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Abstract

Single-cell RNA-seq technologies require library preparation prior to sequencing. Here, we present the first report to
compare the cheaper BGISEQ-500 platform to the Illumina HiSeq platform for scRNA-seq. We generate a resource of
468 single cells and 1297 matched single cDNA samples, performing SMARTer and Smart-seq2 protocols on two
cell lines with RNA spike-ins. We sequence these libraries on both platforms using single- and paired-end reads. The
platforms have comparable sensitivity and accuracy in terms of quantification of gene expression, and low technical
variability. Our study provides a standardized scRNA-seq resource to benchmark new scRNA-seq library preparation
protocols and sequencing platforms.
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Background
Single-cell RNA-seq (scRNA-seq) has become the estab-
lished approach to dissect cellular heterogeneity, unravel
cell states, and identify subpopulation structures across
different cell types [1–4]. The different scRNA-seq
methods and technologies have been benchmarked using
synthetic RNA spike-ins [5–7]. However, to date, most
scRNA-seq methods require cDNA libraries to be com-
patible with short-read Illumina sequencing platform.
The most widely used Illumina platform uses a step-

wise sequencing by polymerase approach. The libraries
are made by fragmentation of bulk or single-cell cDNA,
followed by the addition of custom adaptors. The tem-
plate is flooded across a patterned flow cell to bind with
immobilized primers and washed to remove unbound
ends. The bound but free template ends further interact
with nearby primers, forming bridge structures. The sec-
ond strand is synthesized by PCR using the same

primers, followed by washing and re-formation of brid-
ges. This bridge amplification typically generates more
than a million copies of each template within the tight
physical cluster on the flow cell (reviewed in [8]). A sim-
plified schematic is shown in Additional file 1: Figure
S1A. The actual sequencing process itself is termed “se-
quencing by synthesis.” Here, a mixture of primers,
DNA polymerase, and modified nucleotides are added to
enriched template on flow cell. During each cycle, frag-
ments within each cluster incorporate a complementary
single modified nucleotide with a base-specific, cleavable
fluorophore, while unbound fragments are washed away.
The flow cell is imaged using total internal reflection
fluorescence (TIRF) microscopy to identify incorporated
based, followed by cleavage of modified base. This cycle
of nucleotide addition, elongation, and cleavage is re-
peatedly performed to ascertain the DNA sequence.
The BGISEQ-500 is an alternative short-read sequencing

platform, developed by BGI (Beijing Genomics Institute).
The BGISEQ-500 works use combinatorial probe-anchor
synthesis (cPAS) that combines DNA-Nanoball (DNBs) ar-
rays with stepwise sequencing using DNA polymerase on a
flow cell [8] (Additional file 1: Figure S1A). The three key
steps in the BGISEQ-500 platform are generation of DNBs,
loading DNBs onto a flow cell, and the sequencing of DNA
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fragments. In cPAS-based sequencing, the template cDNA
is first fragmented and size selected (200–500 bp). The tem-
plate undergoes four sequential rounds of adaptor ligation,
circularization, and cleavage, generating a final circularized
template with four unique adaptors. The circular templates
undergo rolling circle amplification (RCA) to produce a
large mass of DNA concatemers (DNBs) and are finally
immobilized and sequenced on a flow cell using combina-
torial probe-anchor synthesis (cPAS). Across the flow cell,
the DNBs bind to an anchor and fluorescent probe (com-
plementary to adaptors). The probes are degenerate (apart
from the first position) and capture the first base at either
end of the anchor. Each sequencing cycle consists of re-
moving the previous probe, re-ligating to the same anchor
with different fluorescent probes, and sequence determin-
ation. This cycle is repeated for each of the remaining three
adapter sequences to generate paired-end reads (reviewed
in [8]). The BGISEQ-500 platform has been previously ap-
plied to detection of small noncoding RNAs [9], human
genome re-sequencing [10], and palaeogenomic ancient
DNA sequencing [11], but not to scRNA-seq.
One of the key differences between the BGISEQ-500

