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Level raising for automorphic representations of GL(2n)

Christos Anastassiades

Summary

To each regular algebraic, conjugate self-dual, cuspidal automorphic represen-
tation II of GL(N) over a CM number field E (or, more generally, to a regular
algebraic isobaric sum of conjugate self-dual, cuspidal representations), we can at-
tach a continuous ¢-adic Galois representation r(II) of the absolute Galois group of

E. The residual Galois representation
7(I) : Gal(E/E) — GLy(F,)

of 7 is defined to be the semisimplification of the reduction of 7(II) (modulo the
maximal ideal of Z;), with respect to any invariant Z-lattice. The aim of this thesis
is to prove a level raising theorem for automorphic representations of GL(2n). More
precisely, given a regular algebraic automorphic representation IT of GL(2n) over E,
which is either unitary, conjugate self-dual and cuspidal or an isobaric sum II; HII,
of two unitary, conjugate self-dual cuspidal representations of GL(n), we want to
construct a unitary, conjugate self-dual cuspidal representation II' of GL(2n) that
has the same residual Galois representation as II and whose component at a finite
place w of E is an unramified twist of the Steinberg representation.

We prove that this is possible, after replacing II with its base change along a CM
biquadratic extension, under certain assumptions on II (including a local obstruction
at the place w). Our proof uses the results of Kaletha, Minguez, Shin and White on
the endoscopic classification of representations of (inner forms of) unitary groups to
descend II to an automorphic representation of a totally definite unitary group G
over the maximal totally real subfield of E. We then prove a level raising theorem
for the group G; we do this by proving an analogue of “lhara’s lemma” for GG, using

the strong approximation theorem for the derived subgroup of G.

iii






Declaration

This dissertation is the result of my own work and includes nothing which is
the outcome of work done in collaboration except as declared in the Preface and
specified in the text.

It is not substantially the same as any that I have submitted, or, is being con-
currently submitted for a degree or diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in
the Preface and specified in the text. I further state that no substantial part of my
dissertation has already been submitted, or, is being concurrently submitted for any
such degree, diploma or other qualification at the University of Cambridge or any
other University or similar institution except as declared in the Preface and specified

in the text.

Christos Anastassiades

February 2019






Acknowledgements

First and foremost, I would like to thank my supervisor, Jack Thorne, to whom
I am deeply grateful for his guidance, help and encouragement over the course of
the last four years. I have learned a lot of new and exciting mathematics thanks to
him and it has truly been a privilege being his student.

I would also like to thank the members of the number theory group in Cambridge
for making my time here a very enjoyable experience. I am especially thankful to
Marius Leonhardt and Zhiyou Wu for many interesting mathematical conversations
and for being such amazing office-mates.

Last but not least, I would like to thank my family. I would not have made it

this far without their love and support.

vii






Contents

Mntroduction]

[Chapter 1. Endoscopic classification of representations of unitary groups|

(1. Unitary groups|
P Tocal dassificaiion
Tobal Jassficationl

[Chapter 2. Automorphic representations on definite unitary groups|

[L.  Galois representations|

[2. Descent to a definite unitary group|

[3. l-adic automorphic forms on a definite unitary group|

[Chapter 3. Level raising]
(1. Thara’s lemmal
2. Proof of the main theorem|

[3.  An inductive level raising theorem|

4. An application of the theorem|

B1bliographyi

ix

15
26

31
31
35
45

53
57
62
65
67

71






Introduction

The problem of “level raising” was first considered by Ribet in |[Rib84], in
the context of (classical) modular forms. Concretely, Ribet addresses the following
question: Let f be a cusp form of weight 2 and level I'y(/N), which is an eigenform
for the Hecke operators. If £ is a rational prime and ¢ : Q, = C is an abstract field

isomorphism, there exists a continuous semisimple Galois representation

r.(f) : Gal(Q/Q) — GL»(Qy),

unramified outside N/, determined (up to isomorphism) by the fact that the char-

acteristic polynomial of r,(f)(Frob,) is

2* — 1 Yay)r +p

for each prime p f N¥, where a, is the eigenvalue of the Hecke operator T, (and
Frob, denotes the arithmetic Frobenius at p). After conjugation, we may assume
that r,(f) takes values in GLy(Z) and consider its reduction modulo the maximal

ideal mz, of Z,; we write

7(f) : Gal(Q/Q) — GLy(Fy)

for the semisimplification of r,(f) mod mz,. One can then ask whether there exists
a cuspidal Hecke eigenform g of weight 2 and level T'y(Np) (where p is a fixed prime
not dividing N¥), which is new at p, such that 7,(¢g) = 7,(f). Ribet proves that the
answer is affirmative, provided that f satisfies certain conditions; in particular, f

must satisfy
1 a,) = £(p+ 1) mod mz .

It’s easy to see that the latter condition is necessary, because r,(9)|q.@ /q,) 18
P

isomorphic to a representation of the form

Eyp X

1

@ X,



2 INTRODUCTION

where ¢, : Gal(Q,/Q,) — Z; is the f-adic cyclotomic character and
X : Gal(@,/Q,) = Z,

is an unramified quadratic character. We note that this is not a sufficient condition;
an additional assumption is needed for Ribet’s theorem. A key step in Ribet’s proof
was a lemma of Thara.

In [DT94|, Diamond and Taylor proved more general level raising results for
modular forms, by studying automorphic forms on quaternion algebras. In the case
of definite quaternion algebras, the analogue of Thara’s lemma is a simple conse-
quence of the strong approximation theorem. Moreover, in Section 5.3 of [CHTOS],
Clozel, Harris and Taylor prove a level raising result for automorphic representa-
tions of GL,, over a CM number field, which is conditional on an analogue of Thara’s
lemma for automorphic forms on a totally definite unitary group.

Level raising theorems are a useful tool in the study of automorphic forms and the
automorphy of Galois representations. For example, Ribet’s level raising theorem
was used as an ingredient in the proof of his level lowering theorem in [Rib90], which
showed that Fermat’s last theorem follows from the Taniyama—Shimura conjecture.
Moreover, level raising theorems often play a part in proofs of automorphy lifting
theorems; e.g. in [Kis09], Kisin uses a level raising theorem (Corollary 3.1.11) as
an ingredient in the proof of a modularity lifting theorem for 2-dimensional Galois
representations.

Our main theorem is a new level raising theorem for (regular C-algebraic) au-
tomorphic representations Il of GLy,, over a totally imaginary CM number field F.
The representation II is assumed to be either a conjugate self-dual, unitary cuspidal
representation of GLg,,(Ag) or of the form IT; B Iy, where each II; is a conjugate
self-dual, unitary cuspidal representation of GL,,(Ag). The aim is to construct a
regular C-algebraic, conjugate self-dual, unitary cuspidal representation of GLy,,
(possibly over a solvable CM extension of ), which has the same residual Galois
representation as Il and whose local component at finite place w is isomorphic to an
unramified twist of the Steinberg representation. Unlike most level raising results

in the literature, the mod ¢ residual Galois representation

7(II) : Gal(E/E) — GLyn(Qy)
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of IT is allowed to reducible; the only condition on 7,(IT) is that it’s not allowed
to be isomorphic to a twist of 1 &g, & ---E}_N . We must also assume, as in the
case of modular forms studied by Ribet, that II satisfies the obvious necessary local
congruence condition at the finite place w. We refer the reader to Chapter 3 for
a precise statement of the theorems. These level raising theorems are conditional
on the results of [KMSW14| on the endoscopic classification of representations of
(inner forms of) unitary groups.

Let us briefly discuss the strategy of the proof: The first step is to transfer
the automorphic representation II to an automorphic representation 7 of a suitable
unitary group G over F'. The group G is an inner form of the quasi-split unitary
group Ug/p(2m) (where F' denotes the maximal totally real subfield of E) and is
chosen to be compact at infinity and isomorphic to GL(2, D) at the place w, where
D is a central division F,-algebra. The existence of this transfer follows from the
theorems stated in [KMSW14|. One can then construct a space of automorphic
forms on G, with Z, or F, coefficients, and consider the action of a Hecke algebra on
these spaces. One can state and prove the analogue of Thara’s lemma in this setting,
using the strong approximation theorem, and hence prove a level raising theorem
for automorphic representations on . Then one can construct an automorphic
representation of GLy,, with the desired properties, using the results of [KMSW 14|
once again.

Using an inductive argument, we can generalise this main theorem to a level
raising theorem (Theorem [3.6)) for regular C-algebraic representations of GLary, (Ap)

of the form
[M=1I, 8- -B8Ily,
where each I1; is a conjugate self-dual, unitary cuspidal representation of GL,,(Ag).

In the special case m = 1, the theorem is the following:

THEOREM. Let x1,- -, Xor : Af/E* — C* be conjugate self-dual, unitary char-

acters and assume that

=y B Hyxo

is reqular C'-algebraic. Assume, in addition, that there is a finite place B of E such

that all the x; are unramified at R and

(@) /X1 (@) = (NB) ! mod mz,  foralll <i< 2k,
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where w is a uniformiser for Ey (and v : Q, = C is a fived field isomorphism).
Then there is a CM biquadratic extension Fy/E and, for each choice of a place B of
E1 above B, a reqular C-algebraic, conjugate self-dual, unitary cuspidal automorphic

representation I of GLgr(Ag,), such that

() 2= 7 (D) GaiEr )

and H{Bl 1s 1somorphic to an unramified twist of the Steinberg representation of

GLQk (Eq_}l ) .

We remark that the above theorem implies, in particular, the following result

(Corollary [3.7):

PROPOSITION. Let K/Q be an imaginary quadratic field, let £ > 3 be a rational
prime and let ¢ : Gal(K/K) — FL;X be a continuous character. Let

Fi=9 @Y : Gal(K/K) — GLy(Fy).

Then, for every integer k > 1, there exists a CM biquadratic extension E/K, and
a reqular C-algebraic, essentially conjugate self-dual, unitary cuspidal automorphic
representation I1 of GLox(AE), such that
T k_q_
(i) 7 (IT) = (Sym* ~ 7")|Ga1(E/E)> and
(ii) There exists a finite place w of E such that 11, is isomorphic to an unramified

twist of the Steinberg representation of GLok (Ey,).

One can try to combine this result with a suitable automorphy lifting theorem
(for residually reducible Galois representations) to prove some cases of symmetric
power functoriality for modular forms with dihedral residual Galois representation,
as in the work of Clozel and Thorne [CT14].

The overview of this thesis is as follows: In Chapter 1, we recall the definition
and some of the basic properties of unitary groups (including the classification of
unitary groups over a number field) and give a summary of the results of [KMSW 14|
on the endoscopic classification of representations of unitary groups, which will be
important for us in the following chapters. In Chapter 2, we explain why the results
of [KMSW14| imply that the “descent” of II to the unitary group G exists (after
a biquadratic base chage) and the existence of Galois representations attached to
automorphic representations of G, and we define spaces of /-adic automorphic forms

on G and the Hecke algebra acting on them. In Chapter 3, we state and prove our
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main theorems (i.e. the level raising theorems discussed above), by proving a version
of Thara’s lemma in the setting of automorphic representations of the unitary group

GG, and explain how the proposition above follows from these theorems.






CHAPTER 1

Endoscopic classification of representations of unitary

groups

In this chapter, we review the results of [Mok15] and [KMSW14] on the en-
doscopic classification of representations of unitary groups, which will be important
for us in the following chapters; these papers follow the strategy of Arthur |[Art13],
who established the endoscopic classification for quasi-split orthogonal and sym-
plectic groups. We begin this first chapter by recalling the classification of unitary
groups over local and global fields (of characteristic 0). We then summarise the
properties of local A-packets of representations of unitary groups and inner forms of
the general linear group. Finally, we state the main global theorem of [Mok15| and
[KMSW14], which gives a decomposition of the space of L?-automorphic forms on

a unitary group over a number field into automorphic A-packets.

1. Unitary groups

Let F' be a field (we'll only be interested in the case where F'is a local or global
field of characteristic 0) and let E be a quadratic étale F-algebra. Thus, F is either a
quadratic field extension of F' or isomorphic (as an F-algebra) to F' x F. We let ¢ be
the non-trivial F-automorphism of E. In the first case, ¢ is the non-trivial element
of the Galois group Gal(E/F'), while in the second case, it is the automorphism
(z,y) = (y,z). The map ¢ induces an algebraic automorphism ¢ of the group
Gg/r(N) := Resg/pGL(N, E). We define G* := Ug/p(N) to be the subgroup of

fixed points of the automorphism 6 : x — Jyc(z)~tJy", where

1

JN = ) GGLN(E)

Hence, G* is the reductive group over F' with functor of points

R {I’ € GLN(E Xp R) : (C®ldR)(l’)t Iy = JN}

7
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If F is a field, then G* is the quasi-split unitary group of rank N with respect to
E/F. If E= FxF,then G* = GL(N, F') and each map E — F induces a canonical
isomorphism between Ug,p(N) and GL(N, F') (note that these two isomorphisms
differ by the automorphism z — Jyz~tJy' of GL(N, F)).

DEFINITION 1.1. A unitary group over a field F' is an inner form of Ug/p(N),

where E/F is a quadratic field extension.

1.1. The dual group of Ug/p(NN). Assume that £/F is a quadratic field ex-
tension. G* = Ug/p(N) is a quasi-split group with Borel pair (B,7'), where B
consists of the upper-triangular matrices in Ug/p(IN) and T' consists of the diagonal
matrices. The group G = Ugg,g/g is isomorphic to GL(N, E), so G = GL(N,C).
Fixing the standard (upper-triangular) pinning on G = GL(N,C), we get an al-
gebraic action of Gal(E/F) = (c) on G*, given by z Jyz~tJy" (where we now
think of Jy as an element of GLy(C)). We have £G = @(C) X Wg, where Wy acts
on G(C) through Wy — Gal(E/F).

1.2. Classification of inner forms of Uy, p(N). The (isomorphism classes of)
inner forms of Ug,p(IN) are in bijection with the image of the Galois cohomology
set HY(F,Ug/p(N)aa) in HY(F, Aut(Ug/r(N))). The pointed set H'(F, Ug/p(N)aa)
classifies equivalence classes of inner twists of Ug,p(IN).

The classification of inner forms of Ug/r(N) follows from the classification of
Hermitian forms over local and global fields, which is explained in [Sch85].

We first consider the case where F'is a local field of characteristic 0.

1.2.1. Assume E = F x F. Then Ug,p(N) = GL(N) and we need to classify
inner forms of GL(N). We have

+Z/Z if F is non-archimedean
H'(F,PGL(N)) = %Z/Z it ¥ =R and N is even
trivial if F =C, or F =R and N is odd

The inner form of GL(N) corresponding to r/s € H'(F,PGL(N)) C ~Z/Z (where
s| N, r € (Z/sZ)*) is GL(m, D), where m = N/s and D is the central division

F-algebra with invariant r/s (in particular, dimp D = s?).

