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Abstract 

Advances in next-generation sequencing have accelerated the rate at which novel 

gene fusions are discovered. The discovery of gene fusions such as EML4-ALK in lung 

cancer and BCR-ABL1 in chronic myeloid leukaemia have already led to changes in clinical 

care. However, important questions remain about the role of gene fusions in promoting 

oncogenic phenotypes and their relevance in drug response.  

In this study, I combine RNA sequencing, CRISPR/Cas9 screens and high-

throughput drug sensitivity data in a panel of 1,011 human cancer cell lines across 42 tissue 

types to examine the occurrence and functional relevance of gene fusions in cancer. 

Fusions were called using three algorithms and filtered to reveal 8,354 fusion events 

with a validation rate of 70%. Cell lines exhibit known fusions in their corresponding tissue 

types as well as a large number of putative passenger events and fusion recurrence across 

tissue types correlates with that found in patient samples. 

The panel of 1,011 cell lines has previously undergone high-throughput drug 

screening of 409 drug compounds. I implemented a systematic analysis to identify 

associations between fusion occurrence and drug response. It reliably recapitulates known 

associations (e.g. BCR-ABL1 and sensitivity to ABL inhibitors). However, the number of 

novel findings is low, likely due to the low numbers of recurrent fusions, a lack of prior 

knowledge of novel gene fusions as well as a narrow range of drug targets.  

Next, I developed a computational approach using whole-genome CRISPR/Cas9 

screening data for 339 cell lines. It utilises CRISPR/Cas9 data on a guide-level to 

systematically evaluate essentiality of novel gene fusions. My analysis predicts essentiality 

of known gene fusions with high accuracy and provides evidence for the oncogenic 

relevance of novel gene fusions. A gene fusions in YAP1-MAML2 represents a particularly 

interesting finding showing functionality across multiple distinct cancer types. 

Altogether, in my thesis, I demonstrate that innovative computational approaches 

leveraging new datasets can enable us to elucidate the functionality of rare gene fusions 

in human cancer. These types of discoveries may aid in the development of targeted 

therapies and supports the use of clinical basket trials to capture cancer events across 

multiple tissue types. 
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1 Introduction & Literature review 

1.1 General introduction and thesis outline 

1.1.1 Context and role of genomics in cancer treatment 

The advent of next-generation sequencing technologies has allowed the scientific 

community an unprecedented insight into cancer genomes. For a disease that is estimated 

to cause 28% of deaths in the United Kingdom each year (Cancer Research UK, 2015), 

insights into the biology of cancer initiation, progression, maintenance and treatment are 

crucial in helping to create a better standard of care for patients. 

Cancer has been studied in some form or another since several hundred years BC, 

when the term “carcinoma” was termed by Hippocrates. The vast majority of our 

understanding into the underlying biological causes has been developed over the last 70 

or so years, enabled by the elucidation of the DNA structure and sequencing technology. 

Now, international consortia such as The Cancer Genome Atlas (TCGA) and International 

Cancer Genome Consortium (ICGC), have already sequenced tens of thousands cancer 

genomes. An on-going effort by Genomics England aims to sequence 100,000 genomes 

of National Health Service patients with cancer and rare diseases in the United Kingdom 

(Genomics England). As of July 2018, they have sequenced their 70,000th genome. 

With the explosion of genomic data available, significant improvements are being 

made in the diagnostic, prognostic and treatment opportunities made available to patients 

today and in the future.  

 

At its’ essence, cancer describes the transformation of normal cells into a malignant 

disease that can be lethal to the host. It encompasses over 100 distinct diseases, all of 

which follow essentially the same pattern of excessive proliferation and death avoidance 

that underpin the hallmarks of cancer defined by Hanahan and Weinberg in 2000 and 

refined in 2011 (Hanahan and Weinberg, 2000, 2011). 

The genetic and genomic revolution has enabled the research that brought about 

and cemented one of the now fundamental principles of cancer research – that cancer 

arises from changes in the genome. Genomic events, such as point mutations, changes in 

copy number and others, can deregulate the function and expression levels of proteins. 

They imbalance the intricate protein signalling networks that regulate a range of basic 
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cellular functions, from response to growth factors, apoptotic blockade, cell adhesion and 

migration, immune evasion and many more. 

As genetic alterations were understood to be drivers of cancer, the resulting 

oncogenic proteins became appealing targets for chemical inhibition. The standard of care 

for most cancers diagnosed today is a combination of surgery, chemotherapy and 

radiotherapy. While they reduce overall mortality on a population level, not all patients 

respond and they often carry harsh side effects and a risk of treatment-related mortality. 

Targeted therapy is the name for a treatment that is tailored to a molecular 

alteration that underpins a specific cancer subtype. The first and best-cited example of a 

successful targeted therapy is that of imatinib, which targets the disease-defining BCR-

ABL1 fusion in chronic myeloid leukaemias (CML) (Druker et al., 2001). Imatinib became 

the first targeted treatment to be approved by the US Food and Drug Administration (FDA) 

in 2001 and five years after initial administration showed an exceptional 95% overall 

survival for CML patients (Druker et al., 2006). 

Since then, many more targeted treatments have been approved by the FDA across 

a range of tumours with varying genomic biomarkers. For example, these include BRAF-

mutated melanomas being treated with BRAF and MEK inhibitors (Flaherty et al., 2012; 

Hauschild et al., 2012), or EGFR inhibitors being used in KRAS and NRAS wild-type 

colorectal cancers and EGFR-mutated non-small-cell lung cancers (Douillard et al., 2013; 

Mok et al., 2009). Similarly, the immunotherapy agent pembrolizumab has recently been 

approved for the treatment of microsatellite instable solid tumours (Le et al., 2015). 

Unfortunately, in advanced tumours many of the targeted treatments merely slows 

down disease progression and patients often relapse and exhibit new genomic alterations 

that bypass the inhibited mechanism. Similarly, many patients simply do not have any 

actionable biomarkers for tailored treatments (McDermott, 2015).  

Thus, there is still a pressing need to further advance our understanding of the 

cellular mechanisms of different subtypes of cancer. Discoveries of new cancer drivers and 

markers can greatly benefit future patients by allowing early diagnosis, better prognoses 

and the development of new targets for cancer treatment.  
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1.1.2 Gene fusions in cancer research 

This PhD thesis is focused on the functional role of fusion transcripts in cancers. 

Gene fusions have formed some of the best-cited success stories in targeted cancer 

treatment, starting with the treatment of BCR-ABL1-positive tumours with imatinib. In 2011 

followed the approval of crizotinib for the treatment of ALK-fused non-small-cell lung 

cancer (Kwak et al., 2010). Aside from treatment targets, gene fusions also play major roles 

in driving tumourigenesis in various tumour subtypes.  

Since the 1970’s, sequential improvements in technology allowed the study of gene 

fusions in greater and greater detail. More recently, the invention of paired-end RNA-

sequencing (RNA-Seq) technology opened up new opportunities to study gene fusions at 

even greater scale. A paper published in March 2018 represents a further milestone, where 

fusions were called from RNA-Seq data from almost 10,000 TCGA patient tumours (Gao et 

al., 2018). With large-scale fusion detection made accessible in this age of high-throughput 

sequencing, the next challenge is to sift through biological passengers and technical 

artefacts in order to identify functional drivers of oncogenesis and markers for treatment 

response.  

To address this question, I used a panel of 1,011 genomically annotate human 

cancer cell lines. The cell lines also have been screened across over 400 drug compounds 

and a subset of cell lines also has essentiality profiles of over 18,000 genes that were 

generated through CRISPR/Cas9 whole genome drop-out screens. Our group has now 

generated RNA-Seq data for these cell lines, and analysed it with fusion-calling algorithms. 

The aim of my dissertation has been to 1) analyse and apply a set of filters to 

remove technical artefacts and arrive at a final set of fusions and 2) conduct a set of 

analyses that would attribute a functional role to fusions detected by large-scale 

sequencing approaches. This work could help us discover and inform the functional 

implications of gene fusions in cancer. 

1.1.3 PhD chapter outline 

Here in chapter 1, I will introduce the i) concept, successes and challenges of 

precision cancer medicine, ii) state-of-art of the technologies and findings on gene fusions 

in cancer and iii) the important role of cancer cell lines as experimental models of tumour 

biology and treatment response, especially in the high-throughput setting.  
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Following that, in chapter 2 I describe the development of a set of filtering criteria 

that created a working list of gene fusions with a ~72% validation rate in our cancer cell 

lines. In chapter 3, I briefly describe the landscape of the gene fusions across our panel of 

cell lines. In chapter 4, I query the association of fusion occurrence with sensitivity to over 

400 drug compounds. In chapter 5, I develop a computational method to assess 

functionality of gene fusions using the CRISPR/Cas9 whole-genome data and in chapter 6 

I present the results and provide examples of fusions as novel candidates of cancer 

maintenance and potential treatment targets. Throughout the thesis, I attempted to 

highlight not just the biological significance of the results, but also points of learnings and 

potential improvements that emerged while working with the data. Finally, chapter 7 

summarises the previous chapters and link it back to the state-of-art. 

 

  

 

Figure 1.1: PhD thesis outline of identifying gene fusions in cancer cell lines. Using the extensive genomic and 

phenotypic data that is available for the cell lines, my analysis attempts to find functionally relevant gene fusions 

that may be used as targets of precision medicine. Numbers in boxes refer to the chapters in which I focus on 

certain elements of this process map.  
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1.2 Precision cancer medicine 

A central goal of cancer research is to improve the clinical outlook for cancer 

patients and to increase their survival chances while maintaining an adequate quality of 

life. The two biggest opportunities for medical intervention are 1) by providing good 

treatment options available at the time of diagnosis that will eradicate or delay disease 

progression while minimising harmful side effects and 2) achieving earlier diagnosis of 

cancer, as treatment of early-stage cancers typically has much better outcomes than at 

advanced-stages.  

Precision cancer medicine falls into the first category of improving treatment 

options. As indicated in the previous section, the standard-of-care often produces mixed 

results depending on the exact cancer diagnosis and carries the risk of harmful side-effects. 

Precision cancer medicine aims to select the treatment that produces the best survival 

outcomes for each patient according to the tumour’s molecular make-up. An important 

principle here is that of “oncogenic addiction”, whereby a cancer cell becomes dependent 

on constitutive activity of an oncogene for tumour maintenance and survival. Many 

targeted medicines aim to inhibit the oncogene and thus cause tumour regression. 

The basic concept is that when a patient presents with cancer in the clinic, a sample 

is taken and sequenced either for a panel of cancer-associated molecular alterations and 

based on the genetic changes and the current state-of-the art of cancer knowledge, a 

suitable treatment can then be selected.  

1.2.1 Case study: Non-small cell lung cancer 

A prominent example illustrating precision cancer medicine is that of non-small cell 

lung cancer (NSCLC). Lung cancer, of which 85% are classified as NSCLC, is one of the most 

common and deadly cancers world-wide, partially due to the wide-spread production and 

consumption of its main carcinogens, tobacco smoke and air pollution (Reck and Rabe, 

2017). When a patient presents at the clinic and is diagnosed with NSCLC, a biopsy is taken 

and tested for the presence of 1) activating EGFR, BRAF and KRAS mutations using 

sequencing, 2) ALK or ROS1 rearrangements using fluorescence in situ hybridisation (FISH) 

and 3) PDL-1 expression levels using immunohistochemistry. Treatment is then chosen 

accordingly (Reck and Rabe, 2017). 
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Firstly, mutations in epidermal growth factor receptor (EGFR) occur in about 10-20% 

of Caucasians and 48% of East Asians, and are a good indicator of response to EGFR 

inhibitors, such as gefitinib, afatinib and erlotinib. Compared to standard-of-care 

chemotherapy, these targeted EGFR inhibitors effectively doubled progression-free 

survival time from 5.1-6.1 months to 10.0-11.8 months (range depended on the exact 

nature of the EGFR mutation) (Lee et al., 2015a). Moreover, EGFR inhibitors tend to show 

lower toxicity than chemotherapy, with a lower percentage of patients with grade 4 side 

effects (Maemondo et al., 2010). 

Rearrangements in ALK receptor tyrosine kinase (ALK) and ROS proto-oncogene 1 

(ROS1) occur in 1-7% of tumours and qualify a patient for treatment with crizotinib, an 

inhibitor of multiple tyrosine kinases: MET proto-oncogene (MET), ROS1 and ALK. 

Treatment outcomes in terms of response rate and progression-free survival were better 

in all clinical trials using crizotinib for ALK-rearrangements for both first-line and advanced-

stage treatments (response rates of 65%-74% vs. 20%-45% using chemotherapy and 

median progression-free survival: 7.7-10.9 months vs. 3.0-7.0 months) (Shaw et al., 2013; 

Solomon et al., 2014). Advanced NSCLC with ROS1-rearrangements performed even better 

with crizotinib, with a 72% response rate and median progression-free survival of 19.2 

months (Shaw et al., 2014).  

Another 2% of patients carry a B-Raf proto-oncogene (BRAF) mutations, which is 

treated with a combination of BRAF inhibitor dabrafenib and MEK inhibitor trametinib and 

has showed a response rate of 54% in a clinical trial of advanced-stage NSCLC (Planchard 

et al., 2016).  

Conversely, a negative indicator for response is a mutation in KRAS proto-

oncogene (KRAS). KRAS mutations occur in about 30% of Caucasians (with a higher 

incidence in smokers) and mainly cause the constitutive activation of the RAF-MEK-ERK 

pathway of proliferative signalling and the PI3K-AKT pathway of anti-apoptotic signalling 

(Suda et al., 2010). Unfortunately, NSCLC patients with KRAS mutations generally have very 

poor prognosis with standard-of-care (Slebos et al., 1990) and show no response to EGFR 

inhibitors (Pao et al., 2005). KRAS itself has proven itself undruggable so far and a clinical 

trial found no added benefit of targeting downstream MEK protein in combination with 

chemotherapy compared to standard chemotherapy (Jänne et al., 2016). 
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1.2.2 Case study: BRAF mutations 

While the aim of precision medicine is to tailor the therapy to the genetic 

background of cancers, an important factor to consider is also the tissue type of origin. A 

particularly potent example of that is the example of the tyrosine kinase BRAF, an 

oncogene of the RAS-RAF-MEK signalling pathway that is mutated in various different 

tissue types, including melanoma, colorectal cancers, and ovarian carcinomas, and the 

majority of mutations are a BRAF(V600E) mutation in the activation loop (Davies et al., 

2002). 

The observation of the wide-spread mutation of BRAF across several cancer types 

lead to the development of BRAF inhibitors and vemurafanib was the first one to be 

approved after it showed a 48% response rate in BRAF-mutated advanced-stage 

melanomas, compared with 5% with chemotherapy (Chapman et al., 2011). 

However, in colorectal cancers, where about 10% of patients showed a BRAF(V600E) 

mutation, the response rate was only 5% with median progression-free survival at only 3.7 

months (Kopetz et al., 2010). Two years later, an RNA interference screen revealed that the 

mechanism of BRAF inhibitor resistance in colorectal cancer was a rapid feedback 

activation of EGFR by phosphorylation, which activates other RAF family kinases (Prahallad 

et al., 2012). The authors further showed that melanomas had lower levels of EGFR, which 

is typically expressed in epithelial tissues, and explaining their relative sensitivity to BRAF 

inhibitors. A recently published clinical trial treated 91 advanced-stage metastatic patients 

with a triple-combination of EGFR, BRAF and MEK inhibitors (Corcoran et al., 2018). They 

reported promising response rates of 21% in a disease subtype which outcomes are usually 

poor despite chemotherapy treatment (Tran et al., 2011). 

Overall, this case demonstrates how the treatment of the same genetic subtype 

requires different considerations in different cancer types. While BRAF inhibitors work well 

in melanomas with BRAF(V600E) mutations, in colorectal cancer combinations with EGFR 

and MEK inhibitors are required to suppress primary resistance. At the same time, this case 

also illustrates that in instances where monotherapy does not show a desired effect, 

combinations may be used to target resistance mechanisms.  
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1.2.3 Challenges in precision cancer medicine 

Despite promising case studies that show that an understanding of cancer biology 

can lead to better treatment options for patients, the successful deployment of precision 

cancer medicine still faces many challenges.  

Firstly, the number of genetic biomarkers used in the clinic is still small. A large 

proportion of the patient population do not present with actionable mutations and will be 

treated with the standard of care.  

Secondly, as illustrated in the examples above, even in a carefully pre-selected 

patient population, a proportion of patients do not respond to the treatment. While the 

development of better drugs can lead to improved response rates compared to initial trials, 

they are still rarely even close to 100%.  

At the same time, only a few patients show a stable disease over a prolonged time 

period and many patients eventually develop resistance to targeted medicines. For 

instance, the mitogen-activated protein kinase (MAPK) pathway forms a central node in 

proliferative signalling which involves BRAF, MEK and ERK. This pathway is commonly 

targeted using inhibitors, however resistance often develops through a variety of genetic 

alterations that lead to increased reactivation of the pathway. These include KRAS and 

NRAS proto-oncogene (NRAS) activation by mutation or amplification, BRAF(V600E) 

amplification and other mutations that either lead to mutation in the drug-inhibitor 

binding sites, hyper-activation of key pathway components or by-passing the blocked 

signalling pathways (Ahronian et al., 2015).  

In the context of acquired resistance to targeted therapies, intra-tumoural 

heterogeneity also represents a challenge as resistant subclones may already be present 

in tumours at the time of treatment (Diaz Jr et al., 2012).  

In order to combat the issue of treatment resistance, it will be important to clarify 

the exact mechanisms of resistance. In particular, cheaper, more readily available and 

reliable next-generation sequencing technologies allows the detection of genome-wide 

alterations after treatment. Improvements of liquid biopsy technologies may facilitate the 

collection and analysis of cancer DNA and cells from the blood. As illustrated with the 

BRAF/MEK/EGFR triple combination, drug combinations may delay the emergence of 

resistance by targeting multiple components of signalling pathways at once.  
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Precision cancer medicine may also benefit from combining or stratifying patients 

for treatment with immunotherapy in addition to targeted therapy. In melanoma and other 

cancer with a high mutation burden, antibodies that target negatively regulating immune 

receptors such as PDL-1 and CTL-4 have shown great promise in recent years. For instance, 

ipilimumab, an anti-CTL-4 antibody achieved a sustained 3-year progression-free survival 

rate of 21% in advanced-stage melanomas (Schadendorf et al., 2015). Thus the ability to 

predict which patients would perform better with immunotherapy vs. targeted therapy, or 

which would benefit from combining both treatment types, could make a significant 

difference in future treatment outcomes. 

Ultimately, advances in the discovery of novel cellular processes, new biomarkers 

and drug targets will rely heavily on the availability of pre-clinical models which can model 

the disease and be used as proxies for anti-tumour compound testing. Later, I will 

introduce cell lines as experimental models of cancer in section 1.4. The next section will 

first describe gene fusions, their role in cancer precision medicine to date and open 

opportunities in the future.  
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1.3 Gene fusions in precision cancer medicine  

In order to understand how we arrived at our current understanding of gene fusions 

in human cancers, it is useful to first understand the experimental conditions that provided 

the opportunities and limitations in gene fusion analyses since the 1960’s. Thus, I will first 

provide a short overview of the seminal experimental techniques that paved the way from 

the most basic cytogenetics to next-generation sequencing. Then, I will describe the 

experimental and computational processing of samples for fusion-calling from RNA-Seq 

to highlight currently available tools and their limitations.  

Finally, in this chapter I will provide context on the current state of knowledge of 

the types of fusions known to contribute to cancer progression and give an overview of 

recent efforts to provide landscapes of fusions across large cancer cohorts.  

1.3.1 Brief history of technological advances in gene fusion analysis 

In the 1960, only five years after Peter Harper discovered that the number of human 

chromosomes is 46, Peter Nowell and David Hungerford characterised a recurrent 

abnormally small chromosome in patients with chronic myeloid leukaemia (Nowell and 

Hungerford, 1960). This “minute” chromosome was soon dubbed the Philadelphia 

chromosome, named after the city in which it was discovered. It was the first time that a 

specific genetic alteration was found to be so strongly recurrent in patients of a given 

tumour subtype. Fast forwarding through the years with the development of new 

cytogenetic techniques, the Philadelphia chromosome was of course later identified as a 

translocation between chromosomes 9 and 22, which resulted in the fusion of breakpoint 

cluster region (BCR) to ABL proto-oncogene 1 (ABL1) (Groffen et al., 1984; Rowley, 1973).  

At a time when the community believed that viruses were one of the key causes of 

cancer, Nowell and Hungerford’s finding provided early evidence to support the 

hypothesis that a critical single genetic change could give rise to a tumour (Nowell, 2007).  

 

The analysis of chromosomal translocations and gene fusions in cancer evolved 

significantly throughout the years, from 1960 to today. In the 1960’s, Peter Nowell 

discovered by serendipity that rinsing cells with tap water made the chromosomes expand 

(Nowell and Hungerford, 1960). In the following two decades, chromosomal banding 

techniques enabled scientists to distinguish different chromosomal regions based on their 
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banding patterns. The study of these disrupted and rearranged banding patterns led to 

further discovery, such as t(8;14)(q24;q32), i.e. IGH-MYC, in Burkitt lymphoma (Zech et al., 

1976), or t(11;22)(q24;q12), i.e. EWSR1-FLI1 in Ewing’s sarcoma (Aurias et al., 1983). From 

the 1980’s onwards, developments in DNA cloning, capillary sequencing and fluorescence 

in situ hybridisation (FISH) provided further tools to study chromosomal translocation at 

ever higher resolution.  

The first step into the direction of high-throughput fusion analysis came with the 

invention of array-based genetic tools, in particular gene expression and copy number 

arrays. For instance, in 2005, Tomlins and colleagues used microarray gene expression data 

to identify the now widely studied transmembrane serine protease 2 (TMPRSS2) fusions in 

prostate cancers (Tomlins et al., 2005). They did this by first mathematically identifying 

gene expression outliers in individual samples in publicly available data. Among the top 

results were recurrent outliers in the ETS transcription factor ERG (ERG) and ETS variant 1 

(ETV1) genes, which are members of the ETS transcription factor family to which also Fli-1 

proto-oncogene (FLI1) (of the EWSR1-FLI1 fusion) belongs. Further sequencing in cell lines 

with the same expression patterns then revealed the mechanism of high expression to be 

a fusion of the 5’ untranslated region (UTR) to that of the androgen-regulated TMPRSS2 

gene. The discovery of the TMPRSS2-ERG was further significant, as it was the first fusion 

found in an epithelial-derived tumour, while previously oncogenic fusions were thought to 

be exclusive to blood cancers and sarcomas. 

Now, next generation sequencing has opened up a new frontier in high-throughput 

analyses of gene fusions. For the first time an unguided discovery of gene fusions at large-

scale and with nucleotide-level resolution was possible in a single experiment.  

First, whole genome sequencing (WGS) allowed researchers to look at structural 

rearrangements on a genomic level. In a seminal study, Campbell and colleagues used 

paired-end DNA sequencing data from two lung cancer cell lines (Campbell et al., 2008). 

For paired-end sequencing, sequencing adapters are fitted to both ends of a DNA 

fragment of a defined length (often ~200-400 bp). When paired nucleotide sequences 

consistently map to genomic regions that are further apart than the expected fragment 

length, there is strong evidence for structural rearrangements. Applied on a whole genome 

level, these types of computational analyses allowed researchers to create a map of 

structural rearrangements across the entire genome of a single sample.  
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In 2009, Maher and colleagues published the first paper that identifies gene fusions 

from whole transcriptome sequencing, i.e. RNA-Seq, from both single long reads  and 

paired-end reads (Maher et al., 2009a, 2009b). Unlike WGS, where there is no information 

on whether a structural rearrangement results in an expressed transcript or not, analysis 

using RNA-Seq data only detects expressed transcripts. At the same time, RNA-Seq data 

can report instances where gene splicing events leads to alternative transcripts. 

While the first studies focused on small panels of a handful of cell-lines at a time, 

since then the number of tumours that have been sequenced by RNA-Seq increased 

dramatically. A review written in 2015 by Mertens and colleagues highlighted that of the 

~10,000 gene fusions known in tumours that year, over 90% were discovered by deep-

sequencing approaches (Mertens et al., 2015). More recently, a paper published in March 

2018 found almost 24,000 distinct gene fusions in over 9,500 TCGA patient samples (Gao 

et al., 2018).  

In order to facilitate the interpretation of the huge amount of RNA-Seq data that 

has been generated so-far, numerous computational tools have been developed. A 

particular challenge is that RNA-Seq data interpretation is error-prone and thus new 

algorithms aiming to provide robust fusion-calling function are continuously being 

developed, with varying degrees of success. In the next section, I will review the difficulties 

of calling fusions in RNA-Seq data and some of the methods available to solve them.  

1.3.2 RNA-Seq data generation and analysis 

1.3.2.1 A note on terminology 

In order to establish a common vocabulary for the comparison of multiple RNA-

Seq processing algorithms, in my thesis, these terms should hereby be defined as following. 

Also see Figure 1.2 for an illustration of selected definitions.   

Transcript: a full length RNA strand that represents a uniquely expressed unit in 

the cell. 

Fragment: generated by breaking up transcripts, often into a few hundred base-

pair long strands. Fragments are physically captured in their entirety as part of the 

sequencing reaction.  

(Sequencing) read: a part of a fragment that is actually sequenced. Reads can be 

sequenced from both ends of a fragment (paired-end RNA-Seq), or from a single-end. The 



27 

 

length of the sequenced read depends on the machine and approach used for sequencing, 

but is typically 30-100 bp long.  

Alignment: computationally generated by comparing the read sequence to a 

reference genome to identify the genomic location from which a read is predicted to 

originate. Due to sequence homology in the genome, a single read can have multiple 

alignments that fit perfectly or with a low number of base mismatches.  

Fragment insert: For paired-end sequencing, the sequence between the read pairs 

that is not sequenced on the sequencing platform. Where read pairs map on a genomic 

location that is approximately the size of the fragment length this sequence is inferred.  

Spanning reads: a pair of reads that map onto genomic regions that are further 

apart than the expected fragment length. This suggests that a fusion has occurred, and 

that the breakpoint is inferred to be within the fragment insert sequence.  

Splitting reads: a pair of reads, for which one read maps onto a standard genomic 

region. The other read maps directly across the fusion breakpoint, thus revealing the exact 

breakpoint sequence. 

Cluster (of reads): multiple splitting and spanning reads that are predicted to be 

derived from the same fusion transcript and are thus grouped together. 

 

 

Figure 1.2: (A) Basic concept of paired-end sequencing. (B) Spanning reads and splitting reads are defined by 

whether or not the fusion breakpoint is captured in the read sequence. 
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1.3.2.2 Brief overview of RNA-Seq data generation from samples 

In order to collect the RNA used for sequencing, cell are first grown for several days 

in order to achieve adequate cell volume. To extract the RNA, centrifugation generates a 

concentrated cell pellets which are then lysed and homogenised to release the cell 

contents. Proteins are separated from nucleic acids by treating the lysate using a standard 

phenol:chloroform technique (Sambrook and Russell, 2006). Then, typically using 

commercially available kits, the nucleic acid mixture is passed through a spin column that 

contains a membrane that selectively binds and retains RNA while DNA is washed out. 

DNA can be further removed using DNAse enzymes that selectively digest DNA inside the 

spin columns. To further increase purity of RNA mixture and to remove any other potential 

forms of contaminants, an extra step of RNA-clean-up is provided by kits such as 

Agencourt’s RNAClean XP kit, which uses magnetic beads that bind to RNA molecules and 

removes excess nucleotides, salts and enzymes from the solution. Next, RNA is converted 

to cDNA prior to sequencing, amplified and fragmented into fragments of several hundred 

base pairs. Finally, in order for the fragment to be recognised by the sequencing platform, 

adapters are fitted on both ends of each fragment and the fragment is then processed for 

next-generation sequencing (typically sequencing-by-synthesis).  

Sequencing identifies the nature and order of nucleotides on the captured 

fragments. Due to a higher likelihood of sequencing errors at greater distances from the 

sequencing adaptors, reads are typically 30-100 bp long. In order to identify the location 

of the genome from which a read originates, computational tools called “aligners” compare 

the read sequence to a reference genome and output “alignments” that indicate the most 

likely area from which a read originates (see definitions in section 1.3.2.1). 

The computational methodology and tools that predict the presence of fusions 

from RNA-Seq alignments will be discussed in the next section.  

1.3.2.3 Computational fusion-calling tools 

Since the invention of RNA-Seq in 2008, over 20 different computational algorithms 

for fusion-calling have been produced (Carrara et al., 2013; Haas et al., 2017; Kumar et al., 

2016). The methodology of fusion-calling can be distilled into a simple principle: to identify 

sequenced reads (whether single or paired) which partially map onto two different regions 

of the genome. In general, computational fusion-calling tools all follow three basic steps: 
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1) Chimeric transcript identification: this is done by finding reads that map onto 

two distinct regions in the genome. Some algorithms (e.g. deFuse and Maher 

et al’s method) do this by mapping all RNA-Seq normally and then finding 

spanning reads, i.e. paired-end reads that map onto two different regions. 

Other algorithms (e.g. TopHat-Fusion and STAR-Fusion) first identify splitting-

reads, i.e. reads that contain a potential fusion-breakpoint and thus do not map 

perfectly onto any genomic region, which they then split into several smaller 

segments which can then be aligned to unique regions. While conceptually 

both approaches are logical ways of identifying the same fusion transcripts, in 

practice they use different read pools to flag potentially chimeric reads, and 

may thus lead to different final results.  

Additionally, fusion algorithms use different methods of resolving 

ambiguous alignments. For instance, while Maher’s script and STAR-Fusion use 

only the best-matching alignment for each read, TopHat-Fusion removes any read 

with more than two alignments, and deFuse uses a “maximum parsimony” solution 

which considers all alignments and chooses the one matching the most likely fusion 

transcript. Again, these differences in read processing can lead to different final 

results.  

2) Grouping of reads to resolve final fusion breakpoint: In order to retrieve the 

full sequence around the putative fusion breakpoint, reads are grouped, 

typically based on genomic mapping location either before or after 

identification of the chimeric reads. Here, some algorithms (e.g. deFuse) take 

advantage of the paired-end system, by searching for reads that map the 

predicted fragment length away from the putative fusion boundary region – 

the paired read is likely to reveal the exact fusion boundary. 

3) Further filters to exclude likely false positives: This step is perhaps one of 

the most differentiating points between algorithms. Filtering the initial results 

can reduce the number of candidate fusion events by almost 99% (Kim and 

Salzberg, 2011; McPherson et al., 2011). Many algorithms devise extensive 

filters, but some considerations are commonly observed among most 

algorithms, e.g.: i) the minimum number of reads that provide evidence for the 

breakpoint, ii) homology in nearby regions that may cause mapping errors, iii) 
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differential alignment coverage and gaps in the genomic area immediately 

surrounding the putative breakpoint.  

Notably, while on the perfect data-set, fusion-calling algorithms should yield 

similar results, in practice the output is often vastly different. For instance, different 

algorithms can yield from 10 to over 5,000 fusion calls on the exact same sets of RNA-Seq 

data (Carrara et al., 2013). Applied by different groups on different samples, the same 

algorithm can also output anything ranging from a handful to several 100,000. (For a more 

extensive comparison and benchmarking of fusion-calling algorithms, see Chapter 2). 

Aside from intrinsic differences in the methodology, these differences likely also reflect 

that small changes in the algorithm parameters can have large effects on the effectiveness 

of the filters.  

1.3.2.4 Challenges and limitations 

Since fusion-calling by definition is the unguided detection of non-standard 

fragments, standard methods that recognise and remove abnormal nucleotide sequences 

in WGS are not useful in RNA-Seq. Possible artefacts can arise from all steps from sample 

preparation to the alignment.  

For instance, during sequencing-by-synthesis, usually a single fluorescent 

nucleotide is integrated per each sequencing cycle. If either none or multiple bases 

integrate in one cycle, this can lead to so-called “phasing”-errors. Similarly, an effect called 

“cross-talk” can arise when fluorescent emission spectra are insufficiently resolved by the 

sequencing machine (Ledergerber and Dessimoz, 2011). In the short-reads that are 

generated from NGS, small mismatches can thus lead to misalignments in later steps.  

 

Another source of error comes from the fact that in order to be sequenced on NGS 

platforms, RNA is first converted to complementary DNA (cDNA) using reverse 

transcriptase enzymes. Previous analyses have shown that the enzymes are relatively error-

prone, for example adding artefactual single-base substitutions and occasional frameshifts 

(Roberts et al., 1989). Spontaneous template switching of the reverse transcriptases can 

lead to chimeric transcripts (Cocquet et al., 2006) introduced after sample collection that 

could be misinterpreted as real gene fusions. Furthermore, contamination of either DNA 

or other organisms can add artefacts as algorithms permissively align multiple regions.  
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While higher sequencing depth should add more support to real gene fusions, the 

larger number of RNA particles may also increase the number of false positives. 

Unfortunately many of the fusion-calling algorithms have been developed with and 

benchmarked against test data-sets with similar ranges of read number (around 20-30 M 

reads per sample), and to the best of my knowledge no formal analysis has been performed 

to show the influence of increased read depth on the number of fusions detected.  

 

In summary, issues with error-prone RNA-Seq sample processing and sequencing 

differences in fusion-calling algorithm design can lead to vastly different outputs for the 

same tested sample. Further, there is a lack of clear, empirically-determined guidelines for 

parameter and tool choice for RNA-Seq data-sets of different read depths and fragment 

sizes, which is exemplified and perhaps aggravated by the observation that algorithms can 

show different accuracies whether benchmarking is performed on simulated or real RNA-

Seq data (Haas et al., 2017). 

A trend is recently emerging, where instead of using a single algorithm on its 

default setting, researchers now use multiple fusion-calling algorithms for the same study 

and tailor filtering criteria based on their own data. Indeed, in our study we use three 

different algorithms, the processing steps for which I will describe in chapter 2. In our data, 

we do find that fusions that are picked up by multiple fusion-calling algorithms had very 

high validation rates by polymerase chain reaction (PCR) and most known oncogenic 

fusions that we find in our data sets are supported by multiple algorithms. However, when 

using only the overlap of multiple different algorithms, one runs the risk of discarding real 

putative fusions that perhaps due to low expression are only picked up by single algorithms.  

Overall, fusion-calling from RNA-Seq data still represents a highly promising and 

perhaps the only way to call fusions in a high-throughput setting with nucleotide-level 

resolution. Improvements in technology, e.g. direct sequencing of RNA without the 

conversion into cDNA and longer read lengths, will likely allow improved sensitivity and 

specificity for computational algorithms. Until then, one should be careful not to over-

interpret fusions called from RNA-Seq data and validate promising candidates using 

traditional techniques such as FISH, PCR and capillary sequencing.  
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1.3.3 The structural and functional context of gene fusions 

This section is dedicated to understanding how gene fusions can occur and how 

they are able to modulate gene function in driving oncogenic processes.  

1.3.3.1 Structural and non-structural changes can lead to the formation of gene fusions 

The best-understood examples of oncogenic fusions arise from structural 

rearrangements in the genome, and often from balanced rearrangements. These changes 

refer to rearrangements such as translocations, insertions and inversions, in which a 

genomic region is transferred to another location in the genome. Unlike in unbalanced 

rearrangements such as deletions, duplications and aneuploidies, in balanced 

rearrangements the overall copy number does not change.  

