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The recent developments in high-throughput single-cell RNA sequencing tech-

nology (scRNA-seq) have enabled the generation of vast amounts of tran-

scriptomic data at cellular resolution. With these advances come new modes

of data analysis, building on high-dimensional data mining techniques. Here,

we consider biological questions for which scRNA-seq data is used, both at a

cell and gene level, and describe tools available for these types of analyses.

This is an exciting and rapidly evolving field, where clustering, pseudotime

inference, branching inference and gene-level analyses are particularly infor-

mative areas of computational analysis.

Keywords: single-cell analysis methods and tools; single-cell genomics

While transcriptomic studies have, for many years,

provided insight into mRNA expression and regula-

tion, technological advances have allowed the quantifi-

cation of transcripts at an unprecedented resolution.

By sequencing the mRNA component of individual

single cells, it has now become possible to study gene

expression at an entirely new level, opening the door

to novel biological questions which were not possible

using population-level RNA sequencing. For example,

the variability in splicing [1–5] and allelic expression

[3,6–8] between cells has been shown, along with

analysis of the stochastic gene expression and

transcriptional kinetics [9,10]. Furthermore, single-cell

RNA-sequencing (scRNA-seq) data have allowed fine-

grained analysis of developmental trajectories [11–13]
and identification of rare cell types [14,15].

In order to obtain scRNA-seq data, cells must first

be isolated individually in an accurate and rapid man-

ner. Initially, microscopic manipulation provided a

reliable method to isolate single cells through physical

separation using a capillary pipette, and may still play

an important role in systems where few cells are avail-

able. However, the high labour and low-throughput

nature of this technique has resulted in it being sur-

passed in much current research by higher throughput

methods. Fluorescence-activated cell sorting (FACS)

provides an efficient way to isolate a large number of

cells in a rapid manner, and also allows the possibility

of labelling cells with multiple fluorescent proteins.

Size or marker selection is commonly used, and

through ‘index sorting’, the data for each cell can be

recorded as a reference in downstream analysis.

Despite the prevalence of this method, the high num-

ber of starting cells required, along with the potential

damage caused by the staining and physical stress of

the process, means it may be a problematic approach.

More recently, microfluidics have emerged as a key

method for capturing single cells, allowing isolation in

small volumes within a closed system, often followed

directly by amplification and downstream reactions.

The small volume in which these reactions occur

increases the capture efficiency and lowers the reagent
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cost. Finally, techniques involving the isolation of sin-

gle cells in microdroplets, such as DropSeq [16] and

InDrop [17], have rapidly expanded the high-through-

put nature of scRNA-seq – allowing processing of tens

of thousands of cells in a short space of time. The

small volume of reactions, once again, decreases the

cost per cell. Over time, these methods will continue to

increase in speed, efficiency and reliability, further

improving throughput of single-cell isolation.

Many protocols exist for the subsequent reverse tran-

scription (RT), amplification, and library preparation

prior to sequencing. Poly(T) priming is used to select

polyadenylated mRNA for reverse transcription, how-

ever, only an estimated 10–20% of transcripts are sam-

pled. This produces a lot of noise at the RT stage, and

particularly affects lowly expressed genes [18]. Methods

then differ in their approach to second-strand synthesis,

either using poly(A) tailing, leading to a 30 bias, or tem-

plate-switching to produce full-transcript coverage.

Amplification can be achieved through two methods:

linear in vitro transcription (IVT) or exponential PCR,

each with its own advantages and drawbacks. Ziegen-

hain et al. [19] and Svensson et al. [20] provide a com-

prehensive experimental and computational comparison

of most of the protocols commonly used. Following

cDNA amplification, library preparation is most com-

monly carried out using the commercially available

Nextera kit and sequencing on the Illumina platform,

although other methods are available.

