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Abstract 13 

Most of the current numerical studies on the solute transport problems relies on the mesh-based 14 

methods, and various sophisticated high-order accurate schemes have been developed to 15 

enhance the numerical stability and reduce the artificial diffusion associated with the advective 16 

transport process. This paper systematically studies the depth-averaged random walk scheme, 17 

which is a meshfree method with the merits of being highly robust and free of numerical 18 

diffusion. Firstly, the model is used to solve an instantaneous release problem in uniform flows. 19 

Its performance is examined by comparing numerical predictions with analytical solutions. 20 

Extensive parametric studies are carried out to investigate the influences of the number of 21 

particles and the size of time steps. The predictions are found to be independent of time steps 22 

but are sensitive to the particle numbers. Secondly, the model is applied to investigate the solute 23 

transport along a tidal estuary subject to extensive wetting and drying during tidal oscillations. 24 
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The flow velocities are interpolated from a flow solver, and the pollutant distributions predicted 25 

with a grid-based method are used as references. The sampling technique is further optimised, 26 

which also offers a guideline for estimating the total number of particles needed in the 27 

application. Finally, the model is applied to investigate the wind-induced chaotic mixing in a 28 

circular shallow basin. The effect of diffusion on the chaotic mixing is investigated. The 29 

advantage of the random walk model includes simplicity and little numerical diffusion. This 30 

study proposes a generic sampling method to interpret the output of the random walk method 31 

and highlights the importance of accurately taking diffusion into account in studying the mixing 32 

phenomena.  33 

Keywords: advective diffusion, shallow water flows, pollutant transport, random walk method, 34 

numerical diffusion 35 

 36 

1 Introduction 37 

Pollutant transport in water bodies has been extensively studied since it is relevant to a wide 38 

range of environmental problems, which may cause significant economic losses (Rajar 1997). 39 

Among the natural water bodies, many can be described as shallow water, such as estuarine, 40 

coastal and inland flows. The horizontal scale of these flows is much larger than its depth. 41 

Therefore, it can be assumed that the solute is well-mixed vertically over the water column, 42 

allowing a depth-integrated approach to investigate the solute transport process. This paper 43 

focuses on the solute transportation in shallow water bodies specifically. 44 

With the development of computing techniques, many modern numerical methods have been 45 

established to solve such problems (Lin & Falconer 1997; Gupta et al. 2004; Begnudelli & 46 

Sanders 2006; Benkhaldoun et al. 2007). Previously, most of the research is based on Eulerian 47 

approaches to solve the standard advection-diffusion equation using finite-difference or finite-48 
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element techniques (Yang et al. 2018; Liang et al. 2006; Mingham et al. 2001). However, these 49 

grid-based methods have proven to be deficient in addressing steep concentration gradients and 50 

tend to produce numerical diffusion (Wu & Liang 2018). By contrast, Lagrangian methods use 51 

discrete particles as indicators to represent clouds of solute or pollutant, and these particles are 52 

tracked independently in flows. Thus, the Lagrangian approach can usually yield an accurate 53 

estimation (Zhang 2007). Nowadays, thanks to the dramatic progress in the quality and speed 54 

of computers, the computational price for the Lagrangian approach could be well paid. Its 55 

merits, such as conservative and free from artificial diffusion, become more and more 56 

outstanding. Compared with Euler methods, the Lagrangian methods are better suited to the 57 

simulation of complex phenomena, where high contamination gradients are involved.  58 

The computational cost for Lagrangian approaches depends on two factors: the number of 59 

particles to present the pollutant cloud, and the size of the computational time step that the 60 

model applied. The choice of these two factors is crucial to the efficiency of the random walk 61 

model. It is necessary to manually tune the number of particles and the size of time steps. Firstly, 62 

an ideal case is used to investigate the sensitivity of numerical solutions to the time steps and 63 

particle numbers in the depth-averaged random walk model. Then, the model is used to solve 64 

a solute oscillation problem along a hypothetical tidal estuary. The results of a TVD-65 