While specific initiation factors for gene fusions are largely unknown, previous 

research has indicated that DNA double-strand breaks (DSB) are required for gene fusions 

(Aplan, 2006). Inherited syndromes that are associated with genetic instability and the 

inability to efficiently repair DSBs can lead to a predisposition of chromosomal 

translocations and hematologic cancers, e.g. in Nijmegen’s breakage syndrome patients 

that show nibrin (NBN) mutations. NBN is normally involved in non-homologous end-

joining (NHEJ), one of the main mechanisms of DSB repair (Digweed and Sperling, 2004). 

Similarly, knocking out other NHEJ-related genes in mice induced high rates of 

chromosomal translocations and cancer development (Aplan, 2006). Chemotherapy agents 

that inhibit DNA topoisomerase II can also cause increased occurrences of therapy-related 

chromosomal translocations. DNA topoisomerase II normally play a role in untangling DNA 

loops and supercoils by creating and later re-ligating DSBs. In vitro treatment of cells with 

the chemotherapy agent etoposide has shown that stabilisation of the cleaved complex 

created by DNA topoisomerase II could lead to chromosomal translocations between 

different stalled cleaved complexes (Zhou et al., 1997). 

Furthermore, DNA-region specific factors are also believed to play a role in causing 

recurrent chromosomal translocations. These include proximity of different genomic 

regions in the nucleosome during interphase. But also sequence-specific features can play 

a role – for example alternating purine and pyrimidine tracts create a special helical 

structure that tends to be found in inter-nucleosomal regions and may thus be especially 

prone to DSBs (Garner and Felsenfeld, 1987; Thandla et al., 1999). Similarly, the lysine 

methyltransferase 2A (KMT2A) and super elongation complex subunit (MLLT3) loci that are 
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commonly fused in leukaemias and lymphomas were found to be nuclear scaffold-

associated regions that are thought to be attachment sites for chromosomal loops, and 

thus especially sensitive to DSBs in the context of topoisomerase II malfunction (Stanulla 

et al., 2001). 

In terms of unbalanced structural rearrangements, fusion transcripts may 

commonly result from deletions and amplifications. Deletions of regions within tumour 

suppressors can lead to the expression of aberrant transcripts that are most likely to have 

lost the original function (e.g. in our panel, we find several fusions that involve the 

phosphatase and tensin homologue (PTEN) tumour suppressor). Amplifications are 

similarly one of the common mechanisms by which oncogenes are overexpressed; well-

known examples include erb-b2 receptor tyrosine kinase 2 (ERBB2), EGFR, MYC proto-

oncogene (MYC) and fibroblast growth factor receptor (FGFR). The repeated breaking and 

re-joining of DNA that pre-date amplifications is likely to facilitate the formation of fusion 

transcripts. Indeed a survey of 14 breast cancer cell lines showed that a large proportion 

of detected gene fusions map to amplicons, although it is possible that the majority of 

these types of events are passenger events without cancer-related functionality (Kalyana-

Sundaram et al., 2012).  

 

Other than structural changes that hard-code gene fusions into the genome, 

fusions have also been detected that have no detectable underlying structural 

rearrangements. So-called transcription-induced gene fusions (TIGF) can occur through 

either cis-splicing or trans-splicing events. Cis-splicing, also known as gene read-throughs, 

occurs when neighbouring genes are transcribed and then spliced together to produce a 

chimeric transcript. An example of a cis-spliced TIGF is a fusion transcript found in prostate 

cancer samples between solute carrier family 45 member 3 (SLC45A3) and ETS transcription 

factor (ELK4), which is another member of the ETS family of transcription factors that ERG 

belongs to (e.g. in TMPRSS2-ERG and EWSR1-ERG) (Rickman et al., 2009). The two genes 

are located approximately 50 kb apart from each other and the fusion transcript was not 

accompanied any detectable structural rearrangements. Further research showed that 

SLC45A3 and chimera expression similar to the TMPRSS2-ERG fusion is androgen-

regulated, that SLC45A3-ELK4 expression correlated with more advanced stages of 

prostate cancer and that siRNA knock-down of SLC45A3-ELK4 significantly reduced cell 
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line growth (Zhang et al., 2012). In 2011, a paper that surveyed TIGF events using deep 

sequencing techniques showed that TIGF’s are common events in both tumour and normal 

samples and that they are associated with high expression of the 5’ fused gene partner 

(Nacu et al., 2011).  

In contrast to cis-splicing events between neighbouring genes, trans-splicing 

events can occur between genes that are further apart and even on separate chromosomes. 

These result when mRNA are expressed separately for two genes and subsequently spliced 

together before translated into a chimeric protein (Finta and Zaphiropoulos, 2002). One 

example in cancer is the fusion transcript of exons 1-3 of JAZF zinc finger 1 (JAZF1) and 

exons 2-16 of polycomb repressive complex 2 subunit (SUZ12), which are found on 

chromosomes 7 and 17 respectively (Li et al., 2008). JAZF1-SUZ12 had previously been 

found in endometrial stromal sarcomas that presented a chromosomal translocation, and 

expression of the transcript in HEK cells had shown suppression of hypoxia-induced 

apoptosis (Li et al., 2007). Intriguingly, an expressed JAZF1-SUZ12 transcript was also found 

in non-neoplastic endometrial cell lines, however extensive analysis of the cellular DNA, 

FISH and karyotyping showed no evidence underlying translocation or rearrangements (Li 

et al., 2008). It is important to note that an independent study was unable to verify the 

presence of a JAZF1-SUZ12 transcript in the endometrial cell line, which suggests that if 

true, these events may be transiently expressed only in specific circumstances 

(Panagopoulos, 2010). 

While the presence of TIGFs is well validated, overall there are only few replicated 

examples of transcription-induced gene fusions with a cancer-related role. Nonetheless, 

they are likely to make up a significant proportion of fusion transcripts detected from RNA-

Seq data and their potentially transient nature may explain discrepancies between fusions 

identified in the same cell lines during different experiments. 
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1.3.3.2 Gene fusions in deregulating normal protein function 

Known oncogenic gene fusion events perform their function using two main 

mechanisms: they either create a translated chimeric protein, or deregulate mRNA 

expression through the fusion of regulatory untranslated regions (UTR’s) (Figure 1.3).  

Chimeric proteins make up the most common and best understood examples. 

Most commonly, one of the gene partners has normal activity as a kinase or transcriptional 

co-activators, and the fusion either removes a self-inhibitory domain and/or adds a domain 

that facilitates activation of the catalytic domains. Next, I describe two examples to 

illustrate some of the mechanisms of oncogenic activity. 

In the case of the BCR-ABL1 fusion, ABL1 contains three retained SRC homology 

(SH) domains that facilitate protein-protein interaction and tyrosine kinase activity (Figure 

1.4). Also retained in the chimeric protein is a nuclear localisation domain and actin binding 

domain. Conversely, the fusion eliminates an N-terminal inhibitory cap and a 

myristoylation site, both of which stabilise an inactive conformation of ABL1 (Colicelli, 

2010). On the other hand, the N-terminal fused portion of BCR contains a coiled-coil 

domain, which allows the formation and kinase activity of BCR-ABL1 homotetramers 

(McWhirter et al., 1993). Aside from BCR, ABL1 is also found to be fused to multiple other 

 

Figure 1.4: Known breakpoints of selected ABL1 fusions. BD = binding domain. C = coiled-coil domain. 

Adapted from De Braekeleer et al. (2011) 

 

Figure 1.3: Two main types of oncogenic gene fusion. 
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proteins in rarer subtypes. Many of the other fusion partners, for instance nucleoporin 214 

(NUP214), echinoderm microtubule associated protein like 1 (EML1) and RCSD domain 

containing 1 (RCSD1), also carry similar coiled-coil domains or helix-loop-helix domains 

that allow oligodimerisation (Braekeleer et al., 2011). Similarly to this mechanism, the 

oncogenic activity of ALK fusions (e.g. NPM1-ALK, EML4-ALK) results from constitutive 

activation of the ALK tyrosine kinase domain by fused partner genes which encourage 

dimerisation (Mossé et al., 2009). 

An example where the fusion involves a transcriptional co-activator is the fusion 

between CREB regulated transcription coactivator 1 (CRTC1) and mastermind like 

transcriptional coactivator 2 (MAML2), which is found in about 50% of mucoepidermoid 

head and neck carcinomas, with transforming activity in cell lines (Chen et al., 2014). 

MAML2 normally acts as a transcriptional co-activator with NOTCH receptors, with an N-

terminal domain that enables it to bind to Notch receptors and a C-terminal transcriptional 

activation domain which facilitates transcription of down-stream Notch pathway genes 

(Wu et al., 2002). Conversely, CRTC1 is a co-activator of the CREB pathway which plays 

multiple roles in cell proliferation, differentiation and apoptosis (Sakamoto and Frank, 

2009). In this chimeric protein, the N-terminal CREB-binding domain of CRTC1 and the C-

terminal transcriptional activation domain of MAML2 are brought together and lead to 

transforming activity by constitutive CREB pathway activation (Wu et al., 2005). 

 

Another type of oncogenic transformation is enabled by transcriptional 

deregulation, which can occur at various regulatory regions. For instance, the fusion of 

TMPRSS2 to ETS family transcription factors in prostate cancer occurs at the 5’ untranslated 

region (UTR) (Tomlins et al., 2005). Expression levels of TMPRSS2 are regulated by androgen, 

and thus in prostate tissue with high androgen levels this type of “promoter switching” 

leads to overexpression of the ETS genes. Consequently, this has downstream effects on 

differentiation, and cellular invasion (Tomlins et al., 2008).  

In Burkitt lymphomas and many other B-cell related cancers, a translocation 

between MYC and various immunoglobulin loci (IGH/IGK/IGL) is common. This puts MYC 

under the regulatory control of immunoglobulin enhancers and leads to stark 

overexpression of the MYC transcript (Dalla-Favera et al., 1983). Similar scenarios are found 
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in T-cell related cancers, where oncogenes are commonly fused to regulatory elements of 

T-cell receptor genes (Vlierberghe and Ferrando, 2012).  

A haematological oncogene, TAL bHLH transcription factor 1 (TAL1), can be fused 

at both the 5’ and 3’ UTRs. Indeed, the first discovered case of a TAL1 fusion in patients 

was a translocation that lead to a fusion at the 3’ UTR of TAL1 with regulatory elements of 

the TCR locus in a T-cell leukaemia (Begley and Green, 1999). A second mechanism of TAL1 

activation is through a 90 kb deletion that fuses the coding regions of TAL1 to the 5’ 

regulatory regions of the ubiquitously expressed STIL gene (Brown et al., 1990). 

Notably, structural rearrangements that lead to transcriptional deregulation of 

oncogenic genes do not necessarily lead to chimeric transcripts. Chimeric transcripts can 

be detected for fusions that involve transcribed untranslated regions such as TMPRSS2-

ERG, however immunoglobulin and TCR translocations are often only detectable on a 

structural level, since only the surrounding regulatory regions and not transcribed regions 

are fused.  

 

Finally, structural rearrangements may perform cancer-driving function by silencing 

tumour suppressors effectively by gene truncation. For example, individual cases have 

been reported whereby a translocation caused the complete inactivation and loss of 

expression of tumour suppressors cyclin dependent kinase inhibitor 2A (CDKN2A) in a B-

cell leukaemia (Duro et al., 1996) and a biallelic inactivation of NF1 in sporadic 

neurofibromas (Storlazzi et al., 2005). Similarly, a survey of 180 TCGA acute myeloid 

leukaemia samples found several truncating fusions across various samples, including 

some of the tumour suppressor runt related transcription factor 1 (RUNX1) (Cancer 

Genome Atlas Research Network et al., 2013). 

 

In summary, in the above section I described the structural and non-structural 

mechanisms by which functional fusions transcripts can be formed in cancer cells. Further, 

functional fusions generally exert their functionality either by producing an aberrant and 

typically constitutively activated chimeric protein, or by transcriptional deregulation that 

leads to overexpression.  
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1.3.4 Gene fusions in cancer 

Throughout the previous sections, I have already given various examples of gene 

fusions that throughout the last three decades have been found to play a role in cancer. In 

this section, I would like to take a more detailed look at currently relevant developments 

of gene fusion research, in particular 1) current approaches and efforts on using RNA-Seq 

data to identify cancer-relevant gene fusions and 2) the role of gene fusions in precision 

cancer medicine.  

1.3.4.1 New learnings from large-scale RNA-Seq fusion landscaping studies 

As outlines in section 1.3.2, fusion-calling from RNA-Seq data is a relatively new 

field, with the first algorithms being developed and refined only about 10 years ago. Since 

then, this technology has enabled researchers to look for gene fusions in an unbiased 

manner without pre-requisite knowledge and in ever larger number of samples.  

Many of the early analyses were conducted in a tissue-specific manner and perhaps 

one of the first important learnings was that expressed fusion transcripts were common 

without necessary playing an obvious role in carcinogenesis. For instance, in 2010 Berger 

and colleagues gave the first account of gene fusions in melanoma, with a small panel of 

8 patient samples and 2 cell lines (Berger et al., 2010). The authors found 11 fusion 

transcripts which all validated by RT-PCR of which none had strong evidence for oncogenic 

functionality.  

Focussing on known cancer driver genes did help to identify previously unknown 

oncogenic fusions. In 2010, Palanisamy and colleagues analysed paired-end RNA-Seq data 

of prostate cancers without the classic ETS gene fusions (Palanisamy et al., 2010). The 

authors found rearrangements that involved BRAF and Raf-1 proto-oncogene (RAF1), 

which deleted the proteins’ auto-inhibitory domain, and were able to induce tumour 

formation in mice and were also sensitive to RAF inhibitors. Targeted sequencing of larger 

tumour panels confirmed that BRAF and RAF1 fusions could be found in about 1-2% of 

prostate carcinomas (Palanisamy et al., 2010). Similarly, RNA-Seq analyses were also able 

to identify FGFR3-TACC3 fusions as a rare subtype that occur in about 3% of glioblastomas 

(Singh et al., 2012). 

Later on, RNA-Seq panels were further expanded to include several hundred, and 

then even thousands of samples within a single study. In 2014 Stransky and colleagues 

published a paper that focussed on recurrent kinase fusions in over 6,800 TCGA patient 
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samples (Stransky et al., 2014). This resulted in the discovery of novel fusions involving 

known fused oncogenes (e.g. BRAF and MET proto-oncogene (MET)) and also novel fusions 

with kinase genes which were previously not implicated in cancer. In 2015, Yoshihara and 

colleagues sequenced 4,366 patient samples in 13 tumour types and found over 7,800 

fusion events (Yoshihara et al., 2015). While largely descriptive, the authors noted that only 

few fusions are recurrent (n = 263) and the relatively enrichment of kinase fusions in thyroid 

cancer and an enrichment of chromatin modifier fusions in acute myeloid leukaemias.  

The fast rate of fusion gene discovery that came with next-generation sequencing 

technologies has also led to the establishment of databases to record cancer-associated 

fusion transcripts. The currently largest data base is likely ChimerDB, which was created in 

2006 and regularly updated since then. At the time of the latest publication in January 2017, 

ChimerDB listed over 33,000 fusions, of which 1,066 were mined from other databases, 

2,760 retrieved through text mining from PubMed and over 30,000 from TCGA RNA-Seq 

data from ~4,500 patients detected by combining the results of 2 different fusion-calling 

algorithms (Lee et al., 2017). It is important to point out that similar to most other large-

scale efforts of annotating gene fusions, the fusions listed in ChimerDB should also be 

approached with a degree of caution, as the authors themselves acknowledge that the 

false positive rate of the fusions called from RNA-Seq data may be around half of those 

predicted.  

Recently, in March 2018, Gao and colleagues published the analysis that 

encompasses the so-far largest number of samples with ~9,600 TCGA patient tumours in 

33 cancer types (Gao et al., 2018). Notably, they are also one of the first large-scale papers 

to analyse their data using three different fusion-calling algorithms. The authors also 

integrated gene expression data and showed that oncogene and kinase fusions tended to 

be overexpressed, while tumour suppressor fusions tend to be underexpressed. 

Notably, with ever easier method that facilitate fusion detection, it has become 

clear that fusion transcripts themselves are common and may result as passenger events 

of structural rearrangements. With larger studies and tens of thousands fusions detected, 

the functional assessment of fusions becomes more difficult. Many of the above cited 

papers are mainly descriptive, but often it remains unresolved whether fusions involving 

known cancer-related genes have occurred by chance or are indeed functional. A paper in 

2017 by Lu and colleages describes a protocol with which they engineered 20 novel fusion 



40 

 

genes into in vitro cell models to functionally characterise them (Lu et al., 2017). However, 

engineering fusion genes into cells to observe their impact on growth, transformative 

ability and sensitivity to drug inhibition is a time-intensive process, which is unrealistic to 

conduct on the tens of thousands fusions observed in each large-scale study.  

As existing studies tend to focus on fusions involving known cancer-related genes, 

true oncogenic fusions may have remained hidden needles in the haystack. This thus 

reveals a need for a method to study the functionality of gene fusions in cancer in an 

unbiased manner on a large-scale, which is one of the main aims of my PhD thesis.  

1.3.4.2 Clinical relevance of gene fusions 

The functional assessment of gene fusions is critical for the understanding of cancer 

biology as well as clinical opportunities. Already, gene fusions have played a major role in 

the development of precision medicine (Table 1-1).  

As mentioned before, the treatment of BCR-ABL1 fused cancers with Imatinib has 

become one of the best-cited success stories for treatment based on genetic biomarkers 

as patient survival chances improved vastly with the new therapy. At the same time, the 

treatment of ALK-fused non-small cell lung cancers with ALK inhibitor crizotinib was FDA-

approved after a phase 3 trial showed a 65% response rate (vs. 20% with chemotherapy), 

an increase in median progression-free survival from 7.7 months vs. 3.0 months and better 

quality of life (Shaw et al., 2013).  

Kinase-fused tumours often show signs of “oncogene addiction”, i.e. they require 

the continuous activity of the kinase for cellular survival. Thus, many other fusion genes 

make appealing targets for inhibition with compounds that are either existing or currently 

in development. For example, many ALK inhibitors are also potent inhibitors of ROS1, a 

closely related tyrosine kinase (Shaw et al., 2013). ROS1-rearranged cancers have shown 

promising initial response rates to crizotinib in an on-going Phase I clinical trial (Ou et al., 

2013). In early 2018, the treatment of ROS1-positive advanced-stage non-small cell lung 

cancer has been recommended as per the official guidelines of NICE, the National Institute 

for Health and Care Excellence which submits guidance to the UK National Health Service 

(NICE, 2018). Similarly, BRAF and RAF1 fusions have been shown to respond well to 

inhibition by RAF inhibitors, of which there are several already approved by the FDA for 

treatment of BRAF-mutated melanoma (Palanisamy et al., 2010). Other promising targets 
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that are currently under clinical investigation include neurotrophic receptor tyrosine kinase 

(NTRK), ret proto-oncogene (RET), and FGFR fusions (Shaw et al., 2013). 

Other than as pharmacological targets, fusion genes may also aid in the diagnosis 

and prognosis of cancers. For instance, the KMT2A-rearranged acute myeloid leukaemias 

with different fusion partners had vastly different progression-free survival curves ranging 

from very favourable 92% at 5-years for some subtypes to 16% for others (Balgobind et al., 

2009). At the same type, advances in liquid biopsies mean that it may soon become 

possible to diagnose patients and monitor disease progression from circulating tumour 

DNA and cells in the blood (Crowley et al., 2013; Krebs et al., 2014). Due to their non-

invasive nature, these methods would be well-suited to be used at regular time-points to 

test for disease recurrence and the emergence of resistance tumour subclones. Already, 

research has shown that ALK-fusions in non-small cell lung cancer could be successfully 

identified in patient populations using circulating tumour cell technology (Pailler et al., 

2013). 

Overall, improvements in the clinical care of cancer patients, be it in the diagnosis, 

prognosis, monitoring or treatment, relies on the continuous discovery and improved 

understanding of cancer genetics. Therefore, being able to separate true cancer-related 

functional gene fusions from non-functional fusion transcript may reveal currently 

unknown opportunities in this area.  

Table 1-1: Summary table of selected clinically relevant fusions. CML = chronic myelogenous leukaemia. 

NSCLC = non-small cell lung cancer. 

Fusion Predominant cancer types Clinical characteristics 

BCR-ABL1 CML Treated with imatinib and other ABL1-

targeting drugs 

EML4-ALK NSCLC Treated with crizotinib and other ALK-

targeting drugs 

KMT2A fusions Haematological malignancies Favourable/unfavourable prognosis 

depending on fusion partner 

NPM1-ALK Anaplastic large cell lymphoma In clinical trials for ALK-targeting drugs 

ROS1 fusions NSCLC In clinical trials for ALK/ROS1-

targeting drugs 

RAF1/BRAF fusions Various solid carcinomas In clinical trials for RAF inhibitors.  

NTRK fusions Various solid carcinomas and sarcomas In clinical trials for larotrectinib (TRK 

inhibitor) 

RET fusions Papillary thyroid cancer, NSCLC In clinical trials for cabozantinib (RET 

inhibitor) 

FGFR1/2/3 fusions Various solid carcinomas In clinical trials for various FGFR 

inhibitors   

 



42 

 

1.4 Cell lines as experimental models of cancer 

1.4.1 Overview of different types of cancer cell models 

Cancer research relies heavily on experimental models, as the ability to study 

cancers in patients is limited to biopsies and treatment outcome statistics. In general, 

cancer models are divided between in vivo, i.e. animal models, and in vitro, i.e. cells 

cultivated in plastic dishes.  

In vivo models are most often mice. Tumours can generally either be induced, e.g. 

with the use of carcinogens, irradiation or genetic manipulation, or are transplanted, which 

involves the injection of tumour-derived tissue or cell lines into the animal. Mouse models 

are widely regarded to most accurately represent the human disease in the lab, since they 

provide a complex microenvironment and extra-cellular matrix interactions. An exception 

is the lack of immune capabilities in immunosuppressed mice. Genetically engineered 

mouse models are also a powerful method of modelling the consequences of genetic 

modifications on a whole living system. However, in vivo models are time consuming, 

expensive, technically challenging to maintain and there are ethical issues around using 

live animals. This means that in vivo experiments are mainly recommended for relatively 

advanced stage of research or where there are no other viable alternatives.  

Conversely, in vitro models, in particular cancer cell lines, are widely accessible and 

have fewer ethical implications1. Immortalised cancer cell lines give an essentially unlimited 

supply of cells with a highly similar genotype and phenotype.  

There are some concerns that genomic instability, culture conditions and 

contamination of cell lines can limit how representative cancer cell lines are of the original 

disease. However, most of these issues can be avoided with proper quality control. For 

example, regular mycoplasma testing and DNA barcoding of cell lines prevent 

contamination and mix-ups. Keeping the cells in passage for no longer than 3 months also 

minimises genetic drift.  

Human cancer cell lines transplanted into immunodeficient mice have the ability to 

generate tumours, and the histopathology has been shown to faithfully correlate with that 

of the tumour of origin (Fogh et al., 1977). Gene expression patterns of cell lines also cluster 

                                                 

1 Note: in this thesis, by “cancer cell lines” I always refer to human cancer cell lines, as 

opposed to cell lines derived from other model animals. 
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according to their tissue of origin, which indicates that culture conditions are not sufficient 

to overwrite the tissue-specific gene expression program (Ross et al., 2000). The genotypes 

of cancer cell line panels are also largely representative of those of the original cancer type. 

The alteration frequencies of the most common gene alterations in tumours correlates 

significantly with that of cell lines. Similarly, there is a high concordance in terms of the 

classification by alteration subclass, i.e. whether alterations in the tumour type of origin are 

predominantly mutations, copy number alterations, or hypermethylated regions (Iorio et 

al., 2016). Altogether, the evidence suggests that with proper quality control, cancer cell 

lines are a useful and representative tool to study cancer tissues and specific cancer-related 

genetic alterations.  

There are certain caveats to using cancer cell lines. For one, immortal cancer cell 

lines are difficult to derive and advanced-stage cancers have higher success rates of 

immortalisation (Masters, 2000). This means that early-stage cancers are likely to be 

underrepresented in cancer cell line panels. Due to a lack of a complex microenvironment, 

cancer cell lines also only represent a simplified view of cancer biology.  

Better models of cell-cell interaction and microenvironments may be cell line 

cultures grown in 3D. They better reproduce the differential exposure to oxygen, nutrients 

and growth factor within tumour masses, which can influence proliferation rate, gene 

expression and drug uptake (Lin and Chang, 2008).  

Even more recently, we have seen the development of cancer organoids, which are 

derived from tumour cells that expand into a 3D structure that closely resembles the tissue 

architecture, cell type composition and self-renewal dynamics (Sato et al., 2009). They have 

been found to recapitulate the genetic background of tissue donors and to be amenable 

to high-throughput drug screening, which opens up future possibilities of ever-closer 

personalisation of cancer treatments (van de Wetering et al., 2015). 

While the use of 3D in vitro cultures as experimental models of cancer is likely to 

become increasingly important in future pre-clinical studies, for now standard protocols 

for the derivation, maintenance, genetic manipulation and high-throughput screening are 

still being written. Thus, 2D cancer cell lines are still favoured by many as pliable models 

for novel techniques and discoveries, such as high-throughput drug screening, 

CRISPR/Cas9 whole genome drop-out screening and more. 
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In the next section, I will provide a brief overview of human cancer cell line panels 

that have featured prominently in modern cancer research, their origin and large-scale 

data sources that are available and being generated today. 

1.4.2 NCI60: The first drug screening panel 

The first large cancer cell line panel was established in the 1980’s by the National 

Cancer Institute in the USA, in the form of the NCI60. It consisted of 60 cancer cell lines of 

9 distinct tissue types that were characterised by karyotype banding to exclude cell lines 

that were derivatives of HeLa or one another (Shoemaker, 2006). The purpose of this panel 

was to act as the first in vitro screening platform for cancer compounds. Before that, anti-

cancer compounds were typically screened against leukaemia mouse xenografts, which 

were unreliable at predicting growth response in solid tumours (Weinstein et al., 1997). 

The NCI60 on the other hand were faster to screen and could act as the first stage of a 

drug discovery pipeline to identify the activity of potential anti-cancer compounds. From 

its establishment in the 1980’s to 2000, more than 300,000 compounds were screened 

across this panel (Shoemaker, 2006). The NCI60 panel has since been deployed to identify 

the mechanism of action of potent unknown natural compounds and discovery of novel 

anti-cancer compounds. For instance, bortezomib is now a FDA-approved chemotherapy 

compound and the first proteasome-inhibitor to be used in humans (Adams et al., 1999). 

Later, molecular characterisation of the cell lines was integrated, which enabled further 

important biological discoveries, for example that overexpression of ABC family membrane 

transporter could confer resistance to specific compounds (Szakács et al., 2004). The 

sensitivity of BRAF(V600E)-positive cell lines to MEK inhibitors was also discovered using 

the NCI60 cell lines panel in 2006 (Solit et al., 2006).  

1.4.3 Expanding the number of cell lines and genomic biomarker analyses 

In March 2012, two papers were published in the same issue of Nature, both 

describing drug screening pipelines in even larger panels of cancer cell lines. The first paper 

described the Genomics of Drug Sensitivity in Cancer (GDSC) cell lines panel at the 

Wellcome Sanger Institute in the UK and the other the Cancer Cell Line Encyclopedia (CCLE) 

at the Broad Institute in the USA (Barretina et al., 2012; Garnett et al., 2012). Unlike the 

NCI60, these two studies drug screened an excess of 600 and 400 cell lines respectively. 

With an increased number of cell lines, the newer panels are able to represent a larger 
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number of tissue types and genomic variety, overall and within tissue types. By annotating 

the cell lines for mutations in cancer-related genes, copy number alterations (CNAs), and 

gene expression, the studies provided the statistical power for the unguided identification 

of genomic biomarkers of drug sensitivity. Both cell line panels were able to replicate many 

known biomarker-drug associations, e.g. BRAF-mutations with BRAF/MEK inhibitors, 

ERBB2-mutations with EGFR/ERBB2 mutations and others. Additional, the GDSC panel was 

able to identify a novel sensitivity of Ewing’s sarcoma cell lines with EWSR1-FLI1 gene 

translocations to PARP inhibitors, while the CCLE panel found that an aryl hydrocarbon 

receptor (AHR) gene expression signature in NRAS-mutated cell lines correlated with 

sensitivity to MEK inhibitors.  

To-date, both the GDSC and CCLE have expanded the number of models further, 

with now over 1,000 overlapping cancer cell lines screened and annotated by both panels. 

With improvements in technology, it has also become easier, cheaper and faster to 

sequence cell lines for more detailed genomic annotations, perform high-throughput drug 

screening at larger scale and to genetically engineer cell lines for a richer data set.  

Next, I will provide a brief overview on technologies that produced these data-sets. 

At the Wellcome Sanger Institute, my work is based on the GDSC cell line panel, and 

therefore they will be my main focus in the next few paragraphs.  

1.4.4 Genomic characterisation of cell line panels 

As sequencing technologies have become cheaper, the genomic characterisation 

of cell lines has expanded accordingly. For the original paper in 2012, the authors 

sequenced the full coding exons of 64 commonly mutated cancer genes in about 600 cell 

lines. Now, the GDSC cell line panel has whole exome sequencing data and single-

nucleotide polymorphism (SNP) called for over 1,000 cell lines (Iorio et al., 2016). This also 

includes targeted PCR sequencing or FISH analysis for three selected translocations (BCR-

ABL1, EWSR1-FLI1 and EWSR1-ERG). The molecular annotation was expanded to include 

hypermethylated regions, as called using Infinium HumanMethylation450 BeadChip arrays. 

RNA-sequencing data now also provides gene expression data for the entire transcriptome, 

rather than selected genes from microarray expression data. An overview of the data types 

available for each cell line is given in Figure 1.5. 

Analysing too many potential genomic alterations dilutes the statistical power for 

biomarker analysis and also likely contains alterations that are only found in cancer cell 
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lines but not patient tumours. To identify patient-relevant genomic alterations, Iorio and 

colleagues processed genomic annotation available from over 6,000 human tumours and 

statistically identified alterations that are likely to be cancer-related. This involved the use 

of algorithms that evaluated the i) recurrence and functional impact of SNPs (MutSigCV, 

OncodriveFM and Oncodrive-CLUST) ii) recurrence and size of CNA regions (ADMIRE), and 

iii) methylated regions that show multi-model distribution in at least one cancer type (Iorio 

et al., 2016). This produced a reference set of clinically-relevant cancer functional events 

(CFEs) and only alterations that matched this list were considered for further downstream 

analyses.  

The authors then showed that panels of cell lines captured the genomic variety of 

tumours on a tissue type level, since 1) the percentage of cell lines altered for specific 

cancer-associated pathways and 2) the class of the dominant genomic alterations within 

tissue types both correlated well. Additionally, out of 1,273 CFEs identified in the tumour 

samples, 86% (n = 1,063) occurred in at least one cell line. There are the caveats that this 

is lower for CFEs that are present in < 5% of patient samples and only around 79% of CFEs 

are found in at least three cell lines (Iorio et al., 2016). Biomarker analyses often require at 

least 2-3 samples with a specific genotype to have adequate statistical power to separate 

signal from noise. This thus suggests that expanding the in vitro models collection beyond 

the existing 1,011 models has the potential to reveal further trends in rare cancer subtypes. 

1.4.5 High-throughput drug screening and identification of biomarkers of drug response 

The original NCI60 platform screened 100,000’s of compounds across 60 human 

cancer cell lines, which enabled researchers to query the general anti-cancer activity of 

compounds (Shoemaker, 2006). Conversely, the GDSC and CCLE studies screen fewer 

compounds but across many more cell lines, which provided the resolution to identify rarer 

cancer subtypes that are particularly sensitive to certain compounds. Screening fewer 

compounds does mean that they are typically selected more carefully, e.g. only testing 

those that have already shown anti-tumour activity in smaller sets of cell lines. Nevertheless, 

technological advances have enabled a rapid growth in the number of compounds and 

cell lines screened is rapidly growing. From 2012 to 2016, the number of compounds/cell 

lines screened increased from 130/639 to 265/990 (Garnett et al., 2012). My thesis will 

include drug sensitivity data for > 400 drug compounds.  
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To briefly describe the protocol for cell line screening: cell lines are grown in multi-

well plates for 4 days. 24 hours after plating, cell lines are exposed to a certain 

concentration of the drug compound, titrated with a dilution series. Viability is tested 72 

hours after exposure using fluorescent chemical assays that measure the nucleic acid 

content (Syto60), or in later studies, metabolic activity (CellTitre Glo). Viability is normalised 

to negative control (DMSO) and positive control wells (media only). The percentage 

viability from each experimental well is then fitted onto a viability curve from which an 

inhibitory concentration at which viability is 50% (IC50) and an area under the curve (AUC) 

can be calculated. Lower values for both IC50 and AUC mean that a lower concentration of 

a drug can elicit the same loss of viability and therefore represents a sensitivity to a given 

drug.  

Across the years, developments in technology have increased the pace of screening. 

Notably, while 96-well screening plates were used for the NCI60 and the 2012 GDSC screen, 

the 2016 GDSC screen used 384-well plates. In 2018, the 1536-well plate is now standard 

in our group, effectively increasing the screening throughput 16-fold. Robotic platforms 

have also been invaluable in reducing the amount of manual handling needed. Tasks for 

which a person requires several hours can now be carried out in the span of minutes, e.g. 

evenly dispensing cell-line containing media evenly across screening plates, drug titration, 

and pipetting nano litres of drug directly into screening wells. To-date, the platform is 

powerful enough to screen 900 new compounds across a core-set of 750 cell lines per year.  

 

Figure 1.5: Summary of the data types available for the GDSC panel of 1,011 cancer cell lines used for my 

thesis. RNA-Seq data is available for all cell lines. CRISPR/Cas9 whole genome drop-out screening data is 

available from multiple sources (see chapter 5 for details and references). Number at the right represents the 

number of cell lines a given data type is available for. 
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For the identification of biomarkers of drug sensitivity, analyses statistically test 

whether the IC50’s, i.e. drug sensitivity, for cell lines of a given genotype are significantly 

different from all other cell lines. For instance, cell lines with a BCR-ABL1 rearrangement 

on average have a much lower IC50 when exposed to Imatinib than the bulk of cell lines 

(see chapter 4.3.1.2). The analysis of biomarkers in the GDSC panel is typically performed 

using a multivariate analysis of variance model (MANOVA), which tests the association of 

each CFE to each drug and also controls for tissue type and MSI status of cell lines as co-

factors (Garnett et al., 2012; Iorio et al., 2016). Other computational algorithms have been 

developed that use variants of machine learning to deconvolute associations of combined 

features (e.g. RAS OR RAF mutations both lead to MEK inhibitor sensitivity). However, the 

significant associations returned by these models are often combinations of the gene 

expression of large sets of genes, which can be difficult to interpret for biological and 

clinical relevance. 

So far, the GDSC high-throughput drug-screens have shown that in vitro systems 

can recapitulate many known associations (e.g. with genetic alterations involving BRAF, 

EGFR, ABL, tumor protein p53 (TP53), fms related tyrosine kinase 3 (FLT3), etc.). In the 2016 

publication, Iorio and colleagues also report > 100 novel associations, though the meaning 

and biological significance of many of these is yet to be understood (Iorio et al., 2016). 