and Illumina platforms is the sequencing cost, calculated
from yield per run. These sequencing costs are typically
subject to geographical, institutional pricing and con-
tinue to decline. Typically, the cost per gigabase (Gb) on
BGISEQ-500 is 40–60% of Illumina HiSeq4000 platform,
without accounting for physical sequencer cost (Add-
itional file 3: Table S1). The combination of higher
throughput (~ 2×) with marginally increased cost (10–
15%) per lane makes the BGISEQ-500 an attractive alter-
native. This is important in scRNA-seq, where signifi-
cant multiplexing is required alongside considerable
read depth per cell.
Here, we assess the suitability of BGISEQ-500 sequen-

cing platform for scRNA-seq and compare with the Illu-
mina HiSeq platform using matched single-cell data.
We perform two different scRNA-seq methods

(SMARTer and Smart-seq2) on mouse embryonic
stem cells (mESCs) and human K562 cells [12, 13].
We chose mESCs and K562 cells as two widely used
mouse and human cell lines, which have been profiled
in large-scale consortia (e.g., ENCODE) and in studies
benchmarking single-cell protocols [5, 6, 14]. For
comparison, we utilize RNA-spike-ins including Exter-
nal RNA Controls Consortium (ERCCs) and Spike-in
RNA Variants (SIRVs). The ERCCs and SIRVs span 92
synthetic RNA species and 69 artificial transcripts, re-
spectively, of varying lengths, concentrations, GC
contents, isoforms, and abundance levels. We bench-
mark and compare two performance metrics (sensitiv-
ity and accuracy) on single cells using two different
protocols and across Illumina and BGISEQ-500 se-
quencing platform.

We have previously applied these performance metrics
to compare different scRNA-seq protocols [5]. As in our
previous framework, the “sensitivity” or molecular detec-
tion limit is defined as the minimum number of RNA
spike-in molecules detected within a single cell. The “ac-
curacy” refers to the correlation between the estimated
abundances of input RNA spike-ins and the known in-
put molecules added to single-cell reaction (ground
truth) (Additional file 1: Figure S1B–C). Specifically, the
single-cell sensitivity is computed using a logistic regres-
sion model with spike-in RNA detection as a dependent
variable across platforms. The sensitivity is measured as
the input spike-in abundance level, where the detection
probability reaches 50% (Additional file 1: Figure S1B).
This approach minimizes biases due to batch effects
(uneven sizes, sampling, and variable spike-in detection).
The accuracy is calculated using the Pearson
product-moment correlation coefficient (R) between es-
timated spike-in expression from sequencing and the a
priori known input spike-in concentration (ground
truth) in log space, for each individual cell (Add-
itional file 1: Figure S1C, Additional file 2: Supplemen-
tary methods).
In this study, we perform the first systematic

scRNA-seq comparison across two sequencing plat-
forms, using 1297 matched cDNA samples from 468
unique single cells using two scRNA-seq protocols. We
compare and assess the accuracy, sensitivity, and robust-
ness of BGISEQ-500 library preparation and sequencing
platform with the current state-of-art Illumina HiSeq
platform. Our large dataset contains single- and
paired-end reads (50 and 100 bp) for batch-matched
mESCs and K562s, which is a large data resource for
comparison of new protocols and benchmarking compu-
tational methods.

