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Abstract. When a system which contains a dipole, and whose dimensionality is less

than three, is studied in a code which imposes periodic boundary conditions in all

three dimensions, an artificial electric field arises which keeps the potential periodic.

This has an impact on the total energy of the system, and on any other attribute

which would respond to an electric field. Simple corrections are known for 0D systems

embedded in a cubic geometry, and 2D slab systems. This paper shows how the 0D

result can be extended to tetragonal geometries, and that for a particular c/a ratio the

correction is zero. It also considers an exponential error term absent from the usual

consideration of 2D slab geometries, and discusses an empirical form for this.
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1. Introduction

Plane-wave electronic structure codes enforce periodicity in all three dimensions. Whilst

this is ideal for studying bulk crystals, it can cause complications when the system of

interest has lower dimensionality, such as a surface (2D), a nanowire (1D), or an isolated

molecule (0D). In order to study these systems in such codes, a region of vacuum is used

to separate the system from its fictitious periodic images. As the extent of the vacuum

is increased, properties converge to the values that they would have in the absence of

the imposed periodicity.

Large amounts of vacuum significantly increase the memory and time costs of

calculations, so it is useful to be able to apply corrections which accelerate the

convergence with vacuum size. This paper considers the interactions arising from dipole–

dipole interactions in charge-neutral systems. In such systems, this interaction decays

the most slowly with system size.

For the 2D geometry of a slab of material, commonly used to study surfaces, a

dipole moment perpendicular to the slab results in a compensating electric field in

order to keep the potential periodic[1]. A 2D slab with a perpendicular dipole moment

is effectively a charged parallel plate capacitor, and one would expect the potential on

each side to differ, and the field outside the plates to be zero. This is not consistent

with the potential being zero at infinity, so a compensating field arises automatically.

A simple, effective, but computationally-expensive, solution to this problem is to

use a simulation cell consisting of two slabs in opposite orientations so that the total

dipole moment is zero.

A self-consistent correction adds an equal and opposite field within the simulation.

This can be done by placing the required discontinuity in the potential in the vacuum

region[1, 2]. Many DFT codes include this approach[3, 4, 5].

A post hoc correction simply involves adding a term to the final energy. This

make no improvement to the convergence of other properties of the system, such as

dipole moments or bond lengths, but does significantly improve the energy. The energy

correction is

∆Eslab =
p2

2ε0V
(1)

where p is the dipole moment, which must be perpendicular to the slab, and V the

unit cell volume[2]. The electric field arising is simply p/ε0V . These corrections decay

as the reciprocal of the slab separation. These three schemes are discussed in more

detail in reference [6].

Similar expressions arise for the 0D geometry of a molecule in a cubic box[7, 8],

save that they have an extra prefactor of a third,

∆Ecube =
p2

6ε0V
(2)

and a field correction of p/(3ε0V ). These corrections for the cubic geometry are

referred to later as the Makov-Payne correction[8].
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More general geometries have been considered[7, 8, 9], and extended to systems

embedded in anisotropic dielectrics[10], but these tend to result in a requirement to

perform a infinite lattice sum, rather than a simple rational prefactor.

Other methods have been considered to correct for unwanted dipole-dipole

interactions. These include the truncation of the Coulomb potential in real space[11],

which was proven to be equivalent to the above self-consistent slab correction[12].

However, Coulomb truncation methods require the extent of the vacuum region to be

greater than the extent of the non-vacuum region[13]. Sharp cut-offs, and ‘minimum

image’ modifications, to the Coulomb potential are compared in detail in Ref [14].

For the slab geometry a different approach is to use a 2D version of the Ewald

sum[15]. This has also shown to be equivalent to the 3D Ewald sum with the above slab

correction[16].

This paper considers a limited generalisation of the cube result of Makov and Payne,

a generalisation which avoids the need for summations, and it considers a particular

geometry for which no correction is needed. It also finds a further correction term for

the 2D slab geometry.