1.4.6 Current developments and future outlook 

As the above paragraphs have hopefully shown, high-throughput drug screens in 

genomically annotated cancer cell line panels are a valuable tool for the unguided 

exploration of cancer biology and treatment opportunities. Implementing novel 

techniques in the existing pipeline can further broaden the opportunities for discovery.  

For one, our group and others have deployed CRISPR/Cas9 whole genome drop-

out screens in cancer cell line panels (Behan et al., 2018; Meyers et al., 2017; Wang et al., 

2017). The CRISPR/Cas9 system was originally discovered in bacteria and is now a widely-

used technique for creating gene knock-outs in mammalian cells (Jinek et al., 2012; Mali et 

al., 2013). In the drop-out screens, a short guide RNA (sgRNA) library targeting about 

17,000-20,000 different genes is transduced into Cas9-expressing cell lines. Those sgRNA 

that induce a loss-of-fitness phenotype will be statistically depleted after several weeks in 

culture. Compared to drug compounds, these screens can reveal a much broader spectrum 

of genetic dependencies of cancer cells, as they have two major advantages: 1) the sgRNA 
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can be designed to have low off-target activity and 2) they can essentially target any, even 

undruggable, gene in the genome.  

CRISPR/Cas9 technologies are also evolving beyond just knock-outs, as more 

complex phenotypes such as double knock-outs and transcriptional activation are being 

achieved. This further opens up possibilities in querying the biology of cancer in in vitro 

systems. In chapters 5 and 6, I will show how CRISPR/Cas9 whole genome drop-out screens 

data can be leveraged to examine the functionality of gene fusions in the context of my 

thesis. 

Secondly, finding potent drug combinations is another area of interest for cell line 

screening. As illustrated in the example of BRAF(V600E) mutated colorectal cancer (see 

section 1.2.2), well selected drug combinations can overcome innate and acquired drug 

resistances (Al-Lazikani et al., 2012). The sheer number of combinations that can be created 

using currently available drugs is staggering, especially when considering triple and even 

quadruple combinations. Nonetheless, high-throughput cell line panels can be a first step 

in the search for drug combinations. In our group, we have so far screened 1,800 unique 

combinations in a subset of the cancer cell line panel. Cancer cell line co-dependencies 

may also be identified in knock-out screens. For example an RNA interference screen found 

that alterations of PI3K/PTEN may confer resistance to anti-HER2 antibody trastuzumab in 

breast cancers (Berns et al., 2007).  

Finally, the dominant type of in vitro model used in large-scale screens may also 

see some changes in the near future. High-throughput drug screening protocols are 

currently being developed for cancer organoids in our lab and others. Similarly, 

improvements in technology have made it possible to derive experimental models such as 

patient derived tumour organoids in the span of several weeks. This may provide future 

opportunities for direct feedback from the bench back into the clinic (Pauli et al., 2017).  

Altogether, while high-throughput drug screening has historically been a tool for 

the discovery of new drugs and biomarkers, new developments may allow it to soon 

become part of a more integrated personalised medicine programme for patients in real-

time. 
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1.5 Final introductory words 

In the past chapter, I have reviewed the concepts of precision cancer medicine, the 

role of gene fusions as cancer oncogenes and large cell line panels as experimental models 

for cancer research.  

In summary, it is clear that precision medicine has had an overall positive impact 

on the treatment opportunities open to eligible patients today. At the same time, not all 

cancer patients are diagnosed an actionable biomarker, and many treated tumours 

develop secondary resistances, which underscores a persisting need for novel research.  

Gene fusions have so far been shown to be important cancer oncogenes as well as 

excellent markers of diagnosis, prognosis and drug sensitivity. Thanks to new technologies 

such as RNA-Seq that have enabled the unguided large-scale discovery of gene fusions 

across thousands of samples, the number of known gene fusions has been growing 

exponentially. Now, while the identification of gene fusions was once a limiting factor, it is 

the functional annotation that presents a challenge.  

Large cell line panels in the past have been valuable models for anti-cancer 

compound discovery and genetic biomarker analysis. Over the next few chapters in my 

thesis, I would like to examine the hypothesis that they can be used to assist in identifying 

the functional relevance of oncogenic fusions.  

My thesis has the following structure to address the question: 

1) Create a filtering pipeline to annotate fusions in 1,011 human cancer cell lines. 

2) Brief description of the landscape of fusions as we find them in the cell lines. 

3) Using extensive drug-screening data, I examine the use of gene fusions as 

biomarkers of drug response. 

4) Set-up and explore the results of an unguided computational approach to 

examine the functionality of individual gene fusions using CRISPR/Cas9 whole-

genome drop-out screening data.  

With that, I hope that the following pages represent a small contribution to the 

grand challenge that is the continuous improvement in the well-being of future patients 

of a terrible disease. 

  



51 

 

2 Filtering gene fusions in 1,011 cancer cell lines 

The first step required in the study of gene fusions in cancer cell lines is to create a 

reliable catalogue of all fusion transcripts found in the same cell lines.  

As discussed in the introduction chapter, for an unguided fusion transcript 

discovery in large number of samples, RNA-Seq analysis followed by the computational 

devolution of fusion transcripts is the best option. At the same time, fusion calling 

algorithms are highly error-prone, both due to sequencing artefacts and variable methods 

used by fusion-calling algorithms.  

For this reason, our fusion-calling pipeline uses three different fusion-calling 

algorithms to analyse our RNA-Seq data. These algorithms are DeFuse, Tophat Fusion and 

STAR. The reasoning behind the decision was that the fusion-calling algorithms could 

either validate or complement each other.  

Thus, the first aim of my thesis is to examine the output produced by the Wellcome 

Sanger Institute’s Cancer, Aging and Somatic Mutations (CASM) program’s fusion-calling 

pipeline and to put together a set of filtering criteria that would produce a catalogue of 

high-confidence gene fusions in our 1,011 cancer cell lines. In this chapter, I first introduce 

the data available, the pre-processing steps and the three filtering algorithms which were 

used in our analysis. I then show two ways of benchmarking the fusion transcripts called 

by our fusion-calling pipeline. Based on these, I evaluate how effectively proposed filters 

retain true positive fusion transcripts while reducing false positives.  

2.1 Initial data processing and overview of fusion algorithms 

2.1.1 Note on terminology 

Throughout this thesis, the term “fusion” refers to any joining of two specific 

partner genes, with the first-named gene being the 5’ and the second-named gene being 

the 3’ partner. The term “fusion event” refers to the presence of a given fusion in a specific 

cell line. “Fusion transcript” refers to a fusion event with a specific breakpoint. Thus, 

multiple fusion transcripts of a single fusion event may occur in a given cell line.  

2.1.2 1,011 cancer cell lines 

The panel of 1,011 human cancer cell lines have been collected from publicly 

available repositories and private collections and are curated by the Genomics of Drug 

Sensitivity in Cancer (GDSC) project team at the Wellcome Sanger Institute. They span 42 
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different cancer types in 29 different tissue classifications (Figure 2.1; Supplementary Table 

1). 

The cells lines have previously been extensively characterised via whole exome 

sequencing (EGAD00001001039) and Affymetrix SNP6-based copy number analysis and 

genotyping (EGAD00010000644). To identify the cancer-relevant mutations, copy number-

altered and hypermethylated regions, each cell line is also annotated for a set of cancer 

functional events (CFE’s), which represent genomic alterations that are recurrently altered 

in TCGA tumour samples (Iorio et al., 2016). 

Further, high-throughput drug-screening data for 997 cell lines is available for 

more than 400 drug compounds. CRISPR/Cas9 screening data is available through several 

in-house and publically available resources for 371 cell lines. 

These data resources will be leverages in chapters 3 and 4 to query the functional 

relevance of the identified fusion transcripts.  

2.1.3 Data pre-processing 

Prior to my joining the project, RNA-Seq data was generated in-house for 447 cell 

lines and downloaded from CGHub for 587 cell lines. This data set includes 1,011 unique 

cell lines. For 23 of those, we obtained RNA-Seq data from both sources. The cell lines had 

 

Figure 2.1: Overview of tissue types of 1,011 cell lines. Inner ring shows the coverage of CRISPR-screening 

data.  
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a median of 77.6M read pairs (range: 40M-175M) in the CGHub data (median: 36X; range: 

7X-83X) and 227M read pairs (range: 79M-543M) in the in-house data (median: 89X; range: 

16X-206X).  

Fusion calling was performed using the cgpRna pipeline developed by the Cancer 

Genome Project at the Wellcome Trust Sanger Institute (Cancer IT, 2018a). RNA-Seq reads 

were mapped onto the GRCh38 human reference genome (Ensembl version 82 gene model) 

via three independently developed pipelines using their default options: STAR, TopHat-

Fusion and deFuse (Dobin et al., 2013; Kim and Salzberg, 2011; McPherson et al., 2011). 

The outputs of all three fusion calling algorithms are compiled into a single list and the 

pipeline then employs the Gene Rearrangement AnalySiS (GRASS) algorithm to predict 

consequences of gene fusions, including whether fusions are in coding or non-coding 

regions and their frames (Cancer IT, 2018b). 

The cgpRna pipeline automatically combines fusions identified by multiple 

pipelines into a single entry. After splitting the entries into individual fusion calls, we found 

that the cgpRna pipeline yielded 1,934,711 putative fusions transcripts across the 1,011 cell 

lines (Table 2-1). Overall, fusion calls by STAR made up the bulk of putative transcripts (N 

= 1,576,062), with TopHat-Fusion calling the smallest number of putative transcripts 

identified by a single algorithm (N = 58,397). Only 14,118 (0.9%) of putative transcripts 

were called by more than one algorithm.  

2.1.4 Fusion-calling algorithms 

The basic principles of fusion-calling algorithms is already described in the 

introductory chapter in section 1.3.2. Here, I would like to briefly outline algorithm-specific 

characteristics and the results from previous attempts at benchmarking the algorithms.  

Table 2-1: Number of putative fusions called by individual or multiple algorithms. (D = DeFuse, T = TopHat-

Fusion, S = STAR-Fusion.) 

Algorithm (unique) Number of Fusions Algorithm (shared) Number of Fusions 

D 286,134 DTS 5,959 

T 58,397 DT 1,770 

S 1,576,062 DS 2,856 

  TS 3,533 

 



54 

 

2.1.4.1  DeFuse 

This fusion-caller was created in 2009 by McPherson and colleagues at a time when 

few alternatives existed (McPherson et al., 2011). It was the first aligner to take into account 

multiple alignments for a single read pair, while other aligners typically either discard any 

read pair with multiple alignments, or choose the alignment with the highest alignment 

score. DeFuse does this by applying a so-called “maximum parsimony” approach, which 

picks the alignment which supports a putative fusion transcript which has the highest 

support from other read alignments.  

The deFuse algorithm was tested in 44 samples (40 ovarian cancer patient samples, 

3 sarcoma patient samples and 1 ovarian cancer cell line), which mainly contained 17-45 

M read pairs. The algorithm detected 20,237 candidate fusion transcripts, i.e. a mean of 

460 per sample.  

The authors then designed 11 additional filters which characterise the fusions and 

perform statistical tests to evaluate the distribution of reads across a predicted breakpoint, 

the most likely distribution of fragment lengths and potential confounding factors, e.g. 

homologous nucleotides at the fusion boundaries. In total, 268 fusion transcripts (1.3%) 

passed these additional filters. 

In order to validate the efficacy of these filters, the authors then performed PCR 

validation for selected fusion transcripts. Of 46 fusions that pass all additional filters, 42 

validated. 14 that failed at least one of the additional filters also failed the PCR validations. 

Of 40 randomly selected fusion transcripts, only one validated using PCR.  

While the additional filters appear to perform well at selecting true positive fusions, 

some known positive fusions did not pass. The authors also acknowledge that the lack of 

reliable positive and negative controls still represent a challenge when designing fusion-

calling algorithms. Similarly, as the filters were trained on this dataset, it is unclear how 

they will perform in independent datasets.  

2.1.4.2 TopHat-Fusion 

This algorithm was developed by Kim and Salzberg in 2011 as an algorithm that 

only uses gene annotations to identify known intron boundaries at a later step, which 

speeds up the analysis significantly (Kim and Salzberg, 2011).  

To do this, TopHat first identifies any reads that do not map entirely within exons 

and then splits them into 25 bp segments which are aligned independently. Fusions are 
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separated from introns by whether or not two segments align at a genomic distance of 

more than 100,000 bp apart. TopHat then stitches reads together to reconstruct the full 

600 bp window around the putative fusion breakpoint and filters out those that show any 

gaps in this window.  

An advantage over algorithms that only recognises fusions from reads mapping to 

two different annotated genes, TopHat-Fusion can derive fusion products from known 

genes, unknown genes and unannotated splice variants.  

The authors tested their algorithm on four breast cancer cell lines and one prostate 

cancer cell line, which contained 7-21 M read pairs. Compared with previous analyses of 

the same data, TopHat-Fusion found 44 of 47 known fusion events in the same cell lines 

and an additional 61 novel fusion events. It is important to note that individual splitting 

and spanning read thresholds were implemented for each sample based on the a priori 

known fusions, which could enrich for true positives while providing little guidance for 

setting thresholds for samples that were not previously tested. 

The authors estimated their false positive rates by hypothesising that non-

neoplastic tissue should have no fusion transcripts. In two normal tissue samples, they 

found 10 fusion events, albeit with more stringent supporting read thresholds that the 

authors devised due to a higher number of total read pairs in those samples.  

The authors also compared the output of their algorithm to that of deFuse for two 

cell lines. There, they found that both programs found seven out of nine previously 

reported fusion events, but with TopHat-Fusion predicting 42 and deFuse 1,670 fusions 

events in total.  

Thus, TopHat-Fusion’s algorithm predicts many of the expected fusions in the cell 

lines that they examined, and a lower number of unexpected events compared to deFuse. 

However, the authors still faced the same challenge as the authors of deFuse faced: namely 

that the lack of gold-standard true-positives and true-negatives makes it difficult to predict 

the likelihood of the unexpected fusion-calls to represent true fusion events. 

2.1.4.3 STAR 

This fusion-caller is an in-built function of STAR aligner, an ultra-fast aligner for 

RNA-Seq data on reference transcriptomes (Dobin et al., 2013; Haas et al., 2017). The 

chimeric read detection algorithm in STAR follows the following basic steps of 1) creating 

“local genomic windows” by stitching together alignments that align perfectly to the 
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reference transcriptome, 2) identify reads that align partially to these local genomic 

windows and 3) aligning the overhang of partially aligning reads to other local genomic 

windows. These partially aligning reads are thus splitting reads that support the presence 

of fusion transcripts.  

At the time of release, the built-in chimeric read detection algorithm of STAR was 

only a small component of overall tool and was minimally benchmarked. In 2017 the 

authors of STAR released a bioRxiv pre-print for STAR-Fusion, an additional stand-alone 

tool that uses the output of the chimeric sequence detection programme in STAR and adds 

an additional set of criteria to further dissect the results. These include filters that discard 

fusion transcripts that do not have sense-sense orientation of the genes, are not supported 

by at least 1 splitting read and 2 total reads, do not have a fully aligned genomic window 

of 23 bp either side of the breakpoint, isoforms with low read evidence, fused genes with 

high sequence homology and genes that are commonly fused across the same sample.  

Importantly, with the publication of STAR-Fusion, the authors also perform a 

comprehensive comparison of the performance of 15 other fusion-calling algorithms, 

including deFuse and TopHat-Fusion, which highlight some of the variations between 

fusion-calling algorithms.  

 

2.1.4.4 Variations in accuracy of fusion-calling algorithms 

In the previous section I have outlined three different fusion-calling tools that are 

available for RNA-Seq data. The exact methodology, as well as the filters applied have a 

large impact on the final list of fusions. For instance TopHat-Fusion’s filters cut down the 

fusions called in 6 data sets from > 10,000 to several hundred. Similarly, only about 1% of 

fusions passed deFuse’s additional filters.  

Several papers have now compared the performances of over 20 fusion-calling 

algorithms, the most notable by Carrara et al in 2013, Kumar et al in 2016 and Haas et al 

in 2017, examining 8, 12 and 16 different algorithms respectively (with some overlap) 

(Carrara et al., 2013; Haas et al., 2017; Kumar et al., 2016).  

In general, all three papers used a combination of 1) simulated RNA-Seq data in 

which fusion transcripts were planted across different expression levels and 2) real RNA-

Seq data, for which the benchmark was either based on previously detected fusions in 

these samples (Carrara and Kumar), or the concordance across different algorithms (Haas).  
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All three reviews found large variations both in the sensitivity and specificity of the 

algorithms in the simulated data, as well as the total number of fusions in the real RNA-

Seq data sets. In the simulated data, fusion-calling algorithms have varying levels of 

success in extracting true positives (sensitivities ranging from 4% to 88% in assays by 

Kumar and Carrara) but with generally low false positives rates (10-20%).  

Real data sets are much messier to interpret. For instance, in the same sample, 

Kumar et al. found that different fusion calling algorithms identified anywhere from 0-10 

to over 5,000 fusion transcripts. Carrara et al. extracted 11-73,000 different fusion 

transcripts in the same sample using different algorithms. Moreover the analysis 

sometimes had highly variable findings, while deFuse and TopHat-Fusion found on 

average 34 and 3 fusions per sample under Kumar, the number was much higher at 454 

and 43,301 under Carrara. These numbers stand in further contrast to the study by Kim 

and Salzberg, where deFuse identified 32x more fusions than TopHat (Kim and Salzberg, 

2011). Furthermore, while EricScript had good sensitivity and specificity under Kumar et al., 

but had underwhelming performance in Haas et al.’s analysis. Haas et al. also highlighted 

discrepancies in the performances of the same fusion-calling algorithms in the simulated 

and the real data sets. For instance, nFuse and ChimeraScan perform well in the simulated 

sets, but had much lower accuracy than other calling algorithms in the real data set.  

Overall, the unpredictability of RNA-Seq fusion-calling algorithms is important to 

consider when assessing the choice of method. No one tool emerges as being consistently 

reliable at calling expected fusions without introducing large numbers of false positives. 

Similarly, different interpretations of reliability of the same algorithms across different 

papers is likely a result of a lack of consensus guidelines on how tools should be best 

applied across samples with different characteristics (e.g. number and length of reads, etc). 

In general, these findings supports the use of multiple fusion-calling algorithms in order 

to minimise unpredictable results from individual algorithms. 

 

2.2 Filtering approach 

As outlined in the previous section, algorithms for fusion calling from RNA-seq data 

suffer from noisy results with a large number of false positives due to sequencing artefacts.  
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In order to create a catalogue of fusion transcripts in our cancer cell lines, I 

examined the expected true positive and false positive rates of our putative fusion 

transcripts. To do this, I utilised three sets of benchmarking data that were generated 

before I started the work on this thesis.  

2.2.1 Benchmarks 

We developed three benchmarks that were subsequently used to gauge the 

effectiveness of individual filters, as well as the quality of our final list of fusions. These 

consist of: 1) 945 putative transcripts that were validated by PCR, 2) comparisons of fusion 

events called from cell lines with RNA-Seq data obtained both in-house and from TCGA 

and 3) fusions described in the same cell lines in previous literature.  This following section 

describes these benchmark datasets 

2.2.1.1 PCR validations 

945 putative fusions transcripts (798 fusion events) in 23 cell lines were selected for 

validation through PCR of cDNA libraries using two different sets of primers per transcript2. 

PCR reactions confirmed the presence of 51% fusion transcripts while 49% failed. Of 

putative fusions predicted by single algorithms, those predicted by deFuse had the highest 

rate of successful validations (56.2%), while those predicted by STAR had the lowest 

validation rates (14.4%). Putative fusions predicted by all three fusion calling algorithms 

                                                 

2 PCR validations were planned by Graham Bignell and carried out by Elizabeth Anderson. 

Both were core members at CASM facilities. For methods, see Picco* & Chen* et al. (manuscript 

under review). See supplementary table 2. 

Table 2-2: Validation success across 945 putative fusion transcripts. D = Defuse, T = TopHat Fusion, S = STAR. 

Combinations of letters denote a combination of multiple algorithms.  

Algorithm Total # fusions 

(%) 

Total PCR  

reactions 

% passed (#) Adj. pass rate 

D 286,134 (14.8) 192 56.2% (108) 8.3% 

T 58,397 (3.0) 107 33.6% (36) 1.0% 

S 1,576,062 (81.5) 111 14.4% (16) 11.7% 

DT 1,770 (0.1) 90 61.1% (55) 0.06% 

DS 2,856 (0.2) 107 58.9% (63) 0.09% 

ST 3,533 (0.2) 112 48.2% (54) 0.09% 

DST 5,959 (0.3) 226 78.8% (178) 0.24% 

Total 1,934,711 945  21.5% 
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had the highest rates of validations overall (Table 2-2). The set of PCR validations served 

as guide lines when deciding on thresholds for fusion filters.  

Note, that fusion transcripts that were selected for validation are not evenly 

distributed across different fusion-calling algorithms and combinations thereof. For 

instance, there is a clear overrepresentation in fusion transcripts that are called by multiple 

fusion-calling algorithms, which only represent less than 1% of all fusion calls. Similarly, 

both median and mean splitting reads is higher in the subset of fusion events that are PCR 

validated, compared to the overall set of fusion calls (median: 11 vs. 1, mean: 60.2 vs. 8.4). 

This is partially due to fusion transcripts called by multiple algorithms generally having 

higher numbers of splitting reads.  

Since validation rates vary considerably between the calling methods, when 

approximating the overall PCR validation rate of a set of samples, it is advisable to adjust 

it to the proportion of fusion transcripts called by a given calling method (e.g. if the 

proportion of fusions called are: 70% by STAR, 20% by DeFuse, 10% by TopHat, then 

calculate validation rate as: 0.7*14.4% + 0.2*56.2% + 0.1*33.6%, etc.). Plugging in the actual 

numbers for the validation rates given in Table 2-2, I find an adjusted PCR validation rate 

of 21.2% across the pool of 1.9 M fusions. Note also, that this number is likely to still be an 

overestimate, due to the overrepresentation of fusion transcripts with higher number of 

splitting reads.  

At the same time, it may be important to keep in mind that there may be technical 

reasons for the failure to validate fusions by PCR, in particular since most fusions do not 

have positive control samples that can confirm the efficacy of a pair of PCR primers. In fact, 

out of the 945 fusion transcripts tested, only for 791 (84%) were the two different primer 

sets in agreement. For the other 154 transcripts, one primer set failed while the other 

passed. Since negative controls test that a PCR product is not a false positive, it is likely 

that in these 16% of cases, the failed primer set was in fact a false negative. Thus, while the 

PCR validation is a useful benchmark for the downstream analysis, this caveat should be 

born in mind.  

2.2.1.2 Comparison of TCGA and in-house RNA-Seq data 

In order to measure biological replicability of our pipeline, for 23 cell lines we 

performed both in-house RNA-Seq and used data from CGHub. Both sequencing data sets 

were then processed by the same downstream pipeline using cgpRna.  
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In total, 76,358 fusion transcripts were found in the 46 datasets. Although, the in-

house RNA-Seq data was associated with significantly more read pairs in sequencing data 

(paired t-test: t: -11.1, p < 1 x 10-10; Figure 2.2A), there was no significant difference 

between the number of putative fusions identified (paired t-test: t = -2.0, p = 0.06; Figure 

2.2B). With the unfiltered output, the mean proportion of shared fusion events was 6.7% 

(SD = 2.2%; median across cell lines = 6.8%) (Figure 2.2B).  

The relatively small proportion of overlapping fusion events indicates a highly noisy 

dataset and suggests that only a minority of the unfiltered putative fusion events are 

reproducible. Ideally, our filtering process should enrich our list of putative fusion events 

for those that are shared.  

 

Figure 2.2: Relationship of (A) read pairs for each data set and (B) number of fusions identified. Lines connect 

the pair of datasets (CCLE or in-house sequencing) for the same cell lines. (C) Overlap of fusions called from 

two separate RNA-Seq data sources by cell line. 



61 

 

2.2.1.3 Fusions described in literature 

Finally, a list of previously reported fusions events in the same cell lines that are 

used in our analysis was manually compiled by Graham Bignell through ChimeraDB, 

Mitelmann DB, the Atlas of Genetics and Cytogenetics in Oncology and Haematology and 

TICdb. It includes 1,916 previously reported fusion events across 417 samples from 91 

sources.  

While some of these fusion events were a result of high-throughput, little-filtered 

landscape studies, the list also includes 253 annotated fusion events that were validated in 

either a second study, or through high-confidence methods such as FISH and capillary 

sequencing. These annotated fusion events include well known oncogenic drivers, for 

example 20 instances of EWSR1-FLI1, 7 instances of BCR-ABL1 and 1 instance of TMPRSS2-

ERG. 

Due to the inherently high error rate in calling true fusion transcripts as well as 

incomplete coverage, this list is not necessarily comprehensive or free of false-positives. 

However, it serves as a helpful tool to compare how many previously reported fusion 

events are captured using our pipeline. Similarly, whether these previously reported fusion 

events are preferentially retained by our filtering process can give an indication of the 

filters’ effectiveness in retaining true positives. 

 

Overall, it is important to recognise that all benchmarks cover a subset of the fusion 

transcripts/cell lines that are examined in my thesis. The PCR validations are conducted on 

945 fusions transcripts, which represents less than 0.5 percent of all fusions called within 

our pipeline. Meanwhile, the analysis of shared fusions between replicates covers 23 cell 

lines, i.e. 2.3% of our entire panel. Similarly, the fusions described in literature also cover 

only 1,916 fusion events in 417 samples. While the curation of this benchmarking data is 

nevertheless a valuable resource, the representation should be born in mind when 

interpreting the downstream analyses. 

2.2.2 Evaluation of suggested set of filters 

In the next section, I describe how I evaluated the set of filters that were suggested 

prior to my participation in this project. For that, I benchmarked the impact of filters using 

the benchmarks described above, mainly with the aim of removing fusion transcripts and 
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events that do not pass PCR validations and that are not shared in the independently 

sequenced datasets. 

2.2.3 Split read filter 

The split read filter sets the requirement that a putative fusion transcript must be 

supported by a certain number of sequencing reads that align directly onto the breakpoint 

and is standard for fusion calling algorithms. In the cgpRna pipeline, only TopHat-Fusion 

and DeFuse apply such a filter by default, while STAR reports putative fusion transcripts 

even when supported only by a single read or read pair. This likely explains the large 

number of fusion transcripts found by STAR (81.5% of total), opposed to other fusion 

calling algorithms. In fact, out of the 1,588,410 putative fusion transcripts found by STAR, 

only 102,958 (6.5%) had at least 3 splitting reads. 

The assumption underlying the split read threshold is that putative fusion 

transcripts with little supporting evidence from single sequencing reads may be false-

positives resulting from technical artefacts.  

First, I examine the total putative fusions retained at a given splitting read threshold, 

and the number and proportion of passing and failing PCR validation. By increasing the 

splitting read threshold, the proportion of PCR validating fusions increases substantially 

(Figure 2.3). Even a basic threshold of 3, which removes 80% of all fusion transcripts, we 

remove 38.2% of false-positives tested by PCR, while retaining 92.9% of those that do 

 

Figure 2.3: Impact of a splitting read filter. At any threshold (x-axis), the plot shows (A) the number and 

percentage of PCR validated fusion transcripts, as well as the total number of fusion transcripts that pass that 

threshold. (B) The percentage of fusion transcripts that are retained from a given category (validating, non-

validating and total) at each threshold. 
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validate (Figure 2.3B). On the other end of the spectrum, at very stringent threshold of 25 

splitting reads, 74% of putative fusion transcripts validate, but only 40% of validating 

transcripts are retained.  

Even true fusion transcripts can have varying numbers of supporting splitting reads, 

which can be explained by varying transcript expression levels, i.e. true fusions that are 

expressed lowly may only have limited number of sequencing reads supporting it. 

Since no clear division exist between true positive and false positive fusions, the 

ideal threshold would likely depend on the study and in particular the read depth of 

samples. Because my project aims to discover novel fusions, which will be validated in later 

experiments, I decided to implement a relatively permissive threshold of 4 splitting reads, 

as it strikes a compromise by removing approximately 45.6% of false-positives while 

retaining 89.7% of validated putative fusion transcripts in a single filtering step. Overall, 

this retains 370,210 (19%) of 1,930,425 fusion transcripts.   

2.2.4 Multi-algorithm filter 

At the time that the cgpRna script was developed, most research articles used only 

a single fusion-calling algorithm. Like more recent papers that tend to use multiple 

algorithms to call fusion transcripts (Gao et al., 2018), for this project the decision was 

made to implement three separate algorithms, with the reasoning that: 1) multiple 

algorithms may capture fusions that are missed by single algorithms 2) fusions called by 

multiple algorithms have more streams of supporting evidence and therefore are more 

likely to be true positives rather than technical artefacts.  

To examine if these assumed benefits hold true, I again examined to our PCR 

validation data, as well as the data on 23 cell lines obtained from different sources. 

First, I broke down the 945 PCR validation by which algorithm called a given 

putative transcript (Figure 2.4A). Notably, none of the algorithms or combinations showed 

100% validation rates by PCR. The data for the most part supports the assumption that 

fusions called by multiple algorithms are more likely to be true positives, as they validate 

in higher proportion by PCR. Notably, deFuse outperforms STAR and TopHat in terms of 

true positives. Nonetheless, deFuse’s validation rate at 56.2% still suggests that more than 

two in five fusion calls may represent a false positive.  
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We hypothesised that the low threshold for splitting reads may have caused the 

low validation rates particularly for STAR and TopHat fusions. After applying our suggested 

filter of 4 splitting reads (Figure 2.4B), the proportion of validating fusions per algorithm is 

increased across almost the entire dataset, but with the most striking improvements in 

STAR and TopHat-Fusion, where the validation rates rose to 47.1% and 47.8% from 14.4% 

and 33.6% respectively. Overall, for fusion transcripts called by single algorithms, our 

validation rate is 39.0% before filtering and 54.9% after filtering by splitting reads. 

Validation rates across fusion transcripts with multiple supporting algorithms also rose 

substantially, with the average validation rate for those fusions that are found by more 

than two algorithms increasing from 65.4% to 69.2%.  

 

Next, I examined the fusion calls obtained by analysing RNA-Seq data from two 

separate sources in 23 cell lines. In section 2.2.1.2, I showed that when unfiltered, few fusion 

transcripts overlap between the two sources, which indicates that the data is highly noisy. 

Figure 2.5 shows that after applying the filters which were identified as effective in the 

previous sections, we can increase the proportion of shared fusion calls. Unfiltered, the 

proportion of shared transcripts is merely 6.7%. Implementing the split read filter with a 

minimum threshold of 4 splitting reads already increases the proportion to 33.7%. When 

considering only fusions called by multiple algorithms, the proportion of shared transcripts 

is 64.6%. Finally, when I combine both the split-read filter and the multiple algorithm filter 

 

Figure 2.4: Breakdown of 945 PCR validations by algorithm either on the unfiltered list (left), or after applying 

a basic splitting read threshold of 4 (right). 
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together, I observe a much improved proportion of 70.4% shared fusion transcripts. On a 

per cell line level, the median cell line has an even higher proportion of 77.8% shared fusion 

transcripts. The overall mean is likely lower due to a few outlier cell lines that have 

particularly low overlap. 

Thus, by limiting our list of putative fusion transcripts to only those that are called 

by two or more algorithms, I see substantial improvements in proportion of validating 

fusions from PCR analysis. Perhaps more importantly, the proportion of shared fusions 

called from biological replicates is more than doubled to 70.4%. In the interest of ensuring 

that I am working with a biologically replicable dataset, I therefore decided to implement 

the multi-algorithm filter to obtain our final dataset. It is nonetheless important to keep in 

mind, that a large amount of fusions that do validate by PCR are removed in the process, 

which is a caveat that is unfortunately difficult to avoid when analysing fusion calls from 

RNA-Seq data.  

 

Figure 2.5: Breakdown of fusion calls from the analysis from two separate sources in 23 cell lines. Colour of 

the bar shows whether a specific putative fusion is called from both sources (Shared: blue), or if it is uniquely 

called from either the in-house data (red) or the CGHub data (green). Each panel shows the data after a 

different filtering method was applied. The number in the panel represents the percentage of shared fusions 

across the data. 
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2.2.5 Fusions discovered in normal tissues 

Next I examined fusions called in normal tissues, since we believe that true 

oncogenic fusions are unlikely to be present in non-neoplastic tissues. RNA-Seq data for 

245 non-neoplastic tissues was downloaded from the Genotype-Tissue Expression project 

(GTEx) (GTEx Consortium, 2013) and fed into the cgpRna pipeline. The raw output 

contained 126,897 putative fusion transcripts. After filtering by number of splitting reads 

(≥ 4) and removing any putative fusions that were called only be a single algorithms, our 

dataset retained 78 fusion transcripts. No sample showed more than one fusion transcript 

and approximately 1 fusion transcript was found per every 3.1 GTEx samples (Figure 2.6A).  

Of the 78 fusions found in GTEx samples, 6 fusions were also found in our cancer 

cell line panel, including the three most common GTEx fusions. Interestingly, one 

pancreatic sample carries a fusion in TMPRSS2-ERG, a well-known pancreatic cancer driver 

fusion (Figure 2.6B). The presence of this fusion may indicate that the sample originated 

from a pre-malignant lesion, although recent literature shows that non-neoplastic tissue 

can show surprisingly high frequencies of cancer driver alterations without leading to 

obvious oncogenic transformation (Martincorena et al., 2015). 

 

Figure 2.6: Histology and fusions in 245 GTEx samples. (A) We detected fusions in 58 of 245 GTEx samples. 

(B) 31 unique fusion pairs were detected in GTEx samples. Of those, 6 overlap with fusions found in our cancer 

cell lines. 
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With the exception of TMPRSS2-ERG, I did not observe any other potentially 

oncogenic fusion events (i.e. those matching the COSMIC fusion curation) within the GTEx 

sample results. As fusions that occur recurrently in GTEx samples are unlikely to play 

significant functional roles, we removed the small number of recurrent GTEx fusions from 

our list of putative fusions in cancer cell lines (n = 29).  

2.2.6 Summary and overview of a framework for fusion filtering 

In the above paragraphs, I examined the effectiveness of a set of filters in removing 

technical artefacts from our list of putative fusion transcripts. Overall, I found that using a 

splitting read threshold of at least 4 splitting reads per transcript increased the projected 

true positive rate from 51% to 63% (Figure 2.3). Also, only using fusion calls supported by 

two or more algorithms significantly increased the biological replicability. Finally, I also 

removed a small number of fusions that were recurrently found in a set of non-neoplastic 

GTEx samples.  

Note, that during the course of my PhD, I also examined the efficacy of a further 4 

filters, that examine false positives filtered by 1) regions of high repeats, 2) ratios of 

splitting reads to spanning reads, 3) the deFuse additional filters and 4) highly recurrent 

fusions. No efficacy was found for those filters (keeping in mind the limitations of my 

benchmarking approach) and for the sake of brevity, the data is not shown.  

Thus, for our final filtering pipeline summarised in Figure 2.7, I decided to 

implement only the splitting read and multi-algorithm filters, as they showed the greatest 

efficacy in increasing the proportion of true positives.  

Implemented across our 1,011 cell lines, of the 1,934,711 putative fusion transcripts 

outputted by cgpRna, 10,514 (0.5%) pass my filtering process (Supplementary Table 3). 