Results
We performed two scRNA-seq protocols (SMARTer and
Smart-seq2) in parallel on 288 single-mESCs using both
ERCCs and SIRVs spike-ins on Fluidigm C1-system [12,
13]. The Smart-seq2 protocol was performed in replicates
(SM2 replicate 1 and 2) using mESCs batches. The
single-cell lysis, reverse transcription, and pre-amplification
for all methods were done within the C1-system. Each
chamber within the C1 chip was visually validated to con-
tain a single cell and to avoid bad chambers (doublet, deb-
ris, and dead cells; Additional file 2: Supplementary
methods).
We used the same “matched” single-cell cDNA from

288 cells, across SMARTer and Smart-seq2 protocols,
and generated 576 single-cell libraries for both Illumina
HiSeq2500 and BGISEQ-500 platforms (Fig. 1a) [5].
Here, we have both matched cDNA from single cells as
well as single-cell replicates to study how different
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library preparation and sequencing platforms affect
single-cell measurements (Fig. 1a). The final libraries
had similar size distributions across both sequencing
platforms, though there is a weak trend for slightly lar-
ger fragments in the BGISEQ-500 libraries.
For each single cell, we converted the aligned reads

to normalized transcript per million (TPM) units
(Additional file 2: Supplementary methods). Across
single cells, the fragment size distribution, read cover-
age over genes, dropout rates, and expression vari-
ation were quite similar between both sequencing
platforms (Additional file 1: Figure S1D). We also devised
pseudo-bulk by pooling all single cells together and ob-
served high correlations between sequencing platforms
and protocols (Additional file 1: Figure S1E).
Next, we calculated the sensitivity and accuracy using

both sets of spike-ins across matched single cells across
both platforms (Additional file 1: Figure S2A–B). Globally,
the single-cell accuracy was similar across the sequencing
platforms, irrespective of scRNA-seq protocol (R = 0.66–
0.70, Additional file 1: Figure S2B; violin plots in
Additional file 1: Figure S2C). The sensitivity (i.e., detec-
tion limit) was similar across scRNA-seq protocols and
ranged from 21 to 47 molecules (number of RNA mole-
cules #M = 21–47, Additional file 1: Figure S2A; violin
plots in Additional file 1: Figure S2D) between sequencing
platforms. The detection limit was slightly lower for
BGISEQ-500 platforms, likely due to highly sequencing
depth. Surprisingly, we could detect as few as 12 mole-
cules across one of the Smart-seq2 protocol replicates
(SM2-seq replicate 1; Additional file 1: Figure S2D).
Given that sensitivity can be dependent on sequencing

depth [5], we compared the distribution of reads across
single cells. The single cells were more deeply sequenced
across BGISEQ-500 platform, accounting for slightly in-
creased sensitivity (Additional file 1: Figure S2E). This
also increased the detected genes in BGISEQ-500 com-
pared to Illumina platform (Additional file 1: Figure
S2F). Interestingly, we cultured these mESCs in media
containing serum and LIF (leukemia inhibitory factor),
where stem cell and differentiating subpopulations have
been identified [15, 16]. In one of our Smart-seq2 proto-
col replicates (SM2-seq replicate1), we could discern
two subpopulations based on the number of genes (Add-
itional file 1: Figure S2F). We classified all single cells
based on the number of genes expressed across plat-
forms (Illumina > 5000 and BGI > 7500 genes) and ob-
served that these subpopulations expressed different
levels of pluripotency markers. The more pluripotent
cells (Illumina > 5000 and BGI > 7500 genes) expressed
higher levels of stem cell markers (Illumina > 5000 and
BGI > 7500 genes), while the differentiated-like cells had
fewer expressed genes and lower, stochastic gene expres-
sion (Additional file 1: Figure S2F–G) [15, 16]. The

statistics (performance metrics, reads, spike-in, genes de-
tected, etc.) for each matched single cell are summarized
in Additional file 4: Table S2.
To reduce the bias including technical variability, due to

sequencing depth, we downsampled total reads across two
orders of magnitude (raw reads to 106, 105, 104 total
reads) and re-computed sensitivity and accuracy. This al-
lows us to compare the platforms at different sequencing
depths and also estimate where saturation of sequencing
occurs. Both sensitivity and accuracy were highly similar
across single cells between scRNA-seq protocols and se-
quencing platforms, upon downsampling (Fig. 1b–c). The
detection limit was consistent between scRNA-seq proto-
cols and sequencing platforms (#M = 46–73), with the
sensitivity reaching saturation around ~ 2.8 million reads
(red dashed line; Fig. 1b). The accuracy was also consist-
ent (R = 0.62~0.67) between platforms, reaching saturation
at ~ 2.5 million reads (red dashed line; Fig. 1c).
We next assessed the matched single-cell similarity