2. Tetragonal Cells

The corrections described above relate calculation cells to an ideal cell in which one, or

more, of the repeat distances has been extended to infinity. The geometry for which

further results can be readily obtained is the 0D system of a molecule in a tetragonal cell

with the molecule’s dipole moment parallel to the c axis, the cell volume being V = a2c.

Equation 1 allows one to calculate the energy change arising from the dipole

interaction between the periodic images of the simulation cell if c were increased to

infinity. It also allows one to calculate what the energy would be in another simulation

cell with a different value of c, by first increasing to infinity, and then reducing to the

new value. So one can consider what the dipole-dipole interaction energy would have

been had the calculation been performed in a cubic cell, one with c = a, albeit ignoring

the warning given by Yeh and Berkowitz[17] that the slab correction loses accuracy

unless the vacuum gap size exceeds a. The correction would be:

∆E =
p2

2ε0a2c
− p2

2ε0a3
(3)

Now that the cell is cubic, one can apply equation 2 to expand a to infinity in a

cubic geometry, giving

∆E =
p2

2ε0a2c
− p2

2ε0a3
+

p2

6ε0a3
(4)

which simplifies to

∆Etetragonal =
p2

ε0a2

(
1

2c
− 1

3a

)
(5)
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Figure 1. Variation of dipole moment of KCl molecule in a cubic box, and a tetragonal

box with c = 1.5a. For the cubic box, the crosses represent calculations, and the line

is a best-fit of constant plus a decay inversely proportional to volume. The horizontal

dotted line is the asymptote of this fit.

This is thus the energy correction arising from dipole-dipole interactions required

to expand a charge-neutral, finite, tetragonal cell with the dipole moment wholly along

the c axis to infinite size. It is zero if c = 1.5a.

That the energy correction is zero implies that the correcting field that should

be added in a self-consistent calculation will also be zero, and repeating the above

calculations for the field rather than the energy confirms this.

So by careful choice of the 3D simulation cell geometry one can cause the dipole-

dipole interaction for a 0D system to cancel, even in a code with no built-in correction.

3. Calculations

In order to demonstrate the above theory, some calculations were performed on a KCl

molecule using Castep[3], and the dipole moments and post hoc corrections calculated

with c2x[18]. As only the convergence of properties with cell size was of interest, little

thought was given to the choice of exchange-correlation functional or pseudopotential,

save that a single-electron pseudopotential was used for K for its speed benefits. The

bond length was fixed at 2.7Å.

First the dipole moment of the KCl molecule was considered. In a cubic cell the

effect of the periodic images will be to produce a field which enhances the dipole moment

through polarisation, and this field should decay as the reciprocal of the cell volume.

In a tetragonal cell with c = 1.5a, this field is expected to be zero, and therefore the

convergence with cell size is expected to be much faster.

The results from uncorrected cubic cells are shown in figure 1, together with a fitted

line of the form α+ β/V where V is the cell volume. The value of α is 2.27688eÅ. The
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Figure 2. Variation of the energy of a KCl molecule in cubic and tetragonal (c=1.5a)

boxes of various volumes.

same calculation was performed in tetragonal boxes with c = 1.5a and c being 15, 18, 24

and 30Å. The results from the tetragonal cell show very little variation with cell volume,

and lie close to the value obtained by extrapolating the curve fitted to the cubic data

to infinite volume. A 10Åx10Åx15Å tetragonal box gives about one fifth of the error of

the cube of side 24Å, in a cell of little more than one tenth of the volume.

The energy convergence is also improved by the use of a tetragonal cell, but is found

to be less good than a cubic cell with the correction of equation 2. This is shown in

figure 2, where the x-axis is now volume to give a fairer comparison between cubic and

tetragonal cells. Whilst the use of a tetragonal cell is a significant improvement over

an uncorrected cubic cell, attempts to fit equations to the remaining error show that a

small term inversely proportional to the volume remains.

