Figure 4.1). The stereochemistry of 

PUM shown in Figure 4.1 was identified through hydrolysis and a comparison of the products with 
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commercial standards using GC-MS. The work to characterise PUM structure does not acknowledge 

the earlier report, but it seems likely that strepturidin is actually mischaracterised PUM. 

 The fully elucidated structure of PUM shows several interesting features. Most strikingly it is 

a C-nucleoside, meaning that the uracil base is connected to the sugar through a C-C rather than a N-

C bond. Dr Hui Hong in this laboratory has recently analysed the biosynthetic pathway to the C-

nucleoside malayamycin A and has shown that it is derived from pseudouridine 5'-monophosphate 

(-MP) (Hong et al. (2018) ms. in the press). The other interesting feature is its modular nature, 

apparently the result of a convergent pathway in which 6’-amino-pseudouridine, N-hydroxylated 

glutamine, and guanidinoacetate moieties are then linked together. The work in this Chapter describes 

a genome mining approach to uncovering the PUM gene cluster, with a view to examining the 

biochemistry of the pathway compared to that of malayamycin and exploring the potential for 

preparing analogues of the PUM molecule. At the same time, the genome mining approach would 

allow a detailed overview of the unexplored biosynthetic potential of this strain. 

 

4.2 Results and Discussion 

4.2.1 Whole-genome sequencing of Streptomyces albus DSM40763 

Streptomyces albus DSM40763 was obtained from the DSMZ collection. Whole-genome sequence was 

obtained in-house by Shilo Dickens and colleagues at the NextGen DNA Sequencing Facility in the 

Department of Biochemistry using a combination of shotgun MiSeq and long-range mate-pair MiSeq 

data. Sequence data was assembled into scaffolds, using an in-house pipeline, by Dr. Markiyan 

Samborskyy. Open reading frames were identified and visualised by the genome browser Artemis 235. 

Streptomyces albus DSM40763 is coded as A980 in the Leadlay laboratory strain collection. A980 has 

a genome size of 8.01 Mbp with 6774 putative protein-coding sequences (Figure 4.2). The final 

assembly has a single large scaffold, A980_AS6_SC1, containing 97% of the genome and housing all 

but one of the biosynthetic gene clusters. Seven small scaffolds of decreasing size, which could not be 

mapped to the core sequence due to a lack of overlapping regions, were also obtained. These are 

named A980_AS6_SC2, A980_AS6_SC3, A980_AS6_SC4, A980_AS6_SC5, A980_AS6_SC6, 

A980_AS6_SC7, and A980_AS6_SC8. The final biosynthetic gene is found in A980_AS6_SC2. The G+C 

percentage content of the genome is approximately 72% and the strain does not appear to house a 

plasmid. 
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Figure 4.2: Map of the linear Streptomyces A980 chromosome scaffold 1, comprising 97.5% of the total 

genome. The scale is numbered in megabases. The outermost two rings show genes on the forwards and reverse 

strands, respectively. The coloured bands represent the class of gene; red, secondary metabolism, black, energy 

metabolism, pale blue, regulators, yellow, central metabolism, cyan, degradation of large molecules, magenta, 

degradation of small molecules, dark green, surface associated, orange, conserved hypothetical, pale green, 

unknown, grey, miscellaneous. The third ring shows the essential genes for cell division, DNA replication, 

transcription, translation, and amino acid biosynthesis. The fourth ring shows the genes of secondary 

metabolism. The large gene cluster around the 7 Mbp mark is discussed below. The fifth ring shows the mobile 

genetic elements (blue, transposases, red, prophages or integrated plasmids). The black sixth ring shows the GC 

content. The innermost ring shows the GC bias (khaki, >1, purple, <1). 

 

 

 



98 
 

4.2.2 Phylogenetic studies and whole genome comparisons 

 

To explore the phylogenetic context of A980 a BLAST 175 comparison was made of its 16S rRNA 

sequence to that of other Streptomyces spp. in the NCBI database. This revealed that A980 is correctly 

assigned as S. albus, however the 16S rRNA nearest neighbours were too closely related to produce a 

dendrogram that gave any meaningful information on the phylogeny. Instead a multilocus sequence 

alignment (MLSA) was performed using the sequence of the five housekeeping genes, atpD, gyrB, 

recA, rpoB and trpB 236. The phylogenetic tree in Figure 4.3 shows that A980 is closely related to S. 

albus type strains.  

 

 

Figure 4.3: Phylogenetic tree based on MLSA of five housekeeping gene sequences of A980 and other 

Streptomyces spp. Evolutionary history was inferred using the Maximum Likelihood Method 237. All positions 

containing gaps were eliminated and there were 2514 nucleotides in the final dataset. Evolutionary analysis was 

conducted by MEGA7 238.  

 

Comparisons of 16S rRNA and housekeeping genes offer useful information on the phylogeny 

of an organism but give little information on the differences across the rest of the genome. To address 

this MUMmer3, a bioinformatics software for the rapid alignment of whole or draft genome 

sequences 239, was used to compare the genome sequence of A980 against those of the type strains 
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S. albus NRRL B-1811 and S. albus NBRC 13014. The alignments were generated and visualised as dot 

plots by Dr. Markiyan Samborskyy (Figure 4.4). The genome comparisons illustrated by Figure 4.4 show 

that both the type strains NRRL B-1811 and NBRC13014 are highly homologous to A980, with no major 

DNA rearrangements. The only difference of any significance occurs at the 3’ end of the genome. A980 

is slightly longer at the 3’ end, and there is a break in the homology between A980 and the type strains, 

where A980 has additional nucleotides not found in the other two strains. This is probably the large 

gene cluster highlighted in Figure 4.3. The genomes for both NRRL B-1811 and NBRC13014 were 

contained within over 100 scaffolds which had to be aligned against the A980 sequence before the 

comparison could be made. 

 

 

Figure 4.4: Whole-genome sequence alignments of A980. The analysis was conducted in MUMmer3 with a 

minimum value of 128 base pairs. Red, forwards strand match, blue, reverse strand match. (A) Comparison 

against NBRC13014. (B) Comparison against NRRL B-1881. 
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4.2.3 Annotation of the genome of Streptomyces albus DSM40763 

 

After sequencing and assembly of the A980 genome an initial detection and annotation of gene 

clusters was carried out using AntiSMASH 4.0 178. This analysis revealed 27 gene clusters across two 

scaffolds. The biosynthetic gene clusters tend to be located at either end of the linear chromosome, a 

feature observed in other Streptomyces spp. 173. The putative pseudouridimycin gene cluster was not 

directly identified by AntiSMASH. However, screening of the A980 genome sequence with a 

biosynthetic gene, TruD, from the pathway to the C-nucleoside malayamycin A, identified a likely 

candidate, as described later in this Chapter, which had been listed by AntiSMASH under "Other". The 

full list of annotated gene clusters is shown in Table 4.1. 

 The 27 gene clusters revealed by AntiSMASH analysis were manually investigated to further 

elucidate the biosynthetic potential of A980. Six gene clusters were annotated as terpene biosynthetic 

gene clusters. The putative products of five of the clusters, 2,3,8,14, and 19 were identified as 

phytoene, geranylgeranyl pyrophosphate, dehydrosqualene, geosmin, and selinadiene, respectively, 

by comparison against the PDB database. The final cluster annotated as a terpene, cluster 26, 

contained several putative biosynthetic genes including a putative cyclodipeptide synthase and a 

putative phytoene synthase. Homologous gene clusters with this combination of genes have 

previously been identified and proposed to generate a fused cyclodipeptide-terpene product 240.  

 Two putative siderophore gene clusters were identified; clusters 11 and 18. When analysing 

cluster 11 with BLAST, none of the three biosynthetic genes had a high similarity with any sequences 

in the PDB database. Cluster 18 however, contains four genes which when compared to the PDB 

database with BLAST showed high similarity to the four genes responsible for the biosynthesis of the 

iron chelator, desferrioxamine 241. 

 Cluster 9 is annotated as a putative bacteriocin biosynthetic gene cluster. However, the cluster 

does not contain any genes which might encode a core peptide, or any posttranslational modification 

enzymes expected in a true bacteriocin gene cluster. Further analysis using BAGEL3, an online platform 

for identification of genes encoding bacteriocins and bactericidal post-translationally modified 

peptides 242, found no evidence of bacteriocin biosynthetic genes in the region identified by 

AntiSMASH. 

Upon comparison against the PDB database cluster 17 appears to contain the three genes 

necessary for ectoine biosynthesis; diaminobutyric acid acetyltransferase, diaminobutyric acid 

transaminase, and ectoine synthase 243. 
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 AntiSMASH identified two putative lanthipeptide gene clusters; cluster 4 and 7. Cluster 4 is 

likely a class I lanthipeptide due to the presence of LanB dehydratase and LanC cyclase homologues 

responsible for the formation of a carbon-carbon double bond and the cyclisation of the precursor 

peptide 244. Cluster 7 contains a gene, ORF01056, with a central kinase-like domain and a C-terminal 

LanC-like domain, indicative of a class III lanthipeptide.  

 Two putative lassopeptide gene clusters were identified; clusters 12 and 27. However a closer 

examination of the gene clusters indicated that neither would be capable of generating lassopaptides. 

The genetic architecture required for lassopeptide biosynthesis is well known, composed of three 

genes that are strictly necessary for the biosynthesis 245. A precursor peptide encoded by the A gene 

is processed by the B and C maturation enzymes to generate the lasso fold. All lassopeptide gene 

clusters share homologues of these genes. Neither cluster 12 nor 27 held homologues of these genes, 

suggesting that they have been erroneously annotated. 

 AntiSMASH identified four nonribosomal peptide synthase (NRPS) gene clusters; clusters 1, 

13, 21, and 25. Cluster 1 encodes an unknown tripeptide. Cluster 13 contains a single NRPS gene 

containing single condensation, adenylation, peptidyl carrier (PCP) and thioesterase domains, 

suggesting a putative iterative NRPS. A second gene is a putative methyltransferase. Cluster 21 

appears to encode an unknown dipeptide. AntiSMASH predicts cluster 25 to generate a pentapeptide, 

however the cluster is not as well organised as expected for a functional NRPS gene cluster. The NRPS 

genes are separated by at least 10 kb of unrelated genes, there are two genes with adenylation 

domains and no PCP domains, and no clear initiation module. Biochemical and genetic investigation 

will be required to better elucidate this gene cluster. 

 Two polyketide synthase (PKS) gene clusters were identified by AntiSMASH; clusters 16 and 

23. Cluster 16 is annotated as a Type II PKS. A BLAST analysis against the PDB database identifies two 

genes; ORF08410 and ORF08411 as homologues for the KSα and KSβ required for actinorhodin 

biosynthesis 92,246. Cluster 23 encodes an unknown type 1 PKS with one loading module and seven 

extension modules, the last including a thioesterase (TE) domain. Each extension module contains a 

ketoreductase (KR) domain, and modules 1 and 2 contain dehydratase (DH) domains. Assuming the 

colinearity principle of PKSs, this gene cluster encodes a polyene/ol. 

 AntiSMASH also identified four type 1 PKS hybrids. Cluster 10 is annotated as a PKS-NRPS 

hybrid, cluster 15 as a PKS-lanthipeptide, cluster 20 as a PKS-oligosaccharide, and cluster 24 is 

annotated as a PKS-terpene hybrid. Cluster 10 encodes two putative functional PKS genes, two 

putative functional NRPS genes, and two genes containing lone adenylation domains. The two PKS 

genes include one loading module and 3 extension modules, while the two NRPS genes include one 
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loading module and one extension module. The PKS and NRPS genes are held in separate genes, so 

there is unlikely to be direct functional hybridisation between the NRPS and PKS proteins. Instead a 

possible biosynthetic pathways could include the PKS and NRPS components being synthesised 

individually, then coupled together by a ligase, or in a cyclosporin-like pathway 247, the PKS could be 

converted to an amino acid before being incorporated into the natural product by the NRPS enzyme. 

Cluster 15 contains an interesting mixture of PKS genes and lanthipeptide biosynthetic genes. It is 

annotated as a lanthipeptide-PKS hybrid; however, this hybrid cluster is most likely several clusters, 

incorrectly annotated. It contains two genes that encode precursor peptides, only one of which has 

local LanB dehydratase and LanC cyclase homologues. There is also a gene encoding a PKS loading 

module, and several other genes that encode independent putative PKS biosynthetic enzymes.   