As a relatively new field, it is key to understand the

structure and complexities of scRNA-seq data, ensur-

ing that appropriate analytical and statistical methods

are applied [21]. Particularly challenging is the high

level of noise [22], which derives primarily from the

nature of single-cell experiments (called ‘technical vari-

ation’ and is mainly due to factors such as mRNA

capture efficiency and cDNA amplification bias), along

with the biological heterogeneity of cells (‘biological

variation’). Furthermore, unlike with conventional

RNA-sequencing where experimental biases are well

studied [23,24], there are biases which are still not fully

understood in single-cell experiments, such as ‘dropouts’

due to the low amounts of starting material, leading to

false negative expression.

Single-cell RNA-sequencing is a lossy technique, and

it is not completely understood what causes the different

failure modes for samples. Practically, this means the

first step after acquiring reads from a scRNA-seq exper-

iment is to perform quality control. Reads are processed

in a similar manner to bulk RNA-seq, allowing expres-

sion quantification. It is important to check the quality

of both the raw data (which can be performed using

tools developed for bulk RNA-seq, such as FastQC [25]

or Kraken [26]), along with the aligned output. Impera-

tive in scRNA-seq is the cell-by-cell quality control

[27,28], ensuring that cells of poor quality are removed

from subsequent analysis. Many metrics can be used to

measure cell quality, such as the number of reads or

genes detected, the proportion of reads mapping to

mitochondrial genes (which may signify leaking of cyto-

plasmic RNA or cells undergoing apoptosis), or the pro-

portion of reads mapping to externally spiked-in RNA

molecules if used in the experiment [29].

Depending on the analysis task, appropriate normal-

ization of the data is needed. Several normalization

methods have been developed, many of which adjust

for differences in sequencing depth and/or make use of

spike-in molecules and/or unique molecular identifiers

(UMIs) when available (reviewed in detail in [30]).

Once cleaned data are obtained, there are many

routes of analysis depending on the biological question

under investigation (Fig. 1). In this review, we will

consider these analysis from two viewpoints: cell-level

approaches, such as the grouping of cells and trajec-

tory ordering, along with gene-level investigations,

such as gene variability and noise, coexpression and

identification of differentially expressed genes.

Cell-level analysis

Visualizing and clustering cells

The cataloguing and classification of cells is a long-

standing biological challenge. Traditionally, cell types

were determined morphologically or based on molecu-

lar cell surface markers. However, with the availability

of genome-wide expression data, the possibility of

transcriptome-based analysis of cell similarity provides

an alternative indicator of cell type.

The first step in understanding the distribution of

cells is often to apply dimensionality reduction tech-

niques: this represents the thousands of dimensions

(genes) found in scRNA-sequencing data with a much

smaller number, attempting to maintain a representa-

tion of some variation in interest. Furthermore, by

considering only a two or three dimensional space,

visualization provides a mean to qualitatively explore

the data. There are hundreds of dimensionality reduc-

tion methods available (Table 1), which the researcher

can elect to apply either to all observed genes or a

selected subset of genes of interest. The most wide-

spread is Principal Component Analysis (PCA) [31],

where weighted sums of dimensions represent the data.

The dimensions for each sample are known as princi-

pal components. These dimensions explain decreasing

amounts of variation in the original data, with the first
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Fig. 1. Overview of analysis methods for the interpretation of scRNA-seq data.
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principal component capturing as much of the vari-

ance as possible. PCA is a simple special case of linear

factor analysis. Another commonly applied method is

t-SNE (t-Distributed Stochastic Neighbour Embed-

ding) [32], a nonlinear visualization technique which

considers local distances between data points (cells) by

combining dimensionality reduction with random

walks on the nearest neighbour network with the goal

of separating far-apart clusters, while also ensuring all

data points can be seen by eye to allow for compar-

isons of cluster size. This is a variation of Multidimen-

sional Scaling (MDS), where PCA is applied on

pairwise Euclidean distances to preserve pairwise dis-

tances in a low-dimensional space.