REMARK. The isomorphism H'(F,Ug/r(N).a) — H'(F,PGL(N)) = Z/NZ

(when F' is a finite extension of Q,) depends on the choice of map E — F. Indeed,
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we have a short exact sequence
1 - G,, —» GL(N) - PGL(N) — 1
and H'(F,GL(N)) is trivial (by Hilbert’s Theorem 90), so we get an injective map
H'(F,PGL(N)) — H*(F,G,,).
The Brauer group of F is H*(F,G,,) = Q/Z in and the image of H'(F,PGL(N))
in H*(F,G,,) is the subgroup of N torsion points. The two isomorphisms
Ug/r(N) = GL(N)
(corresponding to the two maps E — F) differ by the automorphism z +— Jyz~tJy"
of GL(N). We have a commutative diagram:

1 — G,, — GL(N) —— PGL(N) —— 1

lmr—xp—l laﬂ—)JNz—tJX,l lgm—)JNx‘tJ](,l

1 — G,, — GL(N) —— PGL(N) —— 1
This gives a commutative diagram of Galois cohomology groups

HY(F,PGL(N)) —— H(F,G,,) = Q/Z

leJNx_tJﬁl lﬂm—)—x

H'(F,PGL(N)) —— H*(F,G,) = Q/Z
so the two isomorphisms H*(F,Ug/p(N)a) — H'(F,PGL(N)) = Z/NZ, corre-

sponding two the maps F — F', differ by the automorphism x — —x of Z/NZ.

1.2.2. Assume E/F is a quadratic field extension. If F'is non-archimedean, then

) tZJZ if N is even
H (F,Ug/p(N)aa) =

trivial if N is odd
i.e. there is a unique non-quasi-split inner form of Ug/p(N) if N is even, and no

non-quasi-split inner forms if N is odd.

If F =R, then

H'(F,Ug/r(N)aa) = {(p,0) € (Z20)* : p+a= N} /(p,q) ~ (a.p),
where (p, q) corresponds to the inner form

U(p,q)(R) = § © € GLy(C ®g R) : (c®idg)(x)" b e P »
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Note that Uer(N) = U([5],5]) and U(p,q) = U(g,p). Moreover, U(N) :=
U(N,0) is the unique inner form of Ug/gr(/V') whose R-points form a compact group.
We now turn to the global case:
1.2.3. Assume E/F is a quadratic extension of number fields. We have a locali-

sation map

H'(F,Upp(N)aa) = €D H' (Fo. Up,p, (N)aa),

where v runs through all places of F'. We write F, for £ ®p F,; F, is a quadratic
field extension of F), if v splits in £, and F, = F, x F, (non-canonically) if v is

non-split in F.

NoraTiON. @, H, (where H, are pointed sets) denotes the subset of [], H,
consisting of all (x,), such that z, = 0 (the distinguished element of H,) for all but

finitely many v.

The localisation map is injective. If N is odd, it is also surjective. If N is even,

the image of the localisation map is equal to the kernel of
>av
@Hl(Fm Ug,/F,(N)aa) — Z/2Z,

where the maps a, are defined as follows:
(i) If v is finite and non-split in F, then a,(0) = 0 and a,(1) = 1.

(ii) If v is real and non-split in E, then a, : (p,q) — %(p —¢) mod 2.

(iii) If v is split in E, then a, maps
1
r/s € H'(F,Ug,/r,(N)aa) C NZ/Z
to Nr/s mod 2.

1.3. Determinant map. Let E/F be a quadratic field extension of character-
istic 0 and (G, &) be an inner twist of Ug/p(N). Thus, G is an inner form of Ug,p(N)

and £ is an isomorphism
Ur/r(N)F — GF

of F-groups, such that €71 0 ?¢ is an inner automorphism of the group Ug /5 (N)F,

for all o € Gal(F/F). Let £'07¢ = Ad(a,), where a, € Ug/p(N)(F). Let
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be the determinant map on the quasi-split unitary group, and define
dete := detz o0& 1 G — Up/r(1)5.
For any ¢ € Gal(F/F), we have
?(dete) = 7(dety) o (7€) = dety o Ad(a, ') 0 €' = detz 0 £ = dety,

so det¢ descends to a map G — Ug/p(1) of F-groups.

The kernel of det; is the derived subgroup G of G. To simplify notation, we will
often write det instead of dete, but note that det; does depend on (the conjugacy
class of) &.

PROPOSITION 1.2. Let E/F be a quadratic extension of local or global fields of
characteristic 0. Let (G,€) be an inner twist of Ug/p(N). Then the determinant

map induces a surjective map on F'-points:
If F' is a number field, then det is also surjective on AY -points.

Proor. We have a short exact sequence of linear algebraic groups
1 =G —G—=Ugrp(l) =1,
which gives rise to a long exact sequence
G(F) = Ug/r(1)(F) = H'(F,Gy) = H'(F,G)

of pointed Galois cohomology sets. It suffices to show that H'(F,G,) — H'(F,G)
has trivial kernel. If F is a finite extension of Q,, then H'(F,G) is trivial (since
(1 is semisimple and simply-connected). If F' = R, then one can easily see that the
map H'(F,G,) — H'(F, Q) is injective, by direct computation.

If F' is a number field, then we have a commutative diagram

HYF,G,) —— HY(F,G)

| |

[IHYF,,G)) —— JIH'F,,G)

v]oo v]oo

and the left vertical arrow is bijective. It follows that the map H'(F,G;) —
HY(F,Q) is injective. To prove the surjectivity of det on A%-points, observe that,
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if v is a finite place of I’ which is inert in F, then the image of
UEU/FU(N)(OFU) = {QT S GLN(OEU) : C((L’)t Iy = JN}
under det is Ug, /5, (1)(Op, ). O

1.4. Extended pure inner twists. We will need the notion of an extended
pure inner twist; this was defined in [KMSW14] §0.3. In this subsection, we briefly
recall the definition of an extended pure inner twist. In order to do this, we need to
introduce Kottwitz’s cohomology set B(F,G), which was constructed in [Kot14].

Let F' be a local or global field. We will only be interested in the case where F'
has characterestic 0, but the results of Kottwitz are also true for (local or global)

fields of positive characteristic. In [Kot14], Kottwitz defines a functor
G — B(F,Q)

from the category of linear algebraic groups over F' to the category of pointed sets.

The pointed set B(F, G) is defined as a direct limit
B(Fa G) = thallg((F"(K/F)v G)a
K

where the limit is taken over all finite Galois extensions K/ F inside a fixed separable

closure F of F.

DEFINITION 1.3. A Galois gerb & for a finite Galois extension K/F, bound by

an F-group D of multiplicative type, is an extension
1—-DK)—E&— Gal(K/F)— 1

of Gal(K/F) by D(K). The isomorphism classes of such extensions are classified
by the Galois cohomology group H*(K/F, D).

The group E(K/F) is an example of a Galois gerb for K/F, bound by the F-
group Dy p. If Fis local, then Dy p is the multiplicative group G,, and E(K/F) is
taken to be the relative Weil group of K/F. If F is global, then Dy, is a protorus
over F', whose group of K-characters is the Gal(K/F')-module Z[Vk|o, where Z[V]
is the free abelian group generated by the set Vi of places of K and Z[Vk]y is the

kernel of the map

Z|Vk] — Z, Z NyU > Z Ny -

veEVK vEVEK
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Given a Galois gerb £, as above, and a linear algebraic group G over F', we can

define the (pointed) set Z!

a1 (€, G) of algebraic 1-cocycles:

DEFINITION 1.4. An algebraic 1-cocycle of € in G(K) is a pair (v,z) consisting

of a homomorphism v : D — G of algebraic groups over K and an abstract 1-cocycle
x: € — G(K)

(where € acts on G(K) via € — Gal(K/F)), satisfying the following two conditions:
(i) xq = v(d) for all d € D(K);
(i1) Ad(z,) 0o v =v for all w € € that map to o € Gal(K/F).
The group G(K) of K-points of G acts on the set Z;lg(g, G) of algebraic 1-cocycles
by
g: (v,r) = (Ad(g) ov,w > gz,w(g)™);

we define Hy,(E,G) to be the quotient of Zy,(€,G) by the action of G(K).

We refer the reader to [Kot14] for the definition of £(K/F) in the global case
(E(K/F),G) — HL (E(L/F),G) (when

and the definition of the inflation maps H} alg

alg

L D K is another finite Galois extension of F' inside the fixed separable closure of

We observe that the map (v, z) — v induces a “Newton map”
H;lg(g, G) — [Homg (D, G)/G(K)]Gal(K/F) ;

we write Hj,(€,G)pse and Z, (€, G)pse for the preimage of Homp(D, Z(G)) un-

der the Newton map in H},(€,G) and Z;

a1(€,G), respectively. The elements of

Zallg(é' , G)pse are called “basic cocycles”. Similarly, we have a Newton map

Y

B(F,G) - [Homp(Dy, G)/G(F)] “/")
where Dp := lim  Dg/p (with transition maps defined as in [Kot14], §8.3 and
§10.3), and we define B(F, G)ps to be the preimage of Homp(Dp, Z(G)) under this
map.

We mention some of the properties of the cohomology set B(F,G) (proved in
[Kot14)):

(i) There is a natural inclusion H'(F, G) < B(F, G)ps., whose image is the kernel

of the Newton map. This map is a bijection when the centre of G is trivial.
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(ii) Given a finite separable extension E/F, there is a restriction map
B(F,G) — B(E,G)

and a Shapiro isomorphism B(F,Resg/pH) = B(E, H) (where H denotes a

linear algebraic group over E).

(iii) If F is a local field and G is a connected reductive group over F, then there is

a canonical map
ki : B(F,Q)pse = X*(Z(G)GAF/F)),
(iv) If F'is a global field, then, for each place v of F, there is a localisation map
B(F,G) — B(F,,G),

sending B(F, G)psc to B(F,, G)pse. When G is connected, the image of an
element b € B(F,G) in B(F,,G) is trivial for all but finitely many places v.
(v) Let F be a global field and let G be a connected reductive group over F'. Then

the image of the map
B(F, G)se = @D B(Fyy Gloee
is equal to the kernel of the composition
P B(Fo. Oine — @D X7 (Z(G)FIE1E) 2 x*(2(C)SAE/),
We canvnow give the deﬁn:tion of an extended pure inner twist:

DEFINITION 1.5. Let G* be a connected reductive group over a local or global

field F. An extended pure inner twist of G* is a triple (G, &, z) consisting of

(a) a connected reductive group G over F, which is an inner form of G*;

(b) an isomorphism & : G% = G such that £ 0 7€ is an inner automorphism of
G for all o € Gal(F/F);

(c) an element z € Zy (E(K/F),G*)psc (for some finite Galois extension K/F)
whose image in Z,(E(K/F),Gig)vse = Z'(K/F,Gry) is equal to o+ 1 0 7€,

REMARK. Proposition 10.4 of [Kot14] implies that if Z(G*) is connected, then
the map B(F,G*)pse — B(F,Giy)vse = H'(F,G:y) is surjective. In particular,
assuming that Z(G*) is connected, any inner twist of G* can be made into an

extended pure inner twist.
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2. Local classification
Throughout this section, F' denotes a local field of characteristic 0.

2.1. Generalities on A-parameters. Let G be a connected reductive group
over F. Fixing a pinning on the dual group G /C, we get an algebraic action of the

Galois group Gal(F/F) on G and we can form (the Weil form of) the L-group
LG = G(C) x Wp,

where the Weil group Wy of F acts on G(C) through Wy — Gal(F/F).
Let Lp be the Langlands group of F":

Wg if F'is archimedean,
LF =
Wg x SLy(C) if F' is non-archimedean.

An L-parameter for G is a continuous homomorphism ¢ : Lp — “G which

(i) commutes with the projections Lp — Wp and *G — W,
(ii) is such that, for each w € Wp, the image of ¢(w) in G(C) is a semisimple
element,

(iii) is algebraic on SLy(C) (in the non-archimedean case).

Two L-parameters are equivalent if they are G (C)-conjugate. We denote the set of
equivalence classes of L-parameters by ®(G). An L-parameter ¢ is called bounded
(or tempered) if ¢(Wg) projects to a relatively compact subset of G(C). We write
$pqq(G) C P(G) for the subset of (equivalence classes of) bounded L-parameters.
The local endoscopic classification is given in terms of A-parameters: An A-

parameter is a homomorphism
Y : Lp x SLy(C) — =G

such 9|1, is a bounded L-parameter and ¢ |sr,(c) is algebraic. The set of equivalence
classes of A-parameters is denoted by W(G) (where two parameters are equivalent
if they are @(C)—conjugate). We also introduce the larger set ¥*(G) D ¥(G) of

G (C)-conjugacy classes of homomorphisms
Y Lp x SLy(C) — =@

which are algebraic on SLy(C) and whose restriction to Lp is a (not necessarily
bounded) L-parameter. A parameter ¢» € W*(G) is called generic if ¥|s, ) = 1.
We can identify the set of generic parameters in W(G) (resp. ¥ (G)) with the set
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Ppaa(G) (resp. ®(G)). We note that there is a map VH(G) — ®(G), ¢ — ¢y,
defined by

lw 1/2

dp(w) == | w, 1/2

|w]p

We also need the notion of a relevant parameter: Recall (|Bor79] §3, [KMSW14] §0.4)
that there is a bijection between the set 22(G)%F/F) of G(F)-conjugacy classes of
parabolic subgroups of G which are Gal(F/F)-invariant and the set Z(*G) of
L@G-conjugacy classes of parabolic subgroups of “G. A parabolic subgroup of “G'is a
full subgroup P C G such that P N G(C) is (the group of C-points of) a parabolic
subgroup P of G. (We say that a subgroup A of LG is full if the restriction of the
projection map YG — Wy to A is surjective). A Levi factor of the parabolic sub-
group P is a full subgroup M C P such that M N CA;(C) is (the group of C-points of)
a Levi factor of P. We write 2(G/F) ¢ 2(G)%F/F) for the subset of conjugacy
classes containing a parabolic subgroup defined over F'. A parabolic subgroup P of
LG is called (G-)relevant if its conjugacy class corresponds to a conjugacy class in
P(G/F). Note that if G is quasi-split all parabolic subgroups of “G are relevant
for G.

DEFINITION 1.6. A parameter v € V(G) is G-relevant if every Levi subgroup
M C EG containing Im) is a Levi component of a relevant parabolic. We write

U(G)gre C Y(G) for the subset of G-relevant pammeters.E]
Finally, given a parameter ¢ € U (G), we introduce the groups
Sy = Cent(Im 1, G(C))

and Si = 9,/(Sy N Gaer(C))°. We remark that Sy D Z(G(C))SF/F). These

groups will be important for the local endoscopic classification of representations.

LEMMA 1.7. Let ip € UH(G). We have inclusion-preserving maps:

Levi subgroups of G entr | Levi subgroups
a4

containing Im 1) infl of S,

INote the difference between our notation and Borel’s [Bor79].
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defined by entr(M) := M N Sy, infi(M) := Cent(Z(M)°,*G). These maps satisfy
entr(infl(M)) = M and infl(cent(M)) C M. In particular, the minimal Levi sub-

groups containing Im1) are precisely the centralisers in “G of the maximal tori of

Sy
PrOOF. This is [KMSW14| Lemma 0.4.12. O

2.2. Parameters of unitary groups. Let E be a quadratic étale F-algebra
and set G* := Ug,p(N) (as in Section 1). Let G be an inner form of G*, and fix a
choice of an extended pure inner twist (&, z) : G* — G (see Section note that
any inner form of G* admits a choice of an extended pure inner twist). We have
LG = LG*, and thus, U(G) = ¥(G™).

