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Level raising for automorphic representations of GL(2n)

Christos Anastassiades

Summary

To each regular algebraic, conjugate self-dual, cuspidal automorphic represen-

tation Π of GL(N) over a CM number field E (or, more generally, to a regular

algebraic isobaric sum of conjugate self-dual, cuspidal representations), we can at-

tach a continuous `-adic Galois representation r(Π) of the absolute Galois group of

E. The residual Galois representation

r(Π) : Gal(E/E)→ GLN(F`)

of π is defined to be the semisimplification of the reduction of r(Π) (modulo the

maximal ideal of Z`), with respect to any invariant Z`-lattice. The aim of this thesis

is to prove a level raising theorem for automorphic representations of GL(2n). More

precisely, given a regular algebraic automorphic representation Π of GL(2n) over E,

which is either unitary, conjugate self-dual and cuspidal or an isobaric sum Π1 �Π2

of two unitary, conjugate self-dual cuspidal representations of GL(n), we want to

construct a unitary, conjugate self-dual cuspidal representation Π′ of GL(2n) that

has the same residual Galois representation as Π and whose component at a finite

place w of E is an unramified twist of the Steinberg representation.

We prove that this is possible, after replacing Π with its base change along a CM

biquadratic extension, under certain assumptions on Π (including a local obstruction

at the place w). Our proof uses the results of Kaletha, Minguez, Shin and White on

the endoscopic classification of representations of (inner forms of) unitary groups to

descend Π to an automorphic representation of a totally definite unitary group G

over the maximal totally real subfield of E. We then prove a level raising theorem

for the group G; we do this by proving an analogue of “Ihara’s lemma” for G, using

the strong approximation theorem for the derived subgroup of G.
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Introduction

The problem of “level raising” was first considered by Ribet in [Rib84], in

the context of (classical) modular forms. Concretely, Ribet addresses the following

question: Let f be a cusp form of weight 2 and level Γ0(N), which is an eigenform

for the Hecke operators. If ` is a rational prime and ι : Q`
∼= C is an abstract field

isomorphism, there exists a continuous semisimple Galois representation

rι(f) : Gal(Q/Q)→ GL2(Q`),

unramified outside N`, determined (up to isomorphism) by the fact that the char-

acteristic polynomial of rι(f)(Frobp) is

x2 − ι−1(ap)x+ p

for each prime p - N`, where ap is the eigenvalue of the Hecke operator Tp (and

Frobp denotes the arithmetic Frobenius at p). After conjugation, we may assume

that rι(f) takes values in GL2(Z`) and consider its reduction modulo the maximal

ideal mZ` of Z`; we write

rι(f) : Gal(Q/Q)→ GL2(F`)

for the semisimplification of rι(f) mod mZ` . One can then ask whether there exists

a cuspidal Hecke eigenform g of weight 2 and level Γ0(Np) (where p is a fixed prime

not dividing N`), which is new at p, such that rι(g) ∼= rι(f). Ribet proves that the

answer is affirmative, provided that f satisfies certain conditions; in particular, f

must satisfy

ι−1(ap) ≡ ±(p+ 1) mod mZ` .

It’s easy to see that the latter condition is necessary, because rι(g)|Gal(Qp/Qp) is

isomorphic to a representation of the form ε` ∗

1

⊗ χ,
1



2 INTRODUCTION

where ε` : Gal(Qp/Qp)→ Z×` is the `-adic cyclotomic character and

χ : Gal(Qp/Qp)→ Z×`

is an unramified quadratic character. We note that this is not a sufficient condition;

an additional assumption is needed for Ribet’s theorem. A key step in Ribet’s proof

was a lemma of Ihara.

In [DT94], Diamond and Taylor proved more general level raising results for

modular forms, by studying automorphic forms on quaternion algebras. In the case

of definite quaternion algebras, the analogue of Ihara’s lemma is a simple conse-

quence of the strong approximation theorem. Moreover, in Section 5.3 of [CHT08],

Clozel, Harris and Taylor prove a level raising result for automorphic representa-

tions of GLn over a CM number field, which is conditional on an analogue of Ihara’s

lemma for automorphic forms on a totally definite unitary group.

Level raising theorems are a useful tool in the study of automorphic forms and the

automorphy of Galois representations. For example, Ribet’s level raising theorem

was used as an ingredient in the proof of his level lowering theorem in [Rib90], which

showed that Fermat’s last theorem follows from the Taniyama–Shimura conjecture.

Moreover, level raising theorems often play a part in proofs of automorphy lifting

theorems; e.g. in [Kis09], Kisin uses a level raising theorem (Corollary 3.1.11) as

an ingredient in the proof of a modularity lifting theorem for 2-dimensional Galois

representations.

Our main theorem is a new level raising theorem for (regular C-algebraic) au-

tomorphic representations Π of GL2m over a totally imaginary CM number field E.

The representation Π is assumed to be either a conjugate self-dual, unitary cuspidal

representation of GL2m(AE) or of the form Π1 � Π2, where each Πi is a conjugate

self-dual, unitary cuspidal representation of GLm(AE). The aim is to construct a

regular C-algebraic, conjugate self-dual, unitary cuspidal representation of GL2m

(possibly over a solvable CM extension of E), which has the same residual Galois

representation as Π and whose local component at finite place w is isomorphic to an

unramified twist of the Steinberg representation. Unlike most level raising results

in the literature, the mod ` residual Galois representation

rι(Π) : Gal(E/E)→ GL2m(Q`)
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of Π is allowed to reducible; the only condition on rι(Π) is that it’s not allowed

to be isomorphic to a twist of 1 ⊕ ε` ⊕ · · · ε1−N
` . We must also assume, as in the

case of modular forms studied by Ribet, that Π satisfies the obvious necessary local

congruence condition at the finite place w. We refer the reader to Chapter 3 for

a precise statement of the theorems. These level raising theorems are conditional

on the results of [KMSW14] on the endoscopic classification of representations of

(inner forms of) unitary groups.

Let us briefly discuss the strategy of the proof: The first step is to transfer

the automorphic representation Π to an automorphic representation π of a suitable

unitary group G over F . The group G is an inner form of the quasi-split unitary

group UE/F (2m) (where F denotes the maximal totally real subfield of E) and is

chosen to be compact at infinity and isomorphic to GL(2, D) at the place w, where

D is a central division Fw-algebra. The existence of this transfer follows from the

theorems stated in [KMSW14]. One can then construct a space of automorphic

forms on G, with Z` or F` coefficients, and consider the action of a Hecke algebra on

these spaces. One can state and prove the analogue of Ihara’s lemma in this setting,

using the strong approximation theorem, and hence prove a level raising theorem

for automorphic representations on G. Then one can construct an automorphic

representation of GL2m with the desired properties, using the results of [KMSW14]

once again.

Using an inductive argument, we can generalise this main theorem to a level

raising theorem (Theorem 3.6) for regular C-algebraic representations of GL2rm(AE)

of the form

Π = Π1 � · · ·� Π2r ,

where each Πi is a conjugate self-dual, unitary cuspidal representation of GLm(AE).

In the special case m = 1, the theorem is the following:

Theorem. Let χ1, · · · , χ2k : A×E/E× → C× be conjugate self-dual, unitary char-

acters and assume that

Π = χ1 � · · ·� χ2k

is regular C-algebraic. Assume, in addition, that there is a finite place P of E such

that all the χi are unramified at P and

ι−1(χi($)/χi+1($)) ≡ (NP)−1 mod mZ` for all 1 ≤ i < 2k,
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where $ is a uniformiser for EP (and ι : Q`
∼−→ C is a fixed field isomorphism).

Then there is a CM biquadratic extension E1/E and, for each choice of a place P1 of

E1 above P, a regular C-algebraic, conjugate self-dual, unitary cuspidal automorphic

representation Π′ of GL2k(AE1), such that

rι(Π
′) ∼= rι(Π)|Gal(E1/E1)

and Π′P1
is isomorphic to an unramified twist of the Steinberg representation of

GL2k(EP1).

We remark that the above theorem implies, in particular, the following result

(Corollary 3.7):

Proposition. Let K/Q be an imaginary quadratic field, let ` > 3 be a rational

prime and let ψ : Gal(K/K)→ F×` be a continuous character. Let

r := ψ ⊕ ψc : Gal(K/K)→ GL2(F`).

Then, for every integer k ≥ 1, there exists a CM biquadratic extension E/K, and

a regular C-algebraic, essentially conjugate self-dual, unitary cuspidal automorphic

representation Π of GL2k(AE), such that

(i) rι(Π) ∼= (Sym2k−1 r)|Gal(E/E), and

(ii) There exists a finite place w of E such that Πw is isomorphic to an unramified

twist of the Steinberg representation of GL2k(Ew).

One can try to combine this result with a suitable automorphy lifting theorem

(for residually reducible Galois representations) to prove some cases of symmetric

power functoriality for modular forms with dihedral residual Galois representation,

as in the work of Clozel and Thorne [CT14].

The overview of this thesis is as follows: In Chapter 1, we recall the definition

and some of the basic properties of unitary groups (including the classification of

unitary groups over a number field) and give a summary of the results of [KMSW14]

on the endoscopic classification of representations of unitary groups, which will be

important for us in the following chapters. In Chapter 2, we explain why the results

of [KMSW14] imply that the “descent” of Π to the unitary group G exists (after

a biquadratic base chage) and the existence of Galois representations attached to

automorphic representations of G, and we define spaces of `-adic automorphic forms

on G and the Hecke algebra acting on them. In Chapter 3, we state and prove our
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main theorems (i.e. the level raising theorems discussed above), by proving a version

of Ihara’s lemma in the setting of automorphic representations of the unitary group

G, and explain how the proposition above follows from these theorems.





CHAPTER 1

Endoscopic classification of representations of unitary

groups

In this chapter, we review the results of [Mok15] and [KMSW14] on the en-

doscopic classification of representations of unitary groups, which will be important

for us in the following chapters; these papers follow the strategy of Arthur [Art13],

who established the endoscopic classification for quasi-split orthogonal and sym-

plectic groups. We begin this first chapter by recalling the classification of unitary

groups over local and global fields (of characteristic 0). We then summarise the

properties of local A-packets of representations of unitary groups and inner forms of

the general linear group. Finally, we state the main global theorem of [Mok15] and

[KMSW14], which gives a decomposition of the space of L2-automorphic forms on

a unitary group over a number field into automorphic A-packets.

1. Unitary groups

Let F be a field (we’ll only be interested in the case where F is a local or global

field of characteristic 0) and let E be a quadratic étale F -algebra. Thus, E is either a

quadratic field extension of F or isomorphic (as an F -algebra) to F ×F . We let c be

the non-trivial F -automorphism of E. In the first case, c is the non-trivial element

of the Galois group Gal(E/F ), while in the second case, it is the automorphism

(x, y) 7→ (y, x). The map c induces an algebraic automorphism c̃ of the group

GE/F (N) := ResE/FGL(N,E). We define G∗ := UE/F (N) to be the subgroup of

fixed points of the automorphism θ : x 7→ JN c̃(x)−tJ−1
N , where

JN :=


1

−1

. .
.

(−1)N−1

 ∈ GLN(E).

Hence, G∗ is the reductive group over F with functor of points

R 7→ {x ∈ GLN(E ⊗F R) : (c⊗ idR)(x)t JN x = JN}.

7
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If E is a field, then G∗ is the quasi-split unitary group of rank N with respect to

E/F . If E ∼= F×F , then G∗ ∼= GL(N,F ) and each map E → F induces a canonical

isomorphism between UE/F (N) and GL(N,F ) (note that these two isomorphisms

differ by the automorphism x 7→ JNx
−tJ−1

N of GL(N,F )).

Definition 1.1. A unitary group over a field F is an inner form of UE/F (N),

where E/F is a quadratic field extension.

1.1. The dual group of UE/F (N). Assume that E/F is a quadratic field ex-

tension. G∗ = UE/F (N) is a quasi-split group with Borel pair (B, T ), where B

consists of the upper-triangular matrices in UE/F (N) and T consists of the diagonal

matrices. The group G∗E = UE⊗FE/E is isomorphic to GL(N,E), so Ĝ∗ = GL(N,C).

Fixing the standard (upper-triangular) pinning on Ĝ∗ = GL(N,C), we get an al-

gebraic action of Gal(E/F ) = 〈c〉 on Ĝ∗, given by x 7→ JNx
−tJ−1

N (where we now

think of JN as an element of GLN(C)). We have LG = Ĝ(C) oWF , where WF acts

on Ĝ(C) through WF → Gal(E/F ).

1.2. Classification of inner forms of UE/F (N). The (isomorphism classes of)

inner forms of UE/F (N) are in bijection with the image of the Galois cohomology

set H1(F,UE/F (N)ad) in H1(F,Aut(UE/F (N))). The pointed set H1(F,UE/F (N)ad)

classifies equivalence classes of inner twists of UE/F (N).

The classification of inner forms of UE/F (N) follows from the classification of

Hermitian forms over local and global fields, which is explained in [Sch85].

We first consider the case where F is a local field of characteristic 0.

1.2.1. Assume E ∼= F × F . Then UE/F (N) ∼= GL(N) and we need to classify

inner forms of GL(N). We have

H1(F,PGL(N)) =


1
N
Z/Z if F is non-archimedean

1
2
Z/Z if F = R and N is even

trivial if F = C, or F = R and N is odd

The inner form of GL(N) corresponding to r/s ∈ H1(F,PGL(N)) ⊂ 1
N
Z/Z (where

s | N , r ∈ (Z/sZ)×) is GL(m,D), where m = N/s and D is the central division

F -algebra with invariant r/s (in particular, dimF D = s2).

Remark. The isomorphism H1(F,UE/F (N)ad)
∼−→ H1(F,PGL(N)) ∼= Z/NZ

(when F is a finite extension of Qp) depends on the choice of map E → F . Indeed,
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we have a short exact sequence

1→ Gm → GL(N)→ PGL(N)→ 1

and H1(F,GL(N)) is trivial (by Hilbert’s Theorem 90), so we get an injective map

H1(F,PGL(N)) ↪→ H2(F,Gm).

The Brauer group of F is H2(F,Gm) = Q/Z in and the image of H1(F,PGL(N))

in H2(F,Gm) is the subgroup of N torsion points. The two isomorphisms

UE/F (N)
∼−→ GL(N)

(corresponding to the two maps E → F ) differ by the automorphism x 7→ JNx
−tJ−1

N

of GL(N). We have a commutative diagram:

1 Gm GL(N) PGL(N) 1

1 Gm GL(N) PGL(N) 1

x 7→x−1 x 7→JNx−tJ−1
N x7→JNx−tJ−1

N

This gives a commutative diagram of Galois cohomology groups

H1(F,PGL(N)) H2(F,Gm) = Q/Z

H1(F,PGL(N)) H2(F,Gm) = Q/Z

x 7→JNx−tJ−1
N

x 7→−x

so the two isomorphisms H1(F,UE/F (N)ad)
∼−→ H1(F,PGL(N)) ∼= Z/NZ, corre-

sponding two the maps E → F , differ by the automorphism x 7→ −x of Z/NZ.

1.2.2. Assume E/F is a quadratic field extension. If F is non-archimedean, then

H1(F,UE/F (N)ad) =


1
2
Z/Z if N is even

trivial if N is odd

i.e. there is a unique non-quasi-split inner form of UE/F (N) if N is even, and no

non-quasi-split inner forms if N is odd.

If F = R, then

H1(F,UE/F (N)ad) =
{

(p, q) ∈ (Z≥0)2 : p+ q = N
}
/(p, q) ∼ (q, p),

where (p, q) corresponds to the inner form

U(p, q)(R) =

x ∈ GLN(C⊗R R) : (c⊗ idR)(x)t

 1p

−1q

x =

 1p

−1q

 .
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Note that UC/R(N) ∼= U(dN
2
e, bN

2
c) and U(p, q) ∼= U(q, p). Moreover, U(N) :=

U(N, 0) is the unique inner form of UC/R(N) whose R-points form a compact group.

We now turn to the global case:

1.2.3. Assume E/F is a quadratic extension of number fields. We have a locali-

sation map

H1(F,UE/F (N)ad)→
⊕
v

H1(Fv, UEv/Fv(N)ad),

where v runs through all places of F . We write Ev for E ⊗F Fv; Ev is a quadratic

field extension of Fv if v splits in E, and Ev ∼= Fv × Fv (non-canonically) if v is

non-split in E.

Notation.
⊕

vHv (where Hv are pointed sets) denotes the subset of
∏

vHv

consisting of all (xv)v such that xv = 0 (the distinguished element of Hv) for all but

finitely many v.

The localisation map is injective. If N is odd, it is also surjective. If N is even,

the image of the localisation map is equal to the kernel of

⊕
v

H1(Fv, UEv/Fv(N)ad)

∑
v
av

−−→ Z/2Z,

where the maps av are defined as follows:

(i) If v is finite and non-split in E, then av(0) = 0 and av(1) = 1.

(ii) If v is real and non-split in E, then av : (p, q) 7→ 1
2
(p− q) mod 2.

(iii) If v is split in E, then av maps

r/s ∈ H1(F,UEv/Fv(N)ad) ⊂ 1

N
Z/Z

to Nr/s mod 2.