MacCormack model are used as a reference. Finally, the paper describes the applications of the 66 

random walk scheme to simulate the wind-driven chaotic mixing in a shallow circle lake. The 67 

results are compared with previous research from a qualitative point of view. 68 

2 Depth-averaged Advection-diffusion equation 69 

The governing equation of solute transportation in water bodies is the advection-diffusion 70 

equation (Gresho & Sani 1998). Advection is the transportation of a substance by a fluid due 71 

to the fluid’s bulk motion. In this process, it is assumed that particles of the solute exactly 72 

follow the shallow flow. Diffusion is the process whereby solute transports from higher 73 
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concentration to lower concentration in flow due to random movements. It is assumed that the 74 

diffusive substances would not affect the motion of flows. In other words, the flow field is 75 

independent of the existence of the diffusive materials. With these assumptions, the 76 

conservation of solute mass is presented as: 77 

డ(௦௛)డ௧ + డ(௨௦௛)డ௫ + డ(௩௦௛)డ௬ = డడ௫ ቀ݀ܦ௫௫ డ௦డ௫ + ௫௬ܦ݀ డ௦డ௬ቁ + డడ௬ ቀ݀ܦ௬௫ డ௦డ௫ + ௬௬ܦ݀ డ௦డ௬ቁ +  ௦    (1) 78ݍ

where t is time; s is the depth-averaged concentration of the solute; h is the water depth; u and 79 

v represent the velocities along x and y-axis respectively; qs is the sources term of the governing 80 

equation, representing the increase (qs > 0) or decrease (qs < 0) in the total amount of the solute; 81 

Dxx, Dxy, Dyx and Dyy represent the dispersion-diffusion tensor of depth-averaged mixing in 82 

Cartesian coordinates. The relationship between the streamwise-transverse system and 83 

Cartesian coordinate can be expressed as:  84 

2 2cos sinxx s tD D D                      (2) 85 

( )sin cosxy yx s tD D D D                       (3) 86 

2 2sin cosyy s tD D D                      (4) 87 

where s sD du , t tD du                                 (5) 88 

Ds and Dt are the streamwise and transverse diffusion coefficients; εs and εt are two 89 

dimensionless constants representing streamwise dispersion and transverse diffusion 90 

respectively. θ = arctan( v/u ) is the angle between the direction along the x-axis and the 91 

direction of the local flow. The shear velocity u∗ is expressed as Eq. (6) using Chézy coefficient. 92 

2 2

ézy
g

u u v
Ch

                                                                    (6) 93 
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 94 

3 Depth-averaged random-walk method 95 

 96 

3.1 Equation reformation 97 

In this paper, the depth-averaged advection-diffusion equation is recast in a new form that 98 

utilises a consistent particle-tracking algorithm. A new concentration variable, S = sh. is 99 

introduced. Then, the new form of the equation can be written as: 100 

2 22

2 2

( ) ( )( )( ) ( ) 2 xy yyxx D S D SD SS US VS
t x y x x y y

                  (7) 101 

ܷ = ݑ + డ஽ೣೣడ௫ + డ஽ೣ೤డ௬ + ஽ೣೣ௛ డ௛డ௫ + ஽ೣ೤௛ డ௛డ௬                       (8) 102 

ܸ = ݒ + డ஽೤೤డ௬ + డ஽ೣ೤డ௫ + ஽೤೤௛ డ௛డ௬ + ஽ೣ೤௛ డ௛డ௫                                  (9) 103 

The source term qs in the previous equation is neglected in the new form. S is considered as a 104 

probability density function. U and V in the Eqs. (8) and (9) represent the modified advective 105 

velocities. The more detailed explanations of this scheme can be found in Wu & Liang (2018). 106 