Cluster 20 appears to encode the biosynthetic genes for a large polyketide. It contains seven 

putative PKS genes containing one loading module and 20 extension modules, the last containing a TE 

domain. There are also two putative glycosyltransferase enzymes, suggesting that this polyketide is 

glycosylated. The final hybrid gene cluster is cluster 24. The more interesting biosynthetic genes of 

this cluster are a putative PKS gene that appears to be a single extension module, and a 

squalene/phytoene-like terpene synthase. The lack of a loading module hints that this PKS gene could 

encode a single module iterative type I PKS such as the PKS responsible for the biosynthesis of phenolic 

moiety in avilamycin 248, or for the biosynthesis of the enediyne in calicheamicin 249. The cluster also 

contains a putative oxidoreductase, aminotransferase and carboxylate-amine ligase, which could be 

responsible for the amination of either the terpene or the iterative PKS product and subsequent 

ligation with the other compound to give the final product. 

Clusters 5, 6, and 22 were annotated as "Other". At first glance, none of the three appear to 

be functional biosynthetic gene clusters. However closer investigation of cluster 6 reveals several 

genes of interest, including a TruD homologue. 
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Table 4.1: Biosynthetic gene clusters found in A980. Clusters were analysed using AntiSMASH 4.0. 

Gene cluster limits were kept from AntiSMASH predictions. Annotated gene clusters were manually 

identified from key biosynthetic genes using BLAST 175. 

 
Cluster AntiSMASH 4.0 

prediction 

Nucleotide  Gene ID  Annotation 

 From To From To  

A980_AS6_SC1      

1 NRPS 75234 128829 114 190 Unknown 

2 Terpene 148468 172932 219 262 Phytoene 

3 Terpene 221673 243559 338 373 Geranylgeranyl 

Pyrophosphate 

4 Lanthipeptide 345987 370632 535 567 Unknown 

5 Other 408817 449653 616 671 - 

6 Other 634198 675436 955 1016 PUM  

7 Lanthipeptide 691897 725605 1042 1090 Unknown 

8 Terpene 939670 966374 1423 1463 Dehydrosqualene 

9 Bacteriocin 1434686 1445516 2150 2167 Unknown 

10 Type I PKS-NRPS 1577987 1641100 2369 2440 Unknown 

11 Siderophore 1782846 1798150 2602 2620 Unknown 

12 Lassopeptide 2545416 2568398 3702 3731 Unknown 

13 NRPS 2718705 2762826 3953 4012 Unknown 

14 Terpene 5505171 5527402 7965 7999 Geosmin 

15 Lanthipeptide-Type I 

PKS 

5746467 5797885 8324 8399 Unknown 

16 Type II PKS 5783012 5825590 8372 8441 Actinorhodin-like Type II 

PKS 

17 Ectoine 5995802 6006206 8685 8697 Ectoine 

18 Siderophore 6074265 6086076 8811 8819 Desferrioxamine 

19 Terpene 6247497 6284125 9080 9144 Selinadiene 

20 Type I PKS-

Oligosaccharide 

6883231 7074071 10057 10199 Unknown 

21 NRPS 7394703 7441235 10671 10738 Unknown 

22 Other 7455353 7498613 10763 10815 - 

23 Type I PKS 7486455 7567810 10802 10885 Unknown 

24 Type I PKS-Terpene 7586501 7642165 10916 11006 Unknown 

25 NRPS 7632513 7711931 10992 11094 Unknown 

26 Terpene 7728151 7760470 11113 11161 Unknown 

A980_AS6_SC3      

27 Lassopeptide 9383 31822 10 38 Unknown 
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4.2.4 Bioinformatic analysis of uncharacterised gene clusters 

 

Four uncharacterised biosynthetic gene clusters were identified from the AntiSMASH 4.0 

analysis of the whole-genome sequence of A980. These clusters were chosen for their potential to 

generate novel compounds, or because their annotated gene cluster required further deconvolution 

to understand the biosynthetic potential. In the following section clusters 15 (a lanthipeptide-PKS 

hybrid), 16 (an actinorhodin-like type II PKS), 20 (a large type I PKS-oligosaccharide), and 26 (a terpene) 

are analysed bioinformatically to assess their potential to generate novel chemical diversity. The 

analysis and predictions were reasoned from comparative sequence analysis with homologous genes 

and gene clusters and where possible by study of enzyme active sites. 

 

Cluster 15: a novel lanthipeptide-PKS hybrid natural product? 

 

AntiSMASH identifies cluster 15 as a lanthipeptide-PKS hybrid gene cluster. This would certainly 

generate novel chemical diversity and have intriguing biosynthesis. Gene clusters containing 

lanthipeptide and PKS elements have been identified before, such as the GCF133 family of 

biosynthetic clusters where a LanKC homologue appears beside type II PKS genes 250. Cluster 15 spans 

a region of 51.4 kbp and contains 47 contiguous open reading frames encoding two precursor 

peptides, one pair of LanB and LanC homologues, another smaller LanB homologue, and one PKS 

enzyme. There are also ORFs encoding an acyl-CoA synthetase, two acyl-CoA dehydrogenases, a FabH-

like protein, an FkbH-like protein, an ACP, a TE, and a P450. There is also a 4’-phosphopantetheinyl 

transferase, an uncharacterised FAD-binding enzyme, one transport related enzyme, four regulatory 

enzymes and 21 ORFs annotated as ‘other’. The gene organisation of cluster 15 is shown in figure 4.5. 

 

 

Figure 4.5: Organisation of the core biosynthetic gene cluster 15 in A980 
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It becomes clear that AntiSMASH has picked up two distinct biosynthetic gene clusters. Cluster 

15a encodes a putative class I Lanthipeptide where the LanB and LanC homologues services two 

precursor peptides. One of those peptides, ORF08368, has been embedded in the middle of another 

cluster. It is unlikely that the products of the two clusters interact, but the location of ORF08368 raises 

questions regarding the origin of this genetic architecture. Cluster 15b appears to encode a natural 

product made up of products from polyketide and fatty acid synthases. The PKS gene encodes only 

one module containing one KS domain, one AT domain and an ACP domain. The substrate specificity 

of the AT domain is predicted to be malonyl-CoA by AntiSMASH, using the Minowa substrate 

specificity predictor 251. The PKS modules is unlikely to be a type II iterative system, due to the lack of 

the two ketosynthase domains, KSα and KSβ, typical of such systems 252. The product generated by this 

gene cluster will probably only have a single malonyl moiety.  

 The FabH and FkbH homologues give further clues as to what class of compound this gene 

cluster might generate. FabH is involved in type II fatty acid synthesis. It is known to condense malonyl-

ACP with acetyl-CoA, yielding acetoacetyl-CoA 253. The protein which gives its name to the FkbH family 

of enzymes is involved in the biosynthesis of the immunosuppressant FK520 254. It catalyses the 

formation of glyceryl-CoA, as part of the methoxymalonyl-CoA biosynthesis, an exotic building block 

used in the biosynthesis. The FkbH family of enzymes contain a central domain that is highly 

homologous to phosphatases from the haloacid dehalogenase family 255. When FkbH homologues are 

aligned a subfamily of enzymes with an additional N-terminal extension appear. Tmn16 is an FkbH 

family enzyme with this N-terminal extension. It catalyses the first step in the formation of the 

tetronate moiety in the tetronomycin biosynthesis 256. When the N-terminal extension was removed, 

the truncated Tmn16 was unable to transfer the glyceryl moiety to the downstream ACP, halting 

synthesis 256. Investigation of FkbH homologues with the N-terminal extension reveals that they are 

all involved in tetronate formation, providing a useful marker to identify the subfamily of FkbH family 

enzymes and the class of natural product they are used to generate. When the FkbH homologue in 

cluster 15b is aligned with several FkbH family enzymes of both types it clearly shows a N-terminal 

extension, indicating it is involved in tetronate formation (Figure 4.6). Tetronate ring formation 

requires several genes; an FabH-like protein, an FbkH-like protein and an ACP. All of these are present 

in cluster 15b, making it very likely that cluster 15b generates a compound with a tetronate moiety. 
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Figure 4.6: Sequence alignment of ORF08367 from A980 with FkbH homologues. The presence of an N-terminal 

extension indicates enzymes involved in tetronate formation. The N-terminal extension is highlighted in yellow. 

Sequences were aligned with Clustal Omega. 

 

Cluster 16: an actinorhodin-like type II PKS? 

 

Cluster 16 is an uncharacterised biosynthetic gene cluster which appears to encode an actinorhodin-

like type II PKS. The cluster spans 42.6 kbp and contains 47 contiguous open reading frames. The core 

biosynthetic genes in this cluster (orf08400, orf08410, and orf08411) encode an ACP and two beta-

ketoacyl synthases, which share high identity scores with the KSα and KSβ domains from actinorhodin 

biosynthesis, respectively. The rest of the biosynthetic genes in cluster 16 consist of; a type II TE, three 

dehydrogenases, two cyclases, one of which is identical to the F2 cyclase in tetracenomycin 

biosynthesis 257, and two acetyl-CoA carboxylases. There are also two SARP family transcriptional 

regulators and a multidrug efflux enzyme, similar to the actinorhodin transporter form S. coelicolor. 

The gene cluster organisation is shown in Figure 4.7. A section of the gene cluster (orf08398 to 

orf08423) containing the core biosynthetic genes is conserved across several other Streptomyces spp 

as identified by a BLAST homology search. The homologues can be found in Streptomyces sp. 

HPH0547, Streptomyces sp. AA1529 and Streptomyces flavogriseus, the xantholipin producer 258 and 

show near identical gene arrangement, except for a set of five ORFs containing the ACP and cyclase, 

which is inverted. The conservation of this gene cluster across species encourages the view that the 

cluster may be functional and expressed under certain conditions. 
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Figure 4.7: Organisation of the core biosynthetic gene cluster 16 in A980. 

 

 The genes contained by cluster 16 strongly implicate an aromatic type II polyketide product 

as the end product of the pathway. The extension unit used in the biosynthesis of this product is most 

likely malonyl-CoA, as indicated by the presence of acetyl-CoA carboxylases (though enzymes 

annotated as acetyl-CoA carboxylases often also accept propionyl-CoA). The number of extension 

units in the product is likely to closely resemble the actinorhodin biosynthetic pathway due to the 

similarity between the respective KSα and KSβ proteins of each pathway. KS-CLF didomains are known 

to have a series of ‘gates’ within the tunnel that the growing polyketide extrudes into. These gates can 

be open or closed depending on the size of the amino acid residues at those locations 259. The length 

of the growing chain is controlled by these gates, as the chain extension appears to halt once it reaches 

a closed gate. However, the true number is unsafe to predict, and biochemical evidence is needed.  

 Actinorhodin biosynthesis starts with the condensation of one starter unit and seven extender 

malonyl units into the octaketide PKS product. At the heptaketide stage the chain has reached the end 

of the tunnel, closed off by a gate. The final extension causes the chain to buckle, allowing for 

intramolecular cyclisation 92. This is followed by series of reduction and spontaneous and catalysed 

cyclisations. After the final cyclisation the scaffold is decorated by hydroxylation at the C-6 and C-8 

positions 260 followed by dimerization to form actinorhodin (figure 4.8). 
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Figure 4.8: Actinorhodin biosynthetic pathway. (1) eight malonyl-CoA used to generate the polyketide 

backbone (2) bicyclic intermediate (3) (S)-DNPA (4) 6-deoxy-dihydrokalafungin (5) dihydrokalafungin (6) 8-oxy-

dihydrokalafungin (7) actinorhodin. 

 

The putative biosynthetic pathway encoded by cluster 16 appears to be an unremarkable type 

II PKS, however the presence of different enzymes with high sequence identity to genes found in 

different type II PKS gene clusters hints at an interesting evolution. Perhaps this is an example of a 

relatively new gene cluster formed by the combination of multiple other clusters and hasn’t had time 

for the individual genes to diverge. Whatever the case, this gene cluster warrants further investigation. 

 

Cluster 20: a novel PKS-oligosaccharide? 