1.3. Determinant map. Let E/F be a quadratic field extension of character-

istic 0 and (G, ξ) be an inner twist of UE/F (N). Thus, G is an inner form of UE/F (N)

and ξ is an isomorphism

UE/F (N)F
∼−→ GF

of F -groups, such that ξ−1 ◦ σξ is an inner automorphism of the group UE/F (N)F ,

for all σ ∈ Gal(F/F ). Let ξ−1 ◦ σξ = Ad(aσ), where aσ ∈ UE/F (N)(F ). Let

det : UE/F (N)→ UE/F (1)
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be the determinant map on the quasi-split unitary group, and define

detξ := detF ◦ ξ−1 : GF → UE/F (1)F .

For any σ ∈ Gal(F/F ), we have

σ(detξ) = σ(detF ) ◦ (σξ)−1 = detF ◦ Ad(a−1
σ ) ◦ ξ−1 = detF ◦ ξ−1 = detξ,

so detξ descends to a map G→ UE/F (1) of F -groups.

The kernel of detξ is the derived subgroup G1 of G. To simplify notation, we will

often write det instead of detξ, but note that detξ does depend on (the conjugacy

class of) ξ.

Proposition 1.2. Let E/F be a quadratic extension of local or global fields of

characteristic 0. Let (G, ξ) be an inner twist of UE/F (N). Then the determinant

map induces a surjective map on F -points:

det : G(F )→ UE/F (1)(F ) = {x ∈ E× : NE/F (x) = 1}.

If F is a number field, then det is also surjective on A∞F -points.

Proof. We have a short exact sequence of linear algebraic groups

1→ G1 → G→ UE/F (1)→ 1,

which gives rise to a long exact sequence

G(F )→ UE/F (1)(F )→ H1(F,G1)→ H1(F,G)

of pointed Galois cohomology sets. It suffices to show that H1(F,G1) → H1(F,G)

has trivial kernel. If F is a finite extension of Qp, then H1(F,G1) is trivial (since

G1 is semisimple and simply-connected). If F = R, then one can easily see that the

map H1(F,G1)→ H1(F,G) is injective, by direct computation.

If F is a number field, then we have a commutative diagram

H1(F,G1) H1(F,G)

∏
v|∞

H1(Fv, G1)
∏
v|∞

H1(Fv, G)

and the left vertical arrow is bijective. It follows that the map H1(F,G1) →

H1(F,G) is injective. To prove the surjectivity of det on A∞F -points, observe that,
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if v is a finite place of F which is inert in E, then the image of

UEv/Fv(N)(OFv) := {x ∈ GLN(OEv) : c(x)t JN x = JN}

under det is UEv/Fv(1)(OFv). �

1.4. Extended pure inner twists. We will need the notion of an extended

pure inner twist; this was defined in [KMSW14] §0.3. In this subsection, we briefly

recall the definition of an extended pure inner twist. In order to do this, we need to

introduce Kottwitz’s cohomology set B(F,G), which was constructed in [Kot14].

Let F be a local or global field. We will only be interested in the case where F

has characterestic 0, but the results of Kottwitz are also true for (local or global)

fields of positive characteristic. In [Kot14], Kottwitz defines a functor

G 7→ B(F,G)

from the category of linear algebraic groups over F to the category of pointed sets.

The pointed set B(F,G) is defined as a direct limit

B(F,G) = lim−→
K

H1
alg(E(K/F ), G),

where the limit is taken over all finite Galois extensions K/F inside a fixed separable

closure F of F .

Definition 1.3. A Galois gerb E for a finite Galois extension K/F , bound by

an F -group D of multiplicative type, is an extension

1→ D(K)→ E → Gal(K/F )→ 1

of Gal(K/F ) by D(K). The isomorphism classes of such extensions are classified

by the Galois cohomology group H2(K/F,D).

The group E(K/F ) is an example of a Galois gerb for K/F , bound by the F -

group DK/F . If F is local, then DK/F is the multiplicative group Gm and E(K/F ) is

taken to be the relative Weil group of K/F . If F is global, then DK/F is a protorus

over F , whose group of K-characters is the Gal(K/F )-module Z[VK ]0, where Z[VK ]

is the free abelian group generated by the set VK of places of K and Z[VK ]0 is the

kernel of the map

Z[VK ]→ Z,
∑
v∈VK

nvv 7→
∑
v∈VK

nv.
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Given a Galois gerb E , as above, and a linear algebraic group G over F , we can

define the (pointed) set Z1
alg(E , G) of algebraic 1-cocycles:

Definition 1.4. An algebraic 1-cocycle of E in G(K) is a pair (ν, x) consisting

of a homomorphism ν : D → G of algebraic groups over K and an abstract 1-cocycle

x : E → G(K)

(where E acts on G(K) via E → Gal(K/F )), satisfying the following two conditions:

(i) xd = ν(d) for all d ∈ D(K);

(ii) Ad(xw) ◦ σν = ν for all w ∈ E that map to σ ∈ Gal(K/F ).

The group G(K) of K-points of G acts on the set Z1
alg(E , G) of algebraic 1-cocycles

by

g : (ν, x) 7→ (Ad(g) ◦ ν, w 7→ gxww(g)−1);

we define H1
alg(E , G) to be the quotient of Z1

alg(E , G) by the action of G(K).

We refer the reader to [Kot14] for the definition of E(K/F ) in the global case

and the definition of the inflation maps H1
alg(E(K/F ), G)→ H1

alg(E(L/F ), G) (when

L ⊃ K is another finite Galois extension of F inside the fixed separable closure of

F ).

We observe that the map (ν, x) 7→ ν induces a “Newton map”

H1
alg(E , G)→ [HomK(D,G)/G(K)]Gal(K/F ) ;

we write H1
alg(E , G)bsc and Z1

alg(E , G)bsc for the preimage of HomF (D,Z(G)) un-

der the Newton map in H1
alg(E , G) and Z1

alg(E , G), respectively. The elements of

Z1
alg(E , G)bsc are called “basic cocycles”. Similarly, we have a Newton map

B(F,G)→
[
HomF (DF , G)/G(F )

]Gal(F/F )
,

where DF := lim←−K DK/F (with transition maps defined as in [Kot14], §8.3 and

§10.3), and we define B(F,G)bsc to be the preimage of HomF (DF , Z(G)) under this

map.

We mention some of the properties of the cohomology set B(F,G) (proved in

[Kot14]):

(i) There is a natural inclusion H1(F,G) ↪→ B(F,G)bsc, whose image is the kernel

of the Newton map. This map is a bijection when the centre of G is trivial.
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(ii) Given a finite separable extension E/F , there is a restriction map

B(F,G)→ B(E,G)

and a Shapiro isomorphism B(F,ResE/FH) = B(E,H) (where H denotes a

linear algebraic group over E).

(iii) If F is a local field and G is a connected reductive group over F , then there is

a canonical map

κG : B(F,G)bsc → X∗(Z(Ĝ)Gal(F/F )).

(iv) If F is a global field, then, for each place v of F , there is a localisation map

B(F,G)→ B(Fv, G),

sending B(F,G)bsc to B(Fv, G)bsc. When G is connected, the image of an

element b ∈ B(F,G) in B(Fv, G) is trivial for all but finitely many places v.

(v) Let F be a global field and let G be a connected reductive group over F . Then

the image of the map

B(F,G)bsc →
⊕
v

B(Fv, G)bsc

is equal to the kernel of the composition⊕
v

B(Fv, G)bsc →
⊕
v

X∗(Z(Ĝ)Gal(Fv/Fv))
∑
−→ X∗(Z(Ĝ)Gal(F/F )).

We can now give the definition of an extended pure inner twist:

Definition 1.5. Let G∗ be a connected reductive group over a local or global

field F . An extended pure inner twist of G∗ is a triple (G, ξ, z) consisting of

(a) a connected reductive group G over F , which is an inner form of G∗;

(b) an isomorphism ξ : G∗
F

∼−→ GF such that ξ−1 ◦ σξ is an inner automorphism of

G∗
F

for all σ ∈ Gal(F/F );

(c) an element z ∈ Z1
alg(E(K/F ), G∗)bsc (for some finite Galois extension K/F )

whose image in Z1
alg(E(K/F ), G∗ad)bsc = Z1(K/F,G∗ad) is equal to σ 7→ ξ−1 ◦ σξ.

Remark. Proposition 10.4 of [Kot14] implies that if Z(G∗) is connected, then

the map B(F,G∗)bsc → B(F,G∗ad)bsc = H1(F,G∗ad) is surjective. In particular,

assuming that Z(G∗) is connected, any inner twist of G∗ can be made into an

extended pure inner twist.
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2. Local classification

Throughout this section, F denotes a local field of characteristic 0.

2.1. Generalities on A-parameters. Let G be a connected reductive group

over F . Fixing a pinning on the dual group Ĝ/C, we get an algebraic action of the

Galois group Gal(F/F ) on Ĝ and we can form (the Weil form of) the L-group

LG := Ĝ(C) oWF ,

where the Weil group WF of F acts on Ĝ(C) through WF → Gal(F/F ).

Let LF be the Langlands group of F :

LF :=

WF if F is archimedean,

WF × SL2(C) if F is non-archimedean.

An L-parameter for G is a continuous homomorphism φ : LF → LG which

(i) commutes with the projections LF → WF and LG→ WF ,

(ii) is such that, for each w ∈ WF , the image of φ(w) in Ĝ(C) is a semisimple

element,

(iii) is algebraic on SL2(C) (in the non-archimedean case).

Two L-parameters are equivalent if they are Ĝ(C)-conjugate. We denote the set of

equivalence classes of L-parameters by Φ(G). An L-parameter φ is called bounded

(or tempered) if φ(WF ) projects to a relatively compact subset of Ĝ(C). We write

Φbdd(G) ⊂ Φ(G) for the subset of (equivalence classes of) bounded L-parameters.

The local endoscopic classification is given in terms of A-parameters: An A-

parameter is a homomorphism

ψ : LF × SL2(C)→ LG

such ψ|LF is a bounded L-parameter and ψ|SL2(C) is algebraic. The set of equivalence

classes of A-parameters is denoted by Ψ(G) (where two parameters are equivalent

if they are Ĝ(C)-conjugate). We also introduce the larger set Ψ+(G) ⊃ Ψ(G) of

Ĝ(C)-conjugacy classes of homomorphisms

ψ : LF × SL2(C)→ LG

which are algebraic on SL2(C) and whose restriction to LF is a (not necessarily

bounded) L-parameter. A parameter ψ ∈ Ψ+(G) is called generic if ψ|SL2(C) = 1.

We can identify the set of generic parameters in Ψ(G) (resp. Ψ+(G)) with the set
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Φbdd(G) (resp. Φ(G)). We note that there is a map Ψ+(G) → Φ(G), ψ 7→ φψ,

defined by

φψ(w) := ψ

w,
 |w|1/2F

|w|−1/2
F

 .

We also need the notion of a relevant parameter: Recall ([Bor79] §3, [KMSW14] §0.4)

that there is a bijection between the set P(G)Gal(F/F ) of G(F )-conjugacy classes of

parabolic subgroups of GF which are Gal(F/F )-invariant and the set P(LG) of

LG-conjugacy classes of parabolic subgroups of LG. A parabolic subgroup of LG is a

full subgroup P ⊂ LG such that P ∩ Ĝ(C) is (the group of C-points of) a parabolic

subgroup P of Ĝ. (We say that a subgroup A of LG is full if the restriction of the

projection map LG → WF to A is surjective). A Levi factor of the parabolic sub-

group P is a full subgroup M ⊆ P such that M∩ Ĝ(C) is (the group of C-points of)

a Levi factor of P . We write P(G/F ) ⊂P(G)Gal(F/F ) for the subset of conjugacy

classes containing a parabolic subgroup defined over F . A parabolic subgroup P of

LG is called (G-)relevant if its conjugacy class corresponds to a conjugacy class in

P(G/F ). Note that if G is quasi-split all parabolic subgroups of LG are relevant

for G.

Definition 1.6. A parameter ψ ∈ Ψ(G) is G-relevant if every Levi subgroup

M ⊂ LG containing Imψ is a Levi component of a relevant parabolic. We write

Ψ(G)G–rel ⊂ Ψ(G) for the subset of G-relevant parameters.1

Finally, given a parameter ψ ∈ Ψ+(G), we introduce the groups

Sψ := Cent(Imψ, Ĝ(C))

and S\ψ := Sψ/(Sψ ∩ Ĝder(C))◦. We remark that Sψ ⊃ Z(Ĝ(C))Gal(F/F ). These

groups will be important for the local endoscopic classification of representations.

Lemma 1.7. Let ψ ∈ Ψ+(G). We have inclusion-preserving maps: Levi subgroups of LG

containing Imψ

 cntr

�
infl

 Levi subgroups

of S◦ψ


1Note the difference between our notation and Borel’s [Bor79].
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defined by cntr(M) := M ∩ S◦ψ, infl(M) := Cent(Z(M)◦, LG). These maps satisfy

cntr(infl(M)) = M and infl(cent(M)) ⊆ M. In particular, the minimal Levi sub-

groups containing Imψ are precisely the centralisers in LG of the maximal tori of

Sψ.

Proof. This is [KMSW14] Lemma 0.4.12. �

2.2. Parameters of unitary groups. Let E be a quadratic étale F -algebra

and set G∗ := UE/F (N) (as in Section 1). Let G be an inner form of G∗, and fix a

choice of an extended pure inner twist (ξ, z) : G∗ → G (see Section 1.4; note that

any inner form of G∗ admits a choice of an extended pure inner twist). We have

LG = LG∗, and thus, Ψ(G) = Ψ(G∗).

Assume that E ∼= F × F and fix a map E → F . We get an F -isomorphism

G∗ → GL(N) and we have LG = GLN(C) × WF . We can think of a parameter

ψ ∈ Ψ+(G) as a continuous semisimple representation

ψ : LF × SL2(C)→ GL(V )

of the group LF × SL2(C) on an N -dimensional complex vector space V . We can

decompose ψ as

ψ = `1ψ1 ⊕ . . .⊕ `rψr,

where the `i’s are positive integers and the ψi’s are simple (i.e. irreducible) and

pairwise non-isomorphic constituents of ψ. Schur’s lemma implies that

Sψ ∼= GL`1(C)× . . .×GL`r(C).

Assume now that E/F is a quadratic field extension. Given a parameter

ψ ∈ Ψ+(GL(N,E)),

we define its conjugate parameter ψc by

ψc(x) := ψ(wcxw
−1
c ),

where wc is a fixed choice of an element ofWF\WE. Note that the equivalence class of

ψc does not depend on the choice of wc. We say that a parameter ψ ∈ Ψ+(GL(N,E))

is conjugate self-dual if ψc is equivalent to its dual parameter ψ∨ : x 7→ ψ(x)−t. We

write Ψ̃(N) ⊂ Ψ(GL(N,E)) for the subset of conjugate self-dual parameters. We

similarly define Ψ̃+(N), Φ̃(N), Φ̃bdd(N) to be the subsets of conjugate self-dual

parameters in Ψ+(GL(N,E)), Φ(GL(N,E)), Φbdd(GL(N,E)), respectively.
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Let χ : WE → C× be a conjugate self-dual character (i.e. χc = χ−1). We have a

“base change” map

η∗χ : Ψ+(G)→ Ψ̃+(N)

defined by ψ 7→ χ⊗ψ|LE×SL2(C). We have η∗−1
χ (Ψ̃(N)) = Ψ(UE/F (N)), and the same

is true if we replace by Ψ with Φ or Φbdd.

Lemma 1.8. The map η∗χ is injective. An element ψN ∈ Ψ̃+(N) is in the image

of η∗χ if and only if there exists P ∈ GLN(C) such that

(i) ψN(wcxw
−1
c ) = PψN(x)−tP−1 for all x ∈ LE × SL2(C), and

(ii) ψN(w2
c ) = κ(χ)(−1)N−1PP−t, where κ(χ) := χ(w2

c ) ∈ {±1}.

If such a P exists, the preimage ψ of ψN is given by

ψ(x) =

(χ−1 ⊗ ψN)(x) if x ∈ LE × SL2(C),

PJN o wc if x = wc.

Proof. This is an easy calculation: If ψN = η∗χψ for some ψ ∈ Ψ+(G), then

properties (i) and (ii) are satisfied for P given by ψ(wc) = PJN owc. Conversely, if

(i) and (ii) are satisfied for some P ∈ GLN(C), the formula above defines an element

ψ ∈ Ψ+(G) such that η∗χψ = ψN . �

Given a parameter ψ ∈ Ψ+(G), we can decompose ψN = η∗χψ into simple pa-

rameters, as above:

ψN = `1ψ1 ⊕ . . .⊕ `rψr.

Let I ⊂ {1, . . . , r} be the set of indices i such that ψ∗i := ψ∨,ci is isomorphic to ψi.

The set {1, . . . , r} \ I can be partitioned into pairs {j, j∗} such that

ψ∗j
∼= ψj∗ and `j = `j∗ .

Let J be a subset of I \ {1, . . . , r} consisting of one representative from each pair

{j, j∗}. We can thus write

ψN =
⊕
i∈I

`iψi ⊕
⊕
j∈J

`j(ψj ⊕ ψ∗j ).

Definition 1.9. Let ψ̃ ∈ Ψ̃+(m) be simple. The parity κ(ψ̃) ∈ {±1} of ψ̃

is defined by ψ̃(w2
c ) = κ(ψ̃)PP−t, where P ∈ GLm(C) is any element such that

ψ̃c = Ad(P ) ◦ ψ̃∨.