Assume that £ = F x F and fix a map F — F. We get an F-isomorphism
G* — GL(N) and we have *G = GLy(C) x Wr. We can think of a parameter

Y € Ut (@) as a continuous semisimple representation

of the group Lp x SLy(C) on an N-dimensional complex vector space V. We can

decompose 1 as
@Z) :£1¢1@~-@€r¢r7
where the ¢;’s are positive integers and the 1;’s are simple (i.e. irreducible) and
pairwise non-isomorphic constituents of ¢. Schur’s lemma implies that
S¢ = GLgl(C) X ... X GL@T(C)
Assume now that E/F is a quadratic field extension. Given a parameter
b € UT(GL(N, E)),

we define its conjugate parameter ¢ by

Ye(2) = Y(waw; '),

where w, is a fixed choice of an element of Wr\Wg. Note that the equivalence class of
¢ does not depend on the choice of w.. We say that a parameter ¢ € U (GL(N, E))
is conjugate self-dual if ¢¢ is equivalent to its dual parameter ¥V : x — 1(x)~". We
write W(N) € W(GL(N, E)) for the subset of conjugate self-dual parameters. We
similarly define UH(N), ®(N), Ppqa(N) to be the subsets of conjugate self-dual
parameters in VT (GL(N, E)), ®(GL(N, E)), ®paa(GL(N, E)), respectively.
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Let x : Wg — C* be a conjugate self-dual character (i.e. x° = x~'). We have a
“base change” map
e UH(G) — TH(N)
defined by 9 = x ®v|L, xsL.(c). We have n;*I(\TJ(N)) = U(Ug/r(N)), and the same

is true if we replace by ¥ with ® or ®p4q4.

LEMMA 1.8. The map ny is injective. An element PV € \AIVﬁ(N) is in the image
of ny if and only if there exists P € GLy(C) such that
(i) VN (werw ) = PN ()"t Pt for all x € Ly x SLy(C), and
(it) PN (w?) = K(x)(=1)" PP, where k(x) = x(w?) € {£1}.

If such a P exists, the preimage v of ¥ is given by

-1 M (z) ifx € Ly x SLy(C),
N e T CR e A

PJy 3w, Zf$:wc
PROOF. This is an easy calculation: If ¢V = nyy for some ¢ € UF(G), then
properties (i) and (ii) are satisfied for P given by ¢(w.) = PJy x w.. Conversely, if
(i) and (ii) are satisfied for some P € GLy(C), the formula above defines an element

¥ € UH(G) such that 9 =N, O

Given a parameter 1) € U (G), we can decompose ¢V = ny¥ into simple pa-
rameters, as above:
WV =l @B b

Let I C {1,...,r} be the set of indices i such that 1} := 1), is isomorphic to ;.
The set {1,...,7} \ I can be partitioned into pairs {7, 7%} such that

¢; = @Z)]* and E] = E]*

Let J be a subset of I\ {1,...,r} consisting of one representative from each pair
{j,7*}. We can thus write
PN = @fﬂﬁi S5 @@(@/}j ;).
i€l jeJ
DEFINITION 1.9. Let ¢ € Wt(m) be simple. The parity x() € {+1} of ¥
is defined by ¥(w?) = k()PP where P € GLy(C) is any element such that
V¢ = Ad(P) o V.

Let us explain why (v) is well-defined:
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(a) Since ¥ is conjugate self-dual, there exists some P € GL,,(C) such that P =
Ad(P) o {bvv. By Schur’s lemma, any two choices for P differ by a scalar and,
hence, give the same value for PP~

(b) We have Ad((w?)) oy = Ad(PP™) o 1), so (w?) and PP~ differ by a
scalar. Say ¥ (w?) = APP~!, where A € C*. Since ¢(w?) = Pi(w?)~'P! =
A~LPP~t = A2 (w?), we conclude that A € {£1}.

(¢) It’s not hard to check that x(¢) is independent of the choice of w, and the choice

of v in its equivalence class.

We can now partition I as I L1~ where
IFo={icl:r) =cr(x)(=D)V 1}, ee{£1}.

REMARK. For each 1 < ¢ < r, we have ¥; = u; X v;, where p; is an irreducible
representation of Ly and v; is an irreducible representation of SLy(C). Let m; :=
dim g1; and n; = dimy;. For i € I, y; € ®(m;) and its parity satisfies (1) =
(=1,

LEMMA 1.10. Let ¢ € W (Ug/p(N)). With notation as above, we have that {;

s even for alli € I~ and
Sy 2 [T 06(C) x T] Spa(C) x J] GL, (C).
ielt iel— JjeJ

Moreover, 85, =~ (2./22)"".

PRrOOF. This lemma is proven in [GGP12] (the proof is given for L-parameters,
but the general case is the same). If S, is as above, then
(S0 M Gaa(©))” = ] $06(©) x T] 894, (C€) x ] GLe, (©).
ielt iel~ jeJ

and, hence, Si >~ (Z/22)"". O

2.3. The main local theorem. Recall that G is an inner form of G* :=
Ug/r(N) (which is either a unitary group or a general linear group) and that we
have fixed a choice of an extended pure inner twist (£,2) : G* — G. The choice of

(&, z) determines a character

X 1 Z(G(C)) %I — ¢
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via the Kottwitz map kg : B(F,G")psc — X*(Z(CA}')Gal(F/F)). We write Irr(Si,Xz)
for the set of characters of the (abelian) group Sfp which restrict to y, under

Z(G(C))SH M 5, — S

Finally, we fix a choice of a non-trivial additive character ¥p : FF — C* (the map

T+ (-, )¢, below also depends on the choice of ¢r).

THEOREM 1.11. For each ¢ € V(G), there exists a finite multiset 11,(G, &) of

(equivalence classes of ) irreducible unitary representations of G(F) and a map
Hw(Gu é-) — II‘I‘(SEN Xz)7 T < ’ 77T>§,z

such that

(1) The multiset I1,,(G, €) is independent of the choice of z.
it) If ¢ is not G-relevant, then 11,(G, &) is empty. If ¥ is generic, then I1,(G, &
Y ¥
1s non-empty if and only if V¥ is G-relevant.
i11) All representations in 11,(G, £) have the same central character.
()
w) If Y 1s generic, all representations in 11,(G, &) are tempered and only appear
P
once in I1,(G,€). Moreover, the map © +— (-, m)¢, is injective; if F is non-
archimedean, it is also surjective.
(v) The packets (Il : 1 € Praa(G)) are disjoint and exhaust the tempered repre-
sentations of G(F').

PROOF. This is [Mok15| Theorem 2.5.1, [KMSW14| Theorem 1.6.1. O

REMARK. The theorem in the quasi-split case (£, z) = (id, 1) is due to Mok. The
non-quasi-split case is due to Kaletha, Minguez, Shin and White. At the moment,
the theorem in the non-quasi-split case has only been established for generic param-
eters ¥. A later paper by Kaletha, Minguez and Shin is expected to complete the
proof of the theorem for all parameters ¢ € W(G). In this thesis, we only use the

theorem for generic parameters .

In the remainder of this section, we descibe the A-packets in some special cases.

2.4. A-packets for inner forms of general linear groups. We consider the
A-packets in the split case: E = F' x F. Fixing a projection map E — F', we get
an F-isomorphism ¢ : G* & GL(N). Let ¢ € ¥(G). Composing v with Zi, we can
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identify ¢ with a parameter in W(GL(N, F')). Recall that we have an L-parameter
¢y € P(GL(N, F')) defined by

| 1/2

du(w) =9 | w, o 1/2

|w]p

The local Langlands correspondence for GL(N) (normalised so that uniformisers
correspond to geometric Frobenii) associates an irreducible unitary representation
7y, :=rec (¢y) of GLy(F) to ¢y.

We say that a unitary smooth irreducible representation 7w of GLy(F) is d-
compatible if there exists a regular semisimple conjugacy class x of GLy(F') such

that:

(a) Any irreducible factor g € F'[X] of the characteristic polynomial of z has degree
deg g divisible by d.

(b) The character ©, of m does not vanish on :

O.(z) # 0.

We have a Jacquet-Langlands map |LJ| := |LJ|¢ (cf. [DKV84|, [Bad08|, [BR10|)
between the set of (equivalence classes of) all d-compatible irreducible unitary repre-
sentations 7 of GLy (F') and the set of (equivalence classes of) all irreducible unitary
representations 7’ of the inner form G(F') = GL,,(D) of GLx(F) (where D is a cen-
tral division F-algebra of degree d and m is an integer such that md = N). The
map is characterised by the following property: there exists a (necessarily unique)
sign € € {£1} such that the characters ©, and O,/, of 7 and 7’ respectively, satisfy

the relation
@ﬂ(l') =& @w’ (ZL’,),

for all z € GLy(F) and 2’ € G(F') such that x and o1 (2/) lie in the same regular
semisimple GLy (F)-conjugacy class. In general, the map |LJ| is neither injective
nor surjective.

Write ¢ = 619y @ . .. @ £,1),, where the parameters i; € U(GL(m;)r) are simple

and pairwise non-isomorphic. If F'is non-archimedean, let

¢; = ¢i’WFxSL2(C)x1 and ;b\z = ¢i|WFx1st2(<C) € (I)(GL(mi7F))'

If F is archimedean, set ¢; = ¢; := Yilw, € ©(GL(m;, F)).
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We say that a parameter ¢ € ®(GL(M)) is d-relevant if any Levi subgroup M of
GL/(C) containing the image of ¢ is conjugate to a standard (block-diagonal) Levi
subgroup GL,,, (C) x...x GL,,, (C) such that m, is divisible by d for all 1 < ¢ < k (in
particular, we must have d | M). Hence, ¢ is d-relevant if and only if it is relevant
for GL,,(D), where D is a central division F-algebra of degree d and M = md

(provided that such a division algebra exists).

THEOREM 1.12. If there exists some i € {1,...,r} such that neither of ¢; and
@ is d-relevant, then 11(G,&) is empty. Otherwise (i.e. if, for all i € {1,...,r},
either ¢; or ¢; is d-relevant), , is d-compatible and 11,(G,§) = {7y}, where 7y :=
L3|(r;).

ProoF. This is [KMSW14| Theorem 1.6.4. O
REMARK. The packet I, (G, €) is independent of the choice of map E — F.

2.5. Unramified A-packets. Let E/F be an unramified quadratic extension
of non-archimedean local fields and let G := Ug/p(N) (thus, G is an unramified
group over F). We take (£, z) = (id, 1) and assume that the character x : Wy — C*
is unramified. Let K := Ug p(N)(Op) be the “standard” hyperspecial maximal
compact subgroup of G(F)J] We have the following result of Mok ([Mok15] Theo-
rem 2.51(a) and Lemma 3.2.1):

THEOREM 1.13. Let (G,&, z) be as above and i € V(G). Assume, in addition,
that our fized additive character g : F — C* is trivial on Op, but not on any
larger fractional ideal of Op.

(i) If # € (G, €) has K -fized vectors (i.e. % #£0), then (-, 7) = 1.
(ii) For any f € H(G(F)), fv € H(GLN(E)) with Ale, &, z]-matching orbital inte-
grals, we have
> (sum)f(m) = ).
TEl, (G.€)

(i) The map f Zwenw(c,g)@wv m)f(m) is a stable character H(G(F)) — C.

2Here, Up /r(IN) denotes the reductive group scheme over Or with functor of points

UE/F(N>(R) = {£E € GLN(OE Rop R) : (C®idR)($)t Jyzx = JN}
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NOTATION. (a) G is an endoscopic group of the twisted group (Gg/r(V),0).
Throughout this subsection, we write ¢ for the endoscopic triple (G, 1,7, ), where

7y is the L-homomorphism
LG = *Ggr(N) = (GLy(C) x GLy(C)) x We

defined by g x w — (x(w)g, x(w) tIyg tJx5") for all (g,w) € G(C) x W, and
Ixw, — (1, k(x)1) @ w, (recall that w. is a fixed choice of an element in Wr\Wg
and (x) := x(w?) is the parity of x; the @E/F(N)(C)—conjugacy class of 7, is
independent of the choice of w,).

For the definition of transfer factors Ale, ¢, z](7, ) and what it means for f, fx
to have Ale, &, zJ-matching orbital integrals, see [KMSW14] Section 1.1.2 and
the papers of Kottwitz and Shelstad [KS99|, [KS12].

sy € Sy denotes the element

and f(m) denotes the trace of m(f).

fv € H(GLy(E) x (6)) is the function supported on GLy(E) x 6 that satisfies
ﬁv(g x 0) = fn(g) for all g € GLy(E). The local Langlands correspondence,
associates to the L-parameter ¢y, a representation Il of GLy(FE). This

representation admits an extension INL,W to a representation of the twisted group

GLN(E) x <0> Then E/V(n;d)) is defined as }’]Vv(ﬁnw) = tr ﬁnw(};)

Let Ky := GLy(Og), a 6-stable hyperspecial subgroup of GLy(F). The map

e g/r(N) induces, via the Satake isomorphism, a map b between the

(unramified) Hecke algebras of Gg/p(N) and G:

b: H(GLy(E); Ky) — H(G(F); K).

3There are two such extensions; we should choose the one which is compatible with the Whit-

taker datum (B(N), A) induced by the standard pinning on GL(N) and our fixed choice of additive

character ¢p : F — C*: see [Mok15| Section 3.2 for more details.
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The map b gives rise to a “base change” map

(isomorphism classes of) ) ( (isomorphism classes of) )
B irreducible admissible . irreducible admissible
representations 7 of G(F') representations II of GLy(E)
such that 7% #£ 0 ) \ such that IT5~ £ 0 )

defined by (B(7))(fn) = 7(b(fn)) for all fy € H(GLy(E); Ky).
Let Ky = Ky % 60 C GLy(E) x (). The following (twisted) version of the
fundamental lemma is due to Lemaire, Moeglin and Waldspurger [LMW15|:

THEOREM 1.14. For any f € H(GLn(E); Kn), fn x 15, and f = b(fn) have

matching Ale, &, z]-matching orbital integrals.
We use Theorems and to deduce the following lemma:

LEMMA 1.15. (1) If I1,(G,id) contains a representation © of G(F) such that
7K £ 0, then ¢ is unramified (i.e. V|1, is unramified).
(it) If v is unramified, then I1,(G,1d) contains a unique representation m such that

w8 £ 0 and 7 is such that B(r) has L-parameter Prypeap-
PROOF. Let fy € H(GLy(E); Ky), f :=0b(fn) € H(G(F); K). We have

f(m) = fx(B(m)) if 7% #0
0 if 7 =0

{8y, m) f(m) =

and };(n;‘( ) = E(ﬁn;w = fn(Iyzp). Theorem |1.13f (i) then implies that:

> fn(B(m) = fx(yey) for all fy € H(GLy(E); Ky).
7 € IL,(G,id)
7K £ 0

Assume that IT,(G,id) contains a representation 7 with 7% # 0. Then the LHS is
a non-zero linear map H(GLy(E); Kn) — C, so Il,xy must have Ky-fixed vectors.
Hence, 19 is unramified, which implies that ¢ is also unramified.

Conversely, assume that ¢ is unramified. Then the identity above implies that
there is a unique 7 € I1,(G,id) with 7 # 0, and 7 satisfies fy(B(7)) = fa(IL,:y)
for all fy € H(GLn(E); Kn), i.e. B(m) = . O

PROPOSITION 1.16. If ¢ is unramified and generic, then all representations in

II,(G,id) are unramified.
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Proor. This follows from the construction of the A-packet in this case; see
[Mok15| Section 7.1. If N is odd, then the packet II,(G,id) consists of a single
representation. If NV is even, then II,,(G,id) has order at most 2.

In both cases, there is a unique element 7 in the packet I1,(G,id) with K-fixed
vectors. In the case where NV is even, there are two Ug,p(IV)(F)-conjugacy classes
of hyperspecial subgroups of Ug,p(N). Let K’ be a hyperspecial subgroup which
is not conjugate to K. If 7% = 0, then I1,(G,id) contains two elements 7 and 7/,

where 7’ has K'-fixed vectors and (7/)% = 0. O

2.6. Tempered archimedean A-packets. Let F' = Randlet ¢ € ®(Ug/p(N))baa
be a generic A-parameter (where E/F is a quadratic field extension). In this case,

the packet I14(G, £) was constructed by Langlands and Shelstad.