 

Cluster 20 is annotated by AntiSMASH as a type I PKS oligosaccharide. The cluster appears to encode 

a large polyol tailored with multiple sugar moieties, indicated by the seven glycosyltransferase genes 

found in the cluster. Cluster 20 is huge, spanning 190.8 kbp. Its core biosynthetic genes consist of 

seven type I PKS genes encoding a starter module and 20 extension modules with a terminal type I TE 

domain. The cluster also contains many post-PKS tailoring enzymes; three aminotransferases, three 

epimerases, three monooxygenases, two oxidoreductases, and seven glycosyltransferases in addition 

to drug resistance transporters and several LuxR transcriptional regulators. Figure 4.9 shows the 

organisation of the gene cluster. 
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Figure 4.9: Organisation of the core biosynthetic gene cluster 20 in A980. 

 

From an understanding of the relationship between the sequence of amino acid residues and 

the function of PKS domains, as discussed in the introduction, the specificity of each domain can be 

predicted. There is one loading AT domain, and 20 extension AT domains. Nine of the AT domains are 

specific for methylmalonyl-CoA, having the characteristic YASH motif, the remaining 12 are specific 

for malonyl-CoA, as indicated by a HAFH motif 104,135. There are 19 KR domains, as module 14 lacks a 

KR, despite having a DH domain. Seven of the KR domains have the characteristic LDD motif, indicating 

they are B type KR domains 137. The remaining KR domains are A type, and three of the them are A2 

type, as indicated by the conserved WxxxxH motif in the catalytic site 137. The six DH domains found in 

this PKS all have the characteristic motifs required for activity 152, however the DH from module 14 

won’t have any activity due to the lack of a KR domain in that module to generate the necessary 

hydroxyl group. Module 16 also has a ER domain that appears to be active. The KS in the loading 

module was confirmed as a starting KS by the presence of the characteristic QASS motif. Figure 4.10 

summarises the sequence alignments and characteristic sequence motifs and Figure 4.11 shows the 

hypothetical full-length predicted polyketide after release from the PKS. 
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Figure 4.10: Sequence alignments of cluster 20 PKS domains and amino acid motifs conferring activity. The 

YASH motif indicates a methylmalonyl-CoA specific AT domain. The HAFH motif indicates a malonyl-CoA specific 

AT domain. The LDD motif indicates a B-type KR domain. The WxxxxH motif indicates an A2-type KR domain. 

Sequences were aligned with Clustal Omega. 

 

 

Figure 4.11: Predicted polyketide intermediate from cluster 20 PKS. 
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 The presence of a pair of dienes in the polyketide backbone at first suggested cluster 20 may 

encode a novel bafilomycin 261, however the polyketide generated by cluster 20 is far larger than any 

bafilomycin class molecule, and the dienes are too far apart to form the characteristic bafilomycin 

structure. The PKS genes do not have any known homologues so this cluster likely encodes a novel 

polyketide scaffold. The length of the polyketide backbone is longer than usual, but not unexpectedly 

large 179. The post-PKS tailoring enzymes however, are of interest. The cluster contains three 

aminotransferase genes that are labelled as eryC1 homologues (ORF10069, ORF10071 and 

ORF10132). EryC1 is involved in erythromycin biosynthesis either as a structural gene in the formation 

of the deoxyamino-sugar desosamine 66. On closer inspection only ORF10069 is a close homologue to 

eryC1, but the other two are homologous to enzymes involved in sugar biosynthesis. The cluster also 

contains several glycosyltransferases. At least one appears to be a true biosynthetic 

glycosyltransferase, while the others appear to be involved in antibiotic self-resistance. These 

glycosyltransferase enzymes will glycosylate sugar moieties on the molecule and once the product is 

transported outside the cell the molecule is converted back to the antibiotic by an extracellular 

hydrolysis enzyme 262. Cluster 20 also has an NDP hexose 2,3-dehydratase, and an NDP hexose 3-

ketoreductase, which are both involved in 2,6-dideoxysugar biosynthesis 263. There is also a putative 

epimerase, and a putative 3,4-ketoisomerase to further modify the sugar molecule, which may also 

be aminated by one of the aminotransferase enzymes. The putative sugar biosynthesis is summarised 

in Figure 4.12.  

Finally, there are also two genes that are implicated in polyisoprenoid biosynthesis. ORF 10113 

is a putative homologue of a polyisoprenoid binding protein from Thermus thermophilus and a 

member of the YceI family of enzymes that are involved in isoprenoid metabolism, transport, or 

storage 264. ORF10137 is a putative menaquinone biosynthetic enzyme, also from Thermus 

thermophilus. 
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Figure 4.12: TDP-deoxysugar biosynthesis. (1) 2,3-dehydratase (2) 3-ketoreductase (3) epimerase (4) 3,4-

ketoisomerase (5) aminotransferase. 

While the exact product of this gene cluster is difficult to predict, the product is definitely 

novel, as there are no similar PKS gene clusters in the database. It appears to be a novel combination 

of type I PKS and isoprenoid, but further investigation is required to properly characterise the cluster. 

The first attempts at studying this cluster should begin by ensuring the cluster is active under normal 

laboratory conditions. Knocking out or interrupting key biosynthetic genes and then comparing the 

fermentation profiles of the mutant and wildtype can be an effective method for this. It is also possible 

to take advantage of recent advances in overexpression mutants. The cluster has three LuxR family 

transcriptional regulators, two FscRIII homologues and one FscRIV homologue (from the candicidin 

biosynthetic pathway 265). These are positive regulatory genes, and can be overexpressed by 

introducing a strong promoter to boost expression of the gene cluster and increase the yield of the 

product 179.  

 

Cluster 26: a hybrid cyclodipeptide-terpene? 

 

Cluster 26 spans 14.0 kbp, however the core biosynthetic genes only cover 3.3 kbp. The core cluster 

contains a phytoene synthase, a cyclodipeptide synthase (a family of peptide bond-forming enzymes 

that utilise two amino acids activated as aminoacyl-tRNA for the synthesis of cyclodipeptides 266), and 

two methyltransferases. The extended cluster also has a hydrolase and oxidoreductase. The presence 

of a LuxR transcriptional regulator encourages the view that this is a real biosynthetic cluster that may 

be active or has the potential to be activated. Figure 4.13 shows the organisation of cluster. 

 

 

Figure 4.13: Organisation of the core biosynthetic gene cluster 26 in A980. 

  



113 
 

The presence of a cyclodipeptide synthase in close proximity to a phytoene synthase is 

unusual and hints at a novel hybrid structure. Cyclodipeptides are widespread in nature and exhibit a 

broad variety of biological activities 267. They are typically under the control of LuxR regulators, and 

are commonly associated with a range of tailoring enzymes such as oxidoreductases, hydrolases, 

methyltransferases and peptide ligases 267, however an association with terpene biosynthetic genes is 

unusual. One study by Skinnider et al. aimed to group genetically encoded cyclodipeptides in an effort 

to create an online tool to facilitate genome mining of cyclodipeptides. They identified a family of 

cyclodipeptide gene clusters that contained terpene biosynthetic machinery. This class of 

cyclodipeptide synthases had a methyltransferase domain fused to the C-terminus 240. When the 

cyclodipeptide synthase in cluster 26 is inspected by BLAST analysis, a methyltransferase domain is 

revealed in the C-terminus. This evidence strongly supports the view that the product of cluster 26 is 

a novel cyclodipeptide-terpene hybrid. 

 

4.2.5 Identification of the putative pseudouridimycin biosynthetic gene cluster 

 

Pseudouridine () has been referred to as the fifth base, because it is the most abundant post-

transcriptional alteration found in Nature 268. Several pseuduridine synthases have been identified, 

usually named from their counterparts in E. coli. The reaction they catalyse uses as substrate a 

preformed tRNA or other ncRNA, and each enzyme isomerises one or more specific uridine residues 

to pseudouridine () 269. The  moiety in the PUM structure could be generated through several ways, 

which will be discussed in detail in the next chapter. One of those could be through a dedicated 

pseudouridine synthase, such as the TruD-like 270 enzymes found by Dr Hui Hong in the recently-

characterised gene clusters for the C-nucleoside malayamycin A (Hong et al., (2018) ms. in the press) 

from Streptomyces malaysiensis DSM14702 and Streptomyces chromofuscus. The sequence of TruD 

from S. malaysiensis was used as a probe in a BLAST search of the S. albus DSM40763 (A980) genome, 

yielding only one significant hit (43% identity, 56% similarity). The sequence of this putative A980 TruD 

homologue was aligned with the authentic TruD enzymes using Clustal Omega (Figure 4.14). It shares 

regions of conserved sequence and possesses the essential active site aspartic acid residue within one 

of these conserved regions.  
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Figure 4.14. Sequence alignment of TruD family of tRNA pseudouridine synthases. The sequences of TruDs 

[TruD_SM: TruD from Streptomyces malaysiensis; TruD_SC: TruD from Streptomyces chromofuscus; TruD_SA: 

TruD from Streptomyces albus A980; TruD_EC: TruD from E. coli (accession no. AQZ29382)] were aligned using 

Clustal Omega. The catalytic aspartate is denoted with an asterisk. 

  

Further evidence that this gene was involved in the biosynthesis of PUM came when the genes 

flanking the TruD homologue were investigated. In close proximity to the TruD gene are two putative 

ligases and an amidinotransferase. Retrobiosynthesis applied to the structure of PUM shows that 

similar enzymes would be appropriate to produce PUM. The pseudouridine moiety would require 

modification before it would be suitable for ligation. This gene cluster also contains a putative Glucose-

Methanol-Choline (GMC) oxidoreductase and an aminotransferase. This cluster is clearly a plausible 

candidate for PUM biosynthesis. 
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4.3 Concluding remarks 

 

The whole-genome sequence of a putative pseudouridine producer, Streptomyces albus DSM40763 

(A980), has been obtained through shotgun DNA sequencing using the Illumina platform and 

assembled into three scaffolds, with the largest scaffold containing 97% of the whole genome. 

Phylogenetic analysis has clarified that A980 is a true S. albus and shares high similarity with both 

NBRC13014 and NRRL B-1881 S. albus type strains. 

Initial annotation was performed by AntiSMASH 4.0, and subsequent manual curation has 

revealed a number of novel biosynthetic gene clusters, including several clusters that appear to govern 

production of novel classes of natural products. The level to which this genome can be analysed for 

its potential to generate novel chemical diversity is due in large measure to the availability of a high-

quality genome sequence. Large biosynthetic gene clusters such as cluster 20 cover huge regions of 

the genome. Cluster 20 itself spans over 190 kbp, which is larger than many of the genome scaffolds 

often found in online databases. Proper genome-level analysis is impossible with such fragmented 

genomes. The number of biosynthetic gene clusters identified in this chapter that deserve further 

investigation illustrates the potential of genome mining and highlights how vital high-quality genome 

sequences are to the field. Finally, the pseudouridimycin gene cluster was identified with high 

confidence. Detailed analysis and characterisation of the cluster is discussed in the next Chapter. 
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Chapter 5: The Enzymology of Pseudouridimycin Biosynthesis 

 

5.1: Introduction 

5.1.1: Structure and Function of Nucleoside Antibiotics 

 

Nucleoside antibiotics are a large, diverse family of natural products derived from nucleosides and 

nucleotides, a number of these are illustrated in Figure 5.1. They are produced almost exclusively by 

Streptomyces and related actinomycetes. Nucleoside antibiotics exhibit a broad range of biological 

activities, such as antibacterial, antifungal, antiviral, immunosuppressive, and antitumor activities 271. 

Such a broad spectrum of activities is due to the involvement of nucleosides and nucleotides in almost 

all cellular metabolism 272. Nucleoside antibiotics can be classified into three major groups based on 

their biological functions; inhibitors of peptidoglycan biosynthesis, by competitively inhibiting MraY, 

the translocase that initiates the lipid cycle of peptidoglycan biosynthesis 273, inhibitors of fungal cell 

wall biosynthesis, by competitively inhibiting fungal chitin synthases, and inhibitors of protein 

biosynthesis, but competitively inhibiting peptidyl transferase 272. Nucleoside antibiotics often contain 

unusual structural features, arising from unusual enzymatic reactions. The rapid expansion of available 

genomic data has allowed biosynthetic studies of nucleoside antibiotics to accelerate, providing the 

foundation for engineering of the biosynthesis of these molecules. 