across platforms by comparing either total expression
(Genes + spike-ins) or for spike-ins alone. We accounted
for sequencing depth by downsampling to 1 million
reads per single cell, as this has shown to be enough for
single-cell analysis [5]. We performed principal compo-
nent analysis (PCA) and plot each matched cell by
representing the sequencing platforms, where the dis-
tance between them is a measure of gene expression
similarity (dashed line; Fig. 1d). The PCA captures
strong similarity between matched cells (short distance)
across platforms for most of the single cells across both
platforms, with low PC1 (8–14%) and PC2 (4%) contri-
bution. The PCA separates the pluripotent subpopula-
tion from outlier cells (bad cells) (Fig. 1d). This is most
apparent in Smart-seq2 protocol replicate 1 (Fig. 1d; first
panel), where the largest subpopulation (left) corre-
sponds to pluripotent cells, while the smallest subpopu-
lation is differentiating-like cells (top-center; see also
Additional file 1: Figure S2G) with a group of
low-quality outliers (with large inter-cell distances; see
also Additional file 1: Figure S2G).
We re-performed PCA using both sets of spike-ins

(without genes) on matched single cells to re-validate
the subpopulations and to control for any technical bias
arising from endogenous genes. As expected, the
matched cells in resulting PCA were uniform with simi-
lar distances and low PC1 (~ 7%) and PC2 (~ 5–6%)
variation between platforms (Additional file 1: Figure
S3A). Across Smart-seq2 protocol replicate 1, we could
re-confirm the two subpopulations (same as in Add-
itional file 1: Figure S2F–G). The larger subpopulation
corresponds to pluripotent cells expressing more genes
with fewer spike-ins detected, while the other subpop-
ulation had higher spike-ins. We also compared the
single-cell sensitivities for matched cells both before

Natarajan et al. Genome Biology           (2019) 20:70 Page 3 of 8



A

D

E

B C

Fig. 1 a Schematic overview of the mESC scRNA-seq experiment and sequencing. Three sets of 96 mESCs are profiled using SMARTer and Smart-seq2
protocols on C1-system. For each single-cell, we prepared two sets of libraries for Illumina and BGISEQ-500 platform resulting in 576 matched libraries.
b Single-cell detection limit (Sensitivity) of mESC cells, downsampled across two orders of magnitude. The single-cell sensitivities are largely similar
between different library preparations across scRNA-seq protocols. c Single-cell accuracy of mESC cells also downsampled across two orders of
magnitude. The grey dotted lines in b and c indicate downsampled single cells at different depths, while red line indicates limit for sequencing
saturation. d PCA for matched single-cells performed using SMARTer and two replicates of Smart-seq2 and sequenced across both sequencing
platforms. Each single cell is represented with a red and green colored circle to indicate HiSeq200 and BGISEQ-500 sequencing platforms respectively.
The dotted lines represent distance, i.e., measure of similarity across sequencing platforms. e Single-cell correlations of sensitivity (i.e., lower detection
limit computed from spike-in concentrations) for each scRNA-seq protocol and across sequencing platforms. The correlations (R = 0.52~0.70) are
comparable between sequencing platforms
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and after downsampling. The rationale is that without
downsampling, single-cell correlations would be
poorer due to sequencing depth variation, and skewed
towards the more deeply sequenced BGISEQ-500
data. As expected, the correlations were poorer before
downsampling (R = 0.14~0.52; Additional file 1: Figure
S3C). Upon downsampling, the correlations were sig-
nificantly improved in a manner that is consistent
across protocols (R = 0.52~0.70).
We also compared the single-cell sensitivities for

matched cells both before and after downsampling. The
rationale is that without downsampling, single-cell cor-
relations would be poorer due to sequencing depth vari-
ation and skewed towards the more deeply sequenced
BGISEQ-500. As expected, the correlations were poorer
before downsampling (R = 0.14~0.52, Additional file 1:
Figure S3C). Upon downsampling, the correlations were
significantly improved in a manner that is consistent
across protocols (Fig. 1e, R = 0.52~0.70).
In summary, we highlight that both Illumina and