NOTATION. ¢ is a choice of an R-isomorphism £ = C and [-] : C* — U(1)

denotes the unitary character z — z/|z|. Also, |z|g = 0(2) 0(2) = |o(2)|*.

All representations in II4(G, §) have the same infinitesimal character p(¢). One

can recover p(¢) from the parameter ¢ as follows: The restriction
¢’WE : WE — GLN(C)
of  to W = E* is a sum of characters

me... o,

where each n; : EX — C* is of the form 2z — [o(2)]*% 2], with a; € 3Z, t; € R.

Then the infinitesimal character p(¢) corresponds to the unordered N-tuple
(al +it1, e, an +2tN)

Note that u(¢) is also equal to the unordered N-tuple (a; —itq,--- ,an —ity), since

élw, is a conjugate self-dual parameter.

NoTATION. We have
Ge 5 Usyr(N)e = GL(N,C)
(the second isomorphism is the one induced by o). We can thus identify the in-
finitesimal character of an irreducible admissible representation 7 of G(R) with an

element of X*(T) @z C/W(T) = C¥/Sy, via the Harish-Chandra isomorphism.
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Here, T' denotes the maximal torus of GL(N,C) consisting of all diagonal matrices

and W (T') denotes its Weyl group.

3. Global classification

We now describe the endoscopic classification of automorphic representations of

unitary groups. In this section, £//F denotes a quadratic extension of number fields.

3.1. Global parameters and localisation. Let G be a connected reductive

group over a number field K. Define
G(Ag)' :=={z € G(Ak) : ||x(@)|lax = 1 for all x € Homg (G, G,,)}.

DEFINITION 1.17. A unitary cuspidal automorphic representation of G is a uni-
tary irreducible admissible representation of G(A) whose restriction to G(Ag)' is

a constituent of
Liusp(GE)\G(Ag)Y).

cusp

We write Acusp(G) for the set of equivalence classes of all unitary cuspidal automor-

phic representations of G.

The set of global parameters W(GL(N, E)) of GL(N, E) is defined to be the set

of formal (unordered) sums

Y= ()8 8 (u RHv,),

where, for each 1 < i <7, pu; € Acusp(GL(M4, E)) and v; is an algebraic irreducible
representation of SLy(C) of dimension n;, such that myn; + ...+ m,n, = N.

For each place w of E, we have a localisation map
U(GL(N, E)) = VT (GL(N, Ev)), % = tu,
where

¢w = (le,w X Vl) DD (Qbr,w X Vr)

and ¢; ,, = recg, (fiw) is the L-parameter of the w-component of p;. It is expected
that the localisations 1, should always lie in the set ¥(GL(N, E,,)) of A-parameters
(this is the Ramanujan conjecture for GL(N)). Note that we can attach to each
Y € U(GL(N, E)) an irreducible unitary representation

I, = @11,
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of GLy(Ag), where II,, is the irreducible representation of GLy (F,,) with L-parameter
by, (for all places w of E).

For each sign x € {£1}, fix a conjugate self-dual character x, : Wg — C* of
parity s (the parity x(x) of a character x is defined as in the local case: k(x) :=
x(w?), where w, is any element of Wr\ Wg). We define the set Wa(Ug/r(N), 1y..) of
global parameters of Ug/p(IN) that appear in the main global theorem of [Mok15|
and [KMSW14]:

DEFINITION 1.18. Wo(Ug/p(N), 1y, ) is the set of all pairs (¢N,1Z), where

(i) v is an element of V(GL(N, E)), as above, such the pu; Rv; are pairwise dis-

N=ni_(the parity

tinct, and all the u; are conjugate self-dual of parity n; = k (—1)
n; of w; is defined to be n; := 1 if u; is conjugate orthogonal and n; := —1 if y;
is conjugate symplectic; cf. [Mok15| Remark 2.5.3 or [ KMSW14] §1.3.4).

(ii) ¥ is a ﬁE/F(N)—conjugacy class of L-homomorphisms
£¢N X SLQ((C) — LUE/F(N)

such that {/}VN = 7y, © 1}? The group Ly~ is defined to be
ﬁwN = (H(/]\E/F(ml)) X WF;
i=1

we refer the reader to [Mok15| §2.4 or [KMSW14] §1.3.4 for the definition
of the map P : Lyn x SLy(C) = LYGE/p(N).

REMARK. The natural analogue of Lemma holds. In particular, if @Z exists,

it is uniquely determined by .

Let v be a place of F' which splits as ww® in E. The localisation v, of a parameter

Y € Wy(Ug/r(N),ny,) is defined as the composition

v

LF X SLQ(C) —N> LGL(N, Ew) % LUEU/FU(N)7

w

where B, := F ®p F, = E,, X E,. and 1,, is the isomorphism corresponding to the
projection E, — FE,; 1, does not depend on the choice of the place w above v. In

the case of non-split places, we have the following result of Mok:

PROPOSITION 1.19 (Second seed theorem). Let o = (N, 1)) € Uy (Ug/p(IN), Ny..)
and let v be a place of F which does not split in E. Then the localisation Y €
UH(GL(N, E,)) lies in the image 05, . We define 1, := 77;;1(1#1])\’) to be the preimage
of ¥} under the (injective) map 17, .
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We have thus defined a localisation map
Vo (Up/r(N),0x.) = T (Up,/r,(N)), ¥ty
for parameters of unitary groups. We also get natural maps
Sy = Sy, SL— S
where Sy := Cent(Im ¢, Ug»(N)(C)), S, := Sy/(Sy N Up/r(N)aer (C))°.

3.2. The main global theorem. Let G be an inner form of Ug/p(NN) and let
,2) :Ug/p — e an extended pure nner twist. e main global theorem wi
Ug/ G b ded i ' Th in global th ill

be independent of the choice of cocycle z. We define the global A-packet: Let

II,(G,§) = {@m 7y € Iy (GRyy &0), (3 To)e, 2, = 1 for almost all v}
and let I1,(G, &) — Irr(Sfp), 7+ (-, m)e be given by

<57 7T>5 = H<S7 7TU>§v,Zu'

(%

The map is independent of the choice of z and its pullback via
Z(G(C) ST 5 g7
is the trivial character. Let Sy be the cokernel of Z (G(C))CalE/F) Sfb. Let
€y Sy — {£1}

be the character defined in [Mok15| §2.5; this character is trivial if ¢ is generic
(i.e. if all the v; are trivial).

Finally, we define the automorphic A-packet of ¢ to be

I, (G, € ep) i ={m € I1,(G, &) : (-, m)e = €y}
We can now state the main global theorem of endoscopic classification of represen-

tations of unitary groups:

THEOREM 1.20. We have a decomposition of G(Ar)-modules

YEV(Uryr(N)nxe) TEHL(G & ey)

(for any choice of conjugate self-dual character x, ).

ProoF. This is [Mok15| Theorem 1.5.2, [KMSW14| Theorem 1.7.1. O



3. GLOBAL CLASSIFICATION 29

REMARKS. (i) The theorem in the general case (i.e. when G is not quasi-split)

(i)

is still conditional on certain hypotheses, which are expected to be resolved in
future papers. See the discussion below Theorem 1.7.1 in [KMSW14].

If 7 is an everywhere tempered automorphic representation in the discrete spec-
trum of G(Ar), then 7 occurs in the packet I, (G, €, €,) of some generic param-
eter ¢ € Uy(Ug/p(N), 1y, ). Conversely, a proof of the Ramanujan conjecture
would imply that all representations in the A-packet of a generic parameter
are everywhere tempered.

One should define local A-packets I1,, (Gr,, &), m — (-, Ty)e, 2, fOr parame-
ters 1, € UT(G) \ ¥(G) to account for the possible failure of the Ramanujan
conjecture. This is done in [KMSW14] §1.6.4. The representations in the
packet I, (Gp,,&,) of a parameter ¢, ¢ ¥(G) need not be irreducible or uni-
tary; the packet is empty if 1, is not G, -relevant.






CHAPTER 2

Automorphic representations on definite unitary groups

In this chapter, we study automorphic forms on totally definite unitary groups
and their associated Galois representations. More precisely, we use the theory of
endoscopic classification (summarised in the previous chapter) to attach Galois rep-
resentations to automorphic representations of a totally definite unitary group G and
to prove descent theorems allowing us to transfer conjugate self-dual automorphic
representations of GL(N) over a CM number field to automorphic representations
of G. We end the chapter by defining spaces of automorphic forms on G with
coefficients in a Z-algebra A (e.g. Zg or Fy).

1. Galois representations

Let E be a CM number field and let F' be the maximal totally real subfield of
E. We write ¢ for the non-trivial element of Gal(E/F'). Let G denote an inner form
of Ug/r(IN) such that G(F ®g R) is compact (i.e. Gg = U(N) for every embedding

F — R), and fix an inner twist

f : UE/F(N>f 1> Gf
(i.e. an isomorphism & of F-groups such that £~! 0 ?¢ is an inner automorphism of
Ug/r(N)F for all o € Gal(F/F)).

We recall the following theorem, which associates a Galois representation to

regular algebraic, conjugate self-dual cuspidal automorphic representations:

THEOREM 2.1. Let IT be a cuspidal automorphic representaton of GL, (Ag), such

that

(a) 11 is conjugate self-dual: T1°¢ = 11V,

(b) For some integer k, TI(£) := II|| det 12 is regular L-algebraic: For every infi-
nite place w of E, recg, (I(4),) is a direct sum of pairwise distinct algebraic

characters of E;.
Then

(i) 11 is everywhere tempered.

31
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(ii) For any prime number ¢ and any field isomorphism 1 : Q, = C, there exists a

continuous semisimple (-adic Galois representation
p.(IL(5)) : Gal(E/E) — GL,(Q,)
characterised by

WD (0 (T(5))|gai(@o ) = 07 vy, (T(5)w)

for all finite places w of E, not dividing ¢, where WD(o)¥ = denotes the Frobe-
nious semisimplification of the Weil-Deligne representation associated to the

representation o : Gal(E,,/E,) — GL,(Q,).

PRrOOF. This theorem is due to many people: Kottwitz [Kot92|, Clozel [Clo91],
Harris-Taylor [HTO01], Taylor—Yoshida [TYO07|, Clozel-Harris-Labesse |[CHL11],
Shin [Shill|, Chenevier-Harris [CH13|, Caraiani [Carl2]. O

NoTATION. If IT; (resp. Ily) is an irreducible admissible representation of GL,,(Ag)
(resp. of GL,,,(Ag)), we write IT; BII, for the representation of GL,,,,(Ag) satisfying
recg, (I B 1)) = recg, (I11,4,) @ recg, (Il2,,) for all places w of E.

The main global theorem of endoscopic classification (Theorem [1.20]) implies the

following theorem:

THEOREM 2.2. Let m be an irreducible subrepresentation of
L*(G(F)\G(Ar)).

There exist pairwise distinct automorphic representations Iy, ... Il such that

(i) Each 11; is an automorphic representation of GLy,n,(Ag) of the form
n;—1 n;—3 1—n;
I; = py|det |72 Bu;|det| 2 BB pldet| 2,

where p; 1s a unitary, conjugate self-dual, cuspidal automorphic representation
of GL,,(Ag) and miny + ... +m,n, = N.
(i1) For alli € {1,...,r} and every complex place w of E,
ni=N
Wi | det w2
15 reqular L-algebraic.

(11i) 11 := 11, B - - - BTIL,. is the base change of 7, i.e.
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(a) For every finite place v of F which splits as ww® in E,

ILJ

iwoe-1(ILy) =, and T, =1II).

(b) For every finite place w of E which is non-split and unramified in E and

such that G, is quasi-split and 7, is unramified,
Hv = B& (Wv),

where Bg is the base change map induced by m o “€ via the Satake isomor-

phism, similarly to Chapter 1, Section[2.5

PROOF. Fix a basic cocycle z corresponding to {1 o?¢ € ZH(F,Ug/p(N)aa). By
the main global theorem (with x,, = 1), we have 7 € II,(G, §), for some global pa-
rameter 1 = (N, 1) € Uy (Ug/r(N),m). Let II be the automorphic representation
of GLy(Ag) corresponding to ¥, We have

YN = BB,

where 1; = u; Xy, are pairwise distinct. Let m; = dim p;, n; = dim v;. By definition,
I[I=1I, B8---BII,, where the II; are as in (i).

Let w be an infinite place of E. Let v, be the localisation of 1 at the place v =
w|p. We have N = i1, where »Y € UH(N) is the localisation of ¢/, Since G,
is isomorphic to the compact unitary group, “Ug, /r, (V) has no proper G, -relevant
parabolic subgroups. We conclude (cf. [KMSW14| §1.6.4) that ¢, € V(Ug, /r,(N)).
We can write

v =P e o P ™ o @ @ i),
iel+ iel— JjeJ
where the ¢§N) =y X VZ-(N) are simple (in particular, the x; are characters). The

set It (resp. I7) consists of all indices i such that x; is conjugate self-dual and

xi(—1) = (—1)N_disz'(N) (resp. (—1)N_dim”§N)+1). Then, by Lemma |1.10),

Su, = [ 06(©) x [T $p,(€) x [] 6L (©),

ielt iel~ JjEJ
and all (¢; : i € I7) are even. We use Lemma 1.7 to deduce that Sy, is a torus and
that Cent(Sy, ,"Ug,/r,(N)) = *Ug,/r,(N). Equivalently:

Sy, C Z(*Ug,r,(N)) N Ug,/r,(N) = Z(Ug,jr, (N))EF/E) = (1},
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Hence, ¢; = 1 for all t € [T and I~ = J = &. Thus, part (ii) follows, as this shows
that, for each 1 < i <r, recg, (it; ) is a direct sum of distinct conjugate-self dual
characters of EX = C*, each having parity (—1)¥=". Moreover, we can conclude
that the p; are everywhere tempered (Theorem 2.1] (i), i.e. ¥, € ¥(Ug,/r,(N)) for
all places v.

The remaining parts follow from the description of the local A-packets in the

split and unramified case (cf. Chapter 1, Sections and . U

Suppose that 7 is an irreducible subrepresentation of L*(G(F)\G(AF)), as above.
Let v be a place of F' and w be a place of E diving v. We define an irreducible
admissible representation BC,,(m,) of GLy(E,), in the following two cases:

(i) BCy(my) := |LJ|Z._MIO£,1(7TU)7 if v splits in E.
(ii) BCy(my) := Be(m,), if visinert in E, Gp, is quasi-split and , is an unramified

representation of G(F,).

REMARK. Let K be a nonarchimedean local field and let D be a central division
K-algebra of dimension d?. |LJ| restricts to a bijection between the set of isomor-
phism classes of tempered representations of GL,4(K) which are GL,(D)-relevant

and the set of isomorphism classes of tempered representations of GL,. (D).

We can now attach a Galois representation to any discrete automorphic repre-

sentation 7 of G. More precisely, we have the following corollary:

COROLLARY 2.3. Let 7 be an irreducible subrepresentation of L*(G(F)\G(AF))
and fir a field isomorphism v : Q, = C. Then there exists a continuous semisimple

representation
r(m) : Gal(E/E) — GLx(Q))

(which also depends on £) such that

and

WD (1 (M)l qai, s5,y) 2 ¢ e, (BC,(m,)|det | 2)

for every finite place w { € of E (lying over the place v of F) satisfying one of the

following two conditions:

(a) w is split over F;
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(b) w is inert over F, Gp, is quasi-split and , is an unramified representation of
G(F,).
Moreover, w is everywhere tempered if and only if there are no subrepresentations

r1 and o of r,(m) such that ri = ry ® 4.
NOTATION. &, : Gal(Q/Q) — Z, denotes the f-adic cyclotomic character.