If the variation of energy at different c/a ratios is considered, as presented in

figure 3, then the movement from the dominant term being a lowering of energy from

the attractive interactions in the c direction at low values of c/a to the rise in energy as

the repulsive interactions perpendicular to c at higher values of c/a is clear. However,

cancellation of these effects appears to occur at a value of c/a only very slightly greater

than 1.4, and not at 1.5 as this section would suggest. The following section explores

the reason for this.

4. The Slab Correction Revisited

The theory of the slab correction is usually expressed in terms of parallel plate capacitors.

In the periodic system, the planes half-way between the slabs have constant potential.

If a thin conducting sheet were placed in one such plane, then the two halves of the

system would no longer be influenced by each other, but each would see in the sheet a

set of mirror charges which would be identical to the now-shielded half of the system.
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Figure 3. Variation of the energy of a KCl molecule in tetragonal boxes of various

c/a ration and different volumes.

Hence such conducting sheets may be introduced without changing the system.

A capacitor of plate separation d and surface charge density σ has a dipole moment

per unit area of σd, a field between the plates of σ/ε0, and a potential difference of

σd/ε0. So it is argued that in the simulation cell a potential difference of p/ε0A would

be expected, where p is the dipole moment perpendicular to the slab, and A the cell’s

area in the plane of the slab. That periodic boundary conditions apply to the potential

forces the removal of this potential difference by the imposition of an artificial field of

magnitude p/ε0V . The corrections of equation 1 and the corresponding field correction

account for this unwanted electric field.

This leaves many terms unaccounted for: dipole moments parallel to the slab,

quadrapole and higher moments, polarisation effects, and effects from the finite extent

of dipoles as the theory applies to point dipoles. However, there are also terms arising

purely from the static dipole which are not properly addressed.

It is instructive to consider a simpler system than the KCl molecule of the previous

system, that of the Ewald energy of two equal and opposite point charges in a cell. The

Ewald routine from the python package pymatgen[19] was used for this. The system was

two charges of +2e and −2e separated by 1.5Å in a tetragonal box with a =10Å and

c varying from 5Å to 50Å. The energy of this system for part of this range, corrected

by equation 1, is shown in figure 4. Also shown in the figure is the result of adding a

second empirical correction term of

δE =
4πp2

ε0a3
exp(−2πc/a) (6)

This correction was found to fit data well for various configurations of the test

system, with the fit improving as the separation of the charges was reduced. Whilst the

author is unable to offer analytic proof of the above form, the following observations

can be made.
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Figure 4. Variation of the post-hoc corrected Ewald slab energy with varying slab

separation for a system of two point charges separated by 1.5Å in the centre of a

teragonal cell with a=10Å and c varying. The line with points shows calculated

values, and the bare line shows the result of adding the second correction proposed in

equation 6.

The electrostatic potential in a plane above and parallel to an isolated square

array of dipoles is not a constant. Close to the slab it will vary as one moves from

being close to a dipole in the slab to being between dipoles. The arguments based on

capacitors assume that the potential is constant, as it would be if the dipole moment

were uniformly distributed across the area of the slab, and also as it is far from the slab.

Any variation in the potential φ in the vacuum region must obey Laplace’s equation

of ∇2φ = 0. The variation parallel to the slab will have an oscillatory form with the

longest wavelength component being exp(2πix/a), leading to a decay away from the slab

of the form exp(−2πz/a). This is the justification offered for the exp(−2πc/a) term in

equation 6.

Dimensionality suggests the factor of p2/ε0 and also the reciprocal of a volume.

That the volume appears as 1/a3 not 1/a2c is merely because that fitted the data very

much better. The final factor of 4π arises simply from coercing a fitted constant to the

nearest likely number.

Other exponentially decaying terms are to be expected, corresponding to shorter-

wavelength components of the variation of the potential parallel to the plane, but the

term quoted above will be the most slowly decaying. If the dipole were smeared out in

the plane of the slab, and thus had the geometry of a parallel plate capacitor, then this

correction term would not apply.