While powerful, and popular, these techniques can

be heavily affected by the problematic abundance of

zeroes in single-cell data; an issue which several meth-

ods account for. ZIFA (zero-inflated factor analysis)

[33] extends the linear factor analysis framework,

(based on correlations in the data rather than covari-

ances), accounting for dropout characteristics in the

data. The R-package Destiny provides an alternative,

nonlinear method using diffusion maps [38]: distance

between cells reflects the transition probability based

on several paths of random walks between the cells.

This assumes a smooth nature of the data, and also

includes imputation of dropouts.

Unsupervised clustering techniques provide a mecha-

nism to group cells by similarity. While this unbiased

approach has benefits, the small number of samples

and absence of a way to validate if groupings are ‘real’

poses a problem, along with prior information on the

number or type of groups. The features of single-cell

data discussed above, such as dropouts, biases and

noise, also add to the difficulty of accurate clustering.

Despite these problems, several tools have been devel-

oped for use with scRNA-seq, along with traditional

methods such as hierarchical clustering [39]. SNN-Cliq

[35] achieves clustering by considering similarity calcu-

lated using a graph-based approach in which a shared

nearest neighbour (SNN) network is constructed using

rankings of similarities based on expression levels;

dense clusters of nodes (cells) are then found. RaceID

[14], while also using similarity in expression between

cells (based on Pearson correlation), utilizes a different

approach: k-means clustering. In k-means clustering

each sample is associated with one of k prototypes, so

that the total squared distance (inverse of similarity)

Table 1. Tools for the visualization and clustering of cells.

Dimensionality reduction and clustering of cells

Method Description Input Availability

PCA Linear dimensionality reduction, producing a set of

uncorrelated components, explaining decreasing

amounts of variation in the data.

Expression table [31]

t-SNE Nonlinear dimensionality reduction: t-distributed

Stochastic Neighbour Embedding.

Expression table [32]

ZIFA A linear dimensionality reduction technique, using the

factor analysis framework, that explicitly models dropout

characteristics.

Log-transformed count

values

https://github.com/epierson9/ZIFA

[33]

Destiny A fast implementation of diffusion maps for R. Expression matrix (with

a suggested variance

stabilized transformation,

for example, square root).

http://bioconductor.org/packages/

release/bioc/html/destiny.html

[34]

SNN-cliq Graph-theory-based algorithm; uses shared nearest

neighbour (SNN) graph based upon a subset of genes.

The number of clusters is automatically chosen.

Log-transformation of

normalized expression

(e.g. RPKM)

http://bioinfo.uncc.edu/SNNCliq/

[35]

RaceID Iterative K-means clustering of a Pearson correlation

matrix, with number of clusters chosen using the gap

statistic.

Raw gene expression

matrix

https://github.com/dgrun/RaceID

[14]

SC3 Distance is calculated first, followed by k-means

clustering. Instead of optimizing parameters (e.g.

distance metric, matrix transformation), SC3 combines

several clustering outcomes and outputs an averaged

result.

Normalized expression

values

https://bioconductor.org/packages/

release/bioc/html/SC3.html

[36]

SIMLR Learns a similarity measure from scRNA-seq data to

perform dimensionality reduction, clustering and

visualization.

Raw gene expression

estimates and number

of cell population.

https://bioconductor.org/packages/

release/bioc/html/SIMLR.html

[37]
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from samples to prototypes is minimal. After the ini-

tial step, RaceID uses an outlier detection algorithm

and identifies cells which do not fit the model account-

ing for technical and biological noise. This has been

used in the detection of rare cell populations. Another

k-means-based tool, Single Cell Consensus Clustering

(SC3) [36], uses consensus clustering [40], an ensemble

strategy, to average over parameter choices in an

attempt to make cluster assignments more robust. A

recent method, SIMLR [37], uses multiple-kernel learn-

ing to infer similarity in a gene expression matrix with

a given number of cell populations. As multiple ker-

nels are used, it is possible to learn a distance measure-

ment between cells that is specific to the statistical

properties of the scRNA-seq set under investigation.