Let us explain why κ(ψ̃) is well-defined:
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(a) Since ψ̃ is conjugate self-dual, there exists some P ∈ GLm(C) such that ψ̃c =

Ad(P ) ◦ ψ̃∨. By Schur’s lemma, any two choices for P differ by a scalar and,

hence, give the same value for PP−t.

(b) We have Ad(ψ̃(w2
c )) ◦ ψ̃ = Ad(PP−t) ◦ ψ̃, so ψ̃(w2

c ) and PP−t differ by a

scalar. Say ψ̃(w2
c ) = λPP−t, where λ ∈ C×. Since ψ̃(w2

c ) = Pψ̃(w2
c )
−tP−1 =

λ−1PP−t = λ−2ψ̃(w2
c ), we conclude that λ ∈ {±1}.

(c) It’s not hard to check that κ(ψ̃) is independent of the choice of wc and the choice

of ψ̃ in its equivalence class.

We can now partition I as I+ t I−, where

Iε := {i ∈ I : κ(ψi) = ε κ(χ) (−1)N−1}, ε ∈ {±1}.

Remark. For each 1 ≤ i ≤ r, we have ψi = µi � νi, where µi is an irreducible

representation of LF and νi is an irreducible representation of SL2(C). Let mi :=

dimµi and ni := dim νi. For i ∈ I, µi ∈ Φ̃(mi) and its parity satisfies κ(ψi) =

(−1)ni−1κ(µi).

Lemma 1.10. Let ψ ∈ Ψ+(UE/F (N)). With notation as above, we have that `i

is even for all i ∈ I− and

Sψ ∼=
∏
i∈I+

O`i(C)×
∏
i∈I−

Sp`i(C)×
∏
j∈J

GL`j(C).

Moreover, S\ψ
∼= (Z/2Z)I

+
.

Proof. This lemma is proven in [GGP12] (the proof is given for L-parameters,

but the general case is the same). If Sψ is as above, then

(Sψ ∩Gder(C))◦ =
∏
i∈I+

SO`i(C)×
∏
i∈I−

Sp`i(C)×
∏
j∈J

GL`j(C),

and, hence, S\ψ
∼= (Z/2Z)I

+
. �

2.3. The main local theorem. Recall that G is an inner form of G∗ :=

UE/F (N) (which is either a unitary group or a general linear group) and that we

have fixed a choice of an extended pure inner twist (ξ, z) : G∗ → G. The choice of

(ξ, z) determines a character

χz : Z(Ĝ(C))Gal(F/F ) → C×
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via the Kottwitz map κG : B(F,G∗)bsc → X∗(Z(Ĝ)Gal(F/F )). We write Irr(S\ψ, χz)

for the set of characters of the (abelian) group S\ψ which restrict to χz under

Z(Ĝ(C))Gal(F/F ) ↪→ Sψ → S\ψ.

Finally, we fix a choice of a non-trivial additive character ψF : F → C× (the map

π 7→ 〈 · , π〉ξ,z below also depends on the choice of ψF ).

Theorem 1.11. For each ψ ∈ Ψ(G), there exists a finite multiset Πψ(G, ξ) of

(equivalence classes of) irreducible unitary representations of G(F ) and a map

Πψ(G, ξ)→ Irr(S\ψ, χz), π 7→ 〈 · , π〉ξ,z

such that

(i) The multiset Πψ(G, ξ) is independent of the choice of z.

(ii) If ψ is not G-relevant, then Πψ(G, ξ) is empty. If ψ is generic, then Πψ(G, ξ)

is non-empty if and only if ψ is G-relevant.

(iii) All representations in Πψ(G, ξ) have the same central character.

(iv) If ψ is generic, all representations in Πψ(G, ξ) are tempered and only appear

once in Πψ(G, ξ). Moreover, the map π 7→ 〈 · , π〉ξ,z is injective; if F is non-

archimedean, it is also surjective.

(v) The packets (Πψ : ψ ∈ Φbdd(G)) are disjoint and exhaust the tempered repre-

sentations of G(F ).

Proof. This is [Mok15] Theorem 2.5.1, [KMSW14] Theorem 1.6.1. �

Remark. The theorem in the quasi-split case (ξ, z) = (id, 1) is due to Mok. The

non-quasi-split case is due to Kaletha, Minguez, Shin and White. At the moment,

the theorem in the non-quasi-split case has only been established for generic param-

eters ψ. A later paper by Kaletha, Minguez and Shin is expected to complete the

proof of the theorem for all parameters ψ ∈ Ψ(G). In this thesis, we only use the

theorem for generic parameters ψ.

In the remainder of this section, we descibe the A-packets in some special cases.

2.4. A-packets for inner forms of general linear groups. We consider the

A-packets in the split case: E ∼= F × F . Fixing a projection map E → F , we get

an F -isomorphism ι : G∗ ∼= GL(N). Let ψ ∈ Ψ(G). Composing ψ with Lι, we can



2. LOCAL CLASSIFICATION 21

identify ψ with a parameter in Ψ(GL(N,F )). Recall that we have an L-parameter

φψ ∈ Φ(GL(N,F )) defined by

φψ(w) := ψ

w,
 |w|1/2F

|w|−1/2
F

 .

The local Langlands correspondence for GL(N) (normalised so that uniformisers

correspond to geometric Frobenii) associates an irreducible unitary representation

π∗ψ := rec−1
F (φψ) of GLN(F ) to φψ.

We say that a unitary smooth irreducible representation π of GLN(F ) is d-

compatible if there exists a regular semisimple conjugacy class x of GLN(F ) such

that:

(a) Any irreducible factor g ∈ F [X] of the characteristic polynomial of x has degree

deg g divisible by d.

(b) The character Θπ of π does not vanish on x:

Θπ(x) 6= 0.

We have a Jacquet-Langlands map |LJ| := |LJ|ξ (cf. [DKV84], [Bad08], [BR10])

between the set of (equivalence classes of) all d-compatible irreducible unitary repre-

sentations π of GLN(F ) and the set of (equivalence classes of) all irreducible unitary

representations π′ of the inner form G(F ) ∼= GLm(D) of GLN(F ) (where D is a cen-

tral division F -algebra of degree d and m is an integer such that md = N). The

map is characterised by the following property: there exists a (necessarily unique)

sign ε ∈ {±1} such that the characters Θπ and Θπ′ , of π and π′ respectively, satisfy

the relation

Θπ(x) = εΘπ′(x
′),

for all x ∈ GLN(F ) and x′ ∈ G(F ) such that x and ι◦ ξ−1(x′) lie in the same regular

semisimple GLN(F )-conjugacy class. In general, the map |LJ| is neither injective

nor surjective.

Write ψ = `1ψ1⊕ . . .⊕ `rψr, where the parameters ψi ∈ Ψ(GL(mi)F ) are simple

and pairwise non-isomorphic. If F is non-archimedean, let

φi := ψi|WF×SL2(C)×1 and φ̂i := ψi|WF×1×SL2(C) ∈ Φ(GL(mi, F )).

If F is archimedean, set φi = φ̂i := ψi|WF
∈ Φ(GL(mi, F )).
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We say that a parameter φ ∈ Φ(GL(M)) is d-relevant if any Levi subgroup M of

GLM(C) containing the image of φ is conjugate to a standard (block-diagonal) Levi

subgroup GLm1(C)×. . .×GLmk(C) such that mi is divisible by d for all 1 ≤ i ≤ k (in

particular, we must have d | M). Hence, φ is d-relevant if and only if it is relevant

for GLm(D), where D is a central division F -algebra of degree d and M = md

(provided that such a division algebra exists).

Theorem 1.12. If there exists some i ∈ {1, . . . , r} such that neither of φi and

φ̂i is d-relevant, then Π(G, ξ) is empty. Otherwise (i.e. if, for all i ∈ {1, . . . , r},

either φi or φ̂i is d-relevant), π∗ψ is d-compatible and Πψ(G, ξ) = {πψ}, where πψ :=

|LJ|(π∗ψ).

Proof. This is [KMSW14] Theorem 1.6.4. �

Remark. The packet Πψ(G, ξ) is independent of the choice of map E → F .

2.5. Unramified A-packets. Let E/F be an unramified quadratic extension

of non-archimedean local fields and let G := UE/F (N) (thus, G is an unramified

group over F ). We take (ξ, z) = (id, 1) and assume that the character χ : WE → C×

is unramified. Let K := UE/F (N)(OF ) be the “standard” hyperspecial maximal

compact subgroup of G(F ).2 We have the following result of Mok ([Mok15] Theo-

rem 2.51(a) and Lemma 3.2.1):

Theorem 1.13. Let (G, ξ, z) be as above and ψ ∈ Ψ(G). Assume, in addition,

that our fixed additive character ψF : F → C× is trivial on OF , but not on any

larger fractional ideal of OF .

(i) If π ∈ Πψ(G, ξ) has K-fixed vectors (i.e. πK 6= 0), then 〈 · , π〉 = 1.

(ii) For any f ∈ H(G(F )), fN ∈ H(GLN(E)) with ∆[e, ξ, z]-matching orbital inte-

grals, we have ∑
π∈Πψ(G,ξ)

〈sψ, π〉f(π) = f̃N(η∗χψ).

(iii) The map f 7→
∑

π∈Πψ(G,ξ)〈sψ, π〉f(π) is a stable character H(G(F ))→ C.

2Here, UE/F (N) denotes the reductive group scheme over OF with functor of points

UE/F (N)(R) = {x ∈ GLN (OE ⊗OF
R) : (c⊗ idR)(x)t JN x = JN}.
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Notation. (a) G is an endoscopic group of the twisted group (GE/F (N), θ).

Throughout this subsection, we write e for the endoscopic triple (G, 1, ηχ), where

ηχ is the L-homomorphism

LG→ LGE/F (N) = (GLN(C)×GLN(C)) oWF

defined by g o w 7→ (χ(w)g, χ(w)−1JNg
−tJ−1

N ) for all (g, w) ∈ Ĝ(C)×WE, and

1owc 7→ (1, κ(χ)1)owc (recall that wc is a fixed choice of an element in WF \WE

and κ(χ) := χ(w2
c ) is the parity of χ; the ĜE/F (N)(C)-conjugacy class of ηχ is

independent of the choice of wc).

(b) For the definition of transfer factors ∆[e, ξ, z](γ, δ) and what it means for f, fN

to have ∆[e, ξ, z]-matching orbital integrals, see [KMSW14] Section 1.1.2 and

the papers of Kottwitz and Shelstad [KS99], [KS12].

(c) sψ ∈ Sψ denotes the element

sψ := ψ

1,

 −1

−1


and f(π) denotes the trace of π(f).

(d) f̃N ∈ H(GLN(E) o 〈θ〉) is the function supported on GLN(E) o θ that satisfies

f̃N(g o θ) = fN(g) for all g ∈ GLN(E). The local Langlands correspondence,

associates to the L-parameter φη∗χψ, a representation Πη∗χψ of GLN(E). This

representation admits an extension Π̃η∗χψ to a representation of the twisted group

GLN(E) o 〈θ〉.3 Then f̃N(η∗χψ) is defined as f̃N(Π̃η∗χψ) := tr Π̃η∗χψ(f̃N).

Let KN := GLN(OE), a θ-stable hyperspecial subgroup of GLN(E). The map

ηχ : LG → LGE/F (N) induces, via the Satake isomorphism, a map b between the

(unramified) Hecke algebras of GE/F (N) and G:

b : H(GLN(E);KN)→ H(G(F );K).

3There are two such extensions; we should choose the one which is compatible with the Whit-

taker datum (B(N), λ) induced by the standard pinning on GL(N) and our fixed choice of additive

character ψF : F → C×: see [Mok15] Section 3.2 for more details.
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The map b gives rise to a “base change” map

B :



(isomorphism classes of)

irreducible admissible

representations π of G(F )

such that πK 6= 0


→



(isomorphism classes of)

irreducible admissible

representations Π of GLN(E)

such that ΠKN 6= 0


defined by (B(π))(fN) = π(b(fN)) for all fN ∈ H(GLN(E);KN).

Let K̃N := KN o θ ⊂ GLN(E) o 〈θ〉. The following (twisted) version of the

fundamental lemma is due to Lemaire, Mœglin and Waldspurger [LMW15]:

Theorem 1.14. For any f ∈ H(GLN(E);KN), fN ∗ 1K̃N and f := b(fN) have

matching ∆[e, ξ, z]-matching orbital integrals.

We use Theorems 1.13 and 1.14 to deduce the following lemma:

Lemma 1.15. (i) If Πψ(G, id) contains a representation π of G(F ) such that

πK 6= 0, then ψ is unramified (i.e. ψ|LF is unramified).

(ii) If ψ is unramified, then Πψ(G, id) contains a unique representation π such that

πK 6= 0 and π is such that B(π) has L-parameter φη∗χψ.

Proof. Let fN ∈ H(GLN(E);KN), f := b(fN) ∈ H(G(F );K). We have

〈sψ, π〉f(π) =

f(π) = fN(B(π)) if πK 6= 0

0 if πK = 0

and f̃N(η∗χψ) := f̃N(Π̃η∗χψ) = fN(Πη∗χψ). Theorem 1.13 (ii) then implies that:∑
π ∈ Πψ(G, id)

πK 6= 0

fN(B(π)) = fN(Πη∗χψ) for all fN ∈ H(GLN(E);KN).

Assume that Πψ(G, id) contains a representation π with πK 6= 0. Then the LHS is

a non-zero linear map H(GLN(E);KN)→ C, so Πη∗χψ must have KN -fixed vectors.

Hence, η∗χψ is unramified, which implies that ψ is also unramified.

Conversely, assume that ψ is unramified. Then the identity above implies that

there is a unique π ∈ Πψ(G, id) with πK 6= 0, and π satisfies fN(B(π)) = fN(Πη∗χψ)

for all fN ∈ H(GLN(E);KN), i.e. B(π) = Πη∗χψ. �

Proposition 1.16. If ψ is unramified and generic, then all representations in

Πψ(G, id) are unramified.
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Proof. This follows from the construction of the A-packet in this case; see

[Mok15] Section 7.1. If N is odd, then the packet Πψ(G, id) consists of a single

representation. If N is even, then Πψ(G, id) has order at most 2.

In both cases, there is a unique element π in the packet Πψ(G, id) with K-fixed

vectors. In the case where N is even, there are two UE/F (N)(F )-conjugacy classes

of hyperspecial subgroups of UE/F (N). Let K ′ be a hyperspecial subgroup which

is not conjugate to K. If πK
′

= 0, then Πψ(G, id) contains two elements π and π′,

where π′ has K ′-fixed vectors and (π′)K = 0. �

2.6. Tempered archimedean A-packets. Let F = R and let φ ∈ Φ(UE/F (N))bdd

be a generic A-parameter (where E/F is a quadratic field extension). In this case,

the packet Πφ(G, ξ) was constructed by Langlands and Shelstad.

Notation. σ is a choice of an R-isomorphism E ∼= C and [ · ] : C× → U(1)

denotes the unitary character z 7→ z/|z|. Also, |z|E = σ(z)σ(z) = |σ(z)|2.

All representations in Πφ(G, ξ) have the same infinitesimal character µ(φ). One

can recover µ(φ) from the parameter φ as follows: The restriction

φ|WE
: WE → GLN(C)

of φ to WE = E× is a sum of characters

η1 ⊕ . . .⊕ ηN ,

where each ηj : E× → C× is of the form z 7→ [σ(z)]2aj |z| i tjE with aj ∈ 1
2
Z, tj ∈ R.

Then the infinitesimal character µ(φ) corresponds to the unordered N -tuple

(a1 + i t1, · · · , aN + i tN).

Note that µ(φ) is also equal to the unordered N -tuple (a1− i t1, · · · , aN− i tN), since

φ|WE
is a conjugate self-dual parameter.

Notation. We have

GC
∼−→
ξ
UE/F (N)C

∼−→
iσ

GL(N,C)

(the second isomorphism is the one induced by σ). We can thus identify the in-

finitesimal character of an irreducible admissible representation π of G(R) with an

element of X∗(T ) ⊗Z C/W (T ) = CN/SN , via the Harish-Chandra isomorphism.
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Here, T denotes the maximal torus of GL(N,C) consisting of all diagonal matrices

and W (T ) denotes its Weyl group.

3. Global classification

We now describe the endoscopic classification of automorphic representations of

unitary groups. In this section, E/F denotes a quadratic extension of number fields.

3.1. Global parameters and localisation. Let G be a connected reductive

group over a number field K. Define

G(AK)1 := {x ∈ G(AK) : ‖χ(x)‖AK = 1 for all χ ∈ HomK(G,Gm)}.

Definition 1.17. A unitary cuspidal automorphic representation of G is a uni-

tary irreducible admissible representation of G(AK) whose restriction to G(AK)1 is

a constituent of

L2
cusp(G(K)\G(AK)1).

We write Acusp(G) for the set of equivalence classes of all unitary cuspidal automor-

phic representations of G.

The set of global parameters Ψ(GL(N,E)) of GL(N,E) is defined to be the set

of formal (unordered) sums

ψ = (µ1 � ν1) � · · ·� (µr � νr),

where, for each 1 ≤ i ≤ r, µi ∈ Acusp(GL(mi, E)) and νi is an algebraic irreducible

representation of SL2(C) of dimension ni, such that m1n1 + . . .+mrnr = N .