PROOF. We define r,(m) to be

T n;

n;—N _
r(m) = PP plpll det |7 ) @7,

i=1 k=1
where the notation is as in theorems 2.1l and 220 This satisfies the desired local-
global compatibility. Assume that there are no subrepresentations r and ry of 7,()
such that ry = ro®ey; thenn, = --- =n, = 1 and, hence, 7 is everywhere tempered.
Conversely, suppose that there are subrepresentations 1 and ro of r,(7) such that

r1 = ro ® go. We may assume that r; and ry are irreducible; then
r(m) Zr @ (e ) er.

Let v be a place of F' which splits in F and is such that Gp, is quasi-split (i.e.
isomorphic to GL(N)), and let w be a place of E above v. Then

recp, (m, 0iy') ® |Art;3i|% =6 @ (1 ® At [T @ ¢,

where ¢ = ‘WD(r1|guz,/m,))" = and ¢ = WD |z, /g, " I m is
tempered, then recg, (m, o i) is bounded and, hence, ¢; ® |Art§i\% and ¢; ®
|Art§i ]¥ are both bounded. This is not possible, so the last part follows. O

2. Descent to a definite unitary group

Let II4, I1; be unitary, conjugate self-dual, cuspidal automorphic representations

of GL,,(Ag), and assume that

IT=1I, B

is a regular C—algebraicﬂ representation of GLy(Ag) (where N = 2m); in particular,

IT; and Il are non-isomorphic. We remark that there is a Galois representation
(M) : Gal(E/E) — GLx(Q))

4This means that II || det ||% is regular L-algebraic.
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associated to II (where ¢ is a field isomorphism @, = C); in the notation of Theo-
rem r,(IT) is equal to

D oL [ det | =)

1€{1,2}
and, thus,

P o L trecy, (Hw| det |%)

WD (TL(H)|Ga1(Ew/Ew))

for all finite place w { ¢ of E.
Let us, moreover, assume that there is a place B of E such that, for each
i € {1,2}, I, is a twist of the Steinberg representation St,, of GL,,(Ey) by an

unramified character &; : E;g — C*.

LEMMA 2.4. There is a biquadratic extension Fy/F of totally real number fields,
an inner twist (G, &) of Ug,/p (N) (where Ey = E - Fy), and an irreducible subrep-
resentation m of L*(G(F1)\G(AR,)) such that:

(i) Ey/Fy is unramified at all finite places. If 11, is ramified at a place w of F,
then any place wy of K1 above w s split over Fi.
(1) G(Fy ®g R) is compact, i.e. G is a (totally) definite unitary group.
(i4) For any place p1 of Fy above p := PN F, the group G, is isomorphic to
GL(2, Dy,) and my, has GLy(Op,, )-fired vectors, where Dy, is a central division
F1 p, -algebra with integer ring Op, .
(iv) G, is quasi-split for all finite places v1 of Fy prime to p.
(v) r(m) = 7“L(H)|Ga1(E/E1)'
Moreover, given a finite Galois extension K/E, we can choose Fy/F such that the
map Gal(K - E1/Ey) — Gal(K/E) is an isomorphism (and, in particular, K N E, =

PROOF. Write E = F(y/a), where a € F*\ (F*)?. Let S be a finite set of non-
archimedean places of F' containing p, all places that ramify in £, and all places
v such that II,, is ramified for some place w | v of E. Moreover, let T be a set of
places of F, disjoint from S, such that each place w | T of E is unramified in K and

Gal(K/E) = |_ Frob,,
w|T
where Frob,, denotes the Frobenius conjugacy class in Gal(K/E) at the place w.
There exists (by weak approximation) an element 3 € F* \ (F*)? such that

(i) B € a(FX)? forallve S
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(i) B € (F))* for all v € T, and
(iii) o(B) € Ry for all real embeddings o : F' — R.

Let Fy := F(/B):

(a) Fp is a totally real quadratic extension of F.

(b) If vy is a place of Fy above S, then vy splits in Ey = E - Fy.

(c) If vy is a place of Fy not dividing S, then vy is unramified in Ey (as vo|p is
unramified in E). Hence, Ey/Fy is everywere unramified.

(d) Any place v € T splits in Fy. Hence, any place w | T of E splits in FEy.

There exists an inner twist (Go, &) of Ug, r, (IV) (cf. Chapter 1, Section such
that
(a) G(Fy ®g R) is compact (equivalently, G, ,, for any real place of vy of Fy),
(b) Gr,,, is isomorphic to GL(2, Dy,) for any place po | p of Fy, where D, is a
central division Fj -algebra, and
(¢) GRyw, 1s quasi-split for any finite place vy 1 p of Fy.
Fix a basic cocycle zy corresponding to &' 0%¢y € Z1(Fo, Ugy /(N )aa). We write
3 for the set of finite places vy of Fy such that the image of zg under the localisation
map B(Fy, Go)bse = B(Fouy, Go)bse 1s non-trivial. Let g be a finite set of rational
primes containing all primes lying below ¥ and all primes lying below 7"U p. Let

d > 1 be a square-free integer such that every prime in Xq splits in Q(\/a) Set
Fy = Fy(Vd) = F(\/B,Vd), E,:=E-F,.
Thus,

(
(

a) F is a totally real biquadratic extension of F'.

b) If v is a place of F} above S, then vy splits in F;.

)
)

(¢) Ey/F; is everywere unramified.

(d) If vy is a place of Fy lying over X, then vy splits in Fj.
)

(e) Any place v € T splits completely in F;. Hence, any place w | T of E splits
completely in Ey; in particular, Gal(K - Fy/E;) — Gal(K/FE) is surjective.
Let (G,&, z) be the base change of the extended pure inner twist (Go, &, z0) to
Fy. Moreover, let II, = I, ©H Il be the base change of IT = II; H II, to Ei:

DEFINITION 2.5. A representation I1 of GLy(Ag) is called isobaric if

N1, 8. B,
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for some integerr > 1 and some cuspidal automorphic representations I1; of GL,,, (Ag)
(i=1,---,r) withmy+---+m, = N.

Let 11 be an isobaric representation of GLx(Ag) and let 11, be an isobaric rep-
resentation of GLx(Ag,), where Ey/E is a Galois extension of number fields. We

say that I, is the base change of Il to Fy if

recEl,wl (Hb,wl ) = reCEw (Hw) ‘LEl,wl

for every place wy of Ey lying over a place w of E.

THEOREM 2.6. Let II be an isobaric representation of GLy(Ag) and let Ey/E
be a solvable Galois extension of number fields. Then the base change 11, of 11 to

Ey exists. If 11 is an isobaric sum of unitary cuspidal representations, then so is II,.

PROOF. The theorem is due to Arthur and Clozel. It suffices to prove the
theorem when II is a unitary cuspidal representation and E;/F is a cyclic exten-
sion of prime degree: This is [AC89| Chapter 3, Theorem 4.2 (weak lifting) and
Theorem 5.1 (strong lifting). The “strong lifting” of Arthur-Clozel corresponds
to restriction of local L-parameters under the local Langlands correspondence (cf.
[HTO01] Lemma VII.2.6 and [AC89|] Chapter 1, Section 6). Indeed, let L/K be a
cyclic extension of non-archimedean local fields of characteristic 0 (of prime degree
[L : K] = {), let ™ be a smooth irreducible representation of GLx(K), and let 7,

be its strong base change to L, in the sense of Arthur-Clozel. We want to see that

reck (m)|n, = recr (7).

If 7 is supercuspidal, this is Lemma VII.2.6, part (5), of [HTO01].
If 7 is square-integrable, then m = St(w, a) for some unitary cuspidal representa-
tion w of GLy/s(K), where St(w, a) denotes the generalised Steinberg representation,

i.e. the unique quotient of the normalised parabolic induction of
(,u|det|1%a&---@w|det|a2;1

(in the notation of [HTO01], St(w, a) = Sp, (w| det | =*)), and we have recg (St(w, a))

reck (w)Xv,, where v, is the a-dimensional irreducible representation of SLy(C). We
write € for the base change lift of w (so reck(w)|., = rec,(2)). By Lemma 6.10
and Lemma 6.12 of [AC89|, we have the following two possibilities:

(i) Q is cuspidal, and 7, = St(2, a).
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(i) @ =Tx---x[°"" where o is a generator of Gal(L/K), with I' % T'° cuspidal,
and

7, = St(Q,a) = St(T,a) x -+ x ST, a).

We thus have recy(Q2) = @f;é rec,(I'") and recy (7)) = @f;é rec, (I My, =
reck () X u,.
In both cases, we have recg(m)|r, = recr (7).
The case where 7 is (essentially) tempered follows from the discussion in [AC89)|
Section 6.2 (and compatibility of strong lifting and recx with twists).
In general, we can write m as the unique quotient of the normalised parabolic

induction of an essentially tempered and dominant representation
Ty =m X--- X,

of a Levi subgroup M (F) = GL,,, (F)X---XGL,,, (F), and recg (m) = @_, reck (m).
The strong base change lifting

/ / /
Ty =m X Mo,

of my; is also essentially tempered and dominant, and 7, is the unique quotient of the
normalised parabolic induction of 7}, to GLy(E). We have reck(m;)|., = recp(n})

for all 1 <7 < r, so the relation reck(m)|,, = recr(mz) holds in general. O

REMARK. Let K;/K be a Galois extension of local non-archimedean fields of

characteristic 0. Then, for any character ¢ : K* — C*, we have

recg (Sty, ® §(det))|r,, = reck, (Stm @ (§ o Nk, /x)(det)).

In particular, if 1T is a cuspidal representation of GL,,(Ag) and w is a finite place
of the number field £ such that II, is an unramified twist of the Steinberg repre-
sentation of GL,,(E,), then the same is true for the base change II;, of II to E; (if

it exists) and any place wy of E over w (for any finite Galois extension E;/FE).

Let vV = N By € U(GL(N, E,)), where ¥ € U(GL(m, E})) is the formal
global parameter corresponding to II,; ;. We compute the parity of II, ;:

Let w; be an archimedean place of F; and fix an R-isomorphism o : Ey y, = C.

N

Since I, is regular C-algebraic and everywhere tempered, ¢, = recg, ,, (ILipw,) is

of the form

nl@...@nm’
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where n; : Bf,, = C*, 2 [0(2)]*¥, and ay, -+, am € Y51 + Z are distinct (recall

that we write [s] := s/|s|). Applying Lemma , we conclude that ¢, is in the

image of

7t ®paa(Ug,/r (M) = Ppaa(m)

1)me _

if and only if K(x) = (— = (—1)™. We observe that ¢V extends to a parameter

(@ijN’@ZZ) € \IIQ(UE1/F1 (m)anxn)>

where (—1)™ £ is equal to the parity of II;; (we simply take @Zz to be the identity
map on Lyv = LUg, /r, (m) and trivial on SLy(C)). Now the “second seed theorem”
(Proposition implies that x = (—1)™. Hence, II,, has parity —1.

We claim that ¢ extends to a parameter ¢ = (N, 1) € U(Ug, /p (N),m). This
follows from the global analogue of Lemma 1.8 Explictly, we can take

b1 Lyv X SLy(C) = (U, yr, (m) x Ug, (M) x SLa(C) — LUg, i, (N)

to be given by

T ~
(xlv 1L'2> = ) for any ri, Tz € UE1/F1 (m)
T2
_1ym (W
1 xw— X (W) xw, for any w e Wg,
X(-1ym(w) ™!
Im,
1 xw, — Jn X w,
Im

(where x(—1ym : Wg, — C* denotes a conjugate self-dual character of parity (—1)™
and w, denotes a fixed element of Wg, \ Wg,); @Z is defined to be trivial on the
SLs(C) factor.

We can now consider the A-packet IL,(G, ). We know that the localisation v, of
1 is a generic A-parameter for every place v of F (since II is everywhere tempered).

Since 1, is G, ,-relevant for all places v of F} (by our assumptions on I, and II,

for v { 00), Iy (G, &) is non-empty. Let m € I1,(G, §):

(i) If p; | p and P, is a place of E; above py, then

|LJ’2'331°§71 (ﬂ-pl) =Ipp, = ie{E|13,2}St & fz{(det)v
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where & := ¢ o Ng, , /g, (an unramified, unitary character of £y, ). There-
fore, , is isomorphic to the representation IndgEQ(j:;’Q) (£ oNrd) X (&) o Nrd))
bo Po

of GLa(Dy,), which is irreducible and has GLy(Op, )-fixed vectors.

NOTATION. pg = p; N Fy. Ind denotes unitary induction. Nrd denotes the

reduced norm map D, — Fg, (and we have canonical isomorpisms Fpp, =

Fip, & Erg,).

(i) If v is a finite place of Fy not dividing p and v splits in £, choose a place w of F;
above v and an F,-isomorphism &, = £, 0o Ad(«) (where o € Ug, /p, (N)(Fi0,))

between Ug, /r, (N)r,, and G, ,. We then get an isomorphism
iwo &t G(Fy,) = GLy(Ey)

and 7, = 11} ,,0(4,0&, ") (the isomorphism class of IT}, ,,0 (4,0, ) is independent

of the choice of w and &,).

(iii) If v is a finite place of F} not dividing p and v does not split in Ey, then II,, is

unramified and we deduce that 7, is unramified (see Chapter 1, Section .

(iv) If v is an archimedean place of Fi, then, because G(F},) is compact, 7, is

determined by its infinitesimal character. Let w be the complex place lying
over v. The infinitesimal character of 7, can be described in terms of ¥ as

we’ve seen in Chapter 1, Section [2.6

All that’s left to show is that the automorphic A-packet I1,(G, &, €,) is non-

trivial. In this case, v is generic, so €, = 1. Given a finite place v of F such that

the image z, of the basic cocycle z under

B(Fh G)bsc — B(Fl,m G)bsc

is trivial, let m, be the element of I, (G, &) corresponding to the trivial character of

Sﬂ,v under the pairing 7, — (-, m,)¢..,. Let v be a place of F such that the image z,

of z in B(F} 4, G)psc is non-trivial. Then, by construction, v is split over vy := v|g,.

Let v’ be the Gal(F}/Fp)-conjugate of v. We have isomorphisms of pointed sets:

B(FO,U()J G)bsc

ST

B(FLU, G)bsc B(Fl,v’a G)bsc
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Let 7, (resp. my) be an element of I1, (G, §) (resp. Il , (G, §)) such that (-, m,)e ., =
(+ T, € Irr(Siv, Xz,) = Irr(Si ,»Xz,,). Define

m = Q) € (G, 9).

Since Si is an elementary abelian 2-group, we have (-, m)¢ =[], (- ’%>£’Z”‘Si = 1.
Hence, m € I1,(G, &, €,), i.e. 7 is an irreducible subrepresentation of L?(G(F1)\G(Ag,)).
O

We end this section by proving a different “descent” theorem. This theorem
allows us, under stronger assumptions on II, to descend to a totally define unitary
group without the need to replace I by its base change first (with respect to an
extension Fy/FE). In the following chapter, we will only make use of Lemma .

THEOREM 2.7. Let Il; (i = 1,---,r) be unitary, conjugate self-dual cuspidal

automorphic representations of GL,,,(Ag) and let

nm=I1n,8.---8II,.

Assume that 11 is a reqular C-algebraic representation of GLy(Ag), where N =
my + -+ +m,. Let (G,§) be an inner twist of Ug/r(N) such that

(i) G(F ®g R) is compact.