Cellular trajectory inference and branching

analysis

Trajectory analysis is a strictly simpler version of

dimensionality reduction, where the assumption is that

a 1-dimensional ‘time’ can describe the high-dimen-

sional expression values. The theory is that during a

biological process, changes will happen gradually, so

biological observations can be ordered compared to

each other in terms of pairwise similarity. While clus-

tering techniques have been used to define discrete

population and states for a long time, trajectory infer-

ence is younger in the field of scRNA-seq.

One of the initial methods for so called Pseudotime

analysis of single cells was Monocle [41], which used a

minimum spanning tree (MST) strategy to order cells

by the distance to a start cell, based on a technique for

putting microarray samples on a trajectory [42]. In the

updated versions of Monocle, the MST strategy has

been replaced by a more sophisticated tree-embedding

strategy [43,44]. Monocle is a comprehensive R-package

for single-cell analysis with functionality for normaliza-

tion, clustering and differential expression analysis, but

the main feature is the pseudotime inference.

Recently, diffusion pseudotime (dpt) has been devel-

oped [12]. In this technique, geodesic pairwise dis-

tances between samples on the data manifold are

approximated using a diffusion map representation.

Trajectory is then defined as the distance from a start

cell along these distances. A different strategy for tra-

jectory inference is to consider a generative model for

the data, treating ‘time-points’ as hidden (or latent).

This leads to the probabilistic interpretation of PCA,

which in turn leads to factor analysis and ZIFA. Here,

the expression of each gene can be described as a lin-

ear function of an unknown ‘time’.

Nonlinearity in the data, as described in [41] pre-

cludes PCA from being an effective technique for this

task. The Gaussian Process Latent Variable Model

(GPLVM) allows gene expression to follow any

smooth (nonlinear) function over time [45]. While

more computationally demanding than linear versions,

this allows cells to be put in the most likely ordering

[45,46]. This means that the most number of genes

exhibit smooth expression curves with as little noise as

possible. Being a probabilistic model, the benefits are

that uninteresting structure in the data can be

accounted for directly, such as batch effects or techni-

cal factors. It is also possible to incorporate more

information about your experimental design through

priors [47]. There are many implementations of this

method. For Python, there is GPy and GPFlow, and

for R there are the DELOREAN (https://github.com/

JohnReid/DeLorean) and PSEUDOGP (https://github.

com/kieranrcampbell/pseudogp) packages.

The Ouija method [48] takes a different approach to

pseudotime in a couple of ways. Firstly, it defines a

generative model for gene expression in scRNA-seq

data based on ZIFA, to deal with the most common

types of measurement noise. Secondly, it is based on

the assumption that a small number of switch-like

markers for a biological process of interest are known.

The cells are then ordered according to the most likely

ordering to confer with the switching genes. Ouija is

available as an R-package on BIOCONDUCTOR and is

compatible with the popular SCATER package [27].

A unique problem in single-cell developmental data

is that a set of progenitor cells can develop into multi-

ple distinct cell types. This means the cells will not fol-

low a single trajectory in the high-dimensional space. A

couple of heuristics have been published: in Wishbone

[49], cells are clustered by the pairwise detour distance

relative to a reference cell, using geodesic distance. This

method is reported to be correctly recovering the

known stages and bifurcation point of T-cell develop-

ment in mouse. Another method, that has been intro-

duced by Haghverdi et al. [12], measures transition

between cells using a random-walk-based distance.

More principled model based approaches have been

presented with SCUBA, which considers transition of

cells clusters over time [50]. As well as with GPfates/

OMGP [47], where multiple smooth trajectories are

explicitly modelled. After inference, each cell gets

assigned a posterior probability of having been sampled

from a particular trajectory. This method has been

shown to be efficient in reconstructing the developmen-

tal trajectories of Th1 and Tfh cell populations during

Plasmodium infection in mice (Table 2).
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Gene-level analyses

Unwanted factor removal

Uninteresting, largely technical variation can be

observed in both bulk RNA-seq and scRNA-seq

experiments. This variation is usually correlated with

some common experimental factor, such as room tem-

perature or stock of reagents. This form of variation is

known as batch effects. It is possible to handle batch

effects by having a carefully balanced experimental

design, such as uniformly distributing replicate condi-

tions across batches. For statistical analysis and infer-

ence, if the samples are spread over multiple batches,

this information can directly be accounted for [52,53].