 Nikkomycins are potent competitive inhibitors of fungal chitin synthases as they mimic the 

natural substrate for the synthase, UDP-N-acetylglucosamine (Figure 5.2). Nikkomycin is nontoxic to 

mammals, making it a potentially valuable antifungal therapeutic agent. Phase I clinical trials have 

investigated the dosing effects of nikkomycin Z for the treatment of coccidioidomycosis 274. It is also 

an effective treatment for the ecologically significant fungal infection caused by Batrachochytrium 

dendrobatidis which is threatening several endangered species of frogs 275. Nikkomycins are composed 

of a di- or tri-peptide backbone containing a non-proteinogenic amino acid residue, hydroxypyridyl-

homothreonine (HPHT), and an aminohexuronic acid that is N-glycosidically linked to a uracil base (in 

nikkomycins Z and J) or to a 4-formyl-4-imidazolin-2-one base (in nikkomycins X and I) 272. The isolation 

of the nikkomycin biosynthetic cluster from S. tendae and its heterologous expression in S. lividans 

enabled a thorough investigation into the biosynthesis of this family of compounds 273. It has been 

postulated that the peptide and nucleoside fragments of nikkomycin are biosynthesised separately, 

then linked by a peptide bond 276. Analysis of the gene cluster led to the prediction of eleven enzymatic 

steps required for the generation of the peptide core 277, and feeding experiments indicated that the 
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HPHT moiety is generated from L-lysine 278. The exact biosynthetic pathway for the aminohexuronic 

acid remains to be determined, although uridine and pyruvate have been established as the metabolic 

precursors 279. 

 

 

Figure 5.1: Examples of nucleoside antibiotics from Streptomyces spp. (1) pacidamycin 1 (2) malayamycin A (3) 

sinefungin (4) amicetin. 

 

 

Figure 5.2: Nikkomycin Z mimics fungal chitin synthase substrate UDP-N-acetylglucosamine. (1) nikkomycin Z 

(2) UDP-N-acetylglycosamine. 
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 Another class of nucleoside antibiotics targets bacterial RNA polymerase (RNAP) to inhibit 

RNA synthesis. RNAP is particularly suitable as a target for broad-spectrum antibacterial therapy as 

bacterial RNAP is an essential enzyme, bacterial RNAP subunit sequences are highly conserved, and 

the bacterial RNAP subunit sequences are not highly conserved in eukaryotic RNAP, which provides a 

basis for selectivity 280. Rifampin is a member of this class of molecules and is part of the rifamycin 

family of antibiotics. It is a potent and broad-spectrum semi-synthetic antibiotic whose precursor is 

obtained from the fermentation broth of S. mediterranei. It is active against most Gram-positive 

bacteria, some Gram-negative bacteria, and mycobacteria 281. The bacterial RNAP inhibitory activity 

was known to totally block formation of the second or third phosphodiester bond in the growing RNA 

chain 282, however it had no effect of RNAP which had already started synthesising a long transcript. 

These insights led to a hypothesis that rifampicin’s activity is conferred by a steric block of the path 

the RNA chain took, which was confirmed later by a crystal structure of rifampicin in complex with Taq 

RNAP from E. coli 283 (figure 5.3). Rifampin was shown to bind to the β subunit of the RNAP, adjacent 

to the RNAP active site, which also matched the findings that mutations conferring rifampin resistance 

are almost exclusively found on the rpoB gene, encoding the β subunit 284. 

 

Figure 5.3: Structure of rifampin and the three-dimensional structure of Taq RNA polymerase in complex with 

rifampin. Adapted from Campbell et al. 283. 

 Unfortunately, these mutations occur with high frequency, leading to rifampin-resistant 

strains of bacteria. This has led the medical community to a voluntary restriction of its use for 

treatment of TB or in emergencies 283, and to a search for alternative front-line drugs. The only other 

antibiotics currently in use targeting bacterial RNAP are the macrocyclic polyketides known as 

lipiarmycins (fidaxomicins) which function by binding to the end of the RNAP ‘clamp’, trapping the 

RNAP in an open state and therefore allosterically inhibiting RNAP-DNA interaction 285. Lipiarmycins 
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suffer from the same high frequency of mutations giving rise to bacterial resistance as rifampin. 

Therefore, there is an urgent need for new antibacterial drugs that inhibit this important target. 

 

5.1.2: Structure and Function of Pseudouridimycin 

 

As discussed in the previous chapter, one such molecule has been identified as a selective bacterial 

RNAP inhibitor. Pseudouridimycin (PUM) is a nucleoside antibiotic with the favourable characteristics 

of no cross-resistance with other bacterial RNAP inhibitors, additive antibacterial activity when co-

administered, and spontaneous resistance rates an order-of-magnitude lower than those of rifampin 

280. Initial studies of the biochemical basis for the RNAP inhibition by PUM conclude that PUM 

functions as a nucleoside-analogue inhibitor that competes with UTP for occupancy of the RNAP NTP 

addition site 280. Crystal studies rationalise the low spontaneous resistance rates to PUM and the 

selectivity for bacterial RNAP over human RNAP. PUM makes direct contact with ten functionally 

critical residues, the substitution of which would compromise RNAP activity, and all residues in contact 

with PUM are conserved in bacterial RNAP, while four important residues are not conserved in human 

RNAPs. 

Additionally, PUM has an interesting structure (Figure 5.4), enabling structure-based design of 

analogues with increased potency and selectivity, and its C-nucleoside structure hints at an unusual 

biosynthetic pathway involving one of the family of prolific pseudouridine synthases. 

 

 

Figure 5.4: Structure of pseudouridimycin. The uracil moiety is linked to the rest of the nucleoside sugar by the 

unusual C-C linkage of pseudouridine. 
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5.1.3: Pseudouridine and Pseudouridine Synthases 

 

The unusual C-C linked nucleotide found in pseudouridimycin is due to a pseudouridine moiety linked 

to the dipeptide that makes up the rest of pseudouridimycin. Pseudouridine is the most abundant 

posttranscriptional modification of RNA. In fact it is found in such abundance (4% of nucleotides in 

yeast tRNA) , that, as mentioned in Chapter 4, it was dubbed the fifth nucleotide when first discovered 

in 1957 286. The enzymatic reaction was characterised much later. Studies using RNase digestion and 

2D TLC analysis of an in vitro-transcribed 14C-uridine-labelled RNA found that E. coli cultural extracts 

would isomerise uridines that are incorporated into RNA chains, and that the modifications were only 

found on specific tRNA 287. Subsequent studies demonstrated that pseudouridine synthases require 

no cofactor, and the uridine base is not released during the isomerisation reaction 288–290. The reaction 

is proposed to proceed through a covalent intermediate formed between an aspartate residue and C6 

of uridine, allowing a 180° rotation of the pyrimidine and subsequent re-ligation, resulting in the C-C 

glycosidic bond. A number of pseudouridine synthases have been identified, the most recent being 

TruD that modifies U13 in glutamic acid tRNA 270,291. TruD is unique among the pseudouridine synthase 

family in that is shares no sequence homology with the rest of the family. In a database search, 58 

homologues were found, none of which had a previously known RNA-binding motif, indicating this 

class of enzymes had a novel RNA-binding sequence. The only conserved aspartate in the aligned 

homologues was mutated and shown to be essential for activity 292. Despite the lack of significant 

sequence homology, the catalytic domain of TruD is strikingly similar in its structure to the other 

members of pseudouridine synthases, with TruA being its closest structural homologue (Figure 5.5). 

The only structurally conserved residue in the active site is the catalytic aspartate, but there are other 

retained structural features involved in recognition and catalysis 291. TruD has an additional domain, 

unlike other pseudouridine synthases. This insertion domain has no significant structural similarities 

to any PDB entry and has a strong positive surface charge on the side facing the catalytic domain. This 

domain is most likely involved in RNA binding, and accounts for the lack of any other RNA binding 

motif in TruD. A catalytic cleft is formed in between the insertion and catalytic domains with the 

catalytic Asp protruding from one face of the cleft where, presumably, the tRNA binds into the 

positively charged pocket placing U13 in the correct position to undergo isomerisation. 
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Figure 5.5: Structure and catalytic activity of truD. (A) Superposition of TruD and its closest structural 

homologue, TruA. TruD is coloured in blue (catalytic domain) and beige (insertion domain) and TruA is coloured 

in pink. (B) A rigid docking model of TruD with tRNAGlu. The surface of the catalytic Asp80 is coloured in orange 

and the U13 to be modified is coloured in green. Adapted from Ericsson et al. 291. 

 

 The work in this Chapter describes an analysis of the biosynthetic pathway to PUM and in 

particular attempts to reconstitute parts of the pathway in vitro, to pave the way for future 

knowledge-based generation of analogues of this bioactive C-nucleoside. 

 

5.2: Results and Discussion 

5.2.1: Identification and Characterisation of the Pseudouridimycin Biosynthetic Gene Cluster 

 

The structure of PUM had been characterised by Maffioli et al. 280 in 2017. The obvious choice to probe 

for the PUM cluster in the genome sequence of S. albus A980 was therefore a pseudouridine synthase. 

As noted in Chapter 4, probing the A980 genome sequence with a TruD-like sequence from 

malayamycin producers being studied in this laboratory produced a single definite hit. The sequence 

of TruD from yeast was also used to probe the entire Leadlay lab strain collection. This returned five 

hits; Saccharopolyspora cavernae DSMZ 45825, Nocardia sp. NBRC 14326 (a thiolactomycin producer), 

the two malayamycin producers Streptomyces malaysiensis DSM 14702 and Streptomyces 

chromofuscus ATCC 49982, and Streptomyces albus DSM 40763 (A980). Looking at the genes 
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surrounding the TruD homologue in A980 revealed many biosynthetic genes that could be involved in 

PUM biosynthesis. The putative biosynthetic gene cluster (BGC) is illustrated in Figure 5.6. 

 

 

Figure 5.6: Organisation of the putative pseudouridimycin biosynthetic gene cluster. 

 

 Once the candidate bioynthetic gene cluster had been identified in A980, the encoded 

enzymes could be scrutinised for their fit with an initial proposal for the biosynthetic pathway. The 

structure of PUM revealed three units linked together by amide bonds (Figure 5.7); an N-terminal 

guanidinoacetate, N-hydroxylated glutamic acid, and C-terminal 5’-amino-pseudouridine (APU). If the 

N-hydroxylation occurs as the final step in the pathway, which is chemically reasonable, glutamic acid 

is recruited directly from primary metabolism. Guanidinoacetate is known to be the product of an 

amidinotransferase reaction between arginine and glycine 293 again directly from primary metabolism. 

The C-terminal component, APU, might be derived from pseudouridine () via oxidation of  at the 

5' position to form an aldehyde, coupled to the action of an aminotransferase to generate APU. 

Analogous oxidation-aminotransfer steps are widespread in aminoglycoside biosynthetic pathways 

294. The origin of the  substrate remains obscure. If a TruD homologue in A980 catalyses the 

conventional TruD-catalysed reaction, post-transcriptional modification of an ncRNA, there must be a 

mechanism by which  can be subsequently be released from the ncRNA. This could be as part of 

normal RNA turnover, but nothing is known in detail about this in Streptomyces. Alternatively, the  

required for PUM biosynthesis is generated by a different mechanism. At any rate, a coupled 

oxidoreductase, aminotransferase reaction on  remains a plausible way to generate APU. 

Alternatively, an Fe(II)-2-oxoglutarate-dependent oxygenase enzyme in capuramycin biosynthesis has 

been described that converts uridine 5'-monophosphate to uridine 5'-aldehyde in a single step 295. 

Conceivably an analogous enzyme could convert 5'-MP directly to the 5'-aldehyde. The three 

components of Figure 5.7 must be linked together, which likely requires two different two ligase 
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enzymes, and finally the glutamate amide nitrogen must be hydroxylated to complete the 

biosynthesis. 

 

 

Figure 5.7: Retrobiosynthetic analysis of pseudouridimycin.  

  

The putative PUM cluster was manually curated. Its boundaries were provisionally defined 

when genes were encountered that were unlikely to be involved in PUM biosynthesis. The putative 

cluster covers 26 kbp and contains 22 protein coding sequences. It is summarised in Table 5.1. 