(i1) If v is a finite place of F that does not split in E, then Gp, is quasi-split.
(111) If v is a finite place of F that splits as ww® in E, then the L-parameter

recg, (I1,) : Wg, x SLe(C) — GLx(C)

1s G, -relevant.
Let v be a finite place of F which is inert in E. Let Y = recg, (I1,). We
can decompose Y into a sum of simple parameters
v =Pt e P v e Pl @),
JELF jely J€y
as in Chapter 1, Section . For each 1 < i <r and each j € I/, let {;; be
the multiplicity of ¢; in recg,(1L;,); thus, i1 + -+ €;, = {; for all j € I\

We define an Fy-linear map
6, : Fy — FL

by e; = (€5 mod 2) .+ (for all 1 < i < r), where e; is the vector whose i-th

coordinate is 1 and whose other coordinates are 0.
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Assume that, for some finite place v of F which is inert in E, the linear

map 6, is injective. Then there exists an irreducible subrepresentation m™ of

L*(G(F)\G(AFr)) such that r,(r) = r,(II).

REMARK. The assumption that the map 6, is injective is satisfied, for example,
if recg,, (II,) is the sum of N distinct conjugate self-dual characters Wy — C* of

parity (—1)N~! (then I, contains N elements and ¢; = 1 for all j € I}).

PROOF. Let 9" be the formal global parameter corresponding to II; (for 1 <
i <r)and let

W=yl B Byl

be the formal parameter corresponding to II.
We compute the parity of II. We do this by computing the parity of the local
component of II; at an archimedean place w, in the same way as in Lemma [2.4}

Since I is regular C-algebraic and everywhere tempered, we have

ngw =recg, (W) =m @ ® N,

where n; : EX — C*, 2 = [0(2)]*% and ay,- -+ ,an, € %52 4+ Z are distinct. As

before, o denotes a fixed choice of R-isomorphism £, = C and [z] denotes z/|x|.

Lemma [1.§ implies that ¢, is in the image of
UNE Praa(Ug/r(ms)) — &)bdd(mi)

if and only if the character x has parity x(x) = (—1)V~™i. We now use the second
seed theorem (Proposition ; this tells us that (for any place w) 17", is in the
image of 7} for any character x with r(x) = (—=1)"""n;, where 7; is the parity of
I1;. Hence, we have n; = (—1)¥ 1.

As in Lemma , we observe that 1"V extends to a global parameter

=N, ¥) € W(Upp(N),m).

This follows from (the natural analogue of) Lemma |1.8. Explicitly,

1;2 E,[/,N X SLQ(C) =1L <H UE/F(mZ)> X SLQ((C) — LUE/F(N>
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is given by ¢(SLy(C)) = {1} and

x1(w)x

($1,"',$r)>4w'—> X w, fOI‘I'Z'Gi]\E/F(mi),U}EWE,

Xr (W),

1 xw,+— JN><1wc,

I

T

where x; = X(_yyv-m; and X, denotes a conjugate self-dual chracter Wp — C* of
parity k (for K € {£1}); w,. denotes a fixed element of Wg \ Wg.

Since II is everywhere tempered and by our assumptions on II and G, we deduce
that the localisation 1, of 1 is generic and G, -relevant, for all places v of F.
Hence, the A-packet I1,(G, €) is non-empty. We need to show that the automorphic
A-packet I1,(G, €, €p) is non-empty. Let (G, &, z) be an extended pure inner twist,
extending (G,&). We have Si = (Z/27Z)" and, given a finite place v of F' that is
inert in E, we have Siv >~ (7,/2Z)% (by Lemma[1.10)). The map Si — Siv is then

the map 6, defined in the statement of the theorem. Thus, there is a finite inert
place vy of F' such that SEJ injects into Sivo. For each place v # vy of F', choose some

7y € I (G, &) arbitrarily. Then choose a character A € Irr(SprO s Xz, ) €xtending the

(H <'aﬂv>£,zv\si>

VF#V0

character

on SE}. Since the pairing Ily, (G,§) — Irr(SE/)vO ; Xz, ) 18 bijective, there is an element
Ty, in the local A-packet 11y, (G, &) such that (-, my,)e ., = A Let

T = ®7Tv e I, (G, §).

We have

H<'7 7T’U>5,Zv

v

=1l=c¢
s, ¥s

so 7 lies in the automorphic A-packet I1,(G, &, €,). This completes the proof of the

theorem. O
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3. (-adic automorphic forms on a definite unitary group

Let (G,&) be an inner twist of Ug/p(IN), where E is a CM number field with
maximal totally real subfield F', such that G(F ®gR) is compact. Let ¢ be a rational
prime such that Gp, is quasi-split for all places A | £.

For each place A | £ of F, choose a smooth integral model Gy over Op, for Gp,
(if A is unramified in E, choose G, to be a reductive model, so that G,(Op,) is a
hyperspecial maximal compact subgroup of G(F)y)). Let

G == [ [ Resoy, /2, 9.
Al
a group scheme over Z, with generic fibre Gg, = (Resp/g G)q,-
Let K/Qy be a finite extension containing all embeddings F < K, with integer

ring O = Ok, and residue field k. Let M be a finite free O-module and let
p:Go — GL(M)
be a representation defined over O.

DEFINITION 2.8. Let A be an O-algebra and let U be an open compact subgroup
of G(AY). Assume that either
(a) A is a K-algebra, or
(b) the image of U under the projection G(AY) — G(F ®qQr) = G(Qy) is contained
in

G(2:) = [[6:(Or,).

Al
Define Sy (U, A) to be the space of all functions

fGP)\GAZ) = M @0 A
such that f(zu) = p(uy)~tf(z) for all z € G(AY), uw € U, where u, denotes the

image of w under the projection G(AY) — G(F ®@q Q).

Given an open compact subgroup U C G(A¥) and an element z € G(AY),
we write 'y, for the finite subgroup zUz~' N G(F) of G(A%¥). The order |I'y|
of this group only depends on the class of x in the finite double quotient Xy :=
G(FN\G(AF)/U.

DEFINITION 2.9. We say that the open compact subgroup U is sufficiently small
if £ does not divide Ty .| for all x € G(AY).
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PRrROPOSITION 2.10. Let A be an O-algebra and let U be an open compact sub-
group of G(AR) (contained in G(Zy) x G(AY"), if A is not a K-algebra). Let
{zo : @ € Xy} C G(AY) be a set of representatives for the double quotient
Xy = G(F)\G(AY)/U. Then:

(i) The map f — (f(za) : @ € Xy) defines an isomorphism of A-modules
Su(U,A) = B (M @0 A)*,
aeXy
where H, is the image of the group x;'G(F)z,NU under G(AY) — G(F®qQy)
(H, has order dividing |U'y..,| and acts on M @0 A by p).
(ii) If U is sufficiently small and U C G(Zy) x G(AZY), then A — Sy (U, A) is an
exact functor from the category of O-algebras to the category of O-modules.

(i1i) If A — B is flat O-homomorphism, then Sy (U, B) = Sy (U, A) @4 B.

PrOOF. (i) The map f +— (f(z4) : @ € Xy) admits a well-defined inverse map

m = (mg) — fm, where

fm(yrau) = p(uz)_lma,

for ally € G(F), u e U.
(ii) For any O-algebra A, we have H'(H,, M ®0 A) = 0, since this is an O-module
killed by |Hy| = |Tua. | € O
(iii) We have an exact sequence
0 — (Mo A — Mo A 280 T M@ A
heH,

The flatness of A — B implies that

a—(ha—a)p,

0— (M®o A2, B— M®o B I] M ®oB

heHq
is exact, i.e. that (M ®p A)H @4 B = (M ®¢ B)-.
O

3.1. Hecke operators. Let U be an open compact subgroup of G(AY) (con-
tained in G(Zg) x G(AX"), if A is not a K-algebra). For every = € G(A%) (with
xy € G(Zy), if A is not a K-algebra), we have a natural map

Su(U, A) = Sy (aUz™ A), [ af,

where (xf)(y) := p(z¢) f(yx). Note that uf = f for all u € U.
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Assume that U C G(Zy) x G(AOFO’K) and let Hy be the O-algebra of all compactly

supported U-bi-invariant functions
T:U\GAY)/U - O
such that supp(T) C G(Z;) x G(AX"). This is a free O-module with basis
{[UaU] : = € G(Z) x GAEM)},

where [UzU] denotes the indicator function of the double coset UzU. Multiplication

is given by convolution

(T+Ty)= Y Ty

2€G(AY)/U

and the multiplicative identity is the indicator function of U. Hy acts on Sy (U, A)
by

(THY) = > T (=f)y).

2€G(AY) /U

Fix a field isomorphism ¢ : K = C. We have a representation
p:G(K)=G(F®yK)— GL(M ®0 K),
which we can identify (under ¢) with a representation
pc, : G(F ®¢C) - GL(M ®0, C).

We write W, for the finite-dimensional complex vector space M ®¢, C endowed
with the continuous G(F ®qg R)-action given by (the restriction of) pc, and trivial
G(AY)-action.

PROPOSITION 2.11. Fiz ¢« : K = C, as above. We have an isomorphism of

Hy-modules
Su (U, €) = Homp xg(regr) (Was, L (G(Q\G(AF)).
PROOF. The isomorphism f — ¢ := ¢(f) is defined by

p(0) : @ = 0(pe.(ws0)~ plae) f(2%)),

for 0 e WY, x € G(Ap). O
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We henceforth assume that W, is an irreducible representation of G(F ®g R).
Note that, if L*(G(F)\G(Ar)) = @Wm(ﬂ) 7, where the sum runs through 7© €
Aaisc(G), then

HOHlUxG(F@oQR)(WO\é» LQ(G(@)\G(AF)) = @ m(m) (WOO)U-
Too=WY,

3.2. Galois representations. Let R be a set containing all but finitely many

of the places v of F' which split in E. Assume that every v € R is such that

(i) v splits in E and is prime to ¢, and

(ii) G, is quasi-split (i.e. isomorphic to GL(N, F,)).
Given a place v € R, let w be a place of E above v. The choice of the place w
induces a canonical isomorphism i, : Ug/p(N)r, — GL(N, F,) (we have iyc(x) =
Iniw(z) ' JN"). For each v € R, we choose a € G(F,) such that Ad(a) o & is
defined over F,; let &, be the F\-isomorphism Ug,p(N)fp, — Gp, such that (§,)7 =
Ad(a) o &z We define

Op =iwo &t G, = GL(N, F,).

Let U = [], U, be a sufficiently small open compact subgroup of G(Z) x G(AX"),
such that U, := 0, (GLy(OF,)) for all v € R (U, is independent of the choice of
w | v). For each v € R and each choice of a place w of E above v, we have Hecke

operators

wvlj 0

0 1N—j

U for j=0,1,---, N,

acting on Sy(U, A). We have Tye j = Ty n—; TJ}V
Let T := Ty(U) be the O-subalgebra of Endp(Sy (U, ©)) generated by the
Hecke operators T, ;, TJ}V for 0 < j < N, w| R. The algebra T has the following
properties:
(a) T is commutative.
(b) T is finite and flat over O.
(¢) T is noetherian, of Krull dimension 1, and every minimal prime ideal of T lies
below a unique maximal ideal.

(d) T is a finite product of local rings, i.e. the natural map

T =[] T,



3. ¢-ADIC AUTOMORPHIC FORMS ON A DEFINITE UNITARY GROUP 49

is an isomorphism (the product is over all maximal ideals m of T).
(e) Let ey be the element of T such that e, = 1 in Ty, and e, = 0 in T, for all

maximal ideals n # m. For any T-module M, we have

M:@emM

and each e, M is canonically isomorphic to My.

PROPOSITION 2.12. Let ¢ : T — k be a homomorphism of O-algebras. There

exists a continuous semisimple mod £ Galois representation
75 Gal(E/E) — GLx(k),

which is unramified at all places w | R and T4(Frob,,) has the characteristic polyno-

maial
N N_j Q=D0=i=N) . i
S Vg )
j=0

Moreover, we have 75"° = Ty ® »Sév_l.

REMARK. In the proposition above (and later in the text), Frob,, denotes the
arithmetic Frobenius at the place w. The characteristic polynomial of 7 evaluated

at a geometric Frobenius at w is

(N=j)(N=j—1)
2

Z(_l)N_jqw

Jj=0

¢(Tw,N—j)Xj~

PRrROOF. Let p be a minimal prime lying below m := ker¢. There is a T-
eigenfunction f € Sy (U, K) such that p is the kernel of the (O-homomorphism
A : T — K sending T to its f-eigenvalue (the elements of T are simultaneously
diagonalisable endomorphisms of Sy, (U, K), by Proposition .

Fix ¢ : K = C. There is a subrepresentation 7 C L*(G(F)\G(Ar)) such that
the eigenvalue of T, ; on 7V is Lo A(T), ). We define 75 to be the semisimplification
of the mod ¢ reduction of 7,() (cf. Corollary [2.3).

It remains to show that 7z(Frob,,) has the correct characteristic polynomial for
all w | R. Let v € R and let w be a place of F lying over v. Let I, = 1, 0 0,;'; TI,,
is an unramified representation of GLy(E,,). We have recg, (IT,) = ¢ & -+ @ ¥y,

where the 9; are unramified characters Wy, — C*. Then

=N 1-N
recg, (Iy|det [o? ) = (11 @ -~ @ ) ® [Arty, (- )]w® -
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Let oj := ¢ *4;(Frob,,) for 1 < j < N. The characteristic polynomial of r, () (Frob,,)
1s

1-N 1-N

(X —a1gw® ) (X —anga® ),

where ¢, is the cardinality of the residue field of F,. On the other hand, IL, is
isomorphic to the normalised parabolic induction of x; X --- X x, where x; =
Y;o0Artg,. Let 0; (0 < j < N) be the jth elementary symmetric polynomial in the
X;j(wy) (where w,, is a uniformiser for E,,). Thus, o9 =1, 01 = Zjvzl x;j(w;) and

LN(OEw

oN = HjV:1 X;j(w;). The Hecke operator T, ; acts on 15 ) by multiplication

by the scalar

J(N—J)
J— 2
twj =quw ° 0j

(cf. [CHTO8] Lemma 3.1.1). We have t(a;) = x;(w@,) " and, hence,

1N 1N N N Wepa-N ,
(X —a1gu® ) (X —angw® ) =D (D) qu 2 oyl X
=0
N
=2 DM T Tt ) X
=0
N Noj @mdoiew) ;
=> (-1)"7q ATy nTw ) X7
=0
We conclude that 75(Frob,,) has the desired characteristic polynomial. UJ

3.3. Duality. Let (-, - )y : M x MY — O be the natural pairing (m,¥)y =
9(m). Assuming that U C G(Z,) x G(AX") is sufficiently small, we have a perfect
pairing

(-, Yu:Su(U,A) x Syv(U,A) = A

defined by

(frg)o = Y Lol N (f(2),9(@))u  (where Xy = GIF\G(AF)/U).

zeXy

We record the following properties of (-, - )y:

(a) For all = € G(Z;) x G(AY™"), we have (z.f, £¢) 01 = (f, 9)v.

(b) For all Uy U, (U : U {f, 9w = (f. ¢V,

(c) For all z € G(Z;) x G(AX"), the adjoint of the Hecke operator [UzU] (acting on
Sy (U, A)) with respect to (-, - )y is [UzU]Y = [Ux~'U] (acting on Sy (U, A)).