For each place w of E, we have a localisation map

Ψ(GL(N,E))→ Ψ+(GL(N,Ev)), ψ 7→ ψw,

where

ψw := (φ1,w � ν1)⊕ · · · ⊕ (φr,w � νr)

and φi,w := recEw(µi,w) is the L-parameter of the w-component of µi. It is expected

that the localisations ψw should always lie in the set Ψ(GL(N,Ew)) of A-parameters

(this is the Ramanujan conjecture for GL(N)). Note that we can attach to each

ψ ∈ Ψ(GL(N,E)) an irreducible unitary representation

Πψ = ⊗wΠw
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of GLN(AE), where Πw is the irreducible representation of GLN(Ew) with L-parameter

φψw (for all places w of E).

For each sign κ ∈ {±1}, fix a conjugate self-dual character χκ : WE → C× of

parity κ (the parity κ(χ) of a character χ is defined as in the local case: κ(χ) :=

χ(w2
c ), where wc is any element of WF \WE). We define the set Ψ2(UE/F (N), ηχκ) of

global parameters of UE/F (N) that appear in the main global theorem of [Mok15]

and [KMSW14]:

Definition 1.18. Ψ2(UE/F (N), ηχκ) is the set of all pairs (ψN , ψ̃), where

(i) ψN is an element of Ψ(GL(N,E)), as above, such the µi� νi are pairwise dis-

tinct, and all the µi are conjugate self-dual of parity ηi = κ (−1)N−ni (the parity

ηi of µi is defined to be ηi := 1 if µi is conjugate orthogonal and ηi := −1 if µi

is conjugate symplectic; cf. [Mok15] Remark 2.5.3 or [KMSW14] §1.3.4).

(ii) ψ̃ is a ÛE/F (N)-conjugacy class of L-homomorphisms

LψN × SL2(C)→ LUE/F (N)

such that ψ̃N = ηχκ ◦ ψ̃. The group LψN is defined to be

LψN :=
( r∏
i=1

ÛE/F (mi)
)
oWF ;

we refer the reader to [Mok15] §2.4 or [KMSW14] §1.3.4 for the definition

of the map ψ̃N : LψN × SL2(C)→ LGE/F (N).

Remark. The natural analogue of Lemma 1.8 holds. In particular, if ψ̃ exists,

it is uniquely determined by ψN .

Let v be a place of F which splits as wwc in E. The localisation ψv of a parameter

ψ ∈ Ψ2(UE/F (N), ηχκ) is defined as the composition

LFv × SL2(C) −−→
ψNw

LGL(N,Ew)
∼−−→
Liw

LUEv/Fv(N),

where Ev := E ⊗F Fv ∼= Ew × Ewc and iw is the isomorphism corresponding to the

projection Ev → Ew; ψv does not depend on the choice of the place w above v. In

the case of non-split places, we have the following result of Mok:

Proposition 1.19 (Second seed theorem). Let ψ = (ψN , ψ̃) ∈ Ψ2(UE/F (N), ηχκ)

and let v be a place of F which does not split in E. Then the localisation ψNv ∈

Ψ+(GL(N,Ev)) lies in the image η∗χκ. We define ψv := η∗−1
χκ (ψNv ) to be the preimage

of ψNv under the (injective) map η∗χκ.
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We have thus defined a localisation map

Ψ2(UE/F (N), ηχκ)→ Ψ+(UEv/Fv(N)), ψ 7→ ψv

for parameters of unitary groups. We also get natural maps

Sψ → Sψv , S\ψ → S\ψv ,

where Sψ := Cent(Im ψ̃, ÛE/F (N)(C)), S\ψ := Sψ/(Sψ ∩ ÛE/F (N)der(C))◦.

3.2. The main global theorem. Let G be an inner form of UE/F (N) and let

(ξ, z) : UE/F → G be an extended pure inner twist. The main global theorem will

be independent of the choice of cocycle z. We define the global A-packet: Let

Πψ(G, ξ) :=

{⊗
v

πv : πv ∈ Πψv(GFv , ξv), 〈 · , πv〉ξv ,zv = 1 for almost all v

}

and let Πψ(G, ξ)→ Irr(S\ψ), π 7→ 〈 · , π〉ξ be given by

〈s, π〉ξ =
∏
v

〈s, πv〉ξv ,zv .

The map is independent of the choice of z and its pullback via

Z(Ĝ(C))Gal(F/F ) → S\ψ

is the trivial character. Let Sψ be the cokernel of Z(Ĝ(C))Gal(F/F ) → S\ψ. Let

εψ : Sψ → {±1}

be the character defined in [Mok15] §2.5; this character is trivial if ψ is generic

(i.e. if all the νi are trivial).

Finally, we define the automorphic A-packet of ψ to be

Πψ(G, ξ, εψ) := {π ∈ Πψ(G, ξ) : 〈 · , π〉ξ = εψ}.

We can now state the main global theorem of endoscopic classification of represen-

tations of unitary groups:

Theorem 1.20. We have a decomposition of G(AF )-modules

L2
disc(G(F )\G(AF )) =

⊕
ψ∈Ψ2(UE/F (N),ηχκ )

⊕
π∈Πψ(G,ξ,εψ)

π

(for any choice of conjugate self-dual character χκ).

Proof. This is [Mok15] Theorem 1.5.2, [KMSW14] Theorem 1.7.1. �
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Remarks. (i) The theorem in the general case (i.e. when G is not quasi-split)

is still conditional on certain hypotheses, which are expected to be resolved in

future papers. See the discussion below Theorem 1.7.1 in [KMSW14].

(ii) If π is an everywhere tempered automorphic representation in the discrete spec-

trum of G(AF ), then π occurs in the packet Πψ(G, ξ, εψ) of some generic param-

eter ψ ∈ Ψ2(UE/F (N), ηχκ). Conversely, a proof of the Ramanujan conjecture

would imply that all representations in the A-packet of a generic parameter

are everywhere tempered.

(iii) One should define local A-packets Πψv(GFv , ξv), πv 7→ 〈 · , πv〉ξv ,zv for parame-

ters ψv ∈ Ψ+(G) \ Ψ(G) to account for the possible failure of the Ramanujan

conjecture. This is done in [KMSW14] §1.6.4. The representations in the

packet Πψv(GFv , ξv) of a parameter ψv /∈ Ψ(G) need not be irreducible or uni-

tary; the packet is empty if ψv is not GFv -relevant.





CHAPTER 2

Automorphic representations on definite unitary groups

In this chapter, we study automorphic forms on totally definite unitary groups

and their associated Galois representations. More precisely, we use the theory of

endoscopic classification (summarised in the previous chapter) to attach Galois rep-

resentations to automorphic representations of a totally definite unitary group G and

to prove descent theorems allowing us to transfer conjugate self-dual automorphic

representations of GL(N) over a CM number field to automorphic representations

of G. We end the chapter by defining spaces of automorphic forms on G with

coefficients in a Z`-algebra A (e.g. Z` or F`).

1. Galois representations

Let E be a CM number field and let F be the maximal totally real subfield of

E. We write c for the non-trivial element of Gal(E/F ). Let G denote an inner form

of UE/F (N) such that G(F ⊗Q R) is compact (i.e. GR ∼= U(N) for every embedding

F ↪→ R), and fix an inner twist

ξ : UE/F (N)F
∼−→ GF

(i.e. an isomorphism ξ of F -groups such that ξ−1 ◦ σξ is an inner automorphism of

UE/F (N)F for all σ ∈ Gal(F/F )).

We recall the following theorem, which associates a Galois representation to

regular algebraic, conjugate self-dual cuspidal automorphic representations:

Theorem 2.1. Let Π be a cuspidal automorphic representaton of GLn(AE), such

that

(a) Π is conjugate self-dual: Πc ∼= Π∨.

(b) For some integer k, Π(k
2
) := Π‖ det ‖ k2 is regular L-algebraic: For every infi-

nite place w of E, recEw(Π(k
2
)w) is a direct sum of pairwise distinct algebraic

characters of E×w .

Then

(i) Π is everywhere tempered.

31
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(ii) For any prime number ` and any field isomorphism ι : Q`
∼= C, there exists a

continuous semisimple `-adic Galois representation

ρι(Π(k
2
)) : Gal(E/E)→ GLn(Q`)

characterised by

WD(ρι(Π(k
2
))|Gal(Ew/Ew))

F−ss ∼= ι−1recEw(Π(k
2
)w)

for all finite places w of E, not dividing `, where WD(σ)F−ss denotes the Frobe-

nious semisimplification of the Weil-Deligne representation associated to the

representation σ : Gal(Ew/Ew)→ GLn(Q`).

Proof. This theorem is due to many people: Kottwitz [Kot92], Clozel [Clo91],

Harris–Taylor [HT01], Taylor–Yoshida [TY07], Clozel–Harris–Labesse [CHL11],

Shin [Shi11], Chenevier–Harris [CH13], Caraiani [Car12]. �

Notation. If Π1 (resp. Π2) is an irreducible admissible representation of GLn(AE)

(resp. of GLm(AE)), we write Π1�Π2 for the representation of GLn+m(AE) satisfying

recEw((Π1 � Π2)w) = recEw(Π1,w)⊕ recEw(Π2,w) for all places w of E.

The main global theorem of endoscopic classification (Theorem 1.20) implies the

following theorem:

Theorem 2.2. Let π be an irreducible subrepresentation of

L2(G(F )\G(AF )).

There exist pairwise distinct automorphic representations Π1, . . . ,Πr such that

(i) Each Πi is an automorphic representation of GLmini(AE) of the form

Πi = µi| det |
ni−1

2 � µi| det |
ni−3

2 � · · ·� µi| det |
1−ni

2 ,

where µi is a unitary, conjugate self-dual, cuspidal automorphic representation

of GLmi(AE) and m1n1 + . . .+mrnr = N .

(ii) For all i ∈ {1, . . . , r} and every complex place w of E,

µi,w | det |
ni−N

2
w

is regular L-algebraic.

(iii) Π := Π1 � · · ·� Πr is the base change of π, i.e.
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(a) For every finite place v of F which splits as wwc in E,

|LJ|iw◦ξ−1(Πw) = πv and Πwc = Π∨w.

(b) For every finite place w of E which is non-split and unramified in E and

such that GFv is quasi-split and πv is unramified,

Πv = Bξ(πv),

where Bξ is the base change map induced by η1 ◦ Lξ via the Satake isomor-

phism, similarly to Chapter 1, Section 2.5.

Proof. Fix a basic cocycle z corresponding to ξ−1 ◦ σξ ∈ Z1(F,UE/F (N)ad). By

the main global theorem (with χκ = 1), we have π ∈ Πψ(G, ξ), for some global pa-

rameter ψ = (ψN , ψ̃) ∈ Ψ2(UE/F (N), η1). Let Π be the automorphic representation

of GLN(AE) corresponding to ψN . We have

ψN = ψ1 � · · ·� ψr,

where ψi = µi�νi are pairwise distinct. Let mi = dimµi, ni = dim νi. By definition,

Π = Π1 � · · ·� Πr, where the Πi are as in (i).

Let w be an infinite place of E. Let ψv be the localisation of ψ at the place v =

w|F . We have ψNv = η∗1ψv, where ψNv ∈ Ψ̃+(N) is the localisation of ψN . Since GFv

is isomorphic to the compact unitary group, LUEv/Fv(N) has no proper GFv -relevant

parabolic subgroups. We conclude (cf. [KMSW14] §1.6.4) that ψv ∈ Ψ(UEv/Fv(N)).

We can write

ψNv =
⊕
i∈I+

`iψ
(N)
i ⊕

⊕
i∈I−

`iψ
(N)
i ⊕

⊕
j∈J

`j(ψ
(N)
j ⊗ ψ(N) ∗

j ),

where the ψ
(N)
i := χi � ν

(N)
i are simple (in particular, the χi are characters). The

set I+ (resp. I−) consists of all indices i such that χi is conjugate self-dual and

χi(−1) = (−1)N−dim ν
(N)
i (resp. (−1)N−dim ν

(N)
i +1). Then, by Lemma 1.10,

Sψv
∼=
∏
i∈I+

O`i(C)×
∏
i∈I−

Sp`i(C)×
∏
j∈J

GL`j(C),

and all (`i : i ∈ I−) are even. We use Lemma 1.7 to deduce that S◦ψv is a torus and

that Cent(S◦ψv ,
LUEv/Fv(N)) = LUEv/Fv(N). Equivalently:

S◦ψv ⊂ Z(LUEv/Fv(N)) ∩ ÛEv/Fv(N) = Z(ÛEv/Fv(N))Gal(F/F ) = {±1}.
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Hence, `i = 1 for all i ∈ I+ and I− = J = ∅. Thus, part (ii) follows, as this shows

that, for each 1 ≤ i ≤ r, recEw(µi,w) is a direct sum of distinct conjugate-self dual

characters of E×w
∼= C×, each having parity (−1)N−ni . Moreover, we can conclude

that the µi are everywhere tempered (Theorem 2.1 (i)), i.e. ψv ∈ Ψ(UEv/Fv(N)) for

all places v.

The remaining parts follow from the description of the local A-packets in the

split and unramified case (cf. Chapter 1, Sections 2.4 and 2.5). �

Suppose that π is an irreducible subrepresentation of L2(G(F )\G(AF )), as above.

Let v be a place of F and w be a place of E diving v. We define an irreducible

admissible representation BCw(πv) of GLN(Ew), in the following two cases:

(i) BCw(πv) := |LJ|−1
iw◦ξ−1(πv), if v splits in E.

(ii) BCw(πv) := Bξ(πv), if v is inert in E, GFv is quasi-split and πv is an unramified

representation of G(Fv).

Remark. Let K be a nonarchimedean local field and let D be a central division

K-algebra of dimension d2. |LJ| restricts to a bijection between the set of isomor-

phism classes of tempered representations of GLrd(K) which are GLr(D)-relevant

and the set of isomorphism classes of tempered representations of GLr(D).

We can now attach a Galois representation to any discrete automorphic repre-

sentation π of G. More precisely, we have the following corollary:

Corollary 2.3. Let π be an irreducible subrepresentation of L2(G(F )\G(AF ))

and fix a field isomorphism ι : Q`
∼= C. Then there exists a continuous semisimple

representation

rι(π) : Gal(E/E)→ GLN(Q`)

(which also depends on ξ) such that

rι(π)∨,c ∼= rι(π)⊗ εN−1
`

and

WD
(
rι(π)|Gal(Ew/Ew)

)F−ss ∼= ι−1recEw
(
BCw(πv)| det |

1−N
2

)
for every finite place w - ` of E (lying over the place v of F ) satisfying one of the

following two conditions:

(a) w is split over F ;
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(b) w is inert over F , GFv is quasi-split and πv is an unramified representation of

G(Fv).

Moreover, π is everywhere tempered if and only if there are no subrepresentations

r1 and r2 of rι(π) such that r1
∼= r2 ⊗ ε`.

Notation. ε` : Gal(Q/Q)→ Z×` denotes the `-adic cyclotomic character.

Proof. We define rι(π) to be

rι(π) :=
r⊕
i=1

ni⊕
k=1

ρι(µi‖ det ‖
ni−N

2 )⊗ ε1−k
` ,

where the notation is as in theorems 2.1 and 2.2. This satisfies the desired local-

global compatibility. Assume that there are no subrepresentations r1 and r2 of rι(π)

such that r1
∼= r2⊗ε`; then n1 = · · · = nr = 1 and, hence, π is everywhere tempered.

Conversely, suppose that there are subrepresentations r1 and r2 of rι(π) such that

r1
∼= r2 ⊗ ε`. We may assume that r1 and r2 are irreducible; then

rι(π) ∼= r1 ⊕ (r1 ⊗ ε−1
` )⊕ r′.

Let v be a place of F which splits in E and is such that GFv is quasi-split (i.e.

isomorphic to GL(N)), and let w be a place of E above v. Then

recEw(πv ◦ i−1
w )⊗ |Art−1

Ew
|
1−N

2 ∼= φ1 ⊕ (φ1 ⊗ |Art−1
Ew
|−1)⊕ φ′,

where φ1 := ιWD(r1|Gal(Ew/Ew))
F−ss and φ′ := ιWD(r′|Gal(Ew/Ew))

F−ss. If πv is

tempered, then recEw(πv ◦ i−1
w ) is bounded and, hence, φ1 ⊗ |Art−1

Ew
|N−1

2 and φ1 ⊗

|Art−1
Ew
|N−3

2 are both bounded. This is not possible, so the last part follows. �

2. Descent to a definite unitary group

Let Π1,Π2 be unitary, conjugate self-dual, cuspidal automorphic representations

of GLm(AE), and assume that

Π = Π1 � Π2

is a regular C-algebraic4 representation of GLN(AE) (where N = 2m); in particular,

Π1 and Π2 are non-isomorphic. We remark that there is a Galois representation

rι(Π) : Gal(E/E)→ GLN(Q`)

4This means that Π ‖det ‖ 1−N
2 is regular L-algebraic.
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associated to Π (where ι is a field isomorphism Q`
∼= C); in the notation of Theo-

rem 2.1, rι(Π) is equal to ⊕
i∈{1,2}

ρ
(
Πi ‖ det ‖

1−N
2

)
and, thus,

WD
(
rι(Π)|Gal(Ew/Ew)

)F−ss ∼= ι−1recEw
(
Πw| det |

1−N
2

)
for all finite place w - ` of E.