This depth-averaged random walk model is then performed by advection and diffusion 107 

transport process for each time step in the following content. 108 

3.2 Advective transport 109 

In the advective transport, the assumption is that particles exactly follow the flows. However, 110 

most of the input data for the flow field is firstly solved by traditional grid-based methods. 111 

The advective velocities in Eqs. (8) and (9) are necessary to be evaluated at each position of 112 

particles. In each grid cell that contains the particle, the velocities u and v are interpolated to 113 
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the second-order accuracy. The new particle position after the advective transport process can 114 

be expressed as Eqs. (10) and (11) using the second-order accurate iterative technique: 115 

௔ݔ = ௢௟ௗݔ + ഥܷ∆116 (10)                                        ݐ 

௔ݕ = ௢௟ௗݕ + തܸ∆117  (11)                                        ݐ 

where ഥܷ and തܸ  are the flow velocity used in calculating the particles’ advective displacement 118 

in each time step. To increase the order of accuracy, they are taken to be the time-averaged 119 

velocity within each time step. 120 

ഥܷ = ଵଶ ,௢௟ௗݔ)ܷ) ,௢௟ௗݕ (ݐ + ,௔ݔ)ܷ ,௔ݕ ݐ +  121 (12)                                     ((ݐ∆

തܸ = ଵଶ ,௢௟ௗݔ)ܸ) ,௢௟ௗݕ (ݐ + ,௔ݔ)ܸ ,௔ݕ ݐ +  122 (13)                                                                     ((ݐ∆

 123 

3.3 Diffusive transport 124 

After the advection process, the particles undergo diffusion transport in a time step. The 125 

random streamwise and transverse velocities are calculated as: 126 

௦ܷௗ = ௦ටଶ஽ೞ∆௧ݎ                                              (14) 127 

௧ܸௗ = ௧ටଶ஽೟∆௧ݎ                                              (15) 128 

 129 

The random numbers rs and rt are independent and follow a normal distribution with a mean 130 

of zero and a standard deviation of unity.  The subscripts s and t represent the streamwise and 131 

transverse direction, respectively. The superscript d represents the diffusion-related velocity 132 

components. In the Cartesian coordinate system, the diffusion-related velocity components 133 

are expressed as: 134 
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ݔܷ݀ = ݏܷ݀ cos ߠ − ݐܸ݀ sin  135 (16)                   ߠ

ݕܸ݀ = ݏܷ݀ sin ߠ + ݐܸ݀ cos  136 (17)                   ߠ

Finally, particle’s new coordinates after one-time step can be evaluated as  137 

௡௘௪ݔ = ௔ݔ + ௫ܷௗ∆138 (18)                    ݐ 

௡௘௪ݕ = ௔ݕ + ௬ܸௗ∆139 (19)                                                           ݐ 

 140 

3.4 Boundary condition 141 

Particles follow a “random walk” trajectory with the flow inside the computational domain. 142 

The boundary treatment is designed to prevent them from crossing solid boundaries. In this 143 

study, the fully reflective boundary condition is applied to particles that penetrate the solid 144 

boundaries after implementing Eqs. (18) and (19). When the time step is not large, such a 145 

treatment then reflects the particles back into the computational domain. 146 

4 Advection and diffusion transport in uniform flows 147 

The instantaneous release problem in uniform flows is tested firstly using the random walk 148 

model. When the uniform flow only follows the x-axis (v = 0, Dxy = 0, Dxx = Ds, Dyy = Dt), the 149 

analytical solution of this ideal test case can be expressed as: 150 

,ݔ)ݏ ,ݕ (ݐ = ಾ೓ସగ௧ඥ஽ೞ஽೟ ݁ି(ೣషೣబషೠ೟)మరವೞ೟ ି(೤ష೤బ)మరವ೟೟                                                                             (20) 151 