BGISEQ-500 platforms have similar and comparable
performance metrics (sensitivity and accuracy) and can
capture underlying biological subpopulations at
single-cell level. The BGISEQ-500 offers a cost-effective
alternative to Illumina platform with similar yields.
Next, we repeated our benchmarking comparison using

plate-based Smart-seq2 protocol on a smaller subset of 82
mESCs and 98 K562s using ERCC spike-ins only. We
chose plate-based Smart-seq2 as its most widely used
full-length protocol and avoid cell capture biases in the
C1-platform. We used the matched single-cell cDNA from
mESCs and K562s to generate 600 BGISEQ-500 sequen-
cing libraries in both single- and paired-end configura-
tions and 121 HiSeq 4000 paired-end sequencing libraries
(721 sequencing libraries in total) (Fig. 2a; Add-
itional files 4, 5, 6, and 7: Table S2, S3, S4, and S5). This
setup allows us to compare the effect of library prepar-
ation and sequencing platform from both matched
single-cell cDNA, but also single-cell replicates processed
in parallel (Fig. 2a).
Across single-cells, the sequencing depth varied from 3

to 20 million reads across both sequencing platforms. The
mESCs are much smaller than K562s with dramatically
variable amount of cellular RNA per single cell. Across
both sequencing platforms, we observed higher sequen-
cing depth and higher number of genes and spike-ins de-
tected for K562s compared to mESCs (Additional file 1:
Figure S4A; Additional file 6: Table S4). Taking a conser-
vative cutoff (TPM > 10), we observed most genes (~ 70%)
were expressed in both cell types, as well as cell
type-specific genes (5500 and 2371 genes across K562s
and mESCs) (Additional file 1: Figure S4H).
Owing to the higher sequencing depth, the K562s had

increased sensitivity across both sequencing platforms

with detection of as few as 3–4 molecules (#M = 3–4;
Fig. 2b). This compared to a somewhat worse but con-
sistent mESC detection limit (#M = 42~49), due to se-
quencing depth variation. The accuracy, which is less
dependent on depth was quite high and consistent (R =
~ 0.85~0.88) for both cell types, indicating similar per-
formance metrics across sequencing platforms (Fig. 2b
and Additional file 1: Figure S4B–C). The accuracy satu-
rated at ~ 0.5 million reads per single cell. The statistics
(performance metrics, reads, genes, spike-ins detected,
etc.) for each matched K562 and mESCs across both
platforms are provided in Additional files 4, 5, 6, 7, and
8: Table S2, S3, S4, S5, and S6.
Since we generated mESC data from different scRNA

protocols, technologies, and sequencing platforms contain-
ing ERCC spike-ins in two different batches, we collectively
assessed the mESCs performance metrics for both plat-
forms. We downsampled the raw reads and observed that
both sensitivity and accuracy were comparable between
both platforms (Additional file 1: Figure S4D–E). Combin-
ing all the mESC data, the sensitivity and accuracy were sat-
urated at ~ 2 million and ~ 250,000 reads, respectively
(Additional file 1: Figure S4D–E). We also observed similar
detected genes detected between both platforms
(Additional file 1: Figure S4E, Additional files 4 and 5: Table
S2 and S3). In summary, our analysis demonstrates similar
and robust performance metrics between BGISEQ-500 and
Illumina platforms for scRNA-seq.
Our dataset spans 468 unique single cells of two differ-