 

Figure 2.7: Overview of the filtering and annotation pipeline to identify our final catalogue of gene fusions in 

1,011 cancer cell lines. 
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This represents 8,354 fusion events, i.e. unique cell line/fusion combinations. PCR 

validations performed on a subset of these fusion transcripts (n = 474) yields a projected 

69.2% pass rate. In terms of the 23 cell lines that were RNA-Seq’d at two independent 

sources, applying the two filters substantially improved the proportion of shared fusions 

from 6.7% to 70.4%. 

Finally, I compared our filtered list of fusions with the list of fusion events described 

in literature (see section 2.2.1.3). Our raw output contained 84.13% of ‘validated’ and 52.6% 

of all remaining fusion events described in literature. After filtering, we still matched 74.21% 

of validated and 39.74% of the remaining fusion events. Although we lost a small number 

of fusion events that had previously been validated, overall considering that 99.95% of 

putative fusion events were removed, our filtering strongly enriches our set with previously 

observed fusion events, i.e. likely true positives.   

 

Although my set of filters provides a vast improvement over the validation rate of 

our set of fusion transcripts, it is clear that separating true positive from false positive 

fusions with high reliability remains a challenge. A high validation rate suggests a high 

specificity of a calling and filtering approach in excluding false negatives. However, in many 

instances implementing our filtering pipeline also reduces the sensitivity, as fusion 

transcripts that validate by PCR are filtered out. 

At the same time, a limitation of my approach are the benchmarking tools that are 

available to test filters against. While performing the PCR validations for 945 was without 

a doubt a big effort, these only represented a fraction of the fusion transcripts called. 

Similarly, they under-represent certain types of fusion calls which may have created a skew 

in the analysis. For instance, the vast majority of PCR validations were performed on fusion 

transcripts that were called with more than 4 splitting reads and there was an 

overrepresentation of fusion transcripts called by multiple algorithms. 

Similarly, the analysis of shared fusions across the same 23 samples from different 

RNA-Seq sources was extremely valuable. It highlighted how single fusion-calling 

algorithms often called fusion transcripts that were not replicated in another sequencing 

source. Some variability observed between different cell lines is currently unexplained but 

may be related to data quality from either RNA-Seq data source.  
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The difficulty in obtaining a list of fusions that comprehensive and free from false 

positives is not unique to our data-set. As mentioned in the introduction, multiple 

publications that examined RNA-Seq fusion calling algorithms agreed that there is a room 

for improvement in the sensitivity and specificity of the algorithms (Carrara et al., 2013; 

Kumar et al., 2016). It is possible that a certain degree of noise in the data is unavoidable 

with the current tools available, especially as fusion-calling relies on the detection of non-

standard read alignments that may be particularly error-prone. Notably, very few papers 

that conduct fusion-calling from RNA-Seq data report any validation rates beyond the 

validation of a selected few high-confidence hits. The recent TCGA analysis reports a 

validation rate of 63.3%, based on a subset of samples with available whole-genome 

sequencing data (Gao et al., 2018). Their method of validation differs from my method of 

benchmarking fusion transcripts based on 945 PCR validations and the overlap of shared 

fusions in 23 different samples. Nonetheless, the ~70% validation rate from our methods 

suggest that our fusion-calling and filtering approach performs relatively well. At the same 

time, this analysis shows that working with data produced by single fusion-calling 

algorithms can be extremely unreliable and caution should be used when multiple 

algorithms are not used.  

Future research may yield more insight into the nature and causes of sequencing 

and fusion-calling artefacts and could lead to advances in the sensitivity and specificity of 

computational fusion-calling algorithms and associated filters. Thus, in the future, it may 

be useful to reanalyse the RNA-Seq data for fusion calls, as any improvements in sensitivity 

and specificity can lead to substantial noise reduction in my downstream analyses.   
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3 Landscape of fusions in cancer cell lines 

Our final list of fusions comprises 10,514 unique fusion transcripts identified in 

1,011 cancer cell lines. This corresponds to 8,354 unique fusion events, i.e. fusion/cell line 

combinations, as the merged transcripts are likely to represent alternative splicing events.  

Of the 1,011 cell lines examined, 52 cell lines showed no fusions. These cell lines do 

not appear to be particularly enriched within specific tissue types (Figure 3.1A). For all other 

cell lines, the number of fusions detected per cell line ranged from 1 to 96, with a median 

of 8. Notably, there was a significant correlation between sequencing depth and number 

of fusions detected in the cell line (spearman correlation, rho = 0.15, p < 2.7*10-6) and also 

a small but significant difference in the mean of fusions found in CGHub data (median = 

 

Figure 3.1: (A) Number of cell lines examined by cancer type. (B) Mean number of fusions by RNA-Seq data 

source. (C) Number of identified fusions for each cell line, split by tissue type.  
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7.2) compared to in-house sequenced samples (median = 9.6) (t-test: t = -4.3, p < 1.8 * 10-

5). This suggests that sequencing depth can influence the number of fusions detected in a 

sample, potentially due to improved sensitivity to detect transcripts that are expressed at 

a low levels. 

3.1 Recurrence of fusions by cancer type 

First, I examined the distribution of gene fusions across different cancer types 

(Figure 3.1C). Osteosarcoma and breast cancer showed the highest prevalence, with a 

median of 21 and 18.5 fusions per cell line respectively. They are followed by stomach and 

cervical cancers that present a median of 16 fusions per cell line. At the other end of the 

spectrum, a handful of non-cancerous cell lines showed a median of 2 fusions per cell line. 

Burkitt lymphomas, kidney cancers and B-lymphoblastic leukaemias all showed a median 

of 3 fusions per cell line.  

In line with this, genomic landscape studies often find that breast cancers show one 

of the highest number of structural variation compared to other cancer types (Yang et al., 

2016). This tendency may be due to a high frequency of BRCA mutations that are 

associated with genomic instability (Nik-Zainal et al., 2016; Sedic et al., 2015). Interestingly, 

in our data we indeed find that BRCA1 mutations are significantly associated with a higher 

number of fusions in cell lines (p < 0.01, fdr = 13.4%. Controlled for tissue type and MSI 

status. Corrected for testing against 724 cancer events) (Figure 3.2).  

 

Figure 3.2: BRCA1 mutation status is significantly correlated with number of fusions detected in cell lines (p 

< 0.0086, fdr = 13.4%. (Left) number of fusions in a given cell line by BRCA1 mutational status across 952 

cell lines. (Right) Same plots broken down by tissue categories with frequent BRCA1 mutations. 
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Osteosarcomas are rarely part of multi-tumour landscape papers, and their overall 

genomic instability is therefore difficult to directly compare against other cancer types. 

Nonetheless literature suggests that osteosarcomas distinguish themselves from other 

sarcomas due to large cytogenetic alterations and chromosomal instability (Cleton-Jansen 

et al., 2005; Lorenz et al., 2015). This may therefore explain a markedly above average 

occurrence of fusion genes.  

Recently, Lorenz et al. characterised gene fusions in 11 osteosarcoma cell lines by 

RNA-Seq and whole genome sequencing (Lorenz et al., 2015). They validated 17 of 502 

putative fusion transcripts by Sanger sequencing, with a validation rate of 76%. 

Interestingly, only 7 of the validating fusions detected by RNA-Seq were supported by 

structural changes predicted by whole genome sequencing, suggesting that the remaining 

gene fusions may result from non-structural changes (e.g. transcription-induced gene 

fusions). One of their examined cell lines, MG-63, is also part of our cell line panel. 

Interestingly, while Lorenz et al.’s pipeline returns 101 fusion transcripts in this cell line, our 

own analysis lists only 13. Both pipelines recapitulate all six fusions that are predicted by 

structural variation, however no fusions overlap that are not supported by structural 

changes. While the sample size is in this case small, and the data processing approaches 

are different (their pipeline constitutes of two fusion-mapping algorithms for which they 

combined any transcripts that have more than 3 split and 8 spanning reads), this finding 

puts into question whether the fusion transcripts not resulting from structural changes are 

stably expressed in time and across different experimental conditions, and their relevance 

in an oncogenic context.  

3.1.1 Fusion recurrence in cell lines vs. patient tumours 

Next, I wanted to compare the median number of fusions found in cell lines to 

those found in patient samples. For that, I mapped the tissue types reported by Gao et al 

for their ~10,000 TCGA samples to those we assign to our cell lines. TCGA tissue types were 

split into 33 different categories with letter codes and I manually retrieved the definitions 

from their website (NCI Genomic Data Commons, 2018). On the other hand, the cell line 

panel is split into 41 cancer types. I found corresponding TCGA tissue types for 26 different 

cancer types. Cancer types that were not represented included a number of haematological 

cancers (e.g. chronic myeloid leukaemia, Hogkin’s lymphoma and lymphoblastic leukaemia) 

and some solid cancers (e.g. small cell lung cancers, Ewing’s sarcoma or neuroblastomas). 
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For 22 TCGA tissue types, I found a direct match (e.g. BRCA – breast carcinoma, OV – 

ovarian carcinoma, LUSC – squamous lung cell carcinoma). For 5 TCGA tissue types, I had 

to find approximate matches, i.e. I combined KIRC (kidney renal clear cell carcinoma) and 

KIRP (kidney renal cell papillary cell carcinoma) to match the “Kidney Carcinoma” cancer 

type, which includes cell lines matching both of the TCGA categories. I also mapped ESCA 

(Esophageal carcinoma) to both Esophageal Squamous Cell Carcinoma and Esophageal 

Adenocarcinoma in our cancer type annotation, and the SARC (sarcoma) category was 

mapped to both Osteosarcoma and Rhabdomyosarcomas cell lines. Within these 26 

mapped categories, the mean number of fusions per cell line to patient samples correlates 

significantly (R-square = 0.4 and p-value < 0.005) (Figure 3.3).  

It is important to note that the scale differs – where patient samples show a range 

of 1.4-10 mean fusions per TCGA tissue, our cell lines have a range of 5.2-27.2. This 

difference is also observed on a data-set level, as our cell lines have a mean of 8.7 (range: 

2-92) fusions per sample, while TCGA samples have a mean of 4.2 (range: 1-96) fusions per 

sample (t-test, p < 2*10-16). 

The higher range could potentially be due to cell line-specific biases. However, as 

in the previous chapter I show that higher sequencing depth is associated with a higher 

number of fusions, this may also be due to the exceptionally high sequencing depth at 

which RNA-Seq was performed for our samples. Unfortunately, the paper published by 

Gao and colleagues does not report sequencing depth of the tumours. Further, the real 

 

Figure 3.3: The mean number of fusions found in patient samples and cell lines correlate significantly. 
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sequencing depth in cell lines can be expected to be even higher than that of primary 

tissues, as there would be no contamination from non-tumour cells.  

3.1.2 Tissue type specific fusions 

Generally, I also find known oncogenic fusions in the tissue types in which they 

were previously reported in patients. For instance, BCR-ABL1 and NUP214-ABL1 fusions 

are found exclusively in blood cancers, e.g. chronic myelogenous leukaemia (n = 9), T-

lymphoblastic leukaemias (n = 2) and B-lymphoblastic leukaemia (n = 1). Similarly, EML4-

ALK fusions are only in lung adenocarcinomas (n = 2) while NPM1-ALK is found in T-cell 

non-Hodgkin’s lymphoma (n = 4). KMT2A fusions are also mainly found in blood cancer 

cell lines, e.g. KMT2A-MLLT1 (n = 1), KMT2A-MLLT3 (n = 4), KMT2A-MLLT4 (n = 1) and 

KMT2A-AFF9 (n = 1) are all in leukaemia cell lines. EWSR1-FLI1 fusions are mainly found in 

Ewing’s sarcoma cell lines (n = 22), with the exception of one fusion event in the SK-NEP-

1 cell line, which is annotated as a kidney cancer. However, a recent paper shows that this 

cell line was in fact misclassified and originates from Ewing’s sarcoma (Smith et al., 2008). 

TMPRSS2-ERG (n = 2) are also found exclusively in prostate carcinoma cell lines.  

 

Overall, the above data shows that cell lines represent tissue types reasonably well, 

at least in the relative recurrence of fusions events, as well as the tissue type-specificity of 

well-known oncogenic fusions. The latter observation in particular suggests that cancer-

related fusions are faithfully represented in cell line model systems, in terms of their 

occurrence and functionality. 

3.2 Fusion recurrence 

To understand the recurrence of fusion events, I examined the number of samples 

in which a given fusion is present. Of 7,430 fusions, I found that the vast majority (n = 7,028; 

94.6%) occur in only a single cell line. Moreover, only 1.3% of fusions are present in at least 

three cell lines or more (Figure 3.4A).  

I found the same trend for fusions detected in the 9,624 TCGA patient tumours 

(Gao et al., 2018) (Figure 3.4B). There, of 23,999 fusions, 96% (n = 23,056) are called in only 

a single tumour and 1% (n = 237) fusions are recurrent in three samples or more.  

Overall, the observation that only a small proportion of fusions are recurrent in 

both cell lines and patient fusions suggests that most fusion events are passenger events 
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that result from wide-spread structural rearrangement, and that only a minority are driver 

events selected for during oncogenic processes.  

3.3 Cancer-related fusions and recurrence 

Here, I annotated cancer-related fusions that belong into one of 3 categories: 1) 

known oncogenic fusions that have previously been causally implicated in cancer initiation 

and development, 2) fusions that have previously been observed in a subset of patient 

samples, and 3) fusions that involve known cancer-driver genes.  

Fusions that have previously been causally implicated in cancer development and 

progression are important and useful tools in my study of functional gene fusions. As their 

oncogenic function is pre-established, they serve as valuable positive controls and 

benchmarks in my downstream analyses. To annotate known oncogenic fusions, I used the 

manually and expert-curated COSMIC gene fusion database 

(https://cancer.sanger.ac.uk/cosmic/fusion). The version downloaded in May 2018 contains 

295 fusions. 

Similarly, annotating fusions that have been observed in patient samples can help 

to put fusions that are found in cancer cell lines into context, as only fusions that actually 

occur in the patient population will be relevant for therapeutic applications. It also gives 

us an indication on the proportion of fusions observed in patients that we can functionally 

assess in our cancer cell lines. For this purpose, I use the recent paper published by Gao 

and colleagues, which analysed 9,624 TCGA tumour samples and found 25,664 gene 

 

Figure 3.4: Recurrence of fusions in (A) cell lines and (B) patient samples (data from Gao et al, 2018). 
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fusions (Gao et al., 2018). Fusions are considered as “observed in patients”, if the same 

gene partners are fused in the same position (5’/3’) in any of the samples analysed there.  

Finally, fusions that involve known cancer driver genes may activate oncogenic 

functionality. For example, the fusion of a looped-coil domain to the kinase domain of ALK 

leads to constitutive kinase activation. Similarly, fusion genes involving known tumour 

suppressors can indicate knock-out of tumour-suppressor function. To annotate known 

cancer genes, I used the COSMIC Cancer Gene Census database, an expert-curated 

database that documents genes in which alterations have been causally implicated in 

cancer (https://cancer.sanger.ac.uk/census). My version of the database was downloaded 

in August 2017 and contains 609 genes. Of those, 91 were further annotated to be tumour 

suppressor genes, 116 were annotated as oncogenes and 37 genes have dual roles.  

 

Of the 8,354 fusion events, 14.2% (n = 1,184) contained a cancer gene, 1.2% (n = 

98) are known oncogenic fusions and 5.6% (n = 471) were previously detected in patients.  

Known oncogenic fusions listed in the COSMIC fusion census show a tendency to 

have a higher recurrence than the rest, with the three top-most recurrent fusion in the 

 

Figure 3.5: Recurrence of known oncogenic fusions in (A) cell lines and (B) patient samples (data from Gao 

et al, 2018). 

https://cancer.sanger.ac.uk/census
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TCGA data set being TMPRSS2-ERG (n = 191), FGFR3-TACC3 (n = 33) and CCDC6-RET (n = 

24). Similarly, EWSR1-FLI1 is with 24 cell lines one of the most commonly fused fusions 

(Figure 3.5A-B).  

When looking at the top 40 most recurrent fusions overall, I find that within cell 

lines, there is less of an enrichment for COSMIC fusions and fusions that involve COSMIC 

cancer genes than in the patient samples (Figure 3.6A-B). This is likely because the authors 

removed any fusion that recurs in 10 or more samples unless they were reported in 

previous TCGA studies (Gao et al., 2018). Although the number of fusions that were 

removed with this filter is not reported in the manuscript, considering that only 40 fusions 

recurred in 5-9 different samples (Figure 3.4B), it is likely to be small.  

In cell lines, two of the top three recurrent fusions, TSHZ2-SLC35A1 and NCOR2-

UBC, have been described before, but never characterised (Obholzer et al., 2015; Roberts 

et al., 2012). Some of the top recurrent fusions contain entirely uncharacterised genes (e.g. 

CTD-2334D19.1 and RP11-120D5.1) and long intergenic non-protein coding RNA (e.g. 

LINC01340). These fusions tend not to be tissue-type specific and are often not in-frame, 

which suggests that they are less likely to perform oncogenic functionality.  

It is notable that of the COSMIC fusions found in our cell lines, only a subset (28%) 

are observed in Gao’s patient samples. Well known oncogenic fusions that are not 

observed in Gao’s patient samples include EWSR1-FLI1, NPM1-ALK and BRD4-NUTM1. The 

 

Figure 3.6: Top 40 most recurrent fusions in (A) cell lines and (B) patient samples (data from Gao et al, 2018). 

Red bars indicate that the fusion is listed in the COSMIC fusion data base, dark yellow bars indicate that one 

of the genes is listed in the COSMIC cancer gene census. 
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opposite is also true, e.g. no cell lines show ETV6-NTRK3 fusions, even though those are 

among the most recurrent in the patient samples. Furthermore, a large number of well-

understood driver events also occur at only very low frequencies (e.g. KMT2A-MLLT3 only 

being in a single patient sample and PML-RARA only occurring in a single cell line). This 

likely reflects the biases of tissue selection within both data sets, e.g. there being no Ewing’s 

sarcoma samples analysed in the TCGA data set. It also supports the argument that fusions 

are exceedingly rare events, and that even with almost 10,000 samples sequenced, we are 

still far off from being able to provide a comprehensive landscape of oncogenic fusion 

transcripts. Similarly, it demonstrates that while recurrence is now commonly used as a 

predictor for the oncogenic functionality of single-nucleotide variations, with the current 

resources available, fusions recurrence alone is currently insufficient in assigning 

functionality.  

3.4 Predicted frame of fusion transcript 

GRASS (Gene Rearrangement AnalySiS) is an algorithm developed by CASM IT at 

the Wellcome Trust Sanger Institute that predicts the impact that a breakpoint has on the 

formation of potential fusion constructs based on the ensemble gene annotation (Cancer 

IT, 2018b). It is automatically run with the cgpRna pipeline and outputs a number code 

(“flag”) that annotates fusion transcripts with relevant features, including frame (e.g. in-

frame, out-of-frame, stop codon) and breakpoint region (i.e. intronic, extronic or UTR). 

In total, there are 49 different grass flags, which represents different combinations 

of frame, breakpoint region etc (e.g. an in-frame transcript where the breakpoint is in an 

intron has a code of 910, while an in-frame transcript with an exonic breakpoint has a code 

of 900). The original 49 grass flags were designed for an algorithm to predict breakpoints 

in whole genome sequencing (Cancer IT, 2018c), and are not applicable to transcriptome 

data. 26 codes appear for the fusion transcripts called by our pipeline, and these can be 

summarised in 7 categories (Table 3-1). Four categories affected coding regions: In-frame, 

ambiguous frame, out-of-frame, stop-codon introduced. A fifth category annotates any 

transcript that involves a fusion at an untranslated region (UTR). Two further categories 

annotate, where a fusion involves “something else” or “no fusion”. These two categories, 

together with the “ambiguous frame” mentioned above, are usually assigned in situations, 

where the ensemble annotation on coding regions or gene boundaries is ambiguous. 
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Unfortunately, the documentation for GRASS does not provide further detail on the specific 

circumstances in which a fusion is assigned “ambiguous frame”, “something else” or “no 

fusion”, and an attempt to reach out to the original authors of the code was unsuccessful. 

I broke down all fusion events by the 7 GRASS flag categories – where several fusion 

transcripts exist for the same fusion event, I assigned the GRASS flag with the highest value 

(i.e. the outcome that is most likely to have functional significance) to the event. I found 

that 26% of all transcripts are annotated as in-frame (Figure 3.7A). Fusions events in coding 

regions make up 50.8% of all events, another 14.6% are fused in UTR’s and the remainder 

are fusions that fall into the “something else” or “no fusion category”.  

When looking specifically at fusion events that involve COSMIC fusions, I find that 

the vast majority (91%) are in-frame events (Figure 3.7B). Only 9 fusion events do not fall 

Table 3-1: 26 GRASS codes and their descriptions. The first column (“category”) is the custom categories I 

divided the codes into to simplify interpretation of the GRASS flags. 

Category GRASS flag Type Breakpoint region Gene 

orientation 

In-frame 910 in-frame exon same 

900 in-frame intron same 

Ambiguous frame 740 ambiguous intron same 

520 ambiguous exon different 

540 ambiguous intron different 

500 ambiguous coding different 

Out-of-frame 710 out-of-frame exon same 

700 out-of-frame intron same 

Stop codon 715 stop-codon 
 

same 

UTR fusion 860 5' UTR to 5' UTR 
 

same 

820 5' UTR to coding 
 

same 

660 5' UTR to 3' UTR 
 

same 

620/600 3' UTR to coding 
 

same 

440 3' UTR to 5' UTR 
 

same 

400 3' UTR to 3' UTR 
 

same 

360 5' UTR to 5' UTR 
 

different 

580/570 5' UTR to coding 
 

different 

320 5' UTR to 3' UTR 
 

different 

560 3' UTR to coding 
 

different 

280 3' UTR to 5' UTR 
 

different 

No fusion 0 No Fusion 
 

NA 

Something else 200 intron to something else 
 

NA 

180 something else to intron 
 

NA 

100 something else to 

something else 

 
NA 
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into this category. A TMPRSS2-ERG fusion in a prostate carcinoma cell line shows the 

standard phenotype, where a fusion to the 5’ UTR region of androgen-regulated TMPRSS2 

drives overexpression of ERG (Tomlins et al., 2008). A further 5 of not in-frame fusions 

(PLXND1-TMCC1 in two cell lines, IL6R-ATP8B2, NFIX-MAST1, RBM14-PACS1) were 

originally identified in high-throughput landscape papers for which no functional 

validation has been performed. In fact, in a later chapter, I show evidence to argue that 

these fusions should not be included in the COSMIC fusion census (see chapter 6.3).  

Two more fusion events, FGFR3-TACC3 in RT4 and EIF3E-RSPO2 in ESO51 are both 

annotated as “ambiguous frame”. In later chapters, I show that the FGFR3-TACC3 is likely 

to be functional, as RT4 is sensitive to FGFR3 inhibitor PD173074 (see chapter 4.3.1.5). On 

the other hand, EIF3E-RSPO2 fusions have previously been found to be sensitive to 

porcupine inhibitors in colorectal cancer, and to which ESO51, an oesophageal cancer cell 

line showed no response, suggesting that this fusion event is non-functional. 

The final not in-frame fusion event is an UBE2L3-KRAS fusion detected in DU145, a 

prostate adenocarcinoma cell line that is annotated as “something else”. In fact, this fusion 

in the same cell line was already previously functionally characterised by another group 

and showed attenuated xenograft growth and cell invasion when knocked-down (Wang et 

al., 2011). I found the break-point reported by our fusion-calling pipeline to be identical to 

the one described by the authors, which suggests that in this case, the GRASS algorithm 

failed to correctly annotate the fusion.  

Thus overall known oncogenic fusions listed in the COSMIC database where 

overwhelmingly in-frame, except in the case of the 5’ UTR fusion of TMPRSS2-ERG. 

Next, in the subset of fusion events that involve a COSMIC cancer gene, I see a 

much wider range of predicted outcomes (Figure 3.7C). In general, the pattern follows that 

of all other fusion events, though with a slightly higher proportion of in-frame fusion 

events (33% vs. 26%). This proportion of in-frame events is even higher when looking at 

just the subset of COSMIC genes that are annotated as “onocogene” (41%), while in 

COSMIC genes annotated as “tumour suppressor genes” (TSG), the proportion of in-frame 

events is just 29% (Figure 3.7D-E). Although not all in-frame fusion events will necessarily 

be functional, an enrichment of them in fusion events involving cancer driver oncogenes 

could suggest positive selection. For instance, these events include two in-frame RAF1 

fusions, MBNL1-RAF1 and ATG7-RAF1, which will be discussed in chapter 6.5, where a 
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fusion most likely acts by removing an N-terminal auto-inhibitory domain of RAF1. At the 

same time, the nonetheless large proportion of COSMIC cancer gene-carrying fusion 

events that are out-of-frame or with ambiguous mapping suggests that one should be 

careful not to over-interpret the occurrence of a cancer gene in a fusion transcript. 

Notably, the subset of fusion events that are also seen in patient samples has an 

even higher proportion of in-frame fusion events (41.5%) (Figure 3.7F). Furthermore 

compared to all fusion events, an even smaller proportion of fusion events fall into the 

 

Figure 3.7: Break-down of fusion transcripts/events by GRASS flag category for (A) all fusions transcripts, (B) 

fusion events matching COSMIC fusions, (C) fusion transcripts involving COSMIC cancer genes and (D) fusion 

events that were observed in patient samples. Numbers next to bars represent the number of fusion events 

that fall into a given category. 
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“something else” (9.6% vs. 22.2%) and “no fusion” (5.5% vs. 12.3%) categories. In the future, 

it could be interesting to examine the predicted impact across the entire list of fusion 

transcripts called in patient fusions, to see whether this difference is representative of 

fusion transcripts found in patients, or due to biased subsetting. As of now, it is unclear 

whether ambiguous fusions are artefacts that arise from cell culture, differences in 

sequencing and fusion-calling techniques, or simple an effect of subsetting. Either way, for 

future iterations, a deeper understanding of the mechanisms that cause ambiguous fusion 

events could potentially help to filter out artefacts from the fusion calling pipeline.  

 

3.5 Chapter summary 

In this chapter, I attempted to briefly characterise the list of fusions obtained. I find 

that 1) median number of fusions varies by tissue type of origin in a manner that correlates 

significantly with that found in patient samples. 2) Fusions are exceedingly rare events and 

the majority of fusions (~95%) occur only in a single cell line. I also found that recurrence 

alone is a poor predictor of functionality. 3) Although known oncogenic fusions are almost 

exclusively in-frame events, in-frame events make up a relatively low proportion of fusions, 

suggesting that the proportion of true functional fusions may be low.  

Known oncogenic fusions serves as a useful positive control, although they only 

make up only around 1% of all detected fusion events. They are largely found in cell lines 

with the expected cancer type of origin (e.g. BCR-ABL1 found exclusively in blood cancers). 

This gives us confidence that our cell lines present a good model system for truly cancer-

relevant fusions.  

Thus the next challenge lies in finding a method of separating functional fusion 

events from passengers of structural rearrangements. In the up-coming chapters, I will 

describe two analysis that are aimed to identify novel functionality and therapeutic 

potential for previously uncharacterised fusions. Firstly, I use the high-throughput drug-

screening data of > 400 drug compounds to examine the use of fusions as biomarkers of 

drug response. Secondly, I developed a system to leverage CRISPR/Cas9 whole genome 

drop-out screening data to construct fusion-specific essentiality profiles.  
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4 Identification of fusion genes as biomarkers for drug response 

Having identified 8,388 gene fusions in our panel of 1,011 cancer cell lines, my next 

aim was to identify the potential of using fusion genes as biomarkers of drug response. 

Fusion genes are already playing a major role in helping to provide the best treatment to 

given patients, e.g. patient with BCR-ABL1 have the best treatment outcomes when treated 

with ABL1 inhibitors and EML4-ALK fusions are best treated with ALK inhibitors. Novel 

fusion-drug associations may lead us to discover more therapeutic opportunities. At the 

same time, a fusion-drug association can indicate functionality in novel fusions.  

The panel of 1,011 cancer cell lines has previously undergone extensive high-

throughput drug screening across hundreds of drug compounds (Garnett et al., 2012; Iorio 

et al., 2016). I implemented this with an ANOVA framework and considered well-

understood cancer functional events (CFEs) as confounding factors.  

Finally, I ran three distinct analyses: 1) An ANOVA including only CFEs that would 

provide a basis for 2) a fusion-level and 3) a gene-level ANOVA.  

4.1 Set-up and data-sets 

4.1.1 ANOVA model 

I tested high-throughput drug sensitivity measurements for 409 drug screening 

data sets against any gene fusion that occurred in 2 or more cell lines (n = 412) under the 

following ANOVA model: 

It was tested for all combinations of a drug screening data set (𝐼𝐶50𝐷) and relevant 

gene fusions (𝐹𝑢𝑠𝑖𝑜𝑛𝐹), for a total of 168,508 combinations.  

The 42 tissue types and MSI status were used as covariates in the model, as a large 

amount of variance from drug response can be attributed to these features6,7. Further, I 

implemented a co-variate (𝐶𝐸𝐷), which controls for other non-fusion genetic alterations 

that have a significant association with drug response (see section 4.2). 

4.1.2 409 drug IDs 

For this analysis, I utilised 409 drug screening data sets, each with a distinct drug 

ID. These data sets included data for 379 unique chemical compounds, of which some were 

𝐼𝐶50𝐷 ~ 𝑇𝑖𝑠𝑠𝑢𝑒 𝑇𝑦𝑝𝑒 + 𝑀𝑆𝐼 𝑆𝑡𝑎𝑡𝑢𝑠 + 𝐶𝐸𝐷 + 𝐹𝑢𝑠𝑖𝑜𝑛𝐹 

Equation 1:  Fusion ANOVA model 
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screened multiple times. Since duplicated measurements were taken several years apart 

on different screening formats (e.g. in 384-well plates vs. 1,536-well plates), I decided to 

keep them separate for my analyses. To maximise cell line coverage, multiple drug 

screening data sets for the same drug compounds were included where they covered 

different sets of cell lines. For the sake of simplicity, unique drug screening data sets are 

referred to “drug IDs” within this thesis.   

All drug IDs were screened as part of the GDSC1000 high-throughput drug 

screening pipeline at the Wellcome Sanger Institute (Cancerrxgene.org; Garnett et al., 2012; 

Iorio et al., 2016). They span 279 unique drug targets and are categorised into 24 effector 

pathways. A subset of 77 compounds are FDA-approved, while further subsets are 

currently in clinical trials, or still experimental (Figure 4.1; Supplementary Table 4). The 409 

drug IDs had a median coverage of 805 cell lines (range: 42-947).  

4.2 Cancer Functional Events ANOVA  

Another covariate included in the model is CFED. This denotes the occurrence of 

other cancer functional events (CFEs) that significantly correlate with sensitivity to a given 

drug. With this approach, I aim to minimise potential false positives associations that can 

 

Figure 4.1: Overview of 379 drug compounds that make up the drug-screening data. (Top) The total number 

of cell lines tested for each of the 379 drug compounds, with black bar colour indicating FDA-approved drugs. 

(Bottom) Tree-map of 24 major effector pathways that are targeted by the panel of drug compounds. Size of 

the field is proportional to number of drugs with a given target. 
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occur when gene fusions by chance co-occur with CFEs that confer sensitivity to a given 

drug.  

To define the set of known associations between CFEs and drugs, I ran a separate 

ANOVA under the model described in the following equation across the same 409 drugs 

(𝐼𝐶50𝐷) against a set of 717 recurrent cancer functional events (𝐶𝐹𝐸𝐷):  

The ANOVA model was run across all combinations of drugs and CFEs. I adjusted 

p-values for significance of the CFE using the Benjamini-Hochberg method to calculate a 

False Discovery Rate (FDR) (Benjamini and Hochberg, 1995). 

4.2.1 Cancer Functional Events 

CFEs were defined on our cell line panel by Iorio et al. (Iorio et al., 2016), by 

overlaying recurrent gene alterations found in a large set of patient samples with those 

found in our cell lines. The binary annotation was downloaded from 

cancerrxgene.org/gdsc1000. Methylation data was filtered to include only those segments 

that were annotated to contain a known cancer driver gene compared against the Cancer 

Gene Census. The final input data includes mutation status for 281 genes, copy number 

alteration for 424 segments and methylation status for 12 segments.  

𝐼𝐶50𝐷~ 𝑇𝑖𝑠𝑠𝑢𝑒 𝑇𝑦𝑝𝑒 + 𝑀𝑆𝐼 𝑆𝑡𝑎𝑡𝑢𝑠 + 𝐶𝐹𝐸𝐷 

Equation 2: Model for CFE ANOVA 
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4.2.2 Incorporating significant results in the gene fusion analysis 

As in the paper published by Iorio et al. (2016), I considered any result with an FDR 

< 25% and both positive and negative Glass Delta > 1 as large-effect association. The Glass 

Delta is a measure of effect size and is calculated by dividing the difference in mean log 

IC50 of the two groups by the standard deviation of one of the groups (hence each 

association has two Glass Delta’s, one genetic-alteration-positive and one negative). A 

Glass Delta of > 1 shows that the difference in mean log IC50s is larger than the standard 

deviation. In total, 101 combinations of CFE and drug sensitivity passed these criteria 

(Supplementary Table 5). For the gene fusion ANOVA, I implemented for any drug involved 

in a significant association, the status of associated CFEs in cell lines as a covariate as shown 

in Equation 1. 

 

Figure 4.2: Volcano plot of all significant results from the CFE ANOVA. Results that do not meet our criteria 

for FDR and Glass Delta are represented in grey. Effect size denotes the minimum Glass Delta for a given 

association. Size of circle is relative to number of cell lines with a given CFE.  
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4.2.3 Characterisation of significant findings 

Our results show 62 resistant and 39 sensitising associations. Results with the 

highest p-values include prominent well-known associations. TP53-mutations, for example, 

are associated with resistance to Nutlin-3a, a compound that induces tumour suppression 

by inhibiting the MDM2-interaction with p53 (Vassilev et al., 2004). Similarly, BRAF-

mutations typically lead to enhanced kinase activity and activation of the down-stream 

MEK pathway, and are associated with sensitivity to several BRAF-inhibitors, including 

Dabrafenib and PLX-4720 (Hauschild et al., 2012; Kopetz et al., 2010). 

The results recapitulate 88% of those shown in Iorio et al. (2016). Small differences 

are to be expected, as an updated annotation of cancer tissue types was used in my analysis 

that annotated over 300 cell lines that were previously unannotated by Iorio et al.  

Novel associations not reported in Iorio et al. (2016) include 16 sensitivities and 40 

resistances. Of the sensitivities, 4 represented new drugs targeting the same targets as 

known associations (e.g. BRAF-mutation associating with MEK/ERK-inhibitors and an 

ERBB2-amplification with an EGFR-inhibitor).  