Let us, moreover, assume that there is a place P of E such that, for each

i ∈ {1, 2}, Πi,P is a twist of the Steinberg representation Stm of GLm(EP) by an

unramified character ξi : E×P → C×.

Lemma 2.4. There is a biquadratic extension F1/F of totally real number fields,

an inner twist (G, ξ) of UE1/F1(N) (where E1 = E · F1), and an irreducible subrep-

resentation π of L2(G(F1)\G(AF1)) such that:

(i) E1/F1 is unramified at all finite places. If Πw is ramified at a place w of E,

then any place w1 of E1 above w is split over F1.

(ii) G(F1 ⊗Q R) is compact, i.e. G is a (totally) definite unitary group.

(iii) For any place p1 of F1 above p := P ∩ F , the group GFp1
is isomorphic to

GL(2, Dp1) and πp1 has GL2(ODp1
)-fixed vectors, where Dp1 is a central division

F1,p1-algebra with integer ring ODp1
.

(iv) GFv1
is quasi-split for all finite places v1 of F1 prime to p.

(v) rι(π) ∼= rι(Π)|Gal(E1/E1).

Moreover, given a finite Galois extension K/E, we can choose F1/F such that the

map Gal(K ·E1/E1)→ Gal(K/E) is an isomorphism (and, in particular, K ∩E1 =

E).

Proof. Write E = F (
√
α), where α ∈ F× \ (F×)2. Let S be a finite set of non-

archimedean places of F containing p, all places that ramify in E, and all places

v such that Πw is ramified for some place w | v of E. Moreover, let T be a set of

places of F , disjoint from S, such that each place w | T of E is unramified in K and

Gal(K/E) =
⋃
w|T

Frobw,

where Frobw denotes the Frobenius conjugacy class in Gal(K/E) at the place w.

There exists (by weak approximation) an element β ∈ F× \ (F×)2 such that

(i) β ∈ α(F×v )2 for all v ∈ S
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(ii) β ∈ (F×v )2 for all v ∈ T , and

(iii) σ(β) ∈ R>0 for all real embeddings σ : F ↪→ R.

Let F0 := F (
√
β):

(a) F0 is a totally real quadratic extension of F .

(b) If v0 is a place of F0 above S, then v0 splits in E0 = E · F0.

(c) If v0 is a place of F0 not dividing S, then v0 is unramified in E0 (as v0|F is

unramified in E). Hence, E0/F0 is everywere unramified.

(d) Any place v ∈ T splits in F0. Hence, any place w | T of E splits in E0.

There exists an inner twist (G0, ξ0) of UE0/F0(N) (cf. Chapter 1, Section 1.2) such

that

(a) G(F0 ⊗Q R) is compact (equivalently, GF0,v0 for any real place of v0 of F0),

(b) GF0,p0
is isomorphic to GL(2, Dp0) for any place p0 | p of F0, where Dp0 is a

central division Fp0-algebra, and

(c) GF0,v0 is quasi-split for any finite place v0 - p of F0.

Fix a basic cocycle z0 corresponding to ξ−1
0 ◦σξ0 ∈ Z1(F0, UE0/F0(N)ad). We write

Σ for the set of finite places v0 of F0 such that the image of z0 under the localisation

map B(F0, G0)bsc → B(F0,v0 , G0)bsc is non-trivial. Let ΣQ be a finite set of rational

primes containing all primes lying below Σ and all primes lying below T ∪ p. Let

d > 1 be a square-free integer such that every prime in ΣQ splits in Q(
√
d). Set

F1 := F0(
√
d) = F (

√
β,
√
d), E1 := E · F1.

Thus,

(a) F1 is a totally real biquadratic extension of F .

(b) If v1 is a place of F1 above S, then v1 splits in E1.

(c) E1/F1 is everywere unramified.

(d) If v0 is a place of F0 lying over ΣQ, then v0 splits in F1.

(e) Any place v ∈ T splits completely in F1. Hence, any place w | T of E splits

completely in E1; in particular, Gal(K · E1/E1)→ Gal(K/E) is surjective.

Let (G, ξ, z) be the base change of the extended pure inner twist (G0, ξ0, z0) to

F1. Moreover, let Πb = Π1,b � Π2,b be the base change of Π = Π1 � Π2 to E1:

Definition 2.5. A representation Π of GLN(AE) is called isobaric if

Π ∼= Π1 � · · ·� Πr,
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for some integer r ≥ 1 and some cuspidal automorphic representations Πi of GLmi(AE)

(i = 1, · · · , r) with m1 + · · ·+mr = N .

Let Π be an isobaric representation of GLN(AE) and let Πb be an isobaric rep-

resentation of GLN(AE1), where E1/E is a Galois extension of number fields. We

say that Πb is the base change of Π to E1 if

recE1,w1
(Πb,w1)

∼= recEw(Πw)|LE1,w1

for every place w1 of E1 lying over a place w of E.

Theorem 2.6. Let Π be an isobaric representation of GLN(AE) and let E1/E

be a solvable Galois extension of number fields. Then the base change Πb of Π to

E1 exists. If Π is an isobaric sum of unitary cuspidal representations, then so is Πb.

Proof. The theorem is due to Arthur and Clozel. It suffices to prove the

theorem when Π is a unitary cuspidal representation and E1/E is a cyclic exten-

sion of prime degree: This is [AC89] Chapter 3, Theorem 4.2 (weak lifting) and

Theorem 5.1 (strong lifting). The “strong lifting” of Arthur-Clozel corresponds

to restriction of local L-parameters under the local Langlands correspondence (cf.

[HT01] Lemma VII.2.6 and [AC89] Chapter 1, Section 6). Indeed, let L/K be a

cyclic extension of non-archimedean local fields of characteristic 0 (of prime degree

[L : K] = `), let π be a smooth irreducible representation of GLN(K), and let πL

be its strong base change to L, in the sense of Arthur-Clozel. We want to see that

recK(π)|LL = recL(πL).

If π is supercuspidal, this is Lemma VII.2.6, part (5), of [HT01].

If π is square-integrable, then π = St(ω, a) for some unitary cuspidal representa-

tion ω of GLN/s(K), where St(ω, a) denotes the generalised Steinberg representation,

i.e. the unique quotient of the normalised parabolic induction of

ω| det |
1−a
2 � · · ·� ω| det |

a−1
2

(in the notation of [HT01], St(ω, a) = Spa(ω| det | 1−a2 )), and we have recK(St(ω, a)) =

recK(ω)�νa, where νa is the a-dimensional irreducible representation of SL2(C). We

write Ω for the base change lift of ω (so recK(ω)|LL = recL(Ω)). By Lemma 6.10

and Lemma 6.12 of [AC89], we have the following two possibilities:

(i) Ω is cuspidal, and πL = St(Ω, a).
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(ii) Ω = Γ×· · ·×Γσ
`−1

, where σ is a generator of Gal(L/K), with Γ 6∼= Γσ cuspidal,

and

πL = St(Ω, a) = St(Γ, a)× · · · × St(Γσ
`−1

, a).

We thus have recL(Ω) =
⊕`−1

i=0 recL(Γσ
i
) and recL(πL) =

⊕`−1
i=0 recL(Γσ

i
)�νa =

recK(Ω) � νa.

In both cases, we have recK(π)|LL = recL(πL).

The case where π is (essentially) tempered follows from the discussion in [AC89]

Section 6.2 (and compatibility of strong lifting and recK with twists).

In general, we can write π as the unique quotient of the normalised parabolic

induction of an essentially tempered and dominant representation

πM = π1 � · · ·� πr

of a Levi subgroupM(F ) = GLm1(F )×· · ·×GLmr(F ), and recK(π) =
⊕r

i=1 recK(πi).

The strong base change lifting

π′M = π′1 � · · ·� π′r

of πM is also essentially tempered and dominant, and πL is the unique quotient of the

normalised parabolic induction of π′M to GLN(E). We have recK(πi)|LL = recL(π′i)

for all 1 ≤ i ≤ r, so the relation recK(π)|LL = recL(πL) holds in general. �

Remark. Let K1/K be a Galois extension of local non-archimedean fields of

characteristic 0. Then, for any character ξ : K× → C×, we have

recK(Stm ⊗ ξ(det))|LK1

∼= recK1(Stm ⊗ (ξ ◦ NK1/K)(det)).

In particular, if Π is a cuspidal representation of GLm(AE) and w is a finite place

of the number field E such that Πw is an unramified twist of the Steinberg repre-

sentation of GLm(Ew), then the same is true for the base change Πb of Π to E1 (if

it exists) and any place w1 of E over w (for any finite Galois extension E1/E).

Let ψN = ψN1 � ψN2 ∈ Ψ(GL(N,E1)), where ψNi ∈ Ψ(GL(m,E1)) is the formal

global parameter corresponding to Πi,b. We compute the parity of Πi,b:

Let w1 be an archimedean place of E1 and fix an R-isomorphism σ : E1,W1
∼= C.

Since Πb is regular C-algebraic and everywhere tempered, ψNi,w1
= recE1,w1

(Πi,b,w1) is

of the form

η1 ⊕ · · · ⊕ ηm,
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where ηj : E×1,w1
→ C×, z 7→ [σ(z)]2aj , and a1, · · · , am ∈ N−1

2
+ Z are distinct (recall

that we write [s] := s/|s|). Applying Lemma 1.8, we conclude that ψNi,w1
is in the

image of

η∗χ : Φbdd(UE1/F1(m))→ Φ̃bdd(m)

if and only if κ(χ) = (−1)N−m = (−1)m. We observe that ψNi extends to a parameter

(ψNi , ψ̃i) ∈ Ψ2(UE1/F1(m), ηχκ),

where (−1)m−1κ is equal to the parity of Πi,b (we simply take ψ̃i to be the identity

map on LψNi = LUE1/F1(m) and trivial on SL2(C)). Now the “second seed theorem”

(Proposition 1.19) implies that κ = (−1)m. Hence, Πi,b has parity −1.

We claim that ψN extends to a parameter ψ = (ψN , ψ̃) ∈ Ψ(UE1/F1(N), η1). This

follows from the global analogue of Lemma 1.8. Explictly, we can take

ψ̃ : LψN × SL2(C) = L
(
UE1/F1(m)× UE1/F1(m)

)
× SL2(C)→ LUE1/F1(N)

to be given by

(x1, x2) 7→

 x1

x2

 , for any x1, x2 ∈ ÛE1/F1(m)

1 o w 7→

 χ(−1)m(w)

χ(−1)m(w)−1

o w, for any w ∈ WE1

1 o wc 7→

 Jm

Jm

 JN o wc

(where χ(−1)m : WE1 → C× denotes a conjugate self-dual character of parity (−1)m

and wc denotes a fixed element of WF1 \ WE1); ψ̃ is defined to be trivial on the

SL2(C) factor.

We can now consider the A-packet Πψ(G, ξ). We know that the localisation ψv of

ψ is a generic A-parameter for every place v of F1 (since Π is everywhere tempered).

Since ψv is GF1,v -relevant for all places v of F1 (by our assumptions on Πp and Πv

for v -∞), Πψ(G, ξ) is non-empty. Let π ∈ Πψ(G, ξ):

(i) If p1 | p and P1 is a place of E1 above p1, then

|LJ|iP1
◦ξ−1(πp1) = Πb,P1 = �

i∈{1,2}
St⊗ ξ′i(det),
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where ξ′i := ξi ◦NE1,P1
/EP1

(an unramified, unitary character of E×1,P1
). There-

fore, πv is isomorphic to the representation Ind
GL2(Dp0 )

D×p0×D
×
p0

(
(ξ′1 ◦Nrd)� (ξ′2 ◦Nrd)

)
of GL2(Dp0), which is irreducible and has GL2(ODp0

)-fixed vectors.

Notation. p0 = p1 ∩ F0. Ind denotes unitary induction. Nrd denotes the

reduced norm map D×p0 → F×0,p0 (and we have canonical isomorpisms F0,p0
∼=

F1,p1
∼= E1,P1).

(ii) If v is a finite place of F1 not dividing p and v splits in E1, choose a place w of E1

above v and an Fv-isomorphism ξv = ξFv ◦Ad(α) (where α ∈ UE1/F1(N)(F1,v1))

between UE1/F1(N)F1,v and GF1,v . We then get an isomorphism

iw ◦ ξ−1
v : G(F1,v)

∼−→ GLN(Ew)

and πv ∼= Πb,w◦(iw◦ξ−1
v ) (the isomorphism class of Πb,w◦(iw◦ξ−1

v ) is independent

of the choice of w and ξv).

(iii) If v is a finite place of F1 not dividing p and v does not split in E1, then Πb,v is

unramified and we deduce that πv is unramified (see Chapter 1, Section 2.5).

(iv) If v is an archimedean place of F1, then, because G(F1,v) is compact, πv is

determined by its infinitesimal character. Let w be the complex place lying

over v. The infinitesimal character of πv can be described in terms of ψNw , as

we’ve seen in Chapter 1, Section 2.6.

All that’s left to show is that the automorphic A-packet Πψ(G, ξ, εψ) is non-

trivial. In this case, ψ is generic, so εψ = 1. Given a finite place v of F1 such that

the image zv of the basic cocycle z under

B(F1, G)bsc → B(F1,v, G)bsc

is trivial, let πv be the element of Πψv(G, ξ) corresponding to the trivial character of

S\ψv under the pairing πv 7→ 〈 · , πv〉ξ,zv . Let v be a place of F1 such that the image zv

of z in B(F1,v, G)bsc is non-trivial. Then, by construction, v is split over v0 := v|F0 .

Let v′ be the Gal(F1/F0)-conjugate of v. We have isomorphisms of pointed sets:

B(F0,v0 , G)bsc

B(F1,v, G)bsc B(F1,v′ , G)bsc

∼ ∼
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Let πv (resp. πv′) be an element of Πψv(G, ξ) (resp. Πψv′
(G, ξ)) such that 〈 · , πv〉ξ,zv =

〈 · , πv′〉ξ,zv′ ∈ Irr(S\ψv , χzv) = Irr(S\ψv′ , χzv′ ). Define

π :=
⊗
v

πv ∈ Πψ(G, ξ).

Since S\ψ is an elementary abelian 2-group, we have 〈 · , π〉ξ =
∏

v〈 · , πv〉ξ,zv |S\ψ = 1.

Hence, π ∈ Πψ(G, ξ, εψ), i.e. π is an irreducible subrepresentation of L2(G(F1)\G(AF1)).

�

We end this section by proving a different “descent” theorem. This theorem

allows us, under stronger assumptions on Π, to descend to a totally define unitary

group without the need to replace Π by its base change first (with respect to an

extension E1/E). In the following chapter, we will only make use of Lemma 2.4.

Theorem 2.7. Let Πi (i = 1, · · · , r) be unitary, conjugate self-dual cuspidal

automorphic representations of GLmi(AE) and let

Π = Π1 � · · ·� Πr.

Assume that Π is a regular C-algebraic representation of GLN(AE), where N =

m1 + · · ·+mr. Let (G, ξ) be an inner twist of UE/F (N) such that

(i) G(F ⊗Q R) is compact.

(ii) If v is a finite place of F that does not split in E, then GFv is quasi-split.

(iii) If v is a finite place of F that splits as wwc in E, then the L-parameter

recEw(Πw) : WEw × SL2(C)→ GLN(C)

is GEw-relevant.

Let v be a finite place of F which is inert in E. Let ψNv := recEv(Πv). We

can decompose ψNv into a sum of simple parameters

ψNv =
⊕
j∈I+v

`jψj ⊕
⊕
j∈I−v

`jψj ⊕
⊕
j∈Jv

`j(ψj ⊕ ψ∗j ),

as in Chapter 1, Section 2.2. For each 1 ≤ i ≤ r and each j ∈ I+
v , let `j,i be

the multiplicity of ψj in recEv(Πi,v); thus, `j,1 + · · · + `j,r = `j for all j ∈ I+
v .

We define an F2-linear map

θv : Fr2 → FI
+
v

2

by ei 7→ (`j,i mod 2)j∈I+v (for all 1 ≤ i ≤ r), where ei is the vector whose i-th

coordinate is 1 and whose other coordinates are 0.
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Assume that, for some finite place v of F which is inert in E, the linear

map θv is injective. Then there exists an irreducible subrepresentation π of

L2(G(F )\G(AF )) such that rι(π) ∼= rι(Π).

Remark. The assumption that the map θv is injective is satisfied, for example,

if recEw(Πv) is the sum of N distinct conjugate self-dual characters W×
Ev
→ C× of

parity (−1)N−1 (then I+
v contains N elements and `j = 1 for all j ∈ I+

v ).

Proof. Let ψNi be the formal global parameter corresponding to Πi (for 1 ≤

i ≤ r) and let

ψN = ψN1 � · · ·� ψNr

be the formal parameter corresponding to Π.

We compute the parity of Π. We do this by computing the parity of the local

component of Πi at an archimedean place w, in the same way as in Lemma 2.4:

Since Π is regular C-algebraic and everywhere tempered, we have

ψNi,w = recEw(Πi,w) = η1 ⊕ · · · ⊕ ηmi ,

where ηj : E×w → C×, z 7→ [σ(z)]2aj and a1, · · · , ami ∈ N−1
2

+ Z are distinct. As

before, σ denotes a fixed choice of R-isomorphism Ew ∼= C and [x] denotes x/|x|.