 152 

In this section, the total amount of solute material M = 233.06 kg is released suddenly at the 153 

initial location (x0, y0). As shown in Figure 1, the water depth is set to be h = 1 m, and the Chézy 154 

coefficient is 40 m1/2/s for the whole test area. The streamwise dispersion and transverse 155 

diffusion are typical values of 13.0 and 1.2 respectively for open channel flows (Falconer 1991). 156 
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Two flow conditions are considered in this section. The first one is a uniform flow with u = 1 157 

m/s along the x-axis (θ = 0). The solute material is initially located at (x0, y0) = (0, 400 m). The 158 

second one is a uniform flow aligned diagonal direction (θ = 45˚). The velocity is set to be u = 159 

v = 1/√2 m/s. For computations in both scenarios, the particle numbers P is 2.33×106 and the 160 

time step is 1 s. 161 

 162 

Figure 1 The instantaneous release problem in a uniform flow  163 

(a) x-direction flow; (b) diagonal-direction flow 164 

 165 

The development of concentration contours for flows in the x-axis direction and diagonal 166 

direction are presented in Figures 1 (a) and (b) respectively. It is notable that the major axis of 167 

the ellipses patches is along their flow directions. The cloud of the solute experienced rapid 168 

elongation on its path. The reason is that streamwise dispersion is ten times larger than the 169 

transverse diffusion. The results for the same test case obtained by a grid-based method, TVD-170 

MacCormack, can be found in Liang et al. (2010). 171 

4.1 The influence of time steps 172 

The advantage of the random walk model includes high accuracy and small numerical diffusion. 173 

However, the expense that comes with this Lagrangian approach is its high computational cost. 174 

As seen in the scheme description, the amount of the computation depends on two factors: the 175 

size of the computational time steps the model applied, and the number of particles to present 176 

the pollutant cloud. Therefore, the choices of these two factors are crucial to the efficiency of 177 

the random walk model. The following part of this section is to discuss the influence of the two 178 

parameters on the random walk model when applied to the instantaneous release problem in 179 

uniform flows. 180 
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Figure 2 Concentration distributions at 600 s with changes in time steps (x-direction flow) 181 

Figure 3 Development of peak concentrations with changes in time steps (x-direction flow) 182 

A great deal of research on time steps has been taken under the Euler scheme. The size of ∆183 ݐ 

is restricted by the Courant-Friedrichs-Lewy condition. Usually, the smaller the time step is, 184 

the more accurate and stable the simulation will be.  However, it tells a different story for the 185 

random walk model. Figure 2 presents the longitudinal concentration profile at 600 s after the 186 

solute release. Regardless of the time step of 600 s or 0.01 s, the same concentration profile is 187 

predicted by the model. Variations of the peak concentration are not affected by the size of 188 

time steps as well, as seen in Figure 3. 189 

This independent property of time steps can be derived through the iteration process. After n 190 

times iterations, the position of the particles at t time is expressed as: 191 

(ݐ)ଵݔ = ଴ݔ + ഥܷ݊∆ݐ + ඥ2ܦ௦∆ݐ ∙ ∑ ௜௡௜ୀଵݎ                                                                                (21) 192 

(ݐ)ଵݕ = ଴ݕ + തܸ݊∆ݐ + ඥ2ܦ௧∆ݐ ∙ ∑ ௝௡௝ୀଵݎ                                                                                (22) 193 

If the time step changes to be ݉∆ݐ, n/m times iterations are needed for the new time step. 194 

Then, the new position of the particles at t time is expressed as: 195 

(ݐ)ଶݔ = ଴ݔ + ഥܷ݊∆ݐ + ඥ2ܦ௦∆ݐ ∙ √݉ ∑ ௜௡/௠௜ୀଵݎ                                                                        (23) 196 

(ݐ)ଶݕ = ଴ݕ + തܸ݊∆ݐ + ඥ2ܦ௧∆ݐ ∙ √݉ ∑ ௝௡/௠௝ୀଵݎ                                                                        (24) 197 