 

Figure 4.3: Known associations between CFEs and drug compounds. (A) TP53-mutation and MDM2 inhibition 

(B) BRAF-mutation and BRAF-inhibition (C) Amplification of ERBB2 and EGFR/ERBB2-inhibition. 
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One interesting novel finding is the association of EPH receptor A2 (EPHA2) with 

sensitivity to a PI3K-alpha inhibitor, GNE-317 (Figure 4.4A-B). EPHA2 is suggested to act 

with PI3K in tumour vascularisation (Wang et al., 2016). Further, EPHA2-signalling in a 

PI3K/AKT dependent manner can be upregulated as a potential mechanism to evade BRAF-

inhibition in melanoma (Paraiso et al., 2015). In our analysis, EPHA2-mutations are found 

in a variety of cancer types of origin, suggesting that EPHA2-altered tumours may benefit 

from PI3K-pathway inhibitors across several cancer types. Although not all significant, 

when ranking all associations involving the EPHA2-mutation by FDR, there is a significant 

enrichment of inhibitors targeting PI3K or AKT (ROC AUC: 0.654, p = 0.0075 with 10,000 

permutations; Figure 4.4C).  

4.2.4 Using significant CFEs as covariate in the fusion ANOVA 

Implementing the CFEs as covariates, where the associations fit the previously 

described filters (FDR < 25% and Glass Delta’s > 1), I assigned co-variates to 73 drug IDs. 

  

Figure 4.4: EPHA2-mutational status is significantly associated with sensitivity to PI3K-alpha inhibitor GNE-317. 

LogIC50 by mutation status (A) by tissue and (B) across all cell lines. (C) When ranked by FDR, top drug IDs tested 

for association with EPHA2-mutational status are enriched for drugs targeting either PI3K or AKT. 
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After running the fusion ANOVA model (Equation 1) with and without the covariate 𝐶𝐸𝐷, 

the significance of the majority of associations is largely unchanged (Figure 4.5A), although 

eleven associations are significant at FDR < 25% are returned as not-significant when 

including the covariate.  

Covariates that cause a shift in significance fall into one of two patterns. In some 

cases, fused cell lines are a subset of those with the covariate. For example, in the 

association of the NKD1-ADCY7 fusion with BRAF-inhibitor Dabrafenib, the cell line that 

  

FEATURE Drug Name Drug Target CFE covariate(s) FDR Uncorr. 

FDR 

GPHN-MPP5 NSC-87877 SHP-1, SHP-2 MAP3K4-mut, SRGAP1-

mut 

32.3 11.6 

KIF26B-

EFCAB2 

Sepantronium 

bromide 

BIRC5 HGF-mut, RPGR-mut 73.7 3.8 

KMT2A-

MLLT3 

Sorafenib PDGFR, KIT, 

VEGFR 

U2AF1_mut 62.1 21.0 

LRBA-

SH3D19 

Nutlin-3a (-) MDM2 TP53-mut 45.1 6.7 

NKD1-

ADCY7 

Dabrafenib BRAF BRAF-mut 40.9 9.5 

NKD1-

ADCY7 

SCH772984 ERK1, ERK2 BRAF-mut 43.2 20.0 

NPM1-ALK Alisertib AURKA loss:cnaPANCAN425 38.4 18.5 

RCC1-SNX5 Idelalisib PI3Kdelta MYC-mut 33.7 21.0 

UBA2-GPI NSC-87877 SHP-1, SHP-2 MAP3K4-mut, SRGAP1-

mut 

52.0 20.6 

YAP1-

MAML2 

Dabrafenib BRAF BRAF-mut 91.9 13.0 

ZAK-

RAPGEF4 

AR-42 HDAC1 TBX3-mut, CCND1-mut 78.9 14.5 

Figure 4.5: (A) False discovery rates of fusion-drug associations with and without including the CFE covariate. 

(B) Dabrafenib sensitivity by NKD1-ADCY7 fusion (C) Nutlin-3a sensitivity by LRBA-SH3D19 fusion for 

colorectal carcinomas. (D) Eleven associations for which the covariate corrects the significance of the 

association. 
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shows the highest sensitivity also harbours a BRAF-mutation, which likely drives the 

association (Figure 4.5C).  

In other cases, a covariate may have a large effect on the variance of a drug 

response. After having mean-centred for the covariate, the variance for the remaining cell 

lines could be greatly reduced. For example in the case of LRBA-SH3D19 and Nutlin-3a, 

TP53-mutated cell lines are significantly less sensitive than non-mutated cell lines. As the 

two LRBA-SH3D19 fused cell lines are non-TP53-mutated, their drug sensitivity is expected 

to be low (Figure 4.5B). A further two associations that became more significant by 

including the CFE covariate also fall into this latter category. 

The number of cases affected by including the CFE covariate is low. Nonetheless, 

after manual inspection of all 11 cases, I concluded that the quality of the results is 

improved by its inclusion by removing false-positives such as the ones outlined above.  
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4.3 Fusion ANOVA 

To run the fusion ANOVA, I use Equation 1 to query the associations between 409 

drug IDs and 431 fusions. As before, I adjust p-values for multiple-hypothesis correction 

by calculating an FDR. From 176,279 potential combinations, 324 had a FDR < 25%, of 

which 227 were large-effect associations that also had Glass Deltas of > 1 (Supplementary 

Table 6). Of those, 172 were sensitising and 55 resistant associations. 

 

Figure 4.6: Volcano plot of all significant results from the fusion ANOVA. Results that do not meet our 

criteria for FDR and Glass Delta are represented in grey. Effect size denotes the minimum Glass Delta for a 

given association. Size of circle is relative to number of cell lines with a given fusion. 
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4.3.1 Known fusion-drug associations 

Known fusion-drug associations make up a large portion of large-effect 

associations. Below follows a brief review of the most commonly studied fusions and their 

representation in my analysis. 

4.3.1.1 ALK fusions 

ALK is a tyrosine receptor kinase that is commonly found altered in many 

haematological and solid cancers. While sometimes mutated, e.g. in a subset of 

neuroblastomas (Chen et al., 2008), more often the tyrosine kinase domain of ALK is fused 

to the C’-terminus of another protein. Partner genes in the ALK fusion encourage 

dimerization in absence of a ligand and therefore lead to activation of the ALK kinase 

domain (Mossé et al., 2009). In normal development, ALK is specifically expressed in the 

neural system, mainly in neonates (Iwahara et al., 1997), with a suggested role in neuronal 

differentiation. In cancer, the ALK fusions encourage cell cycle progression, survival, cell 

shaping and has transforming ability.  

In anaplastic lymphomas and some T-cell non-Hodgkin’s lymphomas, ALK is 

commonly fused to nucleophosmin 1 (NPM1), which contributes a nuclear localisation 

domain to the chimeric protein. ALK fusions are also commonly found fused in 3-6% of 

non-small-cell lung cancer with echinoderm microtubule associated protein like 4 (EML4) 

(Koivunen et al., 2008; Perner et al., 2008).  

Small molecule inhibitors targeting the tyrosine kinase of ALK show great response 

rates in in vivo experiments, and clinical trials for several ALK-inhibitors are underway 

(Mossé et al., 2009).  

My analysis recapitulates these previous findings robustly. The 5 T-cell non-

Hodgkin’s lymphoma cell lines that carrying an NPM1-ALK fusion, and the two lung 

adenocarcinoma cell lines with an EML4-ALK fusion, significantly associate with sensitivity 

to numerous ALK inhibitors, including crizotinib, alectinib and XMD14-99 (all at p < 0.001 

and FDR < 0.01%; Figure 4.7). 

4.3.1.2 ABL1 fusions 

The fusion between BCR ABL has been known since the 1960s with the discovery 

of the Philadelphia chromosome, a minute chromosome resulting from a translocation of 

chromosomes 9 and 22 t(9;22)(q34;q11), in chronic myeloid leukaemia patients (Braekeleer 

et al., 2011). The fused, C-terminal domain of ABL1 contains the SH1 tyrosine kinase 
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domain as well as a nuclear localisation domain (Colicelli, 2010). The N-terminal partner 

gene, BCR, facilitates dimerization through a coiled-coil domain and thus leads to 

constitutive activation of the tyrosine kinase of ABL1 through reciprocal phosphorylation 

(McWhirter et al., 1993).  

The BCR-ABL1 fusion is a hallmark of chronic myeloid leukaemia, but is also found 

in other haematological malignancies, such as a small subset of B-lymphoblastic 

leukaemias. A rare subtype in about 5% of T-lymphoblastic leukaemias carries a variation 

on the fusion (Braekeleer et al., 2011). There, ABL1 is fused to the N-terminal NUP214, 

resulting in the NUP214-ABL1 fusion. Similar to BCR, NUP214 carries a coiled-coil domain 

which would encourage dimerization of the fusion protein.  

Small molecule inhibitors targeting the ATP-binding domain of ABL1 show great 

efficacy in patients and to date, three ABL1 inhibitors, imatinib, nilotinib and dasatinib, 

have been FDA-approved for clinical use for the treatment of BCR-ABL1-fused cancers 

(McDermott, 2015). Pre-clinical studies suggest that NUP214-ABL1-fused cancers would 

similarly benefit from treatment with ABL1-inhibitors (Deenik et al., 2009; Quintás-Cardama 

et al., 2008).  

Again, our data recapitulates previous literature. The 11 cell lines, 9 of which are 

chronic myeloid leukaemias, that were identified to carry the BCR-ABL1 gene fusion are 

also significantly sensitive to multiple ABL-inhibitors including imatinib, ponatinib and 

dasatinib (all at p < 0.001 and FDR < 0.01%; Figure 4.7). Moreover, the same drug 

compounds are significantly associated to the same thresholds with the NUP214-ABL1 

fusion detected in two T-lymphoblastic leukaemia cell lines, despite the small sample size 

(Figure 4.7). 

4.3.1.3 EWSR1-FLI1 fusions 

The fusion of Ewing’s sarcoma breakpoint region 1 (EWSR1/EWS) to Friend 

leukaemia virus integration site 1 (FLI1) is a characteristic fusion of Ewing’s sarcoma, a 

childhood soft tissue tumour with poor prognosis (Janknecht, 2005). In this fusion, the C-

terminal DNA-binding domain of FLI1 is fused to the N-terminal transcriptional activation 

domain of EWSR1, which constitutively activates a transcriptional program that leads to 

transforming and tumorigenic activity in vivo and in vitro (Janknecht, 2005). While the 

EWSR1-FLI1 fusion is prevalent in about 80% of Ewing’s sarcomas, alternative fusions of 

EWSR1 to other members of the ETS gene family to which FLI1 belongs are also observed, 
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and found to activate transcriptional activity through the conserved DNA-binding domain 

in a similar fashion (Janknecht, 2005).  

Previous high-throughput drug screens from our lab showed that cell lines carrying 

a EWSR1-FLI1 fusion are highly sensitive to inhibition of poly(ADP-ribose) polymerases 

(PARP), a component of the DNA-damage response pathway to repair single-strand DNA 

breaks (Garnett et al., 2012). Although in vivo experiments show efficacy of the drug in 

mouse xenografts (Brenner et al., 2012), clinical trials testing PARP inhibitors in Ewing’s 

sarcoma patients have so far failed to show efficacy (Choy et al., 2013). Since then, follow-

up studies showed that using the DNA alkylating agent temozolomide in combination with 

PARP-inhibitors may increase PARP-trapping and enhance cytotoxicity in vitro and in vivo 

(Gill et al., 2015; Murai et al., 2014; Stewart et al., 2014). Several clinical trials are currently 

underway to test the combination in Ewing’s sarcoma patients (NCT02044120, 

NCT01858168 and NCT02116777). 

 

Figure 4.7: Known associations of fusions and drugs are recapitulated well, such as in the cases of (A) 

NUP214-ABL1 and (B) BCR-ABL1 with ABL1 inhibitors nilotinib and imatinib, and (C) NPM1-ALK and (D) 

EML4-ALK with ALK-inhibitors crizotinib and alectinib. Similarly, associations with small sample sizes are 

also identified, e.g. for CRTC1-MAML2 and cetuximab and FGFR3-TACC3 and PD173074 (latter only showing 

bladder carcinoma cell lines). 
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Our cell line panel exhibit 24 detected cases of EWSR1-FLI1 and 4 cases of EWSR1-

ERG fusions. Of those, the majority is found in Ewing’s sarcoma cell lines, however I observe 

isolated cases with the same conserved breakpoints also in SK-NEP-1, a kidney carcinoma 

(EWSR1-FLI1), TASK1, a cell line of peripheral nervous system origin (EWSR1-FLI1) and EB-

3, a Burkitt’s lymphoma (EWSR1-ERG) cell line. SK-NEP-1 and TASK1 were unfortunately 

not screened as part of the high-throughput screening process, but EB-3 showed no 

enhanced sensitivity to PARP-inhibition (Figure 4.8A), which suggests that the sensitivity 

may be specific to Ewing’s sarcomas carrying the fusion.  

It is worth noting that unlike in the original screen, where EWSR1-FLI1 and PARP-

inhibition showed a highly significant association, I do not reproduce the statistical 

significance in my analysis. This is due to a slight change in the tissue type input into the 

model. Ewing’s sarcoma cell lines in the previous study were part of a set of 300 cell lines 

whose tissue type was uncurated. For my analysis, I compiled an updated annotation that 

extended the number of tissue types from 28 to 42, and created a tissue type specifically 

for Ewing’s sarcoma. Using this input, although a t-test of EWSR1-FLI1 with Olaparib 

outputs a highly significant result (F = 37.8, p < 0.001), the ANOVA model attributes most 

of the variance due to tissue type (Tissue type: F = 13.1, p < 0.001; EWSR1-FLI1: F = 0.08, p 

= 0.77) (Figure 4.8B). 

 

Figure 4.8: (A) The Burkitt’s lymphoma cell line EB-3 does not respond to PARP-inhibition despite harbouring 

the EWSR1-ERG fusion. (B) The association of EWSR1-FLI1 fusion status is significant in a t-test (F = 37.8, p < 

0.001), but not when tested in our ANOVA model that uses tissue type as a covariate (Tissue type: F = 13.1, p 

< 0.001; EWSR1-FLI1: F = 0.08, p = 0.77). 
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4.3.1.4 CRTC1-MAML2 

Two of our cell lines also carry a CRTC1-MAML2 fusion, which has a known 

transforming activity and was originally described in mucoepidermoid carcinomas (Enlund 

et al., 2004). The fusion brings together a CREB-binding domain in CRTC1 and a 

transcriptional activation domain of MAML2 and activates constitutive transcription of 

CREB downstream genes (Wu et al., 2005). One of the downstream targets of CREB-

transcription is amphiregulin (AREG), a ligand for EGFR. Overexpression therefore leads to 

constitutive EGFR activation, and thus aberrant growth and survival signalling with 

decreased apoptosis and increased proliferation and metastasis signalling (Chen et al., 

2014). 

As has been demonstrated in previous studies (Chen et al., 2014), both cell lines 

with CRTC1-MAML2 fusions show significant sensitivity to EGFR-inhibition in my analysis 

(Figure 4.7). 

4.3.1.5 FGFR3-TACC3 

We call three fusions that involve an N-terminal part of FGF receptor 3 (FGF). All 

three are bladder carcinomas; SW780 harbours a fusion of FGFR3 to BAI1 associated 

protein 2 like 1 (BAIAP2L1), while in RT-112 and RT4 FGFR3 is fused to transforming acidic 

coiled-coil containing protein 3 (TACC3). The fusions in the exact same three cell lines were 

previously characterised to demonstrate FGFR3 fusions as an alternate means of activating 

FGFR3 in bladder cancers, where overexpression and activating mutations are common 

(Williams et al., 2013). Since then, evidence for FGFR3-TACC3 fusions have since been 

found in patient populations (Nassar et al., 2018) as well as other cancer types, such as 

glioblastoma and head and neck carcinomas (Singh et al., 2012).  

Our analysis shows a highly significant association of between the FGFR3-TACC3 

fusion and sensitivity to the FGFR3-inhibitor PD173074, which is in line with results from 

previous studies (Singh et al., 2012). Aside from the FGFR3-TACC3-fused cell lines, SW780 

shows the third-highest sensitivity to PD173074 (Figure 4.7).  

 

In my analysis, six fusions (NPM1-ALK, EML4-ALK, BCR-ABL1, NUP214-ABL1, 

CRTC1-MAML2 and FGFR3-TACC3) involving the known fusion oncogenes described 

above represent 67 of the 227 significant large-effect associations (30%). This is largely 

due to the large number of ALK (n = 8) and ABL-inhibitors (n = 10) screened in our high-



99 

 

throughput screening set and the variations of partner genes with the same central fusion 

oncogene. The results therefore demonstrate that my analysis is able to identify clinically 

relevant fusion-drug associations.  

4.3.2 Novel associations 

Disregarding the 67 associations known a priori, I find a strongly depleted 

landscape of significant interactions. Further removing from considerations fusions that 

have never been identified in a patient sample, those that are not in-frame, excluded 

fusions that are unlikely to be causative and those that are unlikely to be relevant for clinical 

use. This retains 35 novel associations, of which 24 are sensitising and 11 are resistant 

(Figure 4.9). The remaining fusion-drug associations are listed in (Table 4-1).  

Upon closer inspection, I find that 7 fusion-drug associations show potentially 

confounding factors. For instance, the two cell lines, MFM-223 and KATOIII, which carry a 

FGFR2-ATE also carry duplication of FGFR2 (amplification > 14) (Figure 4.9B) (Forbes et al., 

  

Figure 4.9: (A) Volcano plot of significant fusion ANOVA interactions after annotating known (grey), not-in-

frame (blue) and non-patient fusions (beige). Often, associations have confounding factors, as in the case of 

(B) FGFR2-ATE with FGFR2-inhibitor and (C) PEX1-CDK6 with ABL inhibitor.  
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2017), which is more likely to explain their sensitivity to FGFR2-inhibitors. In the association 

of PEX1-CDK6 and the ABL-inhibitor nilotinib, one of the two cell lines with the fusion, ALL-

SIL, carries a NUP214-ABL1 fusion (Figure 4.9C). In a similar vein, the association of STK24-

DOCK9 and EGFR inhibitors Gefitinib and Afatinib is confounded by an EGFR-amplification 

in 1 of the two cell lines. One of the cell lines harbouring the ARID1A-RPS6KA1 fusion 

sensitive to various MET inhibitors also carries a MET amplification. 

KMT2A-MLLT3 

Of the remaining novel associations, those involving KMT2A-MLLT3 were significant 

across four distinct drugs, which target a range of tyrosine kinases, but all share VEGFR 

inhibition (Figure 4.10). Translocations of KMT2A, also known as MLL, with over 60 different 

fusion partners occur in about 5%-10% of acute leukaemias (Meyer et al., 2009). KMT2A-

MLLT3 (also known as MLL-AF9) fusions make up about 8.5% of MLL fusions (Meyer et al., 

2009). Unlike most tumours with KMT2A-translocations that are associated with aggressive 

 

Figure 4.10: Significant associations between the KMT2A-MLLT3 fusion and various VEGFR-inhibitors. 
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disease and poor prognosis, tumours with KMT2A-MLLT3 fusion have a favourable 

outcome (Grimwade et al., 2010).  

Upon closer inspection of the associations of KMT2A-MLLT3, it appears that of the 

4 acute myeloid leukaemia cell lines harbouring the fusion, only two are highly sensitive 

across all drugs: MONO-MAC-6 and MOLM-13. In the association of KMT2A-MLLT3 and 

JAK3-inhibitor WHI-P97, the two most sensitive cell lines are MOLM-13 and THP-1.  

Vascular endothelial growth factor receptors (VEGFR) are typically targeted for its 

role in endothelial cell proliferation and angiogenesis (Ferrara et al., 2003). Although VEGFR 

expression has shown to be a factor in leukaemia development (Song et al., 2012), my 

literature search did not reveal any known associations of KMT2A activity with VEGFR. Since 

only a subset of KMT2A-MLLT3 carrying fusions exhibit heightened sensitivity, the 

sensitivity may present itself due to other shared factors within the cell lines that may be 

unrelated to the KMT2A-MLLT3 fusion.  

Upon further inspection, I found no significant upregulation of the VEGF receptor 

fms related tyrosine kinase 1 (FLT1), fms related tyrosine kinase 1 (FLT4) and kinase insert 

domain receptor (KDR) in any of the 4 fusion-containing cell lines using voom-normalised 

gene expression data. I then looked for any fusions or CFEs which coincide only the VEGFRi 

responsive cell lines, but not of the non-responsive cell lines, but found none matching the 

criteria. Finally, I analysed the gene essentiality profiles derived from CRISPR/Cas9 data3, 

but found that none of the guides targeting the three VEGFR genes were significantly 

depleted in MOLM-13 (no data available for MONO-MAC-6). The drug compounds may 

still lead to loss of viability by inhibiting several targets at once, however this finding 

strongly suggests that the sensitivity to VEGFRi does not result from the inhibition of an 

individual VEGFR protein. 

Thus, I conclude that the interest of the association is inconclusive and that further 

research is needed to determine whether sensitivity to VEGFR inhibitors is truly enriched 

in a subset of KMT2A-MLLT3 fused cell lines, or is caused by other non-determined 

confounding factors.  

                                                 

3 I derived the binarised gene essentiality data using BAGELR from CRISPR/Cas9 whole 

genome drop-out screening data from Wang et al (Wang et al., 2017). Further information on data 

processing to follow in chapter 0. 
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On another topic relating to KMT2A-MLLT3, previous studies show that DOT1 like 

histone lysine methyltransferase (DOT1L) is required in the tumorigenicity and cell 

proliferation of KMT2A-MLLT3 fusions in vivo and in vitro, and sensitive to DOT1L inhibition 

using EPZ-5676 in mice and cell lines (AML cell lines NOMO-1 and MOLM-13) (Daigle et 

al., 2013; Nguyen et al., 2011). In contrast, my analysis finds no statistically significant 

association of KMT2A-MLLT3 and any of the DOT1L inhibitors (EPZ5676, SGC0946 and 

EPZ004777), as most of the variation is attributed to the differential sensitivity of tissue 

types. As our screen also screens NOMO-1 and MOLM-13 for this interaction, a possible 

explanation to these opposing results may be related to differences in screen design. In 

particular, previous studies exposed cell lines to EPZ5676 for 14 days, while our high-

throughput screen uses a 72-hour assay (Daigle et al., 2013).   

 

Once interactions with confounding factors and those involving KMT2A-MLLT3 are 

removed, 12 sensitising and 11 resistant hits remain. The fusions involved in the remaining 

associations have so far not been characterised and the respective partnering genes are 

largely unknown. At the same time, no particular patterns emerge in the drugs that they 

associate with, making calls of their clinical importance difficult at this stage.  

With the information to be published into the public domain, with improvements 

in the knowledge of the role of the fusions proteins or the respective cancer pathways, the 

importance of the associations may be revealed at a future time point. As it stands so far, 

although our fusion ANOVA recapitulates prominent known fusion-drug sensitivities very 

well, novel findings are largely confounded by other factors or unable to be interpreted.  
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Table 4-1: Novel associations in fusion ANOVA. Conf: confounded. Descr: described in text. 

Notes FEATURE DRUG_NAME DRUG_TARGET CL # FDR Type 
 

AFAP1--ABLIM2 GSK269962A ROCK1, ROCK2 4 9.5 resistant 
 

AFAP1--ABLIM2 Vorinostat HDAC inhibitor Class I, IIa, IIb, IV 3 11.9 resistant 
 

LDLR--SMARCA4 ZG-10 JNK1 2 13.2 resistant 
 

PLXND1--TMCC1 Epirubicin Anthracycline 2 13.2 resistant 
 

PLXND1--TMCC1 Luminespib HSP90 2 21.9 resistant 
 

RCOR1--TECPR2 Tanespimycin HSP90 2 16 resistant 
 

SLC12A7--TERT BX796 TBK1, PDK1 (PDPK1), IKK, 

AURKB, AURKC 

2 24.7 resistant 

 
SWAP70--WEE1 Piperlongumine Induces reactive oxygen species 2 4.8 resistant 

 
SWAP70--WEE1 PFI-1 BRD4 2 21.7 resistant 

 
UBQLN1--GKAP1 Bortezomib Proteasome 2 21.9 resistant 

 
UBQLN1--GKAP1 Sabutoclax BCL2,  BCL-XL,  BFL1, MCL1 2 22 resistant 

(Conf.) ARID1A--RPS6KA1 Savolitinib MET 2 0.1 sensitive 

(Conf.) ARID1A--RPS6KA1 Cabozantinib VEGFR, MET, RET, KIT, FLT1, 

FLT3, FLT4, TIE2,AXL 

2 1.8 sensitive 

 
ARID1A--RPS6KA1 Bicalutamide AR 2 3.7 sensitive 

 
ARID1A--RPS6KA1 BMS-345541 IKK1, IKK2 2 7 sensitive 

 
ARID1A--RPS6KA1 WIKI4 TNKS1, TNKS2 2 11.9 sensitive 

(Conf.) FGFR2--ATE1 PD173074 FGFR1, FGFR3 3 4 sensitive 

(Descr) KMT2A--MLLT3 Linifanib VEGFR1, VEGFR2, VEGFR3, 

CSF1R, FLT3, KIT 

4 0 sensitive 

(Descr) KMT2A--MLLT3 Cabozantinib VEGFR, MET, RET, KIT, FLT1, 

FLT3, FLT4, TIE2,AXL 

4 4 sensitive 

(Descr) KMT2A--MLLT3 Sorafenib PDGFR, KIT, VEGFR, RAF 3 5.1 sensitive 

(Descr) KMT2A--MLLT3 Foretinib MET, KDR, TIE2, VEGFR3/FLT4, 

RON, PDGFR, FGFR1, EGFR 

3 6.5 sensitive 

(Descr) KMT2A--MLLT3 WHI-P97 JAK3 4 14.1 sensitive 
 

NKD1--ADCY7 KIN001-270 CDK9 3 12.2 sensitive 
 

NPLOC4--PDE6G Cediranib VEGFR, FLT1, FLT2, FLT3, FLT4, 

KIT, PDGFRB 

2 5.1 sensitive 

 
NPLOC4--PDE6G Ibrutinib BTK 2 13.2 sensitive 

 
NPLOC4--PDE6G BIX02189 MEK5, ERK5 2 15.1 sensitive 

(Conf.) PEX1--CDK6 Nilotinib ABL 2 0 sensitive 

(Conf.) PEX1--CDK6 Nilotinib ABL 2 6.5 sensitive 
 

QKI—PACRG RO-3306 CDK1 3 22.7 sensitive 
 

SLC12A7--TERT IOX2 EGLN1 2 4.9 sensitive 

(Conf.) STK24--DOCK9 Gefitinib EGFR 2 21.9 sensitive 

(Conf.) STK24--DOCK9 Afatinib ERBB2, EGFR 2 24.6 sensitive 
 

VPS53--GLOD4 Motesanib VEGFR, RET, KIT, PDGFR 2 0.3 sensitive 
 

VPS53--GLOD4 Axitinib PDGFR, KIT, VEGFR 2 0.3 sensitive 
 

VPS53--GLOD4 AZD7762 CHEK1, CHEK2 2 19.8 sensitive 
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4.4 Gene-centric ANOVA 

Next, I implemented a gene-centric version of the ANOVA model. Here, I consider 

any gene which is fused at the same position (5’ or 3’) multiple times across the cell line 

panel. I am specifically looking for cases where oncogenes can be fused to multiple partner 

genes which can all lead to the same constitutive activation of the oncogene (e.g. through 

removal of auto-inhibitory domains or the fusion of any dimerization domain). An example 

of that would be how constitutive activation of ABL1 can be triggered by either a BCR-

ABL1 or a NUP214-ABL1 fusion, or an activation of EWSR1 by either EWSR1-FLI1 or EWSR1-

ERG as described above (section 4.3.1). 

To achieve this, I use a similar model as for the fusion ANOVA, where the final term 

is substituted to 𝐺𝑒𝑛𝑒𝐺 : 

4.4.1 Input data 

Note, that I take into account the direction of the gene fusion. For example, I find 

9 different fusion constructs involving the ALK gene (brackets represent number of cell 

lines): ALK-AC006486.9 (1), ALK-ERF (1), NPM1-ALK (5), AC016907.3-ALK (6), TERT-ALK (1), 

ALK-AC016907.3 (1), EML4-ALK (2), ALK-PTPN3 (1) and TFG-ALK (1).  

Thus, the model would run two variations of ALK: 1) 3’-ALK would contain NPM1-

ALK, AC016907.3-ALK, TERT-ALK, EML4-ALK and TFG-ALK, and 2) 5’-ALK would contain the 

remaining constructs.  

In total, I used data for 941 genes, of which 98 are tested in both 5’ and 3’ positions, 

for a total of 1,039 features to be tested against 409 drug IDs. There were two criteria for 

inclusion in the gene-centric ANOVA: 1) the gene must be fused in at least two distinct 

fusion constructs and 2) fusions containing the gene must be found in at least 3 different 

cell lines.  

The majority of gene inputs consist of 3 distinct fusions and are present in 3 

different cell lines (Figure 4.11). Genes represented in more than 4 distinct fusions 

disproportionally tend to be fused at the 5’. The three genes involved in the highest 

number of distinct fusions transcripts are Pvt1 oncogene (PVT1), regulator of chromosome 

𝐼𝐶50𝐷 ~ 𝑇𝑖𝑠𝑠𝑢𝑒 𝑇𝑦𝑝𝑒 + 𝑀𝑆𝐼 𝑆𝑡𝑎𝑡𝑢𝑠 + 𝐶𝐸𝐷 + 𝐺𝑒𝑛𝑒𝐺 

Equation 3: Model for gene-centric ANOVA. 
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condensation 1 (RCC1) and neuroblastoma amplified sequence (NBAS), with 44, 22 and 21 

unique fusion constructs, respectively.  

4.4.2 Overview of results 

Of 424,951 potential combinations, 563 passed our previous criteria for large-effect 

significant associations (FDR < 25% and Glass Delta > 1), with 281 sensitising and 282 

resistant associations. Due to the larger set of input features, I decided to implement a 

stricter FDR threshold, raising it from 25% to 5%. Implementing this, we maintain 159 

associations, with 110 sensitising and 49 resistant (Figure 4.11) (Supplementary Table 7).  

 

Figure 4.11: Volcano plots illustrating the results from the gene-centric ANOVA.  
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4.4.3 Known gene-drug associations 

The associations with the lowest p-values are dominated by known associations, as 

the ones described in the fusion ANOVA (Figure 4.12).  

4.4.3.1 ABL1 

Our cell line panel contains only two types of ABL1-fusions with ABL1 at the 3’: the 

well-understood BCR-ABL1 and NUP214-ABL1. Unsurprisingly, grouping the two fusions 

into one variable resulted in highly significant associations (p < 0.001, fdr < 1%) across 8 

different ABL inhibitors, including FDA-approved nilotinib (Figure 4.12A).  

4.4.3.2 BCR 

The most prevalent partner gene in the BCR-ABL1 fusion is fused multiple times at 

the 5’ end. Associations of 5’-BCR and ABL1 inhibitors are highly significant, however when 

I manually inspect the drug sensitivities, it becomes apparent that the association is mainly 

driven by the BCR-ABL1 fusion. Other BCR-fusions, e.g. BCR-ABHD2 and BCR-PI4KA, show 

IC50’s similar to the median of non-fused samples. None of the other BCR fusions have 

previously been reported in patient samples. Running the gene-centric ANOVA model with 

a covariate for BCR-ABL1 status, the association of the remaining BCR-fused genes 

becomes non-significant (p = 0.74).  

4.4.3.3 NUP214 

Another common partner gene to ABL1, NUP214 is fused to several other 3’ 

partners, such as N-terminal Xaa-Pro-Lys N-methyltransferase 1 (NTMT1), PBX homeobox 

3 (PBX3), proline rich coiled-coil 2B (PRRC2B) and XK related 3 (XKR3). 5’-NUP214 is 

significantly associated with nilotinib, however as in the previous case, this significance is 

mainly driven by the NUP214-ABL1 fusion. Only three cell lines of the six cell lines with 5’-

NUP214 fusions were screened under this drug ID. Of those, as expected, the two NUP214-

ABL1 cell lines are sensitive to drug inhibition. While K-562, a chronic myeloid leukaemia 

cell line with a NUP214-XKR3 fusion appears to be sensitive, it also harbours a BCR-ABL1 

fusion, which is more likely to drive sensitivity to nilotinib.  

Further, 5’-NUP214 tested for sensitivity to ABL inhibitors across a larger set of 

fusion-containing cell lines do not show significant associations. For example, imatinib was 

screened also in a NUP214-PBX3-containing Melanoma cell line, where it shows no 

difference in IC50 from non-fused cell lines. In conclusion, 5’-NUP214 fusions are highly 

unlikely to cause a sensitivity to ABL inhibitors outside of the context of the NUP214-ABL1 
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fusion. Neither NUP214-XKR3 nor NUP214-PBX3 have previously been reported in patient 

samples. 

4.4.3.4 ALK 

As described above (section 4.3.1), our cell line panel includes a two distinct 

recurrent fusions involving the tyrosine receptor kinase ALK. While the majority of blood 

cancers with ALK-fusions carry the NPM1-ALK fusion, a smaller subset is fused to other 

partner genes that encode coiled-coil domains that promote dimerization and activation 

of ALK’s tyrosine receptor kinase domains. One example is that of a fusion with Tyrosine 

receptor kinase-fused gene (TFG), a protein with preserved N-terminal coiled-coil domains 

(Greco et al., 1998; Hernández et al., 1999). 

Our cell line panel includes one such instance of a TFG-ALK fusion in SCC-3, a B-

cell lymphoma. Other ALK-fused constructs include AC016907.3-ALK, and TERT-ALK, 

neither of which were previously described in tumours. In our drug screen, SCC-3, but not 

the other two fused-cell lines, shows a sensitivity to alectinib that is comparable to NPM1-

ALK and EML4-ALK fused cell lines (Figure 4.12C). 

 

 

Figure 4.12: (A-D) Known examples in the gene-centric ANOVA.  
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4.4.3.5 FGFR3 

Sensitivity of FGFR3-fused cell lines to FGFR-inhibitors is described in section 4.3.1. 

As expected, the association of 5’-FGFR3 fusions with FGFR-inhibitor PD173074 is highly 

significant in this analysis. 

4.4.4 Confounding factors 

4.4.4.1 FGFR2 

Similarly as in the fusion ANOVA, FGFR2 amplifications are a confounding factor in 

the gene-centric ANOVA. Ten cell lines show FGFR2 fusions, of which 5 cell lines also have 

a copy number gain (PICNIC score = 14) at the segment containing FGFR2. When 

comparing the activity of the FGFR-inhibitor AZD457, I find that the amplification neatly 

divides responding verses non-responding cell lines, regardless of the fusion status (Figure 

4.12). 

4.4.4.2 ERBB2 

Another common confounding factor is that cell lines with amplification of ERBB2 

are associated with ERBB2-inhibitors such as afatinib. In our data-set, associations with 

afatinib sensitivity are found with cell lines with ERBB2-fusion, which like in FGFR2 are likely 

to be a side-effect of ERBB2-amplifciations causing passenger rearrangements and 

translocations. 

  

Figure 4.13: FGFR-amplification separates cell lines that respond to FGFR-inhibitors from those that do not, 

regardless of fusion status.  
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Aside from those, afatinib sensitivity is also associated with 3’ IKAROS family zinc 

finger 3 (IKZF3) and 3’ titin-cap (TCAP) fusions. Both genes are less than 50,000 bp down 

or up-stream of ERBB2. As cell lines with the fusions all carry an ERBB2 amplification, it is 

likely a passenger event from the amplification.  

 

Altogether, the above events demonstrate how fusions in commonly amplified 

oncogenes can be correlated with a drug sensitivity but not causative, due to co-

occurrence with an oncogenic event. Further, these passenger fusions occur commonly not 

only at the oncogene whose amplification is beneficial to tumour growth, but also in the 

surrounding genomic regions.  