Lemma 1.8 implies that ψNi,w is in the image of

η∗χ : Φbdd(UE/F (mi))→ Φ̃bdd(mi)

if and only if the character χ has parity κ(χ) = (−1)N−mi . We now use the second

seed theorem (Proposition 1.19); this tells us that (for any place w) ψNi,w is in the

image of η∗χ for any character χ with κ(χ) = (−1)mi−1ηi, where ηi is the parity of

Πi. Hence, we have ηi = (−1)N−1.

As in Lemma 2.4, we observe that ψN extends to a global parameter

ψ = (ψN , ψ̃) ∈ Ψ(UE/F (N), η1).

This follows from (the natural analogue of) Lemma 1.8. Explicitly,

ψ̃ : LψN × SL2(C) = L

(
r∏
i=1

UE/F (mi)

)
× SL2(C)→ LUE/F (N)
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is given by ψ̃(SL2(C)) = {1} and

(x1, · · · , xr) o w 7→


χ1(w)x1

. . .

χr(w)xr

o w, for xi ∈ ÛE/F (mi), w ∈ WE,

1 o wc 7→


Jm1

. . .

Jmr

 JN o wc,

where χi = χ(−1)N−mi and χκ denotes a conjugate self-dual chracter WE → C× of

parity κ (for κ ∈ {±1}); wc denotes a fixed element of WF \WE.

Since Π is everywhere tempered and by our assumptions on Π and G, we deduce

that the localisation ψv of ψ is generic and GFv -relevant, for all places v of F .

Hence, the A-packet Πψ(G, ξ) is non-empty. We need to show that the automorphic

A-packet Πψ(G, ξ, εψ) is non-empty. Let (G, ξ, z) be an extended pure inner twist,

extending (G, ξ). We have S\ψ
∼= (Z/2Z)r and, given a finite place v of F that is

inert in E, we have S\ψv
∼= (Z/2Z)I

+
v (by Lemma 1.10). The map S\ψ → S\ψv is then

the map θv defined in the statement of the theorem. Thus, there is a finite inert

place v0 of F such that S\ψ injects into S\ψv0
. For each place v 6= v0 of F , choose some

πv ∈ Πψ(G, ξ) arbitrarily. Then choose a character λ ∈ Irr(S\ψv0
, χzv0 ) extending the

character (∏
v 6=v0

〈·, πv〉ξ,zv |S\ψ

)−1

on S\ψ. Since the pairing Πψv0
(G, ξ)→ Irr(S\ψv0

, χzv0 ) is bijective, there is an element

πv0 in the local A-packet Πψv0
(G, ξ) such that 〈·, πv0〉ξ,zv0 = λ. Let

π :=
⊗
v

πv ∈ Πψ(G, ξ).

We have ∏
v

〈·, πv〉ξ,zv |S\ψ = 1 = εψ,

so π lies in the automorphic A-packet Πψ(G, ξ, εψ). This completes the proof of the

theorem. �
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3. `-adic automorphic forms on a definite unitary group

Let (G, ξ) be an inner twist of UE/F (N), where E is a CM number field with

maximal totally real subfield F , such that G(F⊗QR) is compact. Let ` be a rational

prime such that GFλ is quasi-split for all places λ | `.

For each place λ | ` of F , choose a smooth integral model Gλ over OFλ for GFλ

(if λ is unramified in E, choose Gλ to be a reductive model, so that Gλ(OFλ) is a

hyperspecial maximal compact subgroup of G(Fλ)). Let

G :=
∏
λ|`

ResOFλ/Z` Gλ,

a group scheme over Z` with generic fibre GQ` ∼= (ResF/QG)Q` .

Let K/Q` be a finite extension containing all embeddings E ↪→ K, with integer

ring O = OK , and residue field k. Let M be a finite free O-module and let

ρ : GO → GL(M)

be a representation defined over O.

Definition 2.8. Let A be an O-algebra and let U be an open compact subgroup

of G(A∞F ). Assume that either

(a) A is a K-algebra, or

(b) the image of U under the projection G(A∞F )→ G(F⊗QQ`) = G(Q`) is contained

in

G(Z`) =
∏
λ|`

Gλ(OFλ).

Define SM(U,A) to be the space of all functions

f : G(F )\G(A∞F )→M ⊗O A

such that f(xu) = ρ(u`)
−1f(x) for all x ∈ G(A∞F ), u ∈ U , where u` denotes the

image of u under the projection G(A∞F )→ G(F ⊗Q Q`).

Given an open compact subgroup U ⊂ G(A∞F ) and an element x ∈ G(A∞F ),

we write ΓU,x for the finite subgroup xUx−1 ∩ G(F ) of G(A∞F ). The order |ΓU,x|

of this group only depends on the class of x in the finite double quotient XU :=

G(F )\G(A∞F )/U .

Definition 2.9. We say that the open compact subgroup U is sufficiently small

if ` does not divide |ΓU,x| for all x ∈ G(A∞F ).
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Proposition 2.10. Let A be an O-algebra and let U be an open compact sub-

group of G(A∞F ) (contained in G(Z`) × G(A∞,`F ), if A is not a K-algebra). Let

{xα : α ∈ XU} ⊂ G(A∞F ) be a set of representatives for the double quotient

XU := G(F )\G(A∞F )/U . Then:

(i) The map f 7→ (f(xα) : α ∈ XU) defines an isomorphism of A-modules

SM(U,A) ∼=
⊕
α∈XU

(M ⊗O A)Hα ,

where Hα is the image of the group x−1
α G(F )xα∩U under G(A∞F )→ G(F⊗QQ`)

(Hα has order dividing |ΓU,xα| and acts on M ⊗O A by ρ).

(ii) If U is sufficiently small and U ⊂ G(Z`)×G(A∞,`F ), then A 7→ SM(U,A) is an

exact functor from the category of O-algebras to the category of O-modules.

(iii) If A→ B is flat O-homomorphism, then SM(U,B) = SM(U,A)⊗A B.

Proof. (i) The map f 7→ (f(xα) : α ∈ XU) admits a well-defined inverse map

m = (mα) 7→ fm, where

fm(γxαu) = ρ(u`)
−1mα,

for all γ ∈ G(F ), u ∈ U .

(ii) For any O-algebra A, we have H1(Hα,M ⊗OA) = 0, since this is an O-module

killed by |Hα| = |ΓU,xα | ∈ O×.

(iii) We have an exact sequence

0→ (M ⊗O A)Hα →M ⊗O A
a7→(ha−a)h−−−−−−→

∏
h∈Hα

M ⊗O A.

The flatness of A→ B implies that

0→ (M ⊗O A)Hα ⊗A B →M ⊗O B
a7→(ha−a)h−−−−−−→

∏
h∈Hα

M ⊗O B

is exact, i.e. that (M ⊗O A)Hα ⊗A B = (M ⊗O B)Hα .

�

3.1. Hecke operators. Let U be an open compact subgroup of G(A∞F ) (con-

tained in G(Z`) × G(A∞,`F ), if A is not a K-algebra). For every x ∈ G(A∞F ) (with

x` ∈ G(Z`), if A is not a K-algebra), we have a natural map

SM(U,A)
∼−→ SM(xUx−1, A), f 7→ xf,

where (xf)(y) := ρ(x`)f(yx). Note that uf = f for all u ∈ U .
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Assume that U ⊂ G(Z`)×G(A∞,`F ) and let HU be the O-algebra of all compactly

supported U -bi-invariant functions

T : U\G(A∞F )/U → O

such that supp(T ) ⊂ G(Z`)×G(A∞,`F ). This is a free O-module with basis

{[UxU ] : x ∈ G(Z`)×G(A∞,`F )},

where [UxU ] denotes the indicator function of the double coset UxU . Multiplication

is given by convolution

(T ∗ T ′)(y) =
∑

x∈G(A∞F )/U

T (x)T ′(x−1y)

and the multiplicative identity is the indicator function of U . HU acts on SM(U,A)

by

(Tf)(y) =
∑

x∈G(A∞F )/U

T (x) (xf)(y).

Fix a field isomorphism ι : K
∼−→ C. We have a representation

ρK : G(K) = G(F ⊗Q K)→ GL(M ⊗O K),

which we can identify (under ι) with a representation

ρC,ι : G(F ⊗Q C)→ GL(M ⊗O,ι C).

We write W∞ for the finite-dimensional complex vector space M ⊗O,ι C endowed

with the continuous G(F ⊗Q R)-action given by (the restriction of) ρC,ι and trivial

G(A∞F )-action.

Proposition 2.11. Fix ι : K ∼= C, as above. We have an isomorphism of

HU -modules

SM(U,C) ∼= HomU×G(F⊗QR)(W
∨
∞, L

2(G(Q)\G(AF )).

Proof. The isomorphism f 7→ ϕ := ϕ(f) is defined by

ϕ(θ) : x 7→ θ(ρC,ι(x∞)−1ρ(x`)f(x∞)),

for θ ∈ W∨
∞, x ∈ G(AF ). �



48 2. AUTOMORPHIC REPRESENTATIONS ON DEFINITE UNITARY GROUPS

We henceforth assume that W∞ is an irreducible representation of G(F ⊗Q R).

Note that, if L2(G(F )\G(AF )) =
⊕̂

πm(π) π, where the sum runs through π ∈

Adisc(G), then

HomU×G(F⊗QR)(W
∨
∞, L

2(G(Q)\G(AF )) =
⊕

π∞=W∨∞

m(π) (π∞)U .

3.2. Galois representations. Let R be a set containing all but finitely many

of the places v of F which split in E. Assume that every v ∈ R is such that

(i) v splits in E and is prime to `, and

(ii) GFv is quasi-split (i.e. isomorphic to GL(N,Fv)).

Given a place v ∈ R, let w be a place of E above v. The choice of the place w

induces a canonical isomorphism iw : UE/F (N)Fv → GL(N,Fv) (we have iwc(x) =

JN iw(x)−tJ−1
N ). For each v ∈ R, we choose a ∈ G(Fv) such that Ad(a) ◦ ξFv is

defined over Fv; let ξv be the Fv-isomorphism UE/F (N)Fv → GFv such that (ξv)Fv =

Ad(a) ◦ ξFv . We define

θw := iw ◦ ξ−1
v : GFv

∼−→ GL(N,Fv).

Let U =
∏

v Uv be a sufficiently small open compact subgroup of G(Z`)×G(A∞,`F ),

such that Uv := θ−1
w (GLN(OFv)) for all v ∈ R (Uv is independent of the choice of

w | v). For each v ∈ R and each choice of a place w of E above v, we have Hecke

operators

Tw,j :=

U θ−1
w

 $v1j 0

0 1N−j

 U

 for j = 0, 1, · · · , N,

acting on SM(U,A). We have Twc,j = Tw,N−j T
−1
w,N .

Let T := TM(U) be the O-subalgebra of EndO(SM(U,O)) generated by the

Hecke operators Tw,j, T
−1
w,N for 0 ≤ j ≤ N , w | R. The algebra T has the following

properties:

(a) T is commutative.

(b) T is finite and flat over O.

(c) T is noetherian, of Krull dimension 1, and every minimal prime ideal of T lies

below a unique maximal ideal.

(d) T is a finite product of local rings, i.e. the natural map

T→
∏
m

Tm,
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is an isomorphism (the product is over all maximal ideals m of T).

(e) Let em be the element of T such that em = 1 in Tm and em = 0 in Tn for all

maximal ideals n 6= m. For any T-module M , we have

M =
⊕
m

emM

and each emM is canonically isomorphic to Mm.

Proposition 2.12. Let φ : T → k be a homomorphism of O-algebras. There

exists a continuous semisimple mod ` Galois representation

rφ : Gal(E/E)→ GLN(k),

which is unramified at all places w | R and rφ(Frobw) has the characteristic polyno-

mial
N∑
j=0

(−1)N−jq
(N−j)(1−j−N)

2
w φ(T−1

w,NTw,j)X
j.

Moreover, we have rφ
∨,c ∼= rφ ⊗ εN−1

` .

Remark. In the proposition above (and later in the text), Frobw denotes the

arithmetic Frobenius at the place w. The characteristic polynomial of rφ evaluated

at a geometric Frobenius at w is

N∑
j=0

(−1)N−jq
(N−j)(N−j−1)

2
w φ(Tw,N−j)X

j.

Proof. Let p be a minimal prime lying below m := kerφ. There is a T-

eigenfunction f ∈ SM(U,K) such that p is the kernel of the O-homomorphism

λ : T → K sending T to its f -eigenvalue (the elements of T are simultaneously

diagonalisable endomorphisms of SM(U,K), by Proposition 2.11).

Fix ι : K ∼= C. There is a subrepresentation π ⊂ L2(G(F )\G(AF )) such that

the eigenvalue of Tw,j on πU is ι ◦ λ(Tw,k). We define rφ to be the semisimplification

of the mod ` reduction of rι(π) (cf. Corollary 2.3).

It remains to show that rφ(Frobw) has the correct characteristic polynomial for

all w | R. Let v ∈ R and let w be a place of E lying over v. Let Πw = πv ◦ θ−1
w ; Πw

is an unramified representation of GLN(Ew). We have recEw(Πw) = ψ1 ⊕ · · · ⊕ ψN ,

where the ψj are unramified characters WEw → C×. Then

recEw(Πw| det |
1−N

2
w ) = (ψ1 ⊕ · · · ⊕ ψN)⊗ |Art−1

Ew
( · )|

1−N
2

w .
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Let αj := ι−1ψj(Frobw) for 1 ≤ j ≤ N . The characteristic polynomial of rι(π)(Frobw)

is

(X − α1q
1−N

2
w ) · · · (X − αNq

1−N
2

w ),

where qw is the cardinality of the residue field of Ew. On the other hand, Πw is

isomorphic to the normalised parabolic induction of χ1 � · · · � χN , where χj =

ψj ◦ArtEw . Let σj (0 ≤ j ≤ N) be the jth elementary symmetric polynomial in the

χj($w) (where $w is a uniformiser for Ew). Thus, σ0 = 1, σ1 =
∑N

j=1 χj($j) and

σN =
∏N

j=1 χj($j). The Hecke operator Tw,j acts on Π
GLN (OEw )
w by multiplication

by the scalar

tw,j = q
j(N−j)

2
w σj

(cf. [CHT08] Lemma 3.1.1). We have ι(αj) = χj($w)−1 and, hence,

(X − α1q
1−N

2
w ) · · · (X − αNq

1−N
2

w ) =
N∑
j=0

(−1)N−jq
(N−j)(1−N)

2
w ι−1(σ−1

N σj)X
j

=
N∑
j=0

(−1)N−jq
(N−j)(1−j−N)

2
w ι−1(t−1

w,N tw,j)X
j

=
N∑
j=0

(−1)N−jq
(N−j)(1−j−N)

2
w λ(T−1

w,NTw,j)X
j.

We conclude that rφ(Frobw) has the desired characteristic polynomial. �

3.3. Duality. Let 〈 · , · 〉M : M ×M∨ → O be the natural pairing 〈m,ϑ〉M =

ϑ(m). Assuming that U ⊂ G(Z`) × G(A∞,`F ) is sufficiently small, we have a perfect

pairing

〈 · , · 〉U : SM(U,A)× SM∨(U,A)→ A

defined by

〈f, g〉U =
∑
x∈XU

|ΓU,x|−1〈f(x), g(x)〉M (where XU := G(F )\G(A∞F )/U).

We record the following properties of 〈 · , · 〉U :

(a) For all x ∈ G(Z`)×G(A∞,`F ), we have 〈xf, xg〉xUx−1 = 〈f, g〉U .

(b) For all U1 ⊂ U , (U : U1) 〈f, g〉U = 〈f, g〉U1 .

(c) For all x ∈ G(Z`)×G(A∞,`F ), the adjoint of the Hecke operator [UxU ] (acting on

SM(U,A)) with respect to 〈 · , · 〉U is [UxU ]∨ = [Ux−1U ] (acting on SM∨(U,A)).

(d) For all w | R, j ∈ {0, 1, · · · , N}, we have T∨w,j = Tw,N−j T
−1
w,N = Twc,j.
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We write T for TM(U) ⊂ EndO(SM(U,O)) and T∨ for TM∨(U) ⊂ EndO(SM∨(U,O)).

We have an isomorphism T ∼= T∨ given by T 7→ T∨. Given a maximal ideal m of

T, we write m∨ be the image of m under the isomorphism T ∼= T∨. Then we have

(em)∨ = em∨ and 〈 · , · 〉U restricts to a perfect pairing

SM(U,A)m × SM∨(U,A)m∨ → A.

Proposition 2.13. Let φ : T→ k be a homomorphism of O-algebras. Write φ∨

for the homomorphism T∨ → k defined by T 7→ φ(T∨). We then have rφ∨ ∼= rφ
c ∼=

rφ
∨ ⊗ ε1−N

` .

Proof. Since T∨w,j = Twc,j, we have rφ∨(Frobw) = rφ(Frobwc), for all places

w | R. �





CHAPTER 3

Level raising

In this final chapter, we state and prove our level raising theorems.

Fix, once and for all, a field isomorphism ι : Q`
∼= C, and let E be a CM number

field with maximal totally real subfield F . Let Π1, Π2 be two conjugate self-dual,

unitary cuspidal automorphic representations of GLm(AE). Our aim is to prove the

existence of a level raising congruence between the representation Π = Π1 � Π2

of GLN(AE) (where we write N for 2m) and some unitary cuspidal automorphic

representation Π′ of GLN(AE1), for some CM biquadratic extension E1/E. More

precisely, we prove the following theorem:

Theorem 3.1. Assume that

(a) The representation Π = Π1 � Π2 is regular C-algebraic.