(d) Forallw | R, j € {0,1,--- , N}, we have T; ; = Ty n—j Tuj}v = Tye ;-
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We write T for Ty (U) C Endp(Sy (U, O)) and TV for Ty (U) C Ende(Syv (U, O)).
We have an isomorphism T = TV given by T — TV. Given a maximal ideal m of
T, we write m” be the image of m under the isomorphism T = TV. Then we have

(ém)Y = eqv and (-, - )y restricts to a perfect pairing
SM(U, A)m X SM\/<U, A)mv — A.

PROPOSITION 2.13. Let ¢ : T — k be a homomorphism of O-algebras. Write ¢V
for the homomorphism TV — k defined by T +— ¢(T"). We then have Tgv = T3¢

I

_ 1-N
To  ®e, .

PROOF. Since T, ; = Tye;, we have Tgv(Frob,) = Tg(Frobye), for all places
w | R. O






CHAPTER 3

Level raising

In this final chapter, we state and prove our level raising theorems.

Fix, once and for all, a field isomorphism ¢ : Q, = C, and let E be a CM number
field with maximal totally real subfield F'. Let II;, IIs be two conjugate self-dual,
unitary cuspidal automorphic representations of GL,,(Ag). Our aim is to prove the
existence of a level raising congruence between the representation II = II; H Il
of GLy(Ag) (where we write N for 2m) and some unitary cuspidal automorphic
representation II' of GLy(Ag, ), for some CM biquadratic extension F;/FE. More

precisely, we prove the following theorem:

THEOREM 3.1. Assume that

(a) The representation 11 = I1; B 11, is reqular C-algebraic.
(b) For some finite place B of E which does not divide ¢, 11, 5 is isomorphic to an
unramified twist of the Steinberg representation of GL,,(Ey):

I = St (&) == Sty ® (& o det),

for some unramified character &; : Eg — C* (i =1,2).
(c) 11 satisfies the following local congruence condition at the place B: If w is a

uniformiser for Eg, then
(@) /&(w) = (NP)™ mod mz,.
(d) The residual mod ¢ Galois representation
7(I1) : Gal(E/E) — GLy(F))
of I is not isomorphic to a twist of
log '@ oz V.

Then there ezists a CM biquadratic extension Ey/E and, for each choice of a place
PB1 of E1 above B, a reqular C-algebraic, conjugate self-dual, unitary cuspidal auto-

morphic representation II' of GLx(Ag, ), such that:

(i) 7.(IU') 1s isomorphic to 7,(I1)| gaym /m)) -

53
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(i1) prl 1s 1somorphic to an unramified twist of the Steinberg representation of
GLn(Egy, ).
(iii) If L, is unramified, for some finite place w # B of E, then 11, is unramified

for all places wy | w of Ej.

REMARK. If II satisfies properties (a)-(c), then so does the base change of II

under any finite solvable CM extension.

The first step in the proof of this theorem is to relate II to an automorphic
representation of a totally definite unitary group G. Lemma [2.4] implies that we can
replace E//F by some extension F;/Fy, II by its base change to Ej, and B by any
place P | B of Fy (where F}/F is a biquadratic extension of totally real number
fields and E; = E - F), such that the following conditions are satisfied:

(e) E/F is unramified at all finite places and any place w of E, which is such that
II,, is ramified, is split over F'. Moreover, P is split over F' (of course, Ily is
ramified, unless m = 1).

(f) There is an inner twist (G,§) of Ug/p(N) and irreducible G(Ap)-subspace m of
L*(G(F)\G(AFr)) such that

(i) G(F ®q R) is compact and G, is isomorphic to GL(2, D), where D is a
central division F-algebra and p = PN F. We fix a choice of isomorphism
Gr, = GL(2, D) throughout.

(ii) The Galois representation r,(7) is isomorphic to r,(II). In particular, = has

GL2(Op)-fixed vectors.

We need to choose the biquadratic extension Fj/F so that the restriction of 7 (II)
to Gal(E;/E)) is not isomorphic to a twist of 1 ©&,' @ --- @ &'"N. Observe that
a continuous representation 7 : Gal(E/E) — GLy(F,) is isomorphic to a twist of

16 E;l @ --- @& if and only if the image of
TDEp: Gal(E/E) — GLN(FZ) X FZ

is contained in a conjugate of the subgroup

( 3\

A | YA RPN A

\ 7
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of GLy(F,) x F,. Let K C E be the fixed field of the subgroup ker(7(II) & &) of
Gal(E/E); thus, K/FE is a finite Galois extension and the representation 7,(I1) @z,
factors through Gal(E/E) — Gal(K/E). We may choose F;/F so that Gal(K -
E,/E)) — Gal(K/FE) is surjective. Then

(7 (1) © €0) |z /my)) = M (I1) © &)

and hence 7, (IT)| qaz; /2, 1 00t isomorphic to a twist of 1@ g " @ --- @'~V
For the rest of the chapter, we assume that I satisfies the assumptions (a)-(f).
We also fix an open compact subgroup U* = [, 2 U of GLy(AZ®) such that

IT“* £ 0 and we assume that

(g) There is some place w # B which splits over F, the image of U* under the
projection GLy(AX*) — GLy(E,) contains no non-trivial elements of finite

order.

Whenever w is split over F', we have 7, = 7)) and we may assume that U, is the
image of U,, under the involution  — Jyc(z)~*J5'. We then have an open compact
subgroup U = [[ .. Us = U, U? of G(AFr) such that 7V # 0, U, = GLy(Op), and
U is sufficiently small. The subgroup U is such that U, = 0,(U,,) for any v # p

vfoo

which splits in £ and is such that G, is quasi-split (and any choice of w | v) and
such that U, is a hyperspecial subgroup for any v which does not split in £. We are

reduced to proving the following:

THEOREM 3.2. Under the assumptions (a)-(g) above, there exist conjugate self-

dual, unitary cuspidal automorphic representation 11" of GLy(Ag) such that:

(i) TI' has the same residual Galois representation as I1:
r (1) = 7(I1).

(ii) Ty is an unramified twist of the Steinberg representation Sty
(1ii) 11, has Uy, -fized vectors, for all finite places w of E lying over a place v of F
such that G, is quasi-split.

Theorem [3.2] will be proven in Sections 3.1 and 3.2 below. The following theorem
is also a corollary of Theorem [3.2}

THEOREM 3.3. Let Il be a conjugate self-dual, unitary cuspidal automorphic

representation of GLx(Ag), where N = 2m. Assume that
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(a) 11 is reqular C'-algebraic and m[F : Q] is even.
(b) For some finite place P of E which does not divide ¢ and is split over F', Ily is
1somorphic to

Stm(&1) B St (62)

for some unramified unitary characters &1,&s : E‘g — C*.
(¢) 11 satisfies the following local congruence condition at the place P: If w is a

uniformiser for Eg, then
1 (&(@)/&2(w) = (NP)™ mod mg, .
(d) The residual mod ¢ Galois representation
(1) : Gal(E/E) — GLy(Fy)

of I is not isomorphic to a twist of

1oz e oz V.

Then there exists a reqular C'-algebraic, conjugate self-dual, unitary cuspidal auto-
morphic representation I of GLy(Ag) with the same residual mod ¢ Galois repre-
sentation as I (i.e. 7,(II') = 7,(I1) ), such that 1Ly is isomorphic to an unramified

twist of the Steinberg representation of GLy(Ey).

Proor. We explain how to reduce this theorem to a level raising theorem for
automorphic representations of a unitary group. Since m[F : Q] is even, there exists
an inner twist (G,¢) of Ug/p(IN) such that

(i) G(F ®g R) is compact,
(ii) G, is isomorphic to GL(2, D), where D is a central division F-algebra and p
is the place of F' lying below 33, and
(iii) G, is quasi-split for all finite places v # p of F.
Let N € U(GL(N, E)) be the formal global parameter corresponding to II. ¥
extends to a parameter v = (Y%, 15) € Uy(Ug/r(N),m), by taking

W : Lyn X SLy(C) = *Upp(N) x SLy(C) = “Upp(N)

to be the identity map on “Ug,r(N) and the trivial map on SLy(C). The A-packet
II,(G, €) is non-empty, since 1, = recg,(Il,) is bounded and Gp,-relevant for all
places v of F. Moreover, I1,(G, &, ey) = I1,(G,§), since Sy, is the trivial group in
this case. Hence, there exists a subrepresentation  of L?(G(F)\G(Ar)) with r,(m) =
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r,(IT). Now we can apply the arguments of Sections 3.1 and 3.2 to the representation

7 to deduce Theorem 3.3, in the same way as in the proof of Theorem [3.2] U

1. Thara’s lemma

We adopt the notation of Chapter 2, Section [3 We choose our set R of split
places so that R does not contain p, and fix a Go-module M such that mo, = W, :=
M ®p,C. In particular, we can then identify (7)Y with a Hecke-invariant subspace
of Sy (U, C).

Let @wp be a uniformiser for Op, and let

1
n = € GLy(D) = G(F,).
WD

Ul,p = xr € GLQ(OD) = mod wWp

Set Uy := UP U, ,. We have a map of T-modules

As U is sufficiently small, Sy, (U, k) = Sy (U, O)@pk and Sy (Ur, k) = Sy (Ur, O)®0
k. Let 5M,k = 5]\/[ X ldk : SM(U, k)EBQ — SM(Ul,l{)
We state the analogue of Thara’s lemma below. It asserts that the map d,; is

injective, after localisation at a suitable maximal ideal.

LEMMA 3.4. Let m be a mazimal ideal of T in the support of ker dpr . (i.e. such
that (ker 6prx)m # 0). Then, for any k-embedding ¢ : T/m < k, the Galois repre-

sentation Ty is of the form
ve(1og e - o8 "),
for some (conjugate self-dual) character : Gal(E/E) — &k, whereg, : Gal(E/E) —
(Z/CZ)* denotes the mod ¢ reduction of the (-adic cyclotomic character.
PROOF. Let 0,,7 = oy ® id. We have kerd,, 5 = ker dpr s ®x k (as k — k is
flat). Thus,
(ker 5M,E)m = (ker dps k) m @k k#0.

Let (f,g) € kerdy,z. We have g = —nf € Sy (UPH, k), where H is the subgroup of
GLy(D) generated by U, and nUyn~".
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CLAIM. H contains SLy(D), the subgroup of all elements of GLo (D) with reduced

norm equal to 1.

Proor or CLAIM. Let

N 1 =x B 1
Um .= ] € SLQ(D) y U™ = ] € SLQ(D)
*

U* and U~ generate SLy(D). Let us briefly justify this:
(a) Let T be the subgroup of SLy(D) generated by U and U~. We have

1 1 —x 1 1 y ! Ty

rl— oyt 1 1 -y 1 1 x 7y

for all z,y € D*. In particular,

z and [z, ] Y (yx)~

lie in T for all z,y,z € D*, i.e. T contains all diagonal matrices

(z,y € D)
Y
such that zy lies in the commutator subgroup of D*. The commutator subgroup
of D* is the kernel of the reduced norm map (this is a result of Nakayama and
Matsushima [NM43]), so 7 contains all diagonal matrices in SLy(D).

(b) Consider an element

a b
t =
c d
of SLy(D) with d # 0. Then
a b _ 1 bd! a—bd tc 1
c d 1 d d e 1
and
a—bd e
d

is a diagonal element of SLy(D) (so it lies in 7, by (a)). Hence, ¢ lies in 7.
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(c) Finally, any element t € SLy(D) of the form

a b
t =
c 0
must satisfy b, ¢ # 0, so
1 a b
t = cT.
-1 1 atc b
This shows that 7 = SLy(D).
Since
1 1 1
Ut = U~ and € GLy(Op) C H,
1 1 1
it suffices to show Ut C H. Let
1 =z
Ut(n):= € SLy(D) :x € w,"Op
1

We have Ut (0) C GL2(Op) C H. Moreover,

w 1 1
b . = . 77 77 1 e H
wp 1 1
and
-1
wp 1 =z wp 1 wglxwgl
wp! 1 wp! 1 ’

we conclude that if UM (n) € H, then UT(n 4+ 2) € H. Hence, U™ C H, as
desired. O

Recall that G is the derived subgroup of G. We have G;(F}) = SLy(D).

CLAIM. g = —nf is invariant under (right) translation by G;(A¥).

PROOF OF CLAIM. Let U, C va U, be an open compact subgroup of G(Zy)
such that p\@ acts trivially on M ®¢ k. Then g is invariant under right translation
by UP = U U,. Let W? := UP N G1(AS*). The function g is constant on double

cosets of the form

G(F)aWPSLy(D) = (G(F)aWPz~))aSLy(D) = G(F)G1(ASP)2SLa(D) = G(F)zG (AT)
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(the second equality follows by strong approximation: G;(F) is dense in G1(A%T)).
U

Let U = U'U, C U be an open compact subgroup of G(A%), where U, C G(Zy)

is chosen such that p| g, acts trivially on M ®o k. The second claim implies that,

for any (f, g) € kerd,, 7, we have g = godet, where g is a (M ®o k)-valued function

on the finite abelian group
C = det G(F)\(AZ)Ne/r=1/ det U

Recall that det G(F) = Ug/r(1)(F) = (E*)Ne/r=!] by Proposition . Hence,
G(AP) acts on ker d,, 1 by right translation, and the action factors through the map

det

G(AY) =5 (A)Nerr=t 5 O,

The actions of C' and T commute, so (ker d,,7)m is stable under the action of C.
Let (f,g) € (kerdy,z)m be a simultaneous eigenvector for all ¢t € C: Thus, there

exists a character y : C' — k™ such that
g(xt) = x(dett) g(x) for all z € G(AY),t € C.

We compute the action of the Hecke operators T, ; on g: The operator T, ; (where

w | R, x unramified at w) acts on g by multiplication by the scalar:

Awj = Z X © det<9;1(ﬁv,j))7

z€GLyN (OF,)Bv,;GLN(OF,)/GLN (OF,)

where f3, ; denotes the matrix

’Zﬂvlj

We have

Mwj = |GLN(OF,)B0,;GLN(OF,) /GLN (OF,)| Xu(iy,' (w0)),

where v € R is the place of F' below w and i, denotes the canonical isomorphism

Ug/r(1)(F,) = F) corresponding to the choice of the place w above v. Let

Vi EAE) - F, X@) =x ().

e
so that x, (i, () = Xw(@w). We have a bijection

GLx(OF,)Bu;GLN(OF,)/GLy (OF,) = GLN(OF,)/GLN(OF,) N 8, ;GLN (OF,) B, }



1. IHARA’S LEMMA 61

(given by [z, ;] — [z], for x € GLx(Op,)), and

GL;j(Or,)  @Matjxv—j)(Or,)

GLN(Op,) N 5v,jGLN(OFv>B;} =
Mat(]\[,j)xj (OFv) GLN—j(OFv)

Let k, be the residue field of Op,, and let P; denote the parabolic subgroup

GL(J) 0
* GL(N —j)

of GL(N). Reduction mod w, gives a bijection
GLN(OF )/GLN(OF)ﬂﬁvJGLN<OFU)B —>GLN( U)/Pj(kv)

We have

oy IGLu(k)] j
G T 1G] )

Mg = |GLv (ko) /P (ko) Xu(@0)’ = q

where ¢ = ¢, := Nw = |k,|. We have

)_l

m—

m(m—l) i i

z:O i=1

and, therefore,

A = mqm%% where W: (Mt . f:)l(-Qi(H;V)ﬂqw))

REMARK. The [%} are the ¢-binomial coefficients. They satisfy the ¢q-binomial
q

theorem:
i N wenw-icy [N
[[x+a)=>a "= {—} X7,
§=0 =0 J 1q

We have a map ¢ : T — k sending 7' € T to its (f, g)-eigenvalue. The map ¢
factors through T, and, hence, ker ¢ = m. We have ¢(T,, ;) = A, ; (for all w as
above, 1 < j < N). In particular, the characteristic polynomial of 7 (Frob,,) is

N N-1

. w Nl , , B
> ] Ry =TT Rt )
j= ‘7 quw 7=0

We conclude that 7 is the form ¥ ® (1 ®,' @ --- &, "), where 1) = Y o Art};'
(so that ¥(Froby,) = Xu(w,) ! for almost all w | R). O
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2. Proof of the main theorem

We define the following Hecke operators at the place p:

Wp Wp
Tyq = |Uy Up| = [UpﬁUp]» Ty = |Up Up| = (@D Up]-

1 Wp

and let a; be the eigenvalue of 7T}, ; on Wg . We remark that 7, is isomorphic to the
(normalised) parabolic induction of (£ o Nrd) X (&5 0Nrd) to GLo(D). In particular,
the eigenvalues of the Hecke operators 7,1, T, are a; = qm? (51(wp) + fg(wp))
and ay = & (wy) &2(wy) (where w, denotes a uniformiser of F,). Hence, our local

congruence condition satisfied by Ily, can be written as
v Hafay') = (¢" +1)? mod my,.