Events such as these pose more questions on the frequency of passenger fusion 

events compared to cancer-driving fusion events and how these may be distinguished 

from high-throughput screening.  

 

4.4.5 “Novel” findings 

4.4.5.1 PTEN 

5’-PTEN fusions, found in breast, prostate and biliary tract cell lines, are associated 

with resistance to tankyrase inhibitor AZ6102 (Figure 4.14). Here, PTEN-rearrangement is 

likely to be a mechanism for disruption of the tumour suppressor gene. A previous study 

show that tankyrases ADP-ribosylate PTEN to be promoted for degradation and thus 

tumour growth. Knockdown of tankyrases stabilises PTEN and resulted in downregulation 

of the PI3K/AKT pathway and thus tumour suppression (Li et al., 2015). In cells where PTEN 

is disrupted through a rearrangement, tankyrase inhibition is thus less likely to lead to cell 

death. However, cell lines with PTEN mutations or deletions appear to have similar 

sensitivity to the tankyrase inhibitor as wild type cells (Figure 4.14). This suggests that 

simple deletion of PTEN through fusion events may not be the sole mechanism of 

tankyrase inhibitor resistance in fused cell lines.  

4.4.5.2 FBXW7 

5’ F-box and WD repeat domain containing 7 (FBXW7) fusions are another feature 

associated with resistance to another tankyrase inhibitor, WIKI4. The fusions are present in 
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breast, cervical and head and neck cell lines and do not co-occur with PTEN-fusions. In 

general, FBXW7 targets several known cancer-drivers for ubiquitination and subsequent 

degradation, such as Yes associated protein 1 (YAP1) and Aurora kinases (Tu et al., 2014). 

Interestingly, another study showed the cooperation of FBXW7 and PTEN in tagging 

Aurora kinases for ubiquitination (Kwon et al., 2012). It would be interesting to note in the 

future whether PTEN stabilisation following tankyrase inhibition provides survival benefits 

related to FBXW7 activity.  

 

Altogether, after removing the associations that are either known, confounded or 

described above, 78 significant large-effect associations remain in the list (Supplementary 

Table 7). Further curation efforts are complicated by the lack of prior knowledge of the 

function of the associated genes that could help to establish any causative links with the 

associated drug.  

As I showed in this analysis as the one before, confounding variables unknown to 

the model can further complicate the task of differentiating true fusion-drug associations 

from false-positives, making a manual curation effort based on literature research difficult 

at this point in time.  

 

  

 

Figure 4.14: PTEN-fusion and sensitivity to the tankyrase inhibitor AZ6102.  
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4.5 Chapter discussion & conclusion 

In this chapter, I sought to discover novel fusion biomarkers of drug response using 

our high-throughput screening data of 409 drug IDs. Any results from such an analysis 

uncover essential pathways in cancer cell lines that may be regulated by gene fusions. 

Moreover, these results may provide a basis for further research into the opportunities of 

screening for novel gene fusions in the clinic to provide improved treatment opportunities, 

along the same veins as the successful previous case studies of ABL1 and ALK-fusions. 

While my analyses reliably recapitulated known and expected findings, after 

curation of novel associations, no strong candidates emerge that warrant a 

recommendation for further study at the current point. Most potential associations that 

are ruled out fall into one of two categories: 1) the presence of confounding factors may 

explain drug sensitivity through fusion-unrelated mechanisms. 2) A lack of prior knowledge 

in low-recurrence fusions puts into question the robustness of the association, as well as 

their relevance in patient populations.  

Despite a lack of emerging candidates, the analyses do provide learnings that may 

become useful when setting up future analyses and drug-screens.  

 

Low recurrence give low statistical power 

Truly recurrent fusions are rare in our dataset. For comparison, our group’s 

previously published analysis of high-throughput drug-screening data used 717 cancer 

mutations and copy number alterations, of which the vast majority was present in at least 

10+ cell lines (Figure 4.15A) (Iorio et al., 2016). However, in my analysis even with over 

8,000 fusions detected in the 1,011 cancer cell lines, only a minority of fusions are recurrent, 

and even less in more than two cell lines (Figure 4.15B). Moreover, the list of 717 CFEs in 

Iorio et al. was curated to include only patient-relevant events, while our fusion analysis 

was not curated to that extent due to a lack of comprehensive databases for the annotation 

of fusion genes described in patients. 

As recurrent fusions are not only rare, but also uncurated, the low numbers of novel 

findings are perhaps unsurprising. Due to the rarity of recurrent fusions, it perhaps 

becomes even more important to be able to separate potentially functional gene fusions 

from passenger events. For example, ALK-fusions are sensitive to ALK-inhibitors only in a 
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subset of detected constructs. For gene fusions of unknown function that may be less 

recurrent, being able to pick out the functional constructs may be the difference between 

a significant association and a false negative for any drug-associations tested in a gene-

centric ANOVA.  

Confounding CFEs complicate interpretation of associations 

What further complicates interpretation is the frequency of confounding events 

whose occurrences are linked to those of fusions. For example, ERBB2 amplified cell lines 

often carry fusions of genes at the same genomic region, which are in turn significantly 

associated with ERBB2-inhibitors. This is a problem that the inclusion of significant hits 

from the CFEs ANOVA (4.2) was designed to solve. Unfortunately, in the event of ERBB2 

amplification, the CFE failed the criteria for large-effect interaction due to the Glass delta 

of ERBB2-amplified cell lines being 0.8. The threshold was originally set following the 

example in Iorio, et al (2016), and is necessary as the inclusion of too many covariates can 

significantly decrease significance of even true associations. However, the frequency of 

ERBB2-amplification being a confounding variable shows that perhaps future iterations of 

this model should re-analyse thresholds for a broader inclusion of potential confounders.  

Similarly, FGFR2-amplifications were another common confounder in my analysis. 

Unfortunately, FGFR2-amplifications were not a feature included in the curated binary CFE 

annotation upon which the CFE ANOVA was based, and thus not flagged to be included 

as a covariate in the fusion ANOVA. Thus, further identifying and annotating this and other 

 

Figure 4.15: (A) Recurrence of 717 curated CFEs and (B) 8,388 fusions in our panel of 1,011 cell lines. 
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unknown confounding factors could contribute significantly to the robustness of future 

iterations of this analysis.  

Lack of prior knowledge in fusion selection  

As implied in the previous paragraph, lack of prior knowledge of fusion function 

can complicate model input decision and interpretation of novel significant associations. 

Firstly due to a community-wide lack of understanding on how to distinguish 

functional from non-functional fusions resulting from high-throughput transcriptome 

sequencing data, the data-set still contains a lot of noise. Unlike point mutations for which 

nowadays there are meticulous filters to determine the likelihood of causing functional 

disruption, there are no comprehensive resources available for gene fusions at this point. 

Though breakpoint predictors such as GRASS are available to predict the genomic location 

of fusions (e.g. intron vs exonic, UTR vs coding) and their likelihood of result in in-frame 

gene products, there are still shortcomings. For one, if we assume that passenger fusions 

occur at random frequencies across the genome, a third of fusions in coding regions would 

be expected to be in-frame. Further, gene fusions may exert functionality beyond the 

production of chimeric proteins, for instance a fusion of a UTR to a coding region may lead 

to differential regulation due to post-transcriptional regulatory events that affect splicing 

or mRNA stability. In other cases, a gene fusion may be functional not through the chimeric 

protein produced but due to a disruption of a tumour suppressor gene, as the case of 5’-

PTEN fusions suggest. Another draw-back of the GRASS algorithm is that it depends on 

the quality of genomic annotations that is used as an input file. For instance, the two well-

studied oncogenic fusions EIF3E-RSPO and UBE2L3-KRAS, are flagged with a GRASS score 

of 100, defined as a “something else to something else” fusion. However when I manually 

aligned breakpoints and reviewed literature, I found strong evidence supporting that the 

fusion should be functionally in-frame.  

Due to the examples described above, I conclude that while the GRASS algorithm 

is a useful tool for annotation of fusions, I would not recommend it as a filtering method 

to exclude any fusion events.  

Available drug compounds are biased towards well-studied oncogenic targets 

Most targeted compounds that are included in our high-throughput screen were 

developed as a response to known oncogenic events. For instance, the development of 

ABL and ALK-inhibitors was sparked by the discovery of the oncogenic activity of the ABL 
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and ALK-fusions. As fusion-discovery using high-throughput transcriptome analyses is still 

a recent endeavour, and due to the rarity of recurrent fusion events, currently unknown 

rare oncogenic fusions may yet to be discovered in the future.  

At the same time, it is important to keep in mind that due to a lack of hydrophobic 

pockets or their subcellular localisation, many appealing molecular targets are currently 

considered undruggable (Verdine and Walensky, 2007).  

Thus, the lack of targeted drugs for potential unknown fusions with oncogenic 

activity may present a blind spot in this type of analysis of high-throughput drug screens.  

 

In conclusion, my analysis recapitulates current knowledge on fusion-drug 

associations. That no strong candidates emerge among novel associations is somewhat 

surprising considering the successes of previous high-throughput drug-screening efforts 

in identifying biomarkers from oncogenic mutations and copy number alterations. I 

speculate that the lack of novel fusion biomarkers is mostly due to 1) the relative lack of 

novel recurrent fusions leading to reduced statistical power and 2) limited prior knowledge 

on fusion genes complicating interpretation of hits.  

Future developments may yield a better understanding of the characteristics of 

functional fusions and broaden the currently limited landscape of gene fusions in patient 

samples. This could then be used to filter out noise in the form of non-functional passenger 

fusions and increase statistical power and confidence for the remaining fusions. Similarly, 

advances in drug development may improve the breadth of pathways and targets available. 

Due to the low recurrence of fusions, expanding the number of models available can also 

increase the statistical power of the biomarker analysis. 

At that point, a similar statistical model querying high-throughput drug-screening 

data may indeed yield valuable insight into therapeutic sensitivities of fusion genes and 

aid the targeted treatment of cancer patients in the future.  
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5 Functional analysis using CRISPR/Cas9 whole-genome 

screening data 

5.1 Introduction and concept 

The topic of utilising CRISPR/Cas9 whole genome screening data has been split 

across two different chapters for ease of reading. This chapter will provide an introduction 

to the concept, the methodology of the computational approach and some quality control 

analyses. After that, the next chapter will discuss the results of the approach in more detail, 

putting the focus onto discovering functional gene fusions. 

5.1.1 State-of-art and current challenges 

One of the biggest challenges that high-throughput transcriptome analyses face is 

how to separate the noise from the signal. In the age of genomics, cancer genes and 

specific oncogenic mutations are commonly identified because they are mutated at a 

higher rate than the background. With now tens of thousands tumour genomes sequenced, 

statistical models identifying such mutation hotspots have helped us build comprehensive 

landscapes and databases of cancer driver mutations (Barretina et al., 2012; Forbes et al., 

2017).  

However, as I discussed in the previous chapter, recurrent fusions are strikingly rare. 

Even though more than 10,000 patient samples have already undergone fusion calling, 

analytical methods can still only identify the handful of known recurrent fusions. Similarly, 

even recurrent fusions may represent passenger events of common genetic alterations and 

need not necessarily be functional. Known examples of this are the FGFR2 and ERBB2 

fusions described in the previous chapter, but unknown examples may further confound 

our goal to identify truly oncogenic fusions.  

Innovative solutions that step away from using recurrence to identify cancer driver 

fusions are necessary in order to overcome these challenges. Here, I developed a 

systematic method to query the functionality of unknown fusions using existing 

CRISPR/Cas9 whole-genome screening data.  

5.1.2 Review of CRISPR/Cas9 whole-genome drop-out screening 

CRISPR/Cas9 whole genome drop-out assays are designed to identify genes that 

contribute to cellular fitness, i.e. genes that are necessary for the normal cell function and 
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survival. The cell line is first modified to express functional CRISPR associated protein 9 

(Cas9), which has the ability to introduce double-strand breaks in a genomic region that is 

defined by a sequence given on a short guide RNA (sgRNA). Then, a whole-genome guide 

library is virally transduced into a population of Cas9-expressing cells, so that on average 

one cell will carry one sgRNA. Upon encountering a sgRNA, Cas9 will introduce a double-

strand break at the target site that is complementary to the sgRNA sequence. The double-

stranded break is repaired using non-specific non-homologous repair mechanisms that 

are extremely prone to introducing insertion/deletions which effectively knock-out the 

target gene (Behan et al., 2018; Meyers et al., 2017; Wang et al., 2017). The guide library 

will include several sgRNAs targeting each of a vast majority of known genes in the human 

genome. Typically, whole-genome guide libraries target ~17,000-20,000 genes with 4-10 

sgRNA for each gene. After keeping the cell lines in culture for several days, the sgRNA in 

the population is sequenced to reveal the proportion of remaining sgRNAs. sgRNA that 

target genes required for cellular fitness should be depleted from the population due to 

the deleterious effect of the CRISPR system. Depleted genes can be identified using several 

statistical models, with the most prevalent including MAGeCK and BAGEL (Hart and Moffat, 

2016; Li et al., 2014). 

5.1.3 Applying CRISPR/Cas9 screening data to identify functional gene fusions 

Due to sometimes unpredictable sgRNA efficacy and off-target effects depending 

on the target and PAM sequences (Doench et al., 2014; Munoz et al., 2016), each gene will 

usually have 4-10 sgRNA spread across the target gene. The drop-out values are typically 

then averaged across the sgRNA to produce final essentiality scores for each gene.  

My method takes advantage of the multiple sgRNAs per gene to create a fusion-

specific CRISPR scoring system. For each fusion gene, I map the sgRNAs of both fusion 

partners onto the predicted breakpoint of the gene fusions. I then categorise sgRNAs that 

map onto the predicted fusion-gene as “mapping” and those that fall outside the fused-

region as “non-mapping”. The key concept is that for essential functional fusions, 

CRISPR/Cas9 generated double strand breaks should be lethal at the mapping regions, but 

have no effect at non-mapping regions. Conversely, if the fusion is just a passenger event, 

then disrupting the gene fusion should not yield any essentiality. Similarly, where the 

normal function of a gene is essential rather than the fusion, I expect to see depletion of 

not only mapping- sgRNA but also of non-mapping sgRNA (Figure 5.1).  
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Therefore, in the ideal scenario where both mapping and non-mapping sgRNA are 

present for a gene fusion, the difference between mapping and non-mapping sgRNA will 

be an indication of the essentiality specific to the gene-fusion.  

In this chapter, I describe the development of a computational approach that uses 

CRISPR/Cas9 whole genome drop-out data to query the essentiality of fusion genes. First 

I will outline the datasets that I used for the analysis, then explain the pre-processing and 

the individual steps applied in my computational approach. I then performed a brief quality 

control of the data that looks at the coverage and quality of sgRNA. Finally, I describe the 

results of the analysis and give a few examples of my findings.  

 

5.2 Data-sets and data processing 

5.2.1 Description 

For this analysis, I used three sources of whole-genome CRISPR/Cas9 drop-out 

screening in human cancer cell lines (Table 5-1).  

 

Figure 5.1: Visualisation to illustrate the classification of sgRNA into mapping and non-mapping for each 

fusion transcript.  
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An in-house effort to generate CRISPR/Cas9 whole-genome drop-out screening 

data for our panel of cell lines has to date produced 200 Cas9-expressing cell lines and 

screened them with the Sanger V1 guide library (Tzelepis et al., 2016), with more being 

released in the coming few months. This data will be publishes under the name Project 

Score and covers 206 cell lines which have undergone fusion-calling.  

Next, Project Achilles performed at the Broad Institute has so far screened another 

342 cancer cell lines using the Avana library, of which 243 overlap with my dataset (Meyers 

et al., 2017). I also include a smaller study by Wang et al. on 14 acute myeloid leukaemia 

cell lines (12 overlapping) that were screened with the Wang et al. library.  

The three data-sets used library that covered a similar number of genes (~17,000-

18,500), although the number of sgRNAs per gene varies, with Wang et al. using a median 

of 10 sgRNAs per gene, compared to 4 and 5 used by Project Achilles and Project Score 

respectively. Due to this difference, the data-set produced by Wang et al. contains 

mapping sgRNAs for a higher percentage of fusions called within the screened cell lines 

and may produce higher-resolution data than the other two resources. Conversely, the 

Table 5-1: Comparison of three resources for CRISPR-Cas9 drop-out screening in human cancer cell lines 

 
Project Score Project Achilles Sabatini 

Paper Behan et al. (2018) Meyers et al. (2017) Wang et al. (2017) 

Guide library Human CRISPR library 

v1.0/v1.1 

Avana Wang et al. (2015) 

# Genes ~18,000 ~17,500 ~18,500 

Median 

sgRNA / 

Gene 

5 4 10 

Cell lines in 

our panel  

(total 

screened) 

206 243 (342) 11 (14) 

# Fusions 

assessed 

2,148 2,229 69 

% Fusions 

with 

mapping 

sgRNA 

77% 74% 88% 

Reps/Cell 

line 

3 3 1 

Data 

download 

(Pre-publication data,  

personal 

communication) 

[https://depmap.org/ 

ceres/] 

[ http://sabatinilab.wi.mit.edu/ 

wang/2017/] 
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Wang et al. dataset contains only one biological replicate for each cell line screened, while 

both Project Achilles and Project Score generated three replicates per cell line.  

With some exception in the details, the three resources otherwise followed the 

same principles in their screening protocols, transducing Cas9-expressing cell lines with a 

puromycin-selectible lentiviral sgRNA library and leaving the cells in culture for 2-3 weeks.  

Finally, cells were harvested, sgRNA PCR amplified and sequenced. The sequences 

were aligned to the reference genome and raw counts in each cell line for each sgRNA 

RNA were reported. 

 

5.2.2 Processing flow chart 

For my analysis, I downloaded the raw counts reported for each cell line and 

processed the data for all three resources in a standardised manner (Figure 5.2).  

5.2.3 Data download 

I downloaded raw counts for each guide in each cell line and guide annotations 

from the links provided in each of the original publications (Table 5-1). Guide annotations 

for all three resources were based on GRCh37 and to convert them to GRCh38, to which 

our fusion data was aligned, I used the NCBI Genome Remapping Service online tool 

(https://www.ncbi.nlm.nih.gov/genome/tools/remap). 

 

5.2.4 Log-fold change calculation 

First, using the CRISPRcleanR R package that was also used to process the original 

Project Score dataset (Iorio et al., 2018), I calculated log2-fold changes (logFCs) from raw 

counts for each sgRNA. logFCs simply denote the ratio of sgRNA counts in the final 

population over that of the initial population, at log base 2. Note that for the Project Score 

and the Project Achilles resource, the final raw counts were quantified against library 

plasmid-read counts. For the Wang et al. resource, no library plasmid-read counts were 

available. Instead, I followed the methods described in their paper and averaged the read 

 

Figure 5.2: Standardised process for data processing 

https://www.ncbi.nlm.nih.gov/genome/tools/remap
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counts obtained from 12 of the 14 cell lines at 72 hours after library transduction and 

before puromycin selection.  

5.2.5 CRISPR-bias correction 

The depletion of guides in CRISPR-screens may be subjected to biases that are 

unrelated to the essentiality of a particular gene. Previous studies have shown that the 

wide-spread DNA damage created by guides that cut at copy number amplified regions 

tend to lead to high depletion levels even when targeting non-expressed genes (Aguirre 

et al., 2016; Munoz et al., 2016). To correct for copy-number biases, the Project Score data 

uses the CRISPRcleanR algorithm, the Project Achilles data used the CERES algorithm, while 

Wang et al. calculate a sliding window score (SWS). 

Of the three, the SWS method is the most simplistic. Each gene targeted by a 

sgRNA is analysed in the context of a “sliding window” of 20 upstream and 20 downstream 

neighbouring genes (after discarding pan-essential genes). Any neighbouring gene that is 

in the top 3% of depleted genes in a given cell line adds a value of 1 to the SWS. Genes 

that have a SWS of > 12 are considered to be in a copy-number amplified region and are 

removed from further analysis. For my analysis, I excluded the SWS from consideration, as 

it does not correct logFCs but simply removes those which are in clusters of highly depleted 

genes.  

The CRISPRcleanR method uses a binary segmentation algorithm to identify 

clusters of neighbouring genes that have fold-changes that are on average significantly 

different from the background (Iorio et al., 2018). The logFCs in each segment are then 

corrected by mean-centering, which therefore allows them to be used in further down-

stream analyses. An advantage of this method is also that this unsupervised algorithm can 

identify and correct unknown region-specific biases other than the copy number-bias.  

The CERES algorithm for copy-number correction was published together with the 

release of the Project Achilles data (Meyers et al., 2017). CERES requires input of a priori 

copy-number information for each cell line. It then uses a computational model to estimate 

the impact of copy-number effects, as well as sgRNA-specific effects shared between all 

cell lines in a screen. CERES then corrects the logFC for each gene so that the mean copy 

number effect is shifted to zero.  

To decide on which algorithm to use for my analysis, I examined the differences 

between the supervised CERES and unsupervised CRISPRcleanR methods. The main 
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difference is that the CERES correction of logFCs depends on a priori data on copy number 

changes in the cell line, while CRISPRcleanR uses a flexible algorithm that corrects logFCs 

based on detected differences between genomic segments.  

A key consideration is that while the number of cuts a guide evokes is strongly 

correlated with depletion of non-expressed genes, variation still exists with some highly 

amplified non-expressed genes showing little lethality and single-cut non-targeting guides 

showing high depletion (Aguirre et al., 2016; Meyers et al., 2017; Munoz et al., 2016). This 

strongly suggests that other factors other than just copy-number can influence CRISPR-

biases. 

In fact, a recent study from our group shows that the cell fitness effect associated 

with copy number amplifications is mainly driven by tandem duplications, rather than 

chromosomal duplications (Goncalves et al., 2018). The authors show that regions that the 

CRISPR-bias is stronger in amplified regions in cell lines with low ploidy, and severely 

reduced in cell lines with high ploidy. This suggests that in fact a large number of DNA-

breaks spread out across the nucleus are less lethal than the same number of cuts within 

a single genomic region.  

As copy number amplifications can results from both tandem duplications and 

chromosomal duplications, correcting them equally, as the CERES algorithm does, may 

introduce further biases into the data, i.e. over-correcting genes at chromosomal 

duplications and under-correcting genes in tandem duplications.  

Further, as CRISPRcleanR makes no assumptions about the cause of CRISPR-biases, 

the algorithm has the ability to take into account any potentially unknown region-specific 

biases. Indeed, the authors of the CRISPRcleanR algorithm identify genomic segments that 

exhibit biased logFCs without any apparent copy number changes (Iorio et al., 2018).  

For the above reasons, I implemented the CRISPRcleanR algorithm for CRISPR-bias 

correction of the logFCs for all three datasets.  

5.2.6 Normalising fold-changes 

Slightly different experimental conditions between different cell lines and 

experimental variation can lead to different ranges of raw counts and the resulting logFCs. 

This means that if no normalisation is performed, the logFCs for the same guides are not 

directly comparable between cell lines. As my down-stream analysis requires a direct 
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comparison of logFCs across different cell lines, I sought to implement a normalisation 

step. 

Normalisation of logFCs was performed by Wang et al. using quantile normalisation, 

while Project Achilles scaled the distribution by a priori essential and non-essential genes. 

The Project Score data was further processed into essentiality scores using BAGEL and 

MAgECK which did not require normalisation.  

Quantile normalisation was first introduced for the analysis of microarrays (Bolstad 

et al., 2003). Essentially, it works by first calculating an average distribution of logFCs across 

all samples and then substituting the sorted logFCs with the equivalent position in the 

average distribution. The result is that the distributions of logFCs of all samples will be 

identical.  

The method developed for CERES to scale logFCs to essential takes as input a set 

of a priori essential and non-essential genes. For each cell line, it then scales a distribution 

of gene effects so that the median score of essential genes is at -1 and the median score 

of non-essential genes is at 0.  

The advantage of scaling the logFCs to essential is that the distribution of guides 

are preserved for each cell line. Additionally, scaling the logFCs to the essential genes 

provides a simple and useful anchor against which the essentiality of unknown guides can 

be benchmarked.  

For these reasons, I decided to scale the CRISPRcleanR-corrected logFCs of all 

datasets using the CERES scale-to-essential R function provided in the CERES github 

repository (https://github.com/cancerdatasci/ceres/blob/master/R/scale_to_essentials.R). 

For the a priori essential and non-essential genes, I used the lists supplied within the CERES 

R package and that were previously defined by Hart et al. (Hart et al., 2014). Scaled and 

CRISPRcleanR-corrected logFCs are abbreviated to “scaled logFCs” in all of the following 

text.  

5.2.7 Mapping guides to fusion transcripts 

For the calculation of a fusion essentiality score, I first needed to classify guides 

into either mapping or non-mapping guides (Figure 5.1). In order to automate this, I 

devised a set of rules that take into consideration (1) the fusion breakpoint and (2) the 

mapping location of the guides. 

https://github.com/cancerdatasci/ceres/blob/master/R/scale_to_essentials.R
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Guides map onto the 5’ gene if the gene is on the positive strand and the guides 

maps before the position of the fusion breakpoint, or if the gene is on the negative strand 

and the guide maps after fusion breakpoint (red stars in figure Figure 5.1). Guide map onto 

the 3’ gene if the opposite is true (green stars in Figure 5.1).   

 

 

5.2.8 Calculation of fusion fitness score 

In order to calculate the fusion essentiality, I made the following considerations: 

i. At the most basic level, in true essential fusion transcripts, mapping guides 

should be highly depleted, while non-mapping guides should have near zero 

fold-changes. 

ii. Where a fusion transcript has only mapping guides, a direct comparison of 

mapping and non-mapping scores is not possible. However, as only 54.7% of 

the fusion transcripts tested have differentially-mapping guides, I aimed to 

develop a score that could also be applied to fusion transcripts with only 

mapping guides. It is important to note that these types of fusions may suffer 

from potential false positives, as it cannot distinguish between gene-specific vs. 

true fusion-specific effects.  

iii. Mapping guides for true fitness fusion transcripts should be highly depleted, 

but this depletion may be caused by other confounding factors and doesn’t 

take into account the average essentiality and range of essentialities of the 

guide across all cell lines.  

Thus in order to calculate the fusion essentiality score, I take the following steps:  

1) Z-normalise the scaled logFC across all cell lines screened for a given guide. The Z-

score is calculated by taking a scaled logFC, subtracting the mean of all scaled 

logFCs produced by the guide across all cell lines, and then dividing by their 

standard deviation. The Z-score therefore represents the magnitude of deviation 

from the average. Compared to a mean-centred scaled logFC, the Z-score gives 

added weight to guides that deviate from a narrow distribution than for guides that 

deviate from a broad distribution. 

2) Calculate the difference in Z-score between the mean of mapping and the mean of 

non-mapping guides for each gene involved in a fusion transcript (Equation 4). 
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Where a gene has only mapping guides the difference is taken from 0. Where a 

gene only has mapping guides, a high Z-score indicates cell-line specific 

essentiality of a gene, which we expect to see in true essential fusions.  

3) Finally, to calculate the Fusion Essentiality Score (FES), the difference scores 

calculated for both fusion genes is averaged. In fusion transcripts where only one 

gene has mapping guides, the FES = GeneDiff. 

5.2.9 Calculating a significance score for fusion essentiality scores 

In order to estimate the statistical likelihood of a given FES occurring by chance, I 

performed 10,000 randomisations of the scaled logFCs. Randomisations were performed 

on a per cell line basis in order to preserve the distribution of guide effects.  

After each randomisation, a “randomised FES” is calculated using the same 

methods as described in the previous section. For each fusion transcript, I calculated a p-

value as the number of “randomised FES” that were larger than the non-randomised FES, 

divided by the number of randomisations. Finally, p-values were adjusted for multiple 

hypothesis testing using the false discovery rate method.  

Figure 5.3A shows the distribution of FES scores across the entire dataset. The 

scores follow an approximately normal distribution with a mean of mean = 0.21 (sd = 1.01). 

There is a long tail at the positive end of the distribution and a small secondary peak 

around +4, which signifies a slight enrichment in positive scores. More positive scores 

represent fusion transcripts that are more highly depleted.  

Fusion essentiality scores have a similar distribution in the Project Score and 

Achilles data set, while the Wang et al. data set appears to have a narrower range and more 

defined secondary peaks (Figure 5.3B). Means and medians are comparable across all three 

datasets and whether or not fusion transcripts have differentially mapping or non-mixed 

guides.  

A more thorough analysis of the distribution of the FES using functionally relevant 

annotation will follow in chapter 6.2. 

 

𝐺𝑒𝑛𝑒𝐷𝑖𝑓𝑓 =  𝑚𝑒𝑎𝑛(𝑠𝑔𝑅𝑁𝐴𝑚𝑎𝑝𝑝𝑖𝑛𝑔) − 𝑚𝑒𝑎𝑛(𝑠𝑔𝑅𝑁𝐴𝑛𝑜𝑛−𝑚𝑎𝑝𝑝𝑖𝑛𝑔) 

𝐹𝐸𝑆 = 𝑚𝑒𝑎𝑛( 𝐺𝑒𝑛𝑒𝐷𝑖𝑓𝑓5′ + 𝐺𝑒𝑛𝑒𝐷𝑖𝑓𝑓3′) 

Equation 4: Gene difference score and fusion essentiality score calculation.  
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5.2.10 Essentiality prediction with BAGEL 

Apart from calculating the FES, in some of my downstream analysis I require a 

binary annotation on whether a given gene is significantly depleted in a cell line. In order 

to calculate a fitness score for each gene and in each cell line, I implemented the BAGEL 

framework developed by Trevor Hart and colleagues, which identifies essential genes from 

pooled library screens (Hart and Moffat, 2016; Hart et al., 2015). BAGEL is a supervised 

computational algorithm that uses a Bayesian framework to estimate the essentiality of a 

guide RNA. In short, it uses a priori lists of essential and non-essential genes and first 

estimates the distribution of fold changes of guides targeting these genes within each 

sample. Then, using a bootstrap process of 1,000 iterations, it calculates the likelihood of 

the logFC of a given guide to have come from either the distribution of essential or non-

essential genes. The likelihood to come from the essential distribution is captured in a 

Bayes Factor score (BF).  

 

Figure 5.3: Distribution of fusion essentiality scores (A) across all three data sets and (B) by data set and sgRNA 

mapping status. 
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The set of a priori essential and non-essential genes can then be used to generate 

a False discovery rate (FDR), the precision and the recall for each of the computed BFs 

(Equation 5).  

Since the distribution of essential and non-essential genes will differ from sample 

to sample, the FDR of BFs also accordingly vary by sample. In order to create an easily 

comparable score, Iorio and colleagues propose a scaled BF (Behan et al., 2018; Iorio, 2018). 

To calculate this score, for each sample, the BF at which FDR = 5% is subtracted from all 

BFs calculated for the sample. Thus, across all samples, a scaled BF of > 0 means that a 

guide is likely to be essential at 5% FDR, a threshold that was originally adopted by Hart et 

al. (Hart and Moffat, 2016).   

I implemented the method described above using the R implementation of BAGEL 

written by Francesco Iorio (Iorio, 2018) to calculate BFs from the CRISPRcleanR-corrected 

logFCs. To calculate the BF at FDR 5%, I used the ccr.PrRc_Curve function within the 

CRISPRcleanR package.   

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 − 𝐹𝐷𝑅 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 5: Equations for FDR calculation. FP = False positives; TP = True positives; FN = False negatives. 
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5.3 Data characteristics & quality control 

5.3.1 Data set coverage 

In total, the screening data from the three data sets encompasses 371 cell lines in 

33 cancer types that were part of our panel (Figure 5.4). Of those, 90 cell lines were 

screened in two separate data sets. No cell line was screened in all three data sets. 

The cell lines harbour 3,598 fusion transcripts (35% of the total). 2,821 transcripts 

(76%) have at least one guide mapping to the predicted protein. Of those, 528 transcripts 

(19%) are in cell lines screened by two resources. 

Fusion essentiality scores were calculated in 339 of the 371 cell lines, because in 24 

cell lines no fusion transcripts were detected and in 8 cell lines the detected fusion 

transcripts had no mapping guides. 

 

 

 

 

 

Figure 5.4: Overview of CRISPR/Cas9 screening data available by cancer type. Number of different cell lines 

screened per resource, number of cell lines replicated between data-sets and number of fusion transcripts 

in the screened cell lines. White fill in bars indicate that no sgRNA were mapped to a fusion transcript. 
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5.3.2 Data quality: precision-recall scores across data sets 

One measure of data quality is to calculate the precision and recall of expected 

essential and non-essential genes for each sample in the CRISPR-screen.  

This is calculated by ordering the values (here, I used the scaled logFC’s) for the 

sgRNA targeting a priori essential/non-essential genes from smallest to largest. At each 

point, one can calculate the precision, which refers to the proportion of true positives 

among all positive values and the recall, which refers to the number of true positives from 

all known essential elements.  

In the ideal sample, all the essential genes will have low scaled logFC’s (i.e. be highly 

depleted), and all non-essential genes will have high scaled logFC’s. In that scenario, 

plotting the precision vs. the recall for that sample at each data point will yield a curve with 

a very high AUC. Conversely, if scaled logFC’s were distributed randomly within a sample, 

the AUC is expected to be at around 0.5, as for each highly depleted essential guide one 

would also draw out a highly depleted non-essential guide.  

Thus, the AUC of precision-recall curves can give an indication of the quality and 

the noise levels for an individual sample, and is indeed a common quality control step 

when analysing CRISPR/Cas9 whole genome drop-out screening data. For this analysis, I 

calculated the precision-recall AUC’s for each sample at both the gene and the guide-level 

across all three data-sets, using the same sets of a priori known essential and non-essential 

genes as described in section 5.2.10. 

 

For both the gene-level and the guide-level precision-recall AUC’s, Project Score 

data outperforms both of the other data-sets (Figure 5.5A-B). For data from Wang et al., 

the guide-level AUC’s are lower than average, while the gene-level AUC’s are narrowly 

higher than that of the Project Score data (mean AUC = 0.902 vs. 0.900). This likely reflects 

that the screen quality is lower than in the other two screens, possibly due to only having 

performed one biological replicate for each cell line. That gene-level AUC’s are 

nevertheless high might be due to the use of 10 guides per gene, which is 2x as many as 

the next data-set, and which would likely yield more accurate gene-level values on average.  

Further, I found that the guide-level AUC’s for the same cell lines between Project 

Score and Achilles (n = 83) are significantly correlated (p < 0.002, Figure 5.5). This suggests 

that certain cell lines are inherently more difficult to screen than others, but even on a per-
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cell line level, more cell line showed higher AUC’s when screened in the Project Score data 

set over the Achilles data set. 

Overall, with some individual exceptions, the majority of precision-recall AUC’s are 

relatively comparable across all samples on both the guide-level (IQR: 0.725-0.805) and the 

gene-level (IQR: 0.862-0.894). Instances for which the AUC’s are low should however be 

kept in mind and should be considered in down-stream analyses during the interpretation 

of findings. This analysis shows that all data sets are of comparable quality. Also 

considering that the sgRNA distribution across fusion genes may vary by data set, I 

included data from all three datasets in my future analyses. This also means that for fusions 

in cell lines tested by multiple datasets I also calculated multiple FES.  

5.3.3 sgRNA coverage 

FES calculation can be performed for any fusion transcript that has at least one 

sgRNA mapping to a fused portion of either partner gene. However, in general the 

calculation will yield a more informative result 1) the higher the total number of mapping 

sgRNAs is and 2) if the number of mapping and non-mapping sgRNA are approximately 

balanced. 