In the present model, the random numbers ri follow a normal distribution with a mean of zero 198 

and a standard deviation of unity, as shown in Eq. (25). According to properties of a normal 199 

distribution (Bryc, Wlodzimierz 1995), ∑ ௜௡௜ୀଵݎ  and √݉ ∑ ௝௡/௠௝ୀଵݎ  have the same expectation 200 

and deviation.  201 
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,ߤ)ܰ~௜ݎ ߤ ଶ) , whereߪ = ଶߪ ,0 = 1                                                                                    (25) 202 

∑ ௜௡௜ୀଵݎ ,ߤ݊)ܰ~  ଶ)                                                                                                            (26) 203ߪ݊

√݉ ∙ ∑ ௝೙೘௝ୀଵݎ ~ܰ(√݉ ௡௠ ,ߤ ௡௠ ൫√݉ߪ൯ଶ
)                                                                                 (27) 204 

Therefore, the results will all obey the distribution of ܰ(0, ݊) no matter what size of the time 205 

step is used. It can be concluded that the change of time steps does not affect the accuracy of 206 

the present model for the uniform flow with constant water depth.  207 

 208 

4.2 The influence of particle numbers 209 

Figure4 shows a qualitative illustration of the solute transport process predicted by the random 210 

walk model using different configurations of particle numbers. In general, the contour turns 211 

out to be more notable with the particle number increases. Larger particle numbers significantly 212 

improve the visual effect of the elliptical cloud for solute distribution.  213 

 214 

Figure 4 Evolution of the solute cloud in x-direction uniform flows (P0 = 233) 215 

Figure 5 Variation of peak concentration for x-direction flows 216 

Figure 6 Relative errors of peak concentration (a) with the changes in particle numbers in 217 
each sampling bins; (b) with changes in time 218 

 219 

To get a quantitative analyse, the predicted results are compared with analytical solutions.  220 

Figure 5 shows variations of peak concentration with different particle numbers used in the 221 

simulation. The size of sampling bins is set to be a circle with a radius of one meter. It is notable 222 

that small particle numbers tend to produce numerical oscillations. On the contrary, by setting 223 

a more substantial number of particles in the model, the prediction approaches closer to the 224 
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analytical solution. For example, when 2.33×107 particles simulated in the model, the peak 225 

concentration is identical with the analytical solution. The relative errors with different particle 226 

numbers different bin sizes are compared in Figure 6 (a). In the legend, r represents the radius 227 

of the bin.  It is clear that with the growth of particle number put into the simulation, the error 228 

decreases significantly. The error for small particle numbers jumps beyond 18%, which is 229 

unacceptable in a strict simulation. When the number of particles in each sampling bins 230 

approaches 200 to 300, the relative error is reduced to less than 5%. This means that the particle 231 

should be guaranteed to be higher than hundreds per bin to show a reasonable result for the 232 

solute concentration. Also, it is worth to note that the error for both x-direction and diagonal 233 

flows is always consistent with each other, as shown in Figure 6 (b).  This means the model is 234 

not affected by the concentration gradient. 235 

5 Solute oscillation along a one-dimensional tidal estuary 236 

This section considers solute material is transported forward and backward in a hypothetical 237 

tidal estuary. As shown in Figure 7, the boundary condition for the left end is regarded as a 238 

sinusoidal tide, while the right side of this estuary is considered as a vertical wall. The total 239 

length of the estuary is 13,800 m, and the altitude changes from -5 m at the end of the 240 

seaward to 0 m at the right end. In this case, the tidal flow has an average water level of 0 m 241 

and amplitude of 2 m, rising from the average water level at the beginning of the simulation. 242 