Additionally, several statistical methods have been

developed to adjust for batch effects [54,55]. One

example is ComBat, which removes known batch

effects using a linear model of expression from batches

where variance is based on an empirical Bayesian

framework [54].

Technical variation in scRNA-seq experiments could

be mainly due to mRNA capture efficiency, cDNA

amplification bias and the rate cDNAs in a library are

sequenced. To estimate technical variation, several

methods use spike-in molecules, which are added with

each cell in the same quantity. Risso et al. have devel-

oped a sleuth of strategies called RUVSeq that either

performs factor analysis on a set of control genes such

as ERCC spike-ins or samples within replicate libraries

to identify technical factors which can be adjusted for

[56]. Similar strategies have also been made by others

[57–59].
Gr€un et al. [60] have estimated technical noise in

data by fitting a model that incorporates sampling

noise and global sample-to-sample variability in

sequencing efficiency. Subtracting technical noise from

total noise has led to inferring the biological noise

component, which has been shown to be consistent

with single-molecule FISH, a highly sensitive imaging-

based method for transcript counting [61]. An accurate

noise model is needed in statistical analysis tasks to

avoid overfitting.

A substantial amount of variation also results from

differences in cell size or cell cycle stage of each cell.

To adjust for cell cycle effects, Buettner et al. [62] have

developed single-cell latent variable model (scLVM),

which is a two-step approach that reconstructs cell

cycle state before using this information to obtain

adjusted gene expression levels by linear regression.

They have also shown that removing cell cycle effects

in T cells reveals subpopulations associated with T-cell

differentiation [62]. This implies the importance of

dissecting biological variation into interesting and

uninteresting parts in correctly characterizing

subpopulations.

Identification of highly variable genes

Several methods have been developed to identify genes

that show high biological variability (Table 3). Bren-

necke et al. [22] have first estimated technical noise using

spike-in molecules, and modelled the mean–variance
relationship to identify highly variable genes. Kim et al.

[7] have presented a statistical framework to decompose

the total variance into the technical and biological vari-

ance based on a generative model, which would help in

identifying variable genes. Another method, BASiCS,

uses a Bayesian model which jointly models spike-ins

and endogenous genes and provides posterior distribu-

tions for the extent of biological variability [63].

Identification of differentially expressed genes

and marker genes

Identification of differentially expressed genes and

marker genes of subpopulations is a simple yet impor-

tant analysis in scRNA-seq studies. Although origi-

nally developed for bulk RNA-seq experiments,

methods such as DESeq2 [64] and EdgeR [65] are also

widely used in scRNA-seq experiments. DESeq2 iden-

tifies differentially expressed genes by fitting a GLM

for each gene, uses shrinkage estimation to stabilize

variance and fold changes, and applies a Wald or like-

lihood ratio (LR) test for significance testing [64].

EdgeR fits a GLM with negative binomial (NB) noise

for each gene, estimates dispersions by conditional

maximum likelihood, and identifies differential expres-

sion using an exact test adapted for overdispersed data

[65]. Monocle also fits a GLM, but dispersion is esti-

mated directly from the data for each gene, since most

single-cell studies have enough samples to allow this

[41]. For relative abundance data, dropouts are han-

dled by using a tobit noise model, while using a NB

noise model with imputed dropouts for count data.

One of the recent methods developed for scRNA-

seq experiments, called MAST, uses a two-part gener-

alized linear model that is adjusted for cellular detec-

tion rate (dropouts) [66]. Another method, M3Drop,

applies Michaelis–Menten modelling of dropouts in

scRNA-seq, that is used to identify genes differentially

dropped out [67]. SCDE is a bayesian method to com-

pare two groups of single cells, taking into account

variability in scRNAseq data due to dropout and

amplification biases and uses a two-component mix-

ture for testing for differences in expression between
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conditions [68]. Another method, SINCERA, identifies

differentially expressed genes based on simple statisti-

cal tests such as Wilcoxon rank sum and t-tests [69].