 

 

Table 5.1: Summary of the putative pseudouridimycin biosynthetic gene cluster. The function of 

each gene has been identified by comparing its sequence against the NCBI database using a BLAST 

search. Similarities to homologues of known functions have been included, as well as the predicted 

function of the gene in the PUM cluster. Pathway enzymatic activities are highlighted in bold. 

 

Gene No. AAs Protein homologue Accession 

number 

Identity/similarity Predicted 

function 

psmA 351 ABC transporter 

substrate-binding 

protein, 

Streptomyces sp. 

NRRL F-5639 

WP_030405507.1 99/100 export 
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psmB 701 hydrolase 

CocE/NonD family 

protein, 

Streptomyces sp. 

HPH0547 

WP_016471205.1 100/100 biosynthetic 

psmC 303 substrate-binding 

region of ABC-type 

glycine betaine 

transport system, 

Conexibacter 

woesei DSM 14684 

ADB51680.1 47/62 export 

psmD 355 glycine/betaine 

ABC transporter, 

Streptomyces sp. 

NRRL F-6602 

WP_030405504.1 99/99 export 

psmE 237 ABC transporter 

permease, 

Streptomyces sp. 

WP_030886564.1 96/96 export 

psmF 216 ABC transporter 

permease, 

Streptomyces sp. 

NRRL F-5053 

WP_030895287.1 93/95 export 

psmG 204 Hypothetical 

Protein 

- - - 

psmH 384 glycine 

amidinotransferase, 

Streptomyces sp. 

NRRL F-5639 

WP_031027661.1 99/100 Formation of 

guanidinoacetate, 

N-terminal 

component 

psmI 463 D-ala-D-ala ligase, 

Enterorhabdus 

mucosicola 

WP_028026109.1 29/37 Ligation of the C-

terminal and 

central 

components 

psmJ 425 membrane 

transporter, 

Streptomyces sp. 

NRRL F-5639 

WP_031027667.1 99/99 export 

psmK 394 NikS-like protein, 

Actinomyces sp. Lu 

9419 

ACH85565.1 55/65 Ligation of the 

central and C-

terminal 

components 

psmL 345 TruD family tRNA 

pseudouridine 

synthase, 

Streptomyces sp. 

HPH0547 

WP_016471195.1 100/100 Generates  

residues 

embedded in 

tRNA? 

psmM 509 glucose-methanol-

choline (GMC) 

oxidoreductase, 

KPC68900.1 100/100 5’ oxidation of PU 
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Streptomyces sp. 

NRRL F-6602 

psmN 212 adenylate kinase, 

Streptomyces 

mobaraensis 

WP_004951438.1 69/76 unknown 

psmO 440 aminotransferase, 

Streptomyces sp. 

NRRL F-6602 

KPC69014.1 99/100 Generates APU, 

C-terminal 

component 

psmP 267 serine/threonine 

protein kinase, 

Streptomyces 

griseoflavus 

WP_040908662.1 55/65 unknown 

psmQ 408 acyl-CoA 

dehydrogenase, 

Streptomyces sp. 

NRRL F-5917 

WP_030405496.1 99/99 Glutamate N-

hydroxylation 

candidate 

psmR 264 UPF0317 protein, 

Streptomyces sp. 

HPH0547 

EPD92375.1 100/100 unknown 

psmS 685 peptidase M4, 

Streptomyces albus 

WP_037611685.1 100/100 unknown 

psmT 178 TetR family 

transcriptional 

regulator, 

Streptomyces sp. 

NRRL F-5639 

WP_031027676.1 99/100 regulator 

psmU 396 cytochrome P450, 

Streptomyces sp. 

CNT360 

WP_051352406.1 86/92 Glutamate N-

hydroxylation 

candidate 

psmV 72 cytochrome P450, 

Streptomyces 

varsoviensis 

WP_030874200.1 81/91 unknown 

 

 As noted in Table 5.1, there is an excellent fit between a number of the genes in the candidate 

cluster and the enzymology expected for the otlined PUM biosynthetic pathway. No other locus in the 

S. albus A980 genome matchedf these reqirements. With the biosynthetic gene cluster for PUM 

confidently identified, its sequence was used to design in vitro experiments to obtain biochemical 

evidence for the proposed pathway. While this was carried out, the Ebright and Donadio groups 

followed up their Cell paper (2017) on the PUM target by independently reporting in 2018 the PUM 

cluster from an unrelated Streptomyces spp., and they generated several deletions to investigate the 

sequence of biosynthesis.296 Their results will be discussed in full, in the context of my own results, 

later in this chapter. A comparison of the Sosio et al. PUM cluster 296 with that in A980 is summarised 

in Figure 5.8. It reveals an essentially identical, but inverted, core sequence of genes (psmG to psmQ), 

with some minor differences in the rest of the cluster. 
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Figure 5.8: Comparative sequence analysis of the pseudouridimycin biosynthetic gene cluster in A980 with the 

biosynthetic gene cluster characterised by Sosio et al 296. The Sosio cluster is smaller, and the A980 gene cluster 

contains several biosynthetic genes that are only putatively involved in PUM biosynthesis. Further work is 

required to define the boundaries of this cluster. The clusters are not identical, the 5’ and 3’ ends hold different 

genes but the core biosynthetic genes, transporter genes, and other hypothetical genes (psmG to psmQ and 

pumE to pumO) are identical but inverted with respect to each other. 

 

5.2.2: In vitro Assays 

The in vivo biosynthesis of PUM appears to follow a convergent path: the building blocks 

guanidinoacetate and APU are synthesised and then ligated to glutamic acid (Figure 5.7). If the building 

blocks could be obtained enzymatically, it was hoped then to use recombinant candidate ligases PsmL 

and PsmK to generate deoxy-PUM in vitro (Figure 5.10). In vitro assays were designed to recapitulate 

formation of the building blocks other than glutamate. This would provide substrates for the putative 

ligases. Also, this would open the way to testing alternative substrates, especially those with an altered 

nucleoside moiety. 

 

 

Figure 5.9: Reactions between guanidinoacetate, glutamic acid, and 5’-aminopseudouridine catalysed by the 

products of the psmI and psmK genes. 
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Figure 5.10: Reaction between arginine and glycine catalysed by PsmH.  

 The production of guanidinoacetate from arginine and glycine is a well-known reaction. 297 

Testing whether PsmH catalyses this reaction (Figure 5.10) was expected to be straightforward. The 

recombinant PsmH required was obtained by cloning and expressing the gene in E. coli, and 

purification of the N-terminally His6-tagged enzyme by affinity chromatography, as detailed later in 

this section. The assay conditions were based on work by Li et al. 297. The conditions are summarised 

in Table 5.2, and the reaction was performed in a 0.05M phosphate buffer with 0.1M NaCl at pH 7.4. 

The reaction mixture was incubated at 30°C for 2 hours 

Table 5.2: Reaction conditions for PsmH assay 

Component Volume (µl) Final concentration 

PsmH 100 15 µM 

glycine 20 1 mM 

arginine 20 1 mM 

phosphate buffer 60 0.05 M 

 

Since the substrates and products have no chromophore, the products of the reaction were initially 

tested for using Marfey’s reagent. Marfey’s reagent (1-fluoro-2-4-dinitrophenyl-5-L-alanine amide) 

reacts with primary amines (Figure 5.11) and is commonly used as a derivatisation agent for the UV 

detection of amino acids and for the resolution of chiral mixtures of amino acids 298 

 The derivatisation worked well, and could be used to detect glycine, arginine, and one of the 

products, ornithine. However, after some trials using standard samples of the starting materials and 

products with TLC and HPLC (not shown) 1H NMR was used instead to visualise the progress of the 

reaction, with the major advantage that the reaction could be monitored in situ as it progressed. The 

1H NMR analysis was performed as described in section 2.4.4. Spectra for the starting materials 

(arginine and glycine) and for the products (ornithine and guanidinoacetate) were recorded first. 
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Figure 5.11: Reaction between Marfey’s reagent and a primary amine. 

These spectra are shown in Figure 5.12. The CH2 region of the spectrum (Figure 5.12A) shows signals 

from arginine and ornithine, but not from glycine or guanidinoacetate, as expected. The difference in 

the chemical shifts of the arginine and ornithine signals could be used to track the reaction, but 

guanidinoacetate gives a unique singlet at 3.8 ppm in the Hα region (Figure 5.22B) which was the most 

convenient way to monitor its appearance (Figure 5.13). 

 

Figure 5.12: NMR spectra of starting materials and products in the arginine:glycine amidinotransferase-

catalysed reaction. Portions of the 1H NMR spectra of glycine, arginine, ornithine and guanidinoacetate are 

shown. (A) CH2 region (1.5 – 2.1 ppm); (B) Hα region (3.5 – 4.0 ppm). 
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Figure 5.13: The psmH-catalysed reaction monitored by the appearance of a signal at 3.8 ppm. 1H NMR spectra 

showing the substrate glycine, the product guanidinoacetate and the spectra of the assay mixture at the first 

and last time points.  

 The NMR data showed that guanidinoacetate is indeed generated by the reaction between 

glycine and arginine catalysed by PsmH and confirms the identity of this building block. As 

guanidinoacetate is readily commercially available, there is obviously no need to use the recombinant 

PsmH to generate it. 

 If pseudouridine () is the correct starting material for biosynthesis of the APU building block, 

it can be converted to APU in a two step, coupled oxidation/transamination reaction. The oxidation of 

a hydroxy group followed by transamination is a well-known coupled reaction in Streptomyces 

biosynthesis (Figure 5.14). To produce the  starting material in vitro, advantage would be taken of a 

pathway already found useful in this laboratory in the study of malayamycin biosynthesis. YeiN from 

E. coli is a pseudouridine-5’-phosphate glycosidase, normally involved in recycling of . Recombinant 

YeiN (the kind gift of Dr Hui Hong) also catalyses the reverse reaction between ribose-5’-phosphate 

(R5P) and uracil and generates pseudouridine-5’-phosphate (5'-MP) 299 which may be subsequently 

dephosphorylated by a commercially-available phosphatase enzyme to give  (Figure 5.15). 
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Figure 5.14: Conversion of pseudouridine to 5’-aminopseudouridine proposed to be catalysed by PsmM and 

PsmO. 

 

 

 
Figure 5.15: Reaction between ribose-5’-phosphate and uracil catalysed by YeiN, followed by 

dephosphorylation using calf intestinal phosphatase. 

 

The use of recombinant PsmH has already been described above. Other recombinant enzymes 

required for the in vitro assays were: flavin-dependent GMC oxidase PsmM; aminotransferase PsmO; 

and putative ligases PsmK and PsmI. All these genes were cloned for E. coli expression in pET28a as 

follows (see also Figure 5.15). First, primers were designed to amplify each gene from the PUM 

cluster, and provide overhanging 5’ ends, homologous to the adjacent sequence when assembled. 

The purified PCR products were assembled together with linearized, NdeI- and EcoRI-cut pET28a 

using the Gibson isothermal assembly method. The products were used to transform E. coli DH10B, 

and colonies were screened by PCR for the presence of the desired insert. 
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Figure 5.16: Cloning of psm genes in pET28a for expression in E. coli 

 

The identity of the PCR products and the final vector inserts was confirmed by gel electrophoresis and 

sequencing. The details of the procedure are given in section 2.3. Figure 5.17 and Figure 5.18 show 

images of the results of gel electrophoresis from the initial PCR and from the screening of E. coli clones, 

respectively, for the cloning of psmH into pET28a. The other genes cloned gave comparable results. 

Figure 5.19 shows the results of screening of E. coli clones from each of the five gene expression 

vectors constructed. The analogously-constructed pET28a-based vector for YeiN was the kind gift of 

Dr Hui Hong. 
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Figure 5.17: Gel electrophoresis image of the psmH amplified PCR product. The ‘L’ lane contains the DNA ladder 

(1 Kb Plus DNA Ladder). The numbers to the side of the ladder refer to the size of each relevant band in the 

ladder. The psmH lane contains the PCR product amplified for the construction of the PsmH expression vector. 