Before the pollutant transport simulation, the predictions of the flow field were obtained by 243 

using TVD-MacCormack scheme to solve the SWEs (shallow water equations). Detailed 244 

information can be found in Liang et al. (2010). The discretized velocity field is then 245 

reconstructed into a continuous form using linear interpolation.   246 

Figure 7 One-dimensional hypothetical tidal estuary 247 
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The initial concentration is set to be 100 units at the cell located at x = 10 km, while the 248 

concentration of the remaining fields is set to be zero. An illustration for the particles position 249 

and their distribution along time is given by Figure 8. It is well presented that particles travel 250 

with wave flows and disperse in the longitudinal direction. The instantaneously released solute 251 

flows with the rising water to the closed wall under the influence of tidal currents, while the 252 

receding water is flowing to the open boundary. At the same time, the region of the solute is 253 

enlarging because of the effect of dispersion.  254 

 255 

 Figure 8 Distribution of solute particles along the one-dimensional hypothetical estuary 256 

Figure 9 Distribution of the concentration along the one-dimensional hypothetical estuary 257 

 258 

The aforementioned sampling algorithm is required to convert the scatter of particles, as 259 

illustrated in Fig. 8, to the concentration profile, as illustrated in Figure 9. This sampling 260 

algorithm is crucial in the interpretation of the results of the random walk method and in the 261 

evaluation of the concentrations. Traditionally, this concentration profile, i.e. histogram, uses 262 

a fixed length to separate different bins. However, this fixed setting may lose the accuracy at 263 

some local parts. In this work, the length of the bin is chosen automatically by including 200 264 

particles within each bin along the hypothetical estuary. This dynamic determination of the bin 265 

size is found to avoid spurious fluctuations and achieve good comparisons with analytical and 266 

previous results. A series of smooth concentration profiles along the estuary at both high and 267 

low water levels are shown in Figure 9. When the solute cloud moves nearly to the landward 268 

position, the tidal flow generally decelerates because of the wall boundary. It is notable that 269 

the peak concentration is even higher at 27 hours than at 9 hours, as the water level is higher 270 

near the right-side wall.  271 

 272 
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Figure 10 Distribution of the concentration along the estuary with the changes in grid size. 273 

(a)3 hours; (b)9 hours; (c)27 hours; (d)33 hours; (e)51 hours 274 

 275 

The numerical solution of TVD-MacCormack model is used as a reference for this case. For 276 

such grid-based methods, solutions are usually sensitive to its grid size. The finer the grid is, 277 

the more accurate the simulation will be, although the more computationally expensive it might 278 

be. The numerical diffusion for the Eulerian model is more obvious at the beginning because 279 

of the sharp concentration gradient. Taking Figure 10 (a) as an example, it presents the 280 

concentration profile at 3 hours since the beginning. Several different cell sizes, from 3 m to 281 

270 m, are used in the mesh method simulation. When the mesh size is increased to 270 m, the 282 

concentration distribution is too flat to demonstrate a proper concentration distribution. The 283 

results for the grid size of 3 m are nearly three times that of 90 m. On the contrary, the random 284 

walk model is less diffusive. A narrower distribution and a higher peak concentration are 285 

predicted by the present model, and it is identical to the extreme of the concentration trend.  286 

 287 

6 Wind-driven chaotic mixing in a shallow circle lake  288 

In this section, the random walk model is applied to simulate the particle motion due to wind-289 

driven mixing in a shallow lake. As shown in Figure 11, the property of the circular lake is 290 

suggested by Kranenburg (1992). The velocity field is described by a stream function in the 291 

polar coordinate system: 292 

)sin()1(
R
rBr  , where HuZB *4

ln , 
0

HZ
z

                           (28) 293 

The von Kármán constant κ is set to be 0.4; the mean depth H is 0.5m and the radius of the lake 294 

R0 is 120 m; z0 is a roughness height of the bed, set to 2.8 mm. The water depth h is described 295 

by a function of radial distance r from the basin centre as following: 296 
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                                                                                           (29) 297 

These physical parameters are set to be the same as those in Kranenburg (1992) for the 298 

comparison purpose.  299 

 300 

Figure 11 Aerial view of the model lake with a periodic sequence of storm events  301 