The calculation benefits from a higher number of mapping sgRNA in order to 

reduce noise from known and unknown CRISPR sgRNA biases. Whole genome 

CRISPR/Cas9 screens typically rely on 4-10 sgRNA per gene to give an accurate 

  

Figure 5.5: Precision-recall AUC’s for each sample screened by CRISPR/Cas9, calculated by (A) guide-level 

and (B) gene-level. (C) Correlation of guide-level precision-recall AUC’s for 83 cell lines that were screened 

by both Project Score and Achilles. Purple dots represent cell lines where Project Score has higher AUC than 

Achilles and yellow dots represent the reverse. 
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representation of gene essentiality, but since not all sgRNA in the whole genome sgRNA 

libraries will be transcript-mapping, some FES may be calculated from a low number of 

sgRNA. The Wang et al. CRISPR library has the highest mean number of targeting sgRNA 

per fusion transcript, followed by the Project Score and then Achilles libraries (9.95, 5.0 and 

3.96 respectively, Figure 5.6A). However, the variation is quite large, with 11.1% of tests (n 

= 372) being performed based on only a single mapping sgRNA, and a further 9.5% of 

tests (n = 319) based on two mapping sgRNAs. FES calculations using the lower numbers 

may be more prone to noise and when evaluating the results of the analysis, it is important 

to be aware of these potential caveats. 

Secondly, a FES can be calculated for a fusion transcript where for both partner 

genes only one type of sgRNA is available (i.e. mapping OR non-mapping, but not both). 

In total, 54.7% of the tests conducted involve differentially mapped sgRNA to either the 5’ 

or the 3’ fused gene, though as might be expected, this proportion is highest in the library 

by Wang et al, which has 10 sgRNA per genes (Figure 5.6B). Of the remaining, there is a 

slightly higher percentage of transcripts for which the 5’ gene has only mapping sgRNA, 

compared to the 3’ gene (19.6% vs. 17.2%), although this seems to be driven mainly by the 

trend in the Achilles data (Figure 5.6B). Also interesting to observe is that around a third of 

the fused genes are targeted by not a single mapping sgRNA, this number being slightly 

 

Figure 5.6: Overview of sgRNA coverage across fusion transcripts. (A) Distribution of total number of fusion-

targeting sgRNA per test performed for each data set. (B) Percentage of transcripts with differentially 

mapping sgRNA for either gene (overall), and specifically for the 3’ or the 5’ gene. 
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lower for the 3’ gene in the Wang et al. data set (16.4%) and higher for the 3’ gene in the 

Achilles data set (43.6%) (Figure 5.6B). 

It is important to keep in mind that FES calculations for transcripts with differentially 

mapping sgRNA for neither gene may be more prone to false positives, as fusion-specific 

and gene-specific effects may be difficult to untangle. In those cases, further evidence 

should be considered, for example whether any confounding events are present (e.g. 

amplification events that may lead to local wide-spread structural rearrangements). These 

cases would also benefit from validation experiments to confirm the fusion-specific effects, 

e.g. using CRISPR/Cas9 system with tailored sgRNA. 

5.3.4 sgRNA efficacy 

A further metric to estimate the effectiveness of a CRISPR/Cas9 screen is to examine 

the ability of individual sgRNA to have a deleterious effect in any cell line. One approach 

is to examine the number of cell lines within which a given sgRNA has a low scaled logFC, 

i.e. a high deleterious effect. I used a threshold of -1 to define sgRNAs with high effect in 

a given cell line, since the sgRNA depletion scores were scaled so that on average, essential 

genes would have a scaled logFC of -1. Then counting the number of sgRNA which are 

depleted at a scaled logFC of at least -1, I find that overall, 45.5% of sgRNA are depleted 

in at least one cell line. The proportions are much higher in the Achilles and Project Score 

data sets (66.1% and 60.6%; Figure 5.7), presumably due to the larger number of samples 

tested compared to Wang et al. 

When targeting genes of unknown essentiality, a lack of deleterious effect in any 

cell line can be due to several reasons: 1) the gene is not an essential gene, 2) gene is 

essential in some instances, however those are not captured in the samples tested and 3) 

the gene is essential, but the sgRNA was not effective.  

To focus on cases where the gene should be essential, but the sgRNA was not 

effective, I specifically examined sgRNA that are a priori known essential and non-essential 

(the same set as used to scale logFCs in section 5.2.6). Among 6,465 sgRNA that target 

known essential genes, 83.4% where depleted in at least one cell line, with some variation 

between different data sets (Figure 5.7B). The number of depleted cell lines per sgRNA 

varied greatly, e.g. sgRNA targeting C11orf24 were depleted to that threshold in only 5 

instances, while at the other end RPS3A and RPS8 targeting sgRNA were on average 

depleted in about 90% of samples. However out of the 360 a priori known essential genes, 
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all exhibited a high depletion value with at least one sgRNA, which suggests that the 16.6% 

of sgRNA that are not highly depleted in any cell line may in fact have low efficacy in 

creating gene knock-out.  

On the other hand, the depletion pattern of non-essential guides broadly 

resembles that of all other guides (Figure 5.7C). Of those targeting non-essential genes, 

37.1% of sgRNA still show high depletion in at least one cell line. These observations may 

be due to noisiness of the screen or off-target effects. Similarly, in the original publication 

of this set of reference non-essential genes, the authors selected protein-coding genes 

with expression levels below 0.1 FPKM in 15 of 16 BodyMap tissues and 16 of 17 ENCODE 

cell lines (Hart et al., 2014). As our data set of over 300 CRISPR-screened cell lines is much 

larger than that, it is indeed a possibility that a portion of the a priori non-essential may in 

fact be essential in a low number of cell lines.  

In conclusion, the analysis above gives an indication that a proportion of sgRNA 

are indeed expected to have low efficacy in the screen. This result may impact FES 

calculations performed using very few targeting sgRNA. At the same time, when the FES 

calculation yields non-significant results, it may be useful to check the general efficacy of 

the involved sgRNA across other samples to avoid misinterpreting a false negative. 

  

 

Figure 5.7: Number of guides that show high depletion (scaled logFC < -1) in at least one cell line, for (A) all 

sgRNA, (B) essential sgRNA only and (c) non-essential sgRNA only. 
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5.4 Chapter conclusion 

This chapter outlines my method as well as quality control elements in my approach 

of using CRISPR/Cas9 screening data to generate scores of fusion-specific essentiality in 

cancer cell lines. I showed how I calculated a fusion essentiality score (FES) for 339 cancer 

cell lines for which I had data available, covering 27% (n = 2,821) of the fusion transcripts 

identified overall. Further, my data QC showed that precision-recall AUCs are relatively 

comparable across all samples at the guide-level as well as the gene-level. Importantly, 11% 

of tests are based on only a single fusion-mapping sgRNA and only 54.7% of transcripts 

have differentially mapping sgRNA to a single gene. Either of these may contribute to 

noisiness in the data, which should be kept in mind for future data interpretation. 

Overall, the above chapter provides the basis for the next chapter, which will give 

a general overview of the results as well as some specific examples that illustrate the power 

of the approach. A comprehensive discussion of the important findings and learnings in 

creating and using this computational approach will follow at the end of the next chapter. 
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6 Identifying functional gene fusions using CRISPR/Cas9 whole 

genome screening data 

This chapter is based on the concept and methodology described in chapter 0. Here, 

I first provide a general overview of the results and a brief introduction into how to 

interpret the data and graphs in this chapter. I then set out to understand the distribution 

of significantly essential fusion essentiality scores across the data set, show the validation 

of known oncogenic fusions and finally end by highlighting a few specific interesting novel 

findings.  

6.1 Fusion Essentiality Scores 

Using the methods described in chapter 5.2, I calculated 3,349 fusion essentiality 

scores (FES) for 2,821 unique fusion transcripts in 339 cell lines (Supplementary Table 8).   

Across all fusion transcripts in all three data sets, only 4.6% of transcripts had a FES 

with a FDR < 5%, 6.8% at FDR < 10% and 13.7% at FDR < 25%. Within the data-sets, some 

differences could be observed (Figure 6.1). 

The data set by Wang et al shows a particularly high proportion of fusion transcripts 

with highly significant FES. This is likely due to the fact that the 11 acute myeloid leukaemia 

cell lines contain a high proportion of known oncogenic driver fusions. In fact, 8% of fusion 

transcripts tested in the Wang et al dataset are listed in the COSMIC fusion census, 

compared to 2% of the fusion transcripts in the other two datasets.  

  

Figure 6.1: Proportion of significant results in each of the three CRISPR/Cas9 data sets.  
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6.1.1 Two specific examples of the fusion essentiality analysis 

To help interpret the FES analysis, I next describe two examples, of which one is a 

known essential fusion and another a known confounder.  

KMT2A-MLLT3 

As described in the previous chapter, KMT2A-MLLT3 fusions are well studied for 

inducing tumour initiation in acute leukaemias. Previous studied have shown that 

withdrawal of KMT2A-MLLT3 in an inducible in vivo system leads to disease regression 

(Zuber et al., 2011). The MOLM-13 cell line is an acute myeloid leukaemia cell line that 

carries the fusion protein. The fusion transcript brings together exon 8 of KMT2A and exon 

6 of MLLT3.  

MOLM-13 was previously screened in a whole-genome CRISPR drop-out screen by 

Wang et al. (Wang et al., 2017). Their whole-genome CRISPR guide library (Wang et al., 

2014) contains 10 guides that map to KMT2A and another 10 guides that map to MLLT3. 

Of those, 8 guides map to the fused region of KMT2A and 3 to that of MLLT3, while the 

rest map to the unfused portions of the genes (Figure 6.2A). By mapping scaled fold-

changes on a guide-by-guide-basis, as expected from an essential fusion, I find that 

mapping guides have a lower fold-change than non-mapping guides (Figure 6.2B), 

indicating they are preferentially deleted. The FES for this fusion transcript is 1.85 and 

highly significant at p < 0.001 and FDR < 0.001. 

ERBB2-CDK12 

The gastric carcinoma cell line NCI-N87 harbours an ERBB2-CDK12 fusion transcript 

that is likely a passenger fusion due to a copy number gain of ERBB2. NCI-N87 has been 

screened as part of the Project Achilles (Meyers et al., 2017) using a library that contains 

three mapping and one non-mapping sgRNA on ERBB2 and four non-mapping guides on 

cyclin dependent kinase 12 (CDK12) (Figure 6.2C).  

After mapping scaled fold-changes on a guide-level basis, as expected, all sgRNA 

mapping onto ERBB2 are depleted, regardless of whether they target the fused portion or 

not (Figure 6.2D). Thus, as the depletion of sgRNA is not specific to fusion-mapping regions, 

the FES is low at 0.05 and not significant (p > 0.5 & FDR > 85%).  

Here it is important to highlight a potential caveat of the method: since the CRISPR 

sgRNA library was not specifically designed for this usage, for many fusion transcripts, the 

sgRNA mapping locations may be unbalanced. For instance, in NCI-N87, aside from ERBB2-
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CDK12, we also detect another ERBB2-fused transcript, ERBB2-JUP. In this transcript 

however, ERBB2 is fused in a way so that all sgRNA target locations are preserved. When 

calculating the FES, thus all fusion-mapping guides will be depleted due to the essentiality 

of ERBB2, and since for transcripts with no differential mapping guides the difference is 

taken from zero, the FES is high at 4.0 and significant at p < 0.001 and FDR < 0.001 (Figure 

6.2E).  

As we are aware of the oncogenic driver effects and essentiality of amplified ERBB2, 

we can declare this transcript a false positive with high confidence. However in cases where 

the cell-line specific essentialities of genes are not understood, it is important to be aware 

that this type of sgRNA mapping pattern may lead to misleadingly high significance of 

passenger events. 

6.2 Gene set enrichment analysis of fusion essentiality score significance 

In order to find out whether certain categories of gene fusions are enriched for 

significant FES, I next annotated all tested fusion transcripts according to 10 distinct 

categories, as described below, and conducted a gene-set enrichment analysis using the 

piano R package with its default settings (Väremo et al., 2013). I used the p-values of FES 

 

Figure 6.2: Examples for fusion essentiality score calculation for (A,C) a known driver fusion transcript, 

KMT2A-MLLT3 and (B,D,E) for a known confounded fusion transcript. Data source for each set of sgRNA is 

indicated above the plot (Wang et al, 2017; Project Achilles = Meyers et al, 2018; Score = Behan et al, 

2018.) 



140 

 

as gene level statistics. Only 2 out of 10 categories were significantly enriched after p-value 

adjustment: 1) fusion transcripts that were listed in the COSMIC fusion census and 2) fusion 

transcripts that had significant associations with any drug in our fusion-drug association 

analysis (Table 6-1, Figure 6.3).  

 

Figure 6.3: Overview of 3,349 fusion essentiality scores. Annotation shows fusion essentiality scores where 

the fusion transcripts belong to a certain category (e.g. fusions includes genes in COSMIC gene census, kinase 

genes, essential genes, etc.).  

 

 
Table 6-1: Gene-set enrichment test scores, ordered by significance of adjusted p-value.  

Name Genes  Stat p p adj. 

COSMIC fusion census 48 0.17736 1.00E-04 0.00035 

Significant in ANOVA 106 0.29554 1.00E-04 0.00035 

In-frame 750 0.4057 0.039796 0.11143 

Patient samples 187 0.40543 0.21268 0.33083 

Deleted 50 0.38332 0.18128 0.33083 

COSMIC gene census 443 0.41159 0.20428 0.33083 

Recurrent in patient samples 63 0.40188 0.29697 0.41576 

Amplified 299 0.41573 0.34647 0.44096 

Essential gene 105 0.42031 0.46345 0.5407 

Kinase genes 363 0.44485 0.91481 0.91481 
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In the next paragraphs, I describe the definition and context of annotation sets, and 

the results from this analysis. 

Amplified/deleted  

For this annotation, I used the gene-level PICNIC (predict integral copy number in 

cancer) scores, published by COSMIC for each cell line (Greenman et al., 2010), for both of 

the partner genes involved in a fusion event. PICNIC scores represent the total number of 

copies found for a gene in the genome of a given cell line. A fusion event is annotated as 

deleted or amplified, if the PICNIC score of either one of the two partner genes is either -

1 (deleted) or higher than 8 (amplified). The threshold of 8 to define amplified genes was 

used to follow the classification used for the COSMIC cell line data (Forbes et al., 2017).  

The annotation mainly served as a negative control. As amplified genes are known 

to cause CRISPR-screen biases (as discussed in chapter 5.2.5), although I already performed 

a correction of CNV regions using CRISPRcleanR (see section 5.2.5), I still wanted to test 

whether fusion events containing amplified or deleted genes may showed biased FES FDR’s. 

P-values were not significant for either (adj. p = 0.44 and 0.33 respectively), which showed 

that the FES calculation was not biased by copy number status. 

Essential genes  

Here, I annotated fusion transcripts where either partner gene is part of the list of 

high-confidence pan-essential genes published by Hart and colleagues (Hart et al., 2014). 

An enrichment of essential genes at higher significance level might have indicated that 

genes that are universally highly essential could cause biased FES for reasons unrelated to 

the fusion transcript. After performing the gene set enrichment analysis, I observed no 

such enrichment (adj. p = 0.54). 

Kinase genes  

Kinase genes, which include ALK and ABL1, are commonly fused oncogenes, and 

previous publications specifically analyse the landscape of kinase fusions in cancer 

genomes (Gao et al., 2018; Stransky et al., 2014). A list of kinase genes was published by 

Gao and colleagues as part of their work to landscape fusion events in patient tumours 

(Gao et al., 2018). I annotated any fusion event that includes a kinase gene in either the 5’ 

or 3’ partner gene, but there was no significant enrichment (adj. p = 0.92). This suggests 

that although known oncogenic fusions commonly involve kinase genes, simply detecting 

a fusion involving a kinase gene gives no indication of functional relevance. In those cases, 
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the identity of the partner genes, the predicted breakpoint and the tissue context should 

be considered and functionality needs to be confirmed in further analyses. 

In-frame  

The frame of fusion transcripts is predicted using the GRASS score (see section 3.4). 

Any fusion transcript that is called with a GRASS flag of 880 and above is defined as in-

frame (Cancer IT, 2018b) and thus annotated. The gene set enrichment analysis shows that 

in-frame fusions are not significantly enriched across the FES FDR (adj. p = 0.11). This is 

perhaps not surprising, since if we assume that non-oncogenic breakpoints are randomly 

distributed across the genome, a third of breakpoints within coding regions would be in-

frame simply by chance. Since only about 4.5% of fusion transcripts have significant 

essentiality using our analyses, the majority of in-frame fusion transcripts are likely to be 

passenger events. 

COSMIC fusion census 

Here, I annotated any fusion transcript between two specific partner genes that are 

listed in the COSMIC fusion census. The census is a manually curated database for gene 

fusions for which there is published evidence of their involvement in cancer processes 

(https://cancer.sanger.ac.uk/cosmic/fusion). There is a clear and significant enrichment of 

fusion transcripts that are listed within the COSMIC fusion census (p < 0.0004). This 

enrichment suggests that my computational approach is able to detect functional cancer 

driver fusion with good sensitivity. Fusion transcripts that match the COSMIC fusion census 

are discussed in further detail in section 6.3 below. 

COSMIC gene census  

This category includes fusion events that involve a gene that is listed in the COSMIC 

gene census, a data-base of manually curated cancer driver genes 

(http://cancer.sanger.ac.uk/census). Known cancer driver genes that are fused may have 

cancer-related functionality. For example, fusions of oncogenes can lead to constitutive 

activation of a kinase, e.g. in the case of BCR-ABL1 and NPM1-ALK, or of a transcription 

factor binding site, e.g. in CRTC1-MAML2. Nonetheless, I observe no enrichment of fusions 

involving cancer driver genes in the FES FDR’s (p = 0.33). This suggests that gene fusions 

in cancer driver genes might be common and researchers that observe such fusions in 

individual samples should be careful not to over-interpret those findings without 

additional evidence of functionality.  

https://cancer.sanger.ac.uk/cosmic/fusion
http://cancer.sanger.ac.uk/census
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(Recurrent in) patient samples 

Here, I annotated any fusion that was reported by Gao et al. (Gao et al., 2018) in 

their high-throughput RNA-seq analysis of almost 10,000 TCGA patient samples. A 

recurrent patient sample is any fusion that is reported in at least two or more different 

samples. That neither category was significantly enriched for low FES FDR’s (p = 0.33 and 

0.42 respectively) underscores the fact that mere observation of a fusion, even if recurrent, 

is not a good predictor of potential functionality of a fusion.  

Significant in ANOVA 

This category contains any fusion that is significantly (FDR < 25% and Glass Deltas > 

1) associated with any drug as part of the fusion-drug-association analysis (see chapter 3). 

That this category is significantly enriched is perhaps not surprising, as it contains several 

known oncogenic driver fusions.  

In total, 57 fusions fall under this category, making up 130 fusion transcripts. 10 of 

those fusions have at least one transcript that is significant at FDR < 5%. Five of the ten are 

well-known oncogenic drivers (EML4-ALK, EWSR1-FLI1, KMT2A-MLLT3, CRTC1-MAML2, 

FGFR3-TACC3). Two of the ten (FGFR2-ATE1, ERBB2-JUP) are known confounded events, 

as described in chapter 3.  

A further 3 fusions belong to neither category (APIP-SLC1A2, SLC12A7-TERT, LRP5-

RP11-554A11.9). However, it is important to note that mapping sgRNA were unequally 

distributed across the fusions. In APIP-SLC1A2 and SLC12A7-TERT, mapping sgRNA were 

concentrated in a single gene that also had no non-mapping sgRNA (Figure 6.4A). Unlike 

fusions with differentially mapping sgRNA within the same gene, this type of mapping 

status makes false positives more likely when the gene with mapping sgRNA is essential in 

the cell line regardless of the fusion status, as in Figure 6.4B. Similarly, the LRP5-RP11-

554A11.9 fusion only has sgRNA mapping onto the LRP5 gene, as the 3’ portion aligns to 

an uncharacterised mRNA RP11-554A11.9. The significance of non-protein forming mRNA 

is currently unknown.  
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While these fusions have been found in multiple cell lines, CRISPR-screening data 

was only available in a single cell line. Future CRISPR-screening data in the untested cell 

lines may reveal either opposing or supporting evidence for the functionality of these 

fusions. 

6.3 Detection of known oncogenic gene fusions 

Across all tests performed, 61 transcripts involved genes in the COSMIC fusion 

census. This involves 30 unique fusion events with 20 unique fusions. The remaining 31 are 

fusion transcripts with alternative breakpoints (n = 18) and the same fusion transcripts 

tested with data from another data set (n = 13). 

Of the 30 unique fusion events, 16 (53%) have a significant FDR of < 5% in at least 

one transcript in one data set. These include extensively studied oncogenic fusions, 

including EWSR1-FLI1, KMT2A-MLLT3, EML4-ALK and others (Figure 6.5A). Two more fusion 

events, KMT2A-MLLT3 in NOMO-1 and NPM1-ALK in KARPAS-299, narrowly miss the FDR 

threshold at FDR = 11.8% and 13.5% respectively (Figure 6.5B).  

A further twelve (40%) fusion events that match the COSMIC fusion census have an 

insignificant FDR at > 25%. However when I manually curated these fusions, they were 

linked to single publications (Figure 6.6). Six of the seven (PLXND1-TMCC1, EIF3K-CYP39A1, 

PLA2R1-RBMS1, NFIA-EHF, MBOAT2-PRKCE and SLC26A6-PRKAR2A) were detected in the 

  

Figure 6.4: Visualisation of selected fusions with high significance in both the drug-association analysis and 

the fusion essentiality analysis. (A) uncharacterised fusions and (B) known confounded fusions. 
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same paper which described somatic rearrangements in 24 human breast cancer genomes 

(Stephens et al., 2009). Notably, none of the six fusion transcripts were described or even 

named in the main text, so the inclusion into the COSMIC fusion census is likely to have 

been due simply to detection. Further, three of the above fusions were tested in two 

different data-sets and the lack of significance is in agreement in all tests conducted (Figure 

6.6B-D) 

A seventh fusion, an ARID1A-MAST2 fusion in the breast cancer cell line MDA-MB-

468, was described in a publication by Robinson and colleagues (Robinson et al., 2011) in 

the exact same cell line. In their publication, siRNA knock-down of microtubule associated 

serine/threonine kinase 2 (MAST2) mRNA led to reduced cell growth of MDA-MB-468, and 

introduction of MAST2-fused gene vectors into a control cell line produced accelerated cell 

growth. The authors did not perform experiments that tested whether this effect was 

caused by the specific fusion transcript, or whether these cell lines are simply more reliant 

on MAST2. By chance, MDA-MB-468 was screened across two different data-sets, Project 

Score and Achilles and the FES for the ARID1A-MAST2 fusion is significant in neither (Figure 

6.6A). Notably, several MAST2-targeting sgRNA in both the Achilles (n = 2), as well as the 

Project Score (n = 3) data show high depletion levels (i.e. scaled logFCs < -1) in at least 2 

other samples, which suggests that the sgRNA are functional and the lack of depletion is 

 

Figure 6.5: Visualisation of scaled log fold-changes across well-studied oncogenic gene fusions for both (A) 

highly significant examples at 5% FDR and (B) less significant examples at FDR < 25%. 
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not a false negative. Considering the negative finding and that aside from the original 

publication in 2011, no other publication has since been published on ARID1A-MAST2, I 

conclude that the evidence for functionality of the ARID1A-MAST2 gene fusion in breast 

cancers is unclear and the fusion may constitute a passenger event rather than an 

oncogenic driver.  

To sum up the above two paragraphs, I argue that for the seven fusions described 

above, despite their inclusion in the COSMIC fusion census, evidence for their functionality 

is weak and that they should thus be removed when considering the sensitivity of my 

computational approach to detect true positive fusions. 

Thus considering only the remaining 23 fusion transcripts, my approach detects 16 

(70%) with a stringent 5% FDR threshold and 18 (78%) using a less stringent 25% FDR 

threshold.  

  

 

Figure 6.6: Visualisation of scaled log fold changes for seven fusion transcripts that match the COSMIC fusion 

census. A-D were tested by multiple data-sets (Project Achilles and Project Score). 
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Table 6-2: All 30 fusion events that match the COSMIC fusion census, ordered by FDR. Thick black borders 

denote stringent threshold (FDR < 5%), permissive threshold (FDR < 25%), not significant fusion events and 

not significant fusion events excluded for reasons described in section 6.2. In patient samples refers to fusions 

found in TCGA samples by Gao and colleagues (Gao et al, 2018). Excl refers to fusions which are excluded 

due to weak evidence of functionality. 

Cell line Fusion name FES p-value FDR In patient tumours? Excl? 

ES4 EWSR1-FLI1 1.82 0 0 No 
 

ES6 EWSR1-FLI1 2.43 0 0 No 
 

ES8 EWSR1-FLI1 1.97 0 0 No 
 

EW-16 EWSR1-FLI1 2.18 0 0 No 
 

EW-7 EWSR1-FLI1 1.96 0 0 No 
 

KM12 TPM3-NTRK1 1.92 0 0 Yes 
 

MC-IXC EWSR1-FLI1 2.32 0 0 No 
 

MHH-ES-1 EWSR1-FLI1 2.69 0 0 No 
 

MOLM-13 KMT2A-MLLT3 2.31 0 0 Yes 
 

NB4 PML-RARA 2.12 0 0 Yes 
 

NCI-H3122 EML4-ALK 4.47 0 0 Yes 
 

OCI-AML2 KMT2A-MLLT4 3.05 0 0 No 
 

RT-112 FGFR3-TACC3 4.18 0 0 Yes 
 

SBC-3 BRD4-NUTM1 3.84 0 0 No 
 

THP-1 KMT2A-MLLT3 1.41 0 0.31 Yes 
 

H3118 CRTC1-MAML2 4.4 0 0.78 No   

NOMO-1 KMT2A-MLLT3 1.89 0.005 11.77 Yes 
 

KARPAS-299 NPM1-ALK 0.76 0.006 13.48 No   

RT4 FGFR3-TACC3 2.62 0.102 46.82 Yes   

HCC-78 SLC34A2-ROS1 2.35 0.146 51.12 Yes 
 

EGI-1 PTPRK-RSPO3 0.64 0.363 73.38 No 
 

SUP-M2 NPM1-ALK 0.08 0.436 81.64 No 
 

ESO51 EIF3E-RSPO2 -0.9 0.644 88.68 No   

HCC38 SLC26A6-PRKAR2A 0.29 0.156 52.52 No Y 

HCC1395 EIF3K-CYP39A1 0.77 0.165 53.26 No Y 

HCC1937 NFIA-EHF 0.29 0.155 59.92 No Y 

HCC1395 PLA2R1-RBMS1 0.24 0.264 69.85 No Y 

MDA-MB-468 ARID1A-MAST2 0.16 0.373 74.32 No Y 

HCC38 MBOAT2-PRKCE 0.05 0.458 79.48 No Y 

HCC1187 PLXND1-TMCC1 -0.07 0.523 83.58 No Y 
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6.4 Reproducibility of significant FES across data sets 

In order to understand the reproducibility of significant FES in different testing 

conditions and with different sgRNA libraries, I next examined the significantly essential 

fusion events tested in different data sets. In total, 27 significantly essential (FDR < 5%) 

fusion events were tested in two different data sets. None was tested by all three data 

sources. Of those, only 10 (37%) were significant at a less stringent FDR < 25% threshold 

in both data sets (Figure 6.7A). Among those that replicate across multiple data sources, I 

observe a large number of known cancer drivers, e.g. KMT2A-MLLT3, PML-RARA, TPM3-

NTRK1.  

In previous chapters I showed that non-differentially mapping sgRNA may be more 

prone to false positive errors. Thus, I was interested to examine whether there would be 

differences in reproducibility from FES calculated from differentially mapping and non-

differentially mapping sets of sgRNA. Indeed, I found that significantly essential fusion 

events called from non-differentially mapping sgRNA are less likely to reproduce in a 

different data set (one-tailed t-test: p = 0.033, t = -2.1; Figure 6.7B). This corresponds to 

71% of differentially mapping transcripts validating, vs. 30% for the remaining transcripts.  

An example of that is the FGFR2-MRPL13 fusion in NCI-H716, a colorectal cancer 

cell line with a known FGFR2 copy number gain (Forbes et al., 2017). In the Project Score 

data, all 8 sgRNA targeting FGFR2 and mitochondrial ribosomal protein L13 (MRPL13) are 

fusion-mapping and on average highly depleted (p < 0.001 & FDR < 0.001, Figure 6.7C). 

In the Achilles data, only a single sgRNA targeting MRPL13 maps to the fusion, while the 

non-fusion-targeting sgRNA for FGFR2 are still highly depleted, thus giving an insignificant 

result (p = 0.089; FDR > 44%).  

On the other hand, a non-reproducing result may also be caused by screening 

noise. For instance, a fusion between phosphatidylinositol binding clathrin assembly 

protein (PICALM) and MLLT10 is detected in about 7.5% of patients with T-cell acute 

lymphomas and leukaemias (Nigro et al., 2013). A previous study showed that RNAi-based 

knock-down of PICALM-MLLT10 leads to reduced viability in vitro and decreased invasive 

ability when transplanted in vivo (Okada et al., 2006). A PICALM-MLLT10 fusion in P31-FUJ, 

an acute myeloid leukaemia cell line, is significantly essential according to the Achilles data, 

but not the Wang et al data. Although in the latter, the majority of targeting guides show 
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relatively consistent high depletion, some noisiness in the data on MLLT10 non-fusion-

mapping guides yields a lower scaled logFC (Figure 6.7D).  

A third source of noisiness could arise from the Z-normalisation that I apply on 

scaled logFCs that seeks to consider how much the effect of a sgRNA differs in a given cell 

line compared to all other samples. The Z-normalisation identifies and gives weight to true 

outliers from a population. Most scaled logFCs, depending on the genes in question, are 

distributed approximately normal, with significantly depleted sgRNA often producing a 

secondary peak. However, in a noisy screen, highly exceptional depletion effects may arise 

through one-off technical artefacts, especially when a sgRNA overall shows a narrow 

 

Figure 6.7: Examination of reproducibility of significantly essential fusion transcripts across multiple data sets. 

(A) 27 fusion events that are significantly essential in at least one dataset. Numbers represent the FDR (%). 

The black line separates fusion events for which the two data sets are in concordance (top) and those in 

opposition (bottom). (B) Where two FES are available for the same fusion transcript, the FES with the higher 

FDR was assigned as “replicate” (y-axis), while the FES was assigned as either differentially mapping, or other, 

based on its mapping status. Significantly essential fusion events are more likely to be reproducible if they 

were based on differentially-mapping sgRNA (one-tailed t-test; p = 0.033; t = -2.1). (C) Non-differentially 

mapping sgRNA lead to the false positive calling of the FGFR2-MRPL13 fusion in the Project Score data. (D) 

Screening noise leads to the likely false negative result in the Wang et al. data for PICALM-MLLT10. 
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distribution of low depletion effects. In such cases, a Z-normalisation may distort data and 

yield false positives. In the short-term, this issue can be circumvented by manually 

inspecting the scaled logFCs to confirm that an assumed high depletion is also found in 

the non-normalised data. In the long-term, it would be advisable to conduct an analysis to 

compare the impact of the Z-normalisation on data distortion, and whether there may be 

better methods to solve the question of outlier-identification. 

In conclusion, while previous sections showed that my computational approach is 

able to detect known oncogenic fusions with high sensitivity, this section shows that noise 

is nonetheless expected to exist and may add false positives as well as false negatives. 

Non-differentially mapping sgRNA are especially prone to calling false positives. However, 

as due to the pre-determined sgRNA library design and as they are still effective in calling 

known true positives (e.g. TPM3-NTRK1, FGFR3-TACC3 etc; see section 6.3), I decided to 

retain these tests. However, when evaluating those results, it is important to be aware of 

any confounding factors, and consider stringent validation experiments to confirm that 

findings are indeed true positives. 

 

6.5 Overview of less studied significant fusion transcripts 

After establishing some aspects of the sensitivity and specificity of my 

computational approach in identifying true known oncogenes, I return to the aim of 

discovering novel functionality of fusion events.  

In total, 138 of the 3,349 tests returned a significant FES at FDR < 5%. Next, because 

I am specifically interested in fusions that are highly essential, but a high FES can be caused 

by non-mapping guides showing positive selection, I also filter out fusion transcripts for 

which the mean scaled logFCs of mapping guides is larger than -0.45. This leaves 93 high 

effect, significantly essential tests. The threshold of -0.45 was chosen to retain known 

oncogenic fusions. 

Out of those, 14 tests confirmed the same fusion transcripts across two data-sets.  

A further 49 of them tested the same fusion events across an alternative breakpoint. Thus, 

the number of fusion events that have at least one significant transcript from any data set 

at FDR < 5% is 65.  
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The 63 unique fusion events constitute 56 unique fusions. In total, and nine of the 

56 (16%) are COSMIC fusions (Figure 6.8). 37 (66%) fusion events involve a gene in the 

COSMIC gene census. 12 fusion events (21%) were previously observed in the ~10,000 

TCGA patient samples (Gao et al., 2018). However, here it is worth noting that some known 

oncogenic fusions are also not observed in that set of patient samples, e.g. EWSR1-FLI1, 

NPM1-ALK. This indicates that although that set of patient samples brings valuable insight 

into the landscape of fusions, it is by all means not comprehensive in representing all true 

oncogenic fusions. 4 fusion events (7%) involve a gene that is amplified and a known 

oncogenic driver and are thus likely to be false positives (ERBB2-JUP, ERBB2-LTBP4, PVT-

MYC and FGFR2-COL14A1).  

Notably, only 3 fusions are detected as significantly essential in more than a single 

cell line (Figure 6.8). These are EWSR1-FLI1 (n = 7), YAP1-MAML2 (n = 3) and KMT2A-MLLT3 

(n = 2). EWSR1-FLI1 and KMT2A-MLLT3 are both well-studied oncogenic fusions, and their 

essentiality is present in cell lines from cancer types consistent with the clinical profile, i.e. 

EWSR1-FLI1 fusions appear only in Ewing’s sarcoma and KMT2A-MLLT3 only appear in 

Acute myeloid leukaemia cell lines. The third recurrent fusion, the previously 

 

Figure 6.8: Overview of high effect significant (FDR < 5%; mean scaled logFC < -0.45) fusion transcripts from 

CRISPR/Cas9 analysis for fusion essentiality.  
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uncharacterised YAP1-MAML2 is an interesting case, which, I examine in further detail in 

the next paragraph. 

 

6.5.1 YAP1-MAML2 

Unlike any other fusion of unknown background, I found significant essentiality in 

all three cell lines in which YAP1-MAML2 was detected, AM-38 (glioblastoma), ES-2 (ovarian 

carcinoma) and SAS (head and neck carcinoma). Further, one of the samples, ES-2, was 

tested and YAP1-MAML2 was found as significantly essential in both the Achilles and the 

Project Score data, thus adding robustness and confidence in this being a true positive 

observation. Further, depletion of fusion-mapping sgRNA targeting MAML2 is specific to 

the three cell lines with the YAP1-MAML2 fusion (Figure 6.9B). One notable exception is 

the head and neck cell line H3118, which harbours the known oncogenic CRTC1-MAML2 

fusion.  