 

 

Figure 5.18: Gel electrophoresis image of the cPCR screening to confirm correct assembly of the PsmH 

expression vector. The ‘Ladder’ lane contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side 

of each ladder refer to the size of each relevant band in the ladder. Each numbered lane refers to a colony of E. 

coli that was screened for the correct expression vector. The lanes 2,4,6-10, and 12 contain bands with the 

correct size for the PsmH expression vector. 
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Figure 5.19: Gel electrophoresis images of the inserts from each of the four psm expression vectors. The ‘L’ 

lane contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side of each ladder refer to the size 

of each relevant band in the ladder. The psmH-O lanes contain the PCR product amplified for the construction 

of each expression vector. 

 

Once the inserts had been successfully cloned into pET28a vectors they could be transformed into E. 

coli BL21 and induced with IPTG to overexpress the desired protein, which was then recovered and 

purified as described in section 2.3.12,13. Figure 5.20 shows an SDS-PAGE gel of the purification of 

PsmM and Figure 5.21 shows the elution fractions collected and concentrated from each protein, to 

be used in the in vitro assays. 

 

Figure 5.20: SDS-PAGE gel image showing the process of purifying PsmM from the expression culture. The ‘L’ 

lane contains the protein size ladder (Precision Plus Protein Standards). The numbers to the side of the ladder 

refer to the size of each relevant band in the ladder. ‘P’ and ‘FT’ refer to the insoluble (pellet) and soluble (flow-

through) fractions of the purification, respectively. The numbers above each of the remaining lanes refer to the 

concentration of imidazole in the buffer used to elute the fraction that has been loaded onto each lane. 
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Figure 5.21: SDS-PAGE gel images showing the elution fractions collected for each of the six proteins for the 

in vitro assays. The ‘L’ lane contains the protein size ladder (Precision Plus Protein Standards). The numbers to 

the side of each ladder refer to the size of each relevant band in the ladder. The numbers above each pair of 

lanes refer to the concentration of imidazole in the buffer used to elute the fraction that has been loaded onto 

each lane. All enzymes were recovered in high yield. PsmM was recovered in the lowest yield, but could be 

concentrated to 50 µM, which is more than enough for the required assays. 

 

 Each protein eluted in 2 ml of the imidazole wash buffer. From the size of the bands on the 

SDS-PAGE gel, it is clear that some expressed better than others. YeiN consistently expressed very well 

and yielded higher concentrations of protein than the others, but this is unsurprising as it is an E. coli 

protein. PsmM tended to express poorly, and PsmO always eluted with another smaller protein of 

approximately 37 kDa. The smaller protein was not identified but may be a truncated version of PsmO. 

For the highly expressed proteins, such as YeiN, a single elution fraction was collected and 

concentrated using a 30K Merck Millipore centrifugal filter unit. For poorly-expressed proteins, several 

fractions were combined before concentration. The wash buffer was replaced with a suitable reaction 

buffer through a series of concentration and dilution steps using the desired buffer. Unfortunately, 

PsmK did not express in E. coli BL21, despite several attempts, using different expression conditions. 

Sequencing confirmed the cloning had been correct, so the reason for this is unclear. Figure 5.22 

shows an SDS-PAGE gel analysis of the soluble and insoluble fractions of a culture of BL21 transformed 

with pET28a-psmK. 
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Figure 5.22: SDS-PAGE gel image of the soluble and insoluble fractions of a culture of BL21 transformed with 

pET28a-psmK. The ‘L’ lane contains the protein size ladder (Precision Plus Protein Standards). The numbers to 

the side of each ladder refer to the size of each relevant band in the ladder. ‘NI’ and ‘I’ lanes refer to ‘Not Induced’ 

and ‘Induced’ with IPTG at the concentrations indicated (0.1 mM and 0.5 mM). The temperatures refer to the 

temperature the expression culture was incubated at. 
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Attempted formation of 5'-amino-pseudouridine (APU) in vitro 

It was thought best to combine the action of the flavin-dependent GMC oxidase PsmM with that of 

aminotransferase PsmO, to prevent problems, such as over-oxidation or product inhibition, arising 

from the build-up of the reactive aldehyde product of the oxidase. Different amino acids needed to 

be tried as amino donors in the PsmO-catalysed reaction. The substrate for the oxidase would be 

generated in situ by the joint action of YeiN and calf intestinal phosphatase. The principle of the assay 

is summarised in Figures 5.11 and 5.12. The reaction conditions used are summarised in Table 5.3, and 

the reaction was performed in a 0.05M phosphate buffer with 0.1M NaCl at pH 7.4. The reaction 

mixture was incubated at 30°C for 2 hours for each step. Between each reaction chloroform was added 

to precipitate the protein. The supernatant was then removed and used in the next reaction. The 

progress of the reaction was monitored by following the UV absorbance of the nucleobase, and by 

NMR. Figures 5.23 to 5.27 summarise the results of the NMR and HPLC analysis of these reactions. 

 

Table 5.3: Reaction conditions for attempted enzymatic synthesis of APU 

Component Volume (µl) Final concentration 

YeiN reaction, illustrated in Figure 5.24. 

uracil 5 1 mM 

ribose-5’-phosphate 5 1 mM 

YeiN 5 7 µM 

Phosphate buffer 485 0.05 M 

   

Phosphatase reaction, illustrated in Figure 5.25. 

Calf intestinal phosphatase 5 50 units 

10X Reaction buffer 50 1X 

   

Coupled oxidation-aminotransferase reaction, illustrated in Figure 5.26 

PsmM 5 3 µM 

PLP 50 1 mM 

PsmO 5 5 µM 

Amino acid donor 

(Ala/Asp/Glu) 

5 10 mM 
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Figure 5.23: NMR spectra of the reaction between uracil and ribose-5’-phosphate, catalysed by YeiN. The left-

hand panel shows the entire spectrum, while the right-hand panel focusses on the high field region where the 

aromatic protons signals can be found. (A) 1H NMR spectrum of uracil. (B) 1H NMR spectrum of R5P. (C) 1H NMR 

spectrum of uracil and R5P. (D) 1H NMR spectrum of uracil, R5P and YeiN.  

 

Figure 5.24: NMR spectra of the dephosphorylation reaction of pseudouridine-5’-phosphate, catalysed by Calf 

Intestinal Phosphatase. The left-hand panel shows the entire spectrum, while the right-hand panel focusses 

on the high field region where the aromatic protons signals can be found. (A) 1H NMR spectrum of uracil, R5P 

and yeiN. (B) 1H NMR spectrum of (A) after the subsequent addition of Calf Intestinal Phosphatase. The 

additional peaks in (B) are the result of the Tris-HCl buffer 
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Figure 5.25: NMR spectra of the coupled oxidation and aminotransferase reaction of pseudouridine, catalysed 

by PsmM and PsmO, respectively. (A) 1H NMR spectrum of alanine; (B) 1H NMR spectrum of pyruvate; (C) 1H 

NMR spectrum of PLP (cofactor to PsmO); (D) 1H NMR spectrum of reaction mixture (see Table 5.3) using alanine 

as an amino donor. The small signal in (D) at approximately 2.5 ppm could potentially have been caused by the 

production of a small amount of pyruvate, indicating the coupled reaction worked to some extent. The large 

signal in (D) at approximately 3.8 ppm is an unknown contaminant. 
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(A) 

 
(B) 

 
 
Figure 5.26: UV absorption spectrum showing the product of the reaction between ribose-5’-phosphate and 

uracil, catalysed by YeiN. (A) The peak at 5.62 min is  produced by the YeiN catalysed reaction. Absorbance 

measured at 262 nm; (B) The characteristic absorption signature of the uracil moiety at 262 nm is the basis for 

the UV/Vis characterisation of  and related compounds.  
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Figure 5.27: UV absorption spectra showing the product of the dephosphorylation reaction of pseudouridine-

5’-phosphate, catalysed by commercial phosphatases. (A) Dephosphorylation of P5P to  by antarctic 

phosphatase. P5P has not been fully converted. (B) Dephosphorylation of P5P to  by calf intestinal 

phosphatase. Absorbance measured at 262 nm. 

 

The NMR and HPLC results showed that the first two reactions, to generate P5P and  from 

uracil went to completion between combining the components and putting the sample into the NMR 

spectrometer. Figure 5.23 shows that when uracil and R5P are combined with YeiN, peaks at 5.8 ppm 

and 7.5 ppm disappear and in their place a peak at 7.95 ppm appears, consistent with the predicted 

changes in chemical shift. Figure 5.24 shows that when CIP is also present the signal at 7.95 ppm shifts 

to 7.85 ppm, consistent with  having been produced. This is also supported by the HPLC evidence in 

Figure 5.26 and 5.27, tracked by the shifts in retention time of peaks with an absorbance maximum of 

262 nm. Figure 5.25 shows that when alanine was used as an amino donor, there is potentially a small 

amount of pyruvate generated (peak at 2.5 ppm), indicative of an aminotransferase reaction having 

occurred. However, in the absence of an APU standard it is difficult to tell if any APU was generated 

at the same time. In contrast, there was no evidence from HPLC for conversion of  into the amine 
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APU. The HPLC spectra show some changes when PsmM and PsmO are added to the reaction mixture, 

however no mass associated with APU or any intermediate is observed. The additional signals that 

appear at 3.2 ppm and between 3.5 to 3.8 ppm in Figure 5.24B are due to the presence of the CutSmart 

buffer which contains Tris-acetate and the CIP which is in a Tris-HCl buffer with 50% glycerol. This 

makes the 1H NMR spectra messy and difficult to interpret in the affected region, however the buffer 

was used to maximise the chances of the dephosphorylation reaction to generate . The production 

of pyruvate in spectra D of Figure 5.25 should indicate that alanine has been turned over by an 

aminotransferase and was used as a measure of the progress of the coupled reaction. Pyruvate and 

alanine were used as standards in place of APU because of the lack of availability of APU from chemical 

suppliers. 

 

Kinetic studies of oxidoreductase, PsmM 

 

It was important to determine whether the recombinant GMC oxidase PsmM is enzymatically active 

in the absence of the aminotransferase. If the oxidase uses oxygen as the oxidant then H2O2 should be 

produced and can be detected using components of a commercial glucose oxidase assay kit, namely 

horseradish peroxidase (HRP) and the dye Amplex Red (AR). In the presence of H2O2 the horseradish 

peroxidase catalyses reaction between H2O2 and Amplex Red to form the red-fluorescent oxidation 

product resorufin. A range of substrate concentrations (25 mM to 0.05 mM final concentrations) for 

 were mixed with a solution containing HRP and AR. These mixtures were then added to PsmM and 

the absorption at 570 nm (A570) was measured at 30 second intervals over 5 minutes. To test whether 

the oxidase could also accept uridine as a substrate, the same experiment was done with uridine 

substituted for . The initial rates were calculated by plotting A570 against time, and those initial rates 

were plotted against substrate concentration to generate the plots in Figure 5.28. With the assistance 

of Elisabeth Chen, a Michaelis-Menten model was fitted to the data and the Vmax and Km values for 

PsmM with  and uridine were calculated, along with their associated standard errors. The values for 

these kinetic constants are shown in Table 5.4. 
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Figure 5.28: Michaelis-Menten plots showing the rate of reaction for PsmM using pseudouridine and uridine 

as substrates. (A) Rate vs substrate concentration for the oxidation of pseudouridine by PsmM (0.6 µM final 

concentration). The five substrate concentrations between 5 mM and 25 mM were omitted from the Michaelis-

Menten model because at substrate concentrations higher than 1 mM substrate inhibition effects begin to 

reduce the rate of reaction. (B) Rate vs substrate concentration for the oxidation of uridine by PsmM (0.6 µM 

final concentration). The substrate concentration of 25 mM was omitted from the Michaelis-Menten model. 

 

Table 5.4: Michaelis-Menten kinetic analysis of the oxidation of pseudouridine and uridine by 

PsmM. 

Pseudouridine  Uridine 

Vmax
 (s-1) 1.05x10-3  Vmax (s-1) 1.13x10-3 

Standard error 4.23x10-5  Standard error 7.57x10-5 

Km (M) 5.70x10-5  Km (M) 4.32x10-3 

Standard error 1.00x10-5  Standard error 9.40 x10-4 

kcat (s-1) 1.75x103  kcat (s-1) 1.88x103 

kcat/Km (s-1M-1) 3.07x107  kcat/Km (s-1M-1) 4.37x105 

 

These data confirm that the recombinant GMC oxidase uses oxygen as the oxidant and that it 

has the appropriate activity against the pseudouridine substrate. Further, an analysis of the kinetics 

shows PsmM favours pseudouridine by a factor of almost 2 orders of magnitude compared to uridine. 