ent cell types (mESCs, K562s), two scRNA-seq protocols
(SMARTer, Smart-seq2), two technologies (Fluidigm C1,
plate-based), and matched 1297 libraries across Illumina
and BGISEQ-500 sequencing platform (Additional files 4,
5, 6, 7, and 8: Table S2, S3, S4, S5, and S6). In addition
to paired-end (PE) data, we also generated 50 bp and
100 bp single-end (SE) scRNA-seq from mESCs and
K562 totaling > 750 GB of raw single-cell data.
From both the SE and PE BGISEQ-500 data, the average

sequencing depth per cell was ~ 9.6 and ~ 8.7 million
reads, respectively (Additional files 5, 6, 7, and 8: Table S3,
S4, S5 and S6). Both SE and PE datasets detected > 9500
genes for K562s and > 9000 genes for mESCs. The accur-
acies for K562 and mESCs cells across both SE and PE
reads was R = ~ 0.70–0.85, and the sensitivities for K562
and mESCs cells were #M= 4~25 across both SE and PE
reads. We also compared the frequency of alternative spli-
cing events in the downsampled mESCs and K562s PE
data. We observe quite similar alternative splicing events
between K562 and mESCs across both platforms (Add-
itional file 1: Figure S4G).
In summary, our datasets and comparative performance

assessment offer a large standardized resource to the com-
munity to further investigate potential technical biases in-
cluding GC content, isoform quantification, impact of
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read-lengths across different scRNA-seq protocols, tech-
nologies, and sequencing platforms. The matched 1297
single-cell datasets and annotations would serve as an
ideal starting point for benchmarking and comparison of
new protocols and computational methods for the scien-
tific community.

Discussion
The rapid developments in single-cell genomics are
transforming our understanding of biological systems by
capturing underlying gene expression variability to

identify cell types, states, and transitions across cell pop-
ulations. Single-cell transcriptomic profiling is a
multi-step sampling procedure, where the first major
step involves cell lysis, RNA capture, reverse transcrip-
tion of RNA, preamplification of cDNA generation. The
next major step requires single-cell cDNA to be con-
verted into a sequencing compatible library, followed by
sequencing. There are several scRNA-seq protocols that
utilize different chemistries, platforms, and technologies
to address the first critical step of converting RNA into
cDNA. The technical variation, performance metrics

A

B C

Fig. 2 a Schematic overview of the mESC and K562 scRNA-seq experiment using plate-based Smart-seq2 protocol and sequencing. 82 mESCs
and 98 K562s are profiled using plate-based Smart-seq2 protocols, followed by matched single- and paired-end library preparation for both
Illumina and BGISEQ-500 platform resulting in 721 matched libraries. b The sensitivity of mESCs and K562s cells downsampled across two orders
of magnitude. The sensitivity is critically dependent on sequencing depth and deeply sequenced K562 cells appear to be more sensitive than
mESCs. The sensitivity, however, between the sequencing platforms is highly similar. c The accuracy of mESCs and K562s downsampled across
two orders of magnitude. The accuracy has little dependence on sequencing depth, and both mESCs and K562 have similar accuracies, across
both sequencing platform. The grey dotted lines indicate downsampling at different read depths per cell, while red line indicates saturation
per cell
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(sensitivity, accuracy), and reproducibility for the first
critical step have been recently evaluated and bench-
marked using synthetic RNA spike-in molecules [5–7].
However, all the scRNA-seq protocols and technologies
require libraries to be compatible for sequencing on
short-read Illumina platform.
Here we explore an alternative BGISEQ-500 short-read