While multiple transcripts are found in AM-38 (n = 2) and SAS (n = 3), one of the 

breakpoints is conserved across all three cell lines. This breakpoint of position 102,206,074 

and 96,093,517, both on chromosome 1, produces an in-frame transcript that brings 

together exons 1-5 of YAP1 and exons 2-5 of MAML2 (Figure 6.9C). In order to confirm the 

presence of the fusion transcript, we performed PCR validation using cDNA purified from 

the cell lines, interphase FISH and fibre-FISH (Figure 6.9D-E) 4.  

Interestingly, although YAP1-MAML2 has never been functionally characterised to 

date, it was previously reported in a nasopharyngeal carcinoma, a sub-type of head and 

neck carcinomas, where the authors showed that the fusion is likely to result from a 

coupled inversion (Valouev et al., 2014). A YAP1-MAML2 fusion was also detected in a skin 

cancer sample analysed as part of the ~10,000 TCGA patient samples (Gao et al., 2018). 

Strikingly, in both of those patient samples, the breakpoint of the fusion is conversed and 

identical to that found in our cell lines. 

                                                 

4 The follow-up work on the YAP1-MAML2 fusion was performed in close collaboration with 

Gabriele Picco, a post-doctoral researcher at the Wellcome Sanger Institute. Gene set enrichment 

analysis, PCR validation and FISH were planned and performed by him. Methods are described in 

Picco* and Chen*, et al (manuscript under review). 
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The evidence above strongly suggest that it is indeed the YAP1-MAML2 fusion and 

not the individual genes themselves that are essential for cell line survival. YAP1 

overexpression has previously been linked to oncogenic effects in multiple solid tumours. 

For instance, an expression signature related to YAP1 overactivation is associated with poor 

prognosis in colorectal cancer (Lee et al., 2015b). In pancreatic carcinomas YAP1 activation 

 

 

Figure 6.9: Novel functionality for YAP1-MAML2 fusion found in three cell lines. (A) CRISPR profiles in all 

three cell lines. ES-2 was tested in both Project Score and Achilles guide libraries. All p < 0.001 & FDR < 

0.001. (B) Fusion-targeting sgRNA for MAML2 are uniquely depleted in MAML2-fused cell lines. (C) Exons 1-

5 of YAP1, which contain the TEAD binding domain, are fused to exons 2-5 of MAML2, which contains a 

transcription activation domain (TAD). (D) Interphase FISH in AM-38 and Fibre-FISH in AM-38, ES-2 and SAS 

confirm the presence of the YAP1-MAML2 fusion in all three cell lines. (E) PCR validation of the fusion in all 

three cell lines. HCT116 is a negative control without the fusion. (F) Gene set enrichment analysis shows YAP-

conserved signature as the top most enriched gene set in cell lines with YAP1-MAML2 fusion (adj. p < 0.001). 

(G) YAP-conserved signature is enriched when comparing ES-2 against all other ovarian cancer cell lines and 

SAS against all other head and neck cell lines. Conversely, the tissue prototypic signatures (i.e. oestrogen 

response and KRAS signature respectively) are negatively enriched in the fused cell lines.  
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bypassed KRAS addiction (Kapoor et al., 2014). In oesophageal cancer, YAP1 upregulation 

led to EGFR expression and resistance to chemotherapy (Song et al., 2015).  

The oncogenic function of YAP1 is typically attributed to its role as a transcriptional 

co-activator that activates the Hippo pathway. Previous work shows that Hippo pathway 

activation is driven in particular with binding to the TEA domain transcription factor 1 and 

2 (TEAD1/2) (Harvey et al., 2013). On the other hand, MAML2 is a transcriptional co-

activator normally involved in NOTCH signalling (Kitagawa, 2016). MAML2 is also known 

in the context of the well characterised CRTC1-MAML2 fusion. There, the CREB binding 

domain encoded in the exon 1 of CRTC1 is fused to the transcriptional activation domain 

on exons 2-5 of MAML2, leading to constitutive activation of the CREB signalling pathway. 

As a direct result of that, a ligand to EGF receptors, AREG, is upregulated, which thus 

induces oncogenic activity through the EGFR signalling pathway (Chen et al., 2014). 

As the protein resulting from the YAP1-MAML2 fusion contains both the 

transcriptional activation domain of MAML2 and the TEAD-binding domain of YAP1, I 

hypothesised that the fusion may lead to constitutive activation of the YAP1/TEAD 

signalling pathway. In accordance with that, we performed a gene-set enrichment analysis 

comparing the three YAP1-MAML2 fusion positive cell lines against all others. Of 189 

pathways tested, the YAP1-conserved signature was the top most significantly enriched 

(adj. p < 0.001) (Figure 6.9F). YAP1-conserved signature was also enriched when ES-2 was 

compared against all other ovarian cancer cell lines and SAS against all other head and 

neck cell lines, while expression of prototypic tissue-specific oncogenic signatures, such as 

oestrogen receptor signalling in ovary, were depleted (Figure 6.9G).  

In summary, my data suggests strongly that recurrent YAP1-MAML2 fusions are 

associated with increased YAP1 signalling and essential for cell fitness. In the future, it 

would be interesting to follow-up the question of whether YAP1-MAML2 fused tumours 

respond to inhibitors of YAP1 and other members of the Hippo-signalling cascade.  

 

6.5.2 RAF1 fusions 

Another interesting vignette revolves around RAF1 fusions, of which two instances 

are significantly essential in the CRISPR/Cas9 analysis. Rare RAF1 fusions have been 

reported in several patient tumours across multiple tissue types, including a SRGAP3-RAF1 

fusion in pilocytic astrocytoma, a HACL-RAF1 fusion in pancreatic acinar cell carcinoma and 
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an ESRP1-RAF1 fusion in prostate adenocarcinoma (Chmielecki et al., 2014; Jones et al., 

2009; Palanisamy et al., 2010) (Figure 6.10A). The fusions all preserve the kinase domain in 

RAF1 while removing an N-terminal auto-inhibitory domain, which likely leads to MAPK 

pathway activation. In particular, fibroblast cells transduced with the SRGAP3-RAF1 showed 

increased phosphorylation of MEK1/2 and exhibited anchorage-independent growth 

(Jones et al., 2009). Similarly, ESRP1-RAF1 transduced cells showed increased cell 

proliferation and were sensitive to RAF and MEK inhibitors (Palanisamy et al., 2010).  

In our cell line panel, we detect a MBNL1-RAF1 fusion in the acute myeloid 

leukaemia cell line OCI-AML2, which is consistent with two previous high-throughput 

analyses (Klijn et al., 2015; Wang et al., 2017). We also identify a previously unreported in-

frame ATG7-RAF1 fusion in a pancreatic adenocarcinoma cell line, PL-5. Both fusions are 

significantly essential at p < 0.001 and FDR < 0.5% (Figure 6.10B).  

An ATG7-RAF1 fusion was previously also found in another KRAS wild type 

pancreatic cancer cell line, PL5, which is not in our cell line panel (Giacomini et al., 2013). 

There, the authors already showed that cell growth of PL5 was inhibited upon siRNA 

knockdown of ATG7.  

To characterise ATG7-RAF1 in PL-18, we confirmed the presence of the fusion of 

autophagy related 7 (ATG7) to RAF1 by Sanger sequencing across the breakpoint and 

interphase FISH (Figure 6.10C) 5. Like the RAF1-fusions found in patients and in PL5, the 

breakpoint of ATG7-RAF1 leads to deletion of the N-terminal regulatory domain while 

preserving the kinase domain (Figure 6.10D). Unlike most pancreatic cell lines, PL-18 also 

retained wild-type KRAS (28 of 32 cell lines are mutated in KRAS). In our high-throughput 

drug screening data, PL-18 nonetheless showed high sensitivity to MEK-inhibitors 

trametinib and PD0325901 (Figure 6.10E), which suggests that MAPK pathway signalling is 

still essential. The result from the high-throughput drug screening was validated by 

exposing both PL-18, OCI-AML2 (MBNL1-RAF1 fused) and a negative control cell line, 

SU8686 to trametinib over 72 hours and observing viability compared to the same cell lines 

exposed to DMSO. Both PL-18 and OCI-AML2 showed similarly strong loss of viability 

                                                 

5 Validation experiments for RAF1-fused cell lines were performed in collaboration with 

Gabriele Picco. He designed and performed/delegated validation drug screens, FISH and Sanger 

sequencing. Methods are described in Picco & Chen, et al. (manuscript under review). 
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(Figure 6.10F). Furthermore, PL-18 was the only pancreatic cell line in our panel for which 

sgRNA targeting the fused portion of ATG7 were significantly depleted (Figure 6.10G). 

The above experiments provide strong evidence that the ATG7-RAF1 fusion is 

essential for the viability of the PL-18, likely through the upregulation of the MAPK pathway. 

By mining sequencing data for 126 pancreatic adenocarcinoma PDX models, we identified 

one KRAS wild-type tumour with a PDZRN3-RAF1 fusion (PA2409; supplied by CrownBio), 

which suggests that RAF1 fusions are likely to also be found in clinical pancreatic 

adenocarcinoma.  

 

Figure 6.10: Essential ATG7-RAF1 fusion identified in pancreatic cancer cell line PL18. (A) Tissue types where 

RAF1 fusions have previously been identified. (B) RAF1 fusions are significantly depleted in the CRISPR/Cas9 

analysis. (C) Capillary sequencing and FISH confirm the presence of a fusion breakpoint. (D) Exon 18 of ATG7 

is fused to exon 7 if RAF1. (E) Across 29 pancreatic cancer cell lines, PL18 is among the most sensitive to MEK 

inhibitors trametinib and PD0325901. (F) Drug response curves of OCI-AML2, PL18 and a negative control 

pancreatic carcinoma cell line SU8686. (G) Among pancreatic carcinoma cell lines, PL18 is the only one for 

which sgRNA targeting sgRNA are depleted. 
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Thus, our data provides evidence for the second instance of a functional ATG7-

RAF1 fusion in pancreatic cancer cell lines. This indicates that RAF1 fusions in pancreatic 

cancer cell lines may have a higher incidence than previously believed. Further, we show 

for the first time that cell lines carrying the fusion are sensitive to MEK inhibition, 

highlighting that this rare subtype of KRAS wild-type pancreatic carcinomas is potentially 

clinically actionable. 

6.5.3 BRD4-NUTM1 

The BRD4-NUTM1 fusion typically characterises a rare and aggressive disease 

termed NUT midline carcinoma, a subtype of head and neck carcinomas (French, 2010). It 

involves the fusion of the N’-terminal bromodomains of bromodomain containing 4 (BRD4) 

at exon 9 with virtually the entire NUT midline carcinoma family member 1 (NUTM1) gene 

at exon 2. Although usually only expressed in testis, the fusion puts NUTM1 under the 

control of the BRD4 promoter, leading to ubiquitous expression (French et al., 2003). 

Through siRNA knock-down, the fusion has been shown to prevent differentiation and 

proliferation, although the exact mechanism of action is currently poorly understood 

(French et al., 2008). Importantly, in an initial study four fusion-positive patients responded 

well to the BET inhibitor OTX015/MK-8628, with resulting disease stabilisation and tumour 

regression (Stathis et al., 2016). 

Curiously, in our cell line panel, we find two cell lines with BRD4-NUTM1 fusions. 

One, RPMI-2650 is a known cell line of NUT midline carcinoma that is sensitive to BET 

inhibitors (Stirnweiss et al., 2017). Another, SBC-3 is a small cell lung cancer cell line, which 

carries a BRD4-NUTM1 fusion with the canonical break point (Figure 6.11A). Intriguingly, 

BRD4-NUTM1 has a significant fusion essentiality score in SBC-3 (Figure 6.11B), which 

suggest that it is necessary for tumour maintenance. Follow-up experiments by 

collaborator Gabriele Picco confirmed that NUTM1 is highly expressed in the cell line and 

that SBC-3 is just as sensitive to BET inhibition as RPMI-2650 (Figure 6.11C-D).  

This observation is in line with a previous study that found NUTM1 fusions in small 

cell lung cancer patients (Taniyama et al., 2014). Together, our findings suggest that rare 

BRD4-NUTM1 fusions may play a functional role in small cell lung cancers and may indicate 

a sensitivity to treatment with BET inhibitors in some small cell lung cancer patients. 
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Figure 6.11: Essential BRD4-NUTM1 fusion identified in small cell lung cancer cell line SBC-3. (A) Illustrated 

fusion breakpoint. (B) BRD4-NUTM1 fusions are significantly depleted in the CRISPR/Cas9 analysis. (C) 

NUTM1 is highly expressed in SBC-3 and RPMI2650 compared to all other cancer cell lines. (D) Drug response 

curves of RPMI-2650, SBC-3 and a negative control small cell lung carcinoma cell line NCI-H196. 
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6.6 Chapter summary and discussion 

6.6.1 Summary and implications of findings 

In this chapter, I described the development and implementation of a novel 

computational approach to identify functional gene fusions using existing CRISPR/Cas9 

whole genome screening data. I applied the approach on 371 cell lines for which screening 

data was available and tested the functional essentiality for the 2,821 fusion transcripts for 

which at least one sgRNA was available.  

My method of mapping sgRNA effects on a per-transcript basis was able to identify 

78% of known oncogenes as essential at FDR < 25%. I also highlighted several cases of 

recurrent fusions in the COSMIC fusion census with weak evidence of oncogenic activity 

(section 6.3).  

Across all transcripts tested, the method identified 59 fusions in 63 events as being 

high-effect significantly essential (FDR < 5% and mean scaled logFC < -0.45). This 

represents just 2.7% of all fusions tested. I also found that within fusion essentiality scores 

with highly significant FDR, there was an enrichment only for known oncogenic fusions and 

fusions with significant drug associations. No such enrichment was found for other 

categories, e.g. in-frame fusions, kinase genes or fusions found in patients. Together, the 

evidence strongly suggests that in tumours, out of all detectable fusion transcripts, the vast 

majority are likely to be passenger events resulting from wide-spread structural 

rearrangements.  

In this chapter, I described two instances where my approach identified new 

oncogenic roles for 1) a previously uncharacterised fusion and 2) a fused oncogene in a 

novel tissue context.  

I showed that the fusion of the TEAD-binding domain of YAP1 and the transcription 

activation domain of MAML2 is likely to lead to constitutive activation of YAP signalling 

pathways in a fashion that is essential to tumour viability. Unlike most oncogenic fusions 

that are tissue-specific (e.g. EWSR1-FLI1 in Ewing’s sarcoma, BCR-ABL1 in chronic myeloid 

leukaemia etc), YAP1-MAML2 is detected and predicted to be essential in multiple tissue 

types including head and neck carcinomas, glioblastoma and ovarian carcinomas. This is 

perhaps less surprising considering that YAP1 overexpression has been linked to 
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oncogenic function ranging from poor prognosis, chemoresistance and bypass of KRAS 

addiction in multiple types of solid tumours. Several YAP1 inhibitors are currently in 

development, and in the future it would be interesting to test whether they would cause 

decreased viability cell lines, xenografts and tumours harbouring YAP1-MAML2 fusions. 

Positive results in these types of experiments would provide evidence to support testing 

and treating patients for YAP1-MAML2 positive tumours. 

In a second case, the ATG7-RAF1 fusion in a KRAS wild-type pancreatic 

adenocarcinoma cell lines describes a RAF1 fusion with a novel fusion partner in a novel 

tissue context. Like previously described RAF1 fusions, the upregulation of the MAPK 

pathway are likely driven by the deletion of N-terminal auto-inhibitory domain on RAF1. 

Cell lines with RAF1 fusions were indeed extremely sensitive to MEK1/2 inhibition by 

trametinib. The ATG7-RAF1 fusion demonstrates an alternate and potentially 

therapeutically targetable mechanism of MAPK pathway activation in a tissue type for 

which the majority of cancers are driven by KRAS mutations.  

6.6.2 Limitations of approach 

My computational approach of calculating fusion essentiality has a number of 

caveats. The most obvious caveats stem from the fact that the CRISPR/Cas9 whole genome 

guide libraries were of course originally designed with different objectives in mind.  

Skewed sgRNA distribution across fused genes  

In the ideal experiment, sgRNAs should be distributed equally across both fused 

and un-fused portion of the involved genes. However, in 45% of tests conducted (chapter 

5.3.2), I observe skewed distributions where one of the fused partners has sometimes 

exclusively mapping guides, while the other gene partner has exclusively non-mapping 

guides.  

In situations like those, without additional knowledge, it is difficult to call fusion-

specific essentiality. False positives are more likely to occur, when a gene is essential 

regardless of fusion status, which is illustrated in the example of the ERBB2-JUP fusion 

which has a significant FES despite being a passenger fusion event (section 6.1.1). 

Additionally, in section 6.4 I show that reproducibility for unknown fusion transcripts is 

lower when the sgRNA are not differentially mapping. 

A more suitable sgRNA library design would potentially include equal numbers of 

sgRNA that target the 5’ and 3’ regions of the genes. In the present situation, it is important 
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to bear in mind the distribution of sgRNA when analysing the results of this analysis. For 

fusions of potential clinical interest, it would be advisable to use follow-up validation 

experiments to confirm the fusion-specific essentiality before drawing strong conclusions.  

Noise and unpredictability of CRISPR/Cas9 whole-genome screens 

In addition to the distribution and number of sgRNA on fusions, the effectiveness 

of sgRNA is also a source of potential biases. Effectiveness of sgRNA can be biased by 

screening noise, as well as by sgRNA design effected by both known and unpredictable 

biases. Different sgRNA targeting the same genes can exhibit large variation in term of 

depletion effect size, with biases emerging for example from GC content of the guide 

target sequence, position of the target sequence along the gene and even the nucleotide 

identity at specific guide RNA positions (e.g. a guanine at position 20 is strongly preferable 

and adenines at positions 9-19 are favourable) (Doench et al., 2014; Wang et al., 2014).  

For that reason, whole genome CRISPR/Cas9 screens prefer to deploy multiple 

sgRNA’s per gene, ranging from 4-10 across the three data-bases. In chapter 5.3.2 I showed 

that screens using 5 sgRNA per gene can give good retrieval of essential genes (possibly 

improved by performing multiple biological replicates). In this analysis, only 76% of fusion 

transcripts in the screened cell lines have any mapping sgRNA. Where tests were 

conducted, although the median number of sgRNA are very similar (~4-5 sgRNA per 

fusion), the distribution is much broader and about 20% of fusion transcripts have only 

one or two mapping sgRNA (see chapter 5.3.2). 

Improving computational techniques 

Inefficiencies in sgRNA library design could be addressed through a redesign of the 

library. However, this is perhaps unrealistic, considering the time, resources and specialist 

knowledge necessary to undertake that task and to subsequently carry out the 

CRISPR/Cas9 drop-out screens. Instead, the computational approach could be improved 

to consider and highlight any potential short-comings. 

In relationship to the noisiness around screening data addressed above, it would 

for example be interesting to be able to approximate the effectiveness of a single sgRNA 

across the entire gene. This may mean calculating how much it varies compared to the 

depletion effect on the gene as a mean of all sgRNA, or more simply by setting a threshold 

on the number of samples an sgRNA has a strong deleterious effect on (for instance, this 

could be achieved by calculating a sgRNA-level BAGEL score). sgRNAs with low 
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effectiveness could then be removed from the down-stream calculations, which should 

lead to lower noise and more accurate fusion essentiality calling.  

Further, part of the analytical process involves calculating a Z-score of the scaled 

logFC’s across all cell lines for a given sgRNA. This Z-score may distort data when there are 

screening artefacts leading to extreme outliers (see chapter 5.3.4). To reduce noise from 

distortion, it may be useful to remove cell lines with particularly bad data quality, for 

instance by implementing a threshold on the AUC of the precision-recall curves (see 

chapter 5.3.2). Also, one could investigate alternative methods to scaling corrected log 

fold-changes and/or to Z-normalisation. In particular, it would be interesting to see 

whether mean-centring instead of Z-normalising, or whether Z-normalisation after taking 

the difference of mapping and non-mapping sgRNA would yield better results. Good 

benchmarks to use would be the recovery of known oncogenic fusions and any skew 

towards potential biases such as amplified/deleted/essential genes (see section 6.2). 

6.6.3 Future directions & conclusion 

Implementing solutions to the potential caveats above may reduce noise and 

improve signal for any potential current false negatives. Moreover, CRISPR/Cas9 whole 

genome drop-out screening projects are still on-going, both at the Broad Institute (Achilles 

data), and here at the Sanger Institute (Project Score data). Thus, in the nearby future, we 

may fill out further gaps in the 640 cell lines for which there is currently no screening data 

available. Similarly, a joint project is currently underway that looks at the comparability and 

possible integration of the Achilles and Project Score data (F. Iorio, personal 

communications). sgRNA libraries share less than 2% of target locations across their sgRNA, 

and thus may complement each other where one of the libraries lack differentially mapping 

sgRNA. Similarly, the ability of being integrated in the future can lead to higher numbers 

of sgRNA per test, thus increasing robustness and reliability. 

 

Concluding, in this chapter I have demonstrated that my computational approach 

is able to 1) detect known oncogenic fusions with high accuracy and 2) provide leads for 

novel oncogenic functionality of previously unknown fusions. My findings also suggest that 

truly functional, oncogenic fusions are exceedingly rare (< 2.7% in my data), and thus that 

the vast majority of detected fusions are likely to be passenger events. As my approach 

leverages high-throughput data to examine the essentiality of fusions in a large-scale 
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manner to examine even rare (n = 1) events, it opens up new possibilities of oncogene 

detection. Future advances in data collection will hopefully allow us to discover more 

functional oncogenic fusions as targets of personalised medicine. 
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7 Discussion and conclusion 

At the beginning of this dissertation, I stated the aim of identifying functional gene 

fusions in cancer. To achieve the goal, I created a catalogue of gene fusions and developed 

computational approaches that integrated data from several high-throughput screens.  

In this final chapter, I will first briefly summarise and discuss the important learnings 

and implications of the previous chapters. Finally, I conclude by reflecting on the overall 

contribution that this work has made and discussing the opportunities that are opening 

up in the future.  

7.1 Interpreting fusion-calling algorithms to create a catalogue of gene fusions 

(Chapter 2) 

I filtered and annotated processed RNA-Seq data and created a catalogue of 8,354 

gene fusions in 1,011 cancer cell lines (chapter 2). My benchmarks of 945 PCR validations 

and two independent sets of RNA-Seq data in 23 cell lines showed that fusion transcripts 

called by individual algorithms can be unreliable and contain a large proportion of false 

positive fusions. Using multiple different fusion-calling algorithms and only considering 

the overlap of different fusions returned the most reliable set of fusions based on my 

analyses. 

These conclusions are in line with other studies that examined fusion transcripts 

identified from RNA-Seq data. Meta-analyses of multiple fusion-calling algorithms found 

large discrepancies in performance, not only between fusion-calling algorithms, but even 

within the same algorithm depending on the type of sample (Carrara et al., 2013; Haas et 

al., 2017; Kumar et al., 2016). Similarly, recently published papers are now also starting to 

utilise multiple fusion-calling algorithms for an individual study (Gao et al., 2018). 

Altogether, the reliability of the algorithms is currently a weak point in the interpretation 

of RNA-Seq fusion calling data, and the community should be cautious when interpreting 

otherwise unvalidated lists of gene fusions called using single algorithms.  

As of now, different analyses use different ways of benchmarking the validity of 

gene fusions. Some choose to validate a small subset of gene fusions by PCR, some 

consider breakpoints confirmed by whole genome sequencing as true positives and yet 

others only validate a small number of fusions that are of particular interest due to a pre-

existing connection to cancer. Each approach has its own weaknesses and validation rates 
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are often incomparable across different studies. The community has yet to construct a 

gold-standard set of techniques, quality controls or benchmarks. This is further 

complicated by the fact that different samples can have vastly different characteristics, be 

it read length, read depth, sequencing type (single vs. paired-end), which may cause further 

discrepancies between samples called even by the same algorithm.  

Altogether, fusion-calling algorithms still have a way to go before being able to 

reliably minimise false negatives and false positives. However, the first algorithms were 

only developed in 2009, and at the speed at which technologies are being developed, we 

may soon see rapid improvements. Most algorithms were developed with samples 

sequenced with ~30 M read pairs. The average RNA-Seq data used in my dissertation 

contains 70-230 M read pairs (corresponding to ~36-89X) that were made possible by the 

large-scale sequencing pipelines that are developed both by CCLE, as well as here at the 

Wellcome Sanger Institute. Algorithms trained on samples like this, once the correct 

parameters and filtering criteria are identified, may be able to utilise the high read-depth 

to return more accurate results as well as picking up gene fusion that are lowly expressed. 

For now, the validation rate of the fusions used in my analysis is approximated at 

~70%. While it is important to be mindful of potential false positives that will be found in 

the data, it is nonetheless possible to extract meaningful biological information on cancer-

related fusions, as I showed in my subsequent analyses.  

7.2 Landscape of the occurrence and recurrence of gene fusions in the cancer 

cell line panel (Chapter 3) 

Next, I examined the landscape of this catalogue of gene fusions. I found that the 

occurrence of gene fusions in cancer cell lines of different tissue types of origin correlated 

well with those found in patient samples. Similarly, the fusions that are known to be cancer-

related (e.g. BCR-ABL1, ALK fusions, EWSR1-FLI1), are found almost exclusively in cell lines 

of the expected tissue type of origin. Overall, this indicates that the cell line panel can be 

a useful model for gene fusions in cancer.  

In this chapter I also describe how recurrent fusions are incredibly rare, with 96% 

of the gene fusions in our catalogue only occurring in a single cell line. In fact, only 237 

fusions (1%) were recurrent in three or more samples. I found a similar pattern of 

recurrence in the gene fusions identified in almost 10,000 patient samples, which shows 
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that it is not a specific characteristic of the genomic instability of cell lines. Importantly, I 

found that some commonly observed known oncogenic fusions are found in our cell line 

collection, but not in the almost 10,000 patient samples, e.g. EWSR1-FLI1, NPM1-ALK and 

BRD4-NUTM1. This is likely to be due to a bias in tissue representation, illustrating that 

even with large overall sample sizes and with the low recurrence of gene fusions, current 

resources are unlikely to be comprehensive. Increasing our number of sequenced cancer 

types and models will likely provide opportunities to increase representation of missing 

cancer subtypes.  

Finally, I examined the representation of gene fusions according to the predicted 

frame of the breakpoints. Overall, known functional fusions were overwhelmingly in-frame 

events, which is to be expected considering that most chimeric proteins must retain intact 

catalytic domains. On the other hand, the remaining gene fusions had a much wider spread 

of predicted fusion outcomes, including out-of-frame fusions, UTR fusions and others. As 

most not in-frame events are likely to be passenger events, this further underscores that 

the many of the fusions found in this analysis are likely to be passenger events.  

Overall, this chapter was a mainly descriptive look into the occurrence and 

recurrence of gene fusions across our panel of 1,011 cancer cell lines. In order to delve 

deeper into the analysis of functional fusions, it is necessary to involve other data sets that 

can link the occurrence of fusions to meaningful phenotypic indicators, e.g. of cell viability. 

7.3 Biomarker analysis with high-throughput screening data (Chapter 4) 

In this chapter, I used high-throughput drug screening data of over 400 drug IDs 

to find fusions that are biomarkers of drug response. My analysis reliably identified known 

cancer-related drug biomarkers, with the top hits being a sensitivity of BCR-ABl1 fused cell 

lines to ABL1 inhibitors such as Imatinib and the sensitivity of NPM1-ALK fused cell lines 

to ALK inhibitors. The detection of true positives suggest that the approach is correct, but 

unfortunately, no novel candidates showed strong enough evidence to warrant intensive 

further investigation.  

A major challenge in this analysis is probably the relatively low number of recurrent 

gene fusions reducing the statistical power of the analysis. This low sample size also means 

that even statistically significant hits are difficult to interpret, as the associations may be 

significant due to other confounding factors or simply by chance despite having performed 
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multiple-hypothesis correction. At the same time, the screened drug compounds are 

limited largely to those that were selected for showing promise in different cancer-related 

settings and targets that are currently druggable. These characteristics would have aided 

the rapid translations of any novel findings, but also mean I only test a relatively narrow 

set of potential molecular targets of cell line dependencies.  

These types of high-throughput drug screens have previously been successful at 

identifying molecular biomarkers of drug sensitivity in cancer cell lines (Barretina et al., 

2012; Garnett et al., 2012), which is also demonstrated by the efficient identification of 

known fusion-drug biomarkers. However, in the context of identifying unknown rare gene 

fusions that could play a functional role in cancer, perhaps a different approach is needed.   

7.4 Identifying essential fusions using CRISPR/Cas9 screening data (Chapter 5/6) 

In the final chapter, I developed a novel computational approach to identify 

functional gene fusions based on CRISPR/Cas9 whole genome drop-out screening data for 

339 cell lines. By mapping the coordinates of sgRNA of the CRISPR/Cas9 guide library to 

the coordinates of the gene fusions I was able to create fusion-specific depletion scores 

for 2,821 fusion transcripts (27% of total).  

My approach was able to correctly identify many known oncogenic fusions in this 

data set, including EWSR1-FLI1, PML-RARA, KMT2A-MLLT3 and EML4-ALK. Importantly, this 

method also highlighted novel fusions which produce a loss-of-fitness phenotype when 

knocked out in cell lines.  

The most interesting is perhaps a fusion in YAP1-MAML2, which has previously 

been described in patient samples of head and neck carcinoma origin, but have never 

before been functionally validated. YAP1-MAML2 was significantly essential in all three cell 

lines in which it was identified in our cell lines. YAP1 has previously been linked to cancer 

in multiple solid tumours, and I hypothesise that the functionality of the fusion is driven by 

the activation of the TEAD binding domain of YAP through the transcriptional activation 

domain of MAML2. Indeed, the YAP conserved gene expression signature is significantly 

enriched in the three cell lines compared to all other cell lines.  

That the fusion has been previously identified in the clinic gives hope that this 

finding may help real patients in the future. What is further interesting is that the fusion is 

found in three cell lines of different tissue types (head and neck, glioblastoma and ovarian 
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carcinoma), and appears to be significantly essential in all. This suggests that the 

functionality of the fusion may be tissue-type independent and argues for a broadly 

scoped approach to diagnosis and treatment. It would be interesting to test next whether 

fusion-carrying cell lines and tumours are sensitive to small molecule inhibition of YAP1 as 

well as transforming activity of the fusion. Further, understanding the frequency of this 

fusion in cancer patient populations will be important for the realisation of any treatment 

plans. 

My analysis also identified two further clinically interesting functional fusions. The 

first was an ATG7-RAF1 fusion in pancreatic cancer cell line PL-18. While this fusion has 

been identified previously in another pancreatic cancer cell line, PL5 (Giacomini et al., 2013), 

we provided evidence for the first time of the sensitivity to MEK inhibition in fused cell 

lines. Together, this indicates that RAF1 fusions in pancreatic cancer cell lines are 

potentially clinically actionable and clinically actionable in pancreatic cancer patients, 

supporting further research into the clinical use of this fusion as diagnostic marker for 

personalised treatment. 

Finally, I identified a functional BRD4-NUTM1 fusion in small cell lung cancer cell 

line SBC-3. Similarly to nut midline carcinomas in which the fusion is usually found, we 

showed that SBC-3 is sensitive to BET inhibitors. The data thus supports that using BRD4-

NUTM1 as a biomarker may provide treatment benefit in a subset of small cell lung cancer 

cell patients. 

My computational approach of identifying essential fusions from CRISPR/Cas9 data 

was able to facilitate some novel findings. Overall however, it is striking how few fusions 

(~3%) have evidence of significant essentiality in the cell lines. This strongly suggests that 

the vast majority of fusions identified in cancer models and samples are passenger events 

that are unlikely to contribute to cancer maintenance. This likely complicates the 

interpretation of RNA-Seq fusion-calling data in research and the clinic, as potentially 

important impactful fusions may be metaphorical needles in the haystack. Taken together 

with the low recurrence of even some known oncogenic fusions (e.g. BRAF and RAF1 

fusions), this means that identifying novel oncogenic fusions will need novel approaches 

beyond simply looking for highly recurrent fusions (as is currently the standard of 

identifying cancer-related mutations).  
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Using CRISPR/Cas9 data in cell lines represents one way of approaching this. There 

are still caveats that can be ironed out that may make the approach more impactful (for 

instance using larger sgRNA libraries, developing thresholds and indicators of potential 

false positive fusions, etc.). As more cell lines are being screened across large institutions 

such as the Wellcome Sanger Institute and the Broad Institute, the discoveries to be made 

with this computational approach may yet grow. The coverage of this analysis will also 

depend on the availability of models. As RNA-Seq is collected and CRISPR/Cas9 screening 

data is generated in cancer organoids, this approach can easily be transferrable into 

different model systems as well.  

7.5 Final impressions 

With the aim of the thesis in mind, as finding functional gene fusions in cancer, my 

PhD work makes the following specific contributions to the community: 

1. A catalogue of gene fusions in a panel of 1,011 cancer cell lines that will be 

released into the public domain. In the future, this resource can be 

integrated with further molecular and phenotypic annotations to make 

scientific discoveries, and may also be used by scientists who are interested 

in finding cell lines with a particular gene fusions.  

2. A computational approach to determine the specific essentiality of gene 

fusions. This approach can be replicated in future studies that generate 

RNA-Seq and CRISPR/Cas9 screening data, potentially leading to the 

discovery of further novel functional gene fusions. 

3. Evidence of the functionality of the YAP1-MAML2 fusion in three different 

cancer cell lines. My results suggest that knock-out of the fusion may lead 

to loss-of-viability in tumour, which may have direct implications for any 

future patients that present with this fusions in the clinic.  

4. The observation that only a small proportion of gene fusions have 

 evidence for functionality. Perhaps an expected result, my 

computational approach provides hard evidence that most gene fusions do 

not contribute significantly to the viability of cancer cell lines. This suggests 

that the interpretation of gene fusions identified in cancer cells should be 
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treated with caution, and that developing better approaches of identifying 

functional cancer-related gene fusions could be valuable and worthwhile.  

Overall, these contributions are only a small step towards a larger goal of providing 

a better diagnosis, treatment and care environment for cancer patients. My findings have 

been built on the work of a lot of literature before me and it is my hope that they can 

provide a stepping stone for important scientific discoveries that are yet to come.  
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8 Supplementary tables 

Here follows an index of the supplementary tables and titles. All supplementary 

tables are included as a supplement to the thesis on a USB stick. 

 

Table 8-1: Index of supplementary tables in this dissertation. 

Supp 

Table # 

Title 

1 Annotation of 1,034 human cancer cell lines used in our study and the source of 

RNA-seq data. All cell lines are part of the GDSC cancer cell line project (see 

COSMIC IDs). 

2 List of primers sequences used to validate gene fusions. 

3 List and annotation of 10,514 fusion transcripts found in 1,011 cell lines. 

4 High-throughput cell line drug sensitivity data (IC50’s) used in this study together 

with compound annotation. Column names are COSMIC id’s of cell lines. 

5 Significant results from the drug-association analysis using cancer functional 

events. 

6 Significant results from the drug-association analysis using gene fusions. 

7 Significant results from the gene-centric drug-association analysis. 

8 Fusion essentiality score and significance calculation for all 2,821 fusion transcripts 

with mapping guides. For 525 fusion transcripts where multiple data sets 

contained mapping guides, both are reported. 
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