In comparison to these methods, a more recent

method, scDD, identifies genes where the overall distri-

bution of values has changed between conditions. This

answers a different question which might be of interest

in scRNA-seq experiments [70]. Using a Bayesian

Table 2. Tools for the ordering of cells & bifurcation/branch identification.

Method Description Input Availability

Pseudo-temporal ordering of cells

PQ-trees Samples are ordered by a minimum

spanning tree of data, using a PQ-tree

construction.

Expression table [42]

Monocle2 A principal graph is embedded in the

transcriptome space, distance along the

graph from a start cell defines pseudotime.

Expression table, Batch effect

formula, gene list (can be

found through DE), dimensionality

reduction options (method,

number of dimensions)

Bioconductor package

‘monocle’

[3]

Wishbone Diffusion maps on reduced k-NN graph

(using waypoints).

Expression table, Start cell, number

of waypoints, number of nearest

neighbours k.

Python: https://github.com/

ManuSetty/wishbone

(MATLAB version only

supports cytometry data)

[49]

Wanderlust Heuristic k-NN graph geodesic distance Expression table In CYT: https://www.c2b2.

columbia.edu/danapeerlab/

html/cyt-download.html

[11]

DPT Diffusion components are averaged for

each sample based on spectral embedding,

and used as a distance between samples.

Expression table, variance of

Gaussian kernel, Start cell

For R and Matlab: http://

www.helmholtz-muenchen.

de/icb/research/groups/mac

hine-learning/projects/dpt/

index.html

For Python: https://github.

com/Teichlab/scrnatb

[12]

GPLVM Assume genes follow any smooth functions

and infer time as latent parameter

Expression table or dimensionality

reduction, covariance function,

optional priors, Optional

covariance function hyper

parameters.

GPy

GPFlow

DeLorean

pseudogp

[45,46])

Ouija Provided a small number of genes sigmoidal

over trajectory, treat time as latent variable.

Expression table, list of assumed

switch-like genes, optional priors

of switching time and direction.

Bioconductor package ‘ouija’.

[48]

Branching analysis

Wishbone Two branches are detected by clustering

detours between cells relative to a starting

cells in terms of pseudotime.

Expression table https://github.com/Manu

Setty/wishbone[49]

Anticorrelation

clustering

Branch points are identified when anticorrelated

distances (relative to a start cell) become

correlated. After this, cells can be segmented

to belong to either of the two branches, or the

trunk.

Expression table [12]

OMGP/GPfates Model data as a mixture of continuous processes.

Each cell obtains a posterior probability of being

generated by each of the branches.

Expression table https://github.com/Sheffield

ML/GPclust[47]

Monocle The principal graph fitted to the expression data

explicitly has the concept of branches, which

cells are assigned to.

Expression table, gene list [5]

Mpath Finding Minimum Spanning Tree in

neighbourhood graph of landmarks.

Expression table [51]
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Table 3. Tools for gene-level analysis

Identification of differentially expressed genes

Method Description Input Availability

Designed specifically for single cell RNA-seq data

SCDE Bayesian method to compare two groups of

single cells, taking into account variability in

scRNAseq data due to dropout and

amplification biases.

Raw gene expression

counts

http://hms-dbmi.github.io/scde/

[68]

MAST Uses two-part generalized linear model that is

adjusted for cellular detection rate.

Normalized gene

expression values

https://github.com/RGLab/MAST

[66]

M3Drop Applies Michaelis-Menten modelling of

dropouts to identify differential expression.

Raw gene expression

counts

https://github.com/tallulandrews/

M3Drop

[67]

scDD A Bayesian modelling framework to identify

genes that are differentially expressed and/or

show a differential number of modes or

differential proportion of cells within modes.