(b) For some finite place P of E which does not divide `, Πi,P is isomorphic to an

unramified twist of the Steinberg representation of GLm(EP):

Πi,P
∼= Stm(ξi) := Stm ⊗ (ξi ◦ det),

for some unramified character ξi : E×P → C× (i = 1, 2).

(c) Π satisfies the following local congruence condition at the place P: If $ is a

uniformiser for EP, then

ι−1(ξ1($)/ξ2($)) ≡ (NP)±m mod mZ` .

(d) The residual mod ` Galois representation

rι(Π) : Gal(E/E)→ GLN(F`)

of Π is not isomorphic to a twist of

1⊕ ε−1
` ⊕ · · · ⊕ ε

1−N
` .

Then there exists a CM biquadratic extension E1/E and, for each choice of a place

P1 of E1 above P, a regular C-algebraic, conjugate self-dual, unitary cuspidal auto-

morphic representation Π′ of GLN(AE1), such that:

(i) rι(Π
′) is isomorphic to rι(Π)|Gal(E1/E1).

53
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(ii) Π′P1
is isomorphic to an unramified twist of the Steinberg representation of

GLN(EP1).

(iii) If Πw is unramified, for some finite place w 6= P of E, then Π′w1
is unramified

for all places w1 | w of E1.

Remark. If Π satisfies properties (a)-(c), then so does the base change of Π

under any finite solvable CM extension.

The first step in the proof of this theorem is to relate Π to an automorphic

representation of a totally definite unitary group G. Lemma 2.4 implies that we can

replace E/F by some extension E1/F1, Π by its base change to E1, and P by any

place P1 | P of E1 (where F1/F is a biquadratic extension of totally real number

fields and E1 = E · F1), such that the following conditions are satisfied:

(e) E/F is unramified at all finite places and any place w of E, which is such that

Πw is ramified, is split over F . Moreover, P is split over F (of course, ΠP is

ramified, unless m = 1).

(f) There is an inner twist (G, ξ) of UE/F (N) and irreducible G(AF )-subspace π of

L2(G(F )\G(AF )) such that

(i) G(F ⊗Q R) is compact and GFp is isomorphic to GL(2, D), where D is a

central division Fp-algebra and p = P∩F . We fix a choice of isomorphism

GFp
∼= GL(2, D) throughout.

(ii) The Galois representation rι(π) is isomorphic to rι(Π). In particular, π has

GL2(OD)-fixed vectors.

We need to choose the biquadratic extension F1/F so that the restriction of rι(Π)

to Gal(E1/E1) is not isomorphic to a twist of 1 ⊕ ε−1
` ⊕ · · · ⊕ ε1−N . Observe that

a continuous representation r : Gal(E/E) → GLN(F`) is isomorphic to a twist of

1⊕ ε−1
` ⊕ · · · ⊕ ε1−N if and only if the image of

r ⊕ ε` : Gal(E/E)→ GLN(F`)× F×`

is contained in a conjugate of the subgroup

λ


1

µ−1

. . .

µ1−N

 , µ

 : λ, µ ∈ F×`


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of GLN(F`) × F×` . Let K ⊂ E be the fixed field of the subgroup ker(rι(Π) ⊕ ε`) of

Gal(E/E); thus, K/E is a finite Galois extension and the representation rι(Π)⊕ ε`
factors through Gal(E/E) → Gal(K/E). We may choose F1/F so that Gal(K ·

E1/E1)→ Gal(K/E) is surjective. Then

im((rι(Π)⊕ ε`)|Gal(E1/E1)) = im(rι(Π)⊕ ε`)

and hence rι(Π)|Gal(E1/E1) is not isomorphic to a twist of 1⊕ ε−1
` ⊕ · · · ⊕ ε1−N .

For the rest of the chapter, we assume that Π satisfies the assumptions (a)-(f).

We also fix an open compact subgroup UP =
∏

w 6=P Uw of GLN(A∞,PE ) such that

ΠU
P 6= 0 and we assume that

(g) There is some place w 6= P which splits over F , the image of UP under the

projection GLN(A∞,PE ) → GLN(Ew) contains no non-trivial elements of finite

order.

Whenever w is split over F , we have πwc ∼= π∨w and we may assume that Uwc is the

image of Uw under the involution x 7→ JNc(x)−tJ−1
N . We then have an open compact

subgroup U =
∏

v-∞ Uv = Up U
p of G(AF ) such that πU 6= 0, Up = GL2(OD), and

U is sufficiently small. The subgroup U is such that Uv = θ−1
w (Uw) for any v 6= p

which splits in E and is such that GFv is quasi-split (and any choice of w | v) and

such that Uv is a hyperspecial subgroup for any v which does not split in E. We are

reduced to proving the following:

Theorem 3.2. Under the assumptions (a)-(g) above, there exist conjugate self-

dual, unitary cuspidal automorphic representation Π′ of GLN(AE) such that:

(i) Π′ has the same residual Galois representation as Π:

rι(Π
′) ∼= rι(Π).

(ii) Π′P is an unramified twist of the Steinberg representation StN .

(iii) Π′w has Uw-fixed vectors, for all finite places w of E lying over a place v of F

such that GFv is quasi-split.

Theorem 3.2 will be proven in Sections 3.1 and 3.2 below. The following theorem

is also a corollary of Theorem 3.2:

Theorem 3.3. Let Π be a conjugate self-dual, unitary cuspidal automorphic

representation of GLN(AE), where N = 2m. Assume that
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(a) Π is regular C-algebraic and m[F : Q] is even.

(b) For some finite place P of E which does not divide ` and is split over F , ΠP is

isomorphic to

Stm(ξ1) � Stm(ξ2)

for some unramified unitary characters ξ1, ξ2 : E×P → C×.

(c) Π satisfies the following local congruence condition at the place P: If $ is a

uniformiser for EP, then

ι−1(ξ1($)/ξ2($)) ≡ (NP)±m mod mZ` .

(d) The residual mod ` Galois representation

rι(Π) : Gal(E/E)→ GLN(F`)

of Π is not isomorphic to a twist of

1⊕ ε−1
` ⊕ · · · ⊕ ε

1−N
` .

Then there exists a regular C-algebraic, conjugate self-dual, unitary cuspidal auto-

morphic representation Π′ of GLN(AE) with the same residual mod ` Galois repre-

sentation as Π (i.e. rι(Π
′) ∼= rι(Π)), such that Π′P is isomorphic to an unramified

twist of the Steinberg representation of GLN(EP).

Proof. We explain how to reduce this theorem to a level raising theorem for

automorphic representations of a unitary group. Since m[F : Q] is even, there exists

an inner twist (G, ξ) of UE/F (N) such that

(i) G(F ⊗Q R) is compact,

(ii) GFp is isomorphic to GL(2, D), where D is a central division Fp-algebra and p

is the place of F lying below P, and

(iii) GFv is quasi-split for all finite places v 6= p of F .

Let ψN ∈ Ψ(GL(N,E)) be the formal global parameter corresponding to Π. ψN

extends to a parameter ψ = (ψN , ψ̃) ∈ Ψ2(UE/F (N), η1), by taking

ψ̃ : LψN × SL2(C) = LUE/F (N)× SL2(C)→ LUE/F (N)

to be the identity map on LUE/F (N) and the trivial map on SL2(C). The A-packet

Πψ(G, ξ) is non-empty, since ψv = recFv(Πv) is bounded and GFv -relevant for all

places v of F . Moreover, Πψ(G, ξ, εψ) = Πψ(G, ξ), since Sψ is the trivial group in

this case. Hence, there exists a subrepresentation π of L2(G(F )\G(AF )) with rι(π) ∼=
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rι(Π). Now we can apply the arguments of Sections 3.1 and 3.2 to the representation

π to deduce Theorem 3.3, in the same way as in the proof of Theorem 3.2. �

1. Ihara’s lemma

We adopt the notation of Chapter 2, Section 3. We choose our set R of split

places so that R does not contain p, and fix a GO-module M such that π∞ ∼= W∨
∞ :=

M⊗O,ιC. In particular, we can then identify (π∞)U with a Hecke-invariant subspace

of SM(U,C).

Let $D be a uniformiser for OD, and let

η :=

 1

$D

 ∈ GL2(D) = G(Fp).

Let U1,p := Up ∩ (ηUpη
−1), i.e.

U1,p :=

x ∈ GL2(OD) : x ≡

 ∗ ∗
∗

 mod $D

 .

Set U1 := U p U1,p. We have a map of T-modules

δM : SM(U,O)⊕ SM(U,O)→ SM(U1,O), (f, g) 7→ f + ηg.

As U is sufficiently small, SM(U, k) = SM(U,O)⊗Ok and SM(U1, k) = SM(U1,O)⊗O
k. Let δM,k := δM ⊗ idk : SM(U, k)⊕2 → SM(U1, k).

We state the analogue of Ihara’s lemma below. It asserts that the map δM is

injective, after localisation at a suitable maximal ideal.

Lemma 3.4. Let m be a maximal ideal of T in the support of ker δM,k (i.e. such

that (ker δM,k)m 6= 0). Then, for any k-embedding φ : T/m ↪→ k, the Galois repre-

sentation rφ is of the form

ψ ⊗ (1⊕ ε−1
` ⊕ · · · ⊕ ε

1−N
` ),

for some (conjugate self-dual) character ψ : Gal(E/E)→ k
×

, where ε` : Gal(E/E)→

(Z/`Z)× denotes the mod ` reduction of the `-adic cyclotomic character.

Proof. Let δM,k = δM ⊗ idk. We have ker δM,k = ker δM,k ⊗k k (as k → k is

flat). Thus,

(ker δM,k)m = (ker δM,k)m ⊗k k 6= 0.

Let (f, g) ∈ ker δM,k. We have g = −ηf ∈ SM(U pH, k), where H is the subgroup of

GL2(D) generated by Up and ηUpη
−1.
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Claim. H contains SL2(D), the subgroup of all elements of GL2(D) with reduced

norm equal to 1.

Proof of Claim. Let

U+ :=


 1 ∗

1

 ∈ SL2(D)

 , U− :=


 1

∗ 1

 ∈ SL2(D)

 .

U+ and U− generate SL2(D). Let us briefly justify this:

(a) Let T be the subgroup of SL2(D) generated by U+ and U−. We have 1

x−1 − x−1y−1x−1 1

 1 −x

1

 1

x−1 − y 1

 1 y−1

1

 =

 xy

x−1y−1


for all x, y ∈ D×. In particular, z

z−1

 and

 [x, y]

1

 =

 xy

x−1y−1

 (yx)−1

yx


lie in T for all x, y, z ∈ D×, i.e. T contains all diagonal matrices x

y

 (x, y ∈ D×)

such that xy lies in the commutator subgroup of D×. The commutator subgroup

of D× is the kernel of the reduced norm map (this is a result of Nakayama and

Matsushima [NM43]), so T contains all diagonal matrices in SL2(D).

(b) Consider an element

t =

 a b

c d


of SL2(D) with d 6= 0. Then a b

c d

 =

 1 bd−1

1

 a− bd−1c

d

 1

d−1c 1


and  a− bd−1c

d


is a diagonal element of SL2(D) (so it lies in T , by (a)). Hence, t lies in T .
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(c) Finally, any element t ∈ SL2(D) of the form

t =

 a b

c 0


must satisfy b, c 6= 0, so

t =

 1

−1 1

 a b

a+ c b

 ∈ T .
This shows that T = SL2(D).

Since 1

1

U+

 1

1

 = U− and

 1

1

 ∈ GL2(OD) ⊂ H,

it suffices to show U+ ⊂ H. Let

U+(n) :=


 1 x

1

 ∈ SL2(D) : x ∈ $−nD OD

 .

We have U+(0) ⊂ GL2(OD) ⊂ H. Moreover, $D

$−1
D

 =

 1

1

 · η
 1

1

 η−1 ∈ H

and  $D

$−1
D

−1 1 x

1

 $D

$−1
D

 =

 1 $−1
D x$−1

D

1

 ;

we conclude that if U+(n) ⊂ H, then U+(n + 2) ⊂ H. Hence, U+ ⊂ H, as

desired. �

Recall that G1 is the derived subgroup of G. We have G1(Fp) = SL2(D).

Claim. g = −ηf is invariant under (right) translation by G1(A∞F ).

Proof of Claim. Let Ũ` ⊂
∏

v|` Uv be an open compact subgroup of G(Z`)

such that ρ|Ũ` acts trivially on M ⊗O k. Then g is invariant under right translation

by Ũ p = U `,p Ũ`. Let W p := Ũ p ∩ G1(A∞,pF ). The function g is constant on double

cosets of the form

G(F )xW pSL2(D) = (G(F )xW px−1)xSL2(D) = G(F )G1(A∞,pF )xSL2(D) = G(F )xG1(A∞F )
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(the second equality follows by strong approximation: G1(F ) is dense in G1(A∞,pF )).

�

Let Ũ = U ` Ũ` ⊂ U be an open compact subgroup of G(A∞F ), where Ũ` ⊂ G(Z`)

is chosen such that ρ|Ũ` acts trivially on M ⊗O k. The second claim implies that,

for any (f, g) ∈ ker δM,k, we have g = g̃ ◦det, where g̃ is a (M ⊗O k)-valued function

on the finite abelian group

C := detG(F )\(A∞E )NE/F=1/ det Ũ .

Recall that detG(F ) = UE/F (1)(F ) = (E×)NE/F=1, by Proposition 1.2. Hence,

G(A∞F ) acts on ker δM,k by right translation, and the action factors through the map

G(A∞F )
det−→ (A∞E )NE/F=1 → C.

The actions of C and T commute, so (ker δM,k)m is stable under the action of C.

Let (f, g) ∈ (ker δM,k)m be a simultaneous eigenvector for all t ∈ C: Thus, there

exists a character χ : C → k
×

such that

g(xt) = χ(det t) g(x) for all x ∈ G(A∞F ), t ∈ C.

We compute the action of the Hecke operators Tw,j on g: The operator Tw,j (where

w | R, χ unramified at w) acts on g by multiplication by the scalar:

λw,j =
∑

x∈GLN (OFv )βv,jGLN (OFv )/GLN (OFv )

χ ◦ det(θ−1
w (βv,j)),

where βv,j denotes the matrix $v1j

1N−j

 ∈ GLN(Fv).

We have

λw,j = |GLN(OFv)βv,jGLN(OFv)/GLN(OFv)| χv(i−1
w ($v))

j,

where v ∈ R is the place of F below w and iw denotes the canonical isomorphism

UE/F (1)(Fv) ∼= F×v corresponding to the choice of the place w above v. Let

χ̃ : E×\(A∞E )× → k
×
, χ̃(x) := χ

( x
xc

)
,

so that χv(i
−1
w ($v)) = χ̃w($w). We have a bijection

GLN(OFv)βv,jGLN(OFv)/GLN(OFv)
∼−→ GLN(OFv)/GLN(OFv) ∩ βv,jGLN(OFv)β−1

v,j
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(given by [xβv,j] 7→ [x], for x ∈ GLN(OFv)), and

GLN(OFv) ∩ βv,jGLN(OFv)β−1
v,j =

 GLj(OFv) $vMatj×(N−j)(OFv)

Mat(N−j)×j(OFv) GLN−j(OFv)

 .

Let kv be the residue field of OFv , and let Pj denote the parabolic subgroup GL(j) 0

∗ GL(N − j)


of GL(N). Reduction mod$v gives a bijection

GLN(OFv)/GLN(OFv) ∩ βv,jGLN(OFv)β−1
v,j

∼−→ GLN(kv)/Pj(kv).

We have

λw,j = |GLN(kv)/Pj(kv)| χ̃w($w)j = q−j(N−j)
|GLN(kv)|

|GLj(kv)| · |GLN−j(kv)|
χ̃w($w)j,

where q = qw := Nw = |kv|. We have

|GLm(kv)| =
m−1∏
i=0

(qm − qi) = q
m(m−1)

2

m∏
i=1

(qi − 1)

and, therefore,

λw,j =

[
N

j

]
q

χ̃w($w)j, where

[
N

j

]
q

:=

∏N
i=1(qi − 1)(∏j

i=1(qi − 1)
)
·
(∏N−j

i=1 (qi − 1)
) .

Remark. The
[
N
j

]
q

are the q-binomial coefficients. They satisfy the q-binomial

theorem:
N−1∏
j=0

(X + qj) =
N∑
j=0

q
(N−j)(N−j−1)

2

[
N

j

]
q

Xj.

We have a map φ : T → k sending T ∈ T to its (f, g)-eigenvalue. The map φ

factors through Tm and, hence, kerφ = m. We have φ(Tw,j) = λw,j (for all w as

above, 1 ≤ j ≤ N). In particular, the characteristic polynomial of rφ(Frobw) is

N∑
j=0

(−1)N−jq
(N−j)(1−j−N)

2
w

[
N

j

]
qw

χ̃w($w)j−N Xj =
N−1∏
j=0

(X − χ̃w($w)−1q1+j−N
w ).