This suggests PsmM as a gatekeeper ensuring the specificity of PUM production by S. albus A980 even 

in the presence of intracellular uridine. However, it also suggests that if pseudouridine concentrations 
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were to fall there is a possibility that normal uridine might be utilised by the PUM biosynthetic 

pathway (see section 5.2.5 below). 

The success of this work to prove the activity of PsmM, with a  substrate, in isolation could 

be repeated with the remaining enzymes. This would further increase confidence in the in vitro 

approach, and the hypothesised function of each enzyme. This would require pure intermediate 

substrates, which could either be prepared by enzymatic reaction, or purchased from a chemical 

supplier. 

 

5.2.3: Attempted Inactivation of Genes in the PUM cluster  
 

The in-frame deletion of individual genes within a biosynthetic gene cluster is a powerful approach to 

gaining insight into their role. For example, it can be used to help define cluster boundaries; it can be 

used to confirm the predicted role of the gene; and if an intermediate or shunt product is produced 

instead of PUM its structure gives valuable mechanistic clues. It is also the best way to interrogate the 

role of genes which have only non-specific annotation. At the start of work on the PUM cluster, there 

was no information on whether the strain was transformable. I identified PsmQ and PsmU as 

candidates for the N-hydroxylation of deoxy-PUM; and PsmN, annotated as an adenylate kinase, as 

an enzyme potentially involved in the biosynthesis of APU. Finally, PsmB, annotated as a hydrolase, 

was selected for knockout studies to interrogate its role, if any, in PUM biosynthesis. 

 While my work was in progress, an investigation by Sosio et al. 296 into the biosynthesis of 

PUM by knocking out key biosynthetic genes was published. This reported PsmQ as the enzyme 

uniquely responsible for the N-amide hydroxylation of deoxy-PUM. Because of this finding I 

discontinued work on psmQ and continued with putative hydrolase psmB, cytochrome P450 psmU 

and adenylate kinase psmN. This section describes the construction of appropriate vectors and 

attempts - unfortunately unsuccessful - to complete the deletion of psmB, psmU and psmN. In parallel, 

Dr Hui Hong undertook the in-frame deletion of psmL, encoding the truD-like pseudouridine synthase. 

 For the creation of the ΔpsmN, ΔpsmB, and ΔpsmU mutants a homologous recombination-

based approach was used. The strategy is outlined in Figure 5.29. Primers were designed to amplify 2 

kbp regions of DNA either side of each target gene (left and right flanking arms). The primers were 

designed to have overhanging 5’ ends, homologous to the adjacent sequence when assembled. The 

amplified PCR products were purified and assembled together with linearized pYH7 using the Gibson 

isothermal assembly method. The mixtures were used to transform E. coli DH10B and colonies were 
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screened by PCR for the desired insert. The identity of the PCR products and the final vector inserts 

was confirmed by gel electrophoresis analysis (Figure 5.30 and Figure 5.31). The procedure is 

described in detail in section 2.3. Figure 5.32 shows the gel electrophoresis from step 6 from each of 

the cloned vectors.  

 

Figure 5.29: The strategy for inactivation of psmN, psmB, psmQ, and psmU in S. albus A980. 

 

Figure 5.30: Gel electrophoresis image of PCR products used to construct the psmB knockout vector. The 

‘Ladder’ lane contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side of the ladder refer to 

the size of each relevant band in the ladder. The ‘L’ and ‘R’ lanes refer to the left and right flanking arms, 

respectively. 
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Figure 5.31: Gel electrophoresis image of the cPCR screening to confirm correct assembly of the psmB 

knockout vector. The ‘Ladder’ lane contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side of 

the ladder refer to the size of each relevant band in the ladder. Each numbered lane refers to a colony of E. coli 

that was screened for the correct knockout vector. The lanes 1,3-6,8,9,11, and 13 to 19 contain bands with the 

correct size for the psmB knockout vector. The circled lane (lane 11) indicates the colony used to purify the psmB 

knockout vector in preparation for transformation into A980. 

 

 

 

Figure 5.32: Gel electrophoresis images of the inserts from each of the three psm knockout vectors. The ‘L’ 

lanes contains the DNA ladder (1 Kb Plus DNA Ladder). The numbers to the side of the ladder refer to the size of 

each relevant band in the ladder. The ‘S’ lanes refer to a colony used to confirm the size of the assembled insert 

for each of the psm knockout vectors. 
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Once the knockout vectors for psmN, psmU, and psmB had been obtained they were 

transformed into A980 by intergeneric conjugation following the protocol outlined in section 2.2.6. 

Each conjugation plate was incubated at 30°C for up to 1 week. By then several colonies had begun to 

grow. These were streaked onto selective media to confirm the presence of the vector. After two more 

rounds of restreaking on selective media the putative exconjugants were free of any contamination 

and ready for the relaxation step. At this point I attempted unsuccessfully to use Streptomyces cPCR 

to gain additional evidence that these exconjugants contained the integrated vector. I considered the 

growth of the colonies on selective media evidence enough for the integration of the vector and 

continued with the relaxation steps. Three apramycin resistant colonies were selected from each 

conjugation plate, and these were relaxed by three rounds of inoculation and growth in liquid SFM, 

incubated at 30°C. After the third round a sample of each culture was taken, diluted and streaked 

across 2TY agar. Single colonies (24 for each knockout) were selected. These were patched onto pairs 

of non-selective and selective plates to test of the loss of antibiotic resistance. All colonies tested had 

lost resistance. Each relaxant was then grown in liquid culture and genomic DNA was extracted from 

each relaxant. A screen for the presence of a second crossover identified that all colonies were 

wildtype. As this screen was performed towards the end of my PhD I did not have time to repeat the 

experiment.  

 Fortunately, Dr Hui Hong had meanwhile succeeded in obtaining an in-frame deletion in the 

psmL gene (the truD homologue). She analysed the fermentation culture by LCMS. The HPLC spectra 

from A980 wildtype and A980 ΔpsmL showed a clear reduction in the signal representing PUM (see 

Figure 5.33). Unexpectedly, the ΔpsmL spectrum also revealed a UV absorption signal corresponding 

to a molecule with the same mass as PUM, but with a different retention time. Further investigation 

of this unexpected peak by MS/MS analysis revealed similar fragmentation patterns to PUM, 

consistent with the idea that the peak is produced by an N-nucleoside isomer of PUM. 
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Figure 5.33: LCMS analysis of wild type A980 and A980 ΔpsmL. (Experiment carried out by Dr Hui Hong). The 

spectra are normalised to the wild type A980 spectrum. The residual PUM production in the ΔpsmL strain is likely 

due to free  found in the cell from primary metabolism. The small peak seen in the ΔpsmL spectrum at 

approximately 15 mins has the same characteristic UV absorption and mass as PUM. 
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Enhanced production of N-PUM in Streptomyces albus A980  

 

Sosio and colleagues 296 also created a truD mutant of their Streptomyces sp. strain, and they stated 

categorically that in this mutant PUM production was abolished and no N-linked PUM was produced, 

as might have been expected if pseudouridine production was abolished. When they fed uridine to 

the ΔpsmL mutant they did not see the accumulation of any compound. 

 In contrast, Dr Hui Hong's analysis appeared to show that in S. albus A980, there is detectable 

redirection of biosynthesis towards an N-linked version of PUM when the truD -like gene psmL is 

deleted. This was supported by the kinetic data obtained here on the key GMC oxidase enzyme which 

accepted uridine as a substrate, albeit with much lower efficiency. To confirm this finding of the 

tolerance of the PUM biosynthetic pathway in S. albus A980, I used the S. albus A980-psmL kindly 

provided by Dr Hong. A high concentration of uracil was fed to the ΔpsmL mutant strain: a 2-day pre-

culture of A980-ΔpsmL was used to inoculate 50 ml SFM containing 50 mg of uracil in a 250 ml flask 

with a spring to help aeration. After 5 days the cells were harvested by centrifugation and the 

supernatant was used for HPLC and MS analysis. Figure 5.34 shows the results of that analysis and 

compares them against wild type A980. The data shown in Figure 5.34 were kindly provided by Dr. Hui 

Hong. The peak at m/z = 259.36 is characteristic of the N-PUM isomer and is generated by a cleavage 

of the C-N nucleoside bond, cleavage of the guanidinoacetate-glutamate amide bond, and loss of 

ammonia. 

 The analysis clearly showed that formation of N-PUM in the S. albus A980-ΔpsmL mutant is 

boosted by feeding with uracil. It is difficult to be sure why Sosio and colleagues obtained different 

results. It might be a strain difference that means no N-PUM is visible in their truD mutant. Also, 

feeding of uridine may be less effective than feeding with uracil. Meanwhile, direct comparison of the 

intensity of the signals for PUM and N-PUM shows that the N-nucleoside is produced in levels lower 

than those of C-nucleoside in the wild type, but that it is present in quantities that should allow its 

future isolation and testing. This result encourages the view that there is some flexibility in the PUM 

biosynthetic pathway that might allow the future creation of interesting PUM analogues. 
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(A) 

 
(B) 

 
 

Figure 5.34: HPLC spectra and mass spectrometry data comparing the fermentation products of wild type A980 

and A980-ΔpsmL. (A) LCMS analysis of PUM and its N-isomer. The spectra have been normalised to wild type 

PUM production. (B) MS/MS analysis of PUM and its N-isomer. The peak at m/z = 259.36 is characteristic of the 

N-PUM isomer. 
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5.3: Concluding remarks 
 

The work described in this chapter has identified the biosynthetic gene cluster for the remarkable N-

nucleoside antibiotic pseudouridimycin in Streptomyces albus DSM 40763 (A980). It has defined the 

key genes required for the biosynthesis of PUM and characterised the amidinotransferase by in vitro 

assay. A two-step in vitro enzymatic reaction combining a pseudouridine-5’-phosphate glycosidase 

followed by a dephosphorylation reaction by a commercial phosphatase successfully generated  

from R5P and uracil. Unfortunately, the in vitro assays for the remainder of the pathway to APU were 

unsuccessful. Nevertheless, it was possible to show that the GMC oxidase PsmM shows the predicted 

ability to oxidise . Further, the enzyme accepted uridine albeit with much lower efficiency. 

Unfortunately, knockouts of psmN, psmU, and psmB were not obtained. The publication by Sosio et 

al. implicates PsmQ as the enzyme responsible for the N-amide hydroxylation, but the hydrolase, 

PsmB, and the p450, PsmU, still have no defined role in the cluster. The adenylate kinase, PsmN, is still 

an enticing target for knockout studies as its role in the biosynthesis of PUM cannot be easily 

predicted, other than the possibility of its involvement in the generation of . 

 The recent work by Sosio et al. 296 offers complementary insights into the biosynthesis of PUM. 

The Sosio gene cluster has differences in both arrangement and type of genes present when compared 

to the PUM cluster in A980. The work by Sosio and colleagues matches my predictions of the functions 

of the psm cluster genes. However, there is an interesting difference between the Sosio PUM producer 

and A980. When the truD homologue is knocked out in the Sosio strain the only PUM related 

compound that is observed is guanidinoacetate, and when the mutant strain is fed with uridine, it is 

not incorporated into any PUM related compound. This is in contrast to A980, where the ΔTruD 

(ΔpsmL) is able to take up uracil and incorporate it into an N-PUM, a novel nucleoside. Identifying and 

understanding the differences between the two PUM clusters may help characterise the pathway 

more fully.  

The important question that remains unanswered regards the origin of  as a substrate for 

PsmM. The TruD homologue, psmL, has the function of generating  residues in tRNA polymers, but 

that  must be released from the tRNA before it can be incorporated into PUM. It is possible that 

PsmL is capable of converting a metabolite related to uridine into  but the direct conversion of 

uridine into  has been attempted by Dr Hong with recombinant enzyme without success (Hong et 

al., 2018, in the press). Another possibility is that the PUM cluster does not have a dedicated pathway 

to produce free  and must rely on primary metabolism to degrade converted  in tRNA before 

incorporating the nucleoside into PUM. It has been well documented that Streptomyces spp. 
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undergoes significant RNA degradation, coinciding with important morphological changes during 

transition to stationary phase. In E. coli, tRNA has been shown to become significantly unstable as a 

stress response 300, so it is plausible that the entry of Streptomyces into the stationary phase, which 

can trigger secondary metabolite production, might also accelerate tRNA breakdown. It may be 

possible to probe this idea by measuring production of PUM across several timepoints and comparing 

the production of PUM to the growth cycles of A980.  
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Chapter 6: Conclusions and Suggestions for Future Work 

 

The work described in this thesis has addressed the current paradigm for genome mining, biosynthetic 

gene cluster characterisation, and engineering of biosynthetic gene clusters towards generation of 

novel biologically active compounds in Streptomyces spp. It has also explored new approaches 

towards PKS bioengineering in the form of Accelerated Evolution.  