 302 

Kranenburg (1992) found that the particle motion becomes chaotic when surface wind stress 303 

periodically changes its direction. Therefore, a sequence of periodic storm events is designed 304 

for this case. During the first and second halves of a period, the direction of the storm wind 305 

jumps back and forth between the northeast and northwest directions, respectively. It is 306 

assumed that the wind stress suddenly changes its direction in between the half intervals, while 307 

its intensity is constant. At the same time, the Euler velocity field instantaneously adapts to 308 

wind conditions. The resulting flow field is governed by a dimensionless storm duration 309 

parameter μ as following: 310 

*
0

ln
8 s

Z u t
R

                                                                                                                (30) 311 

where ts is the storm duration, i.e. half of the period T. For all the cases considered, Poincaré 312 

sections are used to illustrate the mixing properties, which is the superposition of particle 313 

trajectories at the end of each cycle. 314 

 315 

Figure 12 Poincaré sections for wind periodically blowing from north-east and north-west 316 

with different μ (without diffusive process) 317 

 318 

For comparison purposes, the diffusive process is ignored to test the behaviour of the advection 319 

part in the random walk model. These particles are tracked for 500 periods in this section. For 320 
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small μ, as shown in Figure 12 (a), the elliptic periodic points are surrounded by two large 321 

islands of regular motion. The area of the chaotic region increases with the increase of μ, while 322 

the sizes of the period-one islands decrease. When μ is beyond 0.70, the period-one elliptic 323 

points are no longer obvious, and only chaotic motion remains (for μ = 0.84). These findings 324 

are consistent with previous results of Kranenburg (1992). 325 

 326 

Figure 13 Poincaré sections for both advection and diffusion processes with different ߝ௦ (μ = 327 

0.14) 328 

 329 

Then, both advection and diffusion processes are considered as tracer particles are also spread 330 

by turbulence and shear dispersion during each storm. Figure 13 depicts the impact of 331 

streamwise dispersion  ߝ௦ (the transverse diffusion ߝ௧ is constant at 0 in this section.) on this 332 

chaotic mixing phenomenon. For ߝ௦  equal to 0.001, it is still clear that the circular lake is 333 

divided into two large islands and positions of the elliptic periodic points are still obvious. With 334 

the increase of the streamwise dispersion, this pattern becomes more and more blurred until 335 

the KAM (Kolmogorov-Arnold-Moser) (Kranenburg 1992) curves are no longer exits ( ߝ௦ > 336 

0.1). It is worth to mention that, the growth of the streamwise dispersion will not change the 337 

position of elliptic periodic points, but it will amplify the erratic motion considerably.  338 

 339 

Figure 14 Poincaré sections for both advection and diffusion processes (μ = 0.28) 340 

Figure 15 Poincaré sections for both advection and diffusion processes (μ = 0.42) 341 

Figure 16 Snapshot of the particle distribution in Kranenburg’s model lake (t = 32T; μ = 0.28) 342 

 343 

For μ = 0.28 and 0.42, the entire calculation domain is chaotic when the dispersion  ߝ௦ is only 344 

0.1, as shown in Figures 14 and 15. This means that the increase in the duration of the periodic 345 
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storm will exacerbate the impact of the diffusion coefficient, making it easier to achieve a 346 

chaotic state. Figure 16 shows the advection and diffusion behaviour of a line of 10,000 347 

particles after 32 periods of the storm event. The line is initially positioned along the x-axis. 348 