Normalized and log-scaled

gene expression values

https://github.com/kdkorthauer/scDD

[70]

SINCERA Identifies DE genes based on simple statistical

tests such as Wilcoxon rank sum and t-tests.

Raw gene expression

values

https://research.cchmc.org/pbge/

sincera.html

[69]

Designed originally for bulk RNA-seq data

DESeq2 Fits a GLM for each gene, uses shrinkage

estimation for dispersions and fold changes,

applies a Wald or LR test for significance testing.

Raw gene expression

counts

https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

[64]

EdgeR Fits a negative binomial distribution for each

gene, estimates dispersions by conditional

maximum likelihood, identifies differential

expression using an exact test adapted for

overdispersed data. Supports arbitrary linear

models.

Raw gene expression

counts

http://bioconductor.org/packages/

release/bioc/html/edgeR.html

[65]

Identification of highly variable genes

Brennecke et al. Biological variability of genes is inferred after

quantifying the technical noise based on the

square of coefficient of variation (CV2) of the

spike-in molecules.

Raw expression counts for

both spike-ins and

endogenous genes

[22]

Kim et al. Presents a statistical framework to decompose

the total variance into the technical and

biological variance based on a generative model.

Raw expression counts for

both spike-ins and

endogenous genes

[7]

BASiCS Uses a Bayesian approach that jointly models

spike-ins and endogenous genes. Posterior

probabilities associated to highly (or lowly)

variable genes are provided.

Raw expression counts for

both spike-ins and

endogenous genes

https://github.com/catavallejos/

BASiCS

[63]

Unwanted factor removal

scLVM Uses a Gaussian Process Latent variable model

to dissect observed heterogeneity into different

sources allowing removal of confounding factor

of variation such as cell cycle-induced variations.

Raw gene expression

counts and a set of genes

associated with the latent

factor

https://github.com/PMBio/scLVM

[62]

Combat Removes known batch effects based on an

empirical Bayesian framework.

Normalized and log-scaled

gene expression counts

and batch information

https://github.com/brentp/combat.

py/blob/master/R-combat.R

[57]

OEFinder Identifies potential artefacts (ordering effects)

generated by the Fluidigm C1 platform using

orthogonal polynomial regression.

A set of genes (and

P-values) that are

affected by the artefact

https://github.com/lengning/OEFinder

[77]

RUVSeq Adjusts for nuisance technical effects by

performing factor analysis on a set of control

genes such as spike-ins or samples such as

replicate libraries.

Raw gene expression

counts and a set of

control genes, spike-ins

or replicate libraries

https://github.com/drisso/RUVSeq

[56]
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modelling framework, scDD classifies each gene into

one of the four types of changes across two biological

conditions: shifts in unimodal distribution, differences

in the number of modes, differences in the proportion

of cells within modes, or both differences in the num-

ber of modes and shifts in unimodal distribution [70].

Gene-centric expression dynamics through

pseudotime analysis

Using an inferred trajectory as described above, sam-

ples can be analysed using a continuous time covariate

instead of a few discrete time-points. This enables the

use of more sophisticated time series-based analysis

techniques for modelling gene expression dynamics,

and allows us to ask more complex questions from the

data.

The popular scRNA-seq package Monocle provides a

wrapper for the VGAM linear modelling package to

investigate how expression changes over the trajectory.

Splines are used to model expression dependence on

pseudotime to allow nonlinear trends. The VGAM

package allows for more than just expression levels to

be modelled by the splines: with appropriate link func-

tions, allelic expression balance or isoform usage can be

modelled [3]. Splines require several parameters to be

chosen however, and the choices greatly affect the

results. A nonparametric nonlinear alternative to spline

regression is Gaussian Process regression, which can be

used in a likelihood ratio-based fashion to identify genes

which are dependent on pseudotime [45,71].