The main conclusion that can be drawn from the work in Chapter 3 is that while the 

engineering technology Accelerated Evolution shows promise in the rapamycin PKS system, further 

work is required to understand the mechanisms behind AE before it can be generalised and applied 

to other systems. In its current state, AE can produce a large library of rapamycin derived compounds, 

but besides a single putative exception, no derivative compounds were observed in the three systems 

AE was applied to in this work. The failure to produce the desired response may be due to the absence 

of an important factor found in the rapamycin producer, or it might be the result of an inadequate 

protocol that can’t produce the desired recombination effect. This effect has only been recorded once, 

other than the paper by Wlodek et al. suggests that AE is possible in other strains but is extremely 

rare. I believe in the absence of a better understanding of the mechanism, it relied too heavily on luck 

to achieve an effect that had only been observed in a very small number of polyketide producing 

strains. Future work must focus on characterising the mechanism behind AE in Streptomyces 

rapamycinicus. There are several approaches that could contribute to this goal. Identifying genes that 

may be involved in the homologous recombination between modules and systematically knocking 

them out in an effort to break AE in the knockouts may provide a starting point for identifying other 

strains to which AE can be applied. This may be difficult as homologous recombination is not as well 

understood in Streptomyces spp. as it is in other species, but it could provide vital information on the 

mechanism behind AE and so should still be pursued. Another approach would be to study the genome 

sequence of the recombinant S. rapamycinicus strains. The recombination points may provide clues 

on the most effective entry points to be targeted for future attempts at applying AE. 

In addition to understanding the mechanism behind AE, future work should aim to create 

several approaches that assist with screening. The nature of AE experiments, especially in the work 

described above, produce large number of exconjugant and recombinant strains. Screening for 

desired traits takes considerable time and effort. The application of colony PCR for Streptomyces 

colonies saved a lot of work, but it is far from perfect. Any method that can ease the screening process 

should be explored and if successful, embraced. 
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The work in Chapter 4 focused on the genome mining of S. albus DSM40763. The conclusions 

that can be made from this work are firstly that the strain appears to be rich in uncharacterised 

biosynthetic potential, including rarer clusters such as a putative hybrid cyclodipeptide-terpene and 

an enormous 21 module PKS. The second conclusion that can be made is that an essentially complete 

genome sequence allows significant advantages over the more widespread fragmented genomes in 

the time and effort required to identify clusters of interest. Assembly of shotgun fragments can be 

difficult in strains such as Streptomyces, known for their high GC% content and large repeating 

sequences, but it is essential to giving an accurate estimate of biosynthetic potential. A further 

conclusion is that automated annotation tools such as antiSMASH cannot be used without manual 

curation. The program tends to annotate much wider limits to gene clusters than would be annotated 

manually, leading to the tool predicting hybrid clusters, and other misleading results. The tool also 

failed to identify certain classes of clusters, for example the PUM cluster was not correctly identified 

by the latest version of antiSMASH (4.0). 

Chapter 5 discussed the in vitro and in vivo studies towards characterising the PUM 

biosynthetic gene cluster found in S. albus DSM40763. PUM is a potentially valuable therapeutic 

agent, and its biosynthetic pathway shows promise as a platform for generating a library of related 

compounds. This was shown by the ability of the PUM gene cluster to generate an N-nucleoside 

isomer of PUM. The in vivo work initially identified this compound, with feeding experiments showing 

the presence of uracil (1 mg/ml) increased production of N-PUM. The in vitro work complemented this 

observation by showing that the oxidoreductase PsmM, which is thought to be the first enzyme acting 

on the  substrate in the PUM biosynthetic pathway, could turnover both  and U, with an 

approximate hundred-fold preference for . The promiscuity of PsmM and presumably the 

downstream enzymes suggest they may be tolerant for other substrates. An attempt to reconstitute 

the entire PUM biosynthetic pathway in vitro was halted by a failure to generate the 5’-amino-

pseudouridine (APU) component of PUM, however the guanidinoacetate component was generated 

in vitro by PsmH, and PsmM was shown to convert , which generates the precursor to APU. Future 

work in this area should focus on proving the ability of the aminotransferase, PsmO, to turn over the 

product of PsmM. This would be helped greatly by access to pure substrates which could be prepared 

by scaling up the enzymatic reactions described above and purified by preparative HPLC. Finally, the 

heterologous expression of the ligase, PsmK, should be investigated as it would be the last barrier to 

a full in vitro reconstitution of the biosynthesis of PUM. 
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Appendix 
 

Primer  Sequence 

  
Primers for nystatin gene cluster rearrangement work 
NysC-flank-F atttgttcagaacgctcggttgccgccgggcgttttttatgatcatatagtgcgggctgg 
NysC-flank-R cacagcccgatcatgtgc 
NysA-flank-F tttccgagccacggaattcattgcacatgatcgggctgtgggtgacccttccttccgg 
NysA-flank-R acgccagcaacgcggcctttttacggttcctggcctctagctttccgaagtacaggccc 
sgRNA insert gagacatctttgaagacaaacgctccctttctttagaagaggcgttttagagctagaaatagcaagttaa

aataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttttagcataaccccttggg
gcctctaaacgggtcttgaggggttttttggctgctccttcggtcggacgtgcgtctacgggcaccttaccg
cagccgtcggctgtgcgacacggacggatcgggcgaactggccgatgctgggagaagcgcgctgctgta
cggcgcgcaccgggtgcggagcccctcggcgagcggtgtgaaacttctgtgaatggcctgttcggttgct
ttttttatacggctgccagataaggcttgcagcatctgggcggctaccgctatgatcggggcgttcctgca
attcttagtgcgagtatctgaaaggggatacgcactagtgattccccggtccggtttaagtcttctttcacg
tggc 

g-check-F gtcattgtcggcgcaactat 
g-check-R ttttgtgatgctcgtcaggg 
  
Primer for Accelerated Evolution work 
NysKS6-F acagctatgacatgattacgcacggtctctgctgctcc 
NysKS6-R cgcggccgcgcgcgatatcggagttgttcggcgcggtc 
EryKS6-F acagctatgacatgattacgcgacagcagtacgggcac 
EryKS6-R cgcggccgcgcgcgatatcgttcgactccatgaccgcc 
EryKS-AT6-F gcttgggctgcaggtcgactaggtcctggaaacgacgtg 
EryKS-AT6-R acagctatgacatgattacgaagacgttccgccagtcc 
EryAT-KR6-F gcttgggctgcaggtcgactctgaccgacctgctcagc 
EryAT-KR6-R acagctatgacatgattacggtgatgtgcagttcctcgac 
EryACP-KS6-F gcttgggctgcaggtcgactgaactgcacatcaccctcga 
EryACP-KS6-R acagctatgacatgattacgcgacagcagtacgggcac 
PreKS2-F acagctatgacatgattacgggtcaccaactcacgcaaac 
PreKS2-R cgcggccgcgcgcgatatcgcaccctcaccttcgactacc 
PreKS-AT2-F gcttgggctgcaggtcgactcatgacggggcaggactac 
PreKS-AT2-R acagctatgacatgattacgctgctggcctcgatgaaga 
PreACP-KS-F gcttgggctgcaggtcgactctccccacgtatcccttcc 
PreACP-KS-R acagctatgacatgattacgggtcaccaactcacgcaaac 
FilKS11-F gcttgggctgcaggtcgacttgctcagctgctcggttc 
FilKS11-R acagctatgacatgattacgcgacaacacccacggcac 
FilKS-AT11-F gcttgggctgcaggtcgacttgttcgtcggcatgtcctac 
FilKS-AT11-R acagctatgacatgattacgggtctccagccagtaccg 
FilAT-KR11-F gcttgggctgcaggtcgactcatgtggcgggtgtgttg 
FilAT-KR11-R acagctatgacatgattacggaaccgctcccagtccac 
FilACP-KS11-F gcttgggctgcaggtcgactgcgttcgtcatgttctcctc 
FilACP-KS11-R acagctatgacatgattacgcgacaacacccacggcac 
pKC-check-F gttgtaaaacgacggccagt 
pKC-check-R cttccggctcgtatgttgtg 
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Primers for heterologous expression of pseudouridimycin biosynthetic genes 
psmH-F ctggtgccgcgcggcagccatatgaaccaaccggcgaccct 
psmH-R ttgtcgacggagctcgaattcgacggacggggagcggct 
psmI-F ctggtgccgcgcggcagccatatgcccctcacccagcgg 
psmI-R ttgtcgacggagctcgaattccgctcagacgccggcct          
psmK-F ctggtgccgcgcggcagccatatggcgctgctgctgctcaa 
psmK-R ttgtcgacggagctcgaattcgccgcccagtagagccggt        
psmL-F ctggtgccgcgcggcagccatatgacgaccggcaacccg 
psmL-R ttgtcgacggagctcgaattcagagggtgtcgatgagtcc 
psmR-F ctggtgccgcgcggcagccatatgtcctcgaccacttcccc 
psmR-R ttgtcgacggagctcgaattcggtggaggttcttcgcaatg 
psmM-F ctggtgccgcgcggcagccatatgccgcacggcttcga 
psmM-R ttgtcgacggagctcgaattcgttcgtggtgtgtgtggtg 
psmO-F ctggtgccgcgcggcagccatatgcgtcagcccgccga 
psmO-R ttgtcgacggagctcgaattcggcaagcggtcctactgg 
  
Primers for knocking out pseudouridimycin biosynthetic genes 
psmNL-F ggggacctgcaggtcgactctagaagcagctgttcggtcacccc 
psmNL-R acccgagaggaacgcgcccgtgacaccccgagaacatcctgcgc 
psmNR-F cgtagcgcaggatgttctcggggtgtcacgggcgcgttcctctc 
psmNR-R cgccgaaagttcctcgaagctagcgcgcgggcctggtgaacata 
psmUL-F ggggacctgcaggtcgactctagacgcctactcccgggtccact 
psmuL-R gtccgtccgggtgatgtcgagccggtcttacaccggggcgcact 
psmUR-F gccaagtgcgccccggtgtaagaccggctcgacatcacccggac 
psmUR-R cgccgaaagttcctcgaagctagcagggcgacaaggagggcatg 
psmBL-F ggggacctgcaggtcgactctagacttcctcggtcgtgcggtcc 
psmBL-R gtgcgcgcgaagacctgccgttcggcaccctagacgagcacccc 
psmBR-F ccgaggggtgctcgtctagggtgccgaacggcaggtcttcgcg 
psmBR-R cgccgaaagttcctcgaagctagccagctcaccactgccggcca 
psmNLcheck-F gccgaagcgctgggtgtcgt 
psmNLcheck-R ggcgtgccggtcgtttccca 
psmNRcheck-F cgaaccggcacccaccacga 
psmNRcheck-R ccggttggtgggcggaggat  
psmBLcheck-F tcgggagggctcttcggtgc 
psmBLcheck-R tgaggtgagcgccccgtcga 
psmBRcheck-F gccctgcgccaccttctcct 
psmBRcheck-R tcggtgcagaaggtggcgtcc 
psmULcheck-F aacggctcgccctccaaccc 
psmULcheck-R acacgccgcggtccacttcg 
psmURcheck-F gccaagtgcgccccggtgta 
psmURcheck-R cggtgatctggaacgcgcgg 
psmNKO-F gttggtccagtggtcgtgcg 
psmNKO-R gagaacagcacacggtcggc 
psmUKO-F cgttcccgtaatcccgctgc 
psmUKO-R tccacttcgacacgccaggt 
psmBKO-F tgcgccaccttctccttcgt 
psmBKO-R agggccccggagatgttgtc 

 

 