Both whorl-type and tendrils structures coexist when μ is 0.28. With the increase of the 349 

dispersion parameter, elliptic and hyperbolic points all disappear, and particle motions reach 350 

the global chaotic state. 351 

7 Conclusions  352 

The traditional random walk model has been extended to solve the depth-integrated advection-353 

diffusion equation. Firstly, this model is verified by solving an instantaneous release problem 354 

in uniform flows. Analytical solutions are used as a reference. The results reveal several merits 355 

of this model, including high accuracy and simplicity. Extensive parametric studies have been 356 

carried out to investigate the sensitivity of the predictions to the computational parameters. It 357 

has been found that simulations are independent of the size of the time step. The particle 358 

number significantly influences the performance of the random walk model. Too few particles 359 

degrade the visual inspection and quantitative examination of the solute distribution. In 360 

uniform-flow applications, a relatively large time step will reduce the computation expense 361 

without compromising accuracy, while particle numbers used should be chosen so that there 362 

are at least 200-300 particles in each sampling bin. Then, investigations are carried out 363 

regarding the oscillation of a pollutant cloud in a tide estuary. The sampling method is 364 

optimised to convert the particle distributions into concentration profiles. The random walk 365 

simulations display high accuracy, which can only be achieved by the method-based 366 

simulations with extremely fine resolutions. The mesh-based methods are shown to be highly 367 

sensitive to the grid resolution. Finally, the model is used to simulate the chaotic mixing process. 368 

The results for pure advection process are consistent with the findings reported in previous 369 

researches. Because of the presence of turbulent diffusion and bottom friction in any real lake, 370 
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the advection process is always accompanied by the longitudinal dispersion process. This study 371 

shows that the streamwise dispersion plays an important role in the material mixing pattern.  372 

In summary, this study demonstrates that the random-walk model is highly stable and free of 373 

artificial diffusion in solving the solute transport problems in aquatic environments. In 374 

particular, this study proposes a generic sampling technique to convert the scatter of discrete 375 

particles into the solute concentration, which can also be used for estimating the total number 376 

of particles needed for the simulation.  377 
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(a)                                                                         (b) 

Figure 1 The instantaneous release problem in a uniform flow  
(a) x-direction flow; (b) diagonal-direction flow 

 
Figure 2 Concentration distributions at 600s with changes in time steps (x-direction flow) 
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Figure 3 Development of peak concentrations with changes in time steps (x-direction flow) 

 
 

Figure 4 Evolution of the solute cloud in x-direction uniform flows (P0 = 233) 

 
Figure 5 Variation of peak concentration for x-direction flows 
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Figure 6 Relative errors of peak concentration (a)with the changes in particle numbers in 
each sampling bins; (b) with changes in time 

 

   

Figure 7 One-dimensional hypothetical tidal estuary 
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 Figure 8 Distribution of solute particles along the one-dimensional hypothetical estuary 
 

 
Figure 9 Distribution of the concentration along the one-dimensional hypothetical estuary 
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Figure 10 Distribution of the concentration along the estuary with the changes in grid size. 
(a)3 hours; (b)9 hours; (c)27 hours; (d)33 hours; (e)51 hours 

 
Figure 11 Aerial view of the model lake with a periodic sequence of storm events  

 
(a) μ = 0.14                        (b) μ = 0.28                        (c) μ = 0.42 



 
(e) μ = 0.56                           (f) μ = 0.70                               (g) μ = 0.84 

Figure 12 Poincaré sections for wind periodically blowing from north-east and north-west 
with different μ (without diffusive process) 

 
(a)  = 0.0                        (b)  = 0.001                        (c)   = 0.01 

 

 
(e)   = 0.1                                 (f)   = 1                            (g)   = 10 

Figure 13 Poincaré sections for both advection and diffusion processes with different  (μ = 
0.14) 

 
(a)  = 0.001                        (b)  = 0.01                        (c)   = 0.1 

Figure 14 Poincaré sections for both advection and diffusion processes (μ = 0.28) 
 



 
(a)  = 0.001                        (b)  = 0.01                        (c)   = 0.1 

Figure 15 Poincaré sections for both advection and diffusion processes (μ = 0.42) 
 

 
(a)  = 0.001                        (b)  = 0.01                        (c)   = 0.1 

Figure 16 Snapshots of the particle distribution in Kranenburg’s model lake (t = 32T; μ = 
0.28) 