The same Ewald calculations with pymatgen can be performed in cubic cells. In

this case the residual error after applying the traditional Makov-Payne correction was

well fitted by a function decaying as 1/a5 as expected.
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Figure 5. Variation of the energy of a KCl molecule in tetragonal (c=1.5a) boxes of

various volumes, with and without the correction term proposed in this paper. The

horizontal line is a guide to an extrapolation of the two datasets. The corrected cubic

result from figure 2 is given for comparison, and lies above the corrected tetragonal

result at 1000Å3

4.1. Returning to the Tetragonal Cell

When the slab geometry is considered, the additional correction proposed in equation 6

decays exponentially with cell length. In the case of a tetragonal cell in which c/a is fixed

as the cell size is varied, it merely decays as 1/V . For the two shapes of tetragonal cell

considered in this paper, that of c = a (a cube), and c = 1.5a, it takes the approximate

values

δEcube = 0.0235
p2

ε0V
(7)

and

δEtetragonal = 0.0015
p2

ε0V
(8)

The arguments from equation 5 which stated that there was no energy correction

term for c/a = 1.5 neglected this correction, and so there does remain a correction of

δE =
4πp2

ε0a3
(exp(−2π)− exp(−3π)) (9)

This can now be applied to figure 2 to produce figure 5. This shows that such a

term improves convergence, and gives very similar results to those obtained from a cubic

cell with its post hoc correction. Given that equation 5 relies on equation 2 for the post

hoc correction of a cubic cell, it would not be expected to perform better than this.

The leading term in the error in equation 2 arises from the non-zero length of the

dipole which produces a term which decays as 1/a5. The energy of an isolated dipole

of two charges ±q separated by r is −q2/(4πε0r), or −p2/(4πε0r3). This term becomes
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large as the separation is reduced at constant dipole magnitude and dominates the Ewald

sum. The finite precision of double precision arithmetic then prevents precise calculation

of the interaction energies between adjacent dipoles by considering the differences in the

Ewald energies of the systems.

Figure 3 showed that the best convergence of energy with respect to c/a ratio was

found at c/a just over 1.4, and not at exactly 1.5. However, the best c/a ratio for

converging the energy is not expected to be found by setting equation 5 to zero and

solving

p2

ε0a3

(
a

2c
− 1

3

)
= 0 (10)

but rather by considering also the correction of equation 6 and solving

p2

ε0a3

(
a

2c
− 1

3

)
− 4πp2

ε0a3
(exp(−2π)− exp(−2πc/a)) = 0 (11)

This has a numerical solution of c/a ≈ 1.4085, which is consistent with figure 3.

However, this c/a ratio will not result in no correcting electric field, and thus will not

produce the best results for the dipole moment, nor for other properties which will be

influenced by such a field.

5. Conclusions

The well-known analytic corrections for dipole-dipole interactions for a molecule in a

cubic box with periodic boundary conditions have been generalised slightly to include

tetragonal boxes, as long as the dipole moment is parallel to the c axis. This

generalisation shows that for an c to a ratio of 3/2 the standard corrections for

both energy and internal fields vanish. This provides a way of performing accurate

calculations when implementing the full self-consistent correction may be impractical.

It may be found to be of particular use for studying dipolar defects in a dipole-free

medium.

An additional correction term is proposed for systems consisting of a point dipole in

a slab geometry. However, it should be noted that this correction does not apply if the

dipole is smeared out in the plane of the slab, as is often the case when studying surfaces.

When it does apply, the c/a ratio required to produce the best energy convergence of a

point dipole in a tetragonal cell is reduced from 3/2 to approximately 1.41.
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Mauri F, Nguyen N L, Nguyen H V, de-la Roza A O, Paulatto L, Poncé S, Rocca D, Sabatini
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