Recall that we also assume that the residual Galois representation of 7 is not a twist

of

1oz e oz V.

Let m be the maximal ideal containing the kernel of T — Endz(:'7Y). Then
dm e is injective after localisation at m (by lhara’s lemma). In particular, (0ps)m
has torsion-free cokernel. Let Sy (U, O)"" be the cokernel of §,,. We have a short

exact sequence:
D2 (5M)m new
0— SM(U, O)m —_— SM(Ul, O)m — SM(Ul, O)m — 0.
PROPOSITION 3.5. Under the assumptions above, we have Sy (Uy, O)ne™ £ 0.
PRrROOF. It suffices to show that
((5M,k)m : SM(U, ]i])S?Z — SM(Ul, k’)m
is not surjective. First, we compute the adjoint map of the map

(6arv g)mv  Sarv (U, k)22 — Sapv (Ur, ) v

with respect to (-, <)y and (-, - )y;:
(a) The adjoint of the map Sy (U, k) — Sy (U, k), f— fis

Su(Uk) = Su(U.k), [ trymf= Y af.
zeU/Uy
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(b) The adjoint of the map Sy (U, k) < Sy (Uy, k), f—nf is

Su(Un, k) = Su(U.k),  fetrgpn ™ f= Y an'f.

zeU/Uy

Vv

(c¢) The idempotent e, € T commutes with the maps above, so (dpv i)y 1S given

by
SM<U17 k)m — SM(U7 k)1?27 f = (trU/Ulfa trU/U177_1f)~

Fix k-embedding ¢ : T/m — k. We write 7 for Te; We also write v for 74v, where
¢V : TV/mY < k is defined by ¢¥(T) = ¢(T"). We have rv 2 7 ¢ 2 7V @8, V. It
follows, by Lemma , that (dprv k)mv s injective and, thus, (dav )%y is surjective.

It suffices to show that the map
A = (6nv )mv © (Oarp)m = Su(U, k)i = Su(U, k)2
is not surjective. The map above is given by

qm -+ 1 Tp,l
ToaT,y q"+1

(Note that (U : Uy) = |Op/wp| + 1 = ¢™ + 1, where m = N/2).

Let f be a Hecke eigenfunction in Sy;(U, K) corresponding to an element of
(7°°)Y (under the isomorphism of Proposition 9). Enlarging K, we may assume
that f € Sy (U, K). Rescaling f, we may assume that f € Sy (U, O), f Z 0 mod w.
Then the image f of f in Sy (U, k) is non-zero. The Hecke operator T, acts on f
by multiplication by the scalar @; := ¢~'(a;) mod mgz, (i = 1,2). Since

m+1 a
det 1 ! =0,
ma,' ¢"+1
there is a non-zero linear combination of (f,0) and (0, f) in the kernel of A,. In

particular, A, is not invertible and, thus, not surjective. 0
We finally turn to the proof of the main theorem of this chapter:

PrRoOOF orF THEOREM 3.2. We have a short exact sequence:

m®idg

0 s Sy (U, K22 DO o 1) R — Sy (U, K =5 0,
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where Sy (Up, K)2V = Sy (Up, O)% @0 K # 0. Under the isomorphism of Propo-
sition [2.11] the cokernel of the map (8u)m ® idg is given by

@m ) dim(o™>)v" apUl’”/<Jp",a;7U”" 1) ,
where the sum runs through all automorphic representations ¢ C L*(G(F)\G(AFr))
with ¥t # 0, 0, = W, and the same residual Galois representation as m. More-
over, o7 / (05", i " 1> is non-trivial if and only if o, is an unramified twist of the
Steinberg representation Sto of GLo(D). Indeed, if 7 is an irreducible admissible

representations of GLo(D) with U, p-fixed vectors, then 7 is isomorphic to one of the

following representations:

(1) 7 = x odet, where det : GLy(D) — F,* denotes the reduced norm and x is an
unramified character of Fy*.

(2) 7 is (isomorphic to) the (normalised) parabolic induction of x; X y2 to GLy(D),
where y1, Y2 are unramified characters of D* and y; # xo ® |Nrd|*!. Then 7
satisfies dim 77 = 1 and dim 7V"» = 2 (and, thus, we also have dim 777" = 1),

(3) T = Sta(x) := Sty ® (x odet), where y is an unramified character of F,* and Sty
is the unique irreducible quotient of the parabolic induction |Nrd|~2 X [Nrd|z.

In this case, 7 satisfies dim 7% = 0 and dim 7V» = 1.

We remark that Ste corresponds to the representation Sty of GLy(F), under the

Jacquet-Langlands correspondence.

REMARK. The Hecke algebra of compactly supported U, ,-biinvariant functions
f:GLy(D) = C

is isomorphic to the (non-commutative) C-algebra .7 generated by the generators

p, &, & with the relations
(p+D(p—q") =0, &-&=¢-6=1, p-&€=¢6"p.

This is proved in [GSZO01], Section 4. Irreducible representations of GLo(D) with
Usp-vectors are in bijection with simple .7Z-modules; classifying all simple modules

over . leads to the above classification.

We conclude, under the assumptions above, that there is an automorphic repre-
sentation o C L2(G(F)\G(Ar)) with V" # 0, 0o = T, the same residual Galois

representation as 7, and o, = Sty(x) for some unramified character x : F* — C*.
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We take II' to be the base change of o to GLy(Ag) (cf. Theorem [2.2)); I is nec-
essarily cuspidal because pr is an unramified twist of the Steinberg representation.

Finally, IT" satisfies (II' )u“’ = 0 for all places w # B, since

(i) I, = o, 0 8, for all places w of E which are split over a place v of F' and are
such that G, is quasi-split.

(ii) I, is unramified, for all places w of E which are inert over F.

This completes the proof. O

3. An inductive level raising theorem

Recall that we have fixed an isomorphism ¢ : Q, = C. As before, E denotes
a CM number field with maximal totally real subfield F'. The following theorem

follows, by induction on k, from our previous theorems:

THEOREM 3.6. Let Il; (i =1,2,---,2%) be conjugate self-dual, unitary cupsidal
automorphic representations of GL,,(Ag). We write IT for

T, BT, 8- B I,

a conjugate self-dual, unitary representation of GLy(Ag), where N = 2*m.
We assume that

(a) 11 is reqular C-algebraic (in particular, 11| det |2 is reqular L-algebraic for all
i=1,2,--- 2F)

(b) For some finite place *B of E which does not divide ¢, 11, is isomorphic to an
unramified twist of the Steinberg representation of GL,,(Ewy):

Hi,sp = Stm(gz) = Stm ® (& (@) det),

for some unramified character &; Egg —C* (i=1,2,---,2%).
(c) The following local congruence conditions at the place B are satisfied: If w is a

uniformiser for Eg, then

& (@) /i1 (w)) = (NB) ™™ mod my,

for all 1 < i< 2F.
(d) For any 1 <r <k and any 0 < s < 27 the residual mod ¢ Galois representa-
tion

(B STV L) - Gal(E/E) — GLgr, (Fy)
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of Bﬂf;(;ﬁ)lﬂi is not isomorphic to a twist of
leg e @z 2™

Then there exists a CM biquadratic extension E1/E and, for each choice of a place
Py of E1 above B, a reqular C-algebraic, conjugate self-dual, unitary cuspidal auto-
morphic representation 11" of GLy(Ap,), such that:
(i) 7.(IU") is isomorphic to 7,(I1)|ga @ /m) -
(1) Ty, is isomorphic to an unramified twist of the Steinberg representation of
GLN(E‘IH )
(iii) If 1L, is unramified, for some finite place w # B of £, then 1T, is unramified
for all places wy | w of Ej.

PROOF. Let S be a finite set of places of F' containing p := P N F, all places
that ramify in F, and all places v such that I, is ramified for some place w | v. We
choose a totally real quadratic extension Fy/F', as in Lemma , such that any place
v of Fy lying over a place in S splits in £y = E- Fy and Gal(K - Ey/ Ey) — Gal(K/E)

is an isomorphism, where K/F is a finite Galois extension such that
7 (BLGY 10) : Gal(E/E) = GLaw, (Fy)

factors through Gal(K/E) for all 1 <r <k and 0 < s < 2F7".
For each 1 < r < k, we choose an extended pure inner twist (G,,¢&,, z.) of

Ugy/ry(2'm), such that

(i) G.(Fo ®g R) is compact,
(ii) G5, is isomorphic to GL(2, D,.,,) for any place py | p of Fy, where D, is a
central division F} -algebra, and

(iii) G,, F,, is quasi-split for all finite places vy | p of Fp.

Following the proof of Lemma , we choose Fy = Fy(v/d) (where d > 1 is a

square-free integer) such that:

(i) If for some place vy of Fy and some 1 < r < k, the cocycle z, has non-trivial
image under the localisation map B(Fy, G, )bse — B(F0,0,Gr)bsc, then vy splits
in F}.

(i) Gal(K - E\/E;) — Gal(K - Ey/Ep) is an isomorphism, where Fy = E - F} =
Ey(\/d).
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Suppose that 7 is a regular C-algebraic representation of GLar,(Ag) (for some
1 < r < k) of the form 7 = 7, B 7, where 7; are conjugate self-dual, unitary
cuspidal automorphic representations of GLgr-1,,(Ag) and 7, are isomorphic to
unramified twists of the Steinberg representation of GLar-1,,(Esy). Then there exists
a subrepresentation 7 of L*(G,(F1)\G,(Ar,)) such that r,(7) = r,(7)|Gaz/5,)-
Fix a place P; | B of E;. Theorem implies that there exist conjugate self-

dual, unitary cuspidal automorphic representations IT; of GLy,, (Ag,) (i = 1,2,--- ,2F71)
such that

(i) 7(I0) = 7 (g1 B i) | gayr/my for all 1 < < 2871

(ii) 1T}, = Sto,n (&), where & is an unramified character of Eg , for all 1 <4 <

2F=1 'We remark that condition (i) implies that

Lilgz{ = Lil(fzi_l e} NEl,WH/E‘p) mod mzl.

(iii) For any archimedean place w; of E; and any 1 < i < 281 IT; ,, is isomorphic
to Ily; 1.4 B Iy, (Where we write w for the restriction of w; to E and we
identify E, ., and E,). In particular, II) 8- - - B I, is regular C-algebraic.

We can now apply Theorem , in the same way as above, to I (i = 1,2, --- ,2F1).
The theorem follows by induction on k. U

4. An application of the theorem

The following result is a corollary of Theorem [3.6]

COROLLARY 3.7. Let K/Q be an imaginary quadratic field, let ¢ > 3 be a rational
prime and let 1 : Gal(K/K) — F, be a continuous character. Let

Fi=1 @Y : Gal(K/K) — GLy(Fy).

Then, for every integer k > 1, there exists a CM biquadratic extension E/K, and
a reqular C-algebraic, essentially conjugate self-dual, unitary cuspidal automorphic

representation I1 of GLok(Ag), such that

NP ko _
(i) 7.(I0) = (Sym® =" 7)|guzyp)» and
(ii) There exists a finite place w of E such that 11, is isomorphic to an unramified

twist of the Steinberg representation of GLok (Ey,).

PROOF. Choose a continuous character @ : Gal(K /K) — F, such that

wwt = 7))
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(by Lemma 4.1.5 of [CHTO8], there exists a continuous algebraic character
wy : Gal(K/K) = Q,

_ B _ . .
such that wy - wi = ¢, . we can take W = wy - ¢ , where Wy is the mod ¢ reduction

of wy). We write p for 7 ® w. Then p satisfies ¥ = p ® g, and
i=0
for all integers d > 1. Using Lemma 4.1.6 of [CHTO08]|, we choose Hecke characters

X,¢0: A /K* — C*

such that
(i) x*=x""and ¢¢ = ¢},
(i) x, @[ - |2 are algebraic and y is non-trivial,

(it}) m0) =¥ - ¥ and (@] - [ 7F) = (¥ - w)”
Then o := i%0(¢ - x') is an isobaric sum of unitary, conjugate self-dual (cuspidal)
automorphic representations of GL;(Ax) = Aj.

Let d = 28 — 1. We apply Theorem [3.6| to o, taking II; := ¢ - ' 7! (1 <i < 2F).
We note that o is a regular C-algebraic representation with 7,(0) = Sym? 7.

We claim that there is a finite place B of K such that conditions (b) and (c)
are satisfied at B. Indeed, by Chebotarev density theorem, (7,(x) @ &)(Froby) is
trivial for infinitely many primes . Let ¥ be such a prime, not dividing ¢, and
such that ¢, x and @ are unramified at B. Then ™! (x(w)) = 1 mod mg , where @
is a uniformiser for Ky, and N = 1 mod /¢, so condition (c) is satisfied.

Suppose that condition (d) fails. In particular, 7,(¢) contains two one-dimensional
irreducible constituents 8, and 6,, such that §; = 6, ® &,. Hence, &, must be equal
to

(Efl Ec)z
for some integer ¢; this implies that £f = Eé_l. But on the other hand, €; = &y, so we

must have 7 = 1. This is not possible, as ¢ > 3 and K is an imaginary quadratic

field

"Note that the mod 5 cyclotomic character has order 2 when restricted to the absolute Galois

group of K = Q(\/5).
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We conclude that there exists a CM biquadratic extension £/K and a regular
C-algebraic conjugate self-dual, unitary cuspidal automorphic representation o of
GLyx (Ag) such that

N\ A ko

(i) 7o) = (Sym™ 7' )| guz/p), and
(ii) o, is an unramified twist of the Steinberg representation of GLyx (E,,), for some

finite place w of F.

Finally, we take I1 = 0 ® (w o Artg)~¢, where w is the Teichmuller lift of @. O

As mentioned in the introduction, one can try to combine this result with a suit-
able automorphy lifting theorem (for residually reducible Galois representations) to
prove the existence of the (2¥ — 1)-th symmetric power of an automorphic represen-
tation of GLy(Ag) with residual mod ¢ Calois representation isomorphic to Ind%.

Clozel and Thorne, in their work on symmetric power functoriality (|[CT14],
[CT15], |CT17]), make use of the main theorem of [Thol5|, which is an auto-
morphy lifting theorem for residually reducible /-adic Galois representations p, such
that 7 (the mod ¢ reduction of p) has two Jordan-Hélder factors. For the applica-
tion described above, one needs a generalisation of this theorem (in which 7 can

have 2* factors).
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