Often, we want to ask particular questions from the

data, in which case parametric models are useful. In the

SwitchDE method, genes which sequentially switched on

or off can be identified, along with a parameter letting

you learn when the switch happens [72]. Similarly, an

assumption can be that genes be described as a transient

pulse over the pseudotime. The package ImpulseDE

identifies such genes, while providing parameters for

when in pseudotime the pulse occurs [73].

Correlation analysis and network inference

One important application of scRNA-seq studies is the

identification of coregulated modules of genes and

gene-regulatory networks constructed using gene-to-

gene expression correlations. Here, genes with highly

correlated expression levels across cells are assumed to

be coregulated. Using single-cell transcriptomic data of

Th2 cells, Mahata et al. [74] demonstrated how gene–
gene correlations can be used to reveal novel mecha-

nistic insights; they have applied correlation analysis

between steroidogenic enzyme Cyp11a1 and cell sur-

face genes and identified Ly6c1/2 as a marker of the

steroid-producing cell population in mouse.

One method to elucidate regulatory interactions in

bulk RNA-seq studies is called the weighted gene coex-

pression network analysis (WGCNA) [75]. In such a

network, nodes represent genes and edges represent

coexpression as defined by correlation and relative inter-

connectedness. The method has also been applied in a

scRNA-seq study where the authors have identified a

number of functional modules of coexpressed genes that

can describe each embryonic developmental stage in

mouse [76].

Although these methods are useful, the inferred net-

works are undirected; that is, they do not provide

direct regulatory relationships among genes. To reveal

which gene is upstream/downstream in the regulatory

cascade, perturbation experiments (such as knockdown

of a gene of interest) are typically required (Table 3).

Conclusions and perspectives

While many tools have been developed to take into

account key features of single-cell RNA-sequencing

data, there is still a way to go. The community will

work towards refining existing methods to deal with

the complexities of the data, such as the large amount

of noise and high level of dropouts. In addition, we

are facing issues of scalability due to the increase in

Table 3. (Continued).

Method Description Input Availability

Pseudotime Analysis

Monocle Spline regression using VGAM Expression table, gene list [5]

SwitchDE Find genes which are explained as sigmoid

curves over pseudotime.

Expression table Bioconductor package ‘switchde‘

[72]

ImpulseDE Find genes which follow an impulse model. Expression table Bioconductor package ‘impulsede‘

[73]

GP Regression Find genes which follow any non-linear

smooth function.

Expression table GPy

GPFlow

Many others
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experimental throughput, which will also need to be

addressed, along with adaptation for changes in exper-

imental protocols. An example of this is the ability to

measure gene expression in single cells spatially.

Another major advance will be the combination of

other -omics techniques, such as the study of methy-

lation [78] and chromatin accessibility [79] in single

cells, leading to the same increase in resolution and

potential to tackle novel questions as scRNA-seq.

The ability to capture two levels of information

within the same cell will hold great power in under-

standing regulation and functionality at the single-cell

level. This has already been shown with the combina-

tion of whole-genome sequencing and transcriptomics

[80,81] and bisulphite-sequencing and transcriptomics

[82,83].

Although technical and experimental advances will

continue to expand the horizon of research within the

single-cell field, the application to an increasing range

of biological areas holds exciting prospects. There has

already been significant research into fields in which

heterogeneity is well known, such as development

[84,85], immunology [86,87] and cancer [88,89]. How-

ever, the increase in throughput will allow larger

investigations. The ability to profile thousands of cells

opens the scRNA-seq field to possibilities such as

examining the role of human genetics: how do differ-

ences in single-cell heterogeneity depend on the

genetic background of the individual? Furthermore,

we are now on the verge of defining all cell types

and subpopulations organism wide – creating a

‘Human Cell Atlas’ (www.humancellatlas.org). A

thorough description of human cell populations has

huge potential to help in understanding disease, and

may in future play an important role in clinical diag-

nosis and treatment.

As the single-cell field, and the data generation that

accompanies it, continues to expand at an incredible

rate, it is imperative to develop tools and statistical

methods to analyse the data in the best possible way,

extracting significant and insightful biological

meaning.
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