We conclude that rφ is the form ψ ⊗ (1 ⊕ ε−1
` ⊕ · · · ⊕ ε

1−N
` ), where ψ = χ̃ ◦ Art−1

E

(so that ψ(Frobw) = χ̃w($w)−1 for almost all w | R). �
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2. Proof of the main theorem

We define the following Hecke operators at the place p:

Tp,1 :=

Up

 $D

1

Up

 = [Up η Up] , Tp,2 :=

Up

 $D

$D

Up

 = [$D Up] .

and let ai be the eigenvalue of Tp,i on π
Up
p . We remark that πp is isomorphic to the

(normalised) parabolic induction of (ξ1 ◦Nrd)� (ξ2 ◦Nrd) to GL2(D). In particular,

the eigenvalues of the Hecke operators Tp,1, Tp,2 are a1 = qm/2
(
ξ1($p) + ξ2($p)

)
and a2 = ξ1($p) ξ2($p) (where $p denotes a uniformiser of Fp). Hence, our local

congruence condition satisfied by ΠP, can be written as

ι−1(a2
1a
−1
2 ) ≡ (qm + 1)2 mod mZ` .

Recall that we also assume that the residual Galois representation of π is not a twist

of

1⊕ ε−1
` ⊕ · · · ⊕ ε

1−N
` .

Let m be the maximal ideal containing the kernel of T → EndK(ι−1πU). Then

δM,k is injective after localisation at m (by Ihara’s lemma). In particular, (δM)m

has torsion-free cokernel. Let SM(U1,O)new be the cokernel of δM . We have a short

exact sequence:

0→ SM(U,O)⊕2
m

(δM )m−−−→ SM(U1,O)m → SM(U1,O)new
m → 0.

Proposition 3.5. Under the assumptions above, we have SM(U1,O)new
m 6= 0.

Proof. It suffices to show that

(δM,k)m : SM(U, k)⊕2
m → SM(U1, k)m

is not surjective. First, we compute the adjoint map of the map

(δM∨,k)m∨ : SM∨(U, k)⊕2
m∨ → SM∨(U1, k)m∨

with respect to 〈 · , · 〉U and 〈 · , · 〉U1 :

(a) The adjoint of the map SM∨(U, k) ↪→ SM∨(U1, k), f 7→ f is

SM(U1, k)→ SM(U, k), f 7→ trU/U1f =
∑

x∈U/U1

xf.
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(b) The adjoint of the map SM∨(U, k) ↪→ SM∨(U1, k), f 7→ ηf is

SM(U1, k)→ SM(U, k), f 7→ trU/U1η
−1f =

∑
x∈U/U1

xη−1f.

(c) The idempotent em ∈ T commutes with the maps above, so (δM∨,k)
∨
m∨ is given

by

SM(U1, k)m → SM(U, k)⊕2
m , f 7→ (trU/U1f, trU/U1η

−1f).

Fix k-embedding φ : T/m ↪→ k. We write rm for rφ; we also write rm∨ for rφ∨ , where

φ∨ : T∨/m∨ ↪→ k is defined by φ∨(T ) = φ(T∨). We have rm∨ ∼= rm
c ∼= rm

∨⊗ε1−N
` . It

follows, by Lemma 3.4, that (δM∨,k)m∨ is injective and, thus, (δM∨,k)
∨
m∨ is surjective.

It suffices to show that the map

∆m = (δM∨,k)
∨
m∨ ◦ (δM,k)m : SM(U, k)⊕2

m → SM(U, k)⊕2
m

is not surjective. The map above is given by qm + 1 Tp,1

Tp,1T
−1
p,2 qm + 1

 .

(Note that (U : U1) = |OD/$D|+ 1 = qm + 1, where m = N/2).

Let f be a Hecke eigenfunction in SM(U,K) corresponding to an element of

(π∞)U (under the isomorphism of Proposition 9). Enlarging K, we may assume

that f ∈ SM(U,K). Rescaling f , we may assume that f ∈ SM(U,O), f 6≡ 0 mod $.

Then the image f of f in SM(U, k)m is non-zero. The Hecke operator Tp,i acts on f

by multiplication by the scalar ai := ι−1(ai) mod mZ` (i = 1, 2). Since

det

 qm + 1 a1

a1a
−1
2 qm + 1

 = 0,

there is a non-zero linear combination of (f, 0) and (0, f) in the kernel of ∆m. In

particular, ∆m is not invertible and, thus, not surjective. �

We finally turn to the proof of the main theorem of this chapter:

Proof of Theorem 3.2. We have a short exact sequence:

0→ SM(U,K)⊕2
m

(δM )m⊗idK−−−−−−→ SM(U1, K)m → SM(U1, K)new
m → 0,
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where SM(U1, K)new
m = SM(U1,O)new

m ⊗O K 6= 0. Under the isomorphism of Propo-

sition 2.11, the cokernel of the map (δM)m ⊗ idK is given by⊕
σ

m(σ) dim(σp,∞)U
p
[
σ
U1,p
p /〈σUp

p , σ
ηUpη−1

p 〉
]
,

where the sum runs through all automorphic representations σ ⊂ L2(G(F )\G(AF ))

with σU1 6= 0, σ∞ = W∨
∞, and the same residual Galois representation as π. More-

over, σ
U1,p
p /〈σUp

p , σ
ηUpη−1

p 〉 is non-trivial if and only if σp is an unramified twist of the

Steinberg representation St2 of GL2(D). Indeed, if τ is an irreducible admissible

representations of GL2(D) with U1,p-fixed vectors, then τ is isomorphic to one of the

following representations:

(1) τ ∼= χ ◦ det, where det : GL2(D) → F×p denotes the reduced norm and χ is an

unramified character of F×p .

(2) τ is (isomorphic to) the (normalised) parabolic induction of χ1 �χ2 to GL2(D),

where χ1, χ2 are unramified characters of D× and χ1 6= χ2 ⊗ |Nrd|±1. Then τ

satisfies dim τUp = 1 and dim τU1,p = 2 (and, thus, we also have dim τ ηUpη−1
= 1).

(3) τ ∼= St2(χ) := St2⊗ (χ ◦ det), where χ is an unramified character of F×p and St2

is the unique irreducible quotient of the parabolic induction |Nrd|− 1
2 � |Nrd| 12 .

In this case, τ satisfies dim τUp = 0 and dim τU1,p = 1.

We remark that St2 corresponds to the representation StN of GLN(F ), under the

Jacquet-Langlands correspondence.

Remark. The Hecke algebra of compactly supported U1,p-biinvariant functions

f : GL2(D)→ C

is isomorphic to the (non-commutative) C-algebra H generated by the generators

ρ, ξ, ξ′ with the relations

(ρ+ 1)(ρ− qm) = 0, ξ · ξ′ = ξ′ · ξ = 1, ρ · ξ2 = ξ2 · ρ.

This is proved in [GSZ01], Section 4. Irreducible representations of GL2(D) with

U1p-vectors are in bijection with simple H -modules; classifying all simple modules

over H leads to the above classification.

We conclude, under the assumptions above, that there is an automorphic repre-

sentation σ ⊂ L2(G(F )\G(AF )) with σU
p 6= 0, σ∞ = π∞, the same residual Galois

representation as π, and σp ∼= St2(χ) for some unramified character χ : F×p → C×.
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We take Π′ to be the base change of σ to GLN(AE) (cf. Theorem 2.2); Π′ is nec-

essarily cuspidal because Π′P is an unramified twist of the Steinberg representation.

Finally, Π′ satisfies (Π′)Uw 6= 0 for all places w 6= P, since

(i) Π′w
∼= σv ◦ θw, for all places w of E which are split over a place v of F and are

such that GFv is quasi-split.

(ii) Π′w is unramified, for all places w of E which are inert over F .

This completes the proof. �

3. An inductive level raising theorem

Recall that we have fixed an isomorphism ι : Q`
∼= C. As before, E denotes

a CM number field with maximal totally real subfield F . The following theorem

follows, by induction on k, from our previous theorems:

Theorem 3.6. Let Πi (i = 1, 2, · · · , 2k) be conjugate self-dual, unitary cupsidal

automorphic representations of GLm(AE). We write Π for

Π1 � Π2 � · · ·� Π2k ,

a conjugate self-dual, unitary representation of GLN(AE), where N = 2km.

We assume that

(a) Π is regular C-algebraic (in particular, Πi‖ det ‖ 1
2 is regular L-algebraic for all

i = 1, 2, · · · , 2k).

(b) For some finite place P of E which does not divide `, Πi,P is isomorphic to an

unramified twist of the Steinberg representation of GLm(EP):

Πi,P
∼= Stm(ξi) := Stm ⊗ (ξi ◦ det),

for some unramified character ξi : E×P → C× (i = 1, 2, · · · , 2k).

(c) The following local congruence conditions at the place P are satisfied: If $ is a

uniformiser for EP, then

ι−1(ξi($)/ξi+1($)) ≡ (NP)−m mod mZ`

for all 1 ≤ i < 2k.

(d) For any 1 ≤ r ≤ k and any 0 ≤ s < 2k−r, the residual mod ` Galois representa-

tion

rι
(
�2r(s+1)
i=2rs+1 Πi

)
: Gal(E/E)→ GL2rm(F`)



66 3. LEVEL RAISING

of �2r(s+1)
i=2rs+1Πi is not isomorphic to a twist of

1⊕ ε−1
` ⊕ · · · ⊕ ε

1−2rm
` .

Then there exists a CM biquadratic extension E1/E and, for each choice of a place

P1 of E1 above P, a regular C-algebraic, conjugate self-dual, unitary cuspidal auto-

morphic representation Π′ of GLN(AE1), such that:

(i) rι(Π
′) is isomorphic to rι(Π)|Gal(E1/E1).

(ii) Π′P1
is isomorphic to an unramified twist of the Steinberg representation of

GLN(EP1).

(iii) If Πw is unramified, for some finite place w 6= P of E, then Π′w1
is unramified

for all places w1 | w of E1.

Proof. Let S be a finite set of places of F containing p := P ∩ F , all places

that ramify in E, and all places v such that Πw is ramified for some place w | v. We

choose a totally real quadratic extension F0/F , as in Lemma 2.4, such that any place

v0 of F0 lying over a place in S splits in E0 = E ·F0 and Gal(K ·E0/E0)→ Gal(K/E)

is an isomorphism, where K/E is a finite Galois extension such that

rι
(
�2r(s+1)
i=2rs+1 Πi

)
: Gal(E/E)→ GL2rm(F`)

factors through Gal(K/E) for all 1 ≤ r ≤ k and 0 ≤ s < 2k−r.

For each 1 ≤ r ≤ k, we choose an extended pure inner twist (Gr, ξr, zr) of

UE0/F0(2
rm), such that

(i) Gr(F0 ⊗Q R) is compact,

(ii) Gr,Fp0
is isomorphic to GL(2, Dr,p0) for any place p0 | p of F0, where Dr,p0 is a

central division Fp0-algebra, and

(iii) Gr,Fv0
is quasi-split for all finite places v0 | p of F0.

Following the proof of Lemma 2.4, we choose F1 = F0(
√
d) (where d > 1 is a

square-free integer) such that:

(i) If for some place v0 of F0 and some 1 ≤ r ≤ k, the cocycle zr has non-trivial

image under the localisation map B(F0, Gr)bsc → B(F0,v0Gr)bsc, then v0 splits

in F1.

(ii) Gal(K · E1/E1) → Gal(K · E0/E0) is an isomorphism, where E1 = E · F1 =

E0(
√
d).
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Suppose that τ is a regular C-algebraic representation of GL2rm(AE) (for some

1 ≤ r ≤ k) of the form τ = τ1 � τ2, where τi are conjugate self-dual, unitary

cuspidal automorphic representations of GL2r−1m(AE) and τi,P are isomorphic to

unramified twists of the Steinberg representation of GL2r−1m(EP). Then there exists

a subrepresentation π of L2(Gr(F1)\Gr(AF1)) such that rι(π) ∼= rι(τ)|Gal(E1/E1).

Fix a place P1 | P of E1. Theorem 3.2 implies that there exist conjugate self-

dual, unitary cuspidal automorphic representations Π′i of GL2m(AE1) (i = 1, 2, · · · , 2k−1)

such that

(i) rι(Π
′
i)
∼= rι(Π2i−1 � Π2i)|Gal(E1/E1) for all 1 ≤ i ≤ 2k−1.

(ii) Π′i,P1

∼= St2m(ξ′i), where ξ′i is an unramified character of E×P1
, for all 1 ≤ i ≤

2k−1. We remark that condition (i) implies that

ι−1ξ′i ≡ ι−1(ξ2i−1 ◦ NE1,P1
/EP

) mod mZ` .

(iii) For any archimedean place w1 of E1 and any 1 ≤ i ≤ 2k−1, Π′i,w1
is isomorphic

to Π2i−1,w � Π2i,w (where we write w for the restriction of w1 to E and we

identify E1,w1 and Ew). In particular, Π′1 � · · ·� Π′
2k−1 is regular C-algebraic.

We can now apply Theorem 3.2, in the same way as above, to Π′i (i = 1, 2, · · · , 2k−1).

The theorem follows by induction on k. �

4. An application of the theorem

The following result is a corollary of Theorem 3.6.

Corollary 3.7. Let K/Q be an imaginary quadratic field, let ` > 3 be a rational

prime and let ψ : Gal(K/K)→ F×` be a continuous character. Let

r := ψ ⊕ ψc : Gal(K/K)→ GL2(F`).

Then, for every integer k ≥ 1, there exists a CM biquadratic extension E/K, and

a regular C-algebraic, essentially conjugate self-dual, unitary cuspidal automorphic

representation Π of GL2k(AE), such that

(i) rι(Π) ∼= (Sym2k−1 r)|Gal(E/E), and

(ii) There exists a finite place w of E such that Πw is isomorphic to an unramified

twist of the Steinberg representation of GL2k(Ew).

Proof. Choose a continuous character ω : Gal(K/K)→ F×` such that

ω · ωc = (ψ · ψc · ε`)−1
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(by Lemma 4.1.5 of [CHT08], there exists a continuous algebraic character

ω0 : Gal(K/K)→ Q×`

such that ω0 · ωc0 = ε−1
` ; we can take ω = ω0 · ψ

−1
, where ω0 is the mod ` reduction

of ω0). We write ρ for r ⊗ ω. Then ρ satisfies ρc,∨ ∼= ρ⊗ ε` and

Symd ρ ∼= (Symd r)⊗ ωd =

(
d⊕
i=0

ψ
d−i ·

(
ψ
c)i)⊗ ωd

for all integers d ≥ 1. Using Lemma 4.1.6 of [CHT08], we choose Hecke characters

χ, φ : A×K/K
× → C×

such that

(i) χc = χ−1 and φc = φ−1,

(ii) χ, φ‖ · ‖− d2 are algebraic and χ∞ is non-trivial,

(iii) rι(χ) = ψ
−1 · ψc and rι(φ‖ · ‖−

d
2 ) = (ψ · ω)d.

Then σ :=
d

�
i=0

(φ · χi) is an isobaric sum of unitary, conjugate self-dual (cuspidal)

automorphic representations of GL1(AK) = A×K .

Let d = 2k − 1. We apply Theorem 3.6 to σ, taking Πi := φ · χi−1 (1 ≤ i ≤ 2k).

We note that σ is a regular C-algebraic representation with rι(σ) ∼= Symd ρ.

We claim that there is a finite place P of K such that conditions (b) and (c)

are satisfied at P. Indeed, by Chebotarev density theorem, (rι(χ) ⊕ ε`)(FrobP) is

trivial for infinitely many primes P. Let P be such a prime, not dividing `, and

such that φ, χ and ω are unramified at P. Then ι−1(χ($)) ≡ 1 mod mZ` , where $

is a uniformiser for KP, and NP ≡ 1 mod `, so condition (c) is satisfied.

Suppose that condition (d) fails. In particular, rι(σ) contains two one-dimensional

irreducible constituents θ1 and θ2, such that θ1 = θ2 ⊗ ε`. Hence, ε` must be equal

to (
ψ
−1 · ψc

)i
for some integer i; this implies that εc` = ε−1

` . But on the other hand, εc` = ε`, so we

must have ε2
` = 1. This is not possible, as ` > 3 and K is an imaginary quadratic

field.5

5Note that the mod 5 cyclotomic character has order 2 when restricted to the absolute Galois

group of K = Q(
√

5).
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We conclude that there exists a CM biquadratic extension E/K and a regular

C-algebraic conjugate self-dual, unitary cuspidal automorphic representation σ of

GL2k(AE) such that

(i) rι(σ) ∼= (Sym2k−1 ρ)|Gal(E/E), and

(ii) σw is an unramified twist of the Steinberg representation of GL2k(Ew), for some

finite place w of E.

Finally, we take Π = σ ⊗ (ω ◦ ArtE)−d, where ω is the Teichmuller lift of ω. �

As mentioned in the introduction, one can try to combine this result with a suit-

able automorphy lifting theorem (for residually reducible Galois representations) to

prove the existence of the (2k− 1)-th symmetric power of an automorphic represen-

tation of GL2(AQ) with residual mod ` Galois representation isomorphic to IndQ
Kψ.

Clozel and Thorne, in their work on symmetric power functoriality ([CT14],

[CT15], [CT17]), make use of the main theorem of [Tho15], which is an auto-

morphy lifting theorem for residually reducible `-adic Galois representations ρ, such

that ρ (the mod ` reduction of ρ) has two Jordan-Hölder factors. For the applica-

tion described above, one needs a generalisation of this theorem (in which ρ can

have 2k factors).
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