sequencing platform for scRNA-seq that uses combinator-
ial probe-anchor synthesis (cPAS). Unlike Illumina,
BGISEQ-500 platform performs template enrichment
using rolling circle amplification on DNA-Nanoballs com-
bined with stepwise sequencing for template amplification
[8] (Additional file 1: Figure S1A). One of the biggest ad-
vantages of BGISEQ-500 is the cost and throughput per
run (Gb/per run). It is important to highlight that the se-
quencing costs continue to decline yearly and reagent and
personnel costs across facilities are often subject to geo-
graphical and institutional pricing, making it difficult to
compare exact costs. However, a typical BGISEQ-500 100
bp paired-end run generates 120–130 Gb (1.8-2x Illumina
throughput) at 10–15% increased cost per lane. This can
be especially useful for full-length scRNA-seq, where both
multiplexing and higher sequencing depth per cell is re-
quired. On the other hand, Illumina platform is the
current state of the art with reagents widely available,
used, and benchmarked.
Our study is the first to utilize BGISEQ-500 platform

for scRNA-seq. Our comprehensive benchmarking of
performance metrics utilizes two scRNA-seq protocols
(SMARTer and Smart-seq2), multiple spike-ins (ERCC
alone, ERCC+SIRV), two different cell lines (mESCs,
K562s), and two technologies (Fluidigm C1, plate-based)
across Illumina HiSeq and BGISEQ-500 platform. Utiliz-
ing 468 single K562 and mESCs and matched 1297
single-cell libraries, we observe BGISEQ-500 to be
highly comparable in sensitivity, accuracy, and reprodu-
cibility to Illumina platform, while being considerably
more cost-effective.
From our mESC scRNA-seq dataset, we could distin-

guish technical artifacts (sequencing depth) from bio-
logical variation (subpopulations) across both sequencing
platforms. We observe differential alternative splicing
events between K562s and mESCs across both sequencing
platforms. We observe some RNA degradation in few
single-cell libraries, which we believe is due to transport
of samples. Our data using mESCs and K562s across two
scRNA-seq protocols supports the notion that minimal
variability is introduced during library preparation and se-
quencing for both Illumina and BGISEQ-500 platforms.
In combination with our previous framework [5], we be-
lieve that variability between the steps of scRNA-seq pro-
tocols is largest during the RNA to cDNA step. Both the
performance metrics and single-cell characteristics (num-
ber of genes, expression range, subpopulation, etc.)

suggest that BGISEQ-500 library preparation and sequen-
cing are robust and comparable to Illumina platforms for
single-cell applications.
We observe minimal variability in cDNA processing

across different library preparation and sequencing plat-
forms. In the current study, we did not perform
scRNA-seq protocols with Unique Molecular Identifiers
(UMIs) that account for PCR amplification biases. Given
that UMIs primarily address biases during the
RNA-to-cDNA stage (and to cDNA amplification), this
would have minimal or no impact on our assessment of
sequencing platforms. The scRNA-seq UMI-based proto-
cols could easily be extended to be compatible with se-
quencing on BGISEQ-500 platform. Our large resource
for benchmarking scRNA-seq data suggests that the
BGISEQ-500 platform is suitable for plate-based (micro-
well or nanowell), droplet, and microfluidics technologies.
In addition to benchmarking, we provide a large com-

prehensive multi-cell type, protocol, and platform
scRNA-seq dataset spanning 468 cells and 1297 libraries
in both single- and paired-end configuration to the com-
munity. Given the large research initiatives profiling
transcriptomes of single cells in mouse [3, 17] and Hu-
man, such as the Human Cell Atlas [18], achieving
high-quality and cost-effective methods is paramount.
Our standardized resource can be utilized for investigat-
ing technical biases and for benchmarking scRNA-seq
protocols and computational methods.
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Additional file 6: Table S4. Single-cell library statistics computed from
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Smart-seq2 protocol and sequenced across HiSeq4000 and BGISEQ-500
platforms. (CSV 87 kb)
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raw single-end sequencing reads for mESCs and K562 using plate-based
Smart-seq2 protocol and sequenced across HiSeq4000 and BGISEQ-500
platforms. (CSV 75 kb)
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Additional file 9: Table S7. Metadata for all single-cell libraries profiled
in this manuscript. Each cell is labeled with a sample id (accession num-
ber), protocol, place of experiment, read type, and sequencing